Sample records for acceptable error rates

  1. Customization of user interfaces to reduce errors and enhance user acceptance.

    PubMed

    Burkolter, Dina; Weyers, Benjamin; Kluge, Annette; Luther, Wolfram

    2014-03-01

    Customization is assumed to reduce error and increase user acceptance in the human-machine relation. Reconfiguration gives the operator the option to customize a user interface according to his or her own preferences. An experimental study with 72 computer science students using a simulated process control task was conducted. The reconfiguration group (RG) interactively reconfigured their user interfaces and used the reconfigured user interface in the subsequent test whereas the control group (CG) used a default user interface. Results showed significantly lower error rates and higher acceptance of the RG compared to the CG while there were no significant differences between the groups regarding situation awareness and mental workload. Reconfiguration seems to be promising and therefore warrants further exploration. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Post-manufacturing, 17-times acceptable raw bit error rate enhancement, dynamic codeword transition ECC scheme for highly reliable solid-state drives, SSDs

    NASA Astrophysics Data System (ADS)

    Tanakamaru, Shuhei; Fukuda, Mayumi; Higuchi, Kazuhide; Esumi, Atsushi; Ito, Mitsuyoshi; Li, Kai; Takeuchi, Ken

    2011-04-01

    A dynamic codeword transition ECC scheme is proposed for highly reliable solid-state drives, SSDs. By monitoring the error number or the write/erase cycles, the ECC codeword dynamically increases from 512 Byte (+parity) to 1 KByte, 2 KByte, 4 KByte…32 KByte. The proposed ECC with a larger codeword decreases the failure rate after ECC. As a result, the acceptable raw bit error rate, BER, before ECC is enhanced. Assuming a NAND Flash memory which requires 8-bit correction in 512 Byte codeword ECC, a 17-times higher acceptable raw BER than the conventional fixed 512 Byte codeword ECC is realized for the mobile phone application without an interleaving. For the MP3 player, digital-still camera and high-speed memory card applications with a dual channel interleaving, 15-times higher acceptable raw BER is achieved. Finally, for the SSD application with 8 channel interleaving, 13-times higher acceptable raw BER is realized. Because the ratio of the user data to the parity bits is the same in each ECC codeword, no additional memory area is required. Note that the reliability of SSD is improved after the manufacturing without cost penalty. Compared with the conventional ECC with the fixed large 32 KByte codeword, the proposed scheme achieves a lower power consumption by introducing the "best-effort" type operation. In the proposed scheme, during the most of the lifetime of SSD, a weak ECC with a shorter codeword such as 512 Byte (+parity), 1 KByte and 2 KByte is used and 98% lower power consumption is realized. At the life-end of SSD, a strong ECC with a 32 KByte codeword is used and the highly reliable operation is achieved. The random read performance is also discussed. The random read performance is estimated by the latency. The latency is below 1.5 ms for ECC codeword up to 32 KByte. This latency is below the average latency of 15,000 rpm HDD, 2 ms.

  3. The nearest neighbor and the bayes error rates.

    PubMed

    Loizou, G; Maybank, S J

    1987-02-01

    The (k, l) nearest neighbor method of pattern classification is compared to the Bayes method. If the two acceptance rates are equal then the asymptotic error rates satisfy the inequalities Ek,l + 1 ¿ E*(¿) ¿ Ek,l dE*(¿), where d is a function of k, l, and the number of pattern classes, and ¿ is the reject threshold for the Bayes method. An explicit expression for d is given which is optimal in the sense that for some probability distributions Ek,l and dE* (¿) are equal.

  4. Error-rate prediction for programmable circuits: methodology, tools and studied cases

    NASA Astrophysics Data System (ADS)

    Velazco, Raoul

    2013-05-01

    This work presents an approach to predict the error rates due to Single Event Upsets (SEU) occurring in programmable circuits as a consequence of the impact or energetic particles present in the environment the circuits operate. For a chosen application, the error-rate is predicted by combining the results obtained from radiation ground testing and the results of fault injection campaigns performed off-beam during which huge numbers of SEUs are injected during the execution of the studied application. The goal of this strategy is to obtain accurate results about different applications' error rates, without using particle accelerator facilities, thus significantly reducing the cost of the sensitivity evaluation. As a case study, this methodology was applied a complex processor, the Power PC 7448 executing a program issued from a real space application and a crypto-processor application implemented in an SRAM-based FPGA and accepted to be embedded in the payload of a scientific satellite of NASA. The accuracy of predicted error rates was confirmed by comparing, for the same circuit and application, predictions with measures issued from radiation ground testing performed at the cyclotron Cyclone cyclotron of HIF (Heavy Ion Facility) of Louvain-la-Neuve (Belgium).

  5. Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Li, Ying

    2017-12-01

    Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.

  6. 45 CFR 98.100 - Error Rate Report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Error Rate Report. 98.100 Section 98.100 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.100 Error Rate Report. (a) Applicability—The requirements of this subpart...

  7. 45 CFR 98.100 - Error Rate Report.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Error Rate Report. 98.100 Section 98.100 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.100 Error Rate Report. (a) Applicability—The requirements of this subpart...

  8. 45 CFR 98.100 - Error Rate Report.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Error Rate Report. 98.100 Section 98.100 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.100 Error Rate Report. (a) Applicability—The requirements of this subpart...

  9. 45 CFR 98.100 - Error Rate Report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Error Rate Report. 98.100 Section 98.100 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.100 Error Rate Report. (a) Applicability—The requirements of this subpart...

  10. Safe and effective error rate monitors for SS7 signaling links

    NASA Astrophysics Data System (ADS)

    Schmidt, Douglas C.

    1994-04-01

    This paper describes SS7 error monitor characteristics, discusses the existing SUERM (Signal Unit Error Rate Monitor), and develops the recently proposed EIM (Error Interval Monitor) for higher speed SS7 links. A SS7 error monitor is considered safe if it ensures acceptable link quality and is considered effective if it is tolerant to short-term phenomena. Formal criteria for safe and effective error monitors are formulated in this paper. This paper develops models of changeover transients, the unstable component of queue length resulting from errors. These models are in the form of recursive digital filters. Time is divided into sequential intervals. The filter's input is the number of errors which have occurred in each interval. The output is the corresponding change in transmit queue length. Engineered EIM's are constructed by comparing an estimated changeover transient with a threshold T using a transient model modified to enforce SS7 standards. When this estimate exceeds T, a changeover will be initiated and the link will be removed from service. EIM's can be differentiated from SUERM by the fact that EIM's monitor errors over an interval while SUERM's count errored messages. EIM's offer several advantages over SUERM's, including the fact that they are safe and effective, impose uniform standards in link quality, are easily implemented, and make minimal use of real-time resources.

