Sample records for acceptable error limits

  1. Customization of user interfaces to reduce errors and enhance user acceptance.

    PubMed

    Burkolter, Dina; Weyers, Benjamin; Kluge, Annette; Luther, Wolfram

    2014-03-01

    Customization is assumed to reduce error and increase user acceptance in the human-machine relation. Reconfiguration gives the operator the option to customize a user interface according to his or her own preferences. An experimental study with 72 computer science students using a simulated process control task was conducted. The reconfiguration group (RG) interactively reconfigured their user interfaces and used the reconfigured user interface in the subsequent test whereas the control group (CG) used a default user interface. Results showed significantly lower error rates and higher acceptance of the RG compared to the CG while there were no significant differences between the groups regarding situation awareness and mental workload. Reconfiguration seems to be promising and therefore warrants further exploration. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Limitations of Surface Mapping Technology in Accurately Identifying Critical Errors in Dental Students' Crown Preparations.

    PubMed

    Furness, Alan R; Callan, Richard S; Mackert, J Rodway; Mollica, Anthony G

    2018-01-01

    The aim of this study was to evaluate the effectiveness of the Planmeca Compare software in identifying and quantifying a common critical error in dental students' crown preparations. In 2014-17, a study was conducted at one U.S. dental school that evaluated an ideal crown prep made by a faculty member on a dentoform to modified preps. Two types of preparation errors were created by the addition of flowable composite to the occlusal surface of identical dies of the preparations to represent the underreduction of the distolingual cusp. The error was divided into two classes: the minor class allowed for 1 mm of occlusal clearance, and the major class allowed for no occlusal clearance. The preparations were then digitally evaluated against the ideal preparation using Planmeca Compare. Percent comparison values were obtained from each trial and averaged together. False positives and false negatives were also identified and used to determine the accuracy of the evaluation. Critical errors that did not involve a substantial change in the surface area of the preparation were inconsistently identified. Within the limitations of this study, the authors concluded that the Compare software was unable to consistently identify common critical errors within an acceptable degree of error.

  3. Discrepancy-based error estimates for Quasi-Monte Carlo III. Error distributions and central limits

    NASA Astrophysics Data System (ADS)

    Hoogland, Jiri; Kleiss, Ronald

    1997-04-01

    In Quasi-Monte Carlo integration, the integration error is believed to be generally smaller than in classical Monte Carlo with the same number of integration points. Using an appropriate definition of an ensemble of quasi-random point sets, we derive various results on the probability distribution of the integration error, which can be compared to the standard Central Limit Theorem for normal stochastic sampling. In many cases, a Gaussian error distribution is obtained.

  4. Determination and evaluation of acceptable force limits in single-digit tasks.

    PubMed

    Nussbaum, Maury A; Johnson, Hope

    2002-01-01

    Acceptable limits derived from psychophysical methodologies have been proposed, measured, and employed in a range of applications. There is little existing work, however, on such limits for single-digit exertions and relatively limited evidence on several fundamental issues related to data collection and processing of a sequence of self-regulated exertion levels. An experimental study was conducted using 14 male and 10 female participants (age range 18-31 years) from whom maximal voluntary exertions and maximal acceptable limits (MALs) were obtained using the index finger and thumb. Moderate to high levels of consistency were found for both measures between sessions separated by one day. Single MAL values, determined from a time series of exertions, were equivalent across three divergent processing methods and between values obtained from 5- and 25-min samples. A critical interpretation of these and earlier results supports continued use of acceptable limits but also suggests that they should be used with some caution and not equated with safe limits. This research can be applied toward future development of exertion limits based on perceived acceptability.

  5. Learning mechanisms to limit medication administration errors.

    PubMed

    Drach-Zahavy, Anat; Pud, Dorit

    2010-04-01

    This paper is a report of a study conducted to identify and test the effectiveness of learning mechanisms applied by the nursing staff of hospital wards as a means of limiting medication administration errors. Since the influential report ;To Err Is Human', research has emphasized the role of team learning in reducing medication administration errors. Nevertheless, little is known about the mechanisms underlying team learning. Thirty-two hospital wards were randomly recruited. Data were collected during 2006 in Israel by a multi-method (observations, interviews and administrative data), multi-source (head nurses, bedside nurses) approach. Medication administration error was defined as any deviation from procedures, policies and/or best practices for medication administration, and was identified using semi-structured observations of nurses administering medication. Organizational learning was measured using semi-structured interviews with head nurses, and the previous year's reported medication administration errors were assessed using administrative data. The interview data revealed four learning mechanism patterns employed in an attempt to learn from medication administration errors: integrated, non-integrated, supervisory and patchy learning. Regression analysis results demonstrated that whereas the integrated pattern of learning mechanisms was associated with decreased errors, the non-integrated pattern was associated with increased errors. Supervisory and patchy learning mechanisms were not associated with errors. Superior learning mechanisms are those that represent the whole cycle of team learning, are enacted by nurses who administer medications to patients, and emphasize a system approach to data analysis instead of analysis of individual cases.

  6. Extinction measurements with low-power hsrl systems—error limits

    NASA Astrophysics Data System (ADS)

    Eloranta, Ed

    2018-04-01

    HSRL measurements of extinction are more difficult than backscatter measurements. This is particularly true for low-power, eye-safe systems. This paper looks at error sources that currently provide an error limit of 10-5 m-1 for boundary layer extinction measurements made with University of Wisconsin HSRL systems. These eye-safe systems typically use 300mW transmitters and 40 cm diameter receivers with a 10-4 radian field-of-view.

  7. Identifying and preventing medical errors in patients with limited English proficiency: key findings and tools for the field.

    PubMed

    Wasserman, Melanie; Renfrew, Megan R; Green, Alexander R; Lopez, Lenny; Tan-McGrory, Aswita; Brach, Cindy; Betancourt, Joseph R

    2014-01-01

    Since the 1999 Institute of Medicine (IOM) report To Err is Human, progress has been made in patient safety, but few efforts have focused on safety in patients with limited English proficiency (LEP). This article describes the development, content, and testing of two new evidence-based Agency for Healthcare Research and Quality (AHRQ) tools for LEP patient safety. In the content development phase, a comprehensive mixed-methods approach was used to identify common causes of errors for LEP patients, high-risk scenarios, and evidence-based strategies to address them. Based on our findings, Improving Patient Safety Systems for Limited English Proficient Patients: A Guide for Hospitals contains recommendations to improve detection and prevention of medical errors across diverse populations, and TeamSTEPPS Enhancing Safety for Patients with Limited English Proficiency Module trains staff to improve safety through team communication and incorporating interpreters in the care process. The Hospital Guide was validated with leaders in quality and safety at diverse hospitals, and the TeamSTEPPS LEP module was field-tested in varied settings within three hospitals. Both tools were found to be implementable, acceptable to their audiences, and conducive to learning. Further research on the impact of the combined use of the guide and module would shed light on their value as a multifaceted intervention. © 2014 National Association for Healthcare Quality.

  8. Achieving the Heisenberg limit in quantum metrology using quantum error correction.

    PubMed

    Zhou, Sisi; Zhang, Mengzhen; Preskill, John; Jiang, Liang

    2018-01-08

    Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.

  9. The limits of acceptable change process: modifications and clarifications

    Treesearch

    David N. Cole; Stephen F. McCool

    1997-01-01

    Limits of Acceptable Change (LAC) was originally formulated to deal with the issue of recreation carrying capacity in wilderness. Enthusiasm for the process has led to questions about its applicability to a broad range of natural resource issues—both within and outside of protected areas. This paper uses a generic version of the LAC process to identify situations where...

  10. Beyond wilderness: Broadening the applicability of limits of acceptable change

    Treesearch

    Mark W. Brunson

    1977-01-01

    The Limits of Acceptable Change (LAC) process helps managers preserve wilderness attributes along with recreation opportunities. Ecosystem management likewise requires managers to balance societal and ecosystem needs. Both are more likely to succeed through collaborative planning. Consequently, LAC can offer a conceptual framework for achieving sustainable solutions...

  11. A Technological Innovation to Reduce Prescribing Errors Based on Implementation Intentions: The Acceptability and Feasibility of MyPrescribe

    PubMed Central

    Hart, Jo; Thoong, Hong; Ferguson, Jane; Tully, Mary

    2017-01-01

    Background Although prescribing of medication in hospitals is rarely an error-free process, prescribers receive little feedback on their mistakes and ways to change future practices. Audit and feedback interventions may be an effective approach to modifying the clinical practice of health professionals, but these may pose logistical challenges when used in hospitals. Moreover, such interventions are often labor intensive. Consequently, there is a need to develop effective and innovative interventions to overcome these challenges and to improve the delivery of feedback on prescribing. Implementation intentions, which have been shown to be effective in changing behavior, link critical situations with an appropriate response; however, these have rarely been used in the context of improving prescribing practices. Objective Semistructured qualitative interviews were conducted to evaluate the acceptability and feasibility of providing feedback on prescribing errors via MyPrescribe, a mobile-compatible website informed by implementation intentions. Methods Data relating to 200 prescribing errors made by 52 junior doctors were collected by 11 hospital pharmacists. These errors were populated into MyPrescribe, where prescribers were able to construct their own personalized action plans. Qualitative interviews with a subsample of 15 junior doctors were used to explore issues regarding feasibility and acceptability of MyPrescribe and their experiences of using implementation intentions to construct prescribing action plans. Framework analysis was used to identify prominent themes, with findings mapped to the behavioral components of the COM-B model (capability, opportunity, motivation, and behavior) to inform the development of future interventions. Results MyPrescribe was perceived to be effective in providing opportunities for critical reflection on prescribing errors and to complement existing training (such as junior doctors’ e-portfolio). The participants were able to

  12. Statistical analysis of the limitation of half integer resonances on the available momentum acceptance of the High Energy Photon Source

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Duan, Zhe

    2017-01-01

    In a diffraction-limited storage ring, half integer resonances can have strong effects on the beam dynamics, associated with the large detuning terms from the strong focusing and strong sextupoles as required for an ultralow emittance. In this study, the limitation of half integer resonances on the available momentum acceptance (MA) was statistically analyzed based on one design of the High Energy Photon Source (HEPS). It was found that the probability of MA reduction due to crossing of half integer resonances is closely correlated with the level of beta beats at the nominal tunes, but independent of the error sources. The analysis indicated that for the presented HEPS lattice design, the rms amplitude of beta beats should be kept below 1.5% horizontally and 2.5% vertically to reach a small MA reduction probability of about 1%.

  13. Developing acceptance limits for measured bearing wear of the Space Shuttle Main Engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Genge, Gary G.

    1991-01-01

    The probabilistic design approach currently receiving attention for structural failure modes has been adapted for obtaining measured bearing wear limits in the Space Shuttle Main Engine high-pressure oxidizer turbopump. With the development of the shaft microtravel measurements to determine bearing health, an acceptance limit was neeed that protects against all known faiure modes yet is not overly conservative. This acceptance criteria limit has been successfully determined using probabilistic descriptions of preflight hardware geometry, empirical bearing wear data, mission requirements, and measurement tool precision as an input for a Monte Carlo simulation. The result of the simulation is a frequency distribution of failures as a function of preflight acceptance limits. When the distribution is converted into a reliability curve, a conscious risk management decision is made concerning the acceptance limit.

  14. 10 CFR 2.643 - Acceptance and docketing of application for limited work authorization.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... acceptable for processing, the Director of New Reactors or the Director of Nuclear Reactor Regulation will... 10 Energy 1 2013-01-01 2013-01-01 false Acceptance and docketing of application for limited work authorization. 2.643 Section 2.643 Energy NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND PROCEDURE...

  15. Error analysis of speed of sound reconstruction in ultrasound limited angle transmission tomography.

    PubMed

    Jintamethasawat, Rungroj; Lee, Won-Mean; Carson, Paul L; Hooi, Fong Ming; Fowlkes, J Brian; Goodsitt, Mitchell M; Sampson, Richard; Wenisch, Thomas F; Wei, Siyuan; Zhou, Jian; Chakrabarti, Chaitali; Kripfgans, Oliver D

    2018-04-07

    We have investigated limited angle transmission tomography to estimate speed of sound (SOS) distributions for breast cancer detection. That requires both accurate delineations of major tissues, in this case by segmentation of prior B-mode images, and calibration of the relative positions of the opposed transducers. Experimental sensitivity evaluation of the reconstructions with respect to segmentation and calibration errors is difficult with our current system. Therefore, parametric studies of SOS errors in our bent-ray reconstructions were simulated. They included mis-segmentation of an object of interest or a nearby object, and miscalibration of relative transducer positions in 3D. Close correspondence of reconstruction accuracy was verified in the simplest case, a cylindrical object in homogeneous background with induced segmentation and calibration inaccuracies. Simulated mis-segmentation in object size and lateral location produced maximum SOS errors of 6.3% within 10 mm diameter change and 9.1% within 5 mm shift, respectively. Modest errors in assumed transducer separation produced the maximum SOS error from miscalibrations (57.3% within 5 mm shift), still, correction of this type of error can easily be achieved in the clinic. This study should aid in designing adequate transducer mounts and calibration procedures, and in specification of B-mode image quality and segmentation algorithms for limited angle transmission tomography relying on ray tracing algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. 5 CFR 1605.22 - Claims for correction of Board or TSP record keeper errors; time limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... record keeper errors; time limitations. 1605.22 Section 1605.22 Administrative Personnel FEDERAL... § 1605.22 Claims for correction of Board or TSP record keeper errors; time limitations. (a) Filing claims... after that time, the Board or TSP record keeper may use its sound discretion in deciding whether to...

  17. Action errors, error management, and learning in organizations.

    PubMed

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  18. Defining fire and wilderness objectives: Applying limits of acceptable change

    Treesearch

    David N. Cole

    1995-01-01

    The Limits of Acceptable Change (LAC) planning process was developed to help define objectives for recreation management in wilderness. This process can be applied to fire in wilderness if its conceptual foundation is broadened. LAC would lead decision makers to identify a compromise between the goal of allowing fire to play its natural role in wilderness and various...

  19. [Statistical Process Control (SPC) can help prevent treatment errors without increasing costs in radiotherapy].

    PubMed

    Govindarajan, R; Llueguera, E; Melero, A; Molero, J; Soler, N; Rueda, C; Paradinas, C

    2010-01-01

    Statistical Process Control (SPC) was applied to monitor patient set-up in radiotherapy and, when the measured set-up error values indicated a loss of process stability, its root cause was identified and eliminated to prevent set-up errors. Set up errors were measured for medial-lateral (ml), cranial-caudal (cc) and anterior-posterior (ap) dimensions and then the upper control limits were calculated. Once the control limits were known and the range variability was acceptable, treatment set-up errors were monitored using sub-groups of 3 patients, three times each shift. These values were plotted on a control chart in real time. Control limit values showed that the existing variation was acceptable. Set-up errors, measured and plotted on a X chart, helped monitor the set-up process stability and, if and when the stability was lost, treatment was interrupted, the particular cause responsible for the non-random pattern was identified and corrective action was taken before proceeding with the treatment. SPC protocol focuses on controlling the variability due to assignable cause instead of focusing on patient-to-patient variability which normally does not exist. Compared to weekly sampling of set-up error in each and every patient, which may only ensure that just those sampled sessions were set-up correctly, the SPC method enables set-up error prevention in all treatment sessions for all patients and, at the same time, reduces the control costs. Copyright © 2009 SECA. Published by Elsevier Espana. All rights reserved.

  20. A Technological Innovation to Reduce Prescribing Errors Based on Implementation Intentions: The Acceptability and Feasibility of MyPrescribe.

    PubMed

    Keyworth, Chris; Hart, Jo; Thoong, Hong; Ferguson, Jane; Tully, Mary

    2017-08-01

    Although prescribing of medication in hospitals is rarely an error-free process, prescribers receive little feedback on their mistakes and ways to change future practices. Audit and feedback interventions may be an effective approach to modifying the clinical practice of health professionals, but these may pose logistical challenges when used in hospitals. Moreover, such interventions are often labor intensive. Consequently, there is a need to develop effective and innovative interventions to overcome these challenges and to improve the delivery of feedback on prescribing. Implementation intentions, which have been shown to be effective in changing behavior, link critical situations with an appropriate response; however, these have rarely been used in the context of improving prescribing practices. Semistructured qualitative interviews were conducted to evaluate the acceptability and feasibility of providing feedback on prescribing errors via MyPrescribe, a mobile-compatible website informed by implementation intentions. Data relating to 200 prescribing errors made by 52 junior doctors were collected by 11 hospital pharmacists. These errors were populated into MyPrescribe, where prescribers were able to construct their own personalized action plans. Qualitative interviews with a subsample of 15 junior doctors were used to explore issues regarding feasibility and acceptability of MyPrescribe and their experiences of using implementation intentions to construct prescribing action plans. Framework analysis was used to identify prominent themes, with findings mapped to the behavioral components of the COM-B model (capability, opportunity, motivation, and behavior) to inform the development of future interventions. MyPrescribe was perceived to be effective in providing opportunities for critical reflection on prescribing errors and to complement existing training (such as junior doctors' e-portfolio). The participants were able to provide examples of how they would use

  1. 10 CFR 2.643 - Acceptance and docketing of application for limited work authorization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Acceptance and docketing of application for limited work authorization. 2.643 Section 2.643 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING... Construct Certain Utilization Facilities; and Advance Issuance of Limited Work Authorizations Phased...

  2. Analysis of operator splitting errors for near-limit flame simulations

    NASA Astrophysics Data System (ADS)

    Lu, Zhen; Zhou, Hua; Li, Shan; Ren, Zhuyin; Lu, Tianfeng; Law, Chung K.

    2017-04-01

    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction-diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction of ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory

  3. Analysis of operator splitting errors for near-limit flame simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhen; Zhou, Hua; Li, Shan

    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction–diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction ofmore » ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying

  4. Legitimization of regulatory norms: Waterfowl hunter acceptance of changing duck bag limits

    USGS Publications Warehouse

    Schroeder, Susan A.; Fulton, David C.; Lawrence, Jeffrey S.; Cordts, Steven D.

    2014-01-01

    Few studies have examined response to regulatory change over time, or addressed hunter attitudes about changes in hunting bag limits. This article explores Minnesota waterfowl hunters’ attitudes about duck bag limits, examining attitudes about two state duck bag limits that were initially more restrictive than the maximum set by the U.S. Fish and Wildlife Service (USFWS), but then increased to match federal limits. Results are from four mail surveys that examined attitudes about bag limits over time. Following two bag limit increases, a greater proportion of hunters rated the new bag limit “too high” and a smaller proportion rated it “too low.” Several years following the first bag limit increase, the proportion of hunters who indicated that the limit was “too high” had declined, suggesting hunter acceptance of the new regulation. Results suggest that waterfowl bag limits may represent legal norms that influence hunter attitudes and gain legitimacy over time.

  5. Preventing medication errors in cancer chemotherapy.

    PubMed

    Cohen, M R; Anderson, R W; Attilio, R M; Green, L; Muller, R J; Pruemer, J M

    1996-04-01

    Recommendations for preventing medication errors in cancer chemotherapy are made. Before a health care provider is granted privileges to prescribe, dispense, or administer antineoplastic agents, he or she should undergo a tailored educational program and possibly testing or certification. Appropriate reference materials should be developed. Each institution should develop a dose-verification process with as many independent checks as possible. A detailed checklist covering prescribing, transcribing, dispensing, and administration should be used. Oral orders are not acceptable. All doses should be calculated independently by the physician, the pharmacist, and the nurse. Dosage limits should be established and a review process set up for doses that exceed the limits. These limits should be entered into pharmacy computer systems, listed on preprinted order forms, stated on the product packaging, placed in strategic locations in the institution, and communicated to employees. The prescribing vocabulary must be standardized. Acronyms, abbreviations, and brand names must be avoided and steps taken to avoid other sources of confusion in the written orders, such as trailing zeros. Preprinted antineoplastic drug order forms containing checklists can help avoid errors. Manufacturers should be encouraged to avoid or eliminate ambiguities in drug names and dosing information. Patients must be educated about all aspects of their cancer chemotherapy, as patients represent a last line of defense against errors. An interdisciplinary team at each practice site should review every medication error reported. Pharmacists should be involved at all sites where antineoplastic agents are dispensed. Although it may not be possible to eliminate all medication errors in cancer chemotherapy, the risk can be minimized through specific steps. Because of their training and experience, pharmacists should take the lead in this effort.

  6. Operational Interventions to Maintenance Error

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Walter, Diane; Dulchinos, VIcki

    1997-01-01

    A significant proportion of aviation accidents and incidents are known to be tied to human error. However, research of flight operational errors has shown that so-called pilot error often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the team7 concept for maintenance operations and in tailoring programs to fit the needs of technical opeRAtions. Nevertheless, there remains a dual challenge: 1) to develop human factors interventions which are directly supported by reliable human error data, and 2) to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.

  7. Application of Zoning and ``Limits of Acceptable Change'' to Manage Snorkelling Tourism

    NASA Astrophysics Data System (ADS)

    Roman, George S. J.; Dearden, Philip; Rollins, Rick

    2007-06-01

    Zoning and applying Limits of Acceptable Change (LAC) are two promising strategies for managing tourism in Marine Protected Areas (MPAs). Typically, these management strategies require the collection and integration of ecological and socioeconomic data. This problem is illustrated by a case study of Koh Chang National Marine Park, Thailand. Biophysical surveys assessed coral communities in the MPA to derive indices of reef diversity and vulnerability. Social surveys assessed visitor perceptions and satisfaction with conditions encountered on snorkelling tours. Notably, increased coral mortality caused a significant decrease in visitor satisfaction. The two studies were integrated to prescribe zoning and “Limits of Acceptable Change” (LAC). As a biophysical indicator, the data suggest a LAC value of 0.35 for the coral mortality index. As a social indicator, the data suggest that a significant fraction of visitors would find a LAC value of under 30 snorkellers per site as acceptable. The draft zoning plan prescribed four different types of zones: (I) a Conservation Zone with no access apart from monitoring or research; (II) Tourism Zones with high tourism intensities at less vulnerable reefs; (III) Ecotourism zones with a social LAC standard of <30 snorkellers per site, and (IV) General Use Zones to meet local artisanal fishery needs. This study illustrates how ecological and socioeconomic field studies in MPAs can be integrated to craft zoning plans addressing multiple objectives.

  8. Application of zoning and "limits of acceptable change" to manage snorkelling tourism.

    PubMed

    Roman, George S J; Dearden, Philip; Rollins, Rick

    2007-06-01

    Zoning and applying Limits of Acceptable Change (LAC) are two promising strategies for managing tourism in Marine Protected Areas (MPAs). Typically, these management strategies require the collection and integration of ecological and socioeconomic data. This problem is illustrated by a case study of Koh Chang National Marine Park, Thailand. Biophysical surveys assessed coral communities in the MPA to derive indices of reef diversity and vulnerability. Social surveys assessed visitor perceptions and satisfaction with conditions encountered on snorkelling tours. Notably, increased coral mortality caused a significant decrease in visitor satisfaction. The two studies were integrated to prescribe zoning and "Limits of Acceptable Change" (LAC). As a biophysical indicator, the data suggest a LAC value of 0.35 for the coral mortality index. As a social indicator, the data suggest that a significant fraction of visitors would find a LAC value of under 30 snorkellers per site as acceptable. The draft zoning plan prescribed four different types of zones: (I) a Conservation Zone with no access apart from monitoring or research; (II) Tourism Zones with high tourism intensities at less vulnerable reefs; (III) Ecotourism zones with a social LAC standard of <30 snorkellers per site, and (IV) General Use Zones to meet local artisanal fishery needs. This study illustrates how ecological and socioeconomic field studies in MPAs can be integrated to craft zoning plans addressing multiple objectives.

  9. Fatigue acceptance test limit criterion for larger diameter rolled thread fasteners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kephart, A.R.

    1997-05-01

    This document describes a fatigue lifetime acceptance test criterion by which studs having rolled threads, larger than 1.0 inches in diameter, can be assured to meet minimum quality attributes associated with a controlled rolling process. This criterion is derived from a stress dependent, room temperature air fatigue database for test studs having a 0.625 inch diameter threads of Alloys X-750 HTH and direct aged 625. Anticipated fatigue lives of larger threads are based on thread root elastic stress concentration factors which increase with increasing thread diameters. Over the thread size range of interest, a 30% increase in notch stress ismore » equivalent to a factor of five (5X) reduction in fatigue life. The resulting diameter dependent fatigue acceptance criterion is normalized to the aerospace rolled thread acceptance standards for a 1.0 inch diameter, 0.125 inch pitch, Unified National thread with a controlled Root radius (UNR). Testing was conducted at a stress of 50% of the minimum specified material ultimate strength, 80 Ksi, and at a stress ratio (R) of 0.10. Limited test data for fastener diameters of 1.00 to 2.25 inches are compared to the acceptance criterion. Sensitivity of fatigue life of threads to test nut geometry variables was also shown to be dependent on notch stress conditions. Bearing surface concavity of the compression nuts and thread flank contact mismatch conditions can significantly affect the fastener fatigue life. Without improved controls these conditions could potentially provide misleading acceptance data. Alternate test nut geometry features are described and implemented in the rolled thread stud specification, MIL-DTL-24789(SH), to mitigate the potential effects on fatigue acceptance data.« less

  10. Use of error grid analysis to evaluate acceptability of a point of care prothrombin time meter.

    PubMed

    Petersen, John R; Vonmarensdorf, Hans M; Weiss, Heidi L; Elghetany, M Tarek

    2010-02-01

    Statistical methods (linear regression, correlation analysis, etc.) are frequently employed in comparing methods in the central laboratory (CL). Assessing acceptability of point of care testing (POCT) equipment, however, is more difficult because statistically significant biases may not have an impact on clinical care. We showed how error grid (EG) analysis can be used to evaluate POCT PT INR with the CL. We compared results from 103 patients seen in an anti-coagulation clinic that were on Coumadin maintenance therapy using fingerstick samples for POCT (Roche CoaguChek XS and S) and citrated venous blood samples for CL (Stago STAR). To compare clinical acceptability of results we developed an EG with zones A, B, C and D. Using 2nd order polynomial equation analysis, POCT results highly correlate with the CL for CoaguChek XS (R(2)=0. 955) and CoaguChek S (R(2)=0. 93), respectively but does not indicate if POCT results are clinically interchangeable with the CL. Using EG it is readily apparent which levels can be considered clinically identical to the CL despite analytical bias. We have demonstrated the usefulness of EG in determining acceptability of POCT PT INR testing and how it can be used to determine cut-offs where differences in POCT results may impact clinical care. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Effect of a limited-enforcement intelligent tutoring system in dermatopathology on student errors, goals and solution paths.

    PubMed

    Payne, Velma L; Medvedeva, Olga; Legowski, Elizabeth; Castine, Melissa; Tseytlin, Eugene; Jukic, Drazen; Crowley, Rebecca S

    2009-11-01

    Determine effects of a limited-enforcement intelligent tutoring system in dermatopathology on student errors, goals and solution paths. Determine if limited enforcement in a medical tutoring system inhibits students from learning the optimal and most efficient solution path. Describe the type of deviations from the optimal solution path that occur during tutoring, and how these deviations change over time. Determine if the size of the problem-space (domain scope), has an effect on learning gains when using a tutor with limited enforcement. Analyzed data mined from 44 pathology residents using SlideTutor-a Medical Intelligent Tutoring System in Dermatopathology that teaches histopathologic diagnosis and reporting skills based on commonly used diagnostic algorithms. Two subdomains were included in the study representing sub-algorithms of different sizes and complexities. Effects of the tutoring system on student errors, goal states and solution paths were determined. Students gradually increase the frequency of steps that match the tutoring system's expectation of expert performance. Frequency of errors gradually declines in all categories of error significance. Student performance frequently differs from the tutor-defined optimal path. However, as students continue to be tutored, they approach the optimal solution path. Performance in both subdomains was similar for both errors and goal differences. However, the rate at which students progress toward the optimal solution path differs between the two domains. Tutoring in superficial perivascular dermatitis, the larger and more complex domain was associated with a slower rate of approximation towards the optimal solution path. Students benefit from a limited-enforcement tutoring system that leverages diagnostic algorithms but does not prevent alternative strategies. Even with limited enforcement, students converge toward the optimal solution path.

  12. Acceptance sampling for attributes via hypothesis testing and the hypergeometric distribution

    NASA Astrophysics Data System (ADS)

    Samohyl, Robert Wayne

    2017-10-01

    This paper questions some aspects of attribute acceptance sampling in light of the original concepts of hypothesis testing from Neyman and Pearson (NP). Attribute acceptance sampling in industry, as developed by Dodge and Romig (DR), generally follows the international standards of ISO 2859, and similarly the Brazilian standards NBR 5425 to NBR 5427 and the United States Standards ANSI/ASQC Z1.4. The paper evaluates and extends the area of acceptance sampling in two directions. First, by suggesting the use of the hypergeometric distribution to calculate the parameters of sampling plans avoiding the unnecessary use of approximations such as the binomial or Poisson distributions. We show that, under usual conditions, discrepancies can be large. The conclusion is that the hypergeometric distribution, ubiquitously available in commonly used software, is more appropriate than other distributions for acceptance sampling. Second, and more importantly, we elaborate the theory of acceptance sampling in terms of hypothesis testing rigorously following the original concepts of NP. By offering a common theoretical structure, hypothesis testing from NP can produce a better understanding of applications even beyond the usual areas of industry and commerce such as public health and political polling. With the new procedures, both sample size and sample error can be reduced. What is unclear in traditional acceptance sampling is the necessity of linking the acceptable quality limit (AQL) exclusively to the producer and the lot quality percent defective (LTPD) exclusively to the consumer. In reality, the consumer should also be preoccupied with a value of AQL, as should the producer with LTPD. Furthermore, we can also question why type I error is always uniquely associated with the producer as producer risk, and likewise, the same question arises with consumer risk which is necessarily associated with type II error. The resolution of these questions is new to the literature. The

  13. Historical development of limits of acceptable change: conceptual clarifications and possible extensions

    Treesearch

    David N. Cole; George H. Stankey

    1997-01-01

    The Limits of Acceptable Change (LAC) process was developed to deal with the issue of recreational carrying capacity. For that purpose, the LAC process sought to explicitly define a compromise between resource/visitor experience protection and recreation use goals. The most critical and unique element of the process is the specification of LAC standards that define...

  14. Experiencing limits of acceptable change: some thoughts after a decade of implementation

    Treesearch

    Stephen F. McCool; David N. Cole

    1997-01-01

    Wilderness managers and researchers have experienced implementation of the Limits of Acceptable Change planning system for over a decade. In a sense, implementation of LAC has been a broad scale experiment in planning, with the hypothesis being that LAC processes are more effective approaches to deal with questions of recreation management in protected areas than the...

  15. Institutional barriers and opportunities in application of the limits of acceptable change

    Treesearch

    George H. Stankey

    1997-01-01

    Although the Limits of Acceptable Change (LAC) process has been in use since the mid-1980’s and has contributed to improved wilderness management, significant barriers and challenges remain. Formal and informal institutional barriers are the principal constraint to more effective implementation. Although grounded in a traditional management-by-objectives model, the LAC...

  16. Inflation of the type I error: investigations on regulatory recommendations for bioequivalence of highly variable drugs.

    PubMed

    Wonnemann, Meinolf; Frömke, Cornelia; Koch, Armin

    2015-01-01

    We investigated different evaluation strategies for bioequivalence trials with highly variable drugs on their resulting empirical type I error and empirical power. The classical 'unscaled' crossover design with average bioequivalence evaluation, the Add-on concept of the Japanese guideline, and the current 'scaling' approach of EMA were compared. Simulation studies were performed based on the assumption of a single dose drug administration while changing the underlying intra-individual variability. Inclusion of Add-on subjects following the Japanese concept led to slight increases of the empirical α-error (≈7.5%). For the approach of EMA we noted an unexpected tremendous increase of the rejection rate at a geometric mean ratio of 1.25. Moreover, we detected error rates slightly above the pre-set limit of 5% even at the proposed 'scaled' bioequivalence limits. With the classical 'unscaled' approach and the Japanese guideline concept the goal of reduced subject numbers in bioequivalence trials of HVDs cannot be achieved. On the other hand, widening the acceptance range comes at the price that quite a number of products will be accepted bioequivalent that had not been accepted in the past. A two-stage design with control of the global α therefore seems the better alternative.

  17. Limits of acceptable change as tool for tourism development sustainability in Pangandaran West Java

    NASA Astrophysics Data System (ADS)

    Komsary, K. C.; Tarigan, W. P.; Wiyana, T.

    2018-03-01

    Pangandaran since 2006 has become a model of sustainable tourism development. A program aimed to empower local communities to prepare work plans and activities to enrich the various potential development of sustainable tourism. By empowering local community, business competition has led to the undesired development of the tourism sector. This becomes the concern of the negative impact of physical changes in the area. This study aims to identify and measure the acceptable changes (limits of acceptable change-LAC) of tourism development in Pangandaran to remain adaptable as a tourist attraction. This study considers how to determine acceptable levels of impact that occurs in the Pangandaran area. This method involves stakeholders in determining the values, issues, and concerns the acceptable levels of impact for this region. The result of acceptance rate then compared with the effects of the current state. Through review and analysis methods used in this study, the LAC situation in Pangandaran outlined. Results from this study are expected to identify indicators of sustainable development of tourism sector through LAC approach.

  18. Freeform solar concentrator with a highly asymmetric acceptance cone

    NASA Astrophysics Data System (ADS)

    Wheelwright, Brian; Angel, J. Roger P.; Coughenour, Blake; Hammer, Kimberly

    2014-10-01

    A solar concentrator with a highly asymmetric acceptance cone is investigated. Concentrating photovoltaic systems require dual-axis sun tracking to maintain nominal concentration throughout the day. In addition to collecting direct rays from the solar disk, which subtends ~0.53 degrees, concentrating optics must allow for in-field tracking errors due to mechanical misalignment of the module, wind loading, and control loop biases. The angular range over which the concentrator maintains <90% of on-axis throughput is defined as the optical acceptance angle. Concentrators with substantial rotational symmetry likewise exhibit rotationally symmetric acceptance angles. In the field, this is sometimes a poor match with azimuth-elevation trackers, which have inherently asymmetric tracking performance. Pedestal-mounted trackers with low torsional stiffness about the vertical axis have better elevation tracking than azimuthal tracking. Conversely, trackers which rotate on large-footprint circular tracks are often limited by elevation tracking performance. We show that a line-focus concentrator, composed of a parabolic trough primary reflector and freeform refractive secondary, can be tailored to have a highly asymmetric acceptance angle. The design is suitable for a tracker with excellent tracking accuracy in the elevation direction, and poor accuracy in the azimuthal direction. In the 1000X design given, when trough optical errors (2mrad rms slope deviation) are accounted for, the azimuthal acceptance angle is +/- 1.65°, while the elevation acceptance angle is only +/-0.29°. This acceptance angle does not include the angular width of the sun, which consumes nearly all of the elevation tolerance at this concentration level. By decreasing the average concentration, the elevation acceptance angle can be increased. This is well-suited for a pedestal alt-azimuth tracker with a low cost slew bearing (without anti-backlash features).

  19. Detection and avoidance of errors in computer software

    NASA Technical Reports Server (NTRS)

    Kinsler, Les

    1989-01-01

    The acceptance test errors of a computer software project to determine if the errors could be detected or avoided in earlier phases of development. GROAGSS (Gamma Ray Observatory Attitude Ground Support System) was selected as the software project to be examined. The development of the software followed the standard Flight Dynamics Software Development methods. GROAGSS was developed between August 1985 and April 1989. The project is approximately 250,000 lines of code of which approximately 43,000 lines are reused from previous projects. GROAGSS had a total of 1715 Change Report Forms (CRFs) submitted during the entire development and testing. These changes contained 936 errors. Of these 936 errors, 374 were found during the acceptance testing. These acceptance test errors were first categorized into methods of avoidance including: more clearly written requirements; detail review; code reading; structural unit testing; and functional system integration testing. The errors were later broken down in terms of effort to detect and correct, class of error, and probability that the prescribed detection method would be successful. These determinations were based on Software Engineering Laboratory (SEL) documents and interviews with the project programmers. A summary of the results of the categorizations is presented. The number of programming errors at the beginning of acceptance testing can be significantly reduced. The results of the existing development methodology are examined for ways of improvements. A basis is provided for the definition is a new development/testing paradigm. Monitoring of the new scheme will objectively determine its effectiveness on avoiding and detecting errors.

  20. SU-D-BRD-07: Evaluation of the Effectiveness of Statistical Process Control Methods to Detect Systematic Errors For Routine Electron Energy Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, S

    2015-06-15

    Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignmentmore » of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic

  1. Proceedings - Limits of Acceptable Change and related planning processes: Progress and future directions

    Treesearch

    Stephen F. McCool; David N. Cole

    1997-01-01

    Experience with Limits of Acceptable Change (LAC) and related planning processes has accumulated since the mid-1980's. These processes were developoed as a means of dealing with recreation carrying capacity issues in wilderness and National Parks. These processes clearly also have application outside of protected areas and to issues other than recreation...

  2. The Technology Acceptance Model for Resource-Limited Settings (TAM-RLS): A Novel Framework for Mobile Health Interventions Targeted to Low-Literacy End-Users in Resource-Limited Settings.

    PubMed

    Campbell, Jeffrey I; Aturinda, Isaac; Mwesigwa, Evans; Burns, Bridget; Santorino, Data; Haberer, Jessica E; Bangsberg, David R; Holden, Richard J; Ware, Norma C; Siedner, Mark J

    2017-11-01

    Although mobile health (mHealth) technologies have shown promise in improving clinical care in resource-limited settings (RLS), they are infrequently brought to scale. One limitation to the success of many mHealth interventions is inattention to end-user acceptability, which is an important predictor of technology adoption. We conducted in-depth interviews with 43 people living with HIV in rural Uganda who had participated in a clinical trial of a short messaging system (SMS)-based intervention designed to prompt return to clinic after an abnormal laboratory test. Interviews focused on established features of technology acceptance models, including perceived ease of use and perceived usefulness, and included open-ended questions to gain insight into unexplored issues related to the intervention's acceptability. We used conventional (inductive) and direct content analysis to derive categories describing use behaviors and acceptability. Interviews guided development of a proposed conceptual framework, the technology acceptance model for resource-limited settings (TAM-RLS). This framework incorporates both classic technology acceptance model categories as well as novel factors affecting use in this setting. Participants described how SMS message language, phone characteristics, and experience with similar technologies contributed to the system's ease of use. Perceived usefulness was shaped by the perception that the system led to augmented HIV care services and improved access to social support from family and colleagues. Emergent themes specifically related to mHealth acceptance among PLWH in Uganda included (1) the importance of confidentiality, disclosure, and stigma, and (2) the barriers and facilitators downstream from the intervention that impacted achievement of the system's target outcome. The TAM-RLS is a proposed model of mHealth technology acceptance based upon end-user experiences in rural Uganda. Although the proposed model requires validation, the TAM

  3. 'You're repulsive': Limits to acceptable drunken comportment for young adults.

    PubMed

    MacLean, Sarah; Pennay, Amy; Room, Robin

    2018-03-01

    Researchers have described a 'culture of intoxication' among young people. Yet drunkenness remains a socially risky practice with potential to evoke emotions of irritation and even disgust. We consider intoxicated practices that young adults in Melbourne, Australia, described as distasteful, to identify contemporary cultural forces that constrain intoxication and limit how it is enacted. Interviews were conducted with 60 participants in Melbourne, Australia, each with recent drinking experience. Participants were asked to provide accounts of moments when they regarded their own or others' drunken comportment as unsociable or unpleasant. Transcripts were analysed to identify recurrent themes. Despite amusement when recounting drunken antics, almost everyone in the study identified some discomfort at their own or other's drunkenness. We describe four interacting domains where lines delineating acceptable comportment appear be drawn. The first concerns intoxicated practices. Unpleasant drunken comportment often entailed a sense that the drunk person had disturbed others through an overflow of the self - extruding intimacy, sexuality, violence or bodily fluids. The second domain was gendering, with women vulnerable to being regarded as sexually inappropriate, and men as threatening. Third, the settings where intoxicated behaviour occurred influenced whether intoxicated people risked censure. Finally, the relationships between the drunk person and others, including their respective social positions and drinking patterns, shaped how they were perceived. The capacity of alcohol to render people more open to the world is both sought and reviled. It is important to recognise that there remain limits on acceptable drunken comportment, although these are complex and contingent. These limits are enforced via people's affective responses to drunkenness. This is form of alcohol harm reduction that occurs outside of public health intervention. Thus, cultures that constrain

  4. Hospital-based transfusion error tracking from 2005 to 2010: identifying the key errors threatening patient transfusion safety.

    PubMed

    Maskens, Carolyn; Downie, Helen; Wendt, Alison; Lima, Ana; Merkley, Lisa; Lin, Yulia; Callum, Jeannie

    2014-01-01

    This report provides a comprehensive analysis of transfusion errors occurring at a large teaching hospital and aims to determine key errors that are threatening transfusion safety, despite implementation of safety measures. Errors were prospectively identified from 2005 to 2010. Error data were coded on a secure online database called the Transfusion Error Surveillance System. Errors were defined as any deviation from established standard operating procedures. Errors were identified by clinical and laboratory staff. Denominator data for volume of activity were used to calculate rates. A total of 15,134 errors were reported with a median number of 215 errors per month (range, 85-334). Overall, 9083 (60%) errors occurred on the transfusion service and 6051 (40%) on the clinical services. In total, 23 errors resulted in patient harm: 21 of these errors occurred on the clinical services and two in the transfusion service. Of the 23 harm events, 21 involved inappropriate use of blood. Errors with no harm were 657 times more common than events that caused harm. The most common high-severity clinical errors were sample labeling (37.5%) and inappropriate ordering of blood (28.8%). The most common high-severity error in the transfusion service was sample accepted despite not meeting acceptance criteria (18.3%). The cost of product and component loss due to errors was $593,337. Errors occurred at every point in the transfusion process, with the greatest potential risk of patient harm resulting from inappropriate ordering of blood products and errors in sample labeling. © 2013 American Association of Blood Banks (CME).

  5. Reduction of Maintenance Error Through Focused Interventions

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Walter, Diane; Rosekind, Mark R. (Technical Monitor)

    1997-01-01

    It is well known that a significant proportion of aviation accidents and incidents are tied to human error. In flight operations, research of operational errors has shown that so-called "pilot error" often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the "team" concept for maintenance operations and in tailoring programs to fit the needs of technical operations. Nevertheless, there remains a dual challenge: to develop human factors interventions which are directly supported by reliable human error data, and to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.

  6. Effect of error field correction coils on W7-X limiter loads

    NASA Astrophysics Data System (ADS)

    Bozhenkov, S. A.; Jakubowski, M. W.; Niemann, H.; Lazerson, S. A.; Wurden, G. A.; Biedermann, C.; Kocsis, G.; König, R.; Pisano, F.; Stephey, L.; Szepesi, T.; Wenzel, U.; Pedersen, T. S.; Wolf, R. C.; W7-X Team

    2017-12-01

    In the first campaign Wendelstein 7-X was operated with five poloidal graphite limiters installed stellarator symmetrically. In an ideal situation the power losses would be equally distributed between the limiters. The limiter shape was designed to smoothly distribute the heat flux over two strike lines. Vertically the strike lines are not uniform because of different connection lengths. In this paper it is demonstrated both numerically and experimentally that the heat flux distribution can be significantly changed by non-resonant n=1 perturbation field of the order of 10-4 . Numerical studies are performed with field line tracing. In experiments perturbation fields are excited with five error field trim coils. The limiters are diagnosed with infrared cameras, neutral gas pressure gauges, thermocouples and spectroscopic diagnostics. Experimental results are qualitatively consistent with the simulations. With a suitable choice of the phase and amplitude of the perturbation a more symmetric plasma-limiter interaction can be potentially achieved. These results are also of interest for the later W7-X divertor operation.

  7. Error compensation for thermally induced errors on a machine tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krulewich, D.A.

    1996-11-08

    Heat flow from internal and external sources and the environment create machine deformations, resulting in positioning errors between the tool and workpiece. There is no industrially accepted method for thermal error compensation. A simple model has been selected that linearly relates discrete temperature measurements to the deflection. The biggest problem is how to locate the temperature sensors and to determine the number of required temperature sensors. This research develops a method to determine the number and location of temperature measurements.

  8. The Error in Total Error Reduction

    PubMed Central

    Witnauer, James E.; Urcelay, Gonzalo P.; Miller, Ralph R.

    2013-01-01

    Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modelling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. PMID:23891930

  9. The error in total error reduction.

    PubMed

    Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R

    2014-02-01

    Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modeling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Acceptance threshold theory can explain occurrence of homosexual behaviour.

    PubMed

    Engel, Katharina C; Männer, Lisa; Ayasse, Manfred; Steiger, Sandra

    2015-01-01

    Same-sex sexual behaviour (SSB) has been documented in a wide range of animals, but its evolutionary causes are not well understood. Here, we investigated SSB in the light of Reeve's acceptance threshold theory. When recognition is not error-proof, the acceptance threshold used by males to recognize potential mating partners should be flexibly adjusted to maximize the fitness pay-off between the costs of erroneously accepting males and the benefits of accepting females. By manipulating male burying beetles' search time for females and their reproductive potential, we influenced their perceived costs of making an acceptance or rejection error. As predicted, when the costs of rejecting females increased, males exhibited more permissive discrimination decisions and showed high levels of SSB; when the costs of accepting males increased, males were more restrictive and showed low levels of SSB. Our results support the idea that in animal species, in which the recognition cues of females and males overlap to a certain degree, SSB is a consequence of an adaptive discrimination strategy to avoid the costs of making rejection errors. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Measurement accuracies in band-limited extrapolation

    NASA Technical Reports Server (NTRS)

    Kritikos, H. N.

    1982-01-01

    The problem of numerical instability associated with extrapolation algorithms is addressed. An attempt is made to estimate the bounds for the acceptable errors and to place a ceiling on the measurement accuracy and computational accuracy needed for the extrapolation. It is shown that in band limited (or visible angle limited) extrapolation the larger effective aperture L' that can be realized from a finite aperture L by over sampling is a function of the accuracy of measurements. It is shown that for sampling in the interval L/b absolute value of xL, b1 the signal must be known within an error e sub N given by e sub N squared approximately = 1/4(2kL') cubed (e/8b L/L')(2kL') where L is the physical aperture, L' is the extrapolated aperture, and k = 2pi lambda.

  12. Post-manufacturing, 17-times acceptable raw bit error rate enhancement, dynamic codeword transition ECC scheme for highly reliable solid-state drives, SSDs

    NASA Astrophysics Data System (ADS)

    Tanakamaru, Shuhei; Fukuda, Mayumi; Higuchi, Kazuhide; Esumi, Atsushi; Ito, Mitsuyoshi; Li, Kai; Takeuchi, Ken

    2011-04-01

    A dynamic codeword transition ECC scheme is proposed for highly reliable solid-state drives, SSDs. By monitoring the error number or the write/erase cycles, the ECC codeword dynamically increases from 512 Byte (+parity) to 1 KByte, 2 KByte, 4 KByte…32 KByte. The proposed ECC with a larger codeword decreases the failure rate after ECC. As a result, the acceptable raw bit error rate, BER, before ECC is enhanced. Assuming a NAND Flash memory which requires 8-bit correction in 512 Byte codeword ECC, a 17-times higher acceptable raw BER than the conventional fixed 512 Byte codeword ECC is realized for the mobile phone application without an interleaving. For the MP3 player, digital-still camera and high-speed memory card applications with a dual channel interleaving, 15-times higher acceptable raw BER is achieved. Finally, for the SSD application with 8 channel interleaving, 13-times higher acceptable raw BER is realized. Because the ratio of the user data to the parity bits is the same in each ECC codeword, no additional memory area is required. Note that the reliability of SSD is improved after the manufacturing without cost penalty. Compared with the conventional ECC with the fixed large 32 KByte codeword, the proposed scheme achieves a lower power consumption by introducing the "best-effort" type operation. In the proposed scheme, during the most of the lifetime of SSD, a weak ECC with a shorter codeword such as 512 Byte (+parity), 1 KByte and 2 KByte is used and 98% lower power consumption is realized. At the life-end of SSD, a strong ECC with a 32 KByte codeword is used and the highly reliable operation is achieved. The random read performance is also discussed. The random read performance is estimated by the latency. The latency is below 1.5 ms for ECC codeword up to 32 KByte. This latency is below the average latency of 15,000 rpm HDD, 2 ms.

  13. Limits of acceptable change planning in the Selway-Bitterroot Wilderness: 1985 to 1997 (FIDL)

    Treesearch

    Dan Ritter

    1997-01-01

    In 1985 the Forest Supervisors and staff of the Bitterroot, Clearwater, and Nez Perce National Forests met and agreed to an action plan for implementing a Limits of Acceptable Change (LAC) planning process for the Selway-Bitterroot Wilderness (SBW). The process, which was to include a citizens task force, was to produce a completed management plan in 2 years. Eight...

  14. Modeling coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  15. 20 CFR 404.780 - Evidence of “good cause” for exceeding time limits on accepting proof of support or application...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... accepting proof of support or application for a lump-sum death payment. (a) When evidence of good cause is... death payment. You may be asked for evidence of good cause for these delays if— (1) You are the insured... limits on accepting proof of support or application for a lump-sum death payment. 404.780 Section 404.780...

  16. Rectifying calibration error of Goldmann applanation tonometer is easy!

    PubMed

    Choudhari, Nikhil S; Moorthy, Krishna P; Tungikar, Vinod B; Kumar, Mohan; George, Ronnie; Rao, Harsha L; Senthil, Sirisha; Vijaya, Lingam; Garudadri, Chandra Sekhar

    2014-11-01

    Purpose: Goldmann applanation tonometer (GAT) is the current Gold standard tonometer. However, its calibration error is common and can go unnoticed in clinics. Its company repair has limitations. The purpose of this report is to describe a self-taught technique of rectifying calibration error of GAT. Materials and Methods: Twenty-nine slit-lamp-mounted Haag-Streit Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland) were included in this cross-sectional interventional pilot study. The technique of rectification of calibration error of the tonometer involved cleaning and lubrication of the instrument followed by alignment of weights when lubrication alone didn't suffice. We followed the South East Asia Glaucoma Interest Group's definition of calibration error tolerance (acceptable GAT calibration error within ±2, ±3 and ±4 mm Hg at the 0, 20 and 60-mm Hg testing levels, respectively). Results: Twelve out of 29 (41.3%) GATs were out of calibration. The range of positive and negative calibration error at the clinically most important 20-mm Hg testing level was 0.5 to 20 mm Hg and -0.5 to -18 mm Hg, respectively. Cleaning and lubrication alone sufficed to rectify calibration error of 11 (91.6%) faulty instruments. Only one (8.3%) faulty GAT required alignment of the counter-weight. Conclusions: Rectification of calibration error of GAT is possible in-house. Cleaning and lubrication of GAT can be carried out even by eye care professionals and may suffice to rectify calibration error in the majority of faulty instruments. Such an exercise may drastically reduce the downtime of the Gold standard tonometer.

  17. Visual Impairment, Undercorrected Refractive Errors, and Activity Limitations in Older Adults: Findings From the Three-City Alienor Study.

    PubMed

    Naël, Virginie; Pérès, Karine; Carrière, Isabelle; Daien, Vincent; Scherlen, Anne-Catherine; Arleo, Angelo; Korobelnik, Jean-Francois; Delcourt, Cécile; Helmer, Catherine

    2017-04-01

    As vision is required in almost all activities of daily living, visual impairment (VI) may be one of the major treatable factors for preventing activity limitations. We aimed to evaluate the attributable risk of VI associated with activity limitations and the extent to which limitations are avoidable with optimal optical correction of undercorrected refractive errors. We analyzed 709 older adults from the Three-City-Alienor population-based study. VI was defined by presenting distance visual acuity in the better-seeing eye. Multivariate modified Poisson regressions were used to estimate the associations between vision, activity limitations, and social participation restrictions. Population attributable risk (PAR) and generalized impact fraction (GIF) were estimated. Bootstrapping was used to estimate 95% confidence intervals (CI). After adjustment for potential confounders, VI was associated with each domain of activity limitations, except basic activities of daily living (ADL) limitations. These associations were found for even minimal levels of VI. PAR was estimated at 10.1% (95% CI: 5.2-10.6) for mobility limitations, at 26.0% (95% CI: 13.5-41.2) for instrumental ADL (IADL) limitations, and at 24.9% (95% CI: 10.5-47.1) for social participation restrictions. GIF for improvement of undercorrected refractive errors was 6.1% (95% CI: 3.8-8.5) for mobility limitations, 15.8% (95% CI: 11.5-20.1) for IADL limitations and 21.4% (95% CI: 13.8-28.5) for social participation restrictions. About one-sixth of IADL limitations and one-fifth of social participation restrictions could be prevented by an optimal optical correction. These results underline the importance of eye examinations in older adults to prevent disability.

  18. A Complementary Note to 'A Lag-1 Smoother Approach to System-Error Estimation': The Intrinsic Limitations of Residual Diagnostics

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo

    2015-01-01

    Recently, this author studied an approach to the estimation of system error based on combining observation residuals derived from a sequential filter and fixed lag-1 smoother. While extending the methodology to a variational formulation, experimenting with simple models and making sure consistency was found between the sequential and variational formulations, the limitations of the residual-based approach came clearly to the surface. This note uses the sequential assimilation application to simple nonlinear dynamics to highlight the issue. Only when some of the underlying error statistics are assumed known is it possible to estimate the unknown component. In general, when considerable uncertainties exist in the underlying statistics as a whole, attempts to obtain separate estimates of the various error covariances are bound to lead to misrepresentation of errors. The conclusions are particularly relevant to present-day attempts to estimate observation-error correlations from observation residual statistics. A brief illustration of the issue is also provided by comparing estimates of error correlations derived from a quasi-operational assimilation system and a corresponding Observing System Simulation Experiments framework.

  19. Embracing equifinality with efficiency: Limits of Acceptability sampling using the DREAM(LOA) algorithm

    NASA Astrophysics Data System (ADS)

    Vrugt, Jasper A.; Beven, Keith J.

    2018-04-01

    This essay illustrates some recent developments to the DiffeRential Evolution Adaptive Metropolis (DREAM) MATLAB toolbox of Vrugt (2016) to delineate and sample the behavioural solution space of set-theoretic likelihood functions used within the GLUE (Limits of Acceptability) framework (Beven and Binley, 1992, 2014; Beven and Freer, 2001; Beven, 2006). This work builds on the DREAM(ABC) algorithm of Sadegh and Vrugt (2014) and enhances significantly the accuracy and CPU-efficiency of Bayesian inference with GLUE. In particular it is shown how lack of adequate sampling in the model space might lead to unjustified model rejection.

  20. Definition of an Acceptable Glass composition Region (AGCR) via an Index System and a Partitioning Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D. K.; Taylor, A. S.; Edwards, T.B.

    2005-06-26

    . A Type I error only reflects that the particular constraint system being used is overly conservative (i.e., its application restricts access to glasses that have an acceptable measured durability response). A Type II error results in a more serious misclassification that could result in allowing the transfer of a Slurry Mix Evaporator (SME) batch to the melter, which is predicted to produce a durable product based on the specific system applied but in reality does not meet the defined ''acceptability'' criteria. More specifically, a nondurable product could be produced in DWPF. Given the presence of Type II errors, the Index System approach was deemed inadequate for further implementation consideration at the DWPF. The second approach (the JMP partitioning process) was purely data driven and empirically derived--glass science was not a factor. In this approach, the collection of composition--durability data in ComPro was sequentially partitioned or split based on the best available specific criteria and variables. More specifically, the JMP software chose the oxide (Al{sub 2}O{sub 3} for this dataset) that most effectively partitions the PCT responses (NL [B]'s)--perhaps not 100% effective based on a single oxide. Based on this initial split, a second request was made to split a particular set of the ''Y'' values (good or bad PCTs based on the 10 g/L limit) based on the next most critical ''X'' variable. This ''splitting'' or ''partitioning'' process was repeated until an AGCR was defined based on the use of only 3 oxides (Al{sub 2}O{sub 3}, CaO, and MgO) and critical values of > 3.75 wt% Al{sub 2}O{sub 3}, {ge} 0.616 wt% CaO, and < 3.521 wt% MgO. Using this set of criteria, the ComPro database was partitioned in which no Type II errors were committed. The automated partitioning function screened or removed 978 of the 2406 ComPro glasses which did cause some initial concerns regarding excessive conservatism regardless of its ability to identify an AGCR. However, a

  1. Investigation into the limitations of straightness interferometers using a multisensor-based error separation method

    NASA Astrophysics Data System (ADS)

    Weichert, Christoph; Köchert, Paul; Schötka, Eugen; Flügge, Jens; Manske, Eberhard

    2018-06-01

    The uncertainty of a straightness interferometer is independent of the component used to introduce the divergence angle between the two probing beams, and is limited by three main error sources, which are linked to each other: their resolution, the influence of refractive index gradients and the topography of the straightness reflector. To identify the configuration with minimal uncertainties under laboratory conditions, a fully fibre-coupled heterodyne interferometer was successively equipped with three different wedge prisms, resulting in three different divergence angles (4°, 8° and 20°). To separate the error sources an independent reference with a smaller reproducibility is needed. Therefore, the straightness measurement capability of the Nanometer Comparator, based on a multisensor error separation method, was improved to provide measurements with a reproducibility of 0.2 nm. The comparison results revealed that the influence of the refractive index gradients of air did not increase with interspaces between the probing beams of more than 11.3 mm. Therefore, over a movement range of 220 mm, the lowest uncertainty was achieved with the largest divergence angle. The dominant uncertainty contribution arose from the mirror topography, which was additionally determined with a Fizeau interferometer. The measured topography agreed within  ±1.3 nm with the systematic deviations revealed in the straightness comparison, resulting in an uncertainty contribution of 2.6 nm for the straightness interferometer.

  2. Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods.

    PubMed

    Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G

    2014-01-27

    Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.

  3. Irregular analytical errors in diagnostic testing - a novel concept.

    PubMed

    Vogeser, Michael; Seger, Christoph

    2018-02-23

    In laboratory medicine, routine periodic analyses for internal and external quality control measurements interpreted by statistical methods are mandatory for batch clearance. Data analysis of these process-oriented measurements allows for insight into random analytical variation and systematic calibration bias over time. However, in such a setting, any individual sample is not under individual quality control. The quality control measurements act only at the batch level. Quantitative or qualitative data derived for many effects and interferences associated with an individual diagnostic sample can compromise any analyte. It is obvious that a process for a quality-control-sample-based approach of quality assurance is not sensitive to such errors. To address the potential causes and nature of such analytical interference in individual samples more systematically, we suggest the introduction of a new term called the irregular (individual) analytical error. Practically, this term can be applied in any analytical assay that is traceable to a reference measurement system. For an individual sample an irregular analytical error is defined as an inaccuracy (which is the deviation from a reference measurement procedure result) of a test result that is so high it cannot be explained by measurement uncertainty of the utilized routine assay operating within the accepted limitations of the associated process quality control measurements. The deviation can be defined as the linear combination of the process measurement uncertainty and the method bias for the reference measurement system. Such errors should be coined irregular analytical errors of the individual sample. The measurement result is compromised either by an irregular effect associated with the individual composition (matrix) of the sample or an individual single sample associated processing error in the analytical process. Currently, the availability of reference measurement procedures is still highly limited, but LC

  4. Programming Errors in APL.

    ERIC Educational Resources Information Center

    Kearsley, Greg P.

    This paper discusses and provides some preliminary data on errors in APL programming. Data were obtained by analyzing listings of 148 complete and partial APL sessions collected from student terminal rooms at the University of Alberta. Frequencies of errors for the various error messages are tabulated. The data, however, are limited because they…

  5. Older Adults' Acceptance of Activity Trackers

    PubMed Central

    Preusse, Kimberly C.; Mitzner, Tracy L.; Fausset, Cara Bailey; Rogers, Wendy A.

    2016-01-01

    Objective To assess the usability and acceptance of activity tracking technologies by older adults. Method First in our multi-method approach, we conducted heuristic evaluations of two activity trackers that revealed potential usability barriers to acceptance. Next, questionnaires and interviews were administered to 16 older adults (Mage=70, SDage=3.09, rangeage= 65-75) before and after a 28-day field study to understand facilitators and additional barriers to acceptance. These measurements were supplemented with diary and usage data and assessed if and why users overcame usability issues. Results The heuristic evaluation revealed usability barriers in System Status Visibility; Error Prevention; and Consistency and Standards. The field study revealed additional barriers (e.g., accuracy, format), and acceptance-facilitators (e.g., goal-tracking, usefulness, encouragement). Discussion The acceptance of wellness management technologies, such as activity trackers, may be increased by addressing acceptance-barriers during deployment (e.g., providing tutorials on features that were challenging, communicating usefulness). PMID:26753803

  6. Adherence to balance tolerance limits at the Upper Mississippi Science Center, La Crosse, Wisconsin.

    USGS Publications Warehouse

    Myers, C.T.; Kennedy, D.M.

    1998-01-01

    Verification of balance accuracy entails applying a series of standard masses to a balance prior to use and recording the measured values. The recorded values for each standard should have lower and upper weight limits or tolerances that are accepted as verification of balance accuracy under normal operating conditions. Balance logbooks for seven analytical balances at the Upper Mississippi Science Center were checked over a 3.5-year period to determine if the recorded weights were within the established tolerance limits. A total of 9435 measurements were checked. There were 14 instances in which the balance malfunctioned and operators recorded a rationale in the balance logbook. Sixty-three recording errors were found. Twenty-eight operators were responsible for two types of recording errors: Measurements of weights were recorded outside of the tolerance limit but not acknowledged as an error by the operator (n = 40); and measurements were recorded with the wrong number of decimal places (n = 23). The adherence rate for following tolerance limits was 99.3%. To ensure the continued adherence to tolerance limits, the quality-assurance unit revised standard operating procedures to require more frequent review of balance logbooks.

  7. Automatically generated acceptance test: A software reliability experiment

    NASA Technical Reports Server (NTRS)

    Protzel, Peter W.

    1988-01-01

    This study presents results of a software reliability experiment investigating the feasibility of a new error detection method. The method can be used as an acceptance test and is solely based on empirical data about the behavior of internal states of a program. The experimental design uses the existing environment of a multi-version experiment previously conducted at the NASA Langley Research Center, in which the launch interceptor problem is used as a model. This allows the controlled experimental investigation of versions with well-known single and multiple faults, and the availability of an oracle permits the determination of the error detection performance of the test. Fault interaction phenomena are observed that have an amplifying effect on the number of error occurrences. Preliminary results indicate that all faults examined so far are detected by the acceptance test. This shows promise for further investigations, and for the employment of this test method on other applications.

  8. Error and Error Mitigation in Low-Coverage Genome Assemblies

    PubMed Central

    Hubisz, Melissa J.; Lin, Michael F.; Kellis, Manolis; Siepel, Adam

    2011-01-01

    The recent release of twenty-two new genome sequences has dramatically increased the data available for mammalian comparative genomics, but twenty of these new sequences are currently limited to ∼2× coverage. Here we examine the extent of sequencing error in these 2× assemblies, and its potential impact in downstream analyses. By comparing 2× assemblies with high-quality sequences from the ENCODE regions, we estimate the rate of sequencing error to be 1–4 errors per kilobase. While this error rate is fairly modest, sequencing error can still have surprising effects. For example, an apparent lineage-specific insertion in a coding region is more likely to reflect sequencing error than a true biological event, and the length distribution of coding indels is strongly distorted by error. We find that most errors are contributed by a small fraction of bases with low quality scores, in particular, by the ends of reads in regions of single-read coverage in the assembly. We explore several approaches for automatic sequencing error mitigation (SEM), making use of the localized nature of sequencing error, the fact that it is well predicted by quality scores, and information about errors that comes from comparisons across species. Our automatic methods for error mitigation cannot replace the need for additional sequencing, but they do allow substantial fractions of errors to be masked or eliminated at the cost of modest amounts of over-correction, and they can reduce the impact of error in downstream phylogenomic analyses. Our error-mitigated alignments are available for download. PMID:21340033

  9. The Michelson Stellar Interferometer Error Budget for Triple Triple-Satellite Configuration

    NASA Technical Reports Server (NTRS)

    Marathay, Arvind S.; Shiefman, Joe

    1996-01-01

    This report presents the results of a study of the instrumentation tolerances for a conventional style Michelson stellar interferometer (MSI). The method used to determine the tolerances was to determine the change, due to the instrument errors, in the measured fringe visibility and phase relative to the ideal values. The ideal values are those values of fringe visibility and phase that would be measured by a perfect MSI and are attributable solely to the object being detected. Once the functional relationship for changes in visibility and phase as a function of various instrument errors is understood it is then possible to set limits on the instrument errors in order to ensure that the measured visibility and phase are different from the ideal values by no more than some specified amount. This was done as part of this study. The limits we obtained are based on a visibility error of no more than 1% and a phase error of no more than 0.063 radians (this comes from 1% of 2(pi) radians). The choice of these 1% limits is supported in the literture. The approach employed in the study involved the use of ASAP (Advanced System Analysis Program) software provided by Breault Research Organization, Inc., in conjunction with parallel analytical calculations. The interferometer accepts object radiation into two separate arms each consisting of an outer mirror, an inner mirror, a delay line (made up of two moveable mirrors and two static mirrors), and a 10:1 afocal reduction telescope. The radiation coming out of both arms is incident on a slit plane which is opaque with two openings (slits). One of the two slits is centered directly under one of the two arms of the interferometer and the other slit is centered directly under the other arm. The slit plane is followed immediately by an ideal combining lens which images the radiation in the fringe plane (also referred to subsequently as the detector plane).

  10. UGV acceptance testing

    NASA Astrophysics Data System (ADS)

    Kramer, Jeffrey A.; Murphy, Robin R.

    2006-05-01

    With over 100 models of unmanned vehicles now available for military and civilian safety, security or rescue applications, it is important to for agencies to establish acceptance testing. However, there appears to be no general guidelines for what constitutes a reasonable acceptance test. This paper describes i) a preliminary method for acceptance testing by a customer of the mechanical and electrical components of an unmanned ground vehicle system, ii) how it has been applied to a man-packable micro-robot, and iii) discusses the value of testing both to ensure that the customer has a workable system and to improve design. The test method automated the operation of the robot to repeatedly exercise all aspects and combinations of components on the robot for 6 hours. The acceptance testing process uncovered many failures consistent with those shown to occur in the field, showing that testing by the user does predict failures. The process also demonstrated that the testing by the manufacturer can provide important design data that can be used to identify, diagnose, and prevent long-term problems. Also, the structured testing environment showed that sensor systems can be used to predict errors and changes in performance, as well as uncovering unmodeled behavior in subsystems.

  11. Understanding the Factors Limiting the Acceptability of Online Courses and Degrees

    ERIC Educational Resources Information Center

    Adams, Jonathan

    2008-01-01

    This study examines prior research conducted on the acceptability of online degrees in hiring situations. In a national survey, a questionnaire was developed for assessing the importance of objections to accepting job candidates with online degrees and sent to university search committee chairs in institutions advertising open faculty positions…

  12. How Do Simulated Error Experiences Impact Attitudes Related to Error Prevention?

    PubMed

    Breitkreuz, Karen R; Dougal, Renae L; Wright, Melanie C

    2016-10-01

    The objective of this project was to determine whether simulated exposure to error situations changes attitudes in a way that may have a positive impact on error prevention behaviors. Using a stratified quasi-randomized experiment design, we compared risk perception attitudes of a control group of nursing students who received standard error education (reviewed medication error content and watched movies about error experiences) to an experimental group of students who reviewed medication error content and participated in simulated error experiences. Dependent measures included perceived memorability of the educational experience, perceived frequency of errors, and perceived caution with respect to preventing errors. Experienced nursing students perceived the simulated error experiences to be more memorable than movies. Less experienced students perceived both simulated error experiences and movies to be highly memorable. After the intervention, compared with movie participants, simulation participants believed errors occurred more frequently. Both types of education increased the participants' intentions to be more cautious and reported caution remained higher than baseline for medication errors 6 months after the intervention. This study provides limited evidence of an advantage of simulation over watching movies describing actual errors with respect to manipulating attitudes related to error prevention. Both interventions resulted in long-term impacts on perceived caution in medication administration. Simulated error experiences made participants more aware of how easily errors can occur, and the movie education made participants more aware of the devastating consequences of errors.

  13. Setting limits for acceptable change in sediment particle size composition following marine aggregate dredging.

    PubMed

    Cooper, Keith M

    2012-08-01

    In the UK, Government policy requires marine aggregate extraction companies to leave the seabed in a similar physical condition after the cessation of dredging. This measure is intended to promote recovery, and the return of a similar faunal community to that which existed before dredging. Whilst the policy is sensible, and in line with the principles of sustainable development, the use of the word 'similar' is open to interpretation. There is, therefore, a need to set quantifiable limits for acceptable change in sediment composition. Using a case study site, it is shown how such limits could be defined by the range of sediment particle size composition naturally found in association with the faunal assemblages in the wider region. Whilst the approach offers a number of advantages over the present system, further testing would be required before it could be recommended for use in the regulatory context. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. A Study of Upper Error Limits in Accounting Populations.

    DTIC Science & Technology

    1986-09-01

    The error amount intensity is a population characteristic obtained by dividing the total...423.36/$763,931.19). This population characteristic is of interest because the results of the simulation done for research questions four through v.o

  15. Evaluating mixed samples as a source of error in non-invasive genetic studies using microsatellites

    USGS Publications Warehouse

    Roon, David A.; Thomas, M.E.; Kendall, K.C.; Waits, L.P.

    2005-01-01

    The use of noninvasive genetic sampling (NGS) for surveying wild populations is increasing rapidly. Currently, only a limited number of studies have evaluated potential biases associated with NGS. This paper evaluates the potential errors associated with analysing mixed samples drawn from multiple animals. Most NGS studies assume that mixed samples will be identified and removed during the genotyping process. We evaluated this assumption by creating 128 mixed samples of extracted DNA from brown bear (Ursus arctos) hair samples. These mixed samples were genotyped and screened for errors at six microsatellite loci according to protocols consistent with those used in other NGS studies. Five mixed samples produced acceptable genotypes after the first screening. However, all mixed samples produced multiple alleles at one or more loci, amplified as only one of the source samples, or yielded inconsistent electropherograms by the final stage of the error-checking process. These processes could potentially reduce the number of individuals observed in NGS studies, but errors should be conservative within demographic estimates. Researchers should be aware of the potential for mixed samples and carefully design gel analysis criteria and error checking protocols to detect mixed samples.

  16. Natural Conception May Be an Acceptable Option in HIV-Serodiscordant Couples in Resource Limited Settings.

    PubMed

    Sun, Lijun; Wang, Fang; Liu, An; Xin, Ruolei; Zhu, Yunxia; Li, Jianwei; Shao, Ying; Ye, Jiangzhu; Chen, Danqing; Li, Zaicun

    2015-01-01

    Many HIV serodiscordant couples have a strong desire to have their own biological children. Natural conception may be the only choice in some resource limited settings but data about natural conception is limited. Here, we reported our findings of natural conception in HIV serodiscordant couples. Between January 2008 and June 2014, we retrospectively collected data on 91 HIV serodiscordant couples presenting to Beijing Youan Hospital with childbearing desires. HIV counseling, effective ART on HIV infected partners, pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) in negative female partners and timed intercourse were used to maximally reduce the risk of HIV transmission. Of the 91 HIV serodiscordant couples, 43 were positive in male partners and 48 were positive in female partners. There were 196 unprotected vaginal intercourses, 100 natural conception and 97 newborns. There were no cases of HIV seroconversion in uninfected sexual partners. Natural conception may be an acceptable option in HIV-serodiscordant couples in resource limited settings if HIV-positive individuals have undetectable viremia on HAART, combined with HIV counseling, PrEP, PEP and timed intercourse.

  17. 12 CFR 7.1007 - Acceptances.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Acceptances. 7.1007 Section 7.1007 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Bank Powers § 7.1007 Acceptances. A national bank is not limited in the character of acceptances it may make in...

  18. Errors in laboratory medicine: practical lessons to improve patient safety.

    PubMed

    Howanitz, Peter J

    2005-10-01

    Patient safety is influenced by the frequency and seriousness of errors that occur in the health care system. Error rates in laboratory practices are collected routinely for a variety of performance measures in all clinical pathology laboratories in the United States, but a list of critical performance measures has not yet been recommended. The most extensive databases describing error rates in pathology were developed and are maintained by the College of American Pathologists (CAP). These databases include the CAP's Q-Probes and Q-Tracks programs, which provide information on error rates from more than 130 interlaboratory studies. To define critical performance measures in laboratory medicine, describe error rates of these measures, and provide suggestions to decrease these errors, thereby ultimately improving patient safety. A review of experiences from Q-Probes and Q-Tracks studies supplemented with other studies cited in the literature. Q-Probes studies are carried out as time-limited studies lasting 1 to 4 months and have been conducted since 1989. In contrast, Q-Tracks investigations are ongoing studies performed on a yearly basis and have been conducted only since 1998. Participants from institutions throughout the world simultaneously conducted these studies according to specified scientific designs. The CAP has collected and summarized data for participants about these performance measures, including the significance of errors, the magnitude of error rates, tactics for error reduction, and willingness to implement each of these performance measures. A list of recommended performance measures, the frequency of errors when these performance measures were studied, and suggestions to improve patient safety by reducing these errors. Error rates for preanalytic and postanalytic performance measures were higher than for analytic measures. Eight performance measures were identified, including customer satisfaction, test turnaround times, patient identification

  19. First Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations: Data Processing Methods and Systematic Errors Limits

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Barnes, C.; Bennett, C. L.; Greason, M. R.; Halpern, M.; Hill, R. S.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.

    2003-01-01

    We describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight using the dipole modulation of the CMB due to the observatory's motion around the Sun. This constitutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a pre-whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct for a small (approx. 1 %) transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No other systematic error corrections are applied to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel covariance matrix.

  20. Challenges in international medicine: ethical dilemmas, unanticipated consequences, and accepting limitations.

    PubMed

    Iserson, Kenneth V; Biros, Michelle H; James Holliman, C

    2012-06-01

    While personal and organizational challenges occur in every area of health care, practitioners of international medicine face unique problems and dilemmas that are rarely discussed in training programs. Health professions schools, residency and fellowship programs, nongovernmental organizations (NGOs), and government programs have a responsibility to make those new to international medicine aware of the special circumstances that they may face and to provide methods for understanding and dealing with these circumstances. Standard "domestic" approaches to such challenges may not work in international medicine, even though these challenges may appear to be similar to those faced in other clinical settings. How should organizations ensure that well-meaning health intervention efforts do not cause adverse unintended sequelae? How should an individual balance respect for cultural uniqueness and local mores that may profoundly differ from his or her own beliefs, with the need to remain a moral agent true to one's self? When is acceptance the appropriate response to situations in which limitations of resources seem to preclude any good solution? Using a case-based approach, the authors discuss issues related to the four major international medicine domains: clinical practice (postdisaster response, resource limitations, standards of care), medical systems and systems development (prehospital care, wartime casualties, sustainable change, cultural awareness), teaching (instruction and local resources, professional preparation), and research (questionable funded studies, clinical trials, observational studies). It is hoped that this overview may help prepare those involved with international medicine for the challenges and dilemmas they may face and help frame their responses to these situations. © 2012 by the Society for Academic Emergency Medicine.

  1. Intertester agreement in refractive error measurements.

    PubMed

    Huang, Jiayan; Maguire, Maureen G; Ciner, Elise; Kulp, Marjean T; Quinn, Graham E; Orel-Bixler, Deborah; Cyert, Lynn A; Moore, Bruce; Ying, Gui-Shuang

    2013-10-01

    To determine the intertester agreement of refractive error measurements between lay and nurse screeners using the Retinomax Autorefractor and the SureSight Vision Screener. Trained lay and nurse screeners measured refractive error in 1452 preschoolers (3 to 5 years old) using the Retinomax and the SureSight in a random order for screeners and instruments. Intertester agreement between lay and nurse screeners was assessed for sphere, cylinder, and spherical equivalent (SE) using the mean difference and the 95% limits of agreement. The mean intertester difference (lay minus nurse) was compared between groups defined based on the child's age, cycloplegic refractive error, and the reading's confidence number using analysis of variance. The limits of agreement were compared between groups using the Brown-Forsythe test. Intereye correlation was accounted for in all analyses. The mean intertester differences (95% limits of agreement) were -0.04 (-1.63, 1.54) diopter (D) sphere, 0.00 (-0.52, 0.51) D cylinder, and -0.04 (1.65, 1.56) D SE for the Retinomax and 0.05 (-1.48, 1.58) D sphere, 0.01 (-0.58, 0.60) D cylinder, and 0.06 (-1.45, 1.57) D SE for the SureSight. For either instrument, the mean intertester differences in sphere and SE did not differ by the child's age, cycloplegic refractive error, or the reading's confidence number. However, for both instruments, the limits of agreement were wider when eyes had significant refractive error or the reading's confidence number was below the manufacturer's recommended value. Among Head Start preschool children, trained lay and nurse screeners agree well in measuring refractive error using the Retinomax or the SureSight. Both instruments had similar intertester agreement in refractive error measurements independent of the child's age. Significant refractive error and a reading with low confidence number were associated with worse intertester agreement.

  2. Measurement error of mean sac diameter and crown-rump length among pregnant women at Mulago hospital, Uganda.

    PubMed

    Ali, Sam; Byanyima, Rosemary Kusaba; Ononge, Sam; Ictho, Jerry; Nyamwiza, Jean; Loro, Emmanuel Lako Ernesto; Mukisa, John; Musewa, Angella; Nalutaaya, Annet; Ssenyonga, Ronald; Kawooya, Ismael; Temper, Benjamin; Katamba, Achilles; Kalyango, Joan; Karamagi, Charles

    2018-05-04

    Ultrasonography is essential in the prenatal diagnosis and care for the pregnant mothers. However, the measurements obtained often contain a small percentage of unavoidable error that may have serious clinical implications if substantial. We therefore evaluated the level of intra and inter-observer error in measuring mean sac diameter (MSD) and crown-rump length (CRL) in women between 6 and 10 weeks' gestation at Mulago hospital. This was a cross-sectional study conducted from January to March 2016. We enrolled 56 women with an intrauterine single viable embryo. The women were scanned using a transvaginal (TVS) technique by two observers who were blinded of each other's measurements. Each observer measured the CRL twice and the MSD once for each woman. Intra-class correlation coefficients (ICCs), 95% limits of agreement (LOA) and technical error of measurement (TEM) were used for analysis. Intra-observer ICCs for CRL measurements were 0.995 and 0.993 while inter-observer ICCs were 0.988 for CRL and 0.955 for MSD measurements. Intra-observer 95% LOA for CRL were ± 2.04 mm and ± 1.66 mm. Inter-observer LOA were ± 2.35 mm for CRL and ± 4.87 mm for MSD. The intra-observer relative TEM for CRL were 4.62% and 3.70% whereas inter-observer relative TEM were 5.88% and 5.93% for CRL and MSD respectively. Intra- and inter-observer error of CRL and MSD measurements among pregnant women at Mulago hospital were acceptable. This implies that at Mulago hospital, the error in pregnancy dating is within acceptable margins of ±3 days in first trimester, and the CRL and MSD cut offs of ≥7 mm and ≥ 25 mm respectively are fit for diagnosis of miscarriage on TVS. These findings should be extrapolated to the whole country with caution. Sonographers can achieve acceptable and comparable diagnostic accuracy levels of MSD and CLR measurements with proper training and adherence to practice guidelines.

  3. Simulation of rare events in quantum error correction

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey; Vargo, Alexander

    2013-12-01

    We consider the problem of calculating the logical error probability for a stabilizer quantum code subject to random Pauli errors. To access the regime of large code distances where logical errors are extremely unlikely we adopt the splitting method widely used in Monte Carlo simulations of rare events and Bennett's acceptance ratio method for estimating the free energy difference between two canonical ensembles. To illustrate the power of these methods in the context of error correction, we calculate the logical error probability PL for the two-dimensional surface code on a square lattice with a pair of holes for all code distances d≤20 and all error rates p below the fault-tolerance threshold. Our numerical results confirm the expected exponential decay PL˜exp[-α(p)d] and provide a simple fitting formula for the decay rate α(p). Both noiseless and noisy syndrome readout circuits are considered.

  4. 12 CFR 250.163 - Inapplicability of amount limitations to “ineligible acceptances.”

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., since the making of acceptances is an essential part of banking authorized by 12 U.S.C. 24.” Comptroller... under 12 U.S.C. 24, although the acceptances are not the type described in section 13 of the Federal Reserve Act. (c) A review of the legislative history surrounding the enactment of the acceptance...

  5. 12 CFR 250.163 - Inapplicability of amount limitations to “ineligible acceptances.”

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., since the making of acceptances is an essential part of banking authorized by 12 U.S.C. 24.” Comptroller... under 12 U.S.C. 24, although the acceptances are not the type described in section 13 of the Federal Reserve Act. (c) A review of the legislative history surrounding the enactment of the acceptance...

  6. 12 CFR 250.163 - Inapplicability of amount limitations to “ineligible acceptances.”

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., since the making of acceptances is an essential part of banking authorized by 12 U.S.C. 24.” Comptroller... under 12 U.S.C. 24, although the acceptances are not the type described in section 13 of the Federal Reserve Act. (c) A review of the legislative history surrounding the enactment of the acceptance...

  7. Selecting Statistical Quality Control Procedures for Limiting the Impact of Increases in Analytical Random Error on Patient Safety.

    PubMed

    Yago, Martín

    2017-05-01

    QC planning based on risk management concepts can reduce the probability of harming patients due to an undetected out-of-control error condition. It does this by selecting appropriate QC procedures to decrease the number of erroneous results reported. The selection can be easily made by using published nomograms for simple QC rules when the out-of-control condition results in increased systematic error. However, increases in random error also occur frequently and are difficult to detect, which can result in erroneously reported patient results. A statistical model was used to construct charts for the 1 ks and X /χ 2 rules. The charts relate the increase in the number of unacceptable patient results reported due to an increase in random error with the capability of the measurement procedure. They thus allow for QC planning based on the risk of patient harm due to the reporting of erroneous results. 1 ks Rules are simple, all-around rules. Their ability to deal with increases in within-run imprecision is minimally affected by the possible presence of significant, stable, between-run imprecision. X /χ 2 rules perform better when the number of controls analyzed during each QC event is increased to improve QC performance. Using nomograms simplifies the selection of statistical QC procedures to limit the number of erroneous patient results reported due to an increase in analytical random error. The selection largely depends on the presence or absence of stable between-run imprecision. © 2017 American Association for Clinical Chemistry.

  8. [Domestic and international trends concerning allowable limits of error in external quality assessment scheme].

    PubMed

    Hosogaya, Shigemi; Ozaki, Yukio

    2005-06-01

    Many external quality assessment schemes (EQAS) are performed to support quality improvement of the services provided by participating laboratories for the benefits of patients. The EQAS organizer shall be responsible for ensuring that the method of evaluation is appropriate for maintenance of the credibility of the schemes. Procedures to evaluate each participating laboratory are gradually being standardized. In most cases of EQAS, the peer group mean is used as a target of accuracy, and the peer group standard deviation is used as a criterion for inter-laboratory variation. On the other hand, Fraser CG, et al. proposed desirable quality specifications for any imprecision and inaccuracies, which were derived from inter- and intra-biologic variations. We also proposed allowable limits of analytical error, being less than one-half of the average intra-individual variation for evaluation of imprecision, and less than one-quarter of the inter- plus intra-individual variation for evaluation of inaccuracy. When expressed in coefficient of variation terms, these allowable limits may be applied at a wide range of levels of quantity.

  9. 12 CFR 250.163 - Inapplicability of amount limitations to “ineligible acceptances.”

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... acceptances is an essential part of banking authorized by 12 U.S.C. 24.” Comptroller's manual 7.7420. Therefore, national banks are authorized by the Comptroller to make acceptances under 12 U.S.C. 24, although the acceptances are not the type described in section 13 of the Federal Reserve Act. (c) A review of...

  10. 12 CFR 250.163 - Inapplicability of amount limitations to “ineligible acceptances.”

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... acceptances is an essential part of banking authorized by 12 U.S.C. 24.” Comptroller's manual 7.7420. Therefore, national banks are authorized by the Comptroller to make acceptances under 12 U.S.C. 24, although the acceptances are not the type described in section 13 of the Federal Reserve Act. (c) A review of...

  11. The prediction of satellite ephemeris errors as they result from surveillance system measurement errors

    NASA Astrophysics Data System (ADS)

    Simmons, B. E.

    1981-08-01

    This report derives equations predicting satellite ephemeris error as a function of measurement errors of space-surveillance sensors. These equations lend themselves to rapid computation with modest computer resources. They are applicable over prediction times such that measurement errors, rather than uncertainties of atmospheric drag and of Earth shape, dominate in producing ephemeris error. This report describes the specialization of these equations underlying the ANSER computer program, SEEM (Satellite Ephemeris Error Model). The intent is that this report be of utility to users of SEEM for interpretive purposes, and to computer programmers who may need a mathematical point of departure for limited generalization of SEEM.

  12. Evaluating a medical error taxonomy.

    PubMed

    Brixey, Juliana; Johnson, Todd R; Zhang, Jiajie

    2002-01-01

    Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a standard language for reporting medication errors. This project maps the NCC MERP taxonomy of medication error to MedWatch medical errors involving infusion pumps. Of particular interest are human factors associated with medical device errors. The NCC MERP taxonomy of medication errors is limited in mapping information from MEDWATCH because of the focus on the medical device and the format of reporting.

  13. Acceptance criteria for urban dispersion model evaluation

    NASA Astrophysics Data System (ADS)

    Hanna, Steven; Chang, Joseph

    2012-05-01

    The authors suggested acceptance criteria for rural dispersion models' performance measures in this journal in 2004. The current paper suggests modified values of acceptance criteria for urban applications and tests them with tracer data from four urban field experiments. For the arc-maximum concentrations, the fractional bias should have a magnitude <0.67 (i.e., the relative mean bias is less than a factor of 2); the normalized mean-square error should be <6 (i.e., the random scatter is less than about 2.4 times the mean); and the fraction of predictions that are within a factor of two of the observations (FAC2) should be >0.3. For all data paired in space, for which a threshold concentration must always be defined, the normalized absolute difference should be <0.50, when the threshold is three times the instrument's limit of quantification (LOQ). An overall criterion is then applied that the total set of acceptance criteria should be satisfied in at least half of the field experiments. These acceptance criteria are applied to evaluations of the US Department of Defense's Joint Effects Model (JEM) with tracer data from US urban field experiments in Salt Lake City (U2000), Oklahoma City (JU2003), and Manhattan (MSG05 and MID05). JEM includes the SCIPUFF dispersion model with the urban canopy option and the urban dispersion model (UDM) option. In each set of evaluations, three or four likely options are tested for meteorological inputs (e.g., a local building top wind speed, the closest National Weather Service airport observations, or outputs from numerical weather prediction models). It is found that, due to large natural variability in the urban data, there is not a large difference between the performance measures for the two model options and the three or four meteorological input options. The more detailed UDM and the state-of-the-art numerical weather models do provide a slight improvement over the other options. The proposed urban dispersion model acceptance

  14. ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Vinay L.; Siemiginowska, Aneta; Van Dyk, David A.

    2010-08-10

    A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error),more » and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing

  15. Minimizing Experimental Error in Thinning Research

    Treesearch

    C. B. Briscoe

    1964-01-01

    Many diverse approaches have been made prescribing and evaluating thinnings on an objective basis. None of the techniques proposed hasbeen widely accepted. Indeed. none has been proven superior to the others nor even widely applicable. There are at least two possible reasons for this: none of the techniques suggested is of any general utility and/or experimental error...

  16. Applying the intention-to-treat principle in practice: Guidance on handling randomisation errors

    PubMed Central

    Sullivan, Thomas R; Voysey, Merryn; Lee, Katherine J; Cook, Jonathan A; Forbes, Andrew B

    2015-01-01

    Background: The intention-to-treat principle states that all randomised participants should be analysed in their randomised group. The implications of this principle are widely discussed in relation to the analysis, but have received limited attention in the context of handling errors that occur during the randomisation process. The aims of this article are to (1) demonstrate the potential pitfalls of attempting to correct randomisation errors and (2) provide guidance on handling common randomisation errors when they are discovered that maintains the goals of the intention-to-treat principle. Methods: The potential pitfalls of attempting to correct randomisation errors are demonstrated and guidance on handling common errors is provided, using examples from our own experiences. Results: We illustrate the problems that can occur when attempts are made to correct randomisation errors and argue that documenting, rather than correcting these errors, is most consistent with the intention-to-treat principle. When a participant is randomised using incorrect baseline information, we recommend accepting the randomisation but recording the correct baseline data. If ineligible participants are inadvertently randomised, we advocate keeping them in the trial and collecting all relevant data but seeking clinical input to determine their appropriate course of management, unless they can be excluded in an objective and unbiased manner. When multiple randomisations are performed in error for the same participant, we suggest retaining the initial randomisation and either disregarding the second randomisation if only one set of data will be obtained for the participant, or retaining the second randomisation otherwise. When participants are issued the incorrect treatment at the time of randomisation, we propose documenting the treatment received and seeking clinical input regarding the ongoing treatment of the participant. Conclusion: Randomisation errors are almost inevitable and

  17. Applying the intention-to-treat principle in practice: Guidance on handling randomisation errors.

    PubMed

    Yelland, Lisa N; Sullivan, Thomas R; Voysey, Merryn; Lee, Katherine J; Cook, Jonathan A; Forbes, Andrew B

    2015-08-01

    The intention-to-treat principle states that all randomised participants should be analysed in their randomised group. The implications of this principle are widely discussed in relation to the analysis, but have received limited attention in the context of handling errors that occur during the randomisation process. The aims of this article are to (1) demonstrate the potential pitfalls of attempting to correct randomisation errors and (2) provide guidance on handling common randomisation errors when they are discovered that maintains the goals of the intention-to-treat principle. The potential pitfalls of attempting to correct randomisation errors are demonstrated and guidance on handling common errors is provided, using examples from our own experiences. We illustrate the problems that can occur when attempts are made to correct randomisation errors and argue that documenting, rather than correcting these errors, is most consistent with the intention-to-treat principle. When a participant is randomised using incorrect baseline information, we recommend accepting the randomisation but recording the correct baseline data. If ineligible participants are inadvertently randomised, we advocate keeping them in the trial and collecting all relevant data but seeking clinical input to determine their appropriate course of management, unless they can be excluded in an objective and unbiased manner. When multiple randomisations are performed in error for the same participant, we suggest retaining the initial randomisation and either disregarding the second randomisation if only one set of data will be obtained for the participant, or retaining the second randomisation otherwise. When participants are issued the incorrect treatment at the time of randomisation, we propose documenting the treatment received and seeking clinical input regarding the ongoing treatment of the participant. Randomisation errors are almost inevitable and should be reported in trial publications. The

  18. [Errors in laboratory daily practice].

    PubMed

    Larrose, C; Le Carrer, D

    2007-01-01

    Legislation set by GBEA (Guide de bonne exécution des analyses) requires that, before performing analysis, the laboratory directors have to check both the nature of the samples and the patients identity. The data processing of requisition forms, which identifies key errors, was established in 2000 and in 2002 by the specialized biochemistry laboratory, also with the contribution of the reception centre for biological samples. The laboratories follow a strict criteria of defining acceptability as a starting point for the reception to then check requisition forms and biological samples. All errors are logged into the laboratory database and analysis report are sent to the care unit specifying the problems and the consequences they have on the analysis. The data is then assessed by the laboratory directors to produce monthly or annual statistical reports. This indicates the number of errors, which are then indexed to patient files to reveal the specific problem areas, therefore allowing the laboratory directors to teach the nurses and enable corrective action.

  19. Neurochemical enhancement of conscious error awareness.

    PubMed

    Hester, Robert; Nandam, L Sanjay; O'Connell, Redmond G; Wagner, Joe; Strudwick, Mark; Nathan, Pradeep J; Mattingley, Jason B; Bellgrove, Mark A

    2012-02-22

    How the brain monitors ongoing behavior for performance errors is a central question of cognitive neuroscience. Diminished awareness of performance errors limits the extent to which humans engage in corrective behavior and has been linked to loss of insight in a number of psychiatric syndromes (e.g., attention deficit hyperactivity disorder, drug addiction). These conditions share alterations in monoamine signaling that may influence the neural mechanisms underlying error processing, but our understanding of the neurochemical drivers of these processes is limited. We conducted a randomized, double-blind, placebo-controlled, cross-over design of the influence of methylphenidate, atomoxetine, and citalopram on error awareness in 27 healthy participants. The error awareness task, a go/no-go response inhibition paradigm, was administered to assess the influence of monoaminergic agents on performance errors during fMRI data acquisition. A single dose of methylphenidate, but not atomoxetine or citalopram, significantly improved the ability of healthy volunteers to consciously detect performance errors. Furthermore, this behavioral effect was associated with a strengthening of activation differences in the dorsal anterior cingulate cortex and inferior parietal lobe during the methylphenidate condition for errors made with versus without awareness. Our results have implications for the understanding of the neurochemical underpinnings of performance monitoring and for the pharmacological treatment of a range of disparate clinical conditions that are marked by poor awareness of errors.

  20. Factors influencing alert acceptance: a novel approach for predicting the success of clinical decision support

    PubMed Central

    Seidling, Hanna M; Phansalkar, Shobha; Seger, Diane L; Paterno, Marilyn D; Shaykevich, Shimon; Haefeli, Walter E

    2011-01-01

    Background Clinical decision support systems can prevent knowledge-based prescription errors and improve patient outcomes. The clinical effectiveness of these systems, however, is substantially limited by poor user acceptance of presented warnings. To enhance alert acceptance it may be useful to quantify the impact of potential modulators of acceptance. Methods We built a logistic regression model to predict alert acceptance of drug–drug interaction (DDI) alerts in three different settings. Ten variables from the clinical and human factors literature were evaluated as potential modulators of provider alert acceptance. ORs were calculated for the impact of knowledge quality, alert display, textual information, prioritization, setting, patient age, dose-dependent toxicity, alert frequency, alert level, and required acknowledgment on acceptance of the DDI alert. Results 50 788 DDI alerts were analyzed. Providers accepted only 1.4% of non-interruptive alerts. For interruptive alerts, user acceptance positively correlated with frequency of the alert (OR 1.30, 95% CI 1.23 to 1.38), quality of display (4.75, 3.87 to 5.84), and alert level (1.74, 1.63 to 1.86). Alert acceptance was higher in inpatients (2.63, 2.32 to 2.97) and for drugs with dose-dependent toxicity (1.13, 1.07 to 1.21). The textual information influenced the mode of reaction and providers were more likely to modify the prescription if the message contained detailed advice on how to manage the DDI. Conclusion We evaluated potential modulators of alert acceptance by assessing content and human factors issues, and quantified the impact of a number of specific factors which influence alert acceptance. This information may help improve clinical decision support systems design. PMID:21571746

  1. Medication errors in anesthesia: unacceptable or unavoidable?

    PubMed

    Dhawan, Ira; Tewari, Anurag; Sehgal, Sankalp; Sinha, Ashish Chandra

    Medication errors are the common causes of patient morbidity and mortality. It adds financial burden to the institution as well. Though the impact varies from no harm to serious adverse effects including death, it needs attention on priority basis since medication errors' are preventable. In today's world where people are aware and medical claims are on the hike, it is of utmost priority that we curb this issue. Individual effort to decrease medication error alone might not be successful until a change in the existing protocols and system is incorporated. Often drug errors that occur cannot be reversed. The best way to 'treat' drug errors is to prevent them. Wrong medication (due to syringe swap), overdose (due to misunderstanding or preconception of the dose, pump misuse and dilution error), incorrect administration route, under dosing and omission are common causes of medication error that occur perioperatively. Drug omission and calculation mistakes occur commonly in ICU. Medication errors can occur perioperatively either during preparation, administration or record keeping. Numerous human and system errors can be blamed for occurrence of medication errors. The need of the hour is to stop the blame - game, accept mistakes and develop a safe and 'just' culture in order to prevent medication errors. The newly devised systems like VEINROM, a fluid delivery system is a novel approach in preventing drug errors due to most commonly used medications in anesthesia. Similar developments along with vigilant doctors, safe workplace culture and organizational support all together can help prevent these errors. Copyright © 2016. Published by Elsevier Editora Ltda.

  2. Uncorrected refractive errors.

    PubMed

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.

  3. Uncorrected refractive errors

    PubMed Central

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship. PMID:22944755

  4. Error Mitigation for Short-Depth Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Temme, Kristan; Bravyi, Sergey; Gambetta, Jay M.

    2017-11-01

    Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the errors in the computation are introduced. Near-term applications of early quantum devices, such as quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources, so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson's deferred approach to the limit. The second method cancels errors by resampling randomized circuits according to a quasiprobability distribution.

  5. Context affects nestmate recognition errors in honey bees and stingless bees.

    PubMed

    Couvillon, Margaret J; Segers, Francisca H I D; Cooper-Bowman, Roseanne; Truslove, Gemma; Nascimento, Daniela L; Nascimento, Fabio S; Ratnieks, Francis L W

    2013-08-15

    Nestmate recognition studies, where a discriminator first recognises and then behaviourally discriminates (accepts/rejects) another individual, have used a variety of methodologies and contexts. This is potentially problematic because recognition errors in discrimination behaviour are predicted to be context-dependent. Here we compare the recognition decisions (accept/reject) of discriminators in two eusocial bees, Apis mellifera and Tetragonisca angustula, under different contexts. These contexts include natural guards at the hive entrance (control); natural guards held in plastic test arenas away from the hive entrance that vary either in the presence or absence of colony odour or the presence or absence of an additional nestmate discriminator; and, for the honey bee, the inside of the nest. For both honey bee and stingless bee guards, total recognition errors of behavioural discrimination made by guards (% nestmates rejected + % non-nestmates accepted) are much lower at the colony entrance (honey bee: 30.9%; stingless bee: 33.3%) than in the test arenas (honey bee: 60-86%; stingless bee: 61-81%; P<0.001 for both). Within the test arenas, the presence of colony odour specifically reduced the total recognition errors in honey bees, although this reduction still fell short of bringing error levels down to what was found at the colony entrance. Lastly, in honey bees, the data show that the in-nest collective behavioural discrimination by ca. 30 workers that contact an intruder is insufficient to achieve error-free recognition and is not as effective as the discrimination by guards at the entrance. Overall, these data demonstrate that context is a significant factor in a discriminators' ability to make appropriate recognition decisions, and should be considered when designing recognition study methodologies.

  6. Scanner qualification with IntenCD based reticle error correction

    NASA Astrophysics Data System (ADS)

    Elblinger, Yair; Finders, Jo; Demarteau, Marcel; Wismans, Onno; Minnaert Janssen, Ingrid; Duray, Frank; Ben Yishai, Michael; Mangan, Shmoolik; Cohen, Yaron; Parizat, Ziv; Attal, Shay; Polonsky, Netanel; Englard, Ilan

    2010-03-01

    Scanner introduction into the fab production environment is a challenging task. An efficient evaluation of scanner performance matrices during factory acceptance test (FAT) and later on during site acceptance test (SAT) is crucial for minimizing the cycle time for pre and post production-start activities. If done effectively, the matrices of base line performance established during the SAT are used as a reference for scanner performance and fleet matching monitoring and maintenance in the fab environment. Key elements which can influence the cycle time of the SAT, FAT and maintenance cycles are the imaging, process and mask characterizations involved with those cycles. Discrete mask measurement techniques are currently in use to create across-mask CDU maps. By subtracting these maps from their final wafer measurement CDU map counterparts, it is possible to assess the real scanner induced printed errors within certain limitations. The current discrete measurement methods are time consuming and some techniques also overlook mask based effects other than line width variations, such as transmission and phase variations, all of which influence the final printed CD variability. Applied Materials Aera2TM mask inspection tool with IntenCDTM technology can scan the mask at high speed, offer full mask coverage and accurate assessment of all masks induced source of errors simultaneously, making it beneficial for scanner qualifications and performance monitoring. In this paper we report on a study that was done to improve a scanner introduction and qualification process using the IntenCD application to map the mask induced CD non uniformity. We will present the results of six scanners in production and discuss the benefits of the new method.

  7. Visuomotor adaptation needs a validation of prediction error by feedback error

    PubMed Central

    Gaveau, Valérie; Prablanc, Claude; Laurent, Damien; Rossetti, Yves; Priot, Anne-Emmanuelle

    2014-01-01

    The processes underlying short-term plasticity induced by visuomotor adaptation to a shifted visual field are still debated. Two main sources of error can induce motor adaptation: reaching feedback errors, which correspond to visually perceived discrepancies between hand and target positions, and errors between predicted and actual visual reafferences of the moving hand. These two sources of error are closely intertwined and difficult to disentangle, as both the target and the reaching limb are simultaneously visible. Accordingly, the goal of the present study was to clarify the relative contributions of these two types of errors during a pointing task under prism-displaced vision. In “terminal feedback error” condition, viewing of their hand by subjects was allowed only at movement end, simultaneously with viewing of the target. In “movement prediction error” condition, viewing of the hand was limited to movement duration, in the absence of any visual target, and error signals arose solely from comparisons between predicted and actual reafferences of the hand. In order to prevent intentional corrections of errors, a subthreshold, progressive stepwise increase in prism deviation was used, so that subjects remained unaware of the visual deviation applied in both conditions. An adaptive aftereffect was observed in the “terminal feedback error” condition only. As far as subjects remained unaware of the optical deviation and self-assigned pointing errors, prediction error alone was insufficient to induce adaptation. These results indicate a critical role of hand-to-target feedback error signals in visuomotor adaptation; consistent with recent neurophysiological findings, they suggest that a combination of feedback and prediction error signals is necessary for eliciting aftereffects. They also suggest that feedback error updates the prediction of reafferences when a visual perturbation is introduced gradually and cognitive factors are eliminated or strongly

  8. Error, contradiction and reversal in science and medicine.

    PubMed

    Coccheri, Sergio

    2017-06-01

    Error and contradictions are not "per se" detrimental in science and medicine. Going back to the history of philosophy, Sir Francis Bacon stated that "truth emerges more readily from error than from confusion", and recently Popper introduced the concept of an approximate temporary truth that constitutes the engine of scientific progress. In biomedical research and in clinical practice we assisted during the last decades to many overturnings or reversals of concepts and practices. This phenomenon may discourage patients from accepting ordinary medical care and may favour the choice of alternative medicine. The media often enhance the disappointment for these discrepancies. In this note I recommend to transfer to patients the concept of a confirmed and dependable knowledge at the present time. However, physicians should tolerate uncertainty and accept the idea that medical concepts and applications are subjected to continuous progression, change and displacement. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  9. Increased instrument intelligence--can it reduce laboratory error?

    PubMed

    Jekelis, Albert W

    2005-01-01

    Recent literature has focused on the reduction of laboratory errors and the potential impact on patient management. This study assessed the intelligent, automated preanalytical process-control abilities in newer generation analyzers as compared with older analyzers and the impact on error reduction. Three generations of immuno-chemistry analyzers were challenged with pooled human serum samples for a 3-week period. One of the three analyzers had an intelligent process of fluidics checks, including bubble detection. Bubbles can cause erroneous results due to incomplete sample aspiration. This variable was chosen because it is the most easily controlled sample defect that can be introduced. Traditionally, lab technicians have had to visually inspect each sample for the presence of bubbles. This is time consuming and introduces the possibility of human error. Instruments with bubble detection may be able to eliminate the human factor and reduce errors associated with the presence of bubbles. Specific samples were vortexed daily to introduce a visible quantity of bubbles, then immediately placed in the daily run. Errors were defined as a reported result greater than three standard deviations below the mean and associated with incomplete sample aspiration of the analyte of the individual analyzer Three standard deviations represented the target limits of proficiency testing. The results of the assays were examined for accuracy and precision. Efficiency, measured as process throughput, was also measured to associate a cost factor and potential impact of the error detection on the overall process. The analyzer performance stratified according to their level of internal process control The older analyzers without bubble detection reported 23 erred results. The newest analyzer with bubble detection reported one specimen incorrectly. The precision and accuracy of the nonvortexed specimens were excellent and acceptable for all three analyzers. No errors were found in the

  10. Refractive errors.

    PubMed

    Schiefer, Ulrich; Kraus, Christina; Baumbach, Peter; Ungewiß, Judith; Michels, Ralf

    2016-10-14

    All over the world, refractive errors are among the most frequently occuring treatable distur - bances of visual function. Ametropias have a prevalence of nearly 70% among adults in Germany and are thus of great epidemiologic and socio-economic relevance. In the light of their own clinical experience, the authors review pertinent articles retrieved by a selective literature search employing the terms "ametropia, "anisometropia," "refraction," "visual acuity," and epidemiology." In 2011, only 31% of persons over age 16 in Germany did not use any kind of visual aid; 63.4% wore eyeglasses and 5.3% wore contact lenses. Refractive errors were the most common reason for consulting an ophthalmologist, accounting for 21.1% of all outpatient visits. A pinhole aperture (stenopeic slit) is a suitable instrument for the basic diagnostic evaluation of impaired visual function due to optical factors. Spherical refractive errors (myopia and hyperopia), cylindrical refractive errors (astigmatism), unequal refractive errors in the two eyes (anisometropia), and the typical optical disturbance of old age (presbyopia) cause specific functional limitations and can be detected by a physician who does not need to be an ophthalmologist. Simple functional tests can be used in everyday clinical practice to determine quickly, easily, and safely whether the patient is suffering from a benign and easily correctable type of visual impairment, or whether there are other, more serious underlying causes.

  11. Error and its meaning in forensic science.

    PubMed

    Christensen, Angi M; Crowder, Christian M; Ousley, Stephen D; Houck, Max M

    2014-01-01

    The discussion of "error" has gained momentum in forensic science in the wake of the Daubert guidelines and has intensified with the National Academy of Sciences' Report. Error has many different meanings, and too often, forensic practitioners themselves as well as the courts misunderstand scientific error and statistical error rates, often confusing them with practitioner error (or mistakes). Here, we present an overview of these concepts as they pertain to forensic science applications, discussing the difference between practitioner error (including mistakes), instrument error, statistical error, and method error. We urge forensic practitioners to ensure that potential sources of error and method limitations are understood and clearly communicated and advocate that the legal community be informed regarding the differences between interobserver errors, uncertainty, variation, and mistakes. © 2013 American Academy of Forensic Sciences.

  12. The challenges of modelling phosphorus in a headwater catchment: Applying a 'limits of acceptability' uncertainty framework to a water quality model

    NASA Astrophysics Data System (ADS)

    Hollaway, M. J.; Beven, K. J.; Benskin, C. McW. H.; Collins, A. L.; Evans, R.; Falloon, P. D.; Forber, K. J.; Hiscock, K. M.; Kahana, R.; Macleod, C. J. A.; Ockenden, M. C.; Villamizar, M. L.; Wearing, C.; Withers, P. J. A.; Zhou, J. G.; Barber, N. J.; Haygarth, P. M.

    2018-03-01

    There is a need to model and predict the transfer of phosphorus (P) from land to water, but this is challenging because of the large number of complex physical and biogeochemical processes involved. This study presents, for the first time, a 'limits of acceptability' approach of the Generalized Likelihood Uncertainty Estimation (GLUE) framework to the Soil and Water Assessment Tool (SWAT), in an application to a water quality problem in the Newby Beck catchment (12.5 km2), Cumbria, United Kingdom (UK). Using high frequency outlet data (discharge and P), individual evaluation criteria (limits of acceptability) were assigned to observed discharge and P loads for all evaluation time steps, identifying where the model was performing well/poorly and to infer which processes required improvement in the model structure. Initial limits of acceptability were required to be relaxed by a substantial amount (by factors of between 5.3 and 6.7 on a normalized scale depending on the evaluation criteria used) in order to gain a set of behavioral simulations (1001 and 1016, respectively out of 5,000,000). Of the 39 model parameters tested, the representation of subsurface processes and associated parameters, were consistently shown as critical to the model not meeting the evaluation criteria, irrespective of the chosen evaluation metric. It is therefore concluded that SWAT is not an appropriate model to guide P management in this catchment. This approach highlights the importance of high frequency monitoring data for setting robust model evaluation criteria. It also raises the question as to whether it is possible to have sufficient input data available to drive such models so that we can have confidence in their predictions and their ability to inform catchment management strategies to tackle the problem of diffuse pollution from agriculture.

  13. Reduced error signalling in medication-naive children with ADHD: associations with behavioural variability and post-error adaptations

    PubMed Central

    Plessen, Kerstin J.; Allen, Elena A.; Eichele, Heike; van Wageningen, Heidi; Høvik, Marie Farstad; Sørensen, Lin; Worren, Marius Kalsås; Hugdahl, Kenneth; Eichele, Tom

    2016-01-01

    Background We examined the blood-oxygen level–dependent (BOLD) activation in brain regions that signal errors and their association with intraindividual behavioural variability and adaptation to errors in children with attention-deficit/hyperactivity disorder (ADHD). Methods We acquired functional MRI data during a Flanker task in medication-naive children with ADHD and healthy controls aged 8–12 years and analyzed the data using independent component analysis. For components corresponding to performance monitoring networks, we compared activations across groups and conditions and correlated them with reaction times (RT). Additionally, we analyzed post-error adaptations in behaviour and motor component activations. Results We included 25 children with ADHD and 29 controls in our analysis. Children with ADHD displayed reduced activation to errors in cingulo-opercular regions and higher RT variability, but no differences of interference control. Larger BOLD amplitude to error trials significantly predicted reduced RT variability across all participants. Neither group showed evidence of post-error response slowing; however, post-error adaptation in motor networks was significantly reduced in children with ADHD. This adaptation was inversely related to activation of the right-lateralized ventral attention network (VAN) on error trials and to task-driven connectivity between the cingulo-opercular system and the VAN. Limitations Our study was limited by the modest sample size and imperfect matching across groups. Conclusion Our findings show a deficit in cingulo-opercular activation in children with ADHD that could relate to reduced signalling for errors. Moreover, the reduced orienting of the VAN signal may mediate deficient post-error motor adaptions. Pinpointing general performance monitoring problems to specific brain regions and operations in error processing may help to guide the targets of future treatments for ADHD. PMID:26441332

  14. Fundamental Physical Limits for the Size of Future Planetary Surface Exploration Systems

    NASA Astrophysics Data System (ADS)

    Andrews, F.; Hobbs, S. E.; Honstvet, I.; Snelling, M.

    2004-04-01

    With the current interest in the potential use of Nanotechnology for spacecraft, it becomes increasingly likely that environmental sensor probes, such as the "lab-on-a-chip" concept, will take advantage of this technology and become orders of magnitude smaller than current sensor systems. This paper begins to investigate how small these systems could theoretically become, and what are the governing laws and limiting factors that determine that minimum size. The investigation focuses on the three primary subsystems for a sensor network of this nature Sensing, Information Processing and Communication. In general, there are few fundamental physical laws that limit the size of the sensor system. Limits tend to be driven by factors other than the laws of physics. These include user requirements, such as the acceptable probability of error, and the potential external environment.

  15. Human Factors Process Task Analysis: Liquid Oxygen Pump Acceptance Test Procedure at the Advanced Technology Development Center

    NASA Technical Reports Server (NTRS)

    Diorio, Kimberly A.; Voska, Ned (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on Human Factors Process Failure Modes and Effects Analysis (HF PFMEA). HF PFMEA includes the following 10 steps: Describe mission; Define System; Identify human-machine; List human actions; Identify potential errors; Identify factors that effect error; Determine likelihood of error; Determine potential effects of errors; Evaluate risk; Generate solutions (manage error). The presentation also describes how this analysis was applied to a liquid oxygen pump acceptance test.

  16. Mapping GRACE Accelerometer Error

    NASA Astrophysics Data System (ADS)

    Sakumura, C.; Harvey, N.; McCullough, C. M.; Bandikova, T.; Kruizinga, G. L. H.

    2017-12-01

    After more than fifteen years in orbit, instrument noise, and accelerometer noise in particular, remains one of the limiting error sources for the NASA/DLR Gravity Recovery and Climate Experiment mission. The recent V03 Level-1 reprocessing campaign used a Kalman filter approach to produce a high fidelity, smooth attitude solution fusing star camera and angular acceleration data. This process provided an unprecedented method for analysis and error estimation of each instrument. The accelerometer exhibited signal aliasing, differential scale factors between electrode plates, and magnetic effects. By applying the noise model developed for the angular acceleration data to the linear measurements, we explore the magnitude and geophysical pattern of gravity field error due to the electrostatic accelerometer.

  17. The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates

    NASA Technical Reports Server (NTRS)

    Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2008-01-01

    We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.

  18. Errors in quantitative backscattered electron analysis of bone standardized by energy-dispersive x-ray spectrometry.

    PubMed

    Vajda, E G; Skedros, J G; Bloebaum, R D

    1998-10-01

    Backscattered electron (BSE) imaging has proven to be a useful method for analyzing the mineral distribution in microscopic regions of bone. However, an accepted method of standardization has not been developed, limiting the utility of BSE imaging for truly quantitative analysis. Previous work has suggested that BSE images can be standardized by energy-dispersive x-ray spectrometry (EDX). Unfortunately, EDX-standardized BSE images tend to underestimate the mineral content of bone when compared with traditional ash measurements. The goal of this study is to investigate the nature of the deficit between EDX-standardized BSE images and ash measurements. A series of analytical standards, ashed bone specimens, and unembedded bone specimens were investigated to determine the source of the deficit previously reported. The primary source of error was found to be inaccurate ZAF corrections to account for the organic phase of the bone matrix. Conductive coatings, methylmethacrylate embedding media, and minor elemental constituents in bone mineral introduced negligible errors. It is suggested that the errors would remain constant and an empirical correction could be used to account for the deficit. However, extensive preliminary testing of the analysis equipment is essential.

  19. The successively temporal error concealment algorithm using error-adaptive block matching principle

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Hsuan; Wu, Tsai-Hsing; Chen, Chao-Chyun

    2014-09-01

    Generally, the temporal error concealment (TEC) adopts the blocks around the corrupted block (CB) as the search pattern to find the best-match block in previous frame. Once the CB is recovered, it is referred to as the recovered block (RB). Although RB can be the search pattern to find the best-match block of another CB, RB is not the same as its original block (OB). The error between the RB and its OB limits the performance of TEC. The successively temporal error concealment (STEC) algorithm is proposed to alleviate this error. The STEC procedure consists of tier-1 and tier-2. The tier-1 divides a corrupted macroblock into four corrupted 8 × 8 blocks and generates a recovering order for them. The corrupted 8 × 8 block with the first place of recovering order is recovered in tier-1, and remaining 8 × 8 CBs are recovered in tier-2 along the recovering order. In tier-2, the error-adaptive block matching principle (EA-BMP) is proposed for the RB as the search pattern to recover remaining corrupted 8 × 8 blocks. The proposed STEC outperforms sophisticated TEC algorithms on average PSNR by 0.3 dB on the packet error rate of 20% at least.

  20. Good people who try their best can have problems: recognition of human factors and how to minimise error.

    PubMed

    Brennan, Peter A; Mitchell, David A; Holmes, Simon; Plint, Simon; Parry, David

    2016-01-01

    Human error is as old as humanity itself and is an appreciable cause of mistakes by both organisations and people. Much of the work related to human factors in causing error has originated from aviation where mistakes can be catastrophic not only for those who contribute to the error, but for passengers as well. The role of human error in medical and surgical incidents, which are often multifactorial, is becoming better understood, and includes both organisational issues (by the employer) and potential human factors (at a personal level). Mistakes as a result of individual human factors and surgical teams should be better recognised and emphasised. Attitudes and acceptance of preoperative briefing has improved since the introduction of the World Health Organization (WHO) surgical checklist. However, this does not address limitations or other safety concerns that are related to performance, such as stress and fatigue, emotional state, hunger, awareness of what is going on situational awareness, and other factors that could potentially lead to error. Here we attempt to raise awareness of these human factors, and highlight how they can lead to error, and how they can be minimised in our day-to-day practice. Can hospitals move from being "high risk industries" to "high reliability organisations"? Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Use and limitations of ASHRAE solar algorithms in solar energy utilization studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.F.

    1978-01-01

    Algorithms for computer calculation of solar radiation based on cloud cover data, recommended by the ASHRAE Task Group on Energy Requirements for Buildings, are examined for applicability in solar utilization studies. The implementation is patterned after a well-known computer program, NBSLD. The results of these algorithms, including horizontal and tilted surface insolation and useful energy collectable, are compared to observations and results obtainable by the Liu and Jordan method. For purposes of comparison, data for Riverside, CA from 1960 through 1963 are examined. It is shown that horizontal values so predicted are frequently less than 10% and always less thanmore » 23% in error when compared to averages of hourly measurements during important collection hours in 1962. Average daily errors range from -14 to 9% over the year. When averaged on an hourly basis over four years, there is a 21% maximum discrepancy compared to the Liu and Jordan method. Corresponding tilted-surface discrepancies are slightly higher, as are those for useful energy collected. Possible sources of these discrepancies and errors are discussed. Limitations of the algorithms and various implementations are examined, and it is suggested that certain assumptions acceptable for building loads analysis may not be acceptable for solar utilization studies. In particular, it is shown that the method of separatingg diffuse and direct components in the presence of clouds requires careful consideration in order to achieve accuracy and efficiency in any implementation.« less

  2. [CIRRNET® - learning from errors, a success story].