  11. Bayes Error Rate Estimation Using Classifier Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Ghosh, Joydeep

    2003-01-01

    The Bayes error rate gives a statistical lower bound on the error achievable for a given classification problem and the associated choice of features. By reliably estimating th is rate, one can assess the usefulness of the feature set that is being used for classification. Moreover, by comparing the accuracy achieved by a given classifier with the Bayes rate, one can quantify how effective that classifier is. Classical approaches for estimating or finding bounds for the Bayes error, in general, yield rather weak results for small sample sizes; unless the problem has some simple characteristics, such as Gaussian class-conditional likelihoods. This article shows how the outputs of a classifier ensemble can be used to provide reliable and easily obtainable estimates of the Bayes error with negligible extra computation. Three methods of varying sophistication are described. First, we present a framework that estimates the Bayes error when multiple classifiers, each providing an estimate of the a posteriori class probabilities, a recombined through averaging. Second, we bolster this approach by adding an information theoretic measure of output correlation to the estimate. Finally, we discuss a more general method that just looks at the class labels indicated by ensem ble members and provides error estimates based on the disagreements among classifiers. The methods are illustrated for artificial data, a difficult four-class problem involving underwater acoustic data, and two problems from the Problem benchmarks. For data sets with known Bayes error, the combiner-based methods introduced in this article outperform existing methods. The estimates obtained by the proposed methods also seem quite reliable for the real-life data sets for which the true Bayes rates are unknown.

  12. Simultaneous Control of Error Rates in fMRI Data Analysis

    PubMed Central

    Kang, Hakmook; Blume, Jeffrey; Ombao, Hernando; Badre, David

    2015-01-01

    The key idea of statistical hypothesis testing is to fix, and thereby control, the Type I error (false positive) rate across samples of any size. Multiple comparisons inflate the global (family-wise) Type I error rate and the traditional solution to maintaining control of the error rate is to increase the local (comparison-wise) Type II error (false negative) rates. However, in the analysis of human brain imaging data, the number of comparisons is so large that this solution breaks down: the local Type II error rate ends up being so large that scientifically meaningful analysis is precluded. Here we propose a novel solution to this problem: allow the Type I error rate to converge to zero along with the Type II error rate. It works because when the Type I error rate per comparison is very small, the accumulation (or global) Type I error rate is also small. This solution is achieved by employing the Likelihood paradigm, which uses likelihood ratios to measure the strength of evidence on a voxel-by-voxel basis. In this paper, we provide theoretical and empirical justification for a likelihood approach to the analysis of human brain imaging data. In addition, we present extensive simulations that show the likelihood approach is viable, leading to ‘cleaner’ looking brain maps and operationally superiority (lower average error rate). Finally, we include a case study on cognitive control related activation in the prefrontal cortex of the human brain. PMID:26272730

  13. Detecting Signatures of GRACE Sensor Errors in Range-Rate Residuals

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Flury, J.

    2016-12-01

    In order to reach the accuracy of the GRACE baseline, predicted earlier from the design simulations, efforts are ongoing since a decade. GRACE error budget is highly dominated by noise from sensors, dealiasing models and modeling errors. GRACE range-rate residuals contain these errors. Thus, their analysis provides an insight to understand the individual contribution to the error budget. Hence, we analyze the range-rate residuals with focus on contribution of sensor errors due to mis-pointing and bad ranging performance in GRACE solutions. For the analysis of pointing errors, we consider two different reprocessed attitude datasets with differences in pointing performance. Then range-rate residuals are computed from these two datasetsrespectively and analysed. We further compare the system noise of four K-and Ka- band frequencies of the two spacecrafts, with range-rate residuals. Strong signatures of mis-pointing errors can be seen in the range-rate residuals. Also, correlation between range frequency noise and range-rate residuals are seen.

  14. Error rate information in attention allocation pilot models

    NASA Technical Reports Server (NTRS)

    Faulkner, W. H.; Onstott, E. D.

    1977-01-01

    The Northrop urgency decision pilot model was used in a command tracking task to compare the optimized performance of multiaxis attention allocation pilot models whose urgency functions were (1) based on tracking error alone, and (2) based on both tracking error and error rate. A matrix of system dynamics and command inputs was employed, to create both symmetric and asymmetric two axis compensatory tracking tasks. All tasks were single loop on each axis. Analysis showed that a model that allocates control attention through nonlinear urgency functions using only error information could not achieve performance of the full model whose attention shifting algorithm included both error and error rate terms. Subsequent to this analysis, tracking performance predictions for the full model were verified by piloted flight simulation. Complete model and simulation data are presented.

  15. Approximation of Bit Error Rates in Digital Communications

    DTIC Science & Technology

    2007-06-01

    and Technology Organisation DSTO—TN—0761 ABSTRACT This report investigates the estimation of bit error rates in digital communi- cations, motivated by...recent work in [6]. In the latter, bounds are used to construct estimates for bit error rates in the case of differentially coherent quadrature phase

  16. Technological Advancements and Error Rates in Radiation Therapy Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margalit, Danielle N., E-mail: dmargalit@partners.org; Harvard Cancer Consortium and Brigham and Women's Hospital/Dana Farber Cancer Institute, Boston, MA; Chen, Yu-Hui

    2011-11-15

    Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system atmore » Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique

  17. Error rate of automated calculation for wound surface area using a digital photography.

    PubMed

    Yang, S; Park, J; Lee, H; Lee, J B; Lee, B U; Oh, B H

    2018-02-01

    Although measuring would size using digital photography is a quick and simple method to evaluate the skin wound, the possible compatibility of it has not been fully validated. To investigate the error rate of our newly developed wound surface area calculation using digital photography. Using a smartphone and a digital single lens reflex (DSLR) camera, four photographs of various sized wounds (diameter: 0.5-3.5 cm) were taken from the facial skin model in company with color patches. The quantitative values of wound areas were automatically calculated. The relative error (RE) of this method with regard to wound sizes and types of camera was analyzed. RE of individual calculated area was from 0.0329% (DSLR, diameter 1.0 cm) to 23.7166% (smartphone, diameter 2.0 cm). In spite of the correction of lens curvature, smartphone has significantly higher error rate than DSLR camera (3.9431±2.9772 vs 8.1303±4.8236). However, in cases of wound diameter below than 3 cm, REs of average values of four photographs were below than 5%. In addition, there was no difference in the average value of wound area taken by smartphone and DSLR camera in those cases. For the follow-up of small skin defect (diameter: <3 cm), our newly developed automated wound area calculation method is able to be applied to the plenty of photographs, and the average values of them are a relatively useful index of wound healing with acceptable error rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. 45 CFR 98.100 - Error Rate Report.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND... rates, which is defined as the percentage of cases with an error (expressed as the total number of cases with an error compared to the total number of cases); the percentage of cases with an improper payment...

  19. 45 CFR 98.102 - Content of Error Rate Reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....102 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.102 Content of Error Rate Reports. (a) Baseline Submission Report... payments by the total dollar amount of child care payments that the State, the District of Columbia or...

  20. 45 CFR 98.102 - Content of Error Rate Reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....102 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.102 Content of Error Rate Reports. (a) Baseline Submission Report... payments by the total dollar amount of child care payments that the State, the District of Columbia or...

  1. 45 CFR 98.102 - Content of Error Rate Reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....102 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.102 Content of Error Rate Reports. (a) Baseline Submission Report... payments by the total dollar amount of child care payments that the State, the District of Columbia or...

  2. 45 CFR 98.102 - Content of Error Rate Reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....102 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.102 Content of Error Rate Reports. (a) Baseline Submission Report... payments by the total dollar amount of child care payments that the State, the District of Columbia or...