    PubMed

    Frank, O; Hochreutener, M; Wiederkehr, P; Staender, S

    2012-06-01

    CIRRNET® is the network of local error-reporting systems of the Swiss Patient Safety Foundation. The network has been running since 2006 together with the Swiss Society for Anaesthesiology and Resuscitation (SGAR), and network participants currently include 39 healthcare institutions from all four different language regions of Switzerland. Further institutions can join at any time. Local error reports in CIRRNET® are bundled at a supraregional level, categorised in accordance with the WHO classification, and analysed by medical experts. The CIRRNET® database offers a solid pool of data with error reports from a wide range of medical specialist's areas and provides the basis for identifying relevant problem areas in patient safety. These problem areas are then processed in cooperation with specialists with extremely varied areas of expertise, and recommendations for avoiding these errors are developed by changing care processes (Quick-Alerts®). Having been approved by medical associations and professional medical societies, Quick-Alerts® are widely supported and well accepted in professional circles. The CIRRNET® database also enables any affiliated CIRRNET® participant to access all error reports in the 'closed user area' of the CIRRNET® homepage and to use these error reports for in-house training. A healthcare institution does not have to make every mistake itself - it can learn from the errors of others, compare notes with other healthcare institutions, and use existing knowledge to advance its own patient safety.

  3. GY SAMPLING THEORY IN ENVIRONMENTAL STUDIES 2: SUBSAMPLING ERROR MEASUREMENTS

    EPA Science Inventory

    Sampling can be a significant source of error in the measurement process. The characterization and cleanup of hazardous waste sites require data that meet site-specific levels of acceptable quality if scientifically supportable decisions are to be made. In support of this effort,...

  4. Acceptability of donated breast milk in a resource limited South African setting.

    PubMed

    Coutsoudis, Irene; Petrites, Alissa; Coutsoudis, Anna

    2011-02-22

    The importance of breast milk for infants' growth, development and overall health is widely recognized. In situations where women are not able to provide their infants with sufficient amounts of their own breast milk, donor breast milk is the next preferred option. Although there is considerable research on the safety and scientific aspects of donor milk, and the motivations and experiences of donors, there is limited research addressing the attitudes and experiences of the women and families whose infants receive this milk. This study therefore examined attitudes towards donated breast milk among mothers, families and healthcare providers of potential recipient infants. The study was conducted at a public hospital and nearby clinic in Durban, South Africa. The qualitative data was derived from eight focus group discussions which included four groups with mothers; one with male partners; and one with grandmothers, investigating attitudes towards receiving donated breast milk for infants. There was also one group each with nurses and doctors about their attitudes towards donated breast milk and its use in the hospital. The focus groups were conducted in September and October 2009 and each group had between four and eleven participants, leading to a total of 48 participants. Although breast milk was seen as important to child health there were concerns about undermining of breast milk because of concerns about HIV and marketing and promotion of formula milks. In addition there were concerns about the safety of donor breast milk and discomfort about using another mother's milk. Participants believed that education on the importance of breast milk and transparency on the processes involved in sourcing and preparing donor milk would improve the acceptability. This study has shown that there are obstacles to the acceptability of donor milk, mainly stemming from lack of awareness/familiarity with the processes around donor breast milk and that these could be readily

  5. Emperical Tests of Acceptance Sampling Plans

    NASA Technical Reports Server (NTRS)

    White, K. Preston, Jr.; Johnson, Kenneth L.

    2012-01-01

    Acceptance sampling is a quality control procedure applied as an alternative to 100% inspection. A random sample of items is drawn from a lot to determine the fraction of items which have a required quality characteristic. Both the number of items to be inspected and the criterion for determining conformance of the lot to the requirement are given by an appropriate sampling plan with specified risks of Type I and Type II sampling errors. In this paper, we present the results of empirical tests of the accuracy of selected sampling plans reported in the literature. These plans are for measureable quality characteristics which are known have either binomial, exponential, normal, gamma, Weibull, inverse Gaussian, or Poisson distributions. In the main, results support the accepted wisdom that variables acceptance plans are superior to attributes (binomial) acceptance plans, in the sense that these provide comparable protection against risks at reduced sampling cost. For the Gaussian and Weibull plans, however, there are ranges of the shape parameters for which the required sample sizes are in fact larger than the corresponding attributes plans, dramatically so for instances of large skew. Tests further confirm that the published inverse-Gaussian (IG) plan is flawed, as reported by White and Johnson (2011).

  6. Correcting AUC for Measurement Error.

    PubMed

    Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang

    2015-12-01

    Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.

  7. Detecting imipenem resistance in Acinetobacter baumannii by automated systems (BD Phoenix, Microscan WalkAway, Vitek 2); high error rates with Microscan WalkAway

    PubMed Central

    2009-01-01

    Background Increasing reports of carbapenem resistant Acinetobacter baumannii infections are of serious concern. Reliable susceptibility testing results remains a critical issue for the clinical outcome. Automated systems are increasingly used for species identification and susceptibility testing. This study was organized to evaluate the accuracies of three widely used automated susceptibility testing methods for testing the imipenem susceptibilities of A. baumannii isolates, by comparing to the validated test methods. Methods Selected 112 clinical isolates of A. baumanii collected between January 2003 and May 2006 were tested to confirm imipenem susceptibility results. Strains were tested against imipenem by the reference broth microdilution (BMD), disk diffusion (DD), Etest, BD Phoenix, MicroScan WalkAway and Vitek 2 automated systems. Data were analysed by comparing the results from each test method to those produced by the reference BMD test. Results MicroScan performed true identification of all A. baumannii strains while Vitek 2 unidentified one strain, Phoenix unidentified two strains and misidentified two strains. Eighty seven of the strains (78%) were resistant to imipenem by BMD. Etest, Vitek 2 and BD Phoenix produced acceptable error rates when tested against imipenem. Etest showed the best performance with only two minor errors (1.8%). Vitek 2 produced eight minor errors(7.2%). BD Phoenix produced three major errors (2.8%). DD produced two very major errors (1.8%) (slightly higher (0.3%) than the acceptable limit) and three major errors (2.7%). MicroScan showed the worst performance in susceptibility testing with unacceptable error rates; 28 very major (25%) and 50 minor errors (44.6%). Conclusion Reporting errors for A. baumannii against imipenem do exist in susceptibility testing systems. We suggest clinical laboratories using MicroScan system for routine use should consider using a second, independent antimicrobial susceptibility testing method to

  8. Quantum Error Correction with Biased Noise

    NASA Astrophysics Data System (ADS)

    Brooks, Peter

    Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security. At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level. In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations. In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction. In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled

  9. Altimeter error sources at the 10-cm performance level

    NASA Technical Reports Server (NTRS)

    Martin, C. F.

    1977-01-01

    Error sources affecting the calibration and operational use of a 10 cm altimeter are examined to determine the magnitudes of current errors and the investigations necessary to reduce them to acceptable bounds. Errors considered include those affecting operational data pre-processing, and those affecting altitude bias determination, with error budgets developed for both. The most significant error sources affecting pre-processing are bias calibration, propagation corrections for the ionosphere, and measurement noise. No ionospheric models are currently validated at the required 10-25% accuracy level. The optimum smoothing to reduce the effects of measurement noise is investigated and found to be on the order of one second, based on the TASC model of geoid undulations. The 10 cm calibrations are found to be feasible only through the use of altimeter passes that are very high elevation for a tracking station which tracks very close to the time of altimeter track, such as a high elevation pass across the island of Bermuda. By far the largest error source, based on the current state-of-the-art, is the location of the island tracking station relative to mean sea level in the surrounding ocean areas.

  10. Error of semiclassical eigenvalues in the semiclassical limit - an asymptotic analysis of the Sinai billiard

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Per

    1999-10-01

    We estimate the error in the semiclassical trace formula for the Sinai billiard under the assumption that the largest source of error is due to penumbra diffraction: namely, diffraction effects for trajectories passing within a distance Ricons/Journals/Common/cdot" ALT="cdot" ALIGN="TOP"/>O((kR)-2/3) to the disc and trajectories being scattered in very forward directions. Here k is the momentum and R the radius of the scatterer. The semiclassical error is estimated by perturbing the Berry-Keating formula. The analysis necessitates an asymptotic analysis of very long periodic orbits. This is obtained within an approximation originally due to Baladi, Eckmann and Ruelle. We find that the average error, for sufficiently large values of kR, will exceed the mean level spacing.

  11. Relationships between dispositional mindfulness, self-acceptance, perceived stress, and psychological symptoms in advanced gastrointestinal cancer patients.

    PubMed

    Xu, Wei; Zhou, Yuyang; Fu, Zhongfang; Rodriguez, Marcus

    2017-12-01

    Previous studies have shown that dispositional mindfulness is associated with less psychological symptoms in cancer patients. The present study investigated how dispositional mindfulness is related to psychological symptoms in advanced gastrointestinal cancer patients by considering the roles of self-acceptance and perceived stress. A total of 176 patients with advanced gastrointestinal cancer were recruited to complete a series of questionnaires including Mindfulness Attention Awareness Scale, Self-acceptance Questionnaire, Chinese Perceived Stress Scale, and General Health Questionnaire. Results showed that the proposed model fitted the data very well (χ 2  = 7.564, df = 7, P = .364, χ 2 /df = 1.094, Goodness of Fit Index (GFI) = 0.986, Comparative Fit Index (CFI) = 0.998, Tucker Lewis Index (TLI) = 0.995, Root Mean Square Error of Approximation (RMSEA) = 0.023). Further analyses revealed that, self-acceptance and perceived stress mediated the relation between dispositional mindfulness and psychological symptoms (indirect effect = -0.052, 95% confidence interval = -0.087 ~ -0.024), while self-acceptance also mediated the relation between dispositional mindfulness and perceived stress (indirect effect = -0.154, 95% confidence interval = -0.261 ~ -0.079). Self-acceptance and perceived stress played critical roles in the relation between dispositional mindfulness and psychological symptoms. Limitations, clinical implications, and directions for future research were discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Medical error reduction and tort reform through private, contractually-based quality medicine societies.

    PubMed

    MacCourt, Duncan; Bernstein, Joseph

    2009-01-01

    The current medical malpractice system is broken. Many patients injured by malpractice are not compensated, whereas some patients who recover in tort have not suffered medical negligence; furthermore, the system's failures demoralize patients and physicians. But most importantly, the system perpetuates medical error because the adversarial nature of litigation induces a so-called "Culture of Silence" in physicians eager to shield themselves from liability. This silence leads to the pointless repetition of error, as the open discussion and analysis of the root causes of medical mistakes does not take place as fully as it should. In 1993, President Clinton's Task Force on National Health Care Reform considered a solution characterized by Enterprise Medical Liability (EML), Alternative Dispute Resolution (ADR), some limits on recovery for non-pecuniary damages (Caps), and offsets for collateral source recovery. Yet this list of ingredients did not include a strategy to surmount the difficulties associated with each element. Specifically, EML might be efficient, but none of the enterprises contemplated to assume responsibility, i.e., hospitals and payers, control physician behavior enough so that it would be fair to foist liability on them. Likewise, although ADR might be efficient, it will be resisted by individual litigants who perceive themselves as harmed by it. Finally, while limitations on collateral source recovery and damages might effectively reduce costs, patients and trial lawyers likely would not accept them without recompense. The task force also did not place error reduction at the center of malpractice tort reform -a logical and strategic error, in our view. In response, we propose a new system that employs the ingredients suggested by the task force but also addresses the problems with each. We also explicitly consider steps to rebuff the Culture of Silence and promote error reduction. We assert that patients would be better off with a system where

  13. Analysis of case-only studies accounting for genotyping error.

    PubMed

    Cheng, K F

    2007-03-01

    The case-only design provides one approach to assess possible interactions between genetic and environmental factors. It has been shown that if these factors are conditionally independent, then a case-only analysis is not only valid but also very efficient. However, a drawback of the case-only approach is that its conclusions may be biased by genotyping errors. In this paper, our main aim is to propose a method for analysis of case-only studies when these errors occur. We show that the bias can be adjusted through the use of internal validation data, which are obtained by genotyping some sampled individuals twice. Our analysis is based on a simple and yet highly efficient conditional likelihood approach. Simulation studies considered in this paper confirm that the new method has acceptable performance under genotyping errors.

  14. Effects of Error Experience When Learning to Simulate Hypernasality

    ERIC Educational Resources Information Center

    Wong, Andus W.-K.; Tse, Andy C.-Y.; Ma, Estella P.-M.; Whitehill, Tara L.; Masters, Rich S. W.

    2013-01-01

    Purpose: The purpose of this study was to evaluate the effects of error experience on the acquisition of hypernasal speech. Method: Twenty-eight healthy participants were asked to simulate hypernasality in either an "errorless learning" condition (in which the possibility for errors was limited) or an "errorful learning"…

  15. A Cycle of Redemption in a Medical Error Disclosure and Apology Program.

    PubMed

    Carmack, Heather J

    2014-06-01

    Physicians accept that they have an ethical responsibility to disclose and apologize for medical errors; however, when physicians make a medical error, they are often not given the opportunity to disclose and apologize for the mistake. In this article, I explore how one hospital negotiated the aftermath of medical mistakes through a disclosure and apology program. Specifically, I used Burke's cycle of redemption to position the hospital's disclosure and apology program as a redemption process and explore how the hospital physicians and administrators worked through the experiences of disclosing and apologizing for medical errors. © The Author(s) 2014.

  16. Quantum error correction in crossbar architectures

    NASA Astrophysics Data System (ADS)

    Helsen, Jonas; Steudtner, Mark; Veldhorst, Menno; Wehner, Stephanie

    2018-07-01

    A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so-called crossbar architectures. Recently we made a proposal for a large-scale quantum processor (Li et al arXiv:1711.03807 (2017)) to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single-qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large-scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.

  17. Retesting the Limits of Data-Driven Learning: Feedback and Error Correction

    ERIC Educational Resources Information Center

    Crosthwaite, Peter

    2017-01-01

    An increasing number of studies have looked at the value of corpus-based data-driven learning (DDL) for second language (L2) written error correction, with generally positive results. However, a potential conundrum for language teachers involved in the process is how to provide feedback on students' written production for DDL. The study looks at…

  18. Analysis of error-correction constraints in an optical disk.

    PubMed

    Roberts, J D; Ryley, A; Jones, D M; Burke, D

    1996-07-10

    The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.

  19. Analysis of error-correction constraints in an optical disk

    NASA Astrophysics Data System (ADS)

    Roberts, Jonathan D.; Ryley, Alan; Jones, David M.; Burke, David

    1996-07-01

    The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.

  20. Aversion to injection limits acceptability of extended-release naltrexone among homeless, alcohol-dependent patients.

    PubMed

    Friedmann, Peter D; Mello, Dawn; Lonergan, Sean; Bourgault, Claire; O'Toole, Thomas P

    2013-01-01

    Ending homelessness is a major priority of the Department of Veteran Affairs (VA), and alcohol use can be a barrier to stable housing. Clinical trials suggest that depot extended-release naltrexone (XR-NTX) is efficacious in reducing alcohol consumption among alcohol-dependent subjects. An open-label, randomized pilot study sought to examine the feasibility and effectiveness of XR-NTX versus oral naltrexone to improve alcohol consumption and housing stability among homeless, alcohol-dependent veterans at the Providence Veteran Affairs Medical Center. Of 215 potential candidates approached over a 16-month recruitment period, only 15 agreed to consider study entry and 7 were randomized. The primary reasons given for refusal were not wanting an injection; fear of needles; and not wanting to change drinking habits. Only 1 participant in the XR-NTX group returned after the first injection. Three participants in the oral naltrexone group attended all 7 visits and had good outcomes. Although XR-NTX has demonstrated efficacy in reducing heavy drinking, limited acceptance of the injection might reduce its effectiveness among homeless, alcohol-dependent patients.

  1. Error-related brain activity and error awareness in an error classification paradigm.

    PubMed

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    Analysis of quantum error correcting (QEC) codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. We present analytic results for the logical error as a function of concatenation level and code distance for coherent errors under the repetition code. For data-only coherent errors, we find that the logical error is partially coherent and therefore non-Pauli. However, the coherent part of the error is negligible after two or more concatenation levels or at fewer than ɛ - (d - 1) error correction cycles. Here ɛ << 1 is the rotation angle error per cycle for a single physical qubit and d is the code distance. These results support the validity of modeling coherent errors using a Pauli channel under some minimum requirements for code distance and/or concatenation. We discuss extensions to imperfect syndrome extraction and implications for general QEC.

  3. Influence of Errors in Tactile Sensors on Some High Level Parameters Used for Manipulation with Robotic Hands.

    PubMed

    Sánchez-Durán, José A; Hidalgo-López, José A; Castellanos-Ramos, Julián; Oballe-Peinado, Óscar; Vidal-Verdú, Fernando

    2015-08-19

    Tactile sensors suffer from many types of interference and errors like crosstalk, non-linearity, drift or hysteresis, therefore calibration should be carried out to compensate for these deviations. However, this procedure is difficult in sensors mounted on artificial hands for robots or prosthetics for instance, where the sensor usually bends to cover a curved surface. Moreover, the calibration procedure should be repeated often because the correction parameters are easily altered by time and surrounding conditions. Furthermore, this intensive and complex calibration could be less determinant, or at least simpler. This is because manipulation algorithms do not commonly use the whole data set from the tactile image, but only a few parameters such as the moments of the tactile image. These parameters could be changed less by common errors and interferences, or at least their variations could be in the order of those caused by accepted limitations, like reduced spatial resolution. This paper shows results from experiments to support this idea. The experiments are carried out with a high performance commercial sensor as well as with a low-cost error-prone sensor built with a common procedure in robotics.

  4. [Medical errors: inevitable but preventable].

    PubMed

    Giard, R W

    2001-10-27

    Medical errors are increasingly reported in the lay press. Studies have shown dramatic error rates of 10 percent or even higher. From a methodological point of view, studying the frequency and causes of medical errors is far from simple. Clinical decisions on diagnostic or therapeutic interventions are always taken within a clinical context. Reviewing outcomes of interventions without taking into account both the intentions and the arguments for a particular action will limit the conclusions from a study on the rate and preventability of errors. The interpretation of the preventability of medical errors is fraught with difficulties and probably highly subjective. Blaming the doctor personally does not do justice to the actual situation and especially the organisational framework. Attention for and improvement of the organisational aspects of error are far more important then litigating the person. To err is and will remain human and if we want to reduce the incidence of faults we must be able to learn from our mistakes. That requires an open attitude towards medical mistakes, a continuous effort in their detection, a sound analysis and, where feasible, the institution of preventive measures.

  5. iGen: An automated generator of simplified models with provable error bounds.

    NASA Astrophysics Data System (ADS)

    Tang, D.; Dobbie, S.

    2009-04-01

    Climate models employ various simplifying assumptions and parameterisations in order to increase execution speed. However, in order to draw conclusions about the Earths climate from the results of a climate simulation it is necessary to have information about the error that these assumptions and parameterisations introduce. A novel computer program, called iGen, is being developed which automatically generates fast, simplified models by analysing the source code of a slower, high resolution model. The resulting simplified models have provable bounds on error compared to the high resolution model and execute at speeds that are typically orders of magnitude faster. iGen's input is a definition of the prognostic variables of the simplified model, a set of bounds on acceptable error and the source code of a model that captures the behaviour of interest. In the case of an atmospheric model, for example, this would be a global cloud resolving model with very high resolution. Although such a model would execute far too slowly to be used directly in a climate model, iGen never executes it. Instead, it converts the code of the resolving model into a mathematical expression which is then symbolically manipulated and approximated to form a simplified expression. This expression is then converted back into a computer program and output as a simplified model. iGen also derives and reports formal bounds on the error of the simplified model compared to the resolving model. These error bounds are always maintained below the user-specified acceptable error. Results will be presented illustrating the success of iGen's analysis of a number of example models. These extremely encouraging results have lead on to work which is currently underway to analyse a cloud resolving model and so produce an efficient parameterisation of moist convection with formally bounded error.

  6. Problem of data quality and the limitations of the infrastructure approach

    NASA Astrophysics Data System (ADS)

    Behlen, Fred M.; Sayre, Richard E.; Rackus, Edward; Ye, Dingzhong

    1998-07-01

    The 'Infrastructure Approach' is a PACS implementation methodology wherein the archive, network and information systems interfaces are acquired first, and workstations are installed later. The approach allows building a history of archived image data, so that most prior examinations are available in digital form when workstations are deployed. A limitation of the Infrastructure Approach is that the deferred use of digital image data defeats many data quality management functions that are provided automatically by human mechanisms when data is immediately used for the completion of clinical tasks. If the digital data is used solely for archiving while reports are interpreted from film, the radiologist serves only as a check against lost films, and another person must be designated as responsible for the quality of the digital data. Data from the Radiology Information System and the PACS were analyzed to assess the nature and frequency of system and data quality errors. The error level was found to be acceptable if supported by auditing and error resolution procedures requiring additional staff time, and in any case was better than the loss rate of a hardcopy film archive. It is concluded that the problem of data quality compromises but does not negate the value of the Infrastructure Approach. The Infrastructure Approach should best be employed only to a limited extent, and that any phased PACS implementation should have a substantial complement of workstations dedicated to softcopy interpretation for at least some applications, and with full deployment following not long thereafter.

  7. Role of memory errors in quantum repeaters

    NASA Astrophysics Data System (ADS)

    Hartmann, L.; Kraus, B.; Briegel, H.-J.; Dür, W.

    2007-03-01

    We investigate the influence of memory errors in the quantum repeater scheme for long-range quantum communication. We show that the communication distance is limited in standard operation mode due to memory errors resulting from unavoidable waiting times for classical signals. We show how to overcome these limitations by (i) improving local memory and (ii) introducing two operational modes of the quantum repeater. In both operational modes, the repeater is run blindly, i.e., without waiting for classical signals to arrive. In the first scheme, entanglement purification protocols based on one-way classical communication are used allowing to communicate over arbitrary distances. However, the error thresholds for noise in local control operations are very stringent. The second scheme makes use of entanglement purification protocols with two-way classical communication and inherits the favorable error thresholds of the repeater run in standard mode. One can increase the possible communication distance by an order of magnitude with reasonable overhead in physical resources. We outline the architecture of a quantum repeater that can possibly ensure intercontinental quantum communication.

  8. North error estimation based on solar elevation errors in the third step of sky-polarimetric Viking navigation.

    PubMed

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Egri, Ádám; Horváth, Gábor

    2016-07-01

    The theory of sky-polarimetric Viking navigation has been widely accepted for decades without any information about the accuracy of this method. Previously, we have measured the accuracy of the first and second steps of this navigation method in psychophysical laboratory and planetarium experiments. Now, we have tested the accuracy of the third step in a planetarium experiment, assuming that the first and second steps are errorless. Using the fists of their outstretched arms, 10 test persons had to estimate the elevation angles (measured in numbers of fists and fingers) of black dots (representing the position of the occluded Sun) projected onto the planetarium dome. The test persons performed 2400 elevation estimations, 48% of which were more accurate than ±1°. We selected three test persons with the (i) largest and (ii) smallest elevation errors and (iii) highest standard deviation of the elevation error. From the errors of these three persons, we calculated their error function, from which the North errors (the angles with which they deviated from the geographical North) were determined for summer solstice and spring equinox, two specific dates of the Viking sailing period. The range of possible North errors Δ ω N was the lowest and highest at low and high solar elevations, respectively. At high elevations, the maximal Δ ω N was 35.6° and 73.7° at summer solstice and 23.8° and 43.9° at spring equinox for the best and worst test person (navigator), respectively. Thus, the best navigator was twice as good as the worst one. At solstice and equinox, high elevations occur the most frequently during the day, thus high North errors could occur more frequently than expected before. According to our findings, the ideal periods for sky-polarimetric Viking navigation are immediately after sunrise and before sunset, because the North errors are the lowest at low solar elevations.

  9. North error estimation based on solar elevation errors in the third step of sky-polarimetric Viking navigation

    PubMed Central

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Egri, Ádám

    2016-01-01

    The theory of sky-polarimetric Viking navigation has been widely accepted for decades without any information about the accuracy of this method. Previously, we have measured the accuracy of the first and second steps of this navigation method in psychophysical laboratory and planetarium experiments. Now, we have tested the accuracy of the third step in a planetarium experiment, assuming that the first and second steps are errorless. Using the fists of their outstretched arms, 10 test persons had to estimate the elevation angles (measured in numbers of fists and fingers) of black dots (representing the position of the occluded Sun) projected onto the planetarium dome. The test persons performed 2400 elevation estimations, 48% of which were more accurate than ±1°. We selected three test persons with the (i) largest and (ii) smallest elevation errors and (iii) highest standard deviation of the elevation error. From the errors of these three persons, we calculated their error function, from which the North errors (the angles with which they deviated from the geographical North) were determined for summer solstice and spring equinox, two specific dates of the Viking sailing period. The range of possible North errors ΔωN was the lowest and highest at low and high solar elevations, respectively. At high elevations, the maximal ΔωN was 35.6° and 73.7° at summer solstice and 23.8° and 43.9° at spring equinox for the best and worst test person (navigator), respectively. Thus, the best navigator was twice as good as the worst one. At solstice and equinox, high elevations occur the most frequently during the day, thus high North errors could occur more frequently than expected before. According to our findings, the ideal periods for sky-polarimetric Viking navigation are immediately after sunrise and before sunset, because the North errors are the lowest at low solar elevations. PMID:27493566

  10. Measurement error is often neglected in medical literature: a systematic review.

    PubMed

    Brakenhoff, Timo B; Mitroiu, Marian; Keogh, Ruth H; Moons, Karel G M; Groenwold, Rolf H H; van Smeden, Maarten

    2018-06-01

    In medical research, covariates (e.g., exposure and confounder variables) are often measured with error. While it is well accepted that this introduces bias and imprecision in exposure-outcome relations, it is unclear to what extent such issues are currently considered in research practice. The objective was to study common practices regarding covariate measurement error via a systematic review of general medicine and epidemiology literature. Original research published in 2016 in 12 high impact journals was full-text searched for phrases relating to measurement error. Reporting of measurement error and methods to investigate or correct for it were quantified and characterized. Two hundred and forty-seven (44%) of the 565 original research publications reported on the presence of measurement error. 83% of these 247 did so with respect to the exposure and/or confounder variables. Only 18 publications (7% of 247) used methods to investigate or correct for measurement error. Consequently, it is difficult for readers to judge the robustness of presented results to the existence of measurement error in the majority of publications in high impact journals. Our systematic review highlights the need for increased awareness about the possible impact of covariate measurement error. Additionally, guidance on the use of measurement error correction methods is necessary. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. (How) do we learn from errors? A prospective study of the link between the ward's learning practices and medication administration errors.

    PubMed

    Drach-Zahavy, A; Somech, A; Admi, H; Peterfreund, I; Peker, H; Priente, O

    2014-03-01

    Attention in the ward should shift from preventing medication administration errors to managing them. Nevertheless, little is known in regard with the practices nursing wards apply to learn from medication administration errors as a means of limiting them. To test the effectiveness of four types of learning practices, namely, non-integrated, integrated, supervisory and patchy learning practices in limiting medication administration errors. Data were collected from a convenient sample of 4 hospitals in Israel by multiple methods (observations and self-report questionnaires) at two time points. The sample included 76 wards (360 nurses). Medication administration error was defined as any deviation from prescribed medication processes and measured by a validated structured observation sheet. Wards' use of medication administration technologies, location of the medication station, and workload were observed; learning practices and demographics were measured by validated questionnaires. Results of the mixed linear model analysis indicated that the use of technology and quiet location of the medication cabinet were significantly associated with reduced medication administration errors (estimate=.03, p<.05 and estimate=-.17, p<.01 correspondingly), while workload was significantly linked to inflated medication administration errors (estimate=.04, p<.05). Of the learning practices, supervisory learning was the only practice significantly linked to reduced medication administration errors (estimate=-.04, p<.05). Integrated and patchy learning were significantly linked to higher levels of medication administration errors (estimate=-.03, p<.05 and estimate=-.04, p<.01 correspondingly). Non-integrated learning was not associated with it (p>.05). How wards manage errors might have implications for medication administration errors beyond the effects of typical individual, organizational and technology risk factors. Head nurse can facilitate learning from errors by "management by

  12. [Detection and classification of medication errors at Joan XXIII University Hospital].

    PubMed

    Jornet Montaña, S; Canadell Vilarrasa, L; Calabuig Mũoz, M; Riera Sendra, G; Vuelta Arce, M; Bardají Ruiz, A; Gallart Mora, M J

    2004-01-01

    Medication errors are multifactorial and multidisciplinary, and may originate in processes such as drug prescription, transcription, dispensation, preparation and administration. The goal of this work was to measure the incidence of detectable medication errors that arise within a unit dose drug distribution and control system, from drug prescription to drug administration, by means of an observational method confined to the Pharmacy Department, as well as a voluntary, anonymous report system. The acceptance of this voluntary report system's implementation was also assessed. A prospective descriptive study was conducted. Data collection was performed at the Pharmacy Department from a review of prescribed medical orders, a review of pharmaceutical transcriptions, a review of dispensed medication and a review of medication returned in unit dose medication carts. A voluntary, anonymous report system centralized in the Pharmacy Department was also set up to detect medication errors. Prescription errors were the most frequent (1.12%), closely followed by dispensation errors (1.04%). Transcription errors (0.42%) and administration errors (0.69%) had the lowest overall incidence. Voluntary report involved only 4.25% of all detected errors, whereas unit dose medication cart review contributed the most to error detection. Recognizing the incidence and types of medication errors that occur in a health-care setting allows us to analyze their causes and effect changes in different stages of the process in order to ensure maximal patient safety.

  13. Correcting for particle counting bias error in turbulent flow

    NASA Technical Reports Server (NTRS)

    Edwards, R. V.; Baratuci, W.

    1985-01-01

    An ideal seeding device is proposed generating particles that exactly follow the flow out are still a major source of error, i.e., with a particle counting bias wherein the probability of measuring velocity is a function of velocity. The error in the measured mean can be as much as 25%. Many schemes have been put forward to correct for this error, but there is not universal agreement as to the acceptability of any one method. In particular it is sometimes difficult to know if the assumptions required in the analysis are fulfilled by any particular flow measurement system. To check various correction mechanisms in an ideal way and to gain some insight into how to correct with the fewest initial assumptions, a computer simulation is constructed to simulate laser anemometer measurements in a turbulent flow. That simulator and the results of its use are discussed.

  14. Liquid Medication Dosing Errors by Hispanic Parents: Role of Health Literacy and English Proficiency

    PubMed Central

    Harris, Leslie M.; Dreyer, Benard; Mendelsohn, Alan; Bailey, Stacy C.; Sanders, Lee M.; Wolf, Michael S.; Parker, Ruth M.; Patel, Deesha A.; Kim, Kwang Youn A.; Jimenez, Jessica J.; Jacobson, Kara; Smith, Michelle; Yin, H. Shonna

    2016-01-01

    Objective Hispanic parents in the US are disproportionately affected by low health literacy and limited English proficiency (LEP). We examined associations between health literacy, LEP, and liquid medication dosing errors in Hispanic parents. Methods Cross-sectional analysis of data from a multisite randomized controlled experiment to identify best practices for the labeling/dosing of pediatric liquid medications (SAFE Rx for Kids study); 3 urban pediatric clinics. Analyses were limited to Hispanic parents of children <8 years, with health literacy and LEP data (n=1126). Parents were randomized to 5 groups that varied by pairing of units of measurement on the label/dosing tool. Each parent measured 9 doses [3 amounts (2.5,5,7.5 mL) using 3 tools (2 syringes (0.2,0.5 mL increment), 1 cup)] in random order. Dependent variable: Dosing error=>20% dose deviation. Predictor variables: health literacy (Newest Vital Sign) [limited=0–3; adequate=4–6], LEP (speaks English less than “very well”). Results 83.1% made dosing errors (mean(SD) errors/parent=2.2(1.9)). Parents with limited health literacy and LEP had the greatest odds of making a dosing error compared to parents with adequate health literacy who were English proficient (% trials with errors/parent=28.8 vs. 12.9%; AOR=2.2[1.7–2.8]). Parents with limited health literacy who were English proficient were also more likely to make errors (% trials with errors/parent=18.8%; AOR=1.4[1.1–1.9]). Conclusion Dosing errors are common among Hispanic parents; those with both LEP and limited health literacy are at particular risk. Further study is needed to examine how the redesign of medication labels and dosing tools could reduce literacy and language-associated disparities in dosing errors. PMID:28477800

  15. Error reduction in EMG signal decomposition

    PubMed Central

    Kline, Joshua C.

    2014-01-01

    Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. PMID:25210159

  16. Reliability and measurement error of active knee extension range of motion in a modified slump test position: a pilot study.

    PubMed

    Tucker, Neil; Reid, Duncan; McNair, Peter

    2007-01-01

    The slump test is a tool to assess the mechanosensitivity of the neuromeningeal structures within the vertebral canal. While some studies have investigated the reliability of aspects of this test within the same day, few have assessed the reliability across days. Therefore, the purpose of this pilot study was to investigate reliability when measuring active knee extension range of motion (AROM) in a modified slump test position within trials on a single day and across days. Ten male and ten female asymptomatic subjects, ages 20-49 (mean age 30.1, SD 6.4) participated in the study. Knee extension AROM in a modified slump position with the cervical spine in a flexed position and then in an extended position was measured via three trials on two separate days. Across three trials, knee extension AROM increased significantly with a mean magnitude of 2 degrees within days for both cervical spine positions (P>0.05). The findings showed that there was no statistically significant difference in knee extension AROM measurements across days (P>0.05). The intraclass correlation coefficients for the mean of the three trials across days were 0.96 (lower limit 95% CI: 0.90) with the cervical spine flexed and 0.93 (lower limit 95% CI: 0.83) with cervical extension. Measurement error was calculated by way of the typical error and 95% limits of agreement, and visually represented in Bland and Altman plots. The typical error for the cervical flexed and extended positions averaged across trials was 2.6 degrees and 3.3 degrees , respectively. The limits of agreement were narrow, and the Bland and Altman plots also showed minimal bias in the joint angles across days with a random distribution of errors across the range of measured angles. This study demonstrated that knee extension AROM could be reliably measured across days in subjects without pathology and that the measurement error was acceptable. Implications of variability over multiple trials are discussed. The modified set-up for

  17. Reliability and Measurement Error of Active Knee Extension Range of Motion in a Modified Slump Test Position: A Pilot Study

    PubMed Central

    Tucker, Neil; Reid, Duncan; McNair, Peter

    2007-01-01

    The slump test is a tool to assess the mechanosensitivity of the neuromeningeal structures within the vertebral canal. While some studies have investigated the reliability of aspects of this test within the same day, few have assessed the reliability across days. Therefore, the purpose of this pilot study was to investigate reliability when measuring active knee extension range of motion (AROM) in a modified slump test position within trials on a single day and across days. Ten male and ten female asymptomatic subjects, ages 20–49 (mean age 30.1, SD 6.4) participated in the study. Knee extension AROM in a modified slump position with the cervical spine in a flexed position and then in an extended position was measured via three trials on two separate days. Across three trials, knee extension AROM increased significantly with a mean magnitude of 2° within days for both cervical spine positions (P>0.05). The findings showed that there was no statistically significant difference in knee extension AROM measurements across days (P>0.05). The intraclass correlation coefficients for the mean of the three trials across days were 0.96 (lower limit 95% CI: 0.90) with the cervical spine flexed and 0.93 (lower limit 95% CI: 0.83) with cervical extension. Measurement error was calculated by way of the typical error and 95% limits of agreement, and visually represented in Bland and Altman plots. The typical error for the cervical flexed and extended positions averaged across trials was 2.6° and 3.3°, respectively. The limits of agreement were narrow, and the Bland and Altman plots also showed minimal bias in the joint angles across days with a random distribution of errors across the range of measured angles. This study demonstrated that knee extension AROM could be reliably measured across days in subjects without pathology and that the measurement error was acceptable. Implications of variability over multiple trials are discussed. The modified set-up for the test using

  18. Safe and effective error rate monitors for SS7 signaling links

    NASA Astrophysics Data System (ADS)

    Schmidt, Douglas C.

    1994-04-01

    This paper describes SS7 error monitor characteristics, discusses the existing SUERM (Signal Unit Error Rate Monitor), and develops the recently proposed EIM (Error Interval Monitor) for higher speed SS7 links. A SS7 error monitor is considered safe if it ensures acceptable link quality and is considered effective if it is tolerant to short-term phenomena. Formal criteria for safe and effective error monitors are formulated in this paper. This paper develops models of changeover transients, the unstable component of queue length resulting from errors. These models are in the form of recursive digital filters. Time is divided into sequential intervals. The filter's input is the number of errors which have occurred in each interval. The output is the corresponding change in transmit queue length. Engineered EIM's are constructed by comparing an estimated changeover transient with a threshold T using a transient model modified to enforce SS7 standards. When this estimate exceeds T, a changeover will be initiated and the link will be removed from service. EIM's can be differentiated from SUERM by the fact that EIM's monitor errors over an interval while SUERM's count errored messages. EIM's offer several advantages over SUERM's, including the fact that they are safe and effective, impose uniform standards in link quality, are easily implemented, and make minimal use of real-time resources.

  19. Errors in causal inference: an organizational schema for systematic error and random error.

    PubMed

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Basis set limit and systematic errors in local-orbital based all-electron DFT

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Behler, Jörg; Gehrke, Ralf; Reuter, Karsten; Scheffler, Matthias

    2006-03-01

    With the advent of efficient integration schemes,^1,2 numeric atom-centered orbitals (NAO's) are an attractive basis choice in practical density functional theory (DFT) calculations of nanostructured systems (surfaces, clusters, molecules). Though all-electron, the efficiency of practical implementations promises to be on par with the best plane-wave pseudopotential codes, while having a noticeably higher accuracy if required: Minimal-sized effective tight-binding like calculations and chemically accurate all-electron calculations are both possible within the same framework; non-periodic and periodic systems can be treated on equal footing; and the localized nature of the basis allows in principle for O(N)-like scaling. However, converging an observable with respect to the basis set is less straightforward than with competing systematic basis choices (e.g., plane waves). We here investigate the basis set limit of optimized NAO basis sets in all-electron calculations, using as examples small molecules and clusters (N2, Cu2, Cu4, Cu10). meV-level total energy convergence is possible using <=50 basis functions per atom in all cases. We also find a clear correlation between the errors which arise from underconverged basis sets, and the system geometry (interatomic distance). ^1 B. Delley, J. Chem. Phys. 92, 508 (1990), ^2 J.M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002).

  1. Evaluation of Trajectory Errors in an Automated Terminal-Area Environment

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Williams, David H.

    2003-01-01

    A piloted simulation experiment was conducted to document the trajectory errors associated with use of an airplane's Flight Management System (FMS) in conjunction with a ground-based ATC automation system, Center-TRACON Automation System (CTAS) in the terminal area. Three different arrival procedures were compared: current-day (vectors from ATC), modified (current-day with minor updates), and data link with FMS lateral navigation. Six active airline pilots flew simulated arrivals in a fixed-base simulator. The FMS-datalink procedure resulted in the smallest time and path distance errors, indicating that use of this procedure could reduce the CTAS arrival-time prediction error by about half over the current-day procedure. Significant sources of error contributing to the arrival-time error were crosstrack errors and early speed reduction in the last 2-4 miles before the final approach fix. Pilot comments were all very positive, indicating the FMS-datalink procedure was easy to understand and use, and the increased head-down time and workload did not detract from the benefit. Issues that need to be resolved before this method of operation would be ready for commercial use include development of procedures acceptable to controllers, better speed conformance monitoring, and FMS database procedures to support the approach transitions.

  2. Verifying and Postprocesing the Ensemble Spread-Error Relationship

    NASA Astrophysics Data System (ADS)

    Hopson, Tom; Knievel, Jason; Liu, Yubao; Roux, Gregory; Wu, Wanli

    2013-04-01

    With the increased utilization of ensemble forecasts in weather and hydrologic applications, there is a need to verify their benefit over less expensive deterministic forecasts. One such potential benefit of ensemble systems is their capacity to forecast their own forecast error through the ensemble spread-error relationship. The paper begins by revisiting the limitations of the Pearson correlation alone in assessing this relationship. Next, we introduce two new metrics to consider in assessing the utility an ensemble's varying dispersion. We argue there are two aspects of an ensemble's dispersion that should be assessed. First, and perhaps more fundamentally: is there enough variability in the ensembles dispersion to justify the maintenance of an expensive ensemble prediction system (EPS), irrespective of whether the EPS is well-calibrated or not? To diagnose this, the factor that controls the theoretical upper limit of the spread-error correlation can be useful. Secondly, does the variable dispersion of an ensemble relate to variable expectation of forecast error? Representing the spread-error correlation in relation to its theoretical limit can provide a simple diagnostic of this attribute. A context for these concepts is provided by assessing two operational ensembles: 30-member Western US temperature forecasts for the U.S. Army Test and Evaluation Command and 51-member Brahmaputra River flow forecasts of the Climate Forecast and Applications Project for Bangladesh. Both of these systems utilize a postprocessing technique based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. In addition, the methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. We will describe both ensemble systems briefly, review the steps used to calibrate the ensemble forecast, and present

  3. Quantifying errors without random sampling.

    PubMed

    Phillips, Carl V; LaPole, Luwanna M

    2003-06-12

    All quantifications of mortality, morbidity, and other health measures involve numerous sources of error. The routine quantification of random sampling error makes it easy to forget that other sources of error can and should be quantified. When a quantification does not involve sampling, error is almost never quantified and results are often reported in ways that dramatically overstate their precision. We argue that the precision implicit in typical reporting is problematic and sketch methods for quantifying the various sources of error, building up from simple examples that can be solved analytically to more complex cases. There are straightforward ways to partially quantify the uncertainty surrounding a parameter that is not characterized by random sampling, such as limiting reported significant figures. We present simple methods for doing such quantifications, and for incorporating them into calculations. More complicated methods become necessary when multiple sources of uncertainty must be combined. We demonstrate that Monte Carlo simulation, using available software, can estimate the uncertainty resulting from complicated calculations with many sources of uncertainty. We apply the method to the current estimate of the annual incidence of foodborne illness in the United States. Quantifying uncertainty from systematic errors is practical. Reporting this uncertainty would more honestly represent study results, help show the probability that estimated values fall within some critical range, and facilitate better targeting of further research.

  4. Eigenvector method for umbrella sampling enables error analysis

    PubMed Central

    Thiede, Erik H.; Van Koten, Brian; Weare, Jonathan; Dinner, Aaron R.

    2016-01-01

    Umbrella sampling efficiently yields equilibrium averages that depend on exploring rare states of a model by biasing simulations to windows of coordinate values and then combining the resulting data with physical weighting. Here, we introduce a mathematical framework that casts the step of combining the data as an eigenproblem. The advantage to this approach is that it facilitates error analysis. We discuss how the error scales with the number of windows. Then, we derive a central limit theorem for averages that are obtained from umbrella sampling. The central limit theorem suggests an estimator of the error contributions from individual windows, and we develop a simple and computationally inexpensive procedure for implementing it. We demonstrate this estimator for simulations of the alanine dipeptide and show that it emphasizes low free energy pathways between stable states in comparison to existing approaches for assessing error contributions. Our work suggests the possibility of using the estimator and, more generally, the eigenvector method for umbrella sampling to guide adaptation of the simulation parameters to accelerate convergence. PMID:27586912

  5. Extending Moore's Law via Computationally Error Tolerant Computing.

    DOE PAGES

    Deng, Bobin; Srikanth, Sriseshan; Hein, Eric R.; ...

    2018-03-01

    Dennard scaling has ended. Lowering the voltage supply (V dd) to sub-volt levels causes intermittent losses in signal integrity, rendering further scaling (down) no longer acceptable as a means to lower the power required by a processor core. However, it is possible to correct the occasional errors caused due to lower V dd in an efficient manner and effectively lower power. By deploying the right amount and kind of redundancy, we can strike a balance between overhead incurred in achieving reliability and energy savings realized by permitting lower V dd. One promising approach is the Redundant Residue Number System (RRNS)more » representation. Unlike other error correcting codes, RRNS has the important property of being closed under addition, subtraction and multiplication, thus enabling computational error correction at a fraction of an overhead compared to conventional approaches. We use the RRNS scheme to design a Computationally-Redundant, Energy-Efficient core, including the microarchitecture, Instruction Set Architecture (ISA) and RRNS centered algorithms. Finally, from the simulation results, this RRNS system can reduce the energy-delay-product by about 3× for multiplication intensive workloads and by about 2× in general, when compared to a non-error-correcting binary core.« less

  6. Extending Moore's Law via Computationally Error Tolerant Computing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Bobin; Srikanth, Sriseshan; Hein, Eric R.

    Dennard scaling has ended. Lowering the voltage supply (V dd) to sub-volt levels causes intermittent losses in signal integrity, rendering further scaling (down) no longer acceptable as a means to lower the power required by a processor core. However, it is possible to correct the occasional errors caused due to lower V dd in an efficient manner and effectively lower power. By deploying the right amount and kind of redundancy, we can strike a balance between overhead incurred in achieving reliability and energy savings realized by permitting lower V dd. One promising approach is the Redundant Residue Number System (RRNS)more » representation. Unlike other error correcting codes, RRNS has the important property of being closed under addition, subtraction and multiplication, thus enabling computational error correction at a fraction of an overhead compared to conventional approaches. We use the RRNS scheme to design a Computationally-Redundant, Energy-Efficient core, including the microarchitecture, Instruction Set Architecture (ISA) and RRNS centered algorithms. Finally, from the simulation results, this RRNS system can reduce the energy-delay-product by about 3× for multiplication intensive workloads and by about 2× in general, when compared to a non-error-correcting binary core.« less

  7. Type I and Type II error concerns in fMRI research: re-balancing the scale

    PubMed Central

    Cunningham, William A.

    2009-01-01

    Statistical thresholding (i.e. P-values) in fMRI research has become increasingly conservative over the past decade in an attempt to diminish Type I errors (i.e. false alarms) to a level traditionally allowed in behavioral science research. In this article, we examine the unintended negative consequences of this single-minded devotion to Type I errors: increased Type II errors (i.e. missing true effects), a bias toward studying large rather than small effects, a bias toward observing sensory and motor processes rather than complex cognitive and affective processes and deficient meta-analyses. Power analyses indicate that the reductions in acceptable P-values over time are producing dramatic increases in the Type II error rate. Moreover, the push for a mapwide false discovery rate (FDR) of 0.05 is based on the assumption that this is the FDR in most behavioral research; however, this is an inaccurate assessment of the conventions in actual behavioral research. We report simulations demonstrating that combined intensity and cluster size thresholds such as P < 0.005 with a 10 voxel extent produce a desirable balance between Types I and II error rates. This joint threshold produces high but acceptable Type II error rates and produces a FDR that is comparable to the effective FDR in typical behavioral science articles (while a 20 voxel extent threshold produces an actual FDR of 0.05 with relatively common imaging parameters). We recommend a greater focus on replication and meta-analysis rather than emphasizing single studies as the unit of analysis for establishing scientific truth. From this perspective, Type I errors are self-erasing because they will not replicate, thus allowing for more lenient thresholding to avoid Type II errors. PMID:20035017

  8. A Posteriori Correction of Forecast and Observation Error Variances

    NASA Technical Reports Server (NTRS)

    Rukhovets, Leonid

    2005-01-01

    Proposed method of total observation and forecast error variance correction is based on the assumption about normal distribution of "observed-minus-forecast" residuals (O-F), where O is an observed value and F is usually a short-term model forecast. This assumption can be accepted for several types of observations (except humidity) which are not grossly in error. Degree of nearness to normal distribution can be estimated by the symmetry or skewness (luck of symmetry) a(sub 3) = mu(sub 3)/sigma(sup 3) and kurtosis a(sub 4) = mu(sub 4)/sigma(sup 4) - 3 Here mu(sub i) = i-order moment, sigma is a standard deviation. It is well known that for normal distribution a(sub 3) = a(sub 4) = 0.

  9. Meanings and implications of acceptability judgements for wilderness use impacts

    Treesearch

    Amy F. Hoss; Mark W. Brunson

    2000-01-01

    While the concept of “acceptability” is central to the Limits of Acceptable Change (LAC) framework, there is inadequate understanding of how “acceptability” is judged and how unacceptable conditions affect visitor experiences. To address this knowledge gap, visitors to nine wilderness areas were interviewed. Judgments of social and environmental conditions fell into...

  10. Error Sources in Proccessing LIDAR Based Bridge Inspection

    NASA Astrophysics Data System (ADS)

    Bian, H.; Chen, S. E.; Liu, W.

    2017-09-01

    Bridge inspection is a critical task in infrastructure management and is facing unprecedented challenges after a series of bridge failures. The prevailing visual inspection was insufficient in providing reliable and quantitative bridge information although a systematic quality management framework was built to ensure visual bridge inspection data quality to minimize errors during the inspection process. The LiDAR based remote sensing is recommended as an effective tool in overcoming some of the disadvantages of visual inspection. In order to evaluate the potential of applying this technology in bridge inspection, some of the error sources in LiDAR based bridge inspection are analysed. The scanning angle variance in field data collection and the different algorithm design in scanning data processing are the found factors that will introduce errors into inspection results. Besides studying the errors sources, advanced considerations should be placed on improving the inspection data quality, and statistical analysis might be employed to evaluate inspection operation process that contains a series of uncertain factors in the future. Overall, the development of a reliable bridge inspection system requires not only the improvement of data processing algorithms, but also systematic considerations to mitigate possible errors in the entire inspection workflow. If LiDAR or some other technology can be accepted as a supplement for visual inspection, the current quality management framework will be modified or redesigned, and this would be as urgent as the refine of inspection techniques.

  11. 7 CFR 42.133 - Portion of production acceptance criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CONTAINER REGULATIONS STANDARDS FOR CONDITION OF FOOD CONTAINERS On-Line Sampling and Inspection Procedures... determined by comparing the calculated CuSum value with the acceptance limit (“L”) for the specified AQL. (b) A portion of production is acceptable if the CuSum value, calculated from the subgroup representing...

  12. Error begat error: design error analysis and prevention in social infrastructure projects.

    PubMed

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  13. Numerical Error Estimation with UQ

    NASA Astrophysics Data System (ADS)

    Ackmann, Jan; Korn, Peter; Marotzke, Jochem

    2014-05-01

    Ocean models are still in need of means to quantify model errors, which are inevitably made when running numerical experiments. The total model error can formally be decomposed into two parts, the formulation error and the discretization error. The formulation error arises from the continuous formulation of the model not fully describing the studied physical process. The discretization error arises from having to solve a discretized model instead of the continuously formulated model. Our work on error estimation is concerned with the discretization error. Given a solution of a discretized model, our general problem statement is to find a way to quantify the uncertainties due to discretization in physical quantities of interest (diagnostics), which are frequently used in Geophysical Fluid Dynamics. The approach we use to tackle this problem is called the "Goal Error Ensemble method". The basic idea of the Goal Error Ensemble method is that errors in diagnostics can be translated into a weighted sum of local model errors, which makes it conceptually based on the Dual Weighted Residual method from Computational Fluid Dynamics. In contrast to the Dual Weighted Residual method these local model errors are not considered deterministically but interpreted as local model uncertainty and described stochastically by a random process. The parameters for the random process are tuned with high-resolution near-initial model information. However, the original Goal Error Ensemble method, introduced in [1], was successfully evaluated only in the case of inviscid flows without lateral boundaries in a shallow-water framework and is hence only of limited use in a numerical ocean model. Our work consists in extending the method to bounded, viscous flows in a shallow-water framework. As our numerical model, we use the ICON-Shallow-Water model. In viscous flows our high-resolution information is dependent on the viscosity parameter, making our uncertainty measures viscosity-dependent. We

  14. Building sustainable communities using sense of place indicators in three Hudson River Valley, NY, tourism destinations: An application of the limits of acceptable change process

    Treesearch

    Laura E. Sullivan; Rudy M. Schuster; Diane M. Kuehn; Cheryl S. Doble; Duarte Morais

    2010-01-01

    This study explores whether measures of residents' sense of place can act as indicators in the Limits of Acceptable Change (LAC) process to facilitate tourism planning and management. Data on community attributes valued by residents and the associated values and meanings were collected through focus groups with 27 residents in three Hudson River Valley, New York,...

  15. SU-F-T-383: Robustness for Patient Setup Error in Total Body Irradiation Using Volumetric Modulated Arc Therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y; National Cancer Center, Kashiwa, Chiba; Tachibana, H

    Purpose: Total body irradiation (TBI) and total marrow irradiation (TMI) using Tomotherapy have been reported. A gantry-based linear accelerator uses one isocenter during one rotational irradiation. Thus, 3–5 isocenter points should be used for a whole plan of TBI-VMAT during smoothing out the junctional dose distribution. IGRT provides accurate and precise patient setup for the multiple junctions, however it is evident that some setup errors should occur and affect accuracy of dose distribution in the area. In this study, we evaluated the robustness for patient’s setup error in VMAT-TBI. Methods: VMAT-TBI Planning was performed in an adult whole-body human phantommore » using Eclipse. Eight full arcs with four isocenter points using 6MV-X were used to cover the entire whole body. Dose distribution was optimized using two structures of patient’s body as PTV and lung. The two arcs were shared with one isocenter and the two arcs were 5 cm-overlapped with the other two arcs. Point absolute dose using ionization-chamber and planer relative dose distribution using film in the junctional regions were performed using water-equivalent slab phantom. In the measurements, several setup errors of (+5∼−5mm) were added. Results: The result of the chamber measurement shows the deviations were within ±3% when the setup errors were within ±3 mm. In the planer evaluation, the pass ratio of gamma evaluation (3%/2mm) shows more than 90% if the errors within ±3 mm. However, there were hot/cold areas in the edge of the junction even with acceptable gamma pass ratio. 5 mm setup error caused larger hot and cold areas and the dosimetric acceptable areas were decreased in the overlapped areas. Conclusion: It can be clinically acceptable for VMAT-TBI when patient setup error is within ±3mm. Averaging effects from patient random error would be helpful to blur the hot/cold area in the junction.« less

  16. Modeling error analysis of stationary linear discrete-time filters

    NASA Technical Reports Server (NTRS)

    Patel, R.; Toda, M.

    1977-01-01

    The performance of Kalman-type, linear, discrete-time filters in the presence of modeling errors is considered. The discussion is limited to stationary performance, and bounds are obtained for the performance index, the mean-squared error of estimates for suboptimal and optimal (Kalman) filters. The computation of these bounds requires information on only the model matrices and the range of errors for these matrices. Consequently, a design can easily compare the performance of a suboptimal filter with that of the optimal filter, when only the range of errors in the elements of the model matrices is available.

  17. Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

    PubMed

    Samoli, Evangelia; Butland, Barbara K

    2017-12-01

    Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

  18. Impact of Non-Gaussian Error Volumes on Conjunction Assessment Risk Analysis

    NASA Technical Reports Server (NTRS)

    Ghrist, Richard W.; Plakalovic, Dragan

    2012-01-01

    An understanding of how an initially Gaussian error volume becomes non-Gaussian over time is an important consideration for space-vehicle conjunction assessment. Traditional assumptions applied to the error volume artificially suppress the true non-Gaussian nature of the space-vehicle position uncertainties. For typical conjunction assessment objects, representation of the error volume by a state error covariance matrix in a Cartesian reference frame is a more significant limitation than is the assumption of linearized dynamics for propagating the error volume. In this study, the impact of each assumption is examined and isolated for each point in the volume. Limitations arising from representing the error volume in a Cartesian reference frame is corrected by employing a Monte Carlo approach to probability of collision (Pc), using equinoctial samples from the Cartesian position covariance at the time of closest approach (TCA) between the pair of space objects. A set of actual, higher risk (Pc >= 10 (exp -4)+) conjunction events in various low-Earth orbits using Monte Carlo methods are analyzed. The impact of non-Gaussian error volumes on Pc for these cases is minimal, even when the deviation from a Gaussian distribution is significant.

  19. LiDAR error estimation with WAsP engineering

    NASA Astrophysics Data System (ADS)

    Bingöl, F.; Mann, J.; Foussekis, D.

    2008-05-01

    The LiDAR measurements, vertical wind profile in any height between 10 to 150m, are based on assumption that the measured wind is a product of a homogenous wind. In reality there are many factors affecting the wind on each measurement point which the terrain plays the main role. To model LiDAR measurements and predict possible error in different wind directions for a certain terrain we have analyzed two experiment data sets from Greece. In both sites LiDAR and met, mast data have been collected and the same conditions are simulated with RisØ/DTU software, WAsP Engineering 2.0. Finally measurement data is compared with the model results. The model results are acceptable and very close for one site while the more complex one is returning higher errors at higher positions and in some wind directions.

  20. A systematic comparison of error correction enzymes by next-generation sequencing

    DOE PAGES

    Lubock, Nathan B.; Zhang, Di; Sidore, Angus M.; ...

    2017-08-01

    Gene synthesis, the process of assembling genelength fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and subsequent assembly. Enzymatic error correction methods are cost-effective means to ameliorate errors in gene synthesis. Previous analyses of these methods relied on cloning and Sanger sequencing to evaluate their efficiencies, limiting quantitative assessment. Here, we develop a method to quantify errors in synthetic DNA by next-generation sequencing. We analyzed errors in model gene assemblies and systematically compared sixmore » different error correction enzymes across 11 conditions. We find that ErrASE and T7 Endonuclease I are the most effective at decreasing average error rates (up to 5.8-fold relative to the input), whereas MutS is the best for increasing the number of perfect assemblies (up to 25.2-fold). We are able to quantify differential specificities such as ErrASE preferentially corrects C/G transversions whereas T7 Endonuclease I preferentially corrects A/T transversions. More generally, this experimental and computational pipeline is a fast, scalable and extensible way to analyze errors in gene assemblies, to profile error correction methods, and to benchmark DNA synthesis methods.« less

  1. A systematic comparison of error correction enzymes by next-generation sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubock, Nathan B.; Zhang, Di; Sidore, Angus M.

    Gene synthesis, the process of assembling genelength fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and subsequent assembly. Enzymatic error correction methods are cost-effective means to ameliorate errors in gene synthesis. Previous analyses of these methods relied on cloning and Sanger sequencing to evaluate their efficiencies, limiting quantitative assessment. Here, we develop a method to quantify errors in synthetic DNA by next-generation sequencing. We analyzed errors in model gene assemblies and systematically compared sixmore » different error correction enzymes across 11 conditions. We find that ErrASE and T7 Endonuclease I are the most effective at decreasing average error rates (up to 5.8-fold relative to the input), whereas MutS is the best for increasing the number of perfect assemblies (up to 25.2-fold). We are able to quantify differential specificities such as ErrASE preferentially corrects C/G transversions whereas T7 Endonuclease I preferentially corrects A/T transversions. More generally, this experimental and computational pipeline is a fast, scalable and extensible way to analyze errors in gene assemblies, to profile error correction methods, and to benchmark DNA synthesis methods.« less

  2. Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs

    NASA Astrophysics Data System (ADS)

    Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken

    2015-09-01

    To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.

  3. Development of an errorable car-following driver model

    NASA Astrophysics Data System (ADS)

    Yang, H.-H.; Peng, H.

    2010-06-01

    An errorable car-following driver model is presented in this paper. An errorable driver model is one that emulates human driver's functions and can generate both nominal (error-free), as well as devious (with error) behaviours. This model was developed for evaluation and design of active safety systems. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. The stochastic car-following behaviour was first analysed and modelled as a random process. Three error-inducing behaviours were then introduced. First, human perceptual limitation was studied and implemented. Distraction due to non-driving tasks was then identified based on the statistical analysis of the driving data. Finally, time delay of human drivers was estimated through a recursive least-square identification process. By including these three error-inducing behaviours, rear-end collisions with the lead vehicle could occur. The simulated crash rate was found to be similar but somewhat higher than that reported in traffic statistics.

  4. Peeling Away Timing Error in NetFlow Data

    NASA Astrophysics Data System (ADS)

    Trammell, Brian; Tellenbach, Bernhard; Schatzmann, Dominik; Burkhart, Martin

    In this paper, we characterize, quantify, and correct timing errors introduced into network flow data by collection and export via Cisco NetFlow version 9. We find that while some of these sources of error (clock skew, export delay) are generally implementation-dependent and known in the literature, there is an additional cyclic error of up to one second that is inherent to the design of the export protocol. We present a method for correcting this cyclic error in the presence of clock skew and export delay. In an evaluation using traffic with known timing collected from a national-scale network, we show that this method can successfully correct the cyclic error. However, there can also be other implementation-specific errors for which insufficient information remains for correction. On the routers we have deployed in our network, this limits the accuracy to about 70ms, reinforcing the point that implementation matters when conducting research on network measurement data.

  5. Reduction in Hospital-Wide Clinical Laboratory Specimen Identification Errors following Process Interventions: A 10-Year Retrospective Observational Study

    PubMed Central

    Ning, Hsiao-Chen; Lin, Chia-Ni; Chiu, Daniel Tsun-Yee; Chang, Yung-Ta; Wen, Chiao-Ni; Peng, Shu-Yu; Chu, Tsung-Lan; Yu, Hsin-Ming; Wu, Tsu-Lan

    2016-01-01

    Background Accurate patient identification and specimen labeling at the time of collection are crucial steps in the prevention of medical errors, thereby improving patient safety. Methods All patient specimen identification errors that occurred in the outpatient department (OPD), emergency department (ED), and inpatient department (IPD) of a 3,800-bed academic medical center in Taiwan were documented and analyzed retrospectively from 2005 to 2014. To reduce such errors, the following series of strategies were implemented: a restrictive specimen acceptance policy for the ED and IPD in 2006; a computer-assisted barcode positive patient identification system for the ED and IPD in 2007 and 2010, and automated sample labeling combined with electronic identification systems introduced to the OPD in 2009. Results Of the 2000345 specimens collected in 2005, 1023 (0.0511%) were identified as having patient identification errors, compared with 58 errors (0.0015%) among 3761238 specimens collected in 2014, after serial interventions; this represents a 97% relative reduction. The total number (rate) of institutional identification errors contributed from the ED, IPD, and OPD over a 10-year period were 423 (0.1058%), 556 (0.0587%), and 44 (0.0067%) errors before the interventions, and 3 (0.0007%), 52 (0.0045%) and 3 (0.0001%) after interventions, representing relative 99%, 92% and 98% reductions, respectively. Conclusions Accurate patient identification is a challenge of patient safety in different health settings. The data collected in our study indicate that a restrictive specimen acceptance policy, computer-generated positive identification systems, and interdisciplinary cooperation can significantly reduce patient identification errors. PMID:27494020

  6. Designing to Control Flight Crew Errors

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Willshire, Kelli F.

    1997-01-01

    It is widely accepted that human error is a major contributing factor in aircraft accidents. There has been a significant amount of research in why these errors occurred, and many reports state that the design of flight deck can actually dispose humans to err. This research has led to the call for changes in design according to human factors and human-centered principles. The National Aeronautics and Space Administration's (NASA) Langley Research Center has initiated an effort to design a human-centered flight deck from a clean slate (i.e., without constraints of existing designs.) The effort will be based on recent research in human-centered design philosophy and mission management categories. This design will match the human's model of the mission and function of the aircraft to reduce unnatural or non-intuitive interfaces. The product of this effort will be a flight deck design description, including training and procedures, and a cross reference or paper trail back to design hypotheses, and an evaluation of the design. The present paper will discuss the philosophy, process, and status of this design effort.

  7. Simulations in site error estimation for direction finders

    NASA Astrophysics Data System (ADS)

    López, Raúl E.; Passi, Ranjit M.

    1991-08-01

    The performance of an algorithm for the recovery of site-specific errors of direction finder (DF) networks is tested under controlled simulated conditions. The simulations show that the algorithm has some inherent shortcomings for the recovery of site errors from the measured azimuth data. These limitations are fundamental to the problem of site error estimation using azimuth information. Several ways for resolving or ameliorating these basic complications are tested by means of simulations. From these it appears that for the effective implementation of the site error determination algorithm, one should design the networks with at least four DFs, improve the alignment of the antennas, and increase the gain of the DFs as much as it is compatible with other operational requirements. The use of a nonzero initial estimate of the site errors when working with data from networks of four or more DFs also improves the accuracy of the site error recovery. Even for networks of three DFs, reasonable site error corrections could be obtained if the antennas could be well aligned.

  8. Geolocation error tracking of ZY-3 three line cameras

    NASA Astrophysics Data System (ADS)

    Pan, Hongbo

    2017-01-01

    The high-accuracy geolocation of high-resolution satellite images (HRSIs) is a key issue for mapping and integrating multi-temporal, multi-sensor images. In this manuscript, we propose a new geometric frame for analysing the geometric error of a stereo HRSI, in which the geolocation error can be divided into three parts: the epipolar direction, cross base direction, and height direction. With this frame, we proved that the height error of three line cameras (TLCs) is independent of nadir images, and that the terrain effect has a limited impact on the geolocation errors. For ZY-3 error sources, the drift error in both the pitch and roll angle and its influence on the geolocation accuracy are analysed. Epipolar and common tie-point constraints are proposed to study the bundle adjustment of HRSIs. Epipolar constraints explain that the relative orientation can reduce the number of compensation parameters in the cross base direction and have a limited impact on the height accuracy. The common tie points adjust the pitch-angle errors to be consistent with each other for TLCs. Therefore, free-net bundle adjustment of a single strip cannot significantly improve the geolocation accuracy. Furthermore, the epipolar and common tie-point constraints cause the error to propagate into the adjacent strip when multiple strips are involved in the bundle adjustment, which results in the same attitude uncertainty throughout the whole block. Two adjacent strips-Orbit 305 and Orbit 381, covering 7 and 12 standard scenes separately-and 308 ground control points (GCPs) were used for the experiments. The experiments validate the aforementioned theory. The planimetric and height root mean square errors were 2.09 and 1.28 m, respectively, when two GCPs were settled at the beginning and end of the block.

  9. Structure and dating errors in the geologic time scale and periodicity in mass extinctions

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.

  10. Errors, error detection, error correction and hippocampal-region damage: data and theories.

    PubMed

    MacKay, Donald G; Johnson, Laura W

    2013-11-01

    This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Error-correcting codes on scale-free networks

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hoon; Ko, Young-Jo

    2004-06-01

    We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.

  12. Complications: acknowledging, managing, and coping with human error.

    PubMed

    Helo, Sevann; Moulton, Carol-Anne E

    2017-08-01

    Errors are inherent in medicine due to the imperfectness of human nature. Health care providers may have a difficult time accepting their fallibility, acknowledging mistakes, and disclosing errors. Fear of litigation, shame, blame, and concern about reputation are just some of the barriers preventing physicians from being more candid with their patients, despite the supporting body of evidence that patients cite poor communication and lack of transparency as primary drivers to file a lawsuit in the wake of a medical complication. Proper error disclosure includes a timely explanation of what happened, who was involved, why the error occurred, and how it will be prevented in the future. Medical mistakes afford the opportunity for individuals and institutions to be candid about their weaknesses while improving patient care processes. When a physician takes the Hippocratic Oath they take on a tremendous sense of responsibility for the care of their patients, and often bear the burden of their mistakes in isolation. Physicians may struggle with guilt, shame, and a crisis of confidence, which may thwart efforts to identify areas for improvement that can lead to meaningful change. Coping strategies for providers include discussing the event with others, seeking professional counseling, and implementing quality improvement projects. Physicians and health care organizations need to find adaptive ways to deal with complications that will benefit patients, providers, and their institutions.

  13. Complications: acknowledging, managing, and coping with human error

    PubMed Central

    Moulton, Carol-Anne E.

    2017-01-01

    Errors are inherent in medicine due to the imperfectness of human nature. Health care providers may have a difficult time accepting their fallibility, acknowledging mistakes, and disclosing errors. Fear of litigation, shame, blame, and concern about reputation are just some of the barriers preventing physicians from being more candid with their patients, despite the supporting body of evidence that patients cite poor communication and lack of transparency as primary drivers to file a lawsuit in the wake of a medical complication. Proper error disclosure includes a timely explanation of what happened, who was involved, why the error occurred, and how it will be prevented in the future. Medical mistakes afford the opportunity for individuals and institutions to be candid about their weaknesses while improving patient care processes. When a physician takes the Hippocratic Oath they take on a tremendous sense of responsibility for the care of their patients, and often bear the burden of their mistakes in isolation. Physicians may struggle with guilt, shame, and a crisis of confidence, which may thwart efforts to identify areas for improvement that can lead to meaningful change. Coping strategies for providers include discussing the event with others, seeking professional counseling, and implementing quality improvement projects. Physicians and health care organizations need to find adaptive ways to deal with complications that will benefit patients, providers, and their institutions. PMID:28904910

  14. Realtime mitigation of GPS SA errors using Loran-C

    NASA Technical Reports Server (NTRS)

    Braasch, Soo Y.

    1994-01-01

    The hybrid use of Loran-C with the Global Positioning System (GPS) was shown capable of providing a sole-means of enroute air radionavigation. By allowing pilots to fly direct to their destinations, use of this system is resulting in significant time savings and therefore fuel savings as well. However, a major error source limiting the accuracy of GPS is the intentional degradation of the GPS signal known as Selective Availability (SA). SA-induced position errors are highly correlated and far exceed all other error sources (horizontal position error: 100 meters, 95 percent). Realtime mitigation of SA errors from the position solution is highly desirable. How that can be achieved is discussed. The stability of Loran-C signals is exploited to reduce SA errors. The theory behind this technique is discussed and results using bench and flight data are given.

  15. Medication errors: definitions and classification

    PubMed Central

    Aronson, Jeffrey K

    2009-01-01

    To understand medication errors and to identify preventive strategies, we need to classify them and define the terms that describe them. The four main approaches to defining technical terms consider etymology, usage, previous definitions, and the Ramsey–Lewis method (based on an understanding of theory and practice). A medication error is ‘a failure in the treatment process that leads to, or has the potential to lead to, harm to the patient’. Prescribing faults, a subset of medication errors, should be distinguished from prescription errors. A prescribing fault is ‘a failure in the prescribing [decision-making] process that leads to, or has the potential to lead to, harm to the patient’. The converse of this, ‘balanced prescribing’ is ‘the use of a medicine that is appropriate to the patient's condition and, within the limits created by the uncertainty that attends therapeutic decisions, in a dosage regimen that optimizes the balance of benefit to harm’. This excludes all forms of prescribing faults, such as irrational, inappropriate, and ineffective prescribing, underprescribing and overprescribing. A prescription error is ‘a failure in the prescription writing process that results in a wrong instruction about one or more of the normal features of a prescription’. The ‘normal features’ include the identity of the recipient, the identity of the drug, the formulation, dose, route, timing, frequency, and duration of administration. Medication errors can be classified, invoking psychological theory, as knowledge-based mistakes, rule-based mistakes, action-based slips, and memory-based lapses. This classification informs preventive strategies. PMID:19594526

  16. The grasping side of post-error slowing.

    PubMed

    Ceccarini, Francesco; Castiello, Umberto

    2018-06-07

    A common finding across many speeded reaction time (RT) tasks is that people tend to respond more slowly after making an error. This phenomenon, known as post-error slowing (PES), has been traditionally hypothesized to reflect a strategic increase in response caution, aimed at preventing the occurrence of new errors. However, this interpretation of PES has been challenged on multiple fronts. Firstly, recent investigations have suggested that errors may produce a decrement in performance accuracy and that PES might occur because error processing has a detrimental effect on subsequent information processing. Secondly, previous research has been criticized because of the limited ecological validity of speeded RT tasks. In the present study, we investigated error-reactivity in the context of goal-directed actions, in order to examine the extent to which PES effects impact on realistic and complex movements. Specifically, we investigated the effect of errors on the reach to grasp movement (Experiment 1). In addition to RTs, we performed a kinematical analysis in order to explore the underlying reorganization of the movements after an error. The results of the present study showed that error reactivity strategically influences the grasping component of the action, whereas the reaching component appears to be impermeable to PES. The resistance of the reaching component to PES was confirmed in a second 'only reaching' experiment (Experiment 2). These finding supports the hypothesis that error reactivity is a flexible process whose effects on behavior also depend on the motor components involved in the action. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Preventable Medical Errors Driven Modeling of Medical Best Practice Guidance Systems.

    PubMed

    Ou, Andrew Y-Z; Jiang, Yu; Wu, Po-Liang; Sha, Lui; Berlin, Richard B

    2017-01-01

    In a medical environment such as Intensive Care Unit, there are many possible reasons to cause errors, and one important reason is the effect of human intellectual tasks. When designing an interactive healthcare system such as medical Cyber-Physical-Human Systems (CPHSystems), it is important to consider whether the system design can mitigate the errors caused by these tasks or not. In this paper, we first introduce five categories of generic intellectual tasks of humans, where tasks among each category may lead to potential medical errors. Then, we present an integrated modeling framework to model a medical CPHSystem and use UPPAAL as the foundation to integrate and verify the whole medical CPHSystem design models. With a verified and comprehensive model capturing the human intellectual tasks effects, we can design a more accurate and acceptable system. We use a cardiac arrest resuscitation guidance and navigation system (CAR-GNSystem) for such medical CPHSystem modeling. Experimental results show that the CPHSystem models help determine system design flaws and can mitigate the potential medical errors caused by the human intellectual tasks.

  18. 10 CFR 2.643 - Acceptance and docketing of application for limited work authorization.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 2.101(a)(9) is incomplete and not acceptable for processing, the Director of New Reactors or the Director of Nuclear Reactor Regulation will inform the applicant of this determination and the respects in... authorization. 2.643 Section 2.643 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING...

  19. A Comprehensive Radial Velocity Error Budget for Next Generation Doppler Spectrometers

    NASA Technical Reports Server (NTRS)

    Halverson, Samuel; Ryan, Terrien; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefansson, Guomundur Kari; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; hide

    2016-01-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.

  20. On the Limitations of Variational Bias Correction

    NASA Technical Reports Server (NTRS)

    Moradi, Isaac; Mccarty, Will; Gelaro, Ronald

    2018-01-01

    Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.

  1. Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Li, Ying

    2017-12-01

    Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.

  2. How psychotherapists handle treatment errors – an ethical analysis

    PubMed Central

    2013-01-01

    Background Dealing with errors in psychotherapy is challenging, both ethically and practically. There is almost no empirical research on this topic. We aimed (1) to explore psychotherapists’ self-reported ways of dealing with an error made by themselves or by colleagues, and (2) to reconstruct their reasoning according to the two principle-based ethical approaches that are dominant in the ethics discourse of psychotherapy, Beauchamp & Childress (B&C) and Lindsay et al. (L). Methods We conducted 30 semi-structured interviews with 30 psychotherapists (physicians and non-physicians) and analysed the transcripts using qualitative content analysis. Answers were deductively categorized according to the two principle-based ethical approaches. Results Most psychotherapists reported that they preferred to an disclose error to the patient. They justified this by spontaneous intuitions and common values in psychotherapy, rarely using explicit ethical reasoning. The answers were attributed to the following categories with descending frequency: 1. Respect for patient autonomy (B&C; L), 2. Non-maleficence (B&C) and Responsibility (L), 3. Integrity (L), 4. Competence (L) and Beneficence (B&C). Conclusions Psychotherapists need specific ethical and communication training to complement and articulate their moral intuitions as a support when disclosing their errors to the patients. Principle-based ethical approaches seem to be useful for clarifying the reasons for disclosure. Further research should help to identify the most effective and acceptable ways of error disclosure in psychotherapy. PMID:24321503

  3. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes

    NASA Astrophysics Data System (ADS)

    Marvian, Milad; Lidar, Daniel A.

    2017-01-01

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  4. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes.

    PubMed

    Marvian, Milad; Lidar, Daniel A

    2017-01-20

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  5. Fusing metabolomics data sets with heterogeneous measurement errors

    PubMed Central

    Waaijenborg, Sandra; Korobko, Oksana; Willems van Dijk, Ko; Lips, Mirjam; Hankemeier, Thomas; Wilderjans, Tom F.; Smilde, Age K.

    2018-01-01

    Combining different metabolomics platforms can contribute significantly to the discovery of complementary processes expressed under different conditions. However, analysing the fused data might be hampered by the difference in their quality. In metabolomics data, one often observes that measurement errors increase with increasing measurement level and that different platforms have different measurement error variance. In this paper we compare three different approaches to correct for the measurement error heterogeneity, by transformation of the raw data, by weighted filtering before modelling and by a modelling approach using a weighted sum of residuals. For an illustration of these different approaches we analyse data from healthy obese and diabetic obese individuals, obtained from two metabolomics platforms. Concluding, the filtering and modelling approaches that both estimate a model of the measurement error did not outperform the data transformation approaches for this application. This is probably due to the limited difference in measurement error and the fact that estimation of measurement error models is unstable due to the small number of repeats available. A transformation of the data improves the classification of the two groups. PMID:29698490

  6. Mismeasurement and the resonance of strong confounders: correlated errors.

    PubMed

    Marshall, J R; Hastrup, J L; Ross, J S

    1999-07-01

    Confounding in epidemiology, and the limits of standard methods of control for an imperfectly measured confounder, have been understood for some time. However, most treatments of this problem are based on the assumption that errors of measurement in confounding and confounded variables are independent. This paper considers the situation in which a strong risk factor (confounder) and an inconsequential but suspected risk factor (confounded) are each measured with errors that are correlated; the situation appears especially likely to occur in the field of nutritional epidemiology. Error correlation appears to add little to measurement error as a source of bias in estimating the impact of a strong risk factor: it can add to, diminish, or reverse the bias induced by measurement error in estimating the impact of the inconsequential risk factor. Correlation of measurement errors can add to the difficulty involved in evaluating structures in which confounding and measurement error are present. In its presence, observed correlations among risk factors can be greater than, less than, or even opposite to the true correlations. Interpretation of multivariate epidemiologic structures in which confounding is likely requires evaluation of measurement error structures, including correlations among measurement errors.

  7. Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains.

    PubMed

    Dettmer, Jan; Dosso, Stan E

    2012-10-01

    This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.

  8. Measurement errors in voice-key naming latency for Hiragana.

    PubMed

    Yamada, Jun; Tamaoka, Katsuo

    2003-12-01

    This study makes explicit the limitations and possibilities of voice-key naming latency research on single hiragana symbols (a Japanese syllabic script) by examining three sets of voice-key naming data against Sakuma, Fushimi, and Tatsumi's 1997 speech-analyzer voice-waveform data. Analysis showed that voice-key measurement errors can be substantial in standard procedures as they may conceal the true effects of significant variables involved in hiragana-naming behavior. While one can avoid voice-key measurement errors to some extent by applying Sakuma, et al.'s deltas and by excluding initial phonemes which induce measurement errors, such errors may be ignored when test items are words and other higher-level linguistic materials.

  9. Reversal of photon-scattering errors in atomic qubits.

    PubMed

    Akerman, N; Kotler, S; Glickman, Y; Ozeri, R

    2012-09-07

    Spontaneous photon scattering by an atomic qubit is a notable example of environment-induced error and is a fundamental limit to the fidelity of quantum operations. In the scattering process, the qubit loses its distinctive and coherent character owing to its entanglement with the photon. Using a single trapped ion, we show that by utilizing the information carried by the photon, we are able to coherently reverse this process and correct for the scattering error. We further used quantum process tomography to characterize the photon-scattering error and its correction scheme and demonstrate a correction fidelity greater than 85% whenever a photon was measured.

  10. The nearest neighbor and the bayes error rates.

    PubMed

    Loizou, G; Maybank, S J

    1987-02-01

    The (k, l) nearest neighbor method of pattern classification is compared to the Bayes method. If the two acceptance rates are equal then the asymptotic error rates satisfy the inequalities Ek,l + 1 ¿ E*(¿) ¿ Ek,l dE*(¿), where d is a function of k, l, and the number of pattern classes, and ¿ is the reject threshold for the Bayes method. An explicit expression for d is given which is optimal in the sense that for some probability distributions Ek,l and dE* (¿) are equal.

  11. An Introduction to Error Analysis for Quantitative Chemistry

    ERIC Educational Resources Information Center

    Neman, R. L.

    1972-01-01

    Describes two formulas for calculating errors due to instrument limitations which are usually found in gravimetric volumetric analysis and indicates their possible applications to other fields of science. (CC)

  12. FRamework Assessing Notorious Contributing Influences for Error (FRANCIE): Perspective on Taxonomy Development to Support Error Reporting and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lon N. Haney; David I. Gertman

    2003-04-01

    Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human errormore » analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.« less

  13. Unforced errors and error reduction in tennis

    PubMed Central

    Brody, H

    2006-01-01

    Only at the highest level of tennis is the number of winners comparable to the number of unforced errors. As the average player loses many more points due to unforced errors than due to winners by an opponent, if the rate of unforced errors can be reduced, it should lead to an increase in points won. This article shows how players can improve their game by understanding and applying the laws of physics to reduce the number of unforced errors. PMID:16632568

  14. Limited-memory adaptive snapshot selection for proper orthogonal decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxberry, Geoffrey M.; Kostova-Vassilevska, Tanya; Arrighi, Bill

    2015-04-02

    Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory boundingmore » the approximation error in time of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full order model is recovered to within discretization error. The resulting method can be used on supercomputers to generate proper orthogonal decomposition-based reduced order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space.« less

  15. On-board error correction improves IR earth sensor accuracy

    NASA Astrophysics Data System (ADS)

    Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.

    1989-10-01

    Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.

  16. Limited Sampling Strategy for Accurate Prediction of Pharmacokinetics of Saroglitazar: A 3-point Linear Regression Model Development and Successful Prediction of Human Exposure.

    PubMed

    Joshi, Shuchi N; Srinivas, Nuggehally R; Parmar, Deven V

    2018-03-01

    prediction of saroglitazar sulfoxide, showed mean prediction error, mean absolute prediction error, and root mean square error <30% and correlation (r) was at least 0.9339 in the same pool of healthy subjects. A 3-concentration-time points limited sampling model predicts the exposure of saroglitazar (ie, AUC 0-t ) within predefined acceptable bias and imprecision limit. Same model was also used to predict AUC 0-∞ . The same limited sampling model was found to predict the exposure of saroglitazar sulfoxide within predefined criteria. This model can find utility during late-phase clinical development of saroglitazar in the patient population. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.

  17. Human error and the search for blame

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1989-01-01

    Human error is a frequent topic in discussions about risks in using computer systems. A rational analysis of human error leads through the consideration of mistakes to standards that designers use to avoid mistakes that lead to known breakdowns. The irrational side, however, is more interesting. It conditions people to think that breakdowns are inherently wrong and that there is ultimately someone who is responsible. This leads to a search for someone to blame which diverts attention from: learning from the mistakes; seeing the limitations of current engineering methodology; and improving the discourse of design.

  18. Increasing Our Acceptance as Parents of Children with Special Needs

    ERIC Educational Resources Information Center

    Loewenstein, David

    2007-01-01

    Accepting the limitations of a child whose life was supposed to be imbued with endless possibilities requires parents to come to terms with expectations of themselves and the world around them. In this article, the author offers some helpful strategies for fostering acceptance and strengthening family relationships: (1) Remember that parenting is…

  19. Quantification of uncertainty in machining operations for on-machine acceptance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claudet, Andre A.; Tran, Hy D.; Su, Jiann-Chemg

    2008-09-01

    Manufactured parts are designed with acceptance tolerances, i.e. deviations from ideal design conditions, due to unavoidable errors in the manufacturing process. It is necessary to measure and evaluate the manufactured part, compared to the nominal design, to determine whether the part meets design specifications. The scope of this research project is dimensional acceptance of machined parts; specifically, parts machined using numerically controlled (NC, or also CNC for Computer Numerically Controlled) machines. In the design/build/accept cycle, the designer will specify both a nominal value, and an acceptable tolerance. As part of the typical design/build/accept business practice, it is required to verifymore » that the part did meet acceptable values prior to acceptance. Manufacturing cost must include not only raw materials and added labor, but also the cost of ensuring conformance to specifications. Ensuring conformance is a substantial portion of the cost of manufacturing. In this project, the costs of measurements were approximately 50% of the cost of the machined part. In production, cost of measurement would be smaller, but still a substantial proportion of manufacturing cost. The results of this research project will point to a science-based approach to reducing the cost of ensuring conformance to specifications. The approach that we take is to determine, a priori, how well a CNC machine can manufacture a particular geometry from stock. Based on the knowledge of the manufacturing process, we are then able to decide features which need further measurements from features which can be accepted 'as is' from the CNC. By calibration of the machine tool, and establishing a machining accuracy ratio, we can validate the ability of CNC to fabricate to a particular level of tolerance. This will eliminate the costs of checking for conformance for relatively large tolerances.« less

  20. Reducing diagnostic errors in medicine: what's the goal?

    PubMed

    Graber, Mark; Gordon, Ruthanna; Franklin, Nancy

    2002-10-01

    This review considers the feasibility of reducing or eliminating the three major categories of diagnostic errors in medicine: "No-fault errors" occur when the disease is silent, presents atypically, or mimics something more common. These errors will inevitably decline as medical science advances, new syndromes are identified, and diseases can be detected more accurately or at earlier stages. These errors can never be eradicated, unfortunately, because new diseases emerge, tests are never perfect, patients are sometimes noncompliant, and physicians will inevitably, at times, choose the most likely diagnosis over the correct one, illustrating the concept of necessary fallibility and the probabilistic nature of choosing a diagnosis. "System errors" play a role when diagnosis is delayed or missed because of latent imperfections in the health care system. These errors can be reduced by system improvements, but can never be eliminated because these improvements lag behind and degrade over time, and each new fix creates the opportunity for novel errors. Tradeoffs also guarantee system errors will persist, when resources are just shifted. "Cognitive errors" reflect misdiagnosis from faulty data collection or interpretation, flawed reasoning, or incomplete knowledge. The limitations of human processing and the inherent biases in using heuristics guarantee that these errors will persist. Opportunities exist, however, for improving the cognitive aspect of diagnosis by adopting system-level changes (e.g., second opinions, decision-support systems, enhanced access to specialists) and by training designed to improve cognition or cognitive awareness. Diagnostic error can be substantially reduced, but never eradicated.

  1. Evaluation and Acceptability of a Simplified Test of Visual Function at Birth in a Limited-Resource Setting.

    PubMed

    Carrara, Verena I; Darakomon, Mue Chae; Thin, Nant War War; Paw, Naw Ta Kaw; Wah, Naw; Wah, Hser Gay; Helen, Naw; Keereecharoen, Suporn; Paw, Naw Ta Mlar; Jittamala, Podjanee; Nosten, François H; Ricci, Daniela; McGready, Rose

    2016-01-01

    Neurological examination, including visual fixation and tracking of a target, is routinely performed in the Shoklo Malaria Research Unit postnatal care units on the Thailand-Myanmar border. We aimed to evaluate a simple visual newborn test developed in Italy and performed by non-specialized personnel working in neonatal care units. An intensive training of local health staff in Thailand was conducted prior to performing assessments at 24, 48 and 72 hours of life in healthy, low-risk term singletons. The 48 and 72 hours results were then compared to values obtained to those from Italy. Parents and staff administering the test reported on acceptability. One hundred and seventy nine newborns, between June 2011 and October 2012, participated in the study. The test was rapidly completed if the infant remained in an optimal behavioral stage (7 ± 2 minutes) but the test duration increased significantly (12 ± 4 minutes, p < 0.001) if its behavior changed. Infants were able to fix a target and to discriminate a colored face at 24 hours of life. Horizontal tracking of a target was achieved by 96% (152/159) of the infants at 48 hours. Circular tracking, stripe discrimination and attention to distance significantly improved between each 24-hour test period. The test was easily performed by non-specialized local staff and well accepted by the parents. Healthy term singletons in this limited-resource setting have a visual response similar to that obtained to gestational age matched newborns in Italy. It is possible to use these results as a reference set of values for the visual assessment in Karen and Burmese infants in the first 72 hours of life. The utility of the 24 hours test should be pursued.

  2. Selection of noisy measurement locations for error reduction in static parameter identification

    NASA Astrophysics Data System (ADS)

    Sanayei, Masoud; Onipede, Oladipo; Babu, Suresh R.

    1992-09-01

    An incomplete set of noisy static force and displacement measurements is used for parameter identification of structures at the element level. Measurement location and the level of accuracy in the measured data can drastically affect the accuracy of the identified parameters. A heuristic method is presented to select a limited number of degrees of freedom (DOF) to perform a successful parameter identification and to reduce the impact of measurement errors on the identified parameters. This pretest simulation uses an error sensitivity analysis to determine the effect of measurement errors on the parameter estimates. The selected DOF can be used for nondestructive testing and health monitoring of structures. Two numerical examples, one for a truss and one for a frame, are presented to demonstrate that using the measurements at the selected subset of DOF can limit the error in the parameter estimates.

  3. Sub-nanometer periodic nonlinearity error in absolute distance interferometers

    NASA Astrophysics Data System (ADS)

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.

  4. Assessing explicit error reporting in the narrative electronic medical record using keyword searching.

    PubMed

    Cao, Hui; Stetson, Peter; Hripcsak, George

    2003-01-01

    In this study, we assessed the explicit reporting of medical errors in the electronic record. We looked for cases in which the provider explicitly stated that he or she or another provider had committed an error. The advantage of the technique is that it is not limited to a specific type of error. Our goals were to 1) measure the rate at which medical errors were documented in medical records, and 2) characterize the types of errors that were reported.

  5. Distance error correction for time-of-flight cameras

    NASA Astrophysics Data System (ADS)

    Fuersattel, Peter; Schaller, Christian; Maier, Andreas; Riess, Christian

    2017-06-01

    The measurement accuracy of time-of-flight cameras is limited due to properties of the scene and systematic errors. These errors can accumulate to multiple centimeters which may limit the applicability of these range sensors. In the past, different approaches have been proposed for improving the accuracy of these cameras. In this work, we propose a new method that improves two important aspects of the range calibration. First, we propose a new checkerboard which is augmented by a gray-level gradient. With this addition it becomes possible to capture the calibration features for intrinsic and distance calibration at the same time. The gradient strip allows to acquire a large amount of distance measurements for different surface reflectivities, which results in more meaningful training data. Second, we present multiple new features which are used as input to a random forest regressor. By using random regression forests, we circumvent the problem of finding an accurate model for the measurement error. During application, a correction value for each individual pixel is estimated with the trained forest based on a specifically tailored feature vector. With our approach the measurement error can be reduced by more than 40% for the Mesa SR4000 and by more than 30% for the Microsoft Kinect V2. In our evaluation we also investigate the impact of the individual forest parameters and illustrate the importance of the individual features.

  6. Error-rate prediction for programmable circuits: methodology, tools and studied cases

    NASA Astrophysics Data System (ADS)

    Velazco, Raoul

    2013-05-01

    This work presents an approach to predict the error rates due to Single Event Upsets (SEU) occurring in programmable circuits as a consequence of the impact or energetic particles present in the environment the circuits operate. For a chosen application, the error-rate is predicted by combining the results obtained from radiation ground testing and the results of fault injection campaigns performed off-beam during which huge numbers of SEUs are injected during the execution of the studied application. The goal of this strategy is to obtain accurate results about different applications' error rates, without using particle accelerator facilities, thus significantly reducing the cost of the sensitivity evaluation. As a case study, this methodology was applied a complex processor, the Power PC 7448 executing a program issued from a real space application and a crypto-processor application implemented in an SRAM-based FPGA and accepted to be embedded in the payload of a scientific satellite of NASA. The accuracy of predicted error rates was confirmed by comparing, for the same circuit and application, predictions with measures issued from radiation ground testing performed at the cyclotron Cyclone cyclotron of HIF (Heavy Ion Facility) of Louvain-la-Neuve (Belgium).

  7. Exploring Discretization Error in Simulation-Based Aerodynamic Databases

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Nemec, Marian

    2010-01-01

    This work examines the level of discretization error in simulation-based aerodynamic databases and introduces strategies for error control. Simulations are performed using a parallel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretization errors in user-selected outputs are estimated using the method of adjoint-weighted residuals and we use adaptive mesh refinement to reduce these errors to specified tolerances. Using this framework, we examine the behavior of discretization error throughout a token database computed for a NACA 0012 airfoil consisting of 120 cases. We compare the cost and accuracy of two approaches for aerodynamic database generation. In the first approach, mesh adaptation is used to compute all cases in the database to a prescribed level of accuracy. The second approach conducts all simulations using the same computational mesh without adaptation. We quantitatively assess the error landscape and computational costs in both databases. This investigation highlights sensitivities of the database under a variety of conditions. The presence of transonic shocks or the stiffness in the governing equations near the incompressible limit are shown to dramatically increase discretization error requiring additional mesh resolution to control. Results show that such pathologies lead to error levels that vary by over factor of 40 when using a fixed mesh throughout the database. Alternatively, controlling this sensitivity through mesh adaptation leads to mesh sizes which span two orders of magnitude. We propose strategies to minimize simulation cost in sensitive regions and discuss the role of error-estimation in database quality.

  8. Treatable inborn errors of metabolism causing intellectual disability: a systematic literature review.

    PubMed

    van Karnebeek, Clara D M; Stockler, Sylvia

    2012-03-01

    effects include improvement and/or stabilisation of psychomotor/cognitive development, behaviour/psychiatric disturbances, seizures, neurologic and systemic manifestations. The levels of available evidence for the various treatments range from Level 1b,c (n=5); Level 2a,b,c (n=14); Level 4 (n=45), Level 4-5 (n=27). In clinical practice more than 60% of treatments with evidence level 4-5 is internationally accepted as 'standard of care'. This literature review generated the evidence to prioritise treatability in the diagnostic evaluation of intellectual disability. Our results were translated into digital information tools for the clinician (www.treatable-id.org), which are part of a diagnostic protocol, currently implemented for evaluation of effectiveness in our institution. Treatments for these disorders are relatively accessible, affordable and with acceptable side-effects. Evidence for the majority of the therapies is limited however; international collaborations, patient registries, and novel trial methodologies are key in turning the tide for rare diseases such as these. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Prevention of medication errors: detection and audit.

    PubMed

    Montesi, Germana; Lechi, Alessandro

    2009-06-01

    1. Medication errors have important implications for patient safety, and their identification is a main target in improving clinical practice errors, in order to prevent adverse events. 2. Error detection is the first crucial step. Approaches to this are likely to be different in research and routine care, and the most suitable must be chosen according to the setting. 3. The major methods for detecting medication errors and associated adverse drug-related events are chart review, computerized monitoring, administrative databases, and claims data, using direct observation, incident reporting, and patient monitoring. All of these methods have both advantages and limitations. 4. Reporting discloses medication errors, can trigger warnings, and encourages the diffusion of a culture of safe practice. Combining and comparing data from various and encourages the diffusion of a culture of safe practice sources increases the reliability of the system. 5. Error prevention can be planned by means of retroactive and proactive tools, such as audit and Failure Mode, Effect, and Criticality Analysis (FMECA). Audit is also an educational activity, which promotes high-quality care; it should be carried out regularly. In an audit cycle we can compare what is actually done against reference standards and put in place corrective actions to improve the performances of individuals and systems. 6. Patient safety must be the first aim in every setting, in order to build safer systems, learning from errors and reducing the human and fiscal costs.

  10. Estimating Acceptability of Financial Health Incentives

    ERIC Educational Resources Information Center

    Bigsby, Elisabeth; Seitz, Holli H.; Halpern, Scott D.; Volpp, Kevin; Cappella, Joseph N.

    2017-01-01

    A growing body of evidence suggests that financial incentives can influence health behavior change, but research on the public acceptability of these programs and factors that predict public support have been limited. A representative sample of U.S. adults (N = 526) were randomly assigned to receive an incentive program description in which the…

  11. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods.

    PubMed

    Shanks, Orin C; Kelty, Catherine A; Oshiro, Robin; Haugland, Richard A; Madi, Tania; Brooks, Lauren; Field, Katharine G; Sivaganesan, Mano

    2016-05-01

    There is growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data quality across laboratories. Data quality is typically determined through a series of specifications that ensure good experimental practice and the absence of bias in the results due to DNA isolation and amplification interferences. However, there is currently a lack of consensus on how best to evaluate and interpret human fecal source identification qPCR experiments. This is, in part, due to the lack of standardized protocols and information on interlaboratory variability under conditions for data acceptance. The aim of this study is to provide users and reviewers with a complete series of conditions for data acceptance derived from a multiple laboratory data set using standardized procedures. To establish these benchmarks, data from HF183/BacR287 and HumM2 human-associated qPCR methods were generated across 14 laboratories. Each laboratory followed a standardized protocol utilizing the same lot of reference DNA materials, DNA isolation kits, amplification reagents, and test samples to generate comparable data. After removal of outliers, a nested analysis of variance (ANOVA) was used to establish proficiency metrics that include lab-to-lab, replicate testing within a lab, and random error for amplification inhibition and sample processing controls. Other data acceptance measurements included extraneous DNA contamination assessments (no-template and extraction blank controls) and calibration model performance (correlation coefficient, amplification efficiency, and lower limit of quantification). To demonstrate the implementation of the proposed standardized protocols and data acceptance criteria, comparable data from two additional laboratories were reviewed. The data acceptance criteria

  12. Mixed-effects location and scale Tobit joint models for heterogeneous longitudinal data with skewness, detection limits, and measurement errors.

    PubMed

    Lu, Tao

    2017-01-01

    The joint modeling of mean and variance for longitudinal data is an active research area. This type of model has the advantage of accounting for heteroscedasticity commonly observed in between and within subject variations. Most of researches focus on improving the estimating efficiency but ignore many data features frequently encountered in practice. In this article, we develop a mixed-effects location scale joint model that concurrently accounts for longitudinal data with multiple features. Specifically, our joint model handles heterogeneity, skewness, limit of detection, measurement errors in covariates which are typically observed in the collection of longitudinal data from many studies. We employ a Bayesian approach for making inference on the joint model. The proposed model and method are applied to an AIDS study. Simulation studies are performed to assess the performance of the proposed method. Alternative models under different conditions are compared.

  13. Challenge and Error: Critical Events and Attention-Related Errors

    ERIC Educational Resources Information Center

    Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel

    2011-01-01

    Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…

  14. Rational desires and the limitation of life-sustaining treatment.

    PubMed

    Savulescu, Julian

    1994-07-01

    It is accepted that treatment of previously competent, now incompetent patients can be limited if that is what the patient would desire, if she were now competent. Expressed past preferences or an advance directive are often taken to constitute sufficient evidence of what a patient would now desire. I distinguish between desires and rational desires. I argue that for a desire to be an expression of a person's autonomy, it must be or satisfy that person's rational desires. A person rationally desires a course of action if that person desires it while being in possession of all available relevant facts, without committing relevant error of logic, and "vividly imagining" what its consequences would be like for her. I argue that some competent, expressed desires obstruct autonomy. I show that several psychological mechanisms operate to prevent a person rationally evaluating what future life in a disabled state would be like. Rational evaluation is difficult. However, treatment limitation, if it is to respect autonomy, must be in accord with a patient's rational desires, and not merely her expressed desires. I illustrate the implications of these arguments for the use of advance directives and for the treatment of competent patients.

  15. Implementing smart infusion pumps with dose-error reduction software: real-world experiences.

    PubMed

    Heron, Claire

    2017-04-27

    Intravenous (IV) drug administration, especially with 'smart pumps', is complex and susceptible to errors. Although errors can occur at any stage of the IV medication process, most errors occur during reconstitution and administration. Dose-error reduction software (DERS) loaded on to infusion pumps incorporates a drug library with predefined upper and lower drug dose limits and infusion rates, which can reduce IV infusion errors. Although this is an important advance for patient safety at the point of care, uptake is still relatively low. This article discuses the challenges and benefits of implementing DERS in clinical practice as experienced by three UK trusts.

  16. Being a Victim of Medical Error in Brazil: An (Un)Real Dilemma

    PubMed Central

    Mendonça, Vitor Silva; Custódio, Eda Marconi

    2016-01-01

    Medical error stems from inadequate professional conduct that is capable of producing harm to life or exacerbating the health of another, whether through act or omission. This situation has become increasingly common in Brazil and worldwide. In this study, the aim was to understand what being the victim of medical error is like and to investigate the circumstances imposed on this condition of victims in Brazil. A semi-structured interview was conducted with twelve people who had gone through situations of medical error in their lives, creating a space for narratives of their experiences and deep reflection on the phenomenon. The concept of medical error has a negative connotation, often being associated with the incompetence of a medical professional. Medical error in Brazil is demonstrated by low-quality professional performance and represents the current reality of the country because of the common lack of respect and consideration for patients. Victims often remark on their loss of identity, as their social functions have been interrupted and they do not expect to regain such. It was found, however, little assumption of error in the involved doctors’ discourses and attitudes, which felt a need to judge the medical conduct in an attempt to assert their rights. Medical error in Brazil presents a punitive character and is little discussed in medical and scientific circles. The stigma of medical error is closely connected to the value and cultural judgments of the country, making it difficult to accept, both by victims and professionals. PMID:27403461

  17. Transfer Error and Correction Approach in Mobile Network

    NASA Astrophysics Data System (ADS)

    Xiao-kai, Wu; Yong-jin, Shi; Da-jin, Chen; Bing-he, Ma; Qi-li, Zhou

    With the development of information technology and social progress, human demand for information has become increasingly diverse, wherever and whenever people want to be able to easily, quickly and flexibly via voice, data, images and video and other means to communicate. Visual information to the people direct and vivid image, image / video transmission also been widespread attention. Although the third generation mobile communication systems and the emergence and rapid development of IP networks, making video communications is becoming the main business of the wireless communications, however, the actual wireless and IP channel will lead to error generation, such as: wireless channel multi- fading channels generated error and blocking IP packet loss and so on. Due to channel bandwidth limitations, the video communication compression coding of data is often beyond the data, and compress data after the error is very sensitive to error conditions caused a serious decline in image quality.

  18. Jumping to the wrong conclusions? An investigation of the mechanisms of reasoning errors in delusions

    PubMed Central

    Jolley, Suzanne; Thompson, Claire; Hurley, James; Medin, Evelina; Butler, Lucy; Bebbington, Paul; Dunn, Graham; Freeman, Daniel; Fowler, David; Kuipers, Elizabeth; Garety, Philippa

    2014-01-01

    Understanding how people with delusions arrive at false conclusions is central to the refinement of cognitive behavioural interventions. Making hasty decisions based on limited data (‘jumping to conclusions’, JTC) is one potential causal mechanism, but reasoning errors may also result from other processes. In this study, we investigated the correlates of reasoning errors under differing task conditions in 204 participants with schizophrenia spectrum psychosis who completed three probabilistic reasoning tasks. Psychotic symptoms, affect, and IQ were also evaluated. We found that hasty decision makers were more likely to draw false conclusions, but only 37% of their reasoning errors were consistent with the limited data they had gathered. The remainder directly contradicted all the presented evidence. Reasoning errors showed task-dependent associations with IQ, affect, and psychotic symptoms. We conclude that limited data-gathering contributes to false conclusions but is not the only mechanism involved. Delusions may also be maintained by a tendency to disregard evidence. Low IQ and emotional biases may contribute to reasoning errors in more complex situations. Cognitive strategies to reduce reasoning errors should therefore extend beyond encouragement to gather more data, and incorporate interventions focused directly on these difficulties. PMID:24958065

  19. Wavefront error sensing

    NASA Technical Reports Server (NTRS)

    Tubbs, Eldred F.

    1986-01-01

    A two-step approach to wavefront sensing for the Large Deployable Reflector (LDR) was examined as part of an effort to define wavefront-sensing requirements and to determine particular areas for more detailed study. A Hartmann test for coarse alignment, particularly segment tilt, seems feasible if LDR can operate at 5 microns or less. The direct measurement of the point spread function in the diffraction limited region may be a way to determine piston error, but this can only be answered by a detailed software model of the optical system. The question of suitable astronomical sources for either test must also be addressed.

  20. Assessment of accuracy, fix success rate, and use of estimated horizontal position error (EHPE) to filter inaccurate data collected by a common commercially available GPS logger.

    PubMed

    Morris, Gail; Conner, L Mike

    2017-01-01

    Global positioning system (GPS) technologies have improved the ability of researchers to monitor wildlife; however, use of these technologies is often limited by monetary costs. Some researchers have begun to use commercially available GPS loggers as a less expensive means of tracking wildlife, but data regarding performance of these devices are limited. We tested a commercially available GPS logger (i-gotU GT-120) by placing loggers at ground control points with locations known to < 30 cm. In a preliminary investigation, we collected locations every 15 minutes for several days to estimate location error (LE) and circular error probable (CEP). Using similar methods, we then investigated the influence of cover on LE, CEP, and fix success rate (FSR) by constructing cover over ground control points. We found mean LE was < 10 m and mean 50% CEP was < 7 m. FSR was not significantly influenced by cover and in all treatments remained near 100%. Cover had a minor but significant effect on LE. Denser cover was associated with higher mean LE, but the difference in LE between the no cover and highest cover treatments was only 2.2 m. Finally, the most commonly used commercially available devices provide a measure of estimated horizontal position error (EHPE) which potentially may be used to filter inaccurate locations. Using data combined from the preliminary and cover investigations, we modeled LE as a function of EHPE and number of satellites. We found support for use of both EHPE and number of satellites in predicting LE; however, use of EHPE to filter inaccurate locations resulted in the loss of many locations with low error in return for only modest improvements in LE. Even without filtering, the accuracy of the logger was likely sufficient for studies which can accept average location errors of approximately 10 m.

  1. Using APEX to Model Anticipated Human Error: Analysis of a GPS Navigational Aid

    NASA Technical Reports Server (NTRS)

    VanSelst, Mark; Freed, Michael; Shefto, Michael (Technical Monitor)

    1997-01-01

    The interface development process can be dramatically improved by predicting design facilitated human error at an early stage in the design process. The approach we advocate is to SIMULATE the behavior of a human agent carrying out tasks with a well-specified user interface, ANALYZE the simulation for instances of human error, and then REFINE the interface or protocol to minimize predicted error. This approach, incorporated into the APEX modeling architecture, differs from past approaches to human simulation in Its emphasis on error rather than e.g. learning rate or speed of response. The APEX model consists of two major components: (1) a powerful action selection component capable of simulating behavior in complex, multiple-task environments; and (2) a resource architecture which constrains cognitive, perceptual, and motor capabilities to within empirically demonstrated limits. The model mimics human errors arising from interactions between limited human resources and elements of the computer interface whose design falls to anticipate those limits. We analyze the design of a hand-held Global Positioning System (GPS) device used for radical and navigational decisions in small yacht recalls. The analysis demonstrates how human system modeling can be an effective design aid, helping to accelerate the process of refining a product (or procedure).

  2. Improving end of life care: an information systems approach to reducing medical errors.

    PubMed

    Tamang, S; Kopec, D; Shagas, G; Levy, K

    2005-01-01

    Chronic and terminally ill patients are disproportionately affected by medical errors. In addition, the elderly suffer more preventable adverse events than younger patients. Targeting system wide "error-reducing" reforms to vulnerable populations can significantly reduce the incidence and prevalence of human error in medical practice. Recent developments in health informatics, particularly the application of artificial intelligence (AI) techniques such as data mining, neural networks, and case-based reasoning (CBR), presents tremendous opportunities for mitigating error in disease diagnosis and patient management. Additionally, the ubiquity of the Internet creates the possibility of an almost ideal network for the dissemination of medical information. We explore the capacity and limitations of web-based palliative information systems (IS) to transform the delivery of care, streamline processes and improve the efficiency and appropriateness of medical treatment. As a result, medical error(s) that occur with patients dealing with severe, chronic illness and the frail elderly can be reduced.The palliative model grew out of the need for pain relief and comfort measures for patients diagnosed with cancer. Applied definitions of palliative care extend this convention, but there is no widely accepted definition. This research will discuss the development life cycle of two palliative information systems: the CONFER QOLP management information system (MIS), currently used by a community-based palliative care program in Brooklyn, New York, and the CAREN case-based reasoning prototype. CONFER is a web platform based on the idea of "eCare". CONFER uses XML (extensible mark-up language), a W3C-endorced standard mark up to define systems data. The second system, CAREN, is a CBR prototype designed for palliative care patients in the cancer trajectory. CBR is a technique, which tries to exploit the similarities of two situations and match decision-making to the best

  3. An investigation of error correcting techniques for OMV data

    NASA Technical Reports Server (NTRS)

    Ingels, Frank; Fryer, John

    1992-01-01

    Papers on the following topics are presented: considerations of testing the Orbital Maneuvering Vehicle (OMV) system with CLASS; OMV CLASS test results (first go around); equivalent system gain available from R-S encoding versus a desire to lower the power amplifier from 25 watts to 20 watts for OMV; command word acceptance/rejection rates for OMV; a memo concerning energy-to-noise ratio for the Viterbi-BSC Channel and the impact of Manchester coding loss; and an investigation of error correcting techniques for OMV and Advanced X-ray Astrophysics Facility (AXAF).

  4. A survey of physicians' acceptance of telemedicine.

    PubMed

    Sheng, O R; Hu, P J; Chau, P Y; Hjelm, N M; Tam, K Y; Wei, C P; Tse, J

    1998-01-01

    Physicians' acceptance of telemedicine is an important managerial issue facing health-care organizations that have adopted, or are about to adopt, telemedicine. Most previous investigations of the acceptance of telemedicine have lacked theoretical foundation and been of limited scope. We examined technology acceptance and usage among physicians and specialists from 49 clinical departments at eight public tertiary hospitals in Hong Kong. Out of the 1021 questionnaires distributed, 310 were completed and returned, a 30% response rate. The preliminary findings suggested that use of telemedicine among clinicians in Hong Kong was moderate. While 18% of the respondents were using some form of telemedicine for patient care and management, it accounted for only 6.3% of the services provided. The intensity of their technology usage was also low, accounting for only 6.8% of a typical telemedicine-assisted service. These preliminary findings have managerial implications.

  5. Performance Evaluation of Three Blood Glucose Monitoring Systems Using ISO 15197: 2013 Accuracy Criteria, Consensus and Surveillance Error Grid Analyses, and Insulin Dosing Error Modeling in a Hospital Setting.

    PubMed

    Bedini, José Luis; Wallace, Jane F; Pardo, Scott; Petruschke, Thorsten

    2015-10-07

    Blood glucose monitoring is an essential component of diabetes management. Inaccurate blood glucose measurements can severely impact patients' health. This study evaluated the performance of 3 blood glucose monitoring systems (BGMS), Contour® Next USB, FreeStyle InsuLinx®, and OneTouch® Verio™ IQ, under routine hospital conditions. Venous blood samples (N = 236) obtained for routine laboratory procedures were collected at a Spanish hospital, and blood glucose (BG) concentrations were measured with each BGMS and with the available reference (hexokinase) method. Accuracy of the 3 BGMS was compared according to ISO 15197:2013 accuracy limit criteria, by mean absolute relative difference (MARD), consensus error grid (CEG) and surveillance error grid (SEG) analyses, and an insulin dosing error model. All BGMS met the accuracy limit criteria defined by ISO 15197:2013. While all measurements of the 3 BGMS were within low-risk zones in both error grid analyses, the Contour Next USB showed significantly smaller MARDs between reference values compared to the other 2 BGMS. Insulin dosing errors were lowest for the Contour Next USB than compared to the other systems. All BGMS fulfilled ISO 15197:2013 accuracy limit criteria and CEG criterion. However, taking together all analyses, differences in performance of potential clinical relevance may be observed. Results showed that Contour Next USB had lowest MARD values across the tested glucose range, as compared with the 2 other BGMS. CEG and SEG analyses as well as calculation of the hypothetical bolus insulin dosing error suggest a high accuracy of the Contour Next USB. © 2015 Diabetes Technology Society.

  6. Small refractive errors--their correction and practical importance.

    PubMed

    Skrbek, Matej; Petrová, Sylvie

    2013-04-01

    Small refractive errors present a group of specifc far-sighted refractive dispositions that are compensated by enhanced accommodative exertion and aren't exhibited by loss of the visual acuity. This paper should answer a few questions about their correction, flowing from theoretical presumptions and expectations of this dilemma. The main goal of this research was to (dis)confirm the hypothesis about convenience, efficiency and frequency of the correction that do not raise the visual acuity (or if the improvement isn't noticeable). The next goal was to examine the connection between this correction and other factors (age, size of the refractive error, etc.). The last aim was to describe the subjective personal rating of the correction of these small refractive errors, and to determine the minimal improvement of the visual acuity, that is attractive enough for the client to purchase the correction (glasses, contact lenses). It was confirmed, that there's an indispensable group of subjects with good visual acuity, where the correction is applicable, although it doesn't improve the visual acuity much. The main importance is to eliminate the asthenopia. The prime reason for acceptance of the correction is typically changing during the life, so as the accommodation is declining. Young people prefer the correction on the ground of the asthenopia, caused by small refractive error or latent strabismus; elderly people acquire the correction because of improvement of the visual acuity. Generally the correction was found useful in more than 30%, if the gain of the visual acuity was at least 0,3 of the decimal row.

  7. Economic impact of medication error: a systematic review.

    PubMed

    Walsh, Elaine K; Hansen, Christina Raae; Sahm, Laura J; Kearney, Patricia M; Doherty, Edel; Bradley, Colin P

    2017-05-01

    Medication error is a significant source of morbidity and mortality among patients. Clinical and cost-effectiveness evidence are required for the implementation of quality of care interventions. Reduction of error-related cost is a key potential benefit of interventions addressing medication error. The aim of this review was to describe and quantify the economic burden associated with medication error. PubMed, Cochrane, Embase, CINAHL, EconLit, ABI/INFORM, Business Source Complete were searched. Studies published 2004-2016 assessing the economic impact of medication error were included. Cost values were expressed in Euro 2015. A narrative synthesis was performed. A total of 4572 articles were identified from database searching, and 16 were included in the review. One study met all applicable quality criteria. Fifteen studies expressed economic impact in monetary terms. Mean cost per error per study ranged from €2.58 to €111 727.08. Healthcare costs were used to measure economic impact in 15 of the included studies with one study measuring litigation costs. Four studies included costs incurred in primary care with the remaining 12 measuring hospital costs. Five studies looked at general medication error in a general population with 11 studies reporting the economic impact of an individual type of medication error or error within a specific patient population. Considerable variability existed between studies in terms of financial cost, patients, settings and errors included. Many were of poor quality. Assessment of economic impact was conducted predominantly in the hospital setting with little assessment of primary care impact. Limited parameters were used to establish economic impact. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. What is the epidemiology of medication errors, error-related adverse events and risk factors for errors in adults managed in community care contexts? A systematic review of the international literature.

    PubMed

    Assiri, Ghadah Asaad; Shebl, Nada Atef; Mahmoud, Mansour Adam; Aloudah, Nouf; Grant, Elizabeth; Aljadhey, Hisham; Sheikh, Aziz

    2018-05-05

    To investigate the epidemiology of medication errors and error-related adverse events in adults in primary care, ambulatory care and patients' homes. Systematic review. Six international databases were searched for publications between 1 January 2006 and 31 December 2015. Two researchers independently extracted data from eligible studies and assessed the quality of these using established instruments. Synthesis of data was informed by an appreciation of the medicines' management process and the conceptual framework from the International Classification for Patient Safety. 60 studies met the inclusion criteria, of which 53 studies focused on medication errors, 3 on error-related adverse events and 4 on risk factors only. The prevalence of prescribing errors was reported in 46 studies: prevalence estimates ranged widely from 2% to 94%. Inappropriate prescribing was the most common type of error reported. Only one study reported the prevalence of monitoring errors, finding that incomplete therapeutic/safety laboratory-test monitoring occurred in 73% of patients. The incidence of preventable adverse drug events (ADEs) was estimated as 15/1000 person-years, the prevalence of drug-drug interaction-related adverse drug reactions as 7% and the prevalence of preventable ADE as 0.4%. A number of patient, healthcare professional and medication-related risk factors were identified, including the number of medications used by the patient, increased patient age, the number of comorbidities, use of anticoagulants, cases where more than one physician was involved in patients' care and care being provided by family physicians/general practitioners. A very wide variation in the medication error and error-related adverse events rates is reported in the studies, this reflecting heterogeneity in the populations studied, study designs employed and outcomes evaluated. This review has identified important limitations and discrepancies in the methodologies used and gaps in the literature

  9. Sampling Errors of SSM/I and TRMM Rainfall Averages: Comparison with Error Estimates from Surface Data and a Sample Model

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.

  10. A new accuracy measure based on bounded relative error for time series forecasting

    PubMed Central

    Twycross, Jamie; Garibaldi, Jonathan M.

    2017-01-01

    Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred. PMID:28339480

  11. A new accuracy measure based on bounded relative error for time series forecasting.

    PubMed

    Chen, Chao; Twycross, Jamie; Garibaldi, Jonathan M

    2017-01-01

    Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred.