  3. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    DOE PAGES

    McInerney, Peter; Adams, Paul; Hadi, Masood Z.

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less

  4. Dispensing error rate after implementation of an automated pharmacy carousel system.

    PubMed

    Oswald, Scott; Caldwell, Richard

    2007-07-01

    A study was conducted to determine filling and dispensing error rates before and after the implementation of an automated pharmacy carousel system (APCS). The study was conducted in a 613-bed acute and tertiary care university hospital. Before the implementation of the APCS, filling and dispensing rates were recorded during October through November 2004 and January 2005. Postimplementation data were collected during May through June 2006. Errors were recorded in three areas of pharmacy operations: first-dose or missing medication fill, automated dispensing cabinet fill, and interdepartmental request fill. A filling error was defined as an error caught by a pharmacist during the verification step. A dispensing error was defined as an error caught by a pharmacist observer after verification by the pharmacist. Before implementation of the APCS, 422 first-dose or missing medication orders were observed between October 2004 and January 2005. Independent data collected in December 2005, approximately six weeks after the introduction of the APCS, found that filling and error rates had increased. The filling rate for automated dispensing cabinets was associated with the largest decrease in errors. Filling and dispensing error rates had decreased by December 2005. In terms of interdepartmental request fill, no dispensing errors were noted in 123 clinic orders dispensed before the implementation of the APCS. One dispensing error out of 85 clinic orders was identified after implementation of the APCS. The implementation of an APCS at a university hospital decreased medication filling errors related to automated cabinets only and did not affect other filling and dispensing errors.

  5. Impact of an antiretroviral stewardship strategy on medication error rates.

    PubMed

    Shea, Katherine M; Hobbs, Athena Lv; Shumake, Jason D; Templet, Derek J; Padilla-Tolentino, Eimeira; Mondy, Kristin E

    2018-05-02

    The impact of an antiretroviral stewardship strategy on medication error rates was evaluated. This single-center, retrospective, comparative cohort study included patients at least 18 years of age infected with human immunodeficiency virus (HIV) who were receiving antiretrovirals and admitted to the hospital. A multicomponent approach was developed and implemented and included modifications to the order-entry and verification system, pharmacist education, and a pharmacist-led antiretroviral therapy checklist. Pharmacists performed prospective audits using the checklist at the time of order verification. To assess the impact of the intervention, a retrospective review was performed before and after implementation to assess antiretroviral errors. Totals of 208 and 24 errors were identified before and after the intervention, respectively, resulting in a significant reduction in the overall error rate ( p < 0.001). In the postintervention group, significantly lower medication error rates were found in both patient admissions containing at least 1 medication error ( p < 0.001) and those with 2 or more errors ( p < 0.001). Significant reductions were also identified in each error type, including incorrect/incomplete medication regimen, incorrect dosing regimen, incorrect renal dose adjustment, incorrect administration, and the presence of a major drug-drug interaction. A regression tree selected ritonavir as the only specific medication that best predicted more errors preintervention ( p < 0.001); however, no antiretrovirals reliably predicted errors postintervention. An antiretroviral stewardship strategy for hospitalized HIV patients including prospective audit by staff pharmacists through use of an antiretroviral medication therapy checklist at the time of order verification decreased error rates. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  6. A Six Sigma Trial For Reduction of Error Rates in Pathology Laboratory.

    PubMed

    Tosuner, Zeynep; Gücin, Zühal; Kiran, Tuğçe; Büyükpinarbaşili, Nur; Turna, Seval; Taşkiran, Olcay; Arici, Dilek Sema

    2016-01-01

    A major target of quality assurance is the minimization of error rates in order to enhance patient safety. Six Sigma is a method targeting zero error (3.4 errors per million events) used in industry. The five main principles of Six Sigma are defining, measuring, analysis, improvement and control. Using this methodology, the causes of errors can be examined and process improvement strategies can be identified. The aim of our study was to evaluate the utility of Six Sigma methodology in error reduction in our pathology laboratory. The errors encountered between April 2014 and April 2015 were recorded by the pathology personnel. Error follow-up forms were examined by the quality control supervisor, administrative supervisor and the head of the department. Using Six Sigma methodology, the rate of errors was measured monthly and the distribution of errors at the preanalytic, analytic and postanalytical phases was analysed. Improvement strategies were reclaimed in the monthly intradepartmental meetings and the control of the units with high error rates was provided. Fifty-six (52.4%) of 107 recorded errors in total were at the pre-analytic phase. Forty-five errors (42%) were recorded as analytical and 6 errors (5.6%) as post-analytical. Two of the 45 errors were major irrevocable errors. The error rate was 6.8 per million in the first half of the year and 1.3 per million in the second half, decreasing by 79.77%. The Six Sigma trial in our pathology laboratory provided the reduction of the error rates mainly in the pre-analytic and analytic phases.

  7. Acceptance rate and reasons for rejection of manuscripts submitted to Veterinary Radiology & Ultrasound during 2012.

    PubMed

    Lamb, Christopher R; Mai, Wilfried

    2015-01-01

    Better understanding of the reasons why manuscripts are rejected, and recognition of the most frequent manuscript flaws identified by reviewers, should help submitting authors to avoid these pitfalls. Of 219 manuscripts submitted to Veterinary Radiology & Ultrasound in 2012, none (0%) was accepted without revision, four (2%) were withdrawn by the authors, 99 (45%) were accepted after revision, and 116 (53%) were rejected. All manuscripts for which minor revision was requested, and 73/86 (85%) manuscripts for which major revision was requested, were ultimately accepted. Acceptance rate was greater for retrospective studies and for manuscripts submitted from countries in which English was the primary language. The prevalences of flaws in manuscripts were poor writing (62%), deficiencies in data (60%), logical or methodological errors (28%), content not suitable for Veterinary Radiology & Ultrasound (26%), and lack of new or useful knowledge (25%). Likelihood of manuscript rejection was greater for lack of new or useful knowledge and content not suitable than for other manuscript flaws. The lower acceptance rate for manuscripts from countries in which English was not the primary language was associated with content not suitable and not poor writing. Submitting authors are encouraged to do more to recognize and address manuscript flaws before submission, for example by internal review. Specifically, submitting authors should express clearly the potential added value of their study in the introduction section of their manuscript, describe completely their methods and results, and consult the Editor-in-Chief if they are uncertain whether their subject matter would be suitable for the journal. © 2014 American College of Veterinary Radiology.

  8. The effectiveness of the error reporting promoting program on the nursing error incidence rate in Korean operating rooms.

    PubMed

    Kim, Myoung-Soo; Kim, Jung-Soon; Jung, In Sook; Kim, Young Hae; Kim, Ho Jung

    2007-03-01

    The purpose of this study was to develop and evaluate an error reporting promoting program(ERPP) to systematically reduce the incidence rate of nursing errors in operating room. A non-equivalent control group non-synchronized design was used. Twenty-six operating room nurses who were in one university hospital in Busan participated in this study. They were stratified into four groups according to their operating room experience and were allocated to the experimental and control groups using a matching method. Mann-Whitney U Test was used to analyze the differences pre and post incidence rates of nursing errors between the two groups. The incidence rate of nursing errors decreased significantly in the experimental group compared to the pre-test score from 28.4% to 15.7%. The incidence rate by domains, it decreased significantly in the 3 domains-"compliance of aseptic technique", "management of document", "environmental management" in the experimental group while it decreased in the control group which was applied ordinary error-reporting method. Error-reporting system can make possible to hold the errors in common and to learn from them. ERPP was effective to reduce the errors of recognition-related nursing activities. For the wake of more effective error-prevention, we will be better to apply effort of risk management along the whole health care system with this program.