  12. Bridging the Gap between Social Acceptance and Ethical Acceptability.

    PubMed

    Taebi, Behnam

    2017-10-01

    New technology brings great benefits, but it can also create new and significant risks. When evaluating those risks in policymaking, there is a tendency to focus on social acceptance. By solely focusing on social acceptance, we could, however, overlook important ethical aspects of technological risk, particularly when we evaluate technologies with transnational and intergenerational risks. I argue that good governance of risky technology requires analyzing both social acceptance and ethical acceptability. Conceptually, these two notions are mostly complementary. Social acceptance studies are not capable of sufficiently capturing all the morally relevant features of risky technologies; ethical analyses do not typically include stakeholders' opinions, and they therefore lack the relevant empirical input for a thorough ethical evaluation. Only when carried out in conjunction are these two types of analysis relevant to national and international governance of risky technology. I discuss the Rawlsian wide reflective equilibrium as a method for marrying social acceptance and ethical acceptability. Although the rationale of my argument is broadly applicable, I will examine the case of multinational nuclear waste repositories in particular. This example will show how ethical issues may be overlooked if we focus only on social acceptance, and will provide a test case for demonstrating how the wide reflective equilibrium can help to bridge the proverbial acceptance-acceptability gap. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  13. GEOS-C altimeter attitude bias error correction. [gate-tracking radar

    NASA Technical Reports Server (NTRS)

    Marini, J. W.

    1974-01-01

    A pulse-limited split-gate-tracking radar altimeter was flown on Skylab and will be used aboard GEOS-C. If such an altimeter were to employ a hypothetical isotropic antenna, the altimeter output would be independent of spacecraft orientation. To reduce power requirements the gain of the altimeter antenna proposed is increased to the point where its beamwidth is only a few degrees. The gain of the antenna consequently varies somewhat over the pulse-limited illuminated region of the ocean below the altimeter, and the altimeter output varies with antenna orientation. The error introduced into the altimeter data is modeled empirically, but close agreements with the expected errors was not realized. The attitude error effects expected with the GEOS-C altimeter are modelled using a form suggested by an analytical derivation. The treatment is restricted to the case of a relatively smooth sea, where the height of the ocean waves are small relative to the spatial length (pulse duration times speed of light) of the transmitted pulse.

  14. Implementation errors in the GingerALE Software: Description and recommendations.

    PubMed

    Eickhoff, Simon B; Laird, Angela R; Fox, P Mickle; Lancaster, Jack L; Fox, Peter T

    2017-01-01

    Neuroscience imaging is a burgeoning, highly sophisticated field the growth of which has been fostered by grant-funded, freely distributed software libraries that perform voxel-wise analyses in anatomically standardized three-dimensional space on multi-subject, whole-brain, primary datasets. Despite the ongoing advances made using these non-commercial computational tools, the replicability of individual studies is an acknowledged limitation. Coordinate-based meta-analysis offers a practical solution to this limitation and, consequently, plays an important role in filtering and consolidating the enormous corpus of functional and structural neuroimaging results reported in the peer-reviewed literature. In both primary data and meta-analytic neuroimaging analyses, correction for multiple comparisons is a complex but critical step for ensuring statistical rigor. Reports of errors in multiple-comparison corrections in primary-data analyses have recently appeared. Here, we report two such errors in GingerALE, a widely used, US National Institutes of Health (NIH)-funded, freely distributed software package for coordinate-based meta-analysis. These errors have given rise to published reports with more liberal statistical inferences than were specified by the authors. The intent of this technical report is threefold. First, we inform authors who used GingerALE of these errors so that they can take appropriate actions including re-analyses and corrective publications. Second, we seek to exemplify and promote an open approach to error management. Third, we discuss the implications of these and similar errors in a scientific environment dependent on third-party software. Hum Brain Mapp 38:7-11, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Learning a locomotor task: with or without errors?

    PubMed

    Marchal-Crespo, Laura; Schneider, Jasmin; Jaeger, Lukas; Riener, Robert

    2014-03-04

    Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is the most appropriate to learn an especially simple task. In this study, the impact of robotic training strategies that amplify or reduce errors on muscle activation and motor learning of a simple locomotor task was investigated in twenty two healthy subjects. The experiment was conducted with the MAgnetic Resonance COmpatible Stepper (MARCOS) a special robotic device developed for investigations in the MR scanner. The robot moved the dominant leg passively and the subject was requested to actively synchronize the non-dominant leg to achieve an alternating stepping-like movement. Learning with four different training strategies that reduce or amplify errors was evaluated: (i) Haptic guidance: errors were eliminated by passively moving the limbs, (ii) No guidance: no robot disturbances were presented, (iii) Error amplification: existing errors were amplified with repulsive forces, (iv) Noise disturbance: errors were evoked intentionally with a randomly-varying force disturbance on top of the no guidance strategy. Additionally, the activation of four lower limb muscles was measured by the means of surface electromyography (EMG). Strategies that reduce or do not amplify errors limit muscle activation during training and result in poor learning gains. Adding random disturbing forces during training seems to increase attention, and therefore improve motor learning. Error amplification seems to be the most suitable strategy for initially less skilled subjects, perhaps because subjects could better detect their errors and correct them

  16. Prediction of discretization error using the error transport equation

    NASA Astrophysics Data System (ADS)

    Celik, Ismail B.; Parsons, Don Roscoe

    2017-06-01

    This study focuses on an approach to quantify the discretization error associated with numerical solutions of partial differential equations by solving an error transport equation (ETE). The goal is to develop a method that can be used to adequately predict the discretization error using the numerical solution on only one grid/mesh. The primary problem associated with solving the ETE is the formulation of the error source term which is required for accurately predicting the transport of the error. In this study, a novel approach is considered which involves fitting the numerical solution with a series of locally smooth curves and then blending them together with a weighted spline approach. The result is a continuously differentiable analytic expression that can be used to determine the error source term. Once the source term has been developed, the ETE can easily be solved using the same solver that is used to obtain the original numerical solution. The new methodology is applied to the two-dimensional Navier-Stokes equations in the laminar flow regime. A simple unsteady flow case is also considered. The discretization error predictions based on the methodology presented in this study are in good agreement with the 'true error'. While in most cases the error predictions are not quite as accurate as those from Richardson extrapolation, the results are reasonable and only require one numerical grid. The current results indicate that there is much promise going forward with the newly developed error source term evaluation technique and the ETE.

  17. Accounting for measurement error in log regression models with applications to accelerated testing.

    PubMed

    Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M

    2018-01-01

    In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  18. Errors in clinical laboratories or errors in laboratory medicine?

    PubMed

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  19. Professional liability insurance and medical error disclosure.

    PubMed

    McLennan, Stuart; Shaw, David; Leu, Agnes; Elger, Bernice

    2015-01-01

    To examine medicolegal stakeholders' views about the impact of professional liability insurance in Switzerland on medical error disclosure. Purposive sample of 23 key medicolegal stakeholders in Switzerland from a range of fields between October 2012 and February 2013. Data were collected via individual, face-to-face interviews using a researcher-developed semi-structured interview guide. Interviews were transcribed and analysed using conventional content analysis. Participants, particularly those with a legal or quality background, reported that concerns relating to professional liability insurance often inhibited communication with patients after a medical error. Healthcare providers were reported to be particularly concerned about losing their liability insurance cover for apologising to harmed patients. It was reported that the attempt to limit the exchange of information and communication could lead to a conflict with patient rights law. Participants reported that hospitals could, and in some case are, moving towards self-insurance approaches, which could increase flexibility regarding error communication The reported current practice of at least some liability insurance companies in Switzerland of inhibiting communication with harmed patients after an error is concerning and requires further investigation. With a new ethic of transparency regarding medical errors now prevailing internationally, this approach is increasingly being perceived to be misguided. A move away from hospitals relying solely on liability insurance may allow greater transparency after errors. Legalisation preventing the loss of liability insurance coverage for apologising to harmed patients should also be considered.

  20. Error reduction in three-dimensional metrology combining optical and touch probe data

    NASA Astrophysics Data System (ADS)

    Gerde, Janice R.; Christens-Barry, William A.

    2010-08-01

    Analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS) is partly based on identifying the boundary ("parting line") between the "external surface area upper" (ESAU) and the sample's sole. Often, that boundary is obscured. We establish the parting line as the curved intersection between the sample outer surface and its insole surface. The outer surface is determined by discrete point cloud coordinates obtained using a laser scanner. The insole surface is defined by point cloud data, obtained using a touch probe device-a coordinate measuring machine (CMM). Because these point cloud data sets do not overlap spatially, a polynomial surface is fitted to the insole data and extended to intersect a mesh fitted to the outer surface point cloud. This line of intersection defines the ESAU boundary, permitting further fractional area calculations to proceed. The defined parting line location is sensitive to the polynomial used to fit experimental data. Extrapolation to the intersection with the ESAU can heighten this sensitivity. We discuss a methodology for transforming these data into a common reference frame. Three scenarios are considered: measurement error in point cloud coordinates, from fitting a polynomial surface to a point cloud then extrapolating beyond the data set, and error from reference frame transformation. These error sources can influence calculated surface areas. We describe experiments to assess error magnitude, the sensitivity of calculated results on these errors, and minimizing error impact on calculated quantities. Ultimately, we must ensure that statistical error from these procedures is minimized and within acceptance criteria.

  1. Large-scale retrospective evaluation of regulated liquid chromatography-mass spectrometry bioanalysis projects using different total error approaches.

    PubMed

    Tan, Aimin; Saffaj, Taoufiq; Musuku, Adrien; Awaiye, Kayode; Ihssane, Bouchaib; Jhilal, Fayçal; Sosse, Saad Alaoui; Trabelsi, Fethi

    2015-03-01

    The current approach in regulated LC-MS bioanalysis, which evaluates the precision and trueness of an assay separately, has long been criticized for inadequate balancing of lab-customer risks. Accordingly, different total error approaches have been proposed. The aims of this research were to evaluate the aforementioned risks in reality and the difference among four common total error approaches (β-expectation, β-content, uncertainty, and risk profile) through retrospective analysis of regulated LC-MS projects. Twenty-eight projects (14 validations and 14 productions) were randomly selected from two GLP bioanalytical laboratories, which represent a wide variety of assays. The results show that the risk of accepting unacceptable batches did exist with the current approach (9% and 4% of the evaluated QC levels failed for validation and production, respectively). The fact that the risk was not wide-spread was only because the precision and bias of modern LC-MS assays are usually much better than the minimum regulatory requirements. Despite minor differences in magnitude, very similar accuracy profiles and/or conclusions were obtained from the four different total error approaches. High correlation was even observed in the width of bias intervals. For example, the mean width of SFSTP's β-expectation is 1.10-fold (CV=7.6%) of that of Saffaj-Ihssane's uncertainty approach, while the latter is 1.13-fold (CV=6.0%) of that of Hoffman-Kringle's β-content approach. To conclude, the risk of accepting unacceptable batches was real with the current approach, suggesting that total error approaches should be used instead. Moreover, any of the four total error approaches may be used because of their overall similarity. Lastly, the difficulties/obstacles associated with the application of total error approaches in routine analysis and their desirable future improvements are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Jumping to the wrong conclusions? An investigation of the mechanisms of reasoning errors in delusions.

    PubMed

    Jolley, Suzanne; Thompson, Claire; Hurley, James; Medin, Evelina; Butler, Lucy; Bebbington, Paul; Dunn, Graham; Freeman, Daniel; Fowler, David; Kuipers, Elizabeth; Garety, Philippa

    2014-10-30

    Understanding how people with delusions arrive at false conclusions is central to the refinement of cognitive behavioural interventions. Making hasty decisions based on limited data ('jumping to conclusions', JTC) is one potential causal mechanism, but reasoning errors may also result from other processes. In this study, we investigated the correlates of reasoning errors under differing task conditions in 204 participants with schizophrenia spectrum psychosis who completed three probabilistic reasoning tasks. Psychotic symptoms, affect, and IQ were also evaluated. We found that hasty decision makers were more likely to draw false conclusions, but only 37% of their reasoning errors were consistent with the limited data they had gathered. The remainder directly contradicted all the presented evidence. Reasoning errors showed task-dependent associations with IQ, affect, and psychotic symptoms. We conclude that limited data-gathering contributes to false conclusions but is not the only mechanism involved. Delusions may also be maintained by a tendency to disregard evidence. Low IQ and emotional biases may contribute to reasoning errors in more complex situations. Cognitive strategies to reduce reasoning errors should therefore extend beyond encouragement to gather more data, and incorporate interventions focused directly on these difficulties. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Decision-making when data and inferences are not conclusive: risk-benefit and acceptable regret approach.

    PubMed

    Hozo, Iztok; Schell, Michael J; Djulbegovic, Benjamin

    2008-07-01

    The absolute truth in research is unobtainable, as no evidence or research hypothesis is ever 100% conclusive. Therefore, all data and inferences can in principle be considered as "inconclusive." Scientific inference and decision-making need to take into account errors, which are unavoidable in the research enterprise. The errors can occur at the level of conclusions that aim to discern the truthfulness of research hypothesis based on the accuracy of research evidence and hypothesis, and decisions, the goal of which is to enable optimal decision-making under present and specific circumstances. To optimize the chance of both correct conclusions and correct decisions, the synthesis of all major statistical approaches to clinical research is needed. The integration of these approaches (frequentist, Bayesian, and decision-analytic) can be accomplished through formal risk:benefit (R:B) analysis. This chapter illustrates the rational choice of a research hypothesis using R:B analysis based on decision-theoretic expected utility theory framework and the concept of "acceptable regret" to calculate the threshold probability of the "truth" above which the benefit of accepting a research hypothesis outweighs its risks.

  4. Constrained motion estimation-based error resilient coding for HEVC

    NASA Astrophysics Data System (ADS)

    Guo, Weihan; Zhang, Yongfei; Li, Bo

    2018-04-01

    Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.

  5. Research on error control and compensation in magnetorheological finishing.

    PubMed

    Dai, Yifan; Hu, Hao; Peng, Xiaoqiang; Wang, Jianmin; Shi, Feng

    2011-07-01

    Although magnetorheological finishing (MRF) is a deterministic finishing technology, the machining results always fall short of simulation precision in the actual process, and it cannot meet the precision requirements just through a single treatment but after several iterations. We investigate the reasons for this problem through simulations and experiments. Through controlling and compensating the chief errors in the manufacturing procedure, such as removal function calculation error, positioning error of the removal function, and dynamic performance limitation of the CNC machine, the residual error convergence ratio (ratio of figure error before and after processing) in a single process is obviously increased, and higher figure precision is achieved. Finally, an improved technical process is presented based on these researches, and the verification experiment is accomplished on the experimental device we developed. The part is a circular plane mirror of fused silica material, and the surface figure error is improved from the initial λ/5 [peak-to-valley (PV) λ=632.8 nm], λ/30 [root-mean-square (rms)] to the final λ/40 (PV), λ/330 (rms) just through one iteration in 4.4 min. Results show that a higher convergence ratio and processing precision can be obtained by adopting error control and compensation techniques in MRF.

  6. Iterative updating of model error for Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Calvetti, Daniela; Dunlop, Matthew; Somersalo, Erkki; Stuart, Andrew

    2018-02-01

    In computational inverse problems, it is common that a detailed and accurate forward model is approximated by a computationally less challenging substitute. The model reduction may be necessary to meet constraints in computing time when optimization algorithms are used to find a single estimate, or to speed up Markov chain Monte Carlo (MCMC) calculations in the Bayesian framework. The use of an approximate model introduces a discrepancy, or modeling error, that may have a detrimental effect on the solution of the ill-posed inverse problem, or it may severely distort the estimate of the posterior distribution. In the Bayesian paradigm, the modeling error can be considered as a random variable, and by using an estimate of the probability distribution of the unknown, one may estimate the probability distribution of the modeling error and incorporate it into the inversion. We introduce an algorithm which iterates this idea to update the distribution of the model error, leading to a sequence of posterior distributions that are demonstrated empirically to capture the underlying truth with increasing accuracy. Since the algorithm is not based on rejections, it requires only limited full model evaluations. We show analytically that, in the linear Gaussian case, the algorithm converges geometrically fast with respect to the number of iterations when the data is finite dimensional. For more general models, we introduce particle approximations of the iteratively generated sequence of distributions; we also prove that each element of the sequence converges in the large particle limit under a simplifying assumption. We show numerically that, as in the linear case, rapid convergence occurs with respect to the number of iterations. Additionally, we show through computed examples that point estimates obtained from this iterative algorithm are superior to those obtained by neglecting the model error.

  7. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  8. A methodology for translating positional error into measures of attribute error, and combining the two error sources

    Treesearch

    Yohay Carmel; Curtis Flather; Denis Dean

    2006-01-01

    This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...

  9. Uncorrected and corrected refractive error experiences of Nepalese adults: a qualitative study.

    PubMed

    Kandel, Himal; Khadka, Jyoti; Shrestha, Mohan Krishna; Sharma, Sadhana; Neupane Kandel, Sandhya; Dhungana, Purushottam; Pradhan, Kishore; Nepal, Bhagavat P; Thapa, Suman; Pesudovs, Konrad

    2018-04-01

    The aim of this study was to explore the impact of corrected and uncorrected refractive error (URE) on Nepalese people's quality of life (QoL), and to compare the QoL status between refractive error subgroups. Participants were recruited from Tilganga Institute of Ophthalmology and Dhulikhel Hospital, Nepal. Semi-structured in-depth interviews were conducted with 101 people with refractive error. Thematic analysis was used with matrices produced to compare the occurrence of themes and categories across participants. Themes were identified using an inductive approach. Seven major themes emerged that determined refractive error-specific QoL: activity limitation, inconvenience, health concerns, psycho-social impact, economic impact, general and ocular comfort symptoms, and visual symptoms. Activity limitation, economic impact, and symptoms were the most important themes for the participants with URE, whereas inconvenience associated with wearing glasses was the most important issue in glasses wearers. Similarly, possibilities of having side effects or complications were the major concerns for participants wearing contact lens. In general, refractive surgery addressed socio-emotional impact of wearing glasses or contact lens. However, the surgery participants had concerns such as possibility of having to wear glasses again due to relapse of refractive error. Impact of refractive error on people's QoL is multifaceted. Significance of the identified themes varies by refractive error subgroups. Refractive correction may not always address QoL impact of URE but often add unique QoL issues. This study findings also provide content for developing an item-bank for quantitatively measuring refractive error-specific QoL in developing country setting.

  10. Quantum error correction for continuously detected errors with any number of error channels per qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Charlene; Wiseman, Howard; Jacobs, Kurt

    2004-08-01

    It was shown by Ahn, Wiseman, and Milburn [Phys. Rev. A 67, 052310 (2003)] that feedback control could be used as a quantum error correction process for errors induced by weak continuous measurement, given one perfectly measured error channel per qubit. Here we point out that this method can be easily extended to an arbitrary number of error channels per qubit. We show that the feedback protocols generated by our method encode n-2 logical qubits in n physical qubits, thus requiring just one more physical qubit than in the previous case.

  11. Regulatory perspectives on acceptability testing of dosage forms in children.

    PubMed

    Kozarewicz, Piotr

    2014-08-05

    Current knowledge about the age-appropriateness of different dosage forms is still fragmented or limited. Applicants are asked to demonstrate that the target age group(s) can manage the dosage form or propose an alternative strategy. However, questions remain about how far the applicant must go and what percentage of patients must find the strategy 'acceptable'. The aim of this overview is to provide an update on current thinking and understanding of the problem, and discuss issues relating to the acceptability testing. This overview should be considered as means to start a wider discussion which hopefully will result in a harmonised, globally acceptable approach for confirmation of the acceptability in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Analysis on the dynamic error for optoelectronic scanning coordinate measurement network

    NASA Astrophysics Data System (ADS)

    Shi, Shendong; Yang, Linghui; Lin, Jiarui; Guo, Siyang; Ren, Yongjie

    2018-01-01

    Large-scale dynamic three-dimension coordinate measurement technique is eagerly demanded in equipment manufacturing. Noted for advantages of high accuracy, scale expandability and multitask parallel measurement, optoelectronic scanning measurement network has got close attention. It is widely used in large components jointing, spacecraft rendezvous and docking simulation, digital shipbuilding and automated guided vehicle navigation. At present, most research about optoelectronic scanning measurement network is focused on static measurement capacity and research about dynamic accuracy is insufficient. Limited by the measurement principle, the dynamic error is non-negligible and restricts the application. The workshop measurement and positioning system is a representative which can realize dynamic measurement function in theory. In this paper we conduct deep research on dynamic error resources and divide them two parts: phase error and synchronization error. Dynamic error model is constructed. Based on the theory above, simulation about dynamic error is carried out. Dynamic error is quantized and the rule of volatility and periodicity has been found. Dynamic error characteristics are shown in detail. The research result lays foundation for further accuracy improvement.

  13. Measuring Cyclic Error in Laser Heterodyne Interferometers

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter

    2010-01-01

    An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-

  14. Tolerance analysis of optical telescopes using coherent addition of wavefront errors

    NASA Technical Reports Server (NTRS)

    Davenport, J. W.

    1982-01-01

    A near diffraction-limited telescope requires that tolerance analysis be done on the basis of system wavefront error. One method of analyzing the wavefront error is to represent the wavefront error function in terms of its Zernike polynomial expansion. A Ramsey-Korsch ray trace package, a computer program that simulates the tracing of rays through an optical telescope system, was expanded to include the Zernike polynomial expansion up through the fifth-order spherical term. An option to determine a 3 dimensional plot of the wavefront error function was also included in the Ramsey-Korsch package. Several assimulation runs were analyzed to determine the particular set of coefficients in the Zernike expansion that are effected by various errors such as tilt, decenter and despace. A 3 dimensional plot of each error up through the fifth-order spherical term was also included in the study. Tolerance analysis data are presented.

  15. The interaction of the flux errors and transport errors in modeled atmospheric carbon dioxide concentrations

    NASA Astrophysics Data System (ADS)

    Feng, S.; Lauvaux, T.; Butler, M. P.; Keller, K.; Davis, K. J.; Jacobson, A. R.; Schuh, A. E.; Basu, S.; Liu, J.; Baker, D.; Crowell, S.; Zhou, Y.; Williams, C. A.

    2017-12-01

    Regional estimates of biogenic carbon fluxes over North America from top-down atmospheric inversions and terrestrial biogeochemical (or bottom-up) models remain inconsistent at annual and sub-annual time scales. While top-down estimates are impacted by limited atmospheric data, uncertain prior flux estimates and errors in the atmospheric transport models, bottom-up fluxes are affected by uncertain driver data, uncertain model parameters and missing mechanisms across ecosystems. This study quantifies both flux errors and transport errors, and their interaction in the CO2 atmospheric simulation. These errors are assessed by an ensemble approach. The WRF-Chem model is set up with 17 biospheric fluxes from the Multiscale Synthesis and Terrestrial Model Intercomparison Project, CarbonTracker-Near Real Time, and the Simple Biosphere model. The spread of the flux ensemble members represents the flux uncertainty in the modeled CO2 concentrations. For the transport errors, WRF-Chem is run using three physical model configurations with three stochastic perturbations to sample the errors from both the physical parameterizations of the model and the initial conditions. Additionally, the uncertainties from boundary conditions are assessed using four CO2 global inversion models which have assimilated tower and satellite CO2 observations. The error structures are assessed in time and space. The flux ensemble members overall overestimate CO2 concentrations. They also show larger temporal variability than the observations. These results suggest that the flux ensemble is overdispersive. In contrast, the transport ensemble is underdispersive. The averaged spatial distribution of modeled CO2 shows strong positive biogenic signal in the southern US and strong negative signals along the eastern coast of Canada. We hypothesize that the former is caused by the 3-hourly downscaling algorithm from which the nighttime respiration dominates the daytime modeled CO2 signals and that the latter

  16. Technical Errors May Affect Accuracy of Torque Limiter in Locking Plate Osteosynthesis.

    PubMed

    Savin, David D; Lee, Simon; Bohnenkamp, Frank C; Pastor, Andrew; Garapati, Rajeev; Goldberg, Benjamin A

    2016-01-01

    In locking plate osteosynthesis, proper surgical technique is crucial in reducing potential pitfalls, and use of a torque limiter makes it possible to control insertion torque. We conducted a study of the ways in which different techniques can alter the accuracy of torque limiters. We tested 22 torque limiters (1.5 Nm) for accuracy using hand and power tools under different rotational scenarios: hand power at low and high velocity and drill power at low and high velocity. We recorded the maximum torque reached after each torque-limiting event. Use of torque limiters under hand power at low velocity and high velocity resulted in significantly (P < .0001) different mean (SD) measurements: 1.49 (0.15) Nm and 3.73 (0.79) Nm. Use under drill power at controlled low velocity and at high velocity also resulted in significantly (P < .0001) different mean (SD) measurements: 1.47 (0.14) Nm and 5.37 (0.90) Nm. Maximum single measurement obtained was 9.0 Nm using drill power at high velocity. Locking screw insertion with improper technique may result in higher than expected torque and subsequent complications. For torque limiters, the most reliable technique involves hand power at slow velocity or drill power with careful control of insertion speed until 1 torque-limiting event occurs.

  17. Relationship between Recent Flight Experience and Pilot Error General Aviation Accidents

    NASA Astrophysics Data System (ADS)

    Nilsson, Sarah J.

    Aviation insurance agents and fixed-base operation (FBO) owners use recent flight experience, as implied by the 90-day rule, to measure pilot proficiency in physical airplane skills, and to assess the likelihood of a pilot error accident. The generally accepted premise is that more experience in a recent timeframe predicts less of a propensity for an accident, all other factors excluded. Some of these aviation industry stakeholders measure pilot proficiency solely by using time flown within the past 90, 60, or even 30 days, not accounting for extensive research showing aeronautical decision-making and situational awareness training decrease the likelihood of a pilot error accident. In an effort to reduce the pilot error accident rate, the Federal Aviation Administration (FAA) has seen the need to shift pilot training emphasis from proficiency in physical airplane skills to aeronautical decision-making and situational awareness skills. However, current pilot training standards still focus more on the former than on the latter. The relationship between pilot error accidents and recent flight experience implied by the FAA's 90-day rule has not been rigorously assessed using empirical data. The intent of this research was to relate recent flight experience, in terms of time flown in the past 90 days, to pilot error accidents. A quantitative ex post facto approach, focusing on private pilots of single-engine general aviation (GA) fixed-wing aircraft, was used to analyze National Transportation Safety Board (NTSB) accident investigation archival data. The data were analyzed using t-tests and binary logistic regression. T-tests between the mean number of hours of recent flight experience of tricycle gear pilots involved in pilot error accidents (TPE) and non-pilot error accidents (TNPE), t(202) = -.200, p = .842, and conventional gear pilots involved in pilot error accidents (CPE) and non-pilot error accidents (CNPE), t(111) = -.271, p = .787, indicate there is no

  18. Limited Area Predictability: Is There A Limit To The Operational Usefulness of A Lam

    NASA Astrophysics Data System (ADS)

    Mesinger, F.

    The issue of the limited area predictability in the context of the operational experience of the Eta Model, driven by the LBCs of the NCEP global spectral (Avn) model, is examined. The traditional view is that "the contamination at the lateral boundaries ... limits the operational usefulness of the LAM beyond some forecast time range". In the case of the Eta this contamination consists not only of the lower resolution of the Avn LBCs and the much discussed mathematical "lateral boundary error", but also of the use of the LBCs of the previous Avn run, at 0000 and 1200 UTC estimated to amount to about an 8 h loss in accuracy. Looking for the signs of the Eta accuracy in relative terms falling behind that of the Avn we have examined the trend of the Eta vs Avn precipitation scores, the rms fits to raobs of the two models as a function of time, and the errors of these models at extended forecast times in placing the centers of major lows. In none of these efforts, some including forecasts out to 84 h, we were able to notice signs of the Eta accuracy being visibly affected by the inflow of the lateral boundary errors. It is therefore hypothesized that some of the Eta design features compensate for the increasing influence of the Avn LBC errors. Candidate features are discussed, with the eta coordinate being a contender to play a major role. This situation being possible for the pair of models discussed, existence of a general limit for the operational usefulness of a LAM seems questionable.

  19. Examining the Moderating Effect of Individual-Level Cultural Values on Users' Acceptance of E-Learning in Developing Countries: A Structural Equation Modeling of an Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Tarhini, Ali; Hone, Kate; Liu, Xiaohui; Tarhini, Takwa

    2017-01-01

    In this study, we examine the effects of individual-level culture on the adoption and acceptance of e-learning tools by students in Lebanon using a theoretical framework based on the Technology Acceptance Model (TAM). To overcome possible limitations of using TAM in developing countries, we extend TAM to include "subjective norms" (SN)…

  20. First-order error budgeting for LUVOIR mission

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Knight, J. Scott; Feinberg, Lee D.; Bolcar, Matthew R.; Shaklan, Stuart B.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that will have complex and demanding requirements to meet the science goals. The Large UV/Optical/IR Surveyor (LUVOIR) mission concept being assessed by the NASA/Goddard Space Flight Center is expected to be 9 to 15 meters in diameter, have a segmented primary mirror and be diffraction limited at a wavelength of 500 nanometers. The optical stability is expected to be in the picometer range for minutes to hours. Architecture studies to support the NASA Science and Technology Definition teams (STDTs) are underway to evaluate systems performance improvements to meet the science goals. To help define the technology needs and assess performance, a first order error budget has been developed. Like the JWST error budget, the error budget includes the active, adaptive and passive elements in spatial and temporal domains. JWST performance is scaled using first order approximations where appropriate and includes technical advances in telescope control.

  1. Preliminary evaluation of an analog procedure to assess acceptability of intimate partner violence against women: the Partner Violence Acceptability Movie Task

    PubMed Central

    Gracia, Enrique; Rodriguez, Christina M.; Lila, Marisol

    2015-01-01

    Acceptability of partner violence against women is a risk factor linked to its perpetration, and to public, professionals’ and victims’ responses to this behavior. Research on the acceptability of violence in intimate partner relationships is, however, limited by reliance solely on self-reports that often provide distorted or socially desirable accounts that may misrepresent respondents’ attitudes. This study presents data on the development and initial validation of a new analog task assessing respondents’ acceptability of physical violence toward women in intimate relationships: the Partner Violence Acceptability Movie Task (PVAM). This new analog task is intended to provide a more implicit measure of the acceptability of partner violence against women. For this analog task, clips were extracted from commercially available films (90-s segments) portraying partner violence. Two independent samples were used to develop and evaluate the PVAM: a sample of 245 undergraduate students and a sample of 94 male intimate partner violence offenders. This new analog task demonstrated acceptable internal consistency. Results also indicated adequate construct validity. Both perpetrators and undergraduates scoring high in the PVAM also scored higher in self-reported justifications of partner abuse. Perpetrators of partner violence scored significantly higher in acceptability of partner violence than the undergraduate sample (both male and female students), and male students scored higher than females. These preliminary results suggest that the PVAM may be a promising tool to assess the acceptability of violence in intimate partner relationships, highlighting the need to consider alternatives to self-report to evaluate potential beliefs about partner violence. PMID:26528220

  2. Quantum error-correction failure distributions: Comparison of coherent and stochastic error models

    NASA Astrophysics Data System (ADS)

    Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.

    2017-06-01

    We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.

  3. Progressive Care Nurses Improving Patient Safety by Limiting Interruptions During Medication Administration.

    PubMed

    Flynn, Fran; Evanish, Julie Q; Fernald, Josephine M; Hutchinson, Dawn E; Lefaiver, Cheryl

    2016-08-01

    Because of the high frequency of interruptions during medication administration, the effectiveness of strategies to limit interruptions during medication administration has been evaluated in numerous quality improvement initiatives in an effort to reduce medication administration errors. To evaluate the effectiveness of evidence-based strategies to limit interruptions during scheduled, peak medication administration times in 3 progressive cardiac care units (PCCUs). A secondary aim of the project was to evaluate the impact of limiting interruptions on medication errors. The percentages of interruptions and medication errors before and after implementation of evidence-based strategies to limit interruptions were measured by using direct observations of nurses on 2 PCCUs. Nurses in a third PCCU served as a comparison group. Interruptions (P < .001) and medication errors (P = .02) decreased significantly in 1 PCCU after implementation of evidence-based strategies to limit interruptions. Avoidable interruptions decreased 83% in PCCU1 and 53% in PCCU2 after implementation of the evidence-based strategies. Implementation of evidence-based strategies to limit interruptions in PCCUs decreases avoidable interruptions and promotes patient safety. ©2016 American Association of Critical-Care Nurses.

  4. Staff Acceptance of Tele-ICU Coverage

    PubMed Central

    Chan, Paul S.; Cram, Peter

    2011-01-01

    Background: Remote coverage of ICUs is increasing, but staff acceptance of this new technology is incompletely characterized. We conducted a systematic review to summarize existing research on acceptance of tele-ICU coverage among ICU staff. Methods: We searched for published articles pertaining to critical care telemedicine systems (aka, tele-ICU) between January 1950 and March 2010 using PubMed, Cumulative Index to Nursing and Allied Health Literature, Global Health, Web of Science, and the Cochrane Library and abstracts and presentations delivered at national conferences. Studies were included if they provided original qualitative or quantitative data on staff perceptions of tele-ICU coverage. Studies were imported into content analysis software and coded by tele-ICU configuration, methodology, participants, and findings (eg, positive and negative staff evaluations). Results: Review of 3,086 citations yielded 23 eligible studies. Findings were grouped into four categories of staff evaluation: overall acceptance level of tele-ICU coverage (measured in 70% of studies), impact on patient care (measured in 96%), impact on staff (measured in 100%), and organizational impact (measured in 48%). Overall acceptance was high, despite initial ambivalence. Favorable impact on patient care was perceived by > 82% of participants. Staff impact referenced enhanced collaboration, autonomy, and training, although scrutiny, malfunctions, and contradictory advice were cited as potential barriers. Staff perceived the organizational impact to vary. An important limitation of available studies was a lack of rigorous methodology and validated survey instruments in many studies. Conclusions: Initial reports suggest high levels of staff acceptance of tele-ICU coverage, but more rigorous methodologic study is required. PMID:21051386

  5. Comprehensive analysis of a medication dosing error related to CPOE.

    PubMed

    Horsky, Jan; Kuperman, Gilad J; Patel, Vimla L

    2005-01-01

    This case study of a serious medication error demonstrates the necessity of a comprehensive methodology for the analysis of failures in interaction between humans and information systems. The authors used a novel approach to analyze a dosing error related to computer-based ordering of potassium chloride (KCl). The method included a chronological reconstruction of events and their interdependencies from provider order entry usage logs, semistructured interviews with involved clinicians, and interface usability inspection of the ordering system. Information collected from all sources was compared and evaluated to understand how the error evolved and propagated through the system. In this case, the error was the product of faults in interaction among human and system agents that methods limited in scope to their distinct analytical domains would not identify. The authors characterized errors in several converging aspects of the drug ordering process: confusing on-screen laboratory results review, system usability difficulties, user training problems, and suboptimal clinical system safeguards that all contributed to a serious dosing error. The results of the authors' analysis were used to formulate specific recommendations for interface layout and functionality modifications, suggest new user alerts, propose changes to user training, and address error-prone steps of the KCl ordering process to reduce the risk of future medication dosing errors.

  6. Assessing the Impact of Analytical Error on Perceived Disease Severity.

    PubMed

    Kroll, Martin H; Garber, Carl C; Bi, Caixia; Suffin, Stephen C

    2015-10-01

    The perception of the severity of disease from laboratory results assumes that the results are free of analytical error; however, analytical error creates a spread of results into a band and thus a range of perceived disease severity. To assess the impact of analytical errors by calculating the change in perceived disease severity, represented by the hazard ratio, using non-high-density lipoprotein (nonHDL) cholesterol as an example. We transformed nonHDL values into ranges using the assumed total allowable errors for total cholesterol (9%) and high-density lipoprotein cholesterol (13%). Using a previously determined relationship between the hazard ratio and nonHDL, we calculated a range of hazard ratios for specified nonHDL concentrations affected by analytical error. Analytical error, within allowable limits, created a band of values of nonHDL, with a width spanning 30 to 70 mg/dL (0.78-1.81 mmol/L), depending on the cholesterol and high-density lipoprotein cholesterol concentrations. Hazard ratios ranged from 1.0 to 2.9, a 16% to 50% error. Increased bias widens this range and decreased bias narrows it. Error-transformed results produce a spread of values that straddle the various cutoffs for nonHDL. The range of the hazard ratio obscures the meaning of results, because the spread of ratios at different cutoffs overlap. The magnitude of the perceived hazard ratio error exceeds that for the allowable analytical error, and significantly impacts the perceived cardiovascular disease risk. Evaluating the error in the perceived severity (eg, hazard ratio) provides a new way to assess the impact of analytical error.

  7. Error coding simulations

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1993-01-01

    There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.

  8. [Diagnostic Errors in Medicine].

    PubMed

    Buser, Claudia; Bankova, Andriyana

    2015-12-09

    The recognition of diagnostic errors in everyday practice can help improve patient safety. The most common diagnostic errors are the cognitive errors, followed by system-related errors and no fault errors. The cognitive errors often result from mental shortcuts, known as heuristics. The rate of cognitive errors can be reduced by a better understanding of heuristics and the use of checklists. The autopsy as a retrospective quality assessment of clinical diagnosis has a crucial role in learning from diagnostic errors. Diagnostic errors occur more often in primary care in comparison to hospital settings. On the other hand, the inpatient errors are more severe than the outpatient errors.

  9. Bulk locality and quantum error correction in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Almheiri, Ahmed; Dong, Xi; Harlow, Daniel

    2015-04-01

    We point out a connection between the emergence of bulk locality in AdS/CFT and the theory of quantum error correction. Bulk notions such as Bogoliubov transformations, location in the radial direction, and the holographic entropy bound all have natural CFT interpretations in the language of quantum error correction. We also show that the question of whether bulk operator reconstruction works only in the causal wedge or all the way to the extremal surface is related to the question of whether or not the quantum error correcting code realized by AdS/CFT is also a "quantum secret sharing scheme", and suggest a tensor network calculation that may settle the issue. Interestingly, the version of quantum error correction which is best suited to our analysis is the somewhat nonstandard "operator algebra quantum error correction" of Beny, Kempf, and Kribs. Our proposal gives a precise formulation of the idea of "subregion-subregion" duality in AdS/CFT, and clarifies the limits of its validity.

  10. The Neural Correlates of Deficient Error Awareness in Attention-Deficit Hyperactivity Disorder (ADHD)

    ERIC Educational Resources Information Center

    O'Connell, Redmond G.; Bellgrove, Mark A.; Dockree, Paul M.; Lau, Adam; Hester, Robert; Garavan, Hugh; Fitzgerald, Michael; Foxe, John J.; Robertson, Ian H.

    2009-01-01

    The ability to detect and correct errors is critical to adaptive control of behaviour and represents a discrete neuropsychological function. A number of studies have highlighted that attention-deficit hyperactivity disorder (ADHD) is associated with abnormalities in behavioural and neural responsiveness to performance errors. One limitation of…

  11. Quantum Error Correction for Metrology

    NASA Astrophysics Data System (ADS)

    Sushkov, Alex; Kessler, Eric; Lovchinsky, Igor; Lukin, Mikhail

    2014-05-01

    The question of the best achievable sensitivity in a quantum measurement is of great experimental relevance, and has seen a lot of attention in recent years. Recent studies [e.g., Nat. Phys. 7, 406 (2011), Nat. Comms. 3, 1063 (2012)] suggest that in most generic scenarios any potential quantum gain (e.g. through the use of entangled states) vanishes in the presence of environmental noise. To overcome these limitations, we propose and analyze a new approach to improve quantum metrology based on quantum error correction (QEC). We identify the conditions under which QEC allows one to improve the signal-to-noise ratio in quantum-limited measurements, and we demonstrate that it enables, in certain situations, Heisenberg-limited sensitivity. We discuss specific applications to nanoscale sensing using nitrogen-vacancy centers in diamond in which QEC can significantly improve the measurement sensitivity and bandwidth under realistic experimental conditions.

  12. A Criterion to Control Nonlinear Error in the Mixed-Mode Bending Test

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2002-01-01

    The mixed-mode bending test ha: been widely used to measure delamination toughness and was recently standardized by ASTM as Standard Test Method D6671-01. This simple test is a combination of the standard Mode I (opening) test and a Mode II (sliding) test. This test uses a unidirectional composite test specimen with an artificial delamination subjected to bending loads to characterize when a delamination will extend. When the displacements become large, the linear theory used to analyze the results of the test yields errors in the calcu1ated toughness values. The current standard places no limit on the specimen loading and therefore test data can be created using the standard that are significantly in error. A method of limiting the error that can be incurred in the calculated toughness values is needed. In this paper, nonlinear models of the MMB test are refined. One of the nonlinear models is then used to develop a simple criterion for prescribing conditions where thc nonlinear error will remain below 5%.

  13. Impact of gradient timing error on the tissue sodium concentration bioscale measured using flexible twisted projection imaging

    NASA Astrophysics Data System (ADS)

    Lu, Aiming; Atkinson, Ian C.; Vaughn, J. Thomas; Thulborn, Keith R.

    2011-12-01

    The rapid biexponential transverse relaxation of the sodium MR signal from brain tissue requires efficient k-space sampling for quantitative imaging in a time that is acceptable for human subjects. The flexible twisted projection imaging (flexTPI) sequence has been shown to be suitable for quantitative sodium imaging with an ultra-short echo time to minimize signal loss. The fidelity of the k-space center location is affected by the readout gradient timing errors on the three physical axes, which is known to cause image distortion for projection-based acquisitions. This study investigated the impact of these timing errors on the voxel-wise accuracy of the tissue sodium concentration (TSC) bioscale measured with the flexTPI sequence. Our simulations show greater than 20% spatially varying quantification errors when the gradient timing errors are larger than 10 μs on all three axes. The quantification is more tolerant of gradient timing errors on the Z-axis. An existing method was used to measure the gradient timing errors with <1 μs error. The gradient timing error measurement is shown to be RF coil dependent, and timing error differences of up to ˜16 μs have been observed between different RF coils used on the same scanner. The measured timing errors can be corrected prospectively or retrospectively to obtain accurate TSC values.

  14. Patients' reasons for accepting a free community pharmacy asthma service.

    PubMed

    Kaae, Susanne; Sporrong, Sofia Kälvemark

    2015-10-01

    Challenges in recruiting patients at the pharmacy counter for cognitive services have been observed, hampering development in this area. To overcome this barrier, insight into the patient perspective is crucial to understanding their lack of appreciation of the services. However, very few studies have been conducted so far to explore why patients accept or decline offers of cognitive services at the pharmacy counter. To explore patients' reasons for accepting a particular cognitive service (the Inhaler Technique Assessment Service) a service intended to detect inhalation technique errors. The service is reimbursed by the Danish state and takes approximately 10 min. Setting Ten community pharmacies located in different regions of Denmark, including the center and suburbs of Copenhagen. Two types of interviews were conducted: long and short semi-structured interviews with 24 patients suffering mainly from asthma and COPD. Researchers from Copenhagen University conducted 11 long interviews and pharmacy internship students from Copenhagen University carried out 13 short interviews. The interviews were analyzed using descriptive analysis. Patients' perceived needs of an inhalation counseling service as well as their motivation for accepting the service, including their accounts of how the service was orally offered by staff. The majority of participants were used to using inhaler devices. The participants felt, for several reasons, little need of an inhaler service and seldom noticed the precise way the service was offered. Patients did not seem to accept the service expecting personal benefits. First timers appeared to accept the service to learn how to use the device correctly, whereas experienced users appeared to accept the ITAS to be helpful to staff or to learn more about health issues in general or were convinced by individual employees who showed a special interest in the participant receiving the service. Privacy problems were felt by several participants. The

  15. La composition academique: les limites de l'acceptabilite (Composition for Academic Purposes: Criteria for Acceptability).

    ERIC Educational Resources Information Center

    Grenall, G. M.

    1981-01-01

    Examines the pedagogical approaches and problems attendant to the development of English writing programs for foreign students. Discusses the skills necessary to handle course work, such as essay tests, term papers and reports, theses and dissertations, and focuses particularly on diagnostic problems and acceptability criteria. Societe Nouvelle…

  16. Inpatient medical errors involving glucose-lowering medications and their impact on patients: review of 2,598 incidents from a voluntary electronic error-reporting database.

    PubMed

    Amori, Renee E; Pittas, Anastassios G; Siegel, Richard D; Kumar, Sanjaya; Chen, Jack S; Karnam, Suneel; Golden, Sherita H; Salem, Deeb N

    2008-01-01

    To describe characteristics of inpatient medical errors involving hypoglycemic medications and their impact on patient care. We conducted a cross-sectional analysis of medical errors and associated adverse events voluntarily reported by hospital employees and staff in 21 nonprofit, nonfederal health-care organizations in the United States that implemented a Web-based electronic error-reporting system (e-ERS) between August 1, 2000, and December 31, 2005. Persons reporting the errors determined the level of impact on patient care. The median duration of e-ERS use was 3.1 years, and 2,598 inpatient error reports involved insulin or orally administered hypoglycemic agents. Nursing staff provided 59% of the reports; physicians reported <2%. Approximately two-thirds of the errors (1,693 of 2,598) reached the patient. Errors that caused temporary harm necessitating major treatment or that caused permanent harm accounted for 1.5% of reports (40 of 2,598). Insulin was involved in 82% of reports, and orally administered hypoglycemic agents were involved in 18% of all reports (473 of 2,598). Sulfonylureas were implicated in 51.8% of reports involving oral hypoglycemic agents (9.4% of all reports). An e-ERS provides an accessible venue for reporting and tracking inpatient medical errors involving glucose-lowering medications. Results are limited by potential underreporting of events, particularly by physicians, and variations in the reporter perception of patient harm.

  17. Grassland productivity limited by multiple nutrients

    USDA-ARS?s Scientific Manuscript database

    Limitation of aboveground net primary productivity (ANPP) by nitrogen (N) is widely accepted, but the roles of phosphorus (P), potassium (K) and their combinations remain unclear. Thus we may underestimate nutrient limitation of primary productivity. We conducted standardized sampling of ANPP and ...

  18. Characteristics of pediatric chemotherapy medication errors in a national error reporting database.

    PubMed

    Rinke, Michael L; Shore, Andrew D; Morlock, Laura; Hicks, Rodney W; Miller, Marlene R

    2007-07-01

    Little is known regarding chemotherapy medication errors in pediatrics despite studies suggesting high rates of overall pediatric medication errors. In this study, the authors examined patterns in pediatric chemotherapy errors. The authors queried the United States Pharmacopeia MEDMARX database, a national, voluntary, Internet-accessible error reporting system, for all error reports from 1999 through 2004 that involved chemotherapy medications and patients aged <18 years. Of the 310 pediatric chemotherapy error reports, 85% reached the patient, and 15.6% required additional patient monitoring or therapeutic intervention. Forty-eight percent of errors originated in the administering phase of medication delivery, and 30% originated in the drug-dispensing phase. Of the 387 medications cited, 39.5% were antimetabolites, 14.0% were alkylating agents, 9.3% were anthracyclines, and 9.3% were topoisomerase inhibitors. The most commonly involved chemotherapeutic agents were methotrexate (15.3%), cytarabine (12.1%), and etoposide (8.3%). The most common error types were improper dose/quantity (22.9% of 327 cited error types), wrong time (22.6%), omission error (14.1%), and wrong administration technique/wrong route (12.2%). The most common error causes were performance deficit (41.3% of 547 cited error causes), equipment and medication delivery devices (12.4%), communication (8.8%), knowledge deficit (6.8%), and written order errors (5.5%). Four of the 5 most serious errors occurred at community hospitals. Pediatric chemotherapy errors often reached the patient, potentially were harmful, and differed in quality between outpatient and inpatient areas. This study indicated which chemotherapeutic agents most often were involved in errors and that administering errors were common. Investigation is needed regarding targeted medication administration safeguards for these high-risk medications. Copyright (c) 2007 American Cancer Society.

  19. Optimized universal color palette design for error diffusion

    NASA Astrophysics Data System (ADS)

    Kolpatzik, Bernd W.; Bouman, Charles A.

    1995-04-01

    Currently, many low-cost computers can only simultaneously display a palette of 256 color. However, this palette is usually selectable from a very large gamut of available colors. For many applications, this limited palette size imposes a significant constraint on the achievable image quality. We propose a method for designing an optimized universal color palette for use with halftoning methods such as error diffusion. The advantage of a universal color palette is that it is fixed and therefore allows multiple images to be displayed simultaneously. To design the palette, we employ a new vector quantization method known as sequential scalar quantization (SSQ) to allocate the colors in a visually uniform color space. The SSQ method achieves near-optimal allocation, but may be efficiently implemented using a series of lookup tables. When used with error diffusion, SSQ adds little computational overhead and may be used to minimize the visual error in an opponent color coordinate system. We compare the performance of the optimized algorithm to standard error diffusion by evaluating a visually weighted mean-squared-error measure. Our metric is based on the color difference in CIE L*AL*B*, but also accounts for the lowpass characteristic of human contrast sensitivity.

  20. An acceptable role for computers in the aircraft design process

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Roberts, L.

    1980-01-01

    Some of the reasons why the computerization trend is not wholly accepted are explored for two typical cases: computer use in the technical specialties and computer use in aircraft synthesis. The factors that limit acceptance are traced in part, to the large resources needed to understand the details of computer programs, the inability to include measured data as input to many of the theoretical programs, and the presentation of final results without supporting intermediate answers. Other factors are due solely to technical issues such as limited detail in aircraft synthesis and major simplifying assumptions in the technical specialties. These factors and others can be influenced by the technical specialist and aircraft designer. Some of these factors may become less significant as the computerization process evolves, but some issues, such as understanding large integrated systems, may remain issues in the future. Suggestions for improved acceptance include publishing computer programs so that they may be reviewed, edited, and read. Other mechanisms include extensive modularization of programs and ways to include measured information as part of the input to theoretical approaches.

  1. Experimental investigation of observation error in anuran call surveys

    USGS Publications Warehouse

    McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R.

    2010-01-01

    Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presenceabsence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5 of all positive detections, with individual observers exhibiting false-positive rates between 0.5 and 14. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys. ?? 2010 The Wildlife Society.

  2. Analysis of Measurement Error and Estimator Shape in Three-Point Hydraulic Gradient Estimators

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Wahi, A. K.

    2003-12-01

    Three spatially separated measurements of head provide a means of estimating the magnitude and orientation of the hydraulic gradient. Previous work with three-point estimators has focused on the effect of the size (area) of the three-point estimator and measurement error on the final estimates of the gradient magnitude and orientation in laboratory and field studies (Mizell, 1980; Silliman and Frost, 1995; Silliman and Mantz, 2000; Ruskauff and Rumbaugh, 1996). However, a systematic analysis of the combined effects of measurement error, estimator shape and estimator orientation relative to the gradient orientation has not previously been conducted. Monte Carlo simulation with an underlying assumption of a homogeneous transmissivity field is used to examine the effects of uncorrelated measurement error on a series of eleven different three-point estimators having the same size but different shapes as a function of the orientation of the true gradient. Results show that the variance in the estimate of both the magnitude and the orientation increase linearly with the increase in measurement error in agreement with the results of stochastic theory for estimators that are small relative to the correlation length of transmissivity (Mizell, 1980). Three-point estimator shapes with base to height ratios between 0.5 and 5.0 provide accurate estimates of magnitude and orientation across all orientations of the true gradient. As an example, these results are applied to data collected from a monitoring network of 25 wells at the WIPP site during two different time periods. The simulation results are used to reduce the set of all possible combinations of three wells to those combinations with acceptable measurement errors relative to the amount of head drop across the estimator and base to height ratios between 0.5 and 5.0. These limitations reduce the set of all possible well combinations by 98 percent and show that size alone as defined by triangle area is not a valid

  3. Facing the malpractice crisis: academic physicians' willingness to accept quick fix solutions.

    PubMed

    Levine, Rachel B; Kravet, Steven J; Reed, Darcy A; Windish, Donna M; Wolfe, Leah; Wright, Scott M

    2006-12-01

    We sought to determine the willingness of academic physicians to accept strategies to contain institutional malpractice costs. We surveyed all 270 Department of Medicine physicians at a large academic center. Respondents were asked about their knowledge regarding malpractice premiums, willingness to reduce patient-care activities and accept decreases in compensation. The response rate was 80%. Respondents estimated the annual increase in malpractice premiums from 2004 to 2005 to be 29%. The true increase was 28% (P = 0.55). Almost all opposed eliminating patient care (95%) or providing patient care every other year at double effort and withdrawing from patient care on alternate years (97%). Seventy percent would limit their clinical procedures. Most physicians opposed salary reduction (97%) or decreases in fringe benefits (99%). Few academic physicians are willing to limit patient care or accept decreases in compensation to recoup institutional malpractice costs.

  4. Orbit error characteristic and distribution of TLE using CHAMP orbit data

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-li; Xiong, Yong-qing

    2018-02-01

    Space object orbital covariance data is required for collision risk assessments, but publicly accessible two line element (TLE) data does not provide orbital error information. This paper compared historical TLE data and GPS precision ephemerides of CHAMP to assess TLE orbit accuracy from 2002 to 2008, inclusive. TLE error spatial variations with longitude and latitude were calculated to analyze error characteristics and distribution. The results indicate that TLE orbit data are systematically biased from the limited SGP4 model. The biases can reach the level of kilometers, and the sign and magnitude are correlate significantly with longitude.

  5. General error analysis in the relationship between free thyroxine and thyrotropin and its clinical relevance.

    PubMed

    Goede, Simon L; Leow, Melvin Khee-Shing

    2013-01-01

    This treatise investigates error sources in measurements applicable to the hypothalamus-pituitary-thyroid (HPT) system of analysis for homeostatic set point computation. The hypothalamus-pituitary transfer characteristic (HP curve) describes the relationship between plasma free thyroxine [FT4] and thyrotropin [TSH]. We define the origin, types, causes, and effects of errors that are commonly encountered in TFT measurements and examine how we can interpret these to construct a reliable HP function for set point establishment. The error sources in the clinical measurement procedures are identified and analyzed in relation to the constructed HP model. The main sources of measurement and interpretation uncertainties are (1) diurnal variations in [TSH], (2) TFT measurement variations influenced by timing of thyroid medications, (3) error sensitivity in ranges of [TSH] and [FT4] (laboratory assay dependent), (4) rounding/truncation of decimals in [FT4] which in turn amplify curve fitting errors in the [TSH] domain in the lower [FT4] range, (5) memory effects (rate-independent hysteresis effect). When the main uncertainties in thyroid function tests (TFT) are identified and analyzed, we can find the most acceptable model space with which we can construct the best HP function and the related set point area.

  6. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

  7. Computer-socket manufacturing error: How much before it is clinically apparent?

    PubMed Central

    Sanders, Joan E.; Severance, Michael R.; Allyn, Kathryn J.

    2015-01-01

    The purpose of this research was to pursue quality standards for computer-manufacturing of prosthetic sockets for people with transtibial limb loss. Thirty-three duplicates of study participants’ normally used sockets were fabricated using central fabrication facilities. Socket-manufacturing errors were compared with clinical assessments of socket fit. Of the 33 sockets tested, 23 were deemed clinically to need modification. All 13 sockets with mean radial error (MRE) greater than 0.25 mm were clinically unacceptable, and 11 of those were deemed in need of sizing reduction. Of the remaining 20 sockets, 5 sockets with interquartile range (IQR) greater than 0.40 mm were deemed globally or regionally oversized and in need of modification. Of the remaining 15 sockets, 5 sockets with closed contours of elevated surface normal angle error (SNAE) were deemed clinically to need shape modification at those closed contour locations. The remaining 10 sockets were deemed clinically acceptable and not in need modification. MRE, IQR, and SNAE may serve as effective metrics to characterize quality of computer-manufactured prosthetic sockets, helping facilitate the development of quality standards for the socket manufacturing industry. PMID:22773260

  8. Taking error into account when fitting models using Approximate Bayesian Computation.

    PubMed

    van der Vaart, Elske; Prangle, Dennis; Sibly, Richard M

    2018-03-01

    Stochastic computer simulations are often the only practical way of answering questions relating to ecological management. However, due to their complexity, such models are difficult to calibrate and evaluate. Approximate Bayesian Computation (ABC) offers an increasingly popular approach to this problem, widely applied across a variety of fields. However, ensuring the accuracy of ABC's estimates has been difficult. Here, we obtain more accurate estimates by incorporating estimation of error into the ABC protocol. We show how this can be done where the data consist of repeated measures of the same quantity and errors may be assumed to be normally distributed and independent. We then derive the correct acceptance probabilities for a probabilistic ABC algorithm, and update the coverage test with which accuracy is assessed. We apply this method, which we call error-calibrated ABC, to a toy example and a realistic 14-parameter simulation model of earthworms that is used in environmental risk assessment. A comparison with exact methods and the diagnostic coverage test show that our approach improves estimation of parameter values and their credible intervals for both models. © 2017 by the Ecological Society of America.

  9. Drought Persistence Errors in Global Climate Models

    NASA Astrophysics Data System (ADS)

    Moon, H.; Gudmundsson, L.; Seneviratne, S. I.

    2018-04-01

    The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.

  10. Common errors in multidrug-resistant tuberculosis management.

    PubMed

    Monedero, Ignacio; Caminero, Jose A

    2014-02-01

    Multidrug-resistant tuberculosis (MDR-TB), defined as being resistant to at least rifampicin and isoniazid, has an increasing burden and threatens TB control. Diagnosis is limited and usually delayed while treatment is long lasting, toxic and poorly effective. MDR-TB management in scarce-resource settings is demanding however it is feasible and extremely necessary. In these settings, cure rates do not usually exceed 60-70% and MDR-TB management is novel for many TB programs. In this challenging scenario, both clinical and programmatic errors are likely to occur. The majority of these errors may be prevented or alleviated with appropriate and timely training in addition to uninterrupted procurement of high-quality drugs, updated national guidelines and laws and an overall improvement in management capacities. While new tools for diagnosis and shorter and less toxic treatment are not available in developing countries, MDR-TB management will remain complex in scarce resource settings. Focusing special attention on the common errors in diagnosis, regimen design and especially treatment delivery may benefit patients and programs with current outdated tools. The present article is a compilation of typical errors repeatedly observed by the authors in a wide range of countries during technical assistant missions and trainings.

  11. Social Autopsy of maternal, neonatal deaths and stillbirths in rural Bangladesh: qualitative exploration of its effect and community acceptance.

    PubMed

    Biswas, Animesh; Rahman, Fazlur; Eriksson, Charli; Halim, Abdul; Dalal, Koustuv

    2016-08-23

    Social Autopsy (SA) is an innovative strategy where a trained facilitator leads community groups through a structured, standardised analysis of the physical, environmental, cultural and social factors contributing to a serious, non-fatal health event or death. The discussion stimulated by the formal process of SA determines the causes and suggests preventative measures that are appropriate and achievable in the community. Here we explored individual experiences of SA, including acceptance and participant learning, and its effect on rural communities in Bangladesh. The present study had explored the experiences gained while undertaking SA of maternal and neonatal deaths and stillbirths in rural Bangladesh. Qualitative assessment of documents, observations, focus group discussions, group discussions and in-depth interviews by content and thematic analyses. Each community's maternal and neonatal death was a unique, sad story. SA undertaken by government field-level health workers were well accepted by rural communities. SA had the capability to explore the social reasons behind the medical cause of the death without apportioning blame to any individual or group. SA was a useful instrument to raise awareness and encourage community responses to errors within the society that contributed to the death. People participating in SA showed commitment to future preventative measures and devised their own solutions for the future prevention of maternal and neonatal deaths. SA highlights societal errors and promotes discussion around maternal or newborn death. SA is an effective means to deliver important preventative messages and to sensitise the community to death issues. Importantly, the community itself is enabled to devise future strategies to avert future maternal and neonatal deaths in Bangladesh. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Geometric error characterization and error budgets. [thematic mapper

    NASA Technical Reports Server (NTRS)

    Beyer, E.

    1982-01-01

    Procedures used in characterizing geometric error sources for a spaceborne imaging system are described using the LANDSAT D thematic mapper ground segment processing as the prototype. Software was tested through simulation and is undergoing tests with the operational hardware as part of the prelaunch system evaluation. Geometric accuracy specifications, geometric correction, and control point processing are discussed. Cross track and along track errors are tabulated for the thematic mapper, the spacecraft, and ground processing to show the temporal registration error budget in pixel (42.5 microrad) 90%.

  13. A Generalized Pivotal Quantity Approach to Analytical Method Validation Based on Total Error.

    PubMed

    Yang, Harry; Zhang, Jianchun

    2015-01-01

    The primary purpose of method validation is to demonstrate that the method is fit for its intended use. Traditionally, an analytical method is deemed valid if its performance characteristics such as accuracy and precision are shown to meet prespecified acceptance criteria. However, these acceptance criteria are not directly related to the method's intended purpose, which is usually a gurantee that a high percentage of the test results of future samples will be close to their true values. Alternate "fit for purpose" acceptance criteria based on the concept of total error have been increasingly used. Such criteria allow for assessing method validity, taking into account the relationship between accuracy and precision. Although several statistical test methods have been proposed in literature to test the "fit for purpose" hypothesis, the majority of the methods are not designed to protect the risk of accepting unsuitable methods, thus having the potential to cause uncontrolled consumer's risk. In this paper, we propose a test method based on generalized pivotal quantity inference. Through simulation studies, the performance of the method is compared to five existing approaches. The results show that both the new method and the method based on β-content tolerance interval with a confidence level of 90%, hereafter referred to as the β-content (0.9) method, control Type I error and thus consumer's risk, while the other existing methods do not. It is further demonstrated that the generalized pivotal quantity method is less conservative than the β-content (0.9) method when the analytical methods are biased, whereas it is more conservative when the analytical methods are unbiased. Therefore, selection of either the generalized pivotal quantity or β-content (0.9) method for an analytical method validation depends on the accuracy of the analytical method. It is also shown that the generalized pivotal quantity method has better asymptotic properties than all of the current

  14. Relationships of Measurement Error and Prediction Error in Observed-Score Regression

    ERIC Educational Resources Information Center

    Moses, Tim

    2012-01-01

    The focus of this paper is assessing the impact of measurement errors on the prediction error of an observed-score regression. Measures are presented and described for decomposing the linear regression's prediction error variance into parts attributable to the true score variance and the error variances of the dependent variable and the predictor…

  15. Errors in otology.

    PubMed

    Kartush, J M

    1996-11-01

    Practicing medicine successfully requires that errors in diagnosis and treatment be minimized. Malpractice laws encourage litigators to ascribe all medical errors to incompetence and negligence. There are, however, many other causes of unintended outcomes. This article describes common causes of errors and suggests ways to minimize mistakes in otologic practice. Widespread dissemination of knowledge about common errors and their precursors can reduce the incidence of their occurrence. Consequently, laws should be passed to allow for a system of non-punitive, confidential reporting of errors and "near misses" that can be shared by physicians nationwide.

  16. Prescribing errors during hospital inpatient care: factors influencing identification by pharmacists.

    PubMed

    Tully, Mary P; Buchan, Iain E

    2009-12-01

    To investigate the prevalence of prescribing errors identified by pharmacists in hospital inpatients and the factors influencing error identification rates by pharmacists throughout hospital admission. 880-bed university teaching hospital in North-west England. Data about prescribing errors identified by pharmacists (median: 9 (range 4-17) collecting data per day) when conducting routine work were prospectively recorded on 38 randomly selected days over 18 months. Proportion of new medication orders in which an error was identified; predictors of error identification rate, adjusted for workload and seniority of pharmacist, day of week, type of ward or stage of patient admission. 33,012 new medication orders were reviewed for 5,199 patients; 3,455 errors (in 10.5% of orders) were identified for 2,040 patients (39.2%; median 1, range 1-12). Most were problem orders (1,456, 42.1%) or potentially significant errors (1,748, 50.6%); 197 (5.7%) were potentially serious; 1.6% (n = 54) were potentially severe or fatal. Errors were 41% (CI: 28-56%) more likely to be identified at patient's admission than at other times, independent of confounders. Workload was the strongest predictor of error identification rates, with 40% (33-46%) less errors identified on the busiest days than at other times. Errors identified fell by 1.9% (1.5-2.3%) for every additional chart checked, independent of confounders. Pharmacists routinely identify errors but increasing workload may reduce identification rates. Where resources are limited, they may be better spent on identifying and addressing errors immediately after admission to hospital.

  17. Error field measurement, correction and heat flux balancing on Wendelstein 7-X

    DOE PAGES

    Lazerson, Samuel A.; Otte, Matthias; Jakubowski, Marcin; ...

    2017-03-10

    The measurement and correction of error fields in Wendelstein 7-X (W7-X) is critical to long pulse high beta operation, as small error fields may cause overloading of divertor plates in some configurations. Accordingly, as part of a broad collaborative effort, the detection and correction of error fields on the W7-X experiment has been performed using the trim coil system in conjunction with the flux surface mapping diagnostic and high resolution infrared camera. In the early commissioning phase of the experiment, the trim coils were used to open an n/m = 1/2 island chain in a specially designed magnetic configuration. Themore » flux surfacing mapping diagnostic was then able to directly image the magnetic topology of the experiment, allowing the inference of a small similar to 4 cm intrinsic island chain. The suspected main sources of the error field, slight misalignment and deformations of the superconducting coils, are then confirmed through experimental modeling using the detailed measurements of the coil positions. Observations of the limiters temperatures in module 5 shows a clear dependence of the limiter heat flux pattern as the perturbing fields are rotated. Plasma experiments without applied correcting fields show a significant asymmetry in neutral pressure (centered in module 4) and light emission (visible, H-alpha, CII, and CIII). Such pressure asymmetry is associated with plasma-wall (limiter) interaction asymmetries between the modules. Application of trim coil fields with n = 1 waveform correct the imbalance. Confirmation of the error fields allows the assessment of magnetic fields which resonate with the n/m = 5/5 island chain.« less

  18. Educational agenda for diagnostic error reduction

    PubMed Central

    Trowbridge, Robert L; Dhaliwal, Gurpreet; Cosby, Karen S

    2013-01-01

    Diagnostic errors are a major patient safety concern. Although the majority of diagnostic errors are partially attributable to cognitive mistakes, the most effective means of improving clinician cognition in order to achieve gains in diagnostic reliability are unclear. We propose a tripartite educational agenda for improving diagnostic performance among students, residents and practising physicians. This agenda includes strengthening the metacognitive abilities of clinicians, fostering intuitive reasoning and increasing awareness of the role of systems in the diagnostic process. The evidence supporting initiatives in each of these realms is reviewed and a course of future implementation and study is proposed. The barriers to designing and implementing this agenda are substantial and include limited evidence supporting these initiatives and the challenges of changing the practice patterns of practising physicians. Implementation will need to be accompanied by rigorous evaluation. PMID:23764435

  19. Implementing parallel spreadsheet models for health policy decisions: The impact of unintentional errors on model projections.

    PubMed

    Bailey, Stephanie L; Bono, Rose S; Nash, Denis; Kimmel, April D

    2018-01-01

    Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Standard error-checking techniques may not

  20. Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions

    NASA Astrophysics Data System (ADS)

    McCullough, Christopher; Bettadpur, Srinivas

    2015-04-01

    In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.

  1. Error Characterization of Flight Trajectories Reconstructed Using Structure from Motion

    DTIC Science & Technology

    2015-03-27

    adjustment using IMU rotation information, the accuracy of the yaw, pitch and roll is limited and numerical errors can be as high as 1e-4 depending on...due to either zero mean, Gaussian noise and/or bias in the IMU measured yaw, pitch and roll angles. It is possible that when errors in these...requires both the information on how the camera is mounted to the IMU /aircraft and the measured yaw, pitch and roll at the time of the first image

  2. Patient-reported Outcomes for Assessment of Quality of Life in Refractive Error: A Systematic Review.

    PubMed

    Kandel, Himal; Khadka, Jyoti; Goggin, Michael; Pesudovs, Konrad

    2017-12-01

    This review has identified the best existing patient-reported outcome (PRO) instruments in refractive error. The article highlights the limitations of the existing instruments and discusses the way forward. A systematic review was conducted to identify the types of PROs used in refractive error, to determine the quality of the existing PRO instruments in terms of their psychometric properties, and to determine the limitations in the content of the existing PRO instruments. Articles describing a PRO instrument measuring 1 or more domains of quality of life in people with refractive error were identified by electronic searches on the MEDLINE, PubMed, Scopus, Web of Science, and Cochrane databases. The information on content development, psychometric properties, validity, reliability, and responsiveness of those PRO instruments was extracted from the selected articles. The analysis was done based on a comprehensive set of assessment criteria. One hundred forty-eight articles describing 47 PRO instruments in refractive error were included in the review. Most of the articles (99 [66.9%]) used refractive error-specific PRO instruments. The PRO instruments comprised 19 refractive, 12 vision but nonrefractive, and 16 generic PRO instruments. Only 17 PRO instruments were validated in refractive error populations; six of them were developed using Rasch analysis. None of the PRO instruments has items across all domains of quality of life. The Quality of Life Impact of Refractive Correction, the Quality of Vision, and the Contact Lens Impact on Quality of Life have comparatively better quality with some limitations, compared with the other PRO instruments. This review describes the PRO instruments and informs the choice of an appropriate measure in refractive error. We identified need of a comprehensive and scientifically robust refractive error-specific PRO instrument. Item banking and computer-adaptive testing system can be the way to provide such an instrument.

  3. Cost-effectiveness acceptability curves revisited.

    PubMed

    Al, Maiwenn J

    2013-02-01

    Since the introduction of the cost-effectiveness acceptability curve (CEAC) in 1994, its use as a method to describe uncertainty around incremental cost-effectiveness ratios (ICERs) has steadily increased. In this paper, first the construction and interpretation of the CEAC is explained, both in the context of modelling studies and in the context of cost-effectiveness (CE) studies alongside clinical trials. Additionally, this paper reviews the advantages and limitations of the CEAC. Many of the perceived limitations can be attributed to the practice of interpreting the CEAC as a decision rule while it was not developed as such. It is argued that the CEAC is still a useful tool in describing and quantifying uncertainty around the ICER, especially in combination with other tools such as plots on the CE plane and value-of-information analysis.

  4. Sun compass error model

    NASA Technical Reports Server (NTRS)

    Blucker, T. J.; Ferry, W. W.

    1971-01-01

    An error model is described for the Apollo 15 sun compass, a contingency navigational device. Field test data are presented along with significant results of the test. The errors reported include a random error resulting from tilt in leveling the sun compass, a random error because of observer sighting inaccuracies, a bias error because of mean tilt in compass leveling, a bias error in the sun compass itself, and a bias error because the device is leveled to the local terrain slope.

  5. Error, stress, and teamwork in medicine and aviation: cross sectional surveys

    NASA Technical Reports Server (NTRS)

    Sexton, J. B.; Thomas, E. J.; Helmreich, R. L.

    2000-01-01

    OBJECTIVES: To survey operating theatre and intensive care unit staff about attitudes concerning error, stress, and teamwork and to compare these attitudes with those of airline cockpit crew. DESIGN:: Cross sectional surveys. SETTING:: Urban teaching and non-teaching hospitals in the United States, Israel, Germany, Switzerland, and Italy. Major airlines around the world. PARTICIPANTS:: 1033 doctors, nurses, fellows, and residents working in operating theatres and intensive care units and over 30 000 cockpit crew members (captains, first officers, and second officers). MAIN OUTCOME MEASURES:: Perceptions of error, stress, and teamwork. RESULTS:: Pilots were least likely to deny the effects of fatigue on performance (26% v 70% of consultant surgeons and 47% of consultant anaesthetists). Most pilots (97%) and intensive care staff (94%) rejected steep hierarchies (in which senior team members are not open to input from junior members), but only 55% of consultant surgeons rejected such hierarchies. High levels of teamwork with consultant surgeons were reported by 73% of surgical residents, 64% of consultant surgeons, 39% of anaesthesia consultants, 28% of surgical nurses, 25% of anaesthetic nurses, and 10% of anaesthetic residents. Only a third of staff reported that errors are handled appropriately at their hospital. A third of intensive care staff did not acknowledge that they make errors. Over half of intensive care staff reported that they find it difficult to discuss mistakes. CONCLUSIONS: Medical staff reported that error is important but difficult to discuss and not handled well in their hospital. Barriers to discussing error are more important since medical staff seem to deny the effect of stress and fatigue on performance. Further problems include differing perceptions of teamwork among team members and reluctance of senior theatre staff to accept input from junior members.

  6. Error, stress, and teamwork in medicine and aviation: cross sectional surveys

    PubMed Central

    Sexton, J Bryan; Thomas, Eric J; Helmreich, Robert L

    2000-01-01

    Objectives: To survey operating theatre and intensive care unit staff about attitudes concerning error, stress, and teamwork and to compare these attitudes with those of airline cockpit crew. Design: Cross sectional surveys. Setting: Urban teaching and non-teaching hospitals in the United States, Israel, Germany, Switzerland, and Italy. Major airlines around the world. Participants: 1033 doctors, nurses, fellows, and residents working in operating theatres and intensive care units and over 30 000 cockpit crew members (captains, first officers, and second officers). Main outcome measures: Perceptions of error, stress, and teamwork. Results: Pilots were least likely to deny the effects of fatigue on performance (26% v 70% of consultant surgeons and 47% of consultant anaesthetists). Most pilots (97%) and intensive care staff (94%) rejected steep hierarchies (in which senior team members are not open to input from junior members), but only 55% of consultant surgeons rejected such hierarchies. High levels of teamwork with consultant surgeons were reported by 73% of surgical residents, 64% of consultant surgeons, 39% of anaesthesia consultants, 28% of surgical nurses, 25% of anaesthetic nurses, and 10% of anaesthetic residents. Only a third of staff reported that errors are handled appropriately at their hospital. A third of intensive care staff did not acknowledge that they make errors. Over half of intensive care staff reported that they find it difficult to discuss mistakes. Conclusions: Medical staff reported that error is important but difficult to discuss and not handled well in their hospital. Barriers to discussing error are more important since medical staff seem to deny the effect of stress and fatigue on performance. Further problems include differing perceptions of teamwork among team members and reluctance of senior theatre staff to accept input from junior members. PMID:10720356

  7. Error mitigation for CCSD compressed imager data

    NASA Astrophysics Data System (ADS)

    Gladkova, Irina; Grossberg, Michael; Gottipati, Srikanth; Shahriar, Fazlul; Bonev, George

    2009-08-01

    To efficiently use the limited bandwidth available on the downlink from satellite to ground station, imager data is usually compressed before transmission. Transmission introduces unavoidable errors, which are only partially removed by forward error correction and packetization. In the case of the commonly used CCSD Rice-based compression, it results in a contiguous sequence of dummy values along scan lines in a band of the imager data. We have developed a method capable of using the image statistics to provide a principled estimate of the missing data. Our method outperforms interpolation yet can be performed fast enough to provide uninterrupted data flow. The estimation of the lost data provides significant value to end users who may use only part of the data, may not have statistical tools, or lack the expertise to mitigate the impact of the lost data. Since the locations of the lost data will be clearly marked as meta-data in the HDF or NetCDF header, experts who prefer to handle error mitigation themselves will be free to use or ignore our estimates as they see fit.

  8. Error propagation in energetic carrying capacity models

    USGS Publications Warehouse

    Pearse, Aaron T.; Stafford, Joshua D.

    2014-01-01

    Conservation objectives derived from carrying capacity models have been used to inform management of landscapes for wildlife populations. Energetic carrying capacity models are particularly useful in conservation planning for wildlife; these models use estimates of food abundance and energetic requirements of wildlife to target conservation actions. We provide a general method for incorporating a foraging threshold (i.e., density of food at which foraging becomes unprofitable) when estimating food availability with energetic carrying capacity models. We use a hypothetical example to describe how past methods for adjustment of foraging thresholds biased results of energetic carrying capacity models in certain instances. Adjusting foraging thresholds at the patch level of the species of interest provides results consistent with ecological foraging theory. Presentation of two case studies suggest variation in bias which, in certain instances, created large errors in conservation objectives and may have led to inefficient allocation of limited resources. Our results also illustrate how small errors or biases in application of input parameters, when extrapolated to large spatial extents, propagate errors in conservation planning and can have negative implications for target populations.

  9. Improving homogeneity by dynamic speed limit systems.

    PubMed

    van Nes, Nicole; Brandenburg, Stefan; Twisk, Divera

    2010-05-01

    Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12 road sections in a driving simulator. The speed limit system (static-dynamic), the sophistication of the dynamic speed limit system (basic roadside, advanced roadside, and advanced in-car) and the situational condition (dangerous-non-dangerous) were varied. The homogeneity of driving speed, the rated credibility of the posted speed limit and the acceptance of the different dynamic speed limit systems were assessed. The results show that the homogeneity of individual speeds, defined as the variation in driving speed for an individual subject along a particular road section, was higher with the dynamic speed limit system than with the static speed limit system. The more sophisticated dynamic speed limit system tested within this study led to higher homogeneity than the less sophisticated systems. The acceptance of the dynamic speed limit systems used in this study was positive, they were perceived as quite useful and rather satisfactory. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Itô-SDE MCMC method for Bayesian characterization of errors associated with data limitations in stochastic expansion methods for uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Arnst, M.; Abello Álvarez, B.; Ponthot, J.-P.; Boman, R.

    2017-11-01

    This paper is concerned with the characterization and the propagation of errors associated with data limitations in polynomial-chaos-based stochastic methods for uncertainty quantification. Such an issue can arise in uncertainty quantification when only a limited amount of data is available. When the available information does not suffice to accurately determine the probability distributions that must be assigned to the uncertain variables, the Bayesian method for assigning these probability distributions becomes attractive because it allows the stochastic model to account explicitly for insufficiency of the available information. In previous work, such applications of the Bayesian method had already been implemented by using the Metropolis-Hastings and Gibbs Markov Chain Monte Carlo (MCMC) methods. In this paper, we present an alternative implementation, which uses an alternative MCMC method built around an Itô stochastic differential equation (SDE) that is ergodic for the Bayesian posterior. We draw together from the mathematics literature a number of formal properties of this Itô SDE that lend support to its use in the implementation of the Bayesian method, and we describe its discretization, including the choice of the free parameters, by using the implicit Euler method. We demonstrate the proposed methodology on a problem of uncertainty quantification in a complex nonlinear engineering application relevant to metal forming.

  11. Acceptance threshold hypothesis is supported by chemical similarity of cuticular hydrocarbons in a stingless bee, Melipona asilvai.

    PubMed

    Nascimento, D L; Nascimento, F S

    2012-11-01

    The ability to discriminate nestmates from non-nestmates in insect societies is essential to protect colonies from conspecific invaders. The acceptance threshold hypothesis predicts that organisms whose recognition systems classify recipients without errors should optimize the balance between acceptance and rejection. In this process, cuticular hydrocarbons play an important role as cues of recognition in social insects. The aims of this study were to determine whether guards exhibit a restrictive level of rejection towards chemically distinct individuals, becoming more permissive during the encounters with either nestmate or non-nestmate individuals bearing chemically similar profiles. The study demonstrates that Melipona asilvai (Hymenoptera: Apidae: Meliponini) guards exhibit a flexible system of nestmate recognition according to the degree of chemical similarity between the incoming forager and its own cuticular hydrocarbons profile. Guards became less restrictive in their acceptance rates when they encounter non-nestmates with highly similar chemical profiles, which they probably mistake for nestmates, hence broadening their acceptance level.

  12. 45 CFR 149.45 - Funding limitation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Funding limitation. 149.45 Section 149.45 Public... Funding limitation. (a) Based on the projected or actual availability of program funding, the Secretary... accepting applications or satisfying reimbursement requests based on the availability of funding is final...

  13. 45 CFR 149.45 - Funding limitation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Funding limitation. 149.45 Section 149.45 Public... Funding limitation. (a) Based on the projected or actual availability of program funding, the Secretary... accepting applications or satisfying reimbursement requests based on the availability of funding is final...

  14. 45 CFR 149.45 - Funding limitation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Funding limitation. 149.45 Section 149.45 Public... Funding limitation. (a) Based on the projected or actual availability of program funding, the Secretary... accepting applications or satisfying reimbursement requests based on the availability of funding is final...

  15. 45 CFR 149.45 - Funding limitation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Funding limitation. 149.45 Section 149.45 Public... Funding limitation. (a) Based on the projected or actual availability of program funding, the Secretary... accepting applications or satisfying reimbursement requests based on the availability of funding is final...

  16. 45 CFR 149.45 - Funding limitation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Funding limitation. 149.45 Section 149.45 Public... Funding limitation. (a) Based on the projected or actual availability of program funding, the Secretary... accepting applications or satisfying reimbursement requests based on the availability of funding is final...

  17. Insar Unwrapping Error Correction Based on Quasi-Accurate Detection of Gross Errors (quad)

    NASA Astrophysics Data System (ADS)

    Kang, Y.; Zhao, C. Y.; Zhang, Q.; Yang, C. S.

    2018-04-01

    Unwrapping error is a common error in the InSAR processing, which will seriously degrade the accuracy of the monitoring results. Based on a gross error correction method, Quasi-accurate detection (QUAD), the method for unwrapping errors automatic correction is established in this paper. This method identifies and corrects the unwrapping errors by establishing a functional model between the true errors and interferograms. The basic principle and processing steps are presented. Then this method is compared with the L1-norm method with simulated data. Results show that both methods can effectively suppress the unwrapping error when the ratio of the unwrapping errors is low, and the two methods can complement each other when the ratio of the unwrapping errors is relatively high. At last the real SAR data is tested for the phase unwrapping error correction. Results show that this new method can correct the phase unwrapping errors successfully in the practical application.

  18. Analysis technique for controlling system wavefront error with active/adaptive optics

    NASA Astrophysics Data System (ADS)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  19. A study to establish reasonable action limits for patient-specific quality assurance in intensity-modulated radiation therapy.

    PubMed

    Both, Stefan; Alecu, Ionut M; Stan, Andrada R; Alecu, Marius; Ciura, Andrei; Hansen, Jeremy M; Alecu, Rodica

    2007-03-07

    An effective patient quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) requires accurate and realistic plan acceptance criteria--that is, action limits. Based on dose measurements performed with a commercially available two-dimensional (2D) diode array, we analyzed 747 fluence maps resulting from a routine patient QA program for IMRT plans. The fluence maps were calculated by three different commercially available (ADAC, CMS, Eclipse) treatment planning systems (TPSs) and were delivered using 6-MV X-ray beams produced by linear accelerators. To establish reasonably achievable and clinically acceptable limits for the dose deviations, the agreement between the measured and calculated fluence maps was evaluated in terms of percent dose error (PDE) for a few points and percent of passing points (PPP) for the isodose distribution. The analysis was conducted for each TPS used in the study (365 ADAC, 162 CMS,220 Eclipse), for multiple treatment sites (prostate, pelvis, head and neck, spine, rectum, anus, lung, brain), at the normalization point for 3% percentage difference (%Diff) and 3-mm distance to agreement (DTA) criteria. We investigated the treatment-site dependency of PPP and PDE. The results show that, at 3% and 3-mm criteria, a 95% PPP and 3% PDE can be achieved for prostate treatments and a 90% PPP and 5% PDE are attainable for any treatment site.

  20. Feedback on prescribing errors to junior doctors: exploring views, problems and preferred methods.

    PubMed

    Bertels, Jeroen; Almoudaris, Alex M; Cortoos, Pieter-Jan; Jacklin, Ann; Franklin, Bryony Dean

    2013-06-01

    Prescribing errors are common in hospital inpatients. However, the literature suggests that doctors are often unaware of their errors as they are not always informed of them. It has been suggested that providing more feedback to prescribers may reduce subsequent error rates. Only few studies have investigated the views of prescribers towards receiving such feedback, or the views of hospital pharmacists as potential feedback providers. Our aim was to explore the views of junior doctors and hospital pharmacists regarding feedback on individual doctors' prescribing errors. Objectives were to determine how feedback was currently provided and any associated problems, to explore views on other approaches to feedback, and to make recommendations for designing suitable feedback systems. A large London NHS hospital trust. To explore views on current and possible feedback mechanisms, self-administered questionnaires were given to all junior doctors and pharmacists, combining both 5-point Likert scale statements and open-ended questions. Agreement scores for statements regarding perceived prescribing error rates, opinions on feedback, barriers to feedback, and preferences for future practice. Response rates were 49% (37/75) for junior doctors and 57% (57/100) for pharmacists. In general, doctors did not feel threatened by feedback on their prescribing errors. They felt that feedback currently provided was constructive but often irregular and insufficient. Most pharmacists provided feedback in various ways; however some did not or were inconsistent. They were willing to provide more feedback, but did not feel it was always effective or feasible due to barriers such as communication problems and time constraints. Both professional groups preferred individual feedback with additional regular generic feedback on common or serious errors. Feedback on prescribing errors was valued and acceptable to both professional groups. From the results, several suggested methods of providing

  1. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement

    PubMed Central

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-01-01

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit. PMID:26498395

  2. Acceptance of Online Degrees by Undergraduate Mexican Students

    ERIC Educational Resources Information Center

    Padilla Rodriguez, Brenda Cecilia; Adams, Jonathan

    2014-01-01

    The quality and acceptance of online degree programs are still controversial issues. In Mexico, where access to technology is limited, there are few studies on the matter. Undergraduate students (n = 104) answered a survey that aimed to evaluate their knowledge of virtual education, their likelihood of enrollment in an online degree program, and…

  3. Guidelines for the assessment and acceptance of potential brain-dead organ donors

    PubMed Central

    Westphal, Glauco Adrieno; Garcia, Valter Duro; de Souza, Rafael Lisboa; Franke, Cristiano Augusto; Vieira, Kalinca Daberkow; Birckholz, Viviane Renata Zaclikevis; Machado, Miriam Cristine; de Almeida, Eliana Régia Barbosa; Machado, Fernando Osni; Sardinha, Luiz Antônio da Costa; Wanzuita, Raquel; Silvado, Carlos Eduardo Soares; Costa, Gerson; Braatz, Vera; Caldeira Filho, Milton; Furtado, Rodrigo; Tannous, Luana Alves; de Albuquerque, André Gustavo Neves; Abdala, Edson; Gonçalves, Anderson Ricardo Roman; Pacheco-Moreira, Lúcio Filgueiras; Dias, Fernando Suparregui; Fernandes, Rogério; Giovanni, Frederico Di; de Carvalho, Frederico Bruzzi; Fiorelli, Alfredo; Teixeira, Cassiano; Feijó, Cristiano; Camargo, Spencer Marcantonio; de Oliveira, Neymar Elias; David, André Ibrahim; Prinz, Rafael Augusto Dantas; Herranz, Laura Brasil; de Andrade, Joel

    2016-01-01

    Organ transplantation is the only alternative for many patients with terminal diseases. The increasing disproportion between the high demand for organ transplants and the low rate of transplants actually performed is worrisome. Some of the causes of this disproportion are errors in the identification of potential organ donors and in the determination of contraindications by the attending staff. Therefore, the aim of the present document is to provide guidelines for intensive care multi-professional staffs for the recognition, assessment and acceptance of potential organ donors. PMID:27737418

  4. Quantization error of CCD cameras and their influence on phase calculation in fringe pattern analysis.

    PubMed

    Skydan, Oleksandr A; Lilley, Francis; Lalor, Michael J; Burton, David R

    2003-09-10

    We present an investigation into the phase errors that occur in fringe pattern analysis that are caused by quantization effects. When acquisition devices with a limited value of camera bit depth are used, there are a limited number of quantization levels available to record the signal. This may adversely affect the recorded signal and adds a potential source of instrumental error to the measurement system. Quantization effects also determine the accuracy that may be achieved by acquisition devices in a measurement system. We used the Fourier fringe analysis measurement technique. However, the principles can be applied equally well for other phase measuring techniques to yield a phase error distribution that is caused by the camera bit depth.

  5. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  6. The Impact of Religiosity on Midshipman Adjustment and Feelings of Acceptance

    DTIC Science & Technology

    2006-06-01

    the military nature , if a midshipman is accepting of homosexuals he is often looked on as strange. Like if you have a gay friend it is looked on...grown exponentially over the past fifty years. Significant growth of religious diversity and religious media support the growing nature of popular...however, is still limited in scope and depth. The covert or personal nature of an individual’s beliefs makes acceptance and tolerance issues more

  7. Disclosure of Medical Errors: What Factors Influence How Patients Respond?

    PubMed Central

    Mazor, Kathleen M; Reed, George W; Yood, Robert A; Fischer, Melissa A; Baril, Joann; Gurwitz, Jerry H

    2006-01-01

    BACKGROUND Disclosure of medical errors is encouraged, but research on how patients respond to specific practices is limited. OBJECTIVE This study sought to determine whether full disclosure, an existing positive physician-patient relationship, an offer to waive associated costs, and the severity of the clinical outcome influenced patients' responses to medical errors. PARTICIPANTS Four hundred and seven health plan members participated in a randomized experiment in which they viewed video depictions of medical error and disclosure. DESIGN Subjects were randomly assigned to experimental condition. Conditions varied in type of medication error, level of disclosure, reference to a prior positive physician-patient relationship, an offer to waive costs, and clinical outcome. MEASURES Self-reported likelihood of changing physicians and of seeking legal advice; satisfaction, trust, and emotional response. RESULTS Nondisclosure increased the likelihood of changing physicians, and reduced satisfaction and trust in both error conditions. Nondisclosure increased the likelihood of seeking legal advice and was associated with a more negative emotional response in the missed allergy error condition, but did not have a statistically significant impact on seeking legal advice or emotional response in the monitoring error condition. Neither the existence of a positive relationship nor an offer to waive costs had a statistically significant impact. CONCLUSIONS This study provides evidence that full disclosure is likely to have a positive effect or no effect on how patients respond to medical errors. The clinical outcome also influences patients' responses. The impact of an existing positive physician-patient relationship, or of waiving costs associated with the error remains uncertain. PMID:16808770

  8. 47 CFR 73.6007 - Power limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Power limitations. 73.6007 Section 73.6007... Class A Television Broadcast Stations § 73.6007 Power limitations. An application to change the facilities of an existing Class A TV station will not be accepted if it requests an effective radiated power...

  9. 47 CFR 73.6007 - Power limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Power limitations. 73.6007 Section 73.6007... Class A Television Broadcast Stations § 73.6007 Power limitations. An application to change the facilities of an existing Class A TV station will not be accepted if it requests an effective radiated power...

  10. Primary care physicians' willingness to disclose oncology errors involving multiple providers to patients.

    PubMed

    Mazor, Kathleen; Roblin, Douglas W; Greene, Sarah M; Fouayzi, Hassan; Gallagher, Thomas H

    2016-10-01

    Full disclosure of harmful errors to patients, including a statement of regret, an explanation, acceptance of responsibility and commitment to prevent recurrences is the current standard for physicians in the USA. To examine the extent to which primary care physicians' perceptions of event-level, physician-level and organisation-level factors influence intent to disclose a medical error in challenging situations. Cross-sectional survey containing two hypothetical vignettes: (1) delayed diagnosis of breast cancer, and (2) care coordination breakdown causing a delayed response to patient symptoms. In both cases, multiple physicians shared responsibility for the error, and both involved oncology diagnoses. The study was conducted in the context of the HMO Cancer Research Network Cancer Communication Research Center. Primary care physicians from three integrated healthcare delivery systems located in Washington, Massachusetts and Georgia; responses from 297 participants were included in these analyses. The dependent variable intent to disclose included intent to provide an apology, an explanation, information about the cause and plans for preventing recurrences. Independent variables included event-level factors (responsibility for the event, perceived seriousness of the event, predictions about a lawsuit); physician-level factors (value of patient-centred communication, communication self-efficacy and feelings about practice); organisation-level factors included perceived support for communication and time constraints. A majority of respondents would not fully disclose in either situation. The strongest predictors of disclosure were perceived personal responsibility, perceived seriousness of the event and perceived value of patient-centred communication. These variables were consistently associated with intent to disclose. To make meaningful progress towards improving disclosure; physicians, risk managers, organisational leaders, professional organisations and

  11. Effect of phase errors in stepped-frequency radar systems

    NASA Astrophysics Data System (ADS)

    Vanbrundt, H. E.

    1988-04-01

    Stepped-frequency waveforms are being considered for inverse synthetic aperture radar (ISAR) imaging from ship and airborne platforms and for detailed radar cross section (RCS) measurements of ships and aircraft. These waveforms make it possible to achieve resolutions of 1.0 foot by using existing radar designs and processing technology. One problem not yet fully resolved in using stepped-frequency waveform for ISAR imaging is the deterioration in signal level caused by random frequency error. Random frequency error of the stepped-frequency source results in reduced peak responses and increased null responses. The resulting reduced signal-to-noise ratio is range dependent. Two of the major concerns addressed in this report are radar range limitations for ISAR and the error in calibration for RCS measurements caused by differences in range between a passive reflector used for an RCS reference and the target to be measured. In addressing these concerns, NOSC developed an analysis to assess the tolerable frequency error in terms of resulting power loss in signal power and signal-to-phase noise.

  12. Human Factors Process Task Analysis Liquid Oxygen Pump Acceptance Test Procedure for the Advanced Technology Development Center

    NASA Technical Reports Server (NTRS)

    Diorio, Kimberly A.

    2002-01-01

    A process task analysis effort was undertaken by Dynacs Inc. commencing in June 2002 under contract from NASA YA-D6. Funding was provided through NASA's Ames Research Center (ARC), Code M/HQ, and Industrial Engineering and Safety (IES). The John F. Kennedy Space Center (KSC) Engineering Development Contract (EDC) Task Order was 5SMA768. The scope of the effort was to conduct a Human Factors Process Failure Modes and Effects Analysis (HF PFMEA) of a hazardous activity and provide recommendations to eliminate or reduce the effects of errors caused by human factors. The Liquid Oxygen (LOX) Pump Acceptance Test Procedure (ATP) was selected for this analysis. The HF PFMEA table (see appendix A) provides an analysis of six major categories evaluated for this study. These categories include Personnel Certification, Test Procedure Format, Test Procedure Safety Controls, Test Article Data, Instrumentation, and Voice Communication. For each specific requirement listed in appendix A, the following topics were addressed: Requirement, Potential Human Error, Performance-Shaping Factors, Potential Effects of the Error, Barriers and Controls, Risk Priority Numbers, and Recommended Actions. This report summarizes findings and gives recommendations as determined by the data contained in appendix A. It also includes a discussion of technology barriers and challenges to performing task analyses, as well as lessons learned. The HF PFMEA table in appendix A recommends the use of accepted and required safety criteria in order to reduce the risk of human error. The items with the highest risk priority numbers should receive the greatest amount of consideration. Implementation of the recommendations will result in a safer operation for all personnel.

  13. A Monte-Carlo Bayesian framework for urban rainfall error modelling

    NASA Astrophysics Data System (ADS)

    Ochoa Rodriguez, Susana; Wang, Li-Pen; Willems, Patrick; Onof, Christian

    2016-04-01

    Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made in recent years towards meeting rainfall input requirements for urban hydrology -including increasing use of high spatial resolution radar rainfall estimates in combination with point rain gauge records- rainfall estimates will never be perfect and the true rainfall field is, by definition, unknown [1]. Quantifying the residual errors in rainfall estimates is crucial in order to understand their reliability, as well as the impact that their uncertainty may have in subsequent runoff estimates. The quantification of errors in rainfall estimates has been an active topic of research for decades. However, existing rainfall error models have several shortcomings, including the fact that they are limited to describing errors associated to a single data source (i.e. errors associated to rain gauge measurements or radar QPEs alone) and to a single representative error source (e.g. radar-rain gauge differences, spatial temporal resolution). Moreover, rainfall error models have been mostly developed for and tested at large scales. Studies at urban scales are mostly limited to analyses of propagation of errors in rain gauge records-only through urban drainage models and to tests of model sensitivity to uncertainty arising from unmeasured rainfall variability. Only few radar rainfall error models -originally developed for large scales- have been tested at urban scales [2] and have been shown to fail to well capture small-scale storm dynamics, including storm peaks, which are of utmost important for urban runoff simulations. In this work a Monte-Carlo Bayesian framework for rainfall error modelling at urban scales is introduced, which explicitly accounts for relevant errors (arising from insufficient accuracy and/or resolution) in multiple data

  14. Error Tracking System

    EPA Pesticide Factsheets

    Error Tracking System is a database used to store & track error notifications sent by users of EPA's web site. ETS is managed by OIC/OEI. OECA's ECHO & OEI Envirofacts use it. Error notifications from EPA's home Page under Contact Us also uses it.

  15. Passport Officers’ Errors in Face Matching

    PubMed Central

    White, David; Kemp, Richard I.; Jenkins, Rob; Matheson, Michael; Burton, A. Mike

    2014-01-01

    Photo-ID is widely used in security settings, despite research showing that viewers find it very difficult to match unfamiliar faces. Here we test participants with specialist experience and training in the task: passport-issuing officers. First, we ask officers to compare photos to live ID-card bearers, and observe high error rates, including 14% false acceptance of ‘fraudulent’ photos. Second, we compare passport officers with a set of student participants, and find equally poor levels of accuracy in both groups. Finally, we observe that passport officers show no performance advantage over the general population on a standardised face-matching task. Across all tasks, we observe very large individual differences: while average performance of passport staff was poor, some officers performed very accurately – though this was not related to length of experience or training. We propose that improvements in security could be made by emphasising personnel selection. PMID:25133682

  16. Passport officers' errors in face matching.

    PubMed

    White, David; Kemp, Richard I; Jenkins, Rob; Matheson, Michael; Burton, A Mike

    2014-01-01

    Photo-ID is widely used in security settings, despite research showing that viewers find it very difficult to match unfamiliar faces. Here we test participants with specialist experience and training in the task: passport-issuing officers. First, we ask officers to compare photos to live ID-card bearers, and observe high error rates, including 14% false acceptance of 'fraudulent' photos. Second, we compare passport officers with a set of student participants, and find equally poor levels of accuracy in both groups. Finally, we observe that passport officers show no performance advantage over the general population on a standardised face-matching task. Across all tasks, we observe very large individual differences: while average performance of passport staff was poor, some officers performed very accurately--though this was not related to length of experience or training. We propose that improvements in security could be made by emphasising personnel selection.

  17. Refractive Errors

    MedlinePlus

    ... and lens of your eye helps you focus. Refractive errors are vision problems that happen when the shape ... cornea, or aging of the lens. Four common refractive errors are Myopia, or nearsightedness - clear vision close up ...

  18. Error detection method

    DOEpatents

    Olson, Eric J.

    2013-06-11

    An apparatus, program product, and method that run an algorithm on a hardware based processor, generate a hardware error as a result of running the algorithm, generate an algorithm output for the algorithm, compare the algorithm output to another output for the algorithm, and detect the hardware error from the comparison. The algorithm is designed to cause the hardware based processor to heat to a degree that increases the likelihood of hardware errors to manifest, and the hardware error is observable in the algorithm output. As such, electronic components may be sufficiently heated and/or sufficiently stressed to create better conditions for generating hardware errors, and the output of the algorithm may be compared at the end of the run to detect a hardware error that occurred anywhere during the run that may otherwise not be detected by traditional methodologies (e.g., due to cooling, insufficient heat and/or stress, etc.).

  19. Estimating Acceptability of Financial Health Incentives.

    PubMed

    Bigsby, Elisabeth; Seitz, Holli H; Halpern, Scott D; Volpp, Kevin; Cappella, Joseph N

    2017-08-01

    A growing body of evidence suggests that financial incentives can influence health behavior change, but research on the public acceptability of these programs and factors that predict public support have been limited. A representative sample of U.S. adults ( N = 526) were randomly assigned to receive an incentive program description in which the funding source of the program (public or private funding) and targeted health behavior (smoking cessation, weight loss, or colonoscopy) were manipulated. Outcome variables were attitude toward health incentives and allocation of hypothetical funding for incentive programs. Support was highest for privately funded programs. Support for incentives was also higher among ideologically liberal participants than among conservative participants. Demographics and health history differentially predicted attitude and hypothetical funding toward incentives. Incentive programs in the United States are more likely to be acceptable to the public if they are funded by private companies.

  20. Acceptance-Enhanced Behavior Therapy for Trichotillomania in Adolescents

    ERIC Educational Resources Information Center

    Fine, Kathi M.; Walther, Michael R.; Joseph, Jessica M.; Robinson, Jordan; Ricketts, Emily J.; Bowe, William E.; Woods, Douglas W.

    2012-01-01

    Although several studies have examined the efficacy of Acceptance Enhanced Behavior Therapy (AEBT) for the treatment of trichotillomania (TTM) in adults, data are limited with respect to the treatment of adolescents. Our case series illustrates the use of AEBT for TTM in the treatment of two adolescents. The AEBT protocol (Woods & Twohig, 2008) is…

  1. Aircraft system modeling error and control error

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V. (Inventor); Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor); Burken, John J. (Inventor)

    2012-01-01

    A method for modeling error-driven adaptive control of an aircraft. Normal aircraft plant dynamics is modeled, using an original plant description in which a controller responds to a tracking error e(k) to drive the component to a normal reference value according to an asymptote curve. Where the system senses that (1) at least one aircraft plant component is experiencing an excursion and (2) the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, neural network (NN) modeling of aircraft plant operation may be changed. However, if (1) is satisfied but the error component is returning toward its reference value according to expected controller characteristics, the NN will continue to model operation of the aircraft plant according to an original description.

  2. Laboratory study of effects of sonic boom shaping on subjective loudness and acceptability

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Sullivan, Brenda M.

    1992-01-01

    A laboratory study was conducted to determine the effects of sonic boom signature shaping on subjective loudness and acceptability. The study utilized the sonic boom simulator at the Langley Research Center. A wide range of symmetrical, front-shock-minimized signature shapes were investigated together with a limited number of asymmetrical signatures. Subjective loudness judgments were obtained from 60 test subjects by using an 11-point numerical category scale. Acceptability judgments were obtained using the method of constant stimuli. Results were used to assess the relative predictive ability of several noise metrics, determine the loudness benefits of detailed boom shaping, and derive laboratory sonic boom acceptability criteria. These results indicated that the A-weighted sound exposure level, the Stevens Mark 7 Perceived Level, and the Zwicker Loudness Level metrics all performed well. Significant reductions in loudness were obtained by increasing front-shock rise time and/or decreasing front-shock overpressure of the front-shock minimized signatures. In addition, the asymmetrical signatures were rated to be slightly quieter than the symmetrical front-shock-minimized signatures of equal A-weighted sound exposure level. However, this result was based on a limited number of asymmetric signatures. The comparison of laboratory acceptability results with acceptability data obtained in more realistic situations also indicated good agreement.

  3. Modeling Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    NASA Astrophysics Data System (ADS)

    Stephenson, Edward; Imig, Astrid

    2009-10-01

    The Storage Ring EDM Collaboration has obtained a set of measurements detailing the sensitivity of a storage ring polarimeter for deuterons to small geometrical and rate changes. Various schemes, such as the calculation of the cross ratio [1], can cancel effects due to detector acceptance differences and luminosity differences for states of opposite polarization. Such schemes fail at second-order in the errors, becoming sensitive to geometrical changes, polarization magnitude differences between opposite polarization states, and changes to the detector response with changing data rates. An expansion of the polarimeter response in a Taylor series based on small errors about the polarimeter operating point can parametrize such effects, primarily in terms of the logarithmic derivatives of the cross section and analyzing power. A comparison will be made to measurements obtained with the EDDA detector at COSY-J"ulich. [4pt] [1] G.G. Ohlsen and P.W. Keaton, Jr., NIM 109, 41 (1973).

  4. Dynamically correcting two-qubit gates against any systematic logical error

    NASA Astrophysics Data System (ADS)

    Calderon Vargas, Fernando Antonio

    The reliability of quantum information processing depends on the ability to deal with noise and error in an efficient way. A significant source of error in many settings is coherent, systematic gate error. This work introduces a set of composite pulse sequences that generate maximally entangling gates and correct all systematic errors within the logical subspace to arbitrary order. These sequences are applica- ble for any two-qubit interaction Hamiltonian, and make no assumptions about the underlying noise mechanism except that it is constant on the timescale of the opera- tion. The prime use for our results will be in cases where one has limited knowledge of the underlying physical noise and control mechanisms, highly constrained control, or both. In particular, we apply these composite pulse sequences to the quantum system formed by two capacitively coupled singlet-triplet qubits, which is charac- terized by having constrained control and noise sources that are low frequency and of a non-Markovian nature.

  5. Local-search based prediction of medical image registration error

    NASA Astrophysics Data System (ADS)

    Saygili, Görkem

    2018-03-01

    Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.

  6. Effects of Listening Conditions, Error Types, and Ensemble Textures on Error Detection Skills

    ERIC Educational Resources Information Center

    Waggoner, Dori T.

    2011-01-01

    This study was designed with three main purposes: (a) to investigate the effects of two listening conditions on error detection accuracy, (b) to compare error detection responses for rhythm errors and pitch errors, and (c) to examine the influences of texture on error detection accuracy. Undergraduate music education students (N = 18) listened to…

  7. Software error detection

    NASA Technical Reports Server (NTRS)

    Buechler, W.; Tucker, A. G.

    1981-01-01

    Several methods were employed to detect both the occurrence and source of errors in the operational software of the AN/SLQ-32. A large embedded real time electronic warfare command and control system for the ROLM 1606 computer are presented. The ROLM computer provides information about invalid addressing, improper use of privileged instructions, stack overflows, and unimplemented instructions. Additionally, software techniques were developed to detect invalid jumps, indices out of range, infinte loops, stack underflows, and field size errors. Finally, data are saved to provide information about the status of the system when an error is detected. This information includes I/O buffers, interrupt counts, stack contents, and recently passed locations. The various errors detected, techniques to assist in debugging problems, and segment simulation on a nontarget computer are discussed. These error detection techniques were a major factor in the success of finding the primary cause of error in 98% of over 500 system dumps.

  8. Errors induced by catalytic effects in premixed flame temperature measurements

    NASA Astrophysics Data System (ADS)

    Pita, G. P. A.; Nina, M. N. R.

    The evaluation of instantaneous temperature in a premixed flame using fine-wire Pt/Pt-(13 pct)Rh thermocouples was found to be subject to significant errors due to catalytic effects. An experimental study was undertaken to assess the influence of local fuel/air ratio, thermocouple wire diameter, and gas velocity on the thermocouple reading errors induced by the catalytic surface reactions. Measurements made with both coated and uncoated thermocouples showed that the catalytic effect imposes severe limitations on the accuracy of mean and fluctuating gas temperature in the radical-rich flame zone.

  9. Working memory load impairs the evaluation of behavioral errors in the medial frontal cortex.

    PubMed

    Maier, Martin E; Steinhauser, Marco

    2017-10-01

    Early error monitoring in the medial frontal cortex enables error detection and the evaluation of error significance, which helps prioritize adaptive control. This ability has been assumed to be independent from central capacity, a limited pool of resources assumed to be involved in cognitive control. The present study investigated whether error evaluation depends on central capacity by measuring the error-related negativity (Ne/ERN) in a flanker paradigm while working memory load was varied on two levels. We used a four-choice flanker paradigm in which participants had to classify targets while ignoring flankers. Errors could be due to responding either to the flankers (flanker errors) or to none of the stimulus elements (nonflanker errors). With low load, the Ne/ERN was larger for flanker errors than for nonflanker errors-an effect that has previously been interpreted as reflecting differential significance of these error types. With high load, no such effect of error type on the Ne/ERN was observable. Our findings suggest that working memory load does not impair the generation of an Ne/ERN per se but rather impairs the evaluation of error significance. They demonstrate that error monitoring is composed of capacity-dependent and capacity-independent mechanisms. © 2017 Society for Psychophysiological Research.

  10. Logical errors on proving theorem

    NASA Astrophysics Data System (ADS)

    Sari, C. K.; Waluyo, M.; Ainur, C. M.; Darmaningsih, E. N.

    2018-01-01

    In tertiary level, students of mathematics education department attend some abstract courses, such as Introduction to Real Analysis which needs an ability to prove mathematical statements almost all the time. In fact, many students have not mastered this ability appropriately. In their Introduction to Real Analysis tests, even though they completed their proof of theorems, they achieved an unsatisfactory score. They thought that they succeeded, but their proof was not valid. In this study, a qualitative research was conducted to describe logical errors that students made in proving the theorem of cluster point. The theorem was given to 54 students. Misconceptions on understanding the definitions seem to occur within cluster point, limit of function, and limit of sequences. The habit of using routine symbol might cause these misconceptions. Suggestions to deal with this condition are described as well.

  11. Implementing parallel spreadsheet models for health policy decisions: The impact of unintentional errors on model projections

    PubMed Central

    Bailey, Stephanie L.; Bono, Rose S.; Nash, Denis; Kimmel, April D.

    2018-01-01

    Background Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. Methods We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. Results We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Conclusions

  12. Probabilistic performance estimators for computational chemistry methods: The empirical cumulative distribution function of absolute errors

    NASA Astrophysics Data System (ADS)

    Pernot, Pascal; Savin, Andreas

    2018-06-01

    Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.

  13. A procedure for the significance testing of unmodeled errors in GNSS observations

    NASA Astrophysics Data System (ADS)

    Li, Bofeng; Zhang, Zhetao; Shen, Yunzhong; Yang, Ling

    2018-01-01

    It is a crucial task to establish a precise mathematical model for global navigation satellite system (GNSS) observations in precise positioning. Due to the spatiotemporal complexity of, and limited knowledge on, systematic errors in GNSS observations, some residual systematic errors would inevitably remain even after corrected with empirical model and parameterization. These residual systematic errors are referred to as unmodeled errors. However, most of the existing studies mainly focus on handling the systematic errors that can be properly modeled and then simply ignore the unmodeled errors that may actually exist. To further improve the accuracy and reliability of GNSS applications, such unmodeled errors must be handled especially when they are significant. Therefore, a very first question is how to statistically validate the significance of unmodeled errors. In this research, we will propose a procedure to examine the significance of these unmodeled errors by the combined use of the hypothesis tests. With this testing procedure, three components of unmodeled errors, i.e., the nonstationary signal, stationary signal and white noise, are identified. The procedure is tested by using simulated data and real BeiDou datasets with varying error sources. The results show that the unmodeled errors can be discriminated by our procedure with approximately 90% confidence. The efficiency of the proposed procedure is further reassured by applying the time-domain Allan variance analysis and frequency-domain fast Fourier transform. In summary, the spatiotemporally correlated unmodeled errors are commonly existent in GNSS observations and mainly governed by the residual atmospheric biases and multipath. Their patterns may also be impacted by the receiver.

  14. Measurement Error and Equating Error in Power Analysis

    ERIC Educational Resources Information Center

    Phillips, Gary W.; Jiang, Tao

    2016-01-01

    Power analysis is a fundamental prerequisite for conducting scientific research. Without power analysis the researcher has no way of knowing whether the sample size is large enough to detect the effect he or she is looking for. This paper demonstrates how psychometric factors such as measurement error and equating error affect the power of…

  15. Geographically correlated orbit error

    NASA Technical Reports Server (NTRS)

    Rosborough, G. W.

    1989-01-01

    The dominant error source in estimating the orbital position of a satellite from ground based tracking data is the modeling of the Earth's gravity field. The resulting orbit error due to gravity field model errors are predominantly long wavelength in nature. This results in an orbit error signature that is strongly correlated over distances on the size of ocean basins. Anderle and Hoskin (1977) have shown that the orbit error along a given ground track also is correlated to some degree with the orbit error along adjacent ground tracks. This cross track correlation is verified here and is found to be significant out to nearly 1000 kilometers in the case of TOPEX/POSEIDON when using the GEM-T1 gravity model. Finally, it was determined that even the orbit error at points where ascending and descending ground traces cross is somewhat correlated. The implication of these various correlations is that the orbit error due to gravity error is geographically correlated. Such correlations have direct implications when using altimetry to recover oceanographic signals.

  16. The Influence of Training Phase on Error of Measurement in Jump Performance.

    PubMed

    Taylor, Kristie-Lee; Hopkins, Will G; Chapman, Dale W; Cronin, John B

    2016-03-01

    The purpose of this study was to calculate the coefficients of variation in jump performance for individual participants in multiple trials over time to determine the extent to which there are real differences in the error of measurement between participants. The effect of training phase on measurement error was also investigated. Six subjects participated in a resistance-training intervention for 12 wk with mean power from a countermovement jump measured 6 d/wk. Using a mixed-model meta-analysis, differences between subjects, within-subject changes between training phases, and the mean error values during different phases of training were examined. Small, substantial factor differences of 1.11 were observed between subjects; however, the finding was unclear based on the width of the confidence limits. The mean error was clearly higher during overload training than baseline training, by a factor of ×/÷ 1.3 (confidence limits 1.0-1.6). The random factor representing the interaction between subjects and training phases revealed further substantial differences of ×/÷ 1.2 (1.1-1.3), indicating that on average, the error of measurement in some subjects changes more than in others when overload training is introduced. The results from this study provide the first indication that within-subject variability in performance is substantially different between training phases and, possibly, different between individuals. The implications of these findings for monitoring individuals and estimating sample size are discussed.

  17. Cognitive control of conscious error awareness: error awareness and error positivity (Pe) amplitude in moderate-to-severe traumatic brain injury (TBI)

    PubMed Central

    Logan, Dustin M.; Hill, Kyle R.; Larson, Michael J.

    2015-01-01

    Poor awareness has been linked to worse recovery and rehabilitation outcomes following moderate-to-severe traumatic brain injury (M/S TBI). The error positivity (Pe) component of the event-related potential (ERP) is linked to error awareness and cognitive control. Participants included 37 neurologically healthy controls and 24 individuals with M/S TBI who completed a brief neuropsychological battery and the error awareness task (EAT), a modified Stroop go/no-go task that elicits aware and unaware errors. Analyses compared between-group no-go accuracy (including accuracy between the first and second halves of the task to measure attention and fatigue), error awareness performance, and Pe amplitude by level of awareness. The M/S TBI group decreased in accuracy and maintained error awareness over time; control participants improved both accuracy and error awareness during the course of the task. Pe amplitude was larger for aware than unaware errors for both groups; however, consistent with previous research on the Pe and TBI, there were no significant between-group differences for Pe amplitudes. Findings suggest possible attention difficulties and low improvement of performance over time may influence specific aspects of error awareness in M/S TBI. PMID:26217212

  18. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  19. Resection plane-dependent error in computed tomography volumetry of the right hepatic lobe in living liver donors.

    PubMed

    Kwon, Heon-Ju; Kim, Kyoung Won; Kim, Bohyun; Kim, So Yeon; Lee, Chul Seung; Lee, Jeongjin; Song, Gi Won; Lee, Sung Gyu

    2018-03-01

    Computed tomography (CT) hepatic volumetry is currently accepted as the most reliable method for preoperative estimation of graft weight in living donor liver transplantation (LDLT). However, several factors can cause inaccuracies in CT volumetry compared to real graft weight. The purpose of this study was to determine the frequency and degree of resection plane-dependent error in CT volumetry of the right hepatic lobe in LDLT. Forty-six living liver donors underwent CT before donor surgery and on postoperative day 7. Prospective CT volumetry (V P ) was measured via the assumptive hepatectomy plane. Retrospective liver volume (V R ) was measured using the actual plane by comparing preoperative and postoperative CT. Compared with intraoperatively measured weight (W), errors in percentage (%) V P and V R were evaluated. Plane-dependent error in V P was defined as the absolute difference between V P and V R . % plane-dependent error was defined as follows: |V P -V R |/W∙100. Mean V P , V R , and W were 761.9 mL, 755.0 mL, and 696.9 g. Mean and % errors in V P were 73.3 mL and 10.7%. Mean error and % error in V R were 64.4 mL and 9.3%. Mean plane-dependent error in V P was 32.4 mL. Mean % plane-dependent error was 4.7%. Plane-dependent error in V P exceeded 10% of W in approximately 10% of the subjects in our study. There was approximately 5% plane-dependent error in liver V P on CT volumetry. Plane-dependent error in V P exceeded 10% of W in approximately 10% of LDLT donors in our study. This error should be considered, especially when CT volumetry is performed by a less experienced operator who is not well acquainted with the donor hepatectomy plane.