  9. Tax revenue and inflation rate predictions in Banda Aceh using Vector Error Correction Model (VECM)

    NASA Astrophysics Data System (ADS)

    Maulia, Eva; Miftahuddin; Sofyan, Hizir

    2018-05-01

    A country has some important parameters to achieve the welfare of the economy, such as tax revenues and inflation. One of the largest revenues of the state budget in Indonesia comes from the tax sector. Besides, the rate of inflation occurring in a country can be used as one measure, to measure economic problems that the country facing. Given the importance of tax revenue and inflation rate control in achieving economic prosperity, it is necessary to analyze the relationship and forecasting tax revenue and inflation rate. VECM (Vector Error Correction Model) was chosen as the method used in this research, because of the data used in the form of multivariate time series data. This study aims to produce a VECM model with optimal lag and to predict the tax revenue and inflation rate of the VECM model. The results show that the best model for data of tax revenue and the inflation rate in Banda Aceh City is VECM with 3rd optimal lag or VECM (3). Of the seven models formed, there is a significant model that is the acceptance model of income tax. The predicted results of tax revenue and the inflation rate in Kota Banda Aceh for the next 6, 12 and 24 periods (months) obtained using VECM (3) are considered valid, since they have a minimum error value compared to other models.

  10. Estimating genotype error rates from high-coverage next-generation sequence data.

    PubMed

    Wall, Jeffrey D; Tang, Ling Fung; Zerbe, Brandon; Kvale, Mark N; Kwok, Pui-Yan; Schaefer, Catherine; Risch, Neil

    2014-11-01

    Exome and whole-genome sequencing studies are becoming increasingly common, but little is known about the accuracy of the genotype calls made by the commonly used platforms. Here we use replicate high-coverage sequencing of blood and saliva DNA samples from four European-American individuals to estimate lower bounds on the error rates of Complete Genomics and Illumina HiSeq whole-genome and whole-exome sequencing. Error rates for nonreference genotype calls range from 0.1% to 0.6%, depending on the platform and the depth of coverage. Additionally, we found (1) no difference in the error profiles or rates between blood and saliva samples; (2) Complete Genomics sequences had substantially higher error rates than Illumina sequences had; (3) error rates were higher (up to 6%) for rare or unique variants; (4) error rates generally declined with genotype quality (GQ) score, but in a nonlinear fashion for the Illumina data, likely due to loss of specificity of GQ scores greater than 60; and (5) error rates increased with increasing depth of coverage for the Illumina data. These findings, especially (3)-(5), suggest that caution should be taken in interpreting the results of next-generation sequencing-based association studies, and even more so in clinical application of this technology in the absence of validation by other more robust sequencing or genotyping methods. © 2014 Wall et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Cognitive tests predict real-world errors: the relationship between drug name confusion rates in laboratory-based memory and perception tests and corresponding error rates in large pharmacy chains

    PubMed Central

    Schroeder, Scott R; Salomon, Meghan M; Galanter, William L; Schiff, Gordon D; Vaida, Allen J; Gaunt, Michael J; Bryson, Michelle L; Rash, Christine; Falck, Suzanne; Lambert, Bruce L

    2017-01-01

    Background Drug name confusion is a common type of medication error and a persistent threat to patient safety. In the USA, roughly one per thousand prescriptions results in the wrong drug being filled, and most of these errors involve drug names that look or sound alike. Prior to approval, drug names undergo a variety of tests to assess their potential for confusability, but none of these preapproval tests has been shown to predict real-world error rates. Objectives We conducted a study to assess the association between error rates in laboratory-based tests of drug name memory and perception and real-world drug name confusion error rates. Methods Eighty participants, comprising doctors, nurses, pharmacists, technicians and lay people, completed a battery of laboratory tests assessing visual perception, auditory perception and short-term memory of look-alike and sound-alike drug name pairs (eg, hydroxyzine/hydralazine). Results Laboratory test error rates (and other metrics) significantly predicted real-world error rates obtained from a large, outpatient pharmacy chain, with the best-fitting model accounting for 37% of the variance in real-world error rates. Cross-validation analyses confirmed these results, showing that the laboratory tests also predicted errors from a second pharmacy chain, with 45% of the variance being explained by the laboratory test data. Conclusions Across two distinct pharmacy chains, there is a strong and significant association between drug name confusion error rates observed in the real world and those observed in laboratory-based tests of memory and perception. Regulators and drug companies seeking a validated preapproval method for identifying confusing drug names ought to consider using these simple tests. By using a standard battery of memory and perception tests, it should be possible to reduce the number of confusing look-alike and sound-alike drug name pairs that reach the market, which will help protect patients from potentially

  12. Cognitive tests predict real-world errors: the relationship between drug name confusion rates in laboratory-based memory and perception tests and corresponding error rates in large pharmacy chains.

    PubMed

    Schroeder, Scott R; Salomon, Meghan M; Galanter, William L; Schiff, Gordon D; Vaida, Allen J; Gaunt, Michael J; Bryson, Michelle L; Rash, Christine; Falck, Suzanne; Lambert, Bruce L

    2017-05-01

    Drug name confusion is a common type of medication error and a persistent threat to patient safety. In the USA, roughly one per thousand prescriptions results in the wrong drug being filled, and most of these errors involve drug names that look or sound alike. Prior to approval, drug names undergo a variety of tests to assess their potential for confusability, but none of these preapproval tests has been shown to predict real-world error rates. We conducted a study to assess the association between error rates in laboratory-based tests of drug name memory and perception and real-world drug name confusion error rates. Eighty participants, comprising doctors, nurses, pharmacists, technicians and lay people, completed a battery of laboratory tests assessing visual perception, auditory perception and short-term memory of look-alike and sound-alike drug name pairs (eg, hydroxyzine/hydralazine). Laboratory test error rates (and other metrics) significantly predicted real-world error rates obtained from a large, outpatient pharmacy chain, with the best-fitting model accounting for 37% of the variance in real-world error rates. Cross-validation analyses confirmed these results, showing that the laboratory tests also predicted errors from a second pharmacy chain, with 45% of the variance being explained by the laboratory test data. Across two distinct pharmacy chains, there is a strong and significant association between drug name confusion error rates observed in the real world and those observed in laboratory-based tests of memory and perception. Regulators and drug companies seeking a validated preapproval method for identifying confusing drug names ought to consider using these simple tests. By using a standard battery of memory and perception tests, it should be possible to reduce the number of confusing look-alike and sound-alike drug name pairs that reach the market, which will help protect patients from potentially harmful medication errors. Published by the BMJ