  20. Resection plane-dependent error in computed tomography volumetry of the right hepatic lobe in living liver donors

    PubMed Central

    Kwon, Heon-Ju; Kim, Bohyun; Kim, So Yeon; Lee, Chul Seung; Lee, Jeongjin; Song, Gi Won; Lee, Sung Gyu

    2018-01-01

    Background/Aims Computed tomography (CT) hepatic volumetry is currently accepted as the most reliable method for preoperative estimation of graft weight in living donor liver transplantation (LDLT). However, several factors can cause inaccuracies in CT volumetry compared to real graft weight. The purpose of this study was to determine the frequency and degree of resection plane-dependent error in CT volumetry of the right hepatic lobe in LDLT. Methods Forty-six living liver donors underwent CT before donor surgery and on postoperative day 7. Prospective CT volumetry (VP) was measured via the assumptive hepatectomy plane. Retrospective liver volume (VR) was measured using the actual plane by comparing preoperative and postoperative CT. Compared with intraoperatively measured weight (W), errors in percentage (%) VP and VR were evaluated. Plane-dependent error in VP was defined as the absolute difference between VP and VR. % plane-dependent error was defined as follows: |VP–VR|/W∙100. Results Mean VP, VR, and W were 761.9 mL, 755.0 mL, and 696.9 g. Mean and % errors in VP were 73.3 mL and 10.7%. Mean error and % error in VR were 64.4 mL and 9.3%. Mean plane-dependent error in VP was 32.4 mL. Mean % plane-dependent error was 4.7%. Plane-dependent error in VP exceeded 10% of W in approximately 10% of the subjects in our study. Conclusions There was approximately 5% plane-dependent error in liver VP on CT volumetry. Plane-dependent error in VP exceeded 10% of W in approximately 10% of LDLT donors in our study. This error should be considered, especially when CT volumetry is performed by a less experienced operator who is not well acquainted with the donor hepatectomy plane. PMID:28759989

  1. A Conceptual Framework for Predicting Error in Complex Human-Machine Environments

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Remington, Roger; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    We present a Goals, Operators, Methods, and Selection Rules-Model Human Processor (GOMS-MHP) style model-based approach to the problem of predicting human habit capture errors. Habit captures occur when the model fails to allocate limited cognitive resources to retrieve task-relevant information from memory. Lacking the unretrieved information, decision mechanisms act in accordance with implicit default assumptions, resulting in error when relied upon assumptions prove incorrect. The model helps interface designers identify situations in which such failures are especially likely.

  2. The global burden of diagnostic errors in primary care.

    PubMed

    Singh, Hardeep; Schiff, Gordon D; Graber, Mark L; Onakpoya, Igho; Thompson, Matthew J

    2017-06-01

    Diagnosis is one of the most important tasks performed by primary care physicians. The World Health Organization (WHO) recently prioritized patient safety areas in primary care, and included diagnostic errors as a high-priority problem. In addition, a recent report from the Institute of Medicine in the USA, 'Improving Diagnosis in Health Care ', concluded that most people will likely experience a diagnostic error in their lifetime. In this narrative review, we discuss the global significance, burden and contributory factors related to diagnostic errors in primary care. We synthesize available literature to discuss the types of presenting symptoms and conditions most commonly affected. We then summarize interventions based on available data and suggest next steps to reduce the global burden of diagnostic errors. Research suggests that we are unlikely to find a 'magic bullet' and confirms the need for a multifaceted approach to understand and address the many systems and cognitive issues involved in diagnostic error. Because errors involve many common conditions and are prevalent across all countries, the WHO's leadership at a global level will be instrumental to address the problem. Based on our review, we recommend that the WHO consider bringing together primary care leaders, practicing frontline clinicians, safety experts, policymakers, the health IT community, medical education and accreditation organizations, researchers from multiple disciplines, patient advocates, and funding bodies among others, to address the many common challenges and opportunities to reduce diagnostic error. This could lead to prioritization of practice changes needed to improve primary care as well as setting research priorities for intervention development to reduce diagnostic error. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Medication Errors: New EU Good Practice Guide on Risk Minimisation and Error Prevention.

    PubMed

    Goedecke, Thomas; Ord, Kathryn; Newbould, Victoria; Brosch, Sabine; Arlett, Peter

    2016-06-01

    A medication error is an unintended failure in the drug treatment process that leads to, or has the potential to lead to, harm to the patient. Reducing the risk of medication errors is a shared responsibility between patients, healthcare professionals, regulators and the pharmaceutical industry at all levels of healthcare delivery. In 2015, the EU regulatory network released a two-part good practice guide on medication errors to support both the pharmaceutical industry and regulators in the implementation of the changes introduced with the EU pharmacovigilance legislation. These changes included a modification of the 'adverse reaction' definition to include events associated with medication errors, and the requirement for national competent authorities responsible for pharmacovigilance in EU Member States to collaborate and exchange information on medication errors resulting in harm with national patient safety organisations. To facilitate reporting and learning from medication errors, a clear distinction has been made in the guidance between medication errors resulting in adverse reactions, medication errors without harm, intercepted medication errors and potential errors. This distinction is supported by an enhanced MedDRA(®) terminology that allows for coding all stages of the medication use process where the error occurred in addition to any clinical consequences. To better understand the causes and contributing factors, individual case safety reports involving an error should be followed-up with the primary reporter to gather information relevant for the conduct of root cause analysis where this may be appropriate. Such reports should also be summarised in periodic safety update reports and addressed in risk management plans. Any risk minimisation and prevention strategy for medication errors should consider all stages of a medicinal product's life-cycle, particularly the main sources and types of medication errors during product development. This article

  4. Distortion Representation of Forecast Errors for Model Skill Assessment and Objective Analysis

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.; Nehrkorn, Thomas; Grassotti, Christopher

    1996-01-01

    We study a novel characterization of errors for numerical weather predictions. In its simplest form we decompose the error into a part attributable to phase errors and a remainder. The phase error is represented in the same fashion as a velocity field and will be required to vary slowly and smoothly with position. A general distortion representation allows for the displacement and a bias correction of forecast anomalies. In brief, the distortion is determined by minimizing the objective function by varying the displacement and bias correction fields. In the present project we use a global or hemispheric domain, and spherical harmonics to represent these fields. In this project we are initially focusing on the assessment application, restricted to a realistic but univariate 2-dimensional situation. Specifically we study the forecast errors of the 500 hPa geopotential height field for forecasts of the short and medium range. The forecasts are those of the Goddard Earth Observing System data assimilation system. Results presented show that the methodology works, that a large part of the total error may be explained by a distortion limited to triangular truncation at wavenumber 10, and that the remaining residual error contains mostly small spatial scales.

  5. Monte Carlo errors with less errors

    NASA Astrophysics Data System (ADS)

    Wolff, Ulli; Alpha Collaboration

    2004-01-01

    We explain in detail how to estimate mean values and assess statistical errors for arbitrary functions of elementary observables in Monte Carlo simulations. The method is to estimate and sum the relevant autocorrelation functions, which is argued to produce more certain error estimates than binning techniques and hence to help toward a better exploitation of expensive simulations. An effective integrated autocorrelation time is computed which is suitable to benchmark efficiencies of simulation algorithms with regard to specific observables of interest. A Matlab code is offered for download that implements the method. It can also combine independent runs (replica) allowing to judge their consistency.

  6. Early Career Teachers' Ability to Focus on Typical Students Errors in Relation to the Complexity of a Mathematical Topic

    ERIC Educational Resources Information Center

    Pankow, Lena; Kaiser, Gabriele; Busse, Andreas; König, Johannes; Blömeke, Sigrid; Hoth, Jessica; Döhrmann, Martina

    2016-01-01

    The paper presents results from a computer-based assessment in which 171 early career mathematics teachers from Germany were asked to anticipate typical student errors on a given mathematical topic and identify them under time constraints. Fast and accurate perception and knowledge-based judgments are widely accepted characteristics of teacher…

  7. Improving the Glucose Meter Error Grid With the Taguchi Loss Function.

    PubMed

    Krouwer, Jan S

    2016-07-01

    Glucose meters often have similar performance when compared by error grid analysis. This is one reason that other statistics such as mean absolute relative deviation (MARD) are used to further differentiate performance. The problem with MARD is that too much information is lost. But additional information is available within the A zone of an error grid by using the Taguchi loss function. Applying the Taguchi loss function gives each glucose meter difference from reference a value ranging from 0 (no error) to 1 (error reaches the A zone limit). Values are averaged over all data which provides an indication of risk of an incorrect medical decision. This allows one to differentiate glucose meter performance for the common case where meters have a high percentage of values in the A zone and no values beyond the B zone. Examples are provided using simulated data. © 2015 Diabetes Technology Society.

  8. Patients and families as teachers: a mixed methods assessment of a collaborative learning model for medical error disclosure and prevention.

    PubMed

    Langer, Thorsten; Martinez, William; Browning, David M; Varrin, Pamela; Sarnoff Lee, Barbara; Bell, Sigall K

    2016-08-01

    Despite growing interest in engaging patients and families (P/F) in patient safety education, little is known about how P/F can best contribute. We assessed the feasibility and acceptability of a patient-teacher medical error disclosure and prevention training model. We developed an educational intervention bringing together interprofessional clinicians with P/F from hospital advisory councils to discuss error disclosure and prevention. Patient focus groups and orientation sessions informed curriculum and assessment design. A pre-post survey with qualitative and quantitative questions was used to assess P/F and clinician experiences and attitudes about collaborative safety education including participant hopes, fears, perceived value of learning experience and challenges. Responses to open-ended questions were coded according to principles of content analysis. P/F and clinicians hoped to learn about each other's perspectives, communication skills and patient empowerment strategies. Before the intervention, both groups worried about power dynamics dampening effective interaction. Clinicians worried that P/F would learn about their fallibility, while P/F were concerned about clinicians' jargon and defensive posturing. Following workshops, clinicians valued patients' direct feedback, communication strategies for error disclosure and a 'real' learning experience. P/F appreciated clinicians' accountability, and insights into how medical errors affect clinicians. Half of participants found nothing challenging, the remainder clinicians cited emotions and enormity of 'culture change', while P/F commented on medical jargon and desire for more time. Patients and clinicians found the experience valuable. Recommendations about how to develop a patient-teacher programme in patient safety are provided. An educational paradigm that includes patients as teachers and collaborative learners with clinicians in patient safety is feasible, valued by clinicians and P/F and promising for

  9. Global optimization method based on ray tracing to achieve optimum figure error compensation

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolin; Guo, Xuejia; Tang, Tianjin

    2017-02-01

    Figure error would degrade the performance of optical system. When predicting the performance and performing system assembly, compensation by clocking of optical components around the optical axis is a conventional but user-dependent method. Commercial optical software cannot optimize this clocking. Meanwhile existing automatic figure-error balancing methods can introduce approximate calculation error and the build process of optimization model is complex and time-consuming. To overcome these limitations, an accurate and automatic global optimization method of figure error balancing is proposed. This method is based on precise ray tracing to calculate the wavefront error, not approximate calculation, under a given elements' rotation angles combination. The composite wavefront error root-mean-square (RMS) acts as the cost function. Simulated annealing algorithm is used to seek the optimal combination of rotation angles of each optical element. This method can be applied to all rotational symmetric optics. Optimization results show that this method is 49% better than previous approximate analytical method.

  10. Do familiar teammates request and accept more backup? Transactive memory in air traffic control.

    PubMed

    Smith-Jentsch, Kimberly A; Kraiger, Kurt; Cannon-Bowers, Janis A; Salas, Eduardo

    2009-04-01

    The present study investigated factors that explain when and why different groups of teammates are more likely to request and accept backup from one another when needed in an environment characterized by extreme time pressure and severe consequences of error: commercial air traffic control (ATC). Transactive memory theory states that teammates develop consensus regarding the distribution of their relative expertise as well as confidence in that expertise over time and that this facilitates coordination processes. The present study investigated whether this theory could help to explain between-team differences in requesting and accepting backup when needed. The present study used cross-sectional data collected from 51 commercial ATC teams. Hypotheses were tested using multiple regression analysis. Teammates with greater experience working together requested and accepted backup from one another more than those with lesser experience working together. Teammate knowledge consensus and perceived team efficacy appear to have mediated this relationship. Transactive memory theory extends to high-stress environments in which members' expertise is highly overlapping. Teammates' shared mental models about one another increase the likelihood that they will request and accept backup. Teammate familiarity should be considered when choosing among potential replacement team members. Training strategies that accelerate the development of teammate knowledge consensus and team efficacy are warranted.

  11. Acceptance of Tinnitus As an Independent Correlate of Tinnitus Severity.

    PubMed

    Hesser, Hugo; Bånkestad, Ellinor; Andersson, Gerhard

    2015-01-01

    Tinnitus is the experience of sounds without an identified external source, and for some the experience is associated with significant severity (i.e., perceived negative affect, activity limitation, and participation restriction due to tinnitus). Acceptance of tinnitus has recently been proposed to play an important role in explaining heterogeneity in tinnitus severity. The purpose of the present study was to extend previous investigations of acceptance in relation to tinnitus by examining the unique contribution of acceptance in accounting for tinnitus severity, beyond anxiety and depression symptoms. In a cross-sectional study, 362 participants with tinnitus attending an ENT clinic in Sweden completed a standard set of psychometrically examined measures of acceptance of tinnitus, tinnitus severity, and anxiety and depression symptoms. Participants also completed a background form on which they provided information about the experience of tinnitus (loudness, localization, sound characteristics), other auditory-related problems (hearing problems and sound sensitivity), and personal characteristics. Correlational analyses showed that acceptance was strongly and inversely related to tinnitus severity and anxiety and depression symptoms. Multivariate regression analysis, in which relevant patient characteristics were controlled, revealed that acceptance accounted for unique variance beyond anxiety and depression symptoms. Acceptance accounted for more of the variance than anxiety and depression symptoms combined. In addition, mediation analysis revealed that acceptance of tinnitus mediated the direct association between self-rated loudness and tinnitus severity, even after anxiety and depression symptoms were taken into account. Findings add to the growing body of work, supporting the unique and important role of acceptance in tinnitus severity. The utility of the concept is discussed in relation to the development of new psychological models and interventions for

  12. Hierarchical learning induces two simultaneous, but separable, prediction errors in human basal ganglia.

    PubMed

    Diuk, Carlos; Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew; Niv, Yael

    2013-03-27

    Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously.

  13. Hierarchical Learning Induces Two Simultaneous, But Separable, Prediction Errors in Human Basal Ganglia

    PubMed Central

    Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew

    2013-01-01

    Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously. PMID:23536092

  14. Emotion perception and overconfidence in errors under stress in psychosis.

    PubMed

    Köther, Ulf; Lincoln, Tania M; Moritz, Steffen

    2018-03-21

    Vulnerability stress models are well-accepted in psychosis research, but the mechanisms that link stress to psychotic symptoms remain vague. Little is known about how social cognition and overconfidence in errors, two putative mechanisms for the pathogenesis of delusions, relate to stress. Using a repeated measures design, we tested four groups (N=120) with different liability to psychosis (schizophrenia patients [n=35], first-degree relatives [n=24], participants with attenuated positive symptoms [n=19] and healthy controls [n=28]) and depression patients (n=14) as a clinical control group under three randomized experimental conditions (no stress, noise and social stress). Parallel versions of the Emotion Perception and Confidence Task, which taps both emotion perception and confidence, were used in each condition. We recorded subjective stress, heart rate, skin conductance level and salivary cortisol to assess the stress response across different dimensions. Independent of the stress condition, patients with schizophrenia showed poorer emotion perception performance and higher confidence in emotion perception errors than participants with attenuated positive symptoms and healthy controls. However, they did not differ from patients with depression or first-degree relatives. Stress did not influence emotion perception or the extent of high-confident errors, but patients with schizophrenia showed an increase in high-confident emotion perception errors conditional on higher arousal. A possible clinical implication of our findings is the necessity to provide stress management programs that aim to reduce arousal. Moreover, patients with schizophrenia might benefit from interventions that help them to reduce overconfidence in their social cognition judgements in times in which they feel being under pressure. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Suffering in Silence: Medical Error and its Impact on Health Care Providers.

    PubMed

    Robertson, Jennifer J; Long, Brit

    2018-04-01

    All humans are fallible. Because physicians are human, unintentional errors unfortunately occur. While unintentional medical errors have an impact on patients and their families, they may also contribute to adverse mental and emotional effects on the involved provider(s). These may include burnout, lack of concentration, poor work performance, posttraumatic stress disorder, depression, and even suicidality. The objectives of this article are to 1) discuss the impact medical error has on involved provider(s), 2) provide potential reasons why medical error can have a negative impact on provider mental health, and 3) suggest solutions for providers and health care organizations to recognize and mitigate the adverse effects medical error has on providers. Physicians and other providers may feel a variety of adverse emotions after medical error, including guilt, shame, anxiety, fear, and depression. It is thought that the pervasive culture of perfectionism and individual blame in medicine plays a considerable role toward these negative effects. In addition, studies have found that despite physicians' desire for support after medical error, many physicians feel a lack of personal and administrative support. This may further contribute to poor emotional well-being. Potential solutions in the literature are proposed, including provider counseling, learning from mistakes without fear of punishment, discussing mistakes with others, focusing on the system versus the individual, and emphasizing provider wellness. Much of the reviewed literature is limited in terms of an emergency medicine focus or even regarding physicians in general. In addition, most studies are survey- or interview-based, which limits objectivity. While additional, more objective research is needed in terms of mitigating the effects of error on physicians, this review may help provide insight and support for those who feel alone in their attempt to heal after being involved in an adverse medical event

  16. Ready for eHealth? Health Professionals' Acceptance and Adoption of eHealth Interventions in Inpatient Routine Care.

    PubMed

    Hennemann, Severin; Beutel, Manfred E; Zwerenz, Rüdiger

    2017-03-01

    eHealth interventions can be effective in treating health problems. However, adoption in inpatient routine care seems limited. The present study therefore aimed to investigate barriers and facilitators to acceptance of eHealth interventions and of online aftercare in particular in health professionals of inpatient treatment. A total of 152 out of 287 health professionals of various professional groups in four inpatient rehabilitation facilities filled out a self-administered web-based questionnaire (response rate: 53%); 128 individuals were eligible for further data analysis. Acceptance and possible predictors were investigated with a complex research model based on the Unified Theory of Acceptance and Use of Technology. Acceptance of eHealth interventions was rather low (M = 2.47, SD = 0.98); however, acceptance of online aftercare was moderate (M = 3.08, SD = 0.96, t(127) = 8.22, p < .001), and eHealth literacy was elevated. Social influence, performance expectancy, and treatment-related internet and mobile use significantly predicted overall acceptance. No differences were found between professional and age groups. Although acceptance of eHealth interventions was limited in health professionals of inpatient treatment, moderate acceptance of online aftercare for work-related stress implies a basis for future implementation. Tailored eHealth education addressing misconceptions about inferiority and incongruity with conventional treatment considering the systemic aspect of acceptance formation are needed.

  17. Ultrahigh Error Threshold for Surface Codes with Biased Noise

    NASA Astrophysics Data System (ADS)

    Tuckett, David K.; Bartlett, Stephen D.; Flammia, Steven T.

    2018-02-01

    We show that a simple modification of the surface code can exhibit an enormous gain in the error correction threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors. Such biased noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of pure dephasing noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi, Suchara, and Vargo. The threshold remains surprisingly large in the regime of realistic noise bias ratios, for example 28.2(2)% at a bias of 10. The performance is, in fact, at or near the hashing bound for all values of the bias. The modified surface code still uses only weight-4 stabilizers on a square lattice, but merely requires measuring products of Y instead of Z around the faces, as this doubles the number of useful syndrome bits associated with the dominant Z errors. Our results demonstrate that large efficiency gains can be found by appropriately tailoring codes and decoders to realistic noise models, even under the locality constraints of topological codes.

  18. Video Game Acceptance: A Meta-Analysis of the Extended Technology Acceptance Model.

    PubMed

    Wang, Xiaohui; Goh, Dion Hoe-Lian

    2017-11-01

    The current study systematically reviews and summarizes the existing literature of game acceptance, identifies the core determinants, and evaluates the strength of the relationships in the extended technology acceptance model. Moreover, this study segments video games into two categories: hedonic and utilitarian and examines player acceptance of these two types separately. Through a meta-analysis of 50 articles, we find that perceived ease of use (PEOU), perceived usefulness (PU), and perceived enjoyment (PE) significantly associate with attitude and behavioral intention. PE is the dominant predictor of hedonic game acceptance, while PEOU and PU are the main determinants of utilitarian game acceptance. Furthermore, we find that respondent type and game platform are significant moderators. Findings of this study provide critical insights into the phenomenon of game acceptance and suggest directions for future research.

  19. Characterization of errors in a coupled snow hydrology-microwave emission model

    USGS Publications Warehouse

    Andreadis, K.M.; Liang, D.; Tsang, L.; Lettenmaier, D.P.; Josberger, E.G.

    2008-01-01

    Traditional approaches to the direct estimation of snow properties from passive microwave remote sensing have been plagued by limitations such as the tendency of estimates to saturate for moderately deep snowpacks and the effects of mixed land cover within remotely sensed pixels. An alternative approach is to assimilate satellite microwave emission observations directly, which requires embedding an accurate microwave emissions model into a hydrologic prediction scheme, as well as quantitative information of model and observation errors. In this study a coupled snow hydrology [Variable Infiltration Capacity (VIC)] and microwave emission [Dense Media Radiative Transfer (DMRT)] model are evaluated using multiscale brightness temperature (TB) measurements from the Cold Land Processes Experiment (CLPX). The ability of VIC to reproduce snowpack properties is shown with the use of snow pit measurements, while TB model predictions are evaluated through comparison with Ground-Based Microwave Radiometer (GBMR), air-craft [Polarimetric Scanning Radiometer (PSR)], and satellite [Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E)] TB measurements. Limitations of the model at the point scale were not as evident when comparing areal estimates. The coupled model was able to reproduce the TB spatial patterns observed by PSR in two of three sites. However, this was mostly due to the presence of relatively dense forest cover. An interesting result occurs when examining the spatial scaling behavior of the higher-resolution errors; the satellite-scale error is well approximated by the mode of the (spatial) histogram of errors at the smaller scale. In addition, TB prediction errors were almost invariant when aggregated to the satellite scale, while forest-cover fractions greater than 30% had a significant effect on TB predictions. ?? 2008 American Meteorological Society.

  20. Inborn errors of ketogenesis and ketone body utilization.

    PubMed

    Sass, Jörn Oliver

    2012-01-01

    Ketone bodies acetoacetate and 3-hydroxy-n-butyric acid are metabolites derived from fatty acids and ketogenic amino acids such as leucine. They are mainly produced in the liver via reactions catalyzed by the ketogenic enzymes mitochondrial 3-hydroxy-3-methylglutary-coenzyme A synthase and 3-hydroxy-3-methylglutary-coenzyme A lyase. After prolonged starvation, ketone bodies can provide up to two-thirds of the brain's energy requirements. The rate-limiting enzyme of ketone body utilization (ketolysis) is succinyl-coenzyme A:3-oxoacid coenzyme A transferase. The subsequent step of ketolysis is catalyzed by 2-methylactoacetyl-coenzyme A thiolase, which is also involved in isoleucine catabolism. Inborn errors of metabolism affecting those four enzymes are presented and discussed in the context of differential diagnoses. While disorders of ketogenesis can present with hypoketotic hypoglycemia, inborn errors of ketolysis are characterized by metabolic decompensations with ketoacidosis. If those diseases are considered early and appropriate treatment is initiated without delay, patients with inborn errors of ketone body metabolism often have a good clinical outcome.

  1. [Patient safety and errors in medicine: development, prevention and analyses of incidents].

    PubMed

    Rall, M; Manser, T; Guggenberger, H; Gaba, D M; Unertl, K

    2001-06-01

    "Patient safety" and "errors in medicine" are issues gaining more and more prominence in the eyes of the public. According to newer studies, errors in medicine are among the ten major causes of death in association with the whole area of health care. A new era has begun incorporating attention to a "systems" approach to deal with errors and their causes in the health system. In other high-risk domains with a high demand for safety (such as the nuclear power industry and aviation) many strategies to enhance safety have been established. It is time to study these strategies, to adapt them if necessary and apply them to the field of medicine. These strategies include: to teach people how errors evolve in complex working domains and how types of errors are classified; the introduction of critical incident reporting systems that are free of negative consequences for the reporters; the promotion of continuous medical education; and the development of generic problem-solving skills incorporating the extensive use of realistic simulators wherever possible. Interestingly, the field of anesthesiology--within which realistic simulators were developed--is referred to as a model for the new patient safety movement. Despite this proud track record in recent times though, there is still much to be done even in the field of anesthesiology. Overall though, the most important strategy towards a long-term improvement in patient safety will be a change of "culture" throughout the entire health care system. The "culture of blame" focused on individuals should be replaced by a "safety culture", that sees errors and critical incidents as a problem of the whole organization. The acceptance of human fallability and an open-minded non-punitive analysis of errors in the sense of a "preventive and proactive safety culture" should lead to solutions at the systemic level. This change in culture can only be achieved with a strong commitment from the highest levels of an organization. Patient

  2. Analysis and improvement of gas turbine blade temperature measurement error

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-10-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.

  3. Model Error Budgets

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    2008-01-01

    An error budget is a commonly used tool in design of complex aerospace systems. It represents system performance requirements in terms of allowable errors and flows these down through a hierarchical structure to lower assemblies and components. The requirements may simply be 'allocated' based upon heuristics or experience, or they may be designed through use of physics-based models. This paper presents a basis for developing an error budget for models of the system, as opposed to the system itself. The need for model error budgets arises when system models are a principle design agent as is increasingly more common for poorly testable high performance space systems.

  4. Discovery of error-tolerant biclusters from noisy gene expression data.

    PubMed

    Gupta, Rohit; Rao, Navneet; Kumar, Vipin

    2011-11-24

    An important analysis performed on microarray gene-expression data is to discover biclusters, which denote groups of genes that are coherently expressed for a subset of conditions. Various biclustering algorithms have been proposed to find different types of biclusters from these real-valued gene-expression data sets. However, these algorithms suffer from several limitations such as inability to explicitly handle errors/noise in the data; difficulty in discovering small bicliusters due to their top-down approach; inability of some of the approaches to find overlapping biclusters, which is crucial as many genes participate in multiple biological processes. Association pattern mining also produce biclusters as their result and can naturally address some of these limitations. However, traditional association mining only finds exact biclusters, which limits its applicability in real-life data sets where the biclusters may be fragmented due to random noise/errors. Moreover, as they only work with binary or boolean attributes, their application on gene-expression data require transforming real-valued attributes to binary attributes, which often results in loss of information. Many past approaches have tried to address the issue of noise and handling real-valued attributes independently but there is no systematic approach that addresses both of these issues together. In this paper, we first propose a novel error-tolerant biclustering model, 'ET-bicluster', and then propose a bottom-up heuristic-based mining algorithm to sequentially discover error-tolerant biclusters directly from real-valued gene-expression data. The efficacy of our proposed approach is illustrated by comparing it with a recent approach RAP in the context of two biological problems: discovery of functional modules and discovery of biomarkers. For the first problem, two real-valued S.Cerevisiae microarray gene-expression data sets are used to demonstrate that the biclusters obtained from ET

  5. Latent human error analysis and efficient improvement strategies by fuzzy TOPSIS in aviation maintenance tasks.

    PubMed

    Chiu, Ming-Chuan; Hsieh, Min-Chih

    2016-05-01

    The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Time trend of injection drug errors before and after implementation of bar-code verification system.

    PubMed

    Sakushima, Ken; Umeki, Reona; Endoh, Akira; Ito, Yoichi M; Nasuhara, Yasuyuki

    2015-01-01

    Bar-code technology, used for verification of patients and their medication, could prevent medication errors in clinical practice. Retrospective analysis of electronically stored medical error reports was conducted in a university hospital. The number of reported medication errors of injected drugs, including wrong drug administration and administration to the wrong patient, was compared before and after implementation of the bar-code verification system for inpatient care. A total of 2867 error reports associated with injection drugs were extracted. Wrong patient errors decreased significantly after implementation of the bar-code verification system (17.4/year vs. 4.5/year, p< 0.05), although wrong drug errors did not decrease sufficiently (24.2/year vs. 20.3/year). The source of medication errors due to wrong drugs was drug preparation in hospital wards. Bar-code medication administration is effective for prevention of wrong patient errors. However, ordinary bar-code verification systems are limited in their ability to prevent incorrect drug preparation in hospital wards.

  7. Mental health service acceptability for the armed forces veteran community.

    PubMed

    Farrand, P; Jeffs, A; Bloomfield, T; Greenberg, N; Watkins, E; Mullan, E

    2018-06-15

    Despite developments in mental health services for armed forces veterans and family members, barriers to access associated with poor levels of acceptability regarding service provision remain. Adapting a Step 2 mental health service based on low-intensity cognitive behavioural therapy (CBT) interventions to represent a familiar context and meet the needs of the armed forces veteran community may serve to enhance acceptability and reduce help-seeking barriers. To examine acceptability of a Step 2 low-intensity CBT mental health service adapted for armed forces veterans and family members provided by a UK Armed Forces charity. Qualitative study using individual semi-structured interviews with armed forces veterans and family members of those injured or becoming unwell while serving in the British Armed Forces. Data analysis was undertaken using thematic alongside disconfirming case analysis. Adapting a Step 2 mental health service for armed forces veterans and family members enhanced acceptability and promoted help-seeking. Wider delivery characteristics associated with Step 2 mental health services within the Improving Access to Psychological Therapies (IAPT) programme also contributed to service acceptability. However, limitations of Step 2 mental health service provision were also identified. A Step 2 mental health service adapted for armed forces veterans and family members enhances acceptability and may potentially overcome help-seeking barriers. However, concerns remain regarding ways to accommodate the treatment of post-traumatic stress disorder and provide support for family members.

  8. Understanding the nature of errors in nursing: using a model to analyse critical incident reports of errors which had resulted in an adverse or potentially adverse event.

    PubMed

    Meurier, C E

    2000-07-01

    Human errors are common in clinical practice, but they are under-reported. As a result, very little is known of the types, antecedents and consequences of errors in nursing practice. This limits the potential to learn from errors and to make improvement in the quality and safety of nursing care. The aim of this study was to use an Organizational Accident Model to analyse critical incidents of errors in nursing. Twenty registered nurses were invited to produce a critical incident report of an error (which had led to an adverse event or potentially could have led to an adverse event) they had made in their professional practice and to write down their responses to the error using a structured format. Using Reason's Organizational Accident Model, supplemental information was then collected from five of the participants by means of an individual in-depth interview to explore further issues relating to the incidents they had reported. The detailed analysis of one of the incidents is discussed in this paper, demonstrating the effectiveness of this approach in providing insight into the chain of events which may lead to an adverse event. The case study approach using critical incidents of clinical errors was shown to provide relevant information regarding the interaction of organizational factors, local circumstances and active failures (errors) in producing an adverse or potentially adverse event. It is suggested that more use should be made of this approach to understand how errors are made in practice and to take appropriate preventative measures.

  9. [Epidemiology of refractive errors].

    PubMed

    Wolfram, C

    2017-07-01

    Refractive errors are very common and can lead to severe pathological changes in the eye. This article analyzes the epidemiology of refractive errors in the general population in Germany and worldwide and describes common definitions for refractive errors and clinical characteristics for pathologicaal changes. Refractive errors differ between age groups due to refractive changes during the life time and also due to generation-specific factors. Current research about the etiology of refractive errors has strengthened the influence of environmental factors, which led to new strategies for the prevention of refractive pathologies.

  10. The physiological basis for spacecraft environmental limits

    NASA Technical Reports Server (NTRS)

    Waligora, J. M. (Compiler)

    1979-01-01

    Limits for operational environments are discussed in terms of acceptable physiological changes. The environmental factors considered are pressure, contaminants, temperature, acceleration, noise, rf radiation, and weightlessness.

  11. Medication administration errors from a nursing viewpoint: a formal consensus of definition and scenarios using a Delphi technique.

    PubMed

    Shawahna, Ramzi; Masri, Dina; Al-Gharabeh, Rawan; Deek, Rawan; Al-Thayba, Lama; Halaweh, Masa

    2016-02-01

    To develop and achieve formal consensus on a definition of medication administration errors and scenarios that should or should not be considered as medication administration errors in hospitalised patient settings. Medication administration errors occur frequently in hospitalised patient settings. Currently, there is no formal consensus on a definition of medication administration errors or scenarios that should or should not be considered as medication administration errors. This was a descriptive study using Delphi technique. A panel of experts (n = 50) recruited from major hospitals, nursing schools and universities in Palestine took part in the study. Three Delphi rounds were followed to achieve consensus on a proposed definition of medication administration errors and a series of 61 scenarios representing potential medication administration error situations formulated into a questionnaire. In the first Delphi round, key contact nurses' views on medication administration errors were explored. In the second Delphi round, consensus was achieved to accept the proposed definition of medication administration errors and to include 36 (59%) scenarios and exclude 1 (1·6%) as medication administration errors. In the third Delphi round, consensus was achieved to consider further 14 (23%) and exclude 2 (3·3%) as medication administration errors while the remaining eight (13·1%) were considered equivocal. Of the 61 scenarios included in the Delphi process, experts decided to include 50 scenarios as medication administration errors, exclude three scenarios and include or exclude eight scenarios depending on the individual clinical situation. Consensus on a definition and scenarios representing medication administration errors can be achieved using formal consensus techniques. Researchers should be aware that using different definitions of medication administration errors, inclusion or exclusion of medication administration error situations could significantly affect

  12. Assumption-free estimation of the genetic contribution to refractive error across childhood.

    PubMed

    Guggenheim, Jeremy A; St Pourcain, Beate; McMahon, George; Timpson, Nicholas J; Evans, David M; Williams, Cathy

    2015-01-01

    Studies in relatives have generally yielded high heritability estimates for refractive error: twins 75-90%, families 15-70%. However, because related individuals often share a common environment, these estimates are inflated (via misallocation of unique/common environment variance). We calculated a lower-bound heritability estimate for refractive error free from such bias. Between the ages 7 and 15 years, participants in the Avon Longitudinal Study of Parents and Children (ALSPAC) underwent non-cycloplegic autorefraction at regular research clinics. At each age, an estimate of the variance in refractive error explained by single nucleotide polymorphism (SNP) genetic variants was calculated using genome-wide complex trait analysis (GCTA) using high-density genome-wide SNP genotype information (minimum N at each age=3,404). The variance in refractive error explained by the SNPs ("SNP heritability") was stable over childhood: Across age 7-15 years, SNP heritability averaged 0.28 (SE=0.08, p<0.001). The genetic correlation for refractive error between visits varied from 0.77 to 1.00 (all p<0.001) demonstrating that a common set of SNPs was responsible for the genetic contribution to refractive error across this period of childhood. Simulations suggested lack of cycloplegia during autorefraction led to a small underestimation of SNP heritability (adjusted SNP heritability=0.35; SE=0.09). To put these results in context, the variance in refractive error explained (or predicted) by the time participants spent outdoors was <0.005 and by the time spent reading was <0.01, based on a parental questionnaire completed when the child was aged 8-9 years old. Genetic variation captured by common SNPs explained approximately 35% of the variation in refractive error between unrelated subjects. This value sets an upper limit for predicting refractive error using existing SNP genotyping arrays, although higher-density genotyping in larger samples and inclusion of interaction effects

  13. Parental acceptance, postpartum depression, and maternal sensitivity: mediating and moderating processes.

    PubMed

    Crockenberg, Susan C; Leerkes, Esther M

    2003-03-01

    Mothers (n = 92), fathers (n = 84), and their infants (60% male) participated in a longitudinal study of postpartum depression and maternal sensitivity. Mothers completed questionnaire measures of remembered parental acceptance, depressive symptoms, and infant distress to novelty and limits. Mothers and partners reported on marital aggression and avoidance. Maternal sensitivity was observed in the laboratory at 6 months. Characteristics of mothers, partners, and infants combined to predict postpartum depression and maternal sensitivity. Remembered parental rejection predicted postpartum depressive symptoms with prenatal depression controlled; self-esteem mediated this effect. Paternal acceptance buffered against postpartum depression when infants were highly reactive and when partners were aggressive. Paternal acceptance reduced the impact of postpartum depression on maternal sensitivity; having an aggressive marital partner exacerbated the effect.

  14. A study to establish reasonable action limits for patient‐specific quality assurance in intensity‐modulated radiation therapy

    PubMed Central

    Alecu, Ionut M.; Stan, Andrada R.; Alecu, Marius; Ciura, Andrei; Hansen, Jeremy M.; Alecu, Rodica

    2007-01-01

    An effective patient quality assurance (QA) program for intensity‐modulated radiation therapy (IMRT) requires accurate and realistic plan acceptance criteria—that is, action limits. Based on dose measurements performed with a commercially available two‐dimensional (2D) diode array, we analyzed 747 fluence maps resulting from a routine patient QA program for IMRT plans. The fluence maps were calculated by three different commercially available (ADAC, CMS, Eclipse) treatment planning systems (TPSs) and were delivered using 6‐MV X‐ray beams produced by linear accelerators. To establish reasonably achievable and clinically acceptable limits for the dose deviations, the agreement between the measured and calculated fluence maps was evaluated in terms of percent dose error (PDE) for a few points and percent of passing points (PPP) for the isodose distribution. The analysis was conducted for each TPS used in the study (365 ADAC, 162 CMS, 220 Eclipse), for multiple treatment sites (prostate, pelvis, head and neck, spine, rectum, anus, lung, brain), at the normalization point for 3% percentage difference (%Diff) and 3‐mm distance to agreement (DTA) criteria. We investigated the treatment‐site dependency of PPP and PDE. The results show that, at 3% and 3‐mm criteria, a 95% PPP and 3% PDE can be achieved for prostate treatments and a 90% PPP and 5% PDE are attainable for any treatment site. PACS Numbers: 87.53Dq, 87.53Tf, 87.53Xd, 87.56Fc PMID:17592459

  15. Managing Errors to Reduce Accidents in High Consequence Networked Information Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganter, J.H.

    1999-02-01

    Computers have always helped to amplify and propagate errors made by people. The emergence of Networked Information Systems (NISs), which allow people and systems to quickly interact worldwide, has made understanding and minimizing human error more critical. This paper applies concepts from system safety to analyze how hazards (from hackers to power disruptions) penetrate NIS defenses (e.g., firewalls and operating systems) to cause accidents. Such events usually result from both active, easily identified failures and more subtle latent conditions that have resided in the system for long periods. Both active failures and latent conditions result from human errors. We classifymore » these into several types (slips, lapses, mistakes, etc.) and provide NIS examples of how they occur. Next we examine error minimization throughout the NIS lifecycle, from design through operation to reengineering. At each stage, steps can be taken to minimize the occurrence and effects of human errors. These include defensive design philosophies, architectural patterns to guide developers, and collaborative design that incorporates operational experiences and surprises into design efforts. We conclude by looking at three aspects of NISs that will cause continuing challenges in error and accident management: immaturity of the industry, limited risk perception, and resource tradeoffs.« less

  16. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and

  17. Human error identification for laparoscopic surgery: Development of a motion economy perspective.

    PubMed

    Al-Hakim, Latif; Sevdalis, Nick; Maiping, Tanaphon; Watanachote, Damrongpan; Sengupta, Shomik; Dissaranan, Charuspong

    2015-09-01

    This study postulates that traditional human error identification techniques fail to consider motion economy principles and, accordingly, their applicability in operating theatres may be limited. This study addresses this gap in the literature with a dual aim. First, it identifies the principles of motion economy that suit the operative environment and second, it develops a new error mode taxonomy for human error identification techniques which recognises motion economy deficiencies affecting the performance of surgeons and predisposing them to errors. A total of 30 principles of motion economy were developed and categorised into five areas. A hierarchical task analysis was used to break down main tasks of a urological laparoscopic surgery (hand-assisted laparoscopic nephrectomy) to their elements and the new taxonomy was used to identify errors and their root causes resulting from violation of motion economy principles. The approach was prospectively tested in 12 observed laparoscopic surgeries performed by 5 experienced surgeons. A total of 86 errors were identified and linked to the motion economy deficiencies. Results indicate the developed methodology is promising. Our methodology allows error prevention in surgery and the developed set of motion economy principles could be useful for training surgeons on motion economy principles. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Digital stereo photogrammetry for grain-scale monitoring of fluvial surfaces: Error evaluation and workflow optimisation

    NASA Astrophysics Data System (ADS)

    Bertin, Stephane; Friedrich, Heide; Delmas, Patrice; Chan, Edwin; Gimel'farb, Georgy

    2015-03-01

    Grain-scale monitoring of fluvial morphology is important for the evaluation of river system dynamics. Significant progress in remote sensing and computer performance allows rapid high-resolution data acquisition, however, applications in fluvial environments remain challenging. Even in a controlled environment, such as a laboratory, the extensive acquisition workflow is prone to the propagation of errors in digital elevation models (DEMs). This is valid for both of the common surface recording techniques: digital stereo photogrammetry and terrestrial laser scanning (TLS). The optimisation of the acquisition process, an effective way to reduce the occurrence of errors, is generally limited by the use of commercial software. Therefore, the removal of evident blunders during post processing is regarded as standard practice, although this may introduce new errors. This paper presents a detailed evaluation of a digital stereo-photogrammetric workflow developed for fluvial hydraulic applications. The introduced workflow is user-friendly and can be adapted to various close-range measurements: imagery is acquired with two Nikon D5100 cameras and processed using non-proprietary "on-the-job" calibration and dense scanline-based stereo matching algorithms. Novel ground truth evaluation studies were designed to identify the DEM errors, which resulted from a combination of calibration errors, inaccurate image rectifications and stereo-matching errors. To ensure optimum DEM quality, we show that systematic DEM errors must be minimised by ensuring a good distribution of control points throughout the image format during calibration. DEM quality is then largely dependent on the imagery utilised. We evaluated the open access multi-scale Retinex algorithm to facilitate the stereo matching, and quantified its influence on DEM quality. Occlusions, inherent to any roughness element, are still a major limiting factor to DEM accuracy. We show that a careful selection of the camera

  19. In acceptance we trust? Conceptualising acceptance as a viable approach to NGO security management.

    PubMed

    Fast, Larissa A; Freeman, C Faith; O'Neill, Michael; Rowley, Elizabeth

    2013-04-01

    This paper documents current understanding of acceptance as a security management approach and explores issues and challenges non-governmental organisations (NGOs) confront when implementing an acceptance approach to security management. It argues that the failure of organisations to systematise and clearly articulate acceptance as a distinct security management approach and a lack of organisational policies and procedures concerning acceptance hinder its efficacy as a security management approach. The paper identifies key and cross-cutting components of acceptance that are critical to its effective implementation in order to advance a comprehensive and systematic concept of acceptance. The key components of acceptance illustrate how organisational and staff functions affect positively or negatively an organisation's acceptance, and include: an organisation's principles and mission, communications, negotiation, programming, relationships and networks, stakeholder and context analysis, staffing, and image. The paper contends that acceptance is linked not only to good programming, but also to overall organisational management and structures. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.

  20. Towards the 1 mm/y stability of the radial orbit error at regional scales

    NASA Astrophysics Data System (ADS)

    Couhert, Alexandre; Cerri, Luca; Legeais, Jean-François; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel

    2015-01-01

    An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West “order-1” pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.

  1. Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales

    NASA Technical Reports Server (NTRS)

    Couhert, Alexandre; Cerri, Luca; Legeais, Jean-Francois; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel

    2015-01-01

    An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West "order-1" pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.

  2. Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales

    NASA Technical Reports Server (NTRS)

    Couhert, Alexandre; Cerri, Luca; Legeais, Jean-Francois; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel

    2014-01-01

    An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS,SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West "order-1" pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.

  3. The incidence and severity of errors in pharmacist-written discharge medication orders.

    PubMed

    Onatade, Raliat; Sawieres, Sara; Veck, Alexandra; Smith, Lindsay; Gore, Shivani; Al-Azeib, Sumiah

    2017-08-01

    Background Errors in discharge prescriptions are problematic. When hospital pharmacists write discharge prescriptions improvements are seen in the quality and efficiency of discharge. There is limited information on the incidence of errors in pharmacists' medication orders. Objective To investigate the extent and clinical significance of errors in pharmacist-written discharge medication orders. Setting 1000-bed teaching hospital in London, UK. Method Pharmacists in this London hospital routinely write discharge medication orders as part of the clinical pharmacy service. Convenient days, based on researcher availability, between October 2013 and January 2014 were selected. Pre-registration pharmacists reviewed all discharge medication orders written by pharmacists on these days and identified discrepancies between the medication history, inpatient chart, patient records and discharge summary. A senior clinical pharmacist confirmed the presence of an error. Each error was assigned a potential clinical significance rating (based on the NCCMERP scale) by a physician and an independent senior clinical pharmacist, working separately. Main outcome measure Incidence of errors in pharmacist-written discharge medication orders. Results 509 prescriptions, written by 51 pharmacists, containing 4258 discharge medication orders were assessed (8.4 orders per prescription). Ten prescriptions (2%), contained a total of ten erroneous orders (order error rate-0.2%). The pharmacist considered that one error had the potential to cause temporary harm (0.02% of all orders). The physician did not rate any of the errors with the potential to cause harm. Conclusion The incidence of errors in pharmacists' discharge medication orders was low. The quality, safety and policy implications of pharmacists routinely writing discharge medication orders should be further explored.

  4. IMRT QA: Selecting gamma criteria based on error detection sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steers, Jennifer M.; Fraass, Benedick A., E-mail: benedick.fraass@cshs.org

    Purpose: The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique,more » and software utilized in a specific clinic. Methods: A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. Results: This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing

  5. IMRT QA: Selecting gamma criteria based on error detection sensitivity.

    PubMed

    Steers, Jennifer M; Fraass, Benedick A

    2016-04-01

    The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique, and software utilized in a specific clinic. A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose threshold was consistent

  6. Plutonium Critical Mass Curve Comparison to Mass at Upper Subcritical Limit (USL) Using Whisper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alwin, Jennifer Louise; Zhang, Ning

    Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the MCNP ® Monte Carlo radiation transport package. Standard approaches to validation rely on the selection of benchmarks based upon expert judgment. Whisper uses sensitivity/uncertainty (S/U) methods to select relevant benchmarks to a particular application or set of applications being analyzed. Using these benchmarks, Whisper computes a calculational margin. Whisper attempts to quantify the margin of subcriticality (MOS) from errors in software and uncertainties in nuclear data. The combination of the Whisper-derived calculational margin and MOS comprise the baseline upper subcritical limit (USL), tomore » which an additional margin may be applied by the nuclear criticality safety analyst as appropriate to ensure subcriticality. A series of critical mass curves for plutonium, similar to those found in Figure 31 of LA-10860-MS, have been generated using MCNP6.1.1 and the iterative parameter study software, WORM_Solver. The baseline USL for each of the data points of the curves was then computed using Whisper 1.1. The USL was then used to determine the equivalent mass for plutonium metal-water system. ANSI/ANS-8.1 states that it is acceptable to use handbook data, such as the data directly from the LA-10860-MS, as it is already considered validated (Section 4.3 4) “Use of subcritical limit data provided in ANSI/ANS standards or accepted reference publications does not require further validation.”). This paper attempts to take a novel approach to visualize traditional critical mass curves and allows comparison with the amount of mass for which the k eff is equal to the USL (calculational margin + margin of subcriticality). However, the intent is to plot the critical mass data along with USL, not to suggest that already accepted handbook data should have new and more rigorous requirements for validation.« less

  7. Remediating Common Math Errors.

    ERIC Educational Resources Information Center

    Wagner, Rudolph F.

    1981-01-01

    Explanations and remediation suggestions for five types of mathematics errors due either to perceptual or cognitive difficulties are given. Error types include directionality problems, mirror writing, visually misperceived signs, diagnosed directionality problems, and mixed process errors. (CL)

  8. Laboratory errors and patient safety.

    PubMed

    Miligy, Dawlat A

    2015-01-01

    Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that

  9. Horizon sensors attitude errors simulation for the Brazilian Remote Sensing Satellite

    NASA Astrophysics Data System (ADS)

    Vicente de Brum, Antonio Gil; Ricci, Mario Cesar

    Remote sensing, meteorological and other types of satellites require an increasingly better Earth related positioning. From the past experience it is well known that the thermal horizon in the 15 micrometer band provides conditions of determining the local vertical at any time. This detection is done by horizon sensors which are accurate instruments for Earth referred attitude sensing and control whose performance is limited by systematic and random errors amounting about 0.5 deg. Using the computer programs OBLATE, SEASON, ELECTRO and MISALIGN, developed at INPE to simulate four distinct facets of conical scanning horizon sensors, attitude errors are obtained for the Brazilian Remote Sensing Satellite (the first one, SSR-1, is scheduled to fly in 1996). These errors are due to the oblate shape of the Earth, seasonal and latitudinal variations of the 15 micrometer infrared radiation, electronic processing time delay and misalignment of sensor axis. The sensor related attitude errors are thus properly quantified in this work and will, together with other systematic errors (for instance, ambient temperature variation) take part in the pre-launch analysis of the Brazilian Remote Sensing Satellite, with respect to the horizon sensor performance.

  10. Impact of geophysical model error for recovering temporal gravity field model

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Luo, Zhicai; Wu, Yihao; Li, Qiong; Xu, Chuang

    2016-07-01

    The impact of geophysical model error on recovered temporal gravity field models with both real and simulated GRACE observations is assessed in this paper. With real GRACE observations, we build four temporal gravity field models, i.e., HUST08a, HUST11a, HUST04 and HUST05. HUST08a and HUST11a are derived from different ocean tide models (EOT08a and EOT11a), while HUST04 and HUST05 are derived from different non-tidal models (AOD RL04 and AOD RL05). The statistical result shows that the discrepancies of the annual mass variability amplitudes in six river basins between HUST08a and HUST11a models, HUST04 and HUST05 models are all smaller than 1 cm, which demonstrates that geophysical model error slightly affects the current GRACE solutions. The impact of geophysical model error for future missions with more accurate satellite ranging is also assessed by simulation. The simulation results indicate that for current mission with range rate accuracy of 2.5 × 10- 7 m/s, observation error is the main reason for stripe error. However, when the range rate accuracy improves to 5.0 × 10- 8 m/s in the future mission, geophysical model error will be the main source for stripe error, which will limit the accuracy and spatial resolution of temporal gravity model. Therefore, observation error should be the primary error source taken into account at current range rate accuracy level, while more attention should be paid to improving the accuracy of background geophysical models for the future mission.

  11. Accuracy limitations of hyperbolic multilateration systems

    DOT National Transportation Integrated Search

    1973-03-22

    The report is an analysis of the accuracy limitations of hyperbolic multilateration systems. A central result is a demonstration that the inverse of the covariance matrix for positional errors corresponds to the moment of inertia matrix of a simple m...

  12. Do errors matter? Errorless and errorful learning in anomic picture naming.

    PubMed

    McKissock, Stephen; Ward, Jamie

    2007-06-01

    Errorless training methods significantly improve learning in memory-impaired patients relative to errorful training procedures. However, the validity of this technique for acquiring linguistic information in aphasia has rarely been studied. This study contrasts three different treatment conditions over an 8 week period for rehabilitating picture naming in anomia: (1) errorless learning in which pictures are shown and the experimenter provides the name, (2) errorful learning with feedback in which the patient is required to generate a name but the correct name is then supplied by the experimenter, and (3) errorful learning in which no feedback is given. These conditions are compared to an untreated set of matched words. Both errorless and errorful learning with feedback conditions led to significant improvement at a 2-week and 12-14-week retest (errorful without feedback and untreated words were similar). The results suggest that it does not matter whether anomic patients are allowed to make errors in picture naming or not (unlike in memory impaired individuals). What does matter is that a correct response is given as feedback. The results also question the widely held assumption that it is beneficial for a patient to attempt to retrieve a word, given that our errorless condition involved no retrieval effort and had the greatest benefits.

  13. Error Recovery in the Time-Triggered Paradigm with FTT-CAN.

    PubMed

    Marques, Luis; Vasconcelos, Verónica; Pedreiras, Paulo; Almeida, Luís

    2018-01-11

    Data networks are naturally prone to interferences that can corrupt messages, leading to performance degradation or even to critical failure of the corresponding distributed system. To improve resilience of critical systems, time-triggered networks are frequently used, based on communication schedules defined at design-time. These networks offer prompt error detection, but slow error recovery that can only be compensated with bandwidth overprovisioning. On the contrary, the Flexible Time-Triggered (FTT) paradigm uses online traffic scheduling, which enables a compromise between error detection and recovery that can achieve timely recovery with a fraction of the needed bandwidth. This article presents a new method to recover transmission errors in a time-triggered Controller Area Network (CAN) network, based on the Flexible Time-Triggered paradigm, namely FTT-CAN. The method is based on using a server (traffic shaper) to regulate the retransmission of corrupted or omitted messages. We show how to design the server to simultaneously: (1) meet a predefined reliability goal, when considering worst case error recovery scenarios bounded probabilistically by a Poisson process that models the fault arrival rate; and, (2) limit the direct and indirect interference in the message set, preserving overall system schedulability. Extensive simulations with multiple scenarios, based on practical and randomly generated systems, show a reduction of two orders of magnitude in the average bandwidth taken by the proposed error recovery mechanism, when compared with traditional approaches available in the literature based on adding extra pre-defined transmission slots.

  14. Error Recovery in the Time-Triggered Paradigm with FTT-CAN

    PubMed Central

    Pedreiras, Paulo; Almeida, Luís

    2018-01-01

    Data networks are naturally prone to interferences that can corrupt messages, leading to performance degradation or even to critical failure of the corresponding distributed system. To improve resilience of critical systems, time-triggered networks are frequently used, based on communication schedules defined at design-time. These networks offer prompt error detection, but slow error recovery that can only be compensated with bandwidth overprovisioning. On the contrary, the Flexible Time-Triggered (FTT) paradigm uses online traffic scheduling, which enables a compromise between error detection and recovery that can achieve timely recovery with a fraction of the needed bandwidth. This article presents a new method to recover transmission errors in a time-triggered Controller Area Network (CAN) network, based on the Flexible Time-Triggered paradigm, namely FTT-CAN. The method is based on using a server (traffic shaper) to regulate the retransmission of corrupted or omitted messages. We show how to design the server to simultaneously: (1) meet a predefined reliability goal, when considering worst case error recovery scenarios bounded probabilistically by a Poisson process that models the fault arrival rate; and, (2) limit the direct and indirect interference in the message set, preserving overall system schedulability. Extensive simulations with multiple scenarios, based on practical and randomly generated systems, show a reduction of two orders of magnitude in the average bandwidth taken by the proposed error recovery mechanism, when compared with traditional approaches available in the literature based on adding extra pre-defined transmission slots. PMID:29324723

  15. Mesoscale Predictability and Error Growth in Short Range Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Gingrich, Mark

    Although it was originally suggested that small-scale, unresolved errors corrupt forecasts at all scales through an inverse error cascade, some authors have proposed that those mesoscale circulations resulting from stationary forcing on the larger scale may inherit the predictability of the large-scale motions. Further, the relative contributions of large- and small-scale uncertainties in producing error growth in the mesoscales remain largely unknown. Here, 100 member ensemble forecasts are initialized from an ensemble Kalman filter (EnKF) to simulate two winter storms impacting the East Coast of the United States in 2010. Four verification metrics are considered: the local snow water equivalence, total liquid water, and 850 hPa temperatures representing mesoscale features; and the sea level pressure field representing a synoptic feature. It is found that while the predictability of the mesoscale features can be tied to the synoptic forecast, significant uncertainty existed on the synoptic scale at lead times as short as 18 hours. Therefore, mesoscale details remained uncertain in both storms due to uncertainties at the large scale. Additionally, the ensemble perturbation kinetic energy did not show an appreciable upscale propagation of error for either case. Instead, the initial condition perturbations from the cycling EnKF were maximized at large scales and immediately amplified at all scales without requiring initial upscale propagation. This suggests that relatively small errors in the synoptic-scale initialization may have more importance in limiting predictability than errors in the unresolved, small-scale initial conditions.

  16. Bootstrap-based methods for estimating standard errors in Cox's regression analyses of clustered event times.

    PubMed

    Xiao, Yongling; Abrahamowicz, Michal

    2010-03-30

    We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.

  17. Alterations in Error-Related Brain Activity and Post-Error Behavior over Time

    ERIC Educational Resources Information Center

    Themanson, Jason R.; Rosen, Peter J.; Pontifex, Matthew B.; Hillman, Charles H.; McAuley, Edward

    2012-01-01

    This study examines the relation between the error-related negativity (ERN) and post-error behavior over time in healthy young adults (N = 61). Event-related brain potentials were collected during two sessions of an identical flanker task. Results indicated changes in ERN and post-error accuracy were related across task sessions, with more…

  18. 12 CFR 211.12 - Lending limits and capital requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Lending limits and capital requirements. 211.12 Section 211.12 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM... Lending limits and capital requirements. (a) Acceptances of Edge corporations. (1) Limitations. An Edge...

  19. Female residents experiencing medical errors in general internal medicine: a qualitative study.

    PubMed

    Mankaka, Cindy Ottiger; Waeber, Gérard; Gachoud, David

    2014-07-10

    sense that gender possibly influences the experience with errors, including the kind of coping mechanisms displayed. However, we acknowledge that the lack of a direct comparison between female and male participants represents a limitation while aiming to explore the role of gender.

  20. ATC operational error analysis.

    DOT National Transportation Integrated Search

    1972-01-01

    The primary causes of operational errors are discussed and the effects of these errors on an ATC system's performance are described. No attempt is made to specify possible error models for the spectrum of blunders that can occur although previous res...

  1. Experiences of and support for nurses as second victims of adverse nursing errors: a qualitative systematic review.

    PubMed

    Cabilan, C J; Kynoch, Kathryn

    2017-09-01

    Second victims are clinicians who have made adverse errors and feel traumatized by the experience. The current published literature on second victims is mainly representative of doctors, hence nurses' experiences are not fully depicted. This systematic review was necessary to understand the second victim experience for nurses, explore the support provided, and recommend appropriate support systems for nurses. To synthesize the best available evidence on nurses' experiences as second victims, and explore their experiences of the support they receive and the support they need. Participants were registered nurses who made adverse errors. The review included studies that described nurses' experiences as second victims and/or the support they received after making adverse errors. All studies conducted in any health care settings worldwide. The qualitative studies included were grounded theory, discourse analysis and phenomenology. A structured search strategy was used to locate all unpublished and published qualitative studies, but was limited to the English language, and published between 1980 and February 2017. The references of studies selected for eligibility screening were hand-searched for additional literature. Eligible studies were assessed by two independent reviewers for methodological quality using a standardized critical appraisal instrument from the Joanna Briggs Institute Qualitative Assessment and Review Instrument (JBI QARI). Themes and narrative statements were extracted from papers included in the review using the standardized data extraction tool from JBI QARI. Data synthesis was conducted using the Joanna Briggs Institute meta-aggregation approach. There were nine qualitative studies included in the review. The narratives of 284 nurses generated a total of 43 findings, which formed 15 categories based on similarity of meaning. Four synthesized findings were generated from the categories: (i) The error brings a considerable emotional burden to the

  2. Currie detection limits in gamma-ray spectroscopy.

    PubMed

    De Geer, Lars-Erik

    2004-01-01

    Currie Hypothesis testing is applied to gamma-ray spectral data, where an optimum part of the peak is used and the background is considered well known from nearby channels. With this, the risk of making Type I errors is about 100 times lower than commonly assumed. A programme, PeakMaker, produces random peaks with given characteristics on the screen and calculations are done to facilitate a full use of Poisson statistics in spectrum analyses. SHORT TECHNICAL NOTE SUMMARY: The Currie decision limit concept applied to spectral data is reinterpreted, which gives better consistency between the selected error risk and the observed error rates. A PeakMaker program is described and the few count problem is analyzed.