  13. Classification based upon gene expression data: bias and precision of error rates.

    PubMed

    Wood, Ian A; Visscher, Peter M; Mengersen, Kerrie L

    2007-06-01

    Gene expression data offer a large number of potentially useful predictors for the classification of tissue samples into classes, such as diseased and non-diseased. The predictive error rate of classifiers can be estimated using methods such as cross-validation. We have investigated issues of interpretation and potential bias in the reporting of error rate estimates. The issues considered here are optimization and selection biases, sampling effects, measures of misclassification rate, baseline error rates, two-level external cross-validation and a novel proposal for detection of bias using the permutation mean. Reporting an optimal estimated error rate incurs an optimization bias. Downward bias of 3-5% was found in an existing study of classification based on gene expression data and may be endemic in similar studies. Using a simulated non-informative dataset and two example datasets from existing studies, we show how bias can be detected through the use of label permutations and avoided using two-level external cross-validation. Some studies avoid optimization bias by using single-level cross-validation and a test set, but error rates can be more accurately estimated via two-level cross-validation. In addition to estimating the simple overall error rate, we recommend reporting class error rates plus where possible the conditional risk incorporating prior class probabilities and a misclassification cost matrix. We also describe baseline error rates derived from three trivial classifiers which ignore the predictors. R code which implements two-level external cross-validation with the PAMR package, experiment code, dataset details and additional figures are freely available for non-commercial use from http://www.maths.qut.edu.au/profiles/wood/permr.jsp

  14. Bit-error rate for free-space adaptive optics laser communications.

    PubMed

    Tyson, Robert K

    2002-04-01

    An analysis of adaptive optics compensation for atmospheric-turbulence-induced scintillation is presented with the figure of merit being the laser communications bit-error rate. The formulation covers weak, moderate, and strong turbulence; on-off keying; and amplitude-shift keying, over horizontal propagation paths or on a ground-to-space uplink or downlink. The theory shows that under some circumstances the bit-error rate can be improved by a few orders of magnitude with the addition of adaptive optics to compensate for the scintillation. Low-order compensation (less than 40 Zernike modes) appears to be feasible as well as beneficial for reducing the bit-error rate and increasing the throughput of the communication link.

  15. The assessment of cognitive errors using an observer-rated method.

    PubMed

    Drapeau, Martin

    2014-01-01

    Cognitive Errors (CEs) are a key construct in cognitive behavioral therapy (CBT). Integral to CBT is that individuals with depression process information in an overly negative or biased way, and that this bias is reflected in specific depressotypic CEs which are distinct from normal information processing. Despite the importance of this construct in CBT theory, practice, and research, few methods are available to researchers and clinicians to reliably identify CEs as they occur. In this paper, the author presents a rating system, the Cognitive Error Rating Scale, which can be used by trained observers to identify and assess the cognitive errors of patients or research participants in vivo, i.e., as they are used or reported by the patients or participants. The method is described, including some of the more important rating conventions to be considered when using the method. This paper also describes the 15 cognitive errors assessed, and the different summary scores, including valence of the CEs, that can be derived from the method.

  16. Relating Complexity and Error Rates of Ontology Concepts. More Complex NCIt Concepts Have More Errors.

    PubMed

    Min, Hua; Zheng, Ling; Perl, Yehoshua; Halper, Michael; De Coronado, Sherri; Ochs, Christopher

    2017-05-18

    Ontologies are knowledge structures that lend support to many health-information systems. A study is carried out to assess the quality of ontological concepts based on a measure of their complexity. The results show a relation between complexity of concepts and error rates of concepts. A measure of lateral complexity defined as the number of exhibited role types is used to distinguish between more complex and simpler concepts. Using a framework called an area taxonomy, a kind of abstraction network that summarizes the structural organization of an ontology, concepts are divided into two groups along these lines. Various concepts from each group are then subjected to a two-phase QA analysis to uncover and verify errors and inconsistencies in their modeling. A hierarchy of the National Cancer Institute thesaurus (NCIt) is used as our test-bed. A hypothesis pertaining to the expected error rates of the complex and simple concepts is tested. Our study was done on the NCIt's Biological Process hierarchy. Various errors, including missing roles, incorrect role targets, and incorrectly assigned roles, were discovered and verified in the two phases of our QA analysis. The overall findings confirmed our hypothesis by showing a statistically significant difference between the amounts of errors exhibited by more laterally complex concepts vis-à-vis simpler concepts. QA is an essential part of any ontology's maintenance regimen. In this paper, we reported on the results of a QA study targeting two groups of ontology concepts distinguished by their level of complexity, defined in terms of the number of exhibited role types. The study was carried out on a major component of an important ontology, the NCIt. The findings suggest that more complex concepts tend to have a higher error rate than simpler concepts. These findings can be utilized to guide ongoing efforts in ontology QA.

  17. Estimating error rates for firearm evidence identifications in forensic science.

    PubMed

    Song, John; Vorburger, Theodore V; Chu, Wei; Yen, James; Soons, Johannes A; Ott, Daniel B; Zhang, Nien Fan

    2018-03-01

    Estimating error rates for firearm evidence identification is a fundamental challenge in forensic science. This paper describes the recently developed congruent matching cells (CMC) method for image comparisons, its application to firearm evidence identification, and its usage and initial tests for error rate estimation. The CMC method divides compared topography images into correlation cells. Four identification parameters are defined for quantifying both the topography similarity of the correlated cell pairs and the pattern congruency of the registered cell locations. A declared match requires a significant number of CMCs, i.e., cell pairs that meet all similarity and congruency requirements. Initial testing on breech face impressions of a set of 40 cartridge cases fired with consecutively manufactured pistol slides showed wide separation between the distributions of CMC numbers observed for known matching and known non-matching image pairs. Another test on 95 cartridge cases from a different set of slides manufactured by the same process also yielded widely separated distributions. The test results were used to develop two statistical models for the probability mass function of CMC correlation scores. The models were applied to develop a framework for estimating cumulative false positive and false negative error rates and individual error rates of declared matches and non-matches for this population of breech face impressions. The prospect for applying the models to large populations and realistic case work is also discussed. The CMC method can provide a statistical foundation for estimating error rates in firearm evidence identifications, thus emulating methods used for forensic identification of DNA evidence. Published by Elsevier B.V.

  18. Estimating error rates for firearm evidence identifications in forensic science

    PubMed Central

    Song, John; Vorburger, Theodore V.; Chu, Wei; Yen, James; Soons, Johannes A.; Ott, Daniel B.; Zhang, Nien Fan

    2018-01-01

    Estimating error rates for firearm evidence identification is a fundamental challenge in forensic science. This paper describes the recently developed congruent matching cells (CMC) method for image comparisons, its application to firearm evidence identification, and its usage and initial tests for error rate estimation. The CMC method divides compared topography images into correlation cells. Four identification parameters are defined for quantifying both the topography similarity of the correlated cell pairs and the pattern congruency of the registered cell locations. A declared match requires a significant number of CMCs, i.e., cell pairs that meet all similarity and congruency requirements. Initial testing on breech face impressions of a set of 40 cartridge cases fired with consecutively manufactured pistol slides showed wide separation between the distributions of CMC numbers observed for known matching and known non-matching image pairs. Another test on 95 cartridge cases from a different set of slides manufactured by the same process also yielded widely separated distributions. The test results were used to develop two statistical models for the probability mass function of CMC correlation scores. The models were applied to develop a framework for estimating cumulative false positive and false negative error rates and individual error rates of declared matches and non-matches for this population of breech face impressions. The prospect for applying the models to large populations and realistic case work is also discussed. The CMC method can provide a statistical foundation for estimating error rates in firearm evidence identifications, thus emulating methods used for forensic identification of DNA evidence. PMID:29331680

  19. Total Dose Effects on Error Rates in Linear Bipolar Systems

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent

    2007-01-01

    The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.