  3. Subaperture test of wavefront error of large telescopes: error sources and stitching performance simulations

    NASA Astrophysics Data System (ADS)

    Chen, Shanyong; Li, Shengyi; Wang, Guilin

    2014-11-01

    The wavefront error of large telescopes requires to be measured to check the system quality and also estimate the misalignment of the telescope optics including the primary, the secondary and so on. It is usually realized by a focal plane interferometer and an autocollimator flat (ACF) of the same aperture with the telescope. However, it is challenging for meter class telescopes due to high cost and technological challenges in producing the large ACF. Subaperture test with a smaller ACF is hence proposed in combination with advanced stitching algorithms. Major error sources include the surface error of the ACF, misalignment of the ACF and measurement noises. Different error sources have different impacts on the wavefront error. Basically the surface error of the ACF behaves like systematic error and the astigmatism will be cumulated and enlarged if the azimuth of subapertures remains fixed. It is difficult to accurately calibrate the ACF because it suffers considerable deformation induced by gravity or mechanical clamping force. Therefore a selfcalibrated stitching algorithm is employed to separate the ACF surface error from the subaperture wavefront error. We suggest the ACF be rotated around the optical axis of the telescope for subaperture test. The algorithm is also able to correct the subaperture tip-tilt based on the overlapping consistency. Since all subaperture measurements are obtained in the same imaging plane, lateral shift of the subapertures is always known and the real overlapping points can be recognized in this plane. Therefore lateral positioning error of subapertures has no impact on the stitched wavefront. In contrast, the angular positioning error changes the azimuth of the ACF and finally changes the systematic error. We propose an angularly uneven layout of subapertures to minimize the stitching error, which is very different from our knowledge. At last, measurement noises could never be corrected but be suppressed by means of averaging and

  4. Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guth, Larry, E-mail: lguth@math.mit.edu; Lubotzky, Alexander, E-mail: alex.lubotzky@mail.huji.ac.il

    2014-08-15

    Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are low density parity check codes with linear rate and distance n{sup ε}. Their rate is evaluated via Euler characteristic arguments and their distance using Z{sub 2}-systolic geometry. This construction answers a question of Zémor [“On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction,” in Proceedings of Second International Workshop on Coding and Cryptology (IWCC), Lecture Notes in Computer Science Vol. 5557 (2009), pp. 259–273], who asked whether homological codes with such parameters could exist at all.

  5. Abnormal Error Monitoring in Math-Anxious Individuals: Evidence from Error-Related Brain Potentials

    PubMed Central

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Àngels

    2013-01-01

    This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants’ math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN. PMID:24236212

  6. An acceptance model for smart glasses based tourism augmented reality

    NASA Astrophysics Data System (ADS)

    Obeidy, Waqas Khalid; Arshad, Haslina; Huang, Jiung Yao

    2017-10-01

    Recent mobile technologies have revolutionized the way people experience their environment. Although, there is only limited research on users' acceptance of AR in the cultural tourism context, previous researchers have explored the opportunities of using augmented reality (AR) in order to enhance user experience. Recent AR research lack works that integrates dimensions which are specific to cultural tourism and smart glass specific context. Hence, this work proposes an AR acceptance model in the context of cultural heritage tourism and smart glasses capable of performing augmented reality. Therefore, in this paper we aim to present an AR acceptance model to understand the AR usage behavior and visiting intention for tourists who use Smart Glass based AR at UNESCO cultural heritage destinations in Malaysia. Furthermore, this paper identifies information quality, technology readiness, visual appeal, and facilitating conditions as external variables and key factors influencing visitors' beliefs, attitudes and usage intention.

  7. Heuristic errors in clinical reasoning.

    PubMed

    Rylander, Melanie; Guerrasio, Jeannette

    2016-08-01

    Errors in clinical reasoning contribute to patient morbidity and mortality. The purpose of this study was to determine the types of heuristic errors made by third-year medical students and first-year residents. This study surveyed approximately 150 clinical educators inquiring about the types of heuristic errors they observed in third-year medical students and first-year residents. Anchoring and premature closure were the two most common errors observed amongst third-year medical students and first-year residents. There was no difference in the types of errors observed in the two groups. Errors in clinical reasoning contribute to patient morbidity and mortality Clinical educators perceived that both third-year medical students and first-year residents committed similar heuristic errors, implying that additional medical knowledge and clinical experience do not affect the types of heuristic errors made. Further work is needed to help identify methods that can be used to reduce heuristic errors early in a clinician's education. © 2015 John Wiley & Sons Ltd.

  8. 12 CFR 412.13 - Limitations and penalties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Limitations and penalties. 412.13 Section 412.13 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES ACCEPTANCE OF PAYMENT FROM A NON-FEDERAL SOURCE FOR TRAVEL EXPENSES § 412.13 Limitations and penalties. (a) This part is in addition to and not in...

  9. Awareness of technology-induced errors and processes for identifying and preventing such errors.

    PubMed

    Bellwood, Paule; Borycki, Elizabeth M; Kushniruk, Andre W

    2015-01-01

    There is a need to determine if organizations working with health information technology are aware of technology-induced errors and how they are addressing and preventing them. The purpose of this study was to: a) determine the degree of technology-induced error awareness in various Canadian healthcare organizations, and b) identify those processes and procedures that are currently in place to help address, manage, and prevent technology-induced errors. We identified a lack of technology-induced error awareness among participants. Participants identified there was a lack of well-defined procedures in place for reporting technology-induced errors, addressing them when they arise, and preventing them.

  10. Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.

    PubMed

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.

  11. Error identification, disclosure, and reporting: practice patterns of three emergency medicine provider types.

    PubMed

    Hobgood, Cherri; Xie, Jipan; Weiner, Bryan; Hooker, James

    2004-02-01

    To gather preliminary data on how the three major types of emergency medicine (EM) providers, physicians, nurses (RNs), and out-of-hospital personnel (EMTs), differ in error identification, disclosure, and reporting. A convenience sample of emergency department (ED) providers completed a brief survey designed to evaluate error frequency, disclosure, and reporting practices as well as error-based discussion and educational activities. One hundred sixteen subjects participated: 41 EMTs (35%), 33 RNs (28%), and 42 physicians (36%). Forty-five percent of EMTs, 56% of RNs, and 21% of physicians identified no clinical errors during the preceding year. When errors were identified, physicians learned of them via dialogue with RNs (58%), patients (13%), pharmacy (35%), and attending physicians (35%). For known errors, all providers were equally unlikely to inform the team caring for the patient. Disclosure to patients was limited and varied by provider type (19% EMTs, 23% RNs, and 74% physicians). Disclosure education was rare, with error to a patient. Error discussions are widespread, with all providers indicating they discussed their own as well as the errors of others. This study suggests that error identification, disclosure, and reporting challenge all members of the ED care delivery team. Provider-specific education and enhanced teamwork training will be required to further the transformation of the ED into a high-reliability organization.

  12. Acceptable range of speech level in noisy sound fields for young adults and elderly persons.

    PubMed

    Sato, Hayato; Morimoto, Masayuki; Ota, Ryo

    2011-09-01

    The acceptable range of speech level as a function of background noise level was investigated on the basis of word intelligibility scores and listening difficulty ratings. In the present study, the acceptable range is defined as the range that maximizes word intelligibility scores and simultaneously does not cause a significant increase in listening difficulty ratings from the minimum ratings. Listening tests with young adult and elderly listeners demonstrated the following. (1) The acceptable range of speech level for elderly listeners overlapped that for young listeners. (2) The lower limit of the acceptable speech level for both young and elderly listeners was 65 dB (A-weighted) for noise levels of 40 and 45 dB (A-weighted), a level with a speech-to-noise ratio of +15 dB for noise levels of 50 and 55 dB, and a level with a speech-to-noise ratio of +10 dB for noise levels from 60 to 70 dB. (3) The upper limit of the acceptable speech level for both young and elderly listeners was 80 dB for noise levels from 40 to 55 dB and 85 dB or above for noise levels from 55 to 70 dB. © 2011 Acoustical Society of America

  13. Acceptability of Health Care-Related Risks: A Literature Review.

    PubMed

    Quintard, Bruno; Roberts, Tamara; Nitaro, Léa; Quenon, Jean-Luc; Michel, Philippe

    2016-03-01

    Risk management aims at reducing risks associated with hospital care to an acceptable level, both in their frequency and their impact on health. The social acceptability of risk on the part of the general population and of the health-care professionals, faced with regular information about adverse events, is undoubtedly evolving rapidly.In contrast to risk acceptability, the concept of risk perception is of limited interest to risk managers because it does not inform on the behaviors and actions resulting from these perceptions. The aim of this work was to define the concept of social acceptability of risk through an in-depth examination of a wide-ranging and multidisciplinary literature. A 1990-2010 English and French literature review was carried out in medical, epidemiological, and human and social sciences online databases, gray literature, and books. Of the 5931 references retrieved, 203 met the inclusion criteria. We identified contributions from 5 major research fields: economic, sociocognitive, psychometric, sociological/anthropological, and interactionist. When assessing risks, individuals use a variety of psychological and social processes that include their perception not only of a given risk but also of their own personal and social resources. This global perception has a direct impact on the responses and actual behavior of individuals and groups, enabling them to cope with the risk and/or manage it. Social acceptability includes perceptions related to risks and the stated intentions of individual behavior. This concept may therefore be relevant for defining local and national patient safety priorities.

  14. Predicting nurses' use of healthcare technology using the technology acceptance model: an integrative review.

    PubMed

    Strudwick, Gillian

    2015-05-01

    The benefits of healthcare technologies can only be attained if nurses accept and intend to fully use them. One of the most common models utilized to understand user acceptance of technology is the Technology Acceptance Model. This model and modified versions of it have only recently been applied in the healthcare literature among nurse participants. An integrative literature review was conducted on this topic. Ovid/MEDLINE, PubMed, Google Scholar, and CINAHL were searched yielding a total of 982 references. Upon eliminating duplicates and applying the inclusion and exclusion criteria, the review included a total of four dissertations, three symposium proceedings, and 13 peer-reviewed journal articles. These documents were appraised and reviewed. The results show that a modified Technology Acceptance Model with added variables could provide a better explanation of nurses' acceptance of healthcare technology. These added variables to modified versions of the Technology Acceptance Model are discussed, and the studies' methodologies are critiqued. Limitations of the studies included in the integrative review are also examined.

  15. Coping with medical error: a systematic review of papers to assess the effects of involvement in medical errors on healthcare professionals' psychological well-being.

    PubMed

    Sirriyeh, Reema; Lawton, Rebecca; Gardner, Peter; Armitage, Gerry

    2010-12-01

    Previous research has established health professionals as secondary victims of medical error, with the identification of a range of emotional and psychological repercussions that may occur as a result of involvement in error.2 3 Due to the vast range of emotional and psychological outcomes, research to date has been inconsistent in the variables measured and tools used. Therefore, differing conclusions have been drawn as to the nature of the impact of error on professionals and the subsequent repercussions for their team, patients and healthcare institution. A systematic review was conducted. Data sources were identified using database searches, with additional reference and hand searching. Eligibility criteria were applied to all studies identified, resulting in a total of 24 included studies. Quality assessment was conducted with the included studies using a tool that was developed as part of this research, but due to the limited number and diverse nature of studies, no exclusions were made on this basis. Review findings suggest that there is consistent evidence for the widespread impact of medical error on health professionals. Psychological repercussions may include negative states such as shame, self-doubt, anxiety and guilt. Despite much attention devoted to the assessment of negative outcomes, the potential for positive outcomes resulting from error also became apparent, with increased assertiveness, confidence and improved colleague relationships reported. It is evident that involvement in a medical error can elicit a significant psychological response from the health professional involved. However, a lack of literature around coping and support, coupled with inconsistencies and weaknesses in methodology, may need be addressed in future work.

  16. Acceptance and Commitment Therapy (ACT) as a Career Counselling Strategy

    ERIC Educational Resources Information Center

    Hoare, P. Nancey; McIlveen, Peter; Hamilton, Nadine

    2012-01-01

    Acceptance and commitment therapy (ACT) has potential to contribute to career counselling. In this paper, the theoretical tenets of ACT and a selection of its counselling techniques are overviewed along with a descriptive case vignette. There is limited empirical research into ACT's application in career counselling. Accordingly, a research agenda…

  17. Anxiety and Error Monitoring: Increased Error Sensitivity or Altered Expectations?

    ERIC Educational Resources Information Center

    Compton, Rebecca J.; Carp, Joshua; Chaddock, Laura; Fineman, Stephanie L.; Quandt, Lorna C.; Ratliff, Jeffrey B.

    2007-01-01

    This study tested the prediction that the error-related negativity (ERN), a physiological measure of error monitoring, would be enhanced in anxious individuals, particularly in conditions with threatening cues. Participants made gender judgments about faces whose expressions were either happy, angry, or neutral. Replicating prior studies, midline…

  18. Refractive errors and schizophrenia.

    PubMed

    Caspi, Asaf; Vishne, Tali; Reichenberg, Abraham; Weiser, Mark; Dishon, Ayelet; Lubin, Gadi; Shmushkevitz, Motti; Mandel, Yossi; Noy, Shlomo; Davidson, Michael

    2009-02-01

    Refractive errors (myopia, hyperopia and amblyopia), like schizophrenia, have a strong genetic cause, and dopamine has been proposed as a potential mediator in their pathophysiology. The present study explored the association between refractive errors in adolescence and schizophrenia, and the potential familiality of this association. The Israeli Draft Board carries a mandatory standardized visual accuracy assessment. 678,674 males consecutively assessed by the Draft Board and found to be psychiatrically healthy at age 17 were followed for psychiatric hospitalization with schizophrenia using the Israeli National Psychiatric Hospitalization Case Registry. Sib-ships were also identified within the cohort. There was a negative association between refractive errors and later hospitalization for schizophrenia. Future male schizophrenia patients were two times less likely to have refractive errors compared with never-hospitalized individuals, controlling for intelligence, years of education and socioeconomic status [adjusted Hazard Ratio=.55; 95% confidence interval .35-.85]. The non-schizophrenic male siblings of schizophrenia patients also had lower prevalence of refractive errors compared to never-hospitalized individuals. Presence of refractive errors in adolescence is related to lower risk for schizophrenia. The familiality of this association suggests that refractive errors may be associated with the genetic liability to schizophrenia.

  19. Measuring Acceptance of Sleep Difficulties: The Development of the Sleep Problem Acceptance Questionnaire.

    PubMed

    Bothelius, Kristoffer; Jernelöv, Susanna; Fredrikson, Mats; McCracken, Lance M; Kaldo, Viktor

    2015-11-01

    Acceptance may be an important therapeutic process in sleep medicine, but valid psychometric instruments measuring acceptance related to sleep difficulties are lacking. The purpose of this study was to develop a measure of acceptance in insomnia, and to examine its factor structure as well as construct validity. In a cross-sectional design, a principal component analysis for item reduction was conducted on a first sample (A) and a confirmatory factor analysis on a second sample (B). Construct validity was tested on a combined sample (C). Questionnaire items were derived from a measure of acceptance in chronic pain, and data were gathered through screening or available from pretreatment assessments in four insomnia treatment trials, administered online, via bibliotherapy and in primary care. Adults with insomnia: 372 in sample A and 215 in sample B. Sample C (n = 820) included sample A and B with another 233 participants added. Construct validity was assessed through relations with established acceptance and sleep scales. The principal component analysis presented a two-factor solution with eight items, explaining 65.9% of the total variance. The confirmatory factor analysis supported the solution. Acceptance of sleep problems was more closely related to subjective symptoms and consequences of insomnia than to diary description of sleep, or to acceptance of general private events. The Sleep Problem Acceptance Questionnaire (SPAQ), containing the subscales "Activity Engagement" and "Willingness", is a valid tool to assess acceptance of insomnia. © 2015 Associated Professional Sleep Societies, LLC.

  20. Error-tradeoff and error-disturbance relations for incompatible quantum measurements.

    PubMed

    Branciard, Cyril

    2013-04-23

    Heisenberg's uncertainty principle is one of the main tenets of quantum theory. Nevertheless, and despite its fundamental importance for our understanding of quantum foundations, there has been some confusion in its interpretation: Although Heisenberg's first argument was that the measurement of one observable on a quantum state necessarily disturbs another incompatible observable, standard uncertainty relations typically bound the indeterminacy of the outcomes when either one or the other observable is measured. In this paper, we quantify precisely Heisenberg's intuition. Even if two incompatible observables cannot be measured together, one can still approximate their joint measurement, at the price of introducing some errors with respect to the ideal measurement of each of them. We present a tight relation characterizing the optimal tradeoff between the error on one observable vs. the error on the other. As a particular case, our approach allows us to characterize the disturbance of an observable induced by the approximate measurement of another one; we also derive a stronger error-disturbance relation for this scenario.

  1. Framing Innovation: Does an Instructional Vision Help Superintendents Gain Acceptance for a Large-Scale Technology Initiative?

    ERIC Educational Resources Information Center

    Flanagan, Gina E.

    2014-01-01

    There is limited research that outlines how a superintendent's instructional vision can help to gain acceptance of a large-scale technology initiative. This study explored how superintendents gain acceptance for a large-scale technology initiative (specifically a 1:1 device program) through various leadership actions. The role of the instructional…

  2. Quantum-state anomaly detection for arbitrary errors using a machine-learning technique

    NASA Astrophysics Data System (ADS)

    Hara, Satoshi; Ono, Takafumi; Okamoto, Ryo; Washio, Takashi; Takeuchi, Shigeki

    2016-10-01

    The accurate detection of small deviations in given density matrice is important for quantum information processing, which is a difficult task because of the intrinsic fluctuation in density matrices reconstructed using a limited number of experiments. We previously proposed a method for decoherence error detection using a machine-learning technique [S. Hara, T. Ono, R. Okamoto, T. Washio, and S. Takeuchi, Phys. Rev. A 89, 022104 (2014), 10.1103/PhysRevA.89.022104]. However, the previous method is not valid when the errors are just changes in phase. Here, we propose a method that is valid for arbitrary errors in density matrices. The performance of the proposed method is verified using both numerical simulation data and real experimental data.

  3. Fade-resistant forward error correction method for free-space optical communications systems

    DOEpatents

    Johnson, Gary W.; Dowla, Farid U.; Ruggiero, Anthony J.

    2007-10-02

    Free-space optical (FSO) laser communication systems offer exceptionally wide-bandwidth, secure connections between platforms that cannot other wise be connected via physical means such as optical fiber or cable. However, FSO links are subject to strong channel fading due to atmospheric turbulence and beam pointing errors, limiting practical performance and reliability. We have developed a fade-tolerant architecture based on forward error correcting codes (FECs) combined with delayed, redundant, sub-channels. This redundancy is made feasible though dense wavelength division multiplexing (WDM) and/or high-order M-ary modulation. Experiments and simulations show that error-free communications is feasible even when faced with fades that are tens of milliseconds long. We describe plans for practical implementation of a complete system operating at 2.5 Gbps.

  4. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  5. An observational study of drug administration errors in a Malaysian hospital (study of drug administration errors).

    PubMed

    Chua, S S; Tea, M H; Rahman, M H A

    2009-04-01

    Drug administration errors were the second most frequent type of medication errors, after prescribing errors but the latter were often intercepted hence, administration errors were more probably to reach the patients. Therefore, this study was conducted to determine the frequency and types of drug administration errors in a Malaysian hospital ward. This is a prospective study that involved direct, undisguised observations of drug administrations in a hospital ward. A researcher was stationed in the ward under study for 15 days to observe all drug administrations which were recorded in a data collection form and then compared with the drugs prescribed for the patient. A total of 1118 opportunities for errors were observed and 127 administrations had errors. This gave an error rate of 11.4 % [95% confidence interval (CI) 9.5-13.3]. If incorrect time errors were excluded, the error rate reduced to 8.7% (95% CI 7.1-10.4). The most common types of drug administration errors were incorrect time (25.2%), followed by incorrect technique of administration (16.3%) and unauthorized drug errors (14.1%). In terms of clinical significance, 10.4% of the administration errors were considered as potentially life-threatening. Intravenous routes were more likely to be associated with an administration error than oral routes (21.3% vs. 7.9%, P < 0.001). The study indicates that the frequency of drug administration errors in developing countries such as Malaysia is similar to that in the developed countries. Incorrect time errors were also the most common type of drug administration errors. A non-punitive system of reporting medication errors should be established to encourage more information to be documented so that risk management protocol could be developed and implemented.

  6. Error quantification of abnormal extreme high waves in Operational Oceanographic System in Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Sang-Hun; Kim, Jinah; Heo, Ki-Young; Park, Kwang-Soon

    2017-04-01

    In winter season, large-height swell-like waves have occurred on the East coast of Korea, causing property damages and loss of human life. It is known that those waves are generated by a local strong wind made by temperate cyclone moving to eastward in the East Sea of Korean peninsula. Because the waves are often occurred in the clear weather, in particular, the damages are to be maximized. Therefore, it is necessary to predict and forecast large-height swell-like waves to prevent and correspond to the coastal damages. In Korea, an operational oceanographic system (KOOS) has been developed by the Korea institute of ocean science and technology (KIOST) and KOOS provides daily basis 72-hours' ocean forecasts such as wind, water elevation, sea currents, water temperature, salinity, and waves which are computed from not only meteorological and hydrodynamic model (WRF, ROMS, MOM, and MOHID) but also wave models (WW-III and SWAN). In order to evaluate the model performance and guarantee a certain level of accuracy of ocean forecasts, a Skill Assessment (SA) system was established as a one of module in KOOS. It has been performed through comparison of model results with in-situ observation data and model errors have been quantified with skill scores. Statistics which are used in skill assessment are including a measure of both errors and correlations such as root-mean-square-error (RMSE), root-mean-square-error percentage (RMSE%), mean bias (MB), correlation coefficient (R), scatter index (SI), circular correlation (CC) and central frequency (CF) that is a frequency with which errors lie within acceptable error criteria. It should be utilized simultaneously not only to quantify an error but also to improve an accuracy of forecasts by providing a feedback interactively. However, in an abnormal phenomena such as high-height swell-like waves in the East coast of Korea, it requires more advanced and optimized error quantification method that allows to predict the abnormal

  7. SU-E-J-87: Building Deformation Error Histogram and Quality Assurance of Deformable Image Registration.

    PubMed

    Park, S B; Kim, H; Yao, M; Ellis, R; Machtay, M; Sohn, J W

    2012-06-01

    To quantify the systematic error of a Deformable Image Registration (DIR) system and establish Quality Assurance (QA) procedure. To address the shortfall of landmark approach which it is only available at the significant visible feature points, we adapted a Deformation Vector Map (DVM) comparison approach. We used two CT image sets (R and T image sets) taken for the same patient at different time and generated a DVM, which includes the DIR systematic error. The DVM was calculated using fine-tuned B-Spline DIR and L-BFGS optimizer. By utilizing this DVM we generated R' image set to eliminate the systematic error in DVM,. Thus, we have truth data set, R' and T image sets, and the truth DVM. To test a DIR system, we use R' and T image sets to a DIR system. We compare the test DVM to the truth DVM. If there is no systematic error, they should be identical. We built Deformation Error Histogram (DEH) for quantitative analysis. The test registration was performed with an in-house B-Spline DIR system using a stochastic gradient descent optimizer. Our example data set was generated with a head and neck patient case. We also tested CT to CBCT deformable registration. We found skin regions which interface with the air has relatively larger errors. Also mobile joints such as shoulders had larger errors. Average error for ROIs were as follows; CTV: 0.4mm, Brain stem: 1.4mm, Shoulders: 1.6mm, and Normal tissues: 0.7mm. We succeeded to build DEH approach to quantify the DVM uncertainty. Our data sets are available for testing other systems in our web page. Utilizing DEH, users can decide how much systematic error they would accept. DEH and our data can be a tool for an AAPM task group to compose a DIR system QA guideline. This project is partially supported by the Agency for Healthcare Research and Quality (AHRQ) grant 1R18HS017424-01A2. © 2012 American Association of Physicists in Medicine.

  8. Efficiency degradation due to tracking errors for point focusing solar collectors

    NASA Technical Reports Server (NTRS)

    Hughes, R. O.

    1978-01-01

    An important parameter in the design of point focusing solar collectors is the intercept factor which is a measure of efficiency and of energy available for use in the receiver. Using statistical methods, an expression of the expected value of the intercept factor is derived for various configurations and control law implementations. The analysis assumes that a radially symmetric flux distribution (not necessarily Gaussian) is generated at the focal plane due to the sun's finite image and various reflector errors. The time-varying tracking errors are assumed to be uniformly distributed within the threshold limits and allows the expected value calculation.

  9. Illness acceptance degree versus intensity of psychopathological symptoms in patients with psoriasis.

    PubMed

    Kostyła, Magdalena; Tabała, Klaudia; Kocur, Józef

    2013-06-01

    Chronic inflammatory skin diseases such as psoriasis have undoubtedly a negative impact on the patients' quality of life. Many of them may face various limitations in their psychosocial lives because of symptoms indicating the presence of psychopathological phenomena. Mental disorders in patients with skin diseases occur much more frequently than in the general population. Studies show that a considerable percentage (30-60%) of dermatological patients suffers from mental disorders (depressive and anxiety disorders being the most common). A person's attitude towards illness, its acceptance, and also the recognition of its limitations may be of a great importance in the process of the disease control. To evaluate of the relationship between the illness acceptance degree, and the presence and intensity of psychopathological symptoms in patients with psoriasis. The research was conducted on a group of 54 people (23 men and 31 women), who were treated for psoriasis in the Department of Dermatology and Venereology, Medical University of Lodz and in the Department of Dermatology, Pediatric Dermatology and Oncology, Medical University of Lodz. The following research methods were used: a questionnaire prepared for the purpose of the research, Acceptance of Illness Scale (AIS) and Symptom Checklist (SCL-90). It was found that there was a relationship between the skin illness acceptance degree and intensity of psychopathological symptoms in patients with psoriasis (negative correlations). The higher the degree of illness acceptance is, the better mental condition of patients with psoriasis is. The intensity of psychopathological symptoms is also affected by the duration of illness, other people's attitude to the skin disease, age and education level of the patients examined.

  10. Illness acceptance degree versus intensity of psychopathological symptoms in patients with psoriasis

    PubMed Central

    Tabała, Klaudia; Kocur, Józef

    2013-01-01

    Introduction Chronic inflammatory skin diseases such as psoriasis have undoubtedly a negative impact on the patients’ quality of life. Many of them may face various limitations in their psychosocial lives because of symptoms indicating the presence of psychopathological phenomena. Mental disorders in patients with skin diseases occur much more frequently than in the general population. Studies show that a considerable percentage (30-60%) of dermatological patients suffers from mental disorders (depressive and anxiety disorders being the most common). A person's attitude towards illness, its acceptance, and also the recognition of its limitations may be of a great importance in the process of the disease control. Aim To evaluate of the relationship between the illness acceptance degree, and the presence and intensity of psychopathological symptoms in patients with psoriasis. Material and methods The research was conducted on a group of 54 people (23 men and 31 women), who were treated for psoriasis in the Department of Dermatology and Venereology, Medical University of Lodz and in the Department of Dermatology, Pediatric Dermatology and Oncology, Medical University of Lodz. The following research methods were used: a questionnaire prepared for the purpose of the research, Acceptance of Illness Scale (AIS) and Symptom Checklist (SCL-90). Results It was found that there was a relationship between the skin illness acceptance degree and intensity of psychopathological symptoms in patients with psoriasis (negative correlations). Conclusions The higher the degree of illness acceptance is, the better mental condition of patients with psoriasis is. The intensity of psychopathological symptoms is also affected by the duration of illness, other people's attitude to the skin disease, age and education level of the patients examined. PMID:24278064

  11. Error recovery to enable error-free message transfer between nodes of a computer network

    DOEpatents

    Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd; Steinmacher-Burow, Burkhard; Vranas, Pavlos M.

    2016-01-26

    An error-recovery method to enable error-free message transfer between nodes of a computer network. A first node of the network sends a packet to a second node of the network over a link between the nodes, and the first node keeps a copy of the packet on a sending end of the link until the first node receives acknowledgment from the second node that the packet was received without error. The second node tests the packet to determine if the packet is error free. If the packet is not error free, the second node sets a flag to mark the packet as corrupt. The second node returns acknowledgement to the first node specifying whether the packet was received with or without error. When the packet is received with error, the link is returned to a known state and the packet is sent again to the second node.

  12. Skylab water balance error analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Estimates of the precision of the net water balance were obtained for the entire Skylab preflight and inflight phases as well as for the first two weeks of flight. Quantitative estimates of both total sampling errors and instrumentation errors were obtained. It was shown that measurement error is minimal in comparison to biological variability and little can be gained from improvement in analytical accuracy. In addition, a propagation of error analysis demonstrated that total water balance error could be accounted for almost entirely by the errors associated with body mass changes. Errors due to interaction between terms in the water balance equation (covariances) represented less than 10% of the total error. Overall, the analysis provides evidence that daily measurements of body water changes obtained from the indirect balance technique are reasonable, precise, and relaible. The method is not biased toward net retention or loss.

  13. Addressing Systematic Errors in Correlation Tracking on HMI Magnetograms

    NASA Astrophysics Data System (ADS)

    Mahajan, Sushant S.; Hathaway, David H.; Munoz-Jaramillo, Andres; Martens, Petrus C.

    2017-08-01

    Correlation tracking in solar magnetograms is an effective method to measure the differential rotation and meridional flow on the solar surface. However, since the tracking accuracy required to successfully measure meridional flow is very high, small systematic errors have a noticeable impact on measured meridional flow profiles. Additionally, the uncertainties of this kind of measurements have been historically underestimated, leading to controversy regarding flow profiles at high latitudes extracted from measurements which are unreliable near the solar limb.Here we present a set of systematic errors we have identified (and potential solutions), including bias caused by physical pixel sizes, center-to-limb systematics, and discrepancies between measurements performed using different time intervals. We have developed numerical techniques to get rid of these systematic errors and in the process improve the accuracy of the measurements by an order of magnitude.We also present a detailed analysis of uncertainties in these measurements using synthetic magnetograms and the quantification of an upper limit below which meridional flow measurements cannot be trusted as a function of latitude.

  14. Patient motion tracking in the presence of measurement errors.

    PubMed

    Haidegger, Tamás; Benyó, Zoltán; Kazanzides, Peter

    2009-01-01

    The primary aim of computer-integrated surgical systems is to provide physicians with superior surgical tools for better patient outcome. Robotic technology is capable of both minimally invasive surgery and microsurgery, offering remarkable advantages for the surgeon and the patient. Current systems allow for sub-millimeter intraoperative spatial positioning, however certain limitations still remain. Measurement noise and unintended changes in the operating room environment can result in major errors. Positioning errors are a significant danger to patients in procedures involving robots and other automated devices. We have developed a new robotic system at the Johns Hopkins University to support cranial drilling in neurosurgery procedures. The robot provides advanced visualization and safety features. The generic algorithm described in this paper allows for automated compensation of patient motion through optical tracking and Kalman filtering. When applied to the neurosurgery setup, preliminary results show that it is possible to identify patient motion within 700 ms, and apply the appropriate compensation with an average of 1.24 mm positioning error after 2 s of setup time.

  15. Modeling resident error-making patterns in detection of mammographic masses using computer-extracted image features: preliminary experiments

    NASA Astrophysics Data System (ADS)

    Mazurowski, Maciej A.; Zhang, Jing; Lo, Joseph Y.; Kuzmiak, Cherie M.; Ghate, Sujata V.; Yoon, Sora

    2014-03-01

    Providing high quality mammography education to radiology trainees is essential, as good interpretation skills potentially ensure the highest benefit of screening mammography for patients. We have previously proposed a computer-aided education system that utilizes trainee models, which relate human-assessed image characteristics to interpretation error. We proposed that these models be used to identify the most difficult and therefore the most educationally useful cases for each trainee. In this study, as a next step in our research, we propose to build trainee models that utilize features that are automatically extracted from images using computer vision algorithms. To predict error, we used a logistic regression which accepts imaging features as input and returns error as output. Reader data from 3 experts and 3 trainees were used. Receiver operating characteristic analysis was applied to evaluate the proposed trainee models. Our experiments showed that, for three trainees, our models were able to predict error better than chance. This is an important step in the development of adaptive computer-aided education systems since computer-extracted features will allow for faster and more extensive search of imaging databases in order to identify the most educationally beneficial cases.

  16. Modified Redundancy based Technique—a New Approach to Combat Error Propagation Effect of AES

    NASA Astrophysics Data System (ADS)

    Sarkar, B.; Bhunia, C. T.; Maulik, U.

    2012-06-01

    Advanced encryption standard (AES) is a great research challenge. It has been developed to replace the data encryption standard (DES). AES suffers from a major limitation of error propagation effect. To tackle this limitation, two methods are available. One is redundancy based technique and the other one is bite based parity technique. The first one has a significant advantage of correcting any error on definite term over the second one but at the cost of higher level of overhead and hence lowering the processing speed. In this paper, a new approach based on the redundancy based technique is proposed that would certainly speed up the process of reliable encryption and hence the secured communication.

  17. A water-vapor radiometer error model. [for ionosphere in geodetic microwave techniques

    NASA Technical Reports Server (NTRS)

    Beckman, B.

    1985-01-01

    The water-vapor radiometer (WVR) is used to calibrate unpredictable delays in the wet component of the troposphere in geodetic microwave techniques such as very-long-baseline interferometry (VLBI) and Global Positioning System (GPS) tracking. Based on experience with Jet Propulsion Laboratory (JPL) instruments, the current level of accuracy in wet-troposphere calibration limits the accuracy of local vertical measurements to 5-10 cm. The goal for the near future is 1-3 cm. Although the WVR is currently the best calibration method, many instruments are prone to systematic error. In this paper, a treatment of WVR data is proposed and evaluated. This treatment reduces the effect of WVR systematic errors by estimating parameters that specify an assumed functional form for the error. The assumed form of the treatment is evaluated by comparing the results of two similar WVR's operating near each other. Finally, the observability of the error parameters is estimated by covariance analysis.

  18. Acceptability of the Urban Family Medicine Project among Physicians: A Cross-Sectional Study of Medical Offices, Iran.

    PubMed

    Kor, Elham Movahed; Rashidian, Arash; Hosseini, Mostafa; Azar, Farbod Ebadi Fard; Arab, Mohammad

    2016-10-01

    It is essential to organize private physicians in urban areas by developing urban family medicine in Iran. Acceptance of this project is currently low among physicians. The present research determined the factors affecting acceptability of the Urban Family Medicine Project among physicians working in the private sector of Mazandaran and Fars provinces in Iran. This descriptive-analytical and cross-sectional study was conducted in Mazandaran and Fars provinces. The target population was all physicians working in private offices in these regions. The sample size was calculated to be 860. The instrument contained 70 items that were modified in accordance with feedback from eight healthcare managers and a pilot sample of 50 physicians. Data was analyzed using the LISREL 8.80. The response rate was 82.21% and acceptability was almost 50% for all domains. The fit indices of the structural model were the chi-square to degree-of-freedom (2.79), normalized fit index (0.98), non-normalized fit index (0.99), comparative fit index (0.99), and root mean square error of approximation (0.05). Training facilities had no significant direct effect on acceptability; however, workload had a direct negative effect on acceptability. Other factors had direct positive effects on acceptability. Specification of the factors relating to acceptance of the project among private physicians is required to develop the project in urban areas. It is essential to upgrade the payment system, remedy cultural barriers, decrease the workload, improve the scope of practice and working conditions, and improve collaboration between healthcare professionals.

  19. Estimation of perspective errors in 2D2C-PIV measurements for 3D concentrated vortices

    NASA Astrophysics Data System (ADS)

    Ma, Bao-Feng; Jiang, Hong-Gang

    2018-06-01

    Two-dimensional planar PIV (2D2C) is still extensively employed in flow measurement owing to its availability and reliability, although more advanced PIVs have been developed. It has long been recognized that there exist perspective errors in velocity fields when employing the 2D2C PIV to measure three-dimensional (3D) flows, the magnitude of which depends on out-of-plane velocity and geometric layouts of the PIV. For a variety of vortex flows, however, the results are commonly represented by vorticity fields, instead of velocity fields. The present study indicates that the perspective error in vorticity fields relies on gradients of the out-of-plane velocity along a measurement plane, instead of the out-of-plane velocity itself. More importantly, an estimation approach to the perspective error in 3D vortex measurements was proposed based on a theoretical vortex model and an analysis on physical characteristics of the vortices, in which the gradient of out-of-plane velocity is uniquely determined by the ratio of the maximum out-of-plane velocity to maximum swirling velocity of the vortex; meanwhile, the ratio has upper limits for naturally formed vortices. Therefore, if the ratio is imposed with the upper limits, the perspective error will only rely on the geometric layouts of PIV that are known in practical measurements. Using this approach, the upper limits of perspective errors of a concentrated vortex can be estimated for vorticity and other characteristic quantities of the vortex. In addition, the study indicates that the perspective errors in vortex location, vortex strength, and vortex radius can be all zero for axisymmetric vortices if they are calculated by proper methods. The dynamic mode decomposition on an oscillatory vortex indicates that the perspective errors of each DMD mode are also only dependent on the gradient of out-of-plane velocity if the modes are represented by vorticity.

  20. Human Error In Complex Systems

    NASA Technical Reports Server (NTRS)

    Morris, Nancy M.; Rouse, William B.

    1991-01-01

    Report presents results of research aimed at understanding causes of human error in such complex systems as aircraft, nuclear powerplants, and chemical processing plants. Research considered both slips (errors of action) and mistakes (errors of intention), and influence of workload on them. Results indicated that: humans respond to conditions in which errors expected by attempting to reduce incidence of errors; and adaptation to conditions potent influence on human behavior in discretionary situations.

  1. Imagery of Errors in Typing

    ERIC Educational Resources Information Center

    Rieger, Martina; Martinez, Fanny; Wenke, Dorit

    2011-01-01

    Using a typing task we investigated whether insufficient imagination of errors and error corrections is related to duration differences between execution and imagination. In Experiment 1 spontaneous error imagination was investigated, whereas in Experiment 2 participants were specifically instructed to imagine errors. Further, in Experiment 2 we…

  2. Potential benefit of electronic pharmacy claims data to prevent medication history errors and resultant inpatient order errors

    PubMed Central

    Palmer, Katherine A; Shane, Rita; Wu, Cindy N; Bell, Douglas S; Diaz, Frank; Cook-Wiens, Galen; Jackevicius, Cynthia A

    2016-01-01

    Objective We sought to assess the potential of a widely available source of electronic medication data to prevent medication history errors and resultant inpatient order errors. Methods We used admission medication history (AMH) data from a recent clinical trial that identified 1017 AMH errors and 419 resultant inpatient order errors among 194 hospital admissions of predominantly older adult patients on complex medication regimens. Among the subset of patients for whom we could access current Surescripts electronic pharmacy claims data (SEPCD), two pharmacists independently assessed error severity and our main outcome, which was whether SEPCD (1) was unrelated to the medication error; (2) probably would not have prevented the error; (3) might have prevented the error; or (4) probably would have prevented the error. Results Seventy patients had both AMH errors and current, accessible SEPCD. SEPCD probably would have prevented 110 (35%) of 315 AMH errors and 46 (31%) of 147 resultant inpatient order errors. When we excluded the least severe medication errors, SEPCD probably would have prevented 99 (47%) of 209 AMH errors and 37 (61%) of 61 resultant inpatient order errors. SEPCD probably would have prevented at least one AMH error in 42 (60%) of 70 patients. Conclusion When current SEPCD was available for older adult patients on complex medication regimens, it had substantial potential to prevent AMH errors and resultant inpatient order errors, with greater potential to prevent more severe errors. Further study is needed to measure the benefit of SEPCD in actual use at hospital admission. PMID:26911817

  3. ROSAT X-Ray Observation of the Second Error Box for SGR 1900+14

    NASA Technical Reports Server (NTRS)

    Li, P.; Hurley, K.; Vrba, F.; Kouveliotou, C.; Meegan, C. A.; Fishman, G. J.; Kulkarni, S.; Frail, D.

    1997-01-01

    The positions of the two error boxes for the soft gamma repeater (SGR) 1900+14 were determined by the "network synthesis" method, which employs observations by the Ulysses gamma-ray burst and CGRO BATSE instruments. The location of the first error box has been observed at optical, infrared, and X-ray wavelengths, resulting in the discovery of a ROSAT X-ray point source and a curious double infrared source. We have recently used the ROSAT HRI to observe the second error box to complete the counterpart search. A total of six X-ray sources were identified within the field of view. None of them falls within the network synthesis error box, and a 3 sigma upper limit to any X-ray counterpart was estimated to be 6.35 x 10(exp -14) ergs/sq cm/s. The closest source is approximately 3 min. away, and has an estimated unabsorbed flux of 1.5 x 10(exp -12) ergs/sq cm/s. Unlike the first error box, there is no supernova remnant near the second error box. The closest one, G43.9+1.6, lies approximately 2.dg6 away. For these reasons, we believe that the first error box is more likely to be the correct one.

  4. Relationship between Brazilian airline pilot errors and time of day.

    PubMed

    de Mello, M T; Esteves, A M; Pires, M L N; Santos, D C; Bittencourt, L R A; Silva, R S; Tufik, S

    2008-12-01

    Flight safety is one of the most important and frequently discussed issues in aviation. Recent accident inquiries have raised questions as to how the work of flight crews is organized and the extent to which these conditions may have been contributing factors to accidents. Fatigue is based on physiologic limitations, which are reflected in performance deficits. The purpose of the present study was to provide an analysis of the periods of the day in which pilots working for a commercial airline presented major errors. Errors made by 515 captains and 472 co-pilots were analyzed using data from flight operation quality assurance systems. To analyze the times of day (shifts) during which incidents occurred, we divided the light-dark cycle (24:00) in four periods: morning, afternoon, night, and early morning. The differences of risk during the day were reported as the ratio of morning to afternoon, morning to night and morning to early morning error rates. For the purposes of this research, level 3 events alone were taken into account, since these were the most serious in which company operational limits were exceeded or when established procedures were not followed. According to airline flight schedules, 35% of flights take place in the morning period, 32% in the afternoon, 26% at night, and 7% in the early morning. Data showed that the risk of errors increased by almost 50% in the early morning relative to the morning period (ratio of 1:1.46). For the period of the afternoon, the ratio was 1:1.04 and for the night a ratio of 1:1.05 was found. These results showed that the period of the early morning represented a greater risk of attention problems and fatigue.

  5. Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection.

    PubMed

    Tejero, Héctor; Montero, Francisco; Nuño, Juan Carlos

    2016-01-01

    RNA viruses get extinct in a process called lethal mutagenesis when subjected to an increase in their mutation rate, for instance, by the action of mutagenic drugs. Several approaches have been proposed to understand this phenomenon. The extinction of RNA viruses by increased mutational pressure was inspired by the concept of the error threshold. The now classic quasispecies model predicts the existence of a limit to the mutation rate beyond which the genetic information of the wild type could not be efficiently transmitted to the next generation. This limit was called the error threshold, and for mutation rates larger than this threshold, the quasispecies was said to enter into error catastrophe. This transition has been assumed to foster the extinction of the whole population. Alternative explanations of lethal mutagenesis have been proposed recently. In the first place, a distinction is made between the error threshold and the extinction threshold, the mutation rate beyond which a population gets extinct. Extinction is explained from the effect the mutation rate has, throughout the mutational load, on the reproductive ability of the whole population. Secondly, lethal defection takes also into account the effect of interactions within mutant spectra, which have been shown to be determinant for the understanding the extinction of RNA virus due to an augmented mutational pressure. Nonetheless, some relevant issues concerning lethal mutagenesis are not completely understood yet, as so survival of the flattest, i.e. the development of resistance to lethal mutagenesis by evolving towards mutationally more robust regions of sequence space, or sublethal mutagenesis, i.e., the increase of the mutation rate below the extinction threshold which may boost the adaptability of RNA virus, increasing their ability to develop resistance to drugs (including mutagens). A better design of antiviral therapies will still require an improvement of our knowledge about lethal

  6. Magnetic Nanoparticle Thermometer: An Investigation of Minimum Error Transmission Path and AC Bias Error

    PubMed Central

    Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing

    2015-01-01

    The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188

  7. Chinese Nurses' Acceptance of PDA: A Cross-Sectional Survey Using a Technology Acceptance Model.

    PubMed

    Wang, Yanling; Xiao, Qian; Sun, Liu; Wu, Ying

    2016-01-01

    This study explores Chinese nurses' acceptance of PDA, using a questionnaire based on the framework of Technology Acceptance Model (TAM). 357 nurses were involved in the study. The results reveal the scores of the nurses' acceptance of PDA were means 3.18~3.36 in four dimensions. The younger of nurses, the higher nurses' title, the longer previous usage time, the more experienced using PDA, and the more acceptance of PDA. Therefore, the hospital administrators may change strategies to enhance nurses' acceptance of PDA, and promote the wide application of PDA.

  8. Automatic Error Analysis Using Intervals

    ERIC Educational Resources Information Center

    Rothwell, E. J.; Cloud, M. J.

    2012-01-01

    A technique for automatic error analysis using interval mathematics is introduced. A comparison to standard error propagation methods shows that in cases involving complicated formulas, the interval approach gives comparable error estimates with much less effort. Several examples are considered, and numerical errors are computed using the INTLAB…

  9. Wireless smart meters and public acceptance: the environment, limited choices, and precautionary politics.

    PubMed

    Hess, David J; Coley, Jonathan S

    2014-08-01

    Wireless smart meters (WSMs) promise numerous environmental benefits, but they have been installed without full consideration of public acceptance issues. Although societal-implications research and regulatory policy have focused on privacy, security, and accuracy issues, our research indicates that health concerns have played an important role in the public policy debates that have emerged in California. Regulatory bodies do not recognize non-thermal health effects for non-ionizing electromagnetic radiation, but both homeowners and counter-experts have contested the official assurances that WSMs pose no health risks. Similarities and differences with the existing social science literature on mobile phone masts are discussed, as are the broader political implications of framing an alternative policy based on an opt-out choice. The research suggests conditions under which health-oriented precautionary politics can be particularly effective, namely, if there is a mandatory technology, a network of counter-experts, and a broader context of democratic contestation.

  10. Limit of Predictability in Mantle Convection

    NASA Astrophysics Data System (ADS)

    Bello, L.; Coltice, N.; Rolf, T.; Tackley, P. J.

    2013-12-01

    Linking mantle convection models with Earth's tectonic history has received considerable attention in recent years: modeling the evolution of supercontinent cycles, predicting present-day mantle structure or improving plate reconstructions. Predictions of future supercontinents are currently being made based on seismic tomography images, plate motion history and mantle convection models, and methods of data assimilation for mantle flow are developing. However, so far there are no studies of the limit of predictability these models are facing. Indeed, given the chaotic nature of mantle convection, we can expect forecasts and hindcasts to have a limited range of predictability. We propose here to use an approach similar to those used in dynamic meteorology, and more recently for the geodynamo, to evaluate the predictability limit of mantle dynamics forecasts. Following the pioneering works in weather forecast (Lorenz 1965), we study the time evolution of twin experiments, started from two very close initial temperature fields and monitor the error growth. We extract a characteristic time of the system, known as the e-folding timescale, which will be used to estimate the predictability limit. The final predictability time will depend on the imposed initial error and the error tolerance in our model. We compute 3D spherical convection solutions using StagYY (Tackley, 2008). We first evaluate the influence of the Rayleigh number on the limit of predictability of isoviscous convection. Then, we investigate the effects of various rheologies, from the simplest (isoviscous mantle) to more complex ones (plate-like behavior and floating continents). We show that the e-folding time increases with the wavelength of the flow and reaches 10Myrs with plate-like behavior and continents. Such an e-folding time together with the uncertainties in mantle temperature distribution suggests prediction of mantle structure from an initial given state is limited to <50 Myrs. References: 1

  11. Evaluating and improving the representation of heteroscedastic errors in hydrological models

    NASA Astrophysics Data System (ADS)

    McInerney, D. J.; Thyer, M. A.; Kavetski, D.; Kuczera, G. A.

    2013-12-01

    Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic predictions. In particular, residual errors of hydrological models are often heteroscedastic, with large errors associated with high rainfall and runoff events. Recent studies have shown that using a weighted least squares (WLS) approach - where the magnitude of residuals are assumed to be linearly proportional to the magnitude of the flow - captures some of this heteroscedasticity. In this study we explore a range of Bayesian approaches for improving the representation of heteroscedasticity in residual errors. We compare several improved formulations of the WLS approach, the well-known Box-Cox transformation and the more recent log-sinh transformation. Our results confirm that these approaches are able to stabilize the residual error variance, and that it is possible to improve the representation of heteroscedasticity compared with the linear WLS approach. We also find generally good performance of the Box-Cox and log-sinh transformations, although as indicated in earlier publications, the Box-Cox transform sometimes produces unrealistically large prediction limits. Our work explores the trade-offs between these different uncertainty characterization approaches, investigates how their performance varies across diverse catchments and models, and recommends practical approaches suitable for large-scale applications.

  12. A parallel row-based algorithm with error control for standard-cell replacement on a hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Sargent, Jeff Scott

    1988-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.

  13. Aniseikonia quantification: error rate of rule of thumb estimation.

    PubMed

    Lubkin, V; Shippman, S; Bennett, G; Meininger, D; Kramer, P; Poppinga, P

    1999-01-01

    To find the error rate in quantifying aniseikonia by using "Rule of Thumb" estimation in comparison with proven space eikonometry. Study 1: 24 adult pseudophakic individuals were measured for anisometropia, and astigmatic interocular difference. Rule of Thumb quantification for prescription was calculated and compared with aniseikonia measurement by the classical Essilor Projection Space Eikonometer. Study 2: parallel analysis was performed on 62 consecutive phakic patients from our strabismus clinic group. Frequency of error: For Group 1 (24 cases): 5 ( or 21 %) were equal (i.e., 1% or less difference); 16 (or 67% ) were greater (more than 1% different); and 3 (13%) were less by Rule of Thumb calculation in comparison to aniseikonia determined on the Essilor eikonometer. For Group 2 (62 cases): 45 (or 73%) were equal (1% or less); 10 (or 16%) were greater; and 7 (or 11%) were lower in the Rule of Thumb calculations in comparison to Essilor eikonometry. Magnitude of error: In Group 1, in 10/24 (29%) aniseikonia by Rule of Thumb estimation was 100% or more greater than by space eikonometry, and in 6 of those ten by 200% or more. In Group 2, in 4/62 (6%) aniseikonia by Rule of Thumb estimation was 200% or more greater than by space eikonometry. The frequency and magnitude of apparent clinical errors of Rule of Thumb estimation is disturbingly large. This problem is greatly magnified by the time and effort and cost of prescribing and executing an aniseikonic correction for a patient. The higher the refractive error, the greater the anisometropia, and the worse the errors in Rule of Thumb estimation of aniseikonia. Accurate eikonometric methods and devices should be employed in all cases where such measurements can be made. Rule of thumb estimations should be limited to cases where such subjective testing and measurement cannot be performed, as in infants after unilateral cataract surgery.

  14. Perceived acceptability of female smoking in China.

    PubMed

    Sansone, Natalie; Yong, Hua-Hie; Li, Lin; Jiang, Yuan; Fong, Geoffrey T

    2015-11-01

    Female smoking prevalence in China is very low but may rise with increased tobacco marketing towards women and changing norms. However, little is known about current perceptions of women smoking in China. This study sought to examine smokers' and non-smokers' perceived acceptability of female smoking and how it changed over time in China. Data come from Waves 1 to 3 (2006-2009) of the International Tobacco Control China Survey, a face-to-face cohort survey of approximately 800 adult smokers and 200 non-smokers in each of seven cities in mainland China. At Wave 3 (2009), about 38% of smokers and 9% of non-smokers agreed that female smoking is acceptable with women being almost twice as likely to do so as men (67% vs 36% and 11% vs 6%, respectively). In addition to women, smokers who were younger and had more positive perceptions of smoking in general were more likely to say that female smoking is acceptable. This perception significantly increased from Wave 1 (2006) to Wave 3 (2009), as did the perception that smoking is a sign of sophistication, but other general perceptions of smoking did not significantly change between 2006 and 2009. Norms against female smoking appear to remain strong in China, but female smoking may be becoming more acceptable. It is important to monitor these perceptions to prevent a rise in female smoking prevalence along with an increase in tobacco-related death and disease among women in China. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Relationships Between Personal Beliefs and Treatment Acceptability, and Preferences for Behavioral Treatments

    PubMed Central

    Sidani, Souraya; Miranda, Joyal; Epstein, Dana R.; Bootzin, Richard R.; Cousins, Jennifer; Moritz, Patricia

    2009-01-01

    Background The literature on preferences for behavioral interventions is limited in terms of understanding treatment-related factors that underlie treatment choice. The objectives of this study were to examine the direct relationships between personal beliefs about clinical condition, perception of treatment acceptability, and preferences for behavioral interventions for insomnia. Methods The data set used in this study was obtained from 431 persons with insomnia who participated in a partially randomized clinical trial and expressed preferences for treatment options. The data were collected at baseline. Logistic regression was used to examine the relationships between personal beliefs and treatment acceptability, and preferences. The relationships between personal beliefs and perception of treatment acceptability were explored with correlational analysis. Results Perception of treatment acceptability was associated with preferences. Persons viewing the option as convenient tended to choose that option for managing insomnia. Personal beliefs were not related to preferences. However, beliefs about sleep promoting behaviors were correlated with perceived treatment effectiveness. Conclusions Perception of treatment acceptability underlies expressed preferences for behavioral interventions. Personal beliefs about insomnia are not directly associated with preferences. Importance is highlighted for providing information about treatment options and exploring perception of each option’s acceptability during the process of treatment selection. PMID:19604500

  16. Center-to-Limb Variation of Deprojection Errors in SDO/HMI Vector Magnetograms

    NASA Astrophysics Data System (ADS)

    Falconer, David; Moore, Ronald; Barghouty, Nasser; Tiwari, Sanjiv K.; Khazanov, Igor

    2015-04-01

    For use in investigating the magnetic causes of coronal heating in active regions and for use in forecasting an active region’s productivity of major CME/flare eruptions, we have evaluated various sunspot-active-region magnetic measures (e.g., total magnetic flux, free-magnetic-energy proxies, magnetic twist measures) from HMI Active Region Patches (HARPs) after the HARP has been deprojected to disk center. From a few tens of thousand HARP vector magnetograms (of a few hundred sunspot active regions) that have been deprojected to disk center, we have determined that the errors in the whole-HARP magnetic measures from deprojection are negligibly small for HARPS deprojected from distances out to 45 heliocentric degrees. For some purposes the errors from deprojection are tolerable out to 60 degrees. We obtained this result by the following process. For each whole-HARP magnetic measure: 1) for each HARP disk passage, normalize the measured values by the measured value for that HARP at central meridian; 2) then for each 0.05 Rs annulus, average the values from all the HARPs in the annulus. This results in an average normalized value as a function of radius for each measure. Assuming no deprojection errors and that, among a large set of HARPs, the measure is as likely to decrease as to increase with HARP distance from disk center, the average of each annulus is expected to be unity, and, for a statistically large sample, the amount of deviation of the average from unity estimates the error from deprojection effects. The deprojection errors arise from 1) errors in the transverse field being deprojected into the vertical field for HARPs observed at large distances from disk center, 2) increasingly larger foreshortening at larger distances from disk center, and 3) possible errors in transverse-field-direction ambiguity resolution.From the compiled set of measured vales of whole-HARP magnetic nonpotentiality parameters measured from deprojected HARPs, we have examined the

  17. Error Correcting Optical Mapping Data.

    PubMed

    Mukherjee, Kingshuk; Washimkar, Darshan; Muggli, Martin D; Salmela, Leena; Boucher, Christina

    2018-05-26

    Optical mapping is a unique system that is capable of producing high-resolution, high-throughput genomic map data that gives information about the structure of a genome [21]. Recently it has been used for scaffolding contigs and assembly validation for large-scale sequencing projects, including the maize [32], goat [6], and amborella [4] genomes. However, a major impediment in the use of this data is the variety and quantity of errors in the raw optical mapping data, which are called Rmaps. The challenges associated with using Rmap data are analogous to dealing with insertions and deletions in the alignment of long reads. Moreover, they are arguably harder to tackle since the data is numerical and susceptible to inaccuracy. We develop cOMET to error correct Rmap data, which to the best of our knowledge is the only optical mapping error correction method. Our experimental results demonstrate that cOMET has high prevision and corrects 82.49% of insertion errors and 77.38% of deletion errors in Rmap data generated from the E. coli K-12 reference genome. Out of the deletion errors corrected, 98.26% are true errors. Similarly, out of the insertion errors corrected, 82.19% are true errors. It also successfully scales to large genomes, improving the quality of 78% and 99% of the Rmaps in the plum and goat genomes, respectively. Lastly, we show the utility of error correction by demonstrating how it improves the assembly of Rmap data. Error corrected Rmap data results in an assembly that is more contiguous, and covers a larger fraction of the genome.

  18. Absolute vs. relative error characterization of electromagnetic tracking accuracy

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet

    2010-02-01

    Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the

  19. Age and Acceptance of Euthanasia.

    ERIC Educational Resources Information Center

    Ward, Russell A.

    1980-01-01

    Study explores relationship between age (and sex and race) and acceptance of euthanasia. Women and non-Whites were less accepting because of religiosity. Among older people less acceptance was attributable to their lesser education and greater religiosity. Results suggest that quality of life in old age affects acceptability of euthanasia. (Author)

  20. Human Error: A Concept Analysis

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick D.

    2007-01-01

    Human error is the subject of research in almost every industry and profession of our times. This term is part of our daily language and intuitively understood by most people however, it would be premature to assume that everyone's understanding of human error s the same. For example, human error is used to describe the outcome or consequence of human action, the causal factor of an accident, deliberate violations,a nd the actual action taken by a human being. As a result, researchers rarely agree on the either a specific definition or how to prevent human error. The purpose of this article is to explore the specific concept of human error using Concept Analysis as described by Walker and Avant (1995). The concept of human error is examined as currently used in the literature of a variety of industries and professions. Defining attributes and examples of model, borderline, and contrary cases are described. The antecedents and consequences of human error are also discussed and a definition of human error is offered.