  20. Clinical biochemistry laboratory rejection rates due to various types of preanalytical errors.

    PubMed

    Atay, Aysenur; Demir, Leyla; Cuhadar, Serap; Saglam, Gulcan; Unal, Hulya; Aksun, Saliha; Arslan, Banu; Ozkan, Asuman; Sutcu, Recep

    2014-01-01

    Preanalytical errors, along the process from the beginning of test requests to the admissions of the specimens to the laboratory, cause the rejection of samples. The aim of this study was to better explain the reasons of rejected samples, regarding to their rates in certain test groups in our laboratory. This preliminary study was designed on the rejected samples in one-year period, based on the rates and types of inappropriateness. Test requests and blood samples of clinical chemistry, immunoassay, hematology, glycated hemoglobin, coagulation and erythrocyte sedimentation rate test units were evaluated. Types of inappropriateness were evaluated as follows: improperly labelled samples, hemolysed, clotted specimen, insufficient volume of specimen and total request errors. A total of 5,183,582 test requests from 1,035,743 blood collection tubes were considered. The total rejection rate was 0.65 %. The rejection rate of coagulation group was significantly higher (2.28%) than the other test groups (P < 0.001) including insufficient volume of specimen error rate as 1.38%. Rejection rates of hemolysis, clotted specimen and insufficient volume of sample error were found to be 8%, 24% and 34%, respectively. Total request errors, particularly, for unintelligible requests were 32% of the total for inpatients. The errors were especially attributable to unintelligible requests of inappropriate test requests, improperly labelled samples for inpatients and blood drawing errors especially due to insufficient volume of specimens in a coagulation test group. Further studies should be performed after corrective and preventive actions to detect a possible decrease in rejecting samples.

  1. An error criterion for determining sampling rates in closed-loop control systems

    NASA Technical Reports Server (NTRS)

    Brecher, S. M.

    1972-01-01

    The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.

  2. Detecting imipenem resistance in Acinetobacter baumannii by automated systems (BD Phoenix, Microscan WalkAway, Vitek 2); high error rates with Microscan WalkAway

    PubMed Central

    2009-01-01

    Background Increasing reports of carbapenem resistant Acinetobacter baumannii infections are of serious concern. Reliable susceptibility testing results remains a critical issue for the clinical outcome. Automated systems are increasingly used for species identification and susceptibility testing. This study was organized to evaluate the accuracies of three widely used automated susceptibility testing methods for testing the imipenem susceptibilities of A. baumannii isolates, by comparing to the validated test methods. Methods Selected 112 clinical isolates of A. baumanii collected between January 2003 and May 2006 were tested to confirm imipenem susceptibility results. Strains were tested against imipenem by the reference broth microdilution (BMD), disk diffusion (DD), Etest, BD Phoenix, MicroScan WalkAway and Vitek 2 automated systems. Data were analysed by comparing the results from each test method to those produced by the reference BMD test. Results MicroScan performed true identification of all A. baumannii strains while Vitek 2 unidentified one strain, Phoenix unidentified two strains and misidentified two strains. Eighty seven of the strains (78%) were resistant to imipenem by BMD. Etest, Vitek 2 and BD Phoenix produced acceptable error rates when tested against imipenem. Etest showed the best performance with only two minor errors (1.8%). Vitek 2 produced eight minor errors(7.2%). BD Phoenix produced three major errors (2.8%). DD produced two very major errors (1.8%) (slightly higher (0.3%) than the acceptable limit) and three major errors (2.7%). MicroScan showed the worst performance in susceptibility testing with unacceptable error rates; 28 very major (25%) and 50 minor errors (44.6%). Conclusion Reporting errors for A. baumannii against imipenem do exist in susceptibility testing systems. We suggest clinical laboratories using MicroScan system for routine use should consider using a second, independent antimicrobial susceptibility testing method to

  3. Confidence Intervals for Error Rates Observed in Coded Communications Systems

    NASA Astrophysics Data System (ADS)

    Hamkins, J.

    2015-05-01

    We present methods to compute confidence intervals for the codeword error rate (CWER) and bit error rate (BER) of a coded communications link. We review several methods to compute exact and approximate confidence intervals for the CWER, and specifically consider the situation in which the true CWER is so low that only a handful, if any, codeword errors are able to be simulated. In doing so, we answer the question of how long an error-free simulation must be run in order to certify that a given CWER requirement is met with a given level of confidence, and discuss the bias introduced by aborting a simulation after observing the first codeword error. Next, we turn to the lesser studied problem of determining confidence intervals for the BER of coded systems. Since bit errors in systems that use coding or higher-order modulation do not occur independently, blind application of a method that assumes independence leads to inappropriately narrow confidence intervals. We present a new method to compute the confidence interval properly, using the first and second sample moments of the number of bit errors per codeword. This is the first method we know of to compute a confidence interval for the BER of a coded or higher-order modulation system.

  4. Multicenter Assessment of Gram Stain Error Rates

    PubMed Central

    Balada-Llasat, Joan-Miquel; Harrington, Amanda; Cavagnolo, Robert

    2016-01-01

    Gram stains remain the cornerstone of diagnostic testing in the microbiology laboratory for the guidance of empirical treatment prior to availability of culture results. Incorrectly interpreted Gram stains may adversely impact patient care, and yet there are no comprehensive studies that have evaluated the reliability of the technique and there are no established standards for performance. In this study, clinical microbiology laboratories at four major tertiary medical care centers evaluated Gram stain error rates across all nonblood specimen types by using standardized criteria. The study focused on several factors that primarily contribute to errors in the process, including poor specimen quality, smear preparation, and interpretation of the smears. The number of specimens during the evaluation period ranged from 976 to 1,864 specimens per site, and there were a total of 6,115 specimens. Gram stain results were discrepant from culture for 5% of all specimens. Fifty-eight percent of discrepant results were specimens with no organisms reported on Gram stain but significant growth on culture, while 42% of discrepant results had reported organisms on Gram stain that were not recovered in culture. Upon review of available slides, 24% (63/263) of discrepant results were due to reader error, which varied significantly based on site (9% to 45%). The Gram stain error rate also varied between sites, ranging from 0.4% to 2.7%. The data demonstrate a significant variability between laboratories in Gram stain performance and affirm the need for ongoing quality assessment by laboratories. Standardized monitoring of Gram stains is an essential quality control tool for laboratories and is necessary for the establishment of a quality benchmark across laboratories. PMID:26888900

  5. Hospital-based transfusion error tracking from 2005 to 2010: identifying the key errors threatening patient transfusion safety.

    PubMed

    Maskens, Carolyn; Downie, Helen; Wendt, Alison; Lima, Ana; Merkley, Lisa; Lin, Yulia; Callum, Jeannie

    2014-01-01

    This report provides a comprehensive analysis of transfusion errors occurring at a large teaching hospital and aims to determine key errors that are threatening transfusion safety, despite implementation of safety measures. Errors were prospectively identified from 2005 to 2010. Error data were coded on a secure online database called the Transfusion Error Surveillance System. Errors were defined as any deviation from established standard operating procedures. Errors were identified by clinical and laboratory staff. Denominator data for volume of activity were used to calculate rates. A total of 15,134 errors were reported with a median number of 215 errors per month (range, 85-334). Overall, 9083 (60%) errors occurred on the transfusion service and 6051 (40%) on the clinical services. In total, 23 errors resulted in patient harm: 21 of these errors occurred on the clinical services and two in the transfusion service. Of the 23 harm events, 21 involved inappropriate use of blood. Errors with no harm were 657 times more common than events that caused harm. The most common high-severity clinical errors were sample labeling (37.5%) and inappropriate ordering of blood (28.8%). The most common high-severity error in the transfusion service was sample accepted despite not meeting acceptance criteria (18.3%). The cost of product and component loss due to errors was $593,337. Errors occurred at every point in the transfusion process, with the greatest potential risk of patient harm resulting from inappropriate ordering of blood products and errors in sample labeling. © 2013 American Association of Blood Banks (CME).

  6. Controlling the type I error rate in two-stage sequential adaptive designs when testing for average bioequivalence.

    PubMed

    Maurer, Willi; Jones, Byron; Chen, Ying

    2018-05-10

    In a 2×2 crossover trial for establishing average bioequivalence (ABE) of a generic agent and a currently marketed drug, the recommended approach to hypothesis testing is the two one-sided test (TOST) procedure, which depends, among other things, on the estimated within-subject variability. The power of this procedure, and therefore the sample size required to achieve a minimum power, depends on having a good estimate of this variability. When there is uncertainty, it is advisable to plan the design in two stages, with an interim sample size reestimation after the first stage, using an interim estimate of the within-subject variability. One method and 3 variations of doing this were proposed by Potvin et al. Using simulation, the operating characteristics, including the empirical type I error rate, of the 4 variations (called Methods A, B, C, and D) were assessed by Potvin et al and Methods B and C were recommended. However, none of these 4 variations formally controls the type I error rate of falsely claiming ABE, even though the amount of inflation produced by Method C was considered acceptable. A major disadvantage of assessing type I error rate inflation using simulation is that unless all possible scenarios for the intended design and analysis are investigated, it is impossible to be sure that the type I error rate is controlled. Here, we propose an alternative, principled method of sample size reestimation that is guaranteed to control the type I error rate at any given significance level. This method uses a new version of the inverse-normal combination of p-values test, in conjunction with standard group sequential techniques, that is more robust to large deviations in initial assumptions regarding the variability of the pharmacokinetic endpoints. The sample size reestimation step is based on significance levels and power requirements that are conditional on the first-stage results. This necessitates a discussion and exploitation of the peculiar properties

  7. Multicenter Assessment of Gram Stain Error Rates.

    PubMed

    Samuel, Linoj P; Balada-Llasat, Joan-Miquel; Harrington, Amanda; Cavagnolo, Robert

    2016-06-01

    Gram stains remain the cornerstone of diagnostic testing in the microbiology laboratory for the guidance of empirical treatment prior to availability of culture results. Incorrectly interpreted Gram stains may adversely impact patient care, and yet there are no comprehensive studies that have evaluated the reliability of the technique and there are no established standards for performance. In this study, clinical microbiology laboratories at four major tertiary medical care centers evaluated Gram stain error rates across all nonblood specimen types by using standardized criteria. The study focused on several factors that primarily contribute to errors in the process, including poor specimen quality, smear preparation, and interpretation of the smears. The number of specimens during the evaluation period ranged from 976 to 1,864 specimens per site, and there were a total of 6,115 specimens. Gram stain results were discrepant from culture for 5% of all specimens. Fifty-eight percent of discrepant results were specimens with no organisms reported on Gram stain but significant growth on culture, while 42% of discrepant results had reported organisms on Gram stain that were not recovered in culture. Upon review of available slides, 24% (63/263) of discrepant results were due to reader error, which varied significantly based on site (9% to 45%). The Gram stain error rate also varied between sites, ranging from 0.4% to 2.7%. The data demonstrate a significant variability between laboratories in Gram stain performance and affirm the need for ongoing quality assessment by laboratories. Standardized monitoring of Gram stains is an essential quality control tool for laboratories and is necessary for the establishment of a quality benchmark across laboratories. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Parental Cognitive Errors Mediate Parental Psychopathology and Ratings of Child Inattention.

    PubMed

    Haack, Lauren M; Jiang, Yuan; Delucchi, Kevin; Kaiser, Nina; McBurnett, Keith; Hinshaw, Stephen; Pfiffner, Linda

    2017-09-01

    We investigate the Depression-Distortion Hypothesis in a sample of 199 school-aged children with ADHD-Predominantly Inattentive presentation (ADHD-I) by examining relations and cross-sectional mediational pathways between parental characteristics (i.e., levels of parental depressive and ADHD symptoms) and parental ratings of child problem behavior (inattention, sluggish cognitive tempo, and functional impairment) via parental cognitive errors. Results demonstrated a positive association between parental factors and parental ratings of inattention, as well as a mediational pathway between parental depressive and ADHD symptoms and parental ratings of inattention via parental cognitive errors. Specifically, higher levels of parental depressive and ADHD symptoms predicted higher levels of cognitive errors, which in turn predicted higher parental ratings of inattention. Findings provide evidence for core tenets of the Depression-Distortion Hypothesis, which state that parents with high rates of psychopathology hold negative schemas for their child's behavior and subsequently, report their child's behavior as more severe. © 2016 Family Process Institute.

  9. 105-KE Isolation Barrier Leak Rate Acceptance Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCracken, K.J.

    1995-06-14

    This Acceptance Test Report (ATR) contains the completed and signed Acceptance Procedure (ATP) for the 105-KE Isolations Barrier Leak Rate Test. The Test Engineer`s log, the completed sections of the ATP in the Appendix for Repeat Testing (Appendix K), the approved WHC J-7s (Appendix H), the data logger files (Appendices T and U), and the post test calibration checks (Appendix V) are included.

  10. CREME96 and Related Error Rate Prediction Methods

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2012-01-01

    Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and

  11. Mock jurors' use of error rates in DNA database trawls.

    PubMed

    Scurich, Nicholas; John, Richard S

    2013-12-01

    Forensic science is not infallible, as data collected by the Innocence Project have revealed. The rate at which errors occur in forensic DNA testing-the so-called "gold standard" of forensic science-is not currently known. This article presents a Bayesian analysis to demonstrate the profound impact that error rates have on the probative value of a DNA match. Empirical evidence on whether jurors are sensitive to this effect is equivocal: Studies have typically found they are not, while a recent, methodologically rigorous study found that they can be. This article presents the results of an experiment that examined this issue within the context of a database trawl case in which one DNA profile was tested against a multitude of profiles. The description of the database was manipulated (i.e., "medical" or "offender" database, or not specified) as was the rate of error (i.e., one-in-10 or one-in-1,000). Jury-eligible participants were nearly twice as likely to convict in the offender database condition compared to the condition not specified. The error rates did not affect verdicts. Both factors, however, affected the perception of the defendant's guilt, in the expected direction, although the size of the effect was meager compared to Bayesian prescriptions. The results suggest that the disclosure of an offender database to jurors might constitute prejudicial evidence, and calls for proficiency testing in forensic science as well as training of jurors are echoed. (c) 2013 APA, all rights reserved

  12. Hungry for an intervention? Adolescents' ratings of acceptability of eating-related intervention strategies.

    PubMed

    Stok, F Marijn; de Ridder, Denise T D; de Vet, Emely; Nureeva, Liliya; Luszczynska, Aleksandra; Wardle, Jane; Gaspar, Tania; de Wit, John B F

    2016-01-05

    Effective interventions promoting healthier eating behavior among adolescents are urgently needed. One factor that has been shown to impact effectiveness is whether the target population accepts the intervention. While previous research has assessed adults' acceptance of eating-related interventions, research on the opinion of adolescents is lacking. The current study addressed this gap in the literature. Two thousand seven hundred sixty four adolescents (aged 10-17 years) from four European countries answered questions about individual characteristics (socio-demographics, anthropometrics, and average daily intake of healthy and unhealthy foods) and the acceptability of ten eating-related intervention strategies. These strategies varied in type (either promoting healthy eating or discouraging unhealthy eating), level of intrusiveness, setting (home, school, broader out-of-home environment), and change agent (parents, teacher, policy makers). Based on adolescents' acceptability ratings, strategies could be clustered into two categories, those promoting healthy eating and those discouraging unhealthy eating, with acceptability rated significantly higher for the former. Acceptability of intervention strategies was rated moderate on average, but higher among girls, younger, overweight and immigrant adolescents, and those reporting healthier eating. Polish and Portuguese adolescents were overall more accepting of strategies than UK and Dutch adolescents. Adolescents preferred intervention strategies that promote healthy eating over strategies that discourage unhealthy eating. Level of intrusiveness affected acceptability ratings for the latter type of strategies only. Various individual and behavioral characteristics were associated with acceptability. These findings provide practical guidance for the selection of acceptable intervention strategies to improve adolescents' eating behavior.

  13. Simulation of rare events in quantum error correction

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey; Vargo, Alexander

    2013-12-01

    We consider the problem of calculating the logical error probability for a stabilizer quantum code subject to random Pauli errors. To access the regime of large code distances where logical errors are extremely unlikely we adopt the splitting method widely used in Monte Carlo simulations of rare events and Bennett's acceptance ratio method for estimating the free energy difference between two canonical ensembles. To illustrate the power of these methods in the context of error correction, we calculate the logical error probability PL for the two-dimensional surface code on a square lattice with a pair of holes for all code distances d≤20 and all error rates p below the fault-tolerance threshold. Our numerical results confirm the expected exponential decay PL˜exp[-α(p)d] and provide a simple fitting formula for the decay rate α(p). Both noiseless and noisy syndrome readout circuits are considered.

  14. Prediction Accuracy of Error Rates for MPTB Space Experiment

    NASA Technical Reports Server (NTRS)

    Buchner, S. P.; Campbell, A. B.; Davis, D.; McMorrow, D.; Petersen, E. L.; Stassinopoulos, E. G.; Ritter, J. C.

    1998-01-01

    This paper addresses the accuracy of radiation-induced upset-rate predictions in space using the results of ground-based measurements together with standard environmental and device models. The study is focused on two part types - 16 Mb NEC DRAM's (UPD4216) and 1 Kb SRAM's (AMD93L422) - both of which are currently in space on board the Microelectronics and Photonics Test Bed (MPTB). To date, ground-based measurements of proton-induced single event upset (SEM cross sections as a function of energy have been obtained and combined with models of the proton environment to predict proton-induced error rates in space. The role played by uncertainties in the environmental models will be determined by comparing the modeled radiation environment with the actual environment measured aboard MPTB. Heavy-ion induced upsets have also been obtained from MPTB and will be compared with the "predicted" error rate following ground testing that will be done in the near future. These results should help identify sources of uncertainty in predictions of SEU rates in space.

  15. Rate, causes and reporting of medication errors in Jordan: nurses' perspectives.

    PubMed

    Mrayyan, Majd T; Shishani, Kawkab; Al-Faouri, Ibrahim

    2007-09-01

    The aim of the study was to describe Jordanian nurses' perceptions about various issues related to medication errors. This is the first nursing study about medication errors in Jordan. This was a descriptive study. A convenient sample of 799 nurses from 24 hospitals was obtained. Descriptive and inferential statistics were used for data analysis. Over the course of their nursing career, the average number of recalled committed medication errors per nurse was 2.2. Using incident reports, the rate of medication errors reported to nurse managers was 42.1%. Medication errors occurred mainly when medication labels/packaging were of poor quality or damaged. Nurses failed to report medication errors because they were afraid that they might be subjected to disciplinary actions or even lose their jobs. In the stepwise regression model, gender was the only predictor of medication errors in Jordan. Strategies to reduce or eliminate medication errors are required.

  16. A Technological Innovation to Reduce Prescribing Errors Based on Implementation Intentions: The Acceptability and Feasibility of MyPrescribe

    PubMed Central

    Hart, Jo; Thoong, Hong; Ferguson, Jane; Tully, Mary

    2017-01-01

    Background Although prescribing of medication in hospitals is rarely an error-free process, prescribers receive little feedback on their mistakes and ways to change future practices. Audit and feedback interventions may be an effective approach to modifying the clinical practice of health professionals, but these may pose logistical challenges when used in hospitals. Moreover, such interventions are often labor intensive. Consequently, there is a need to develop effective and innovative interventions to overcome these challenges and to improve the delivery of feedback on prescribing. Implementation intentions, which have been shown to be effective in changing behavior, link critical situations with an appropriate response; however, these have rarely been used in the context of improving prescribing practices. Objective Semistructured qualitative interviews were conducted to evaluate the acceptability and feasibility of providing feedback on prescribing errors via MyPrescribe, a mobile-compatible website informed by implementation intentions. Methods Data relating to 200 prescribing errors made by 52 junior doctors were collected by 11 hospital pharmacists. These errors were populated into MyPrescribe, where prescribers were able to construct their own personalized action plans. Qualitative interviews with a subsample of 15 junior doctors were used to explore issues regarding feasibility and acceptability of MyPrescribe and their experiences of using implementation intentions to construct prescribing action plans. Framework analysis was used to identify prominent themes, with findings mapped to the behavioral components of the COM-B model (capability, opportunity, motivation, and behavior) to inform the development of future interventions. Results MyPrescribe was perceived to be effective in providing opportunities for critical reflection on prescribing errors and to complement existing training (such as junior doctors’ e-portfolio). The participants were able to

  17. Error-Rate Bounds for Coded PPM on a Poisson Channel

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Hamkins, Jon

    2009-01-01

    Equations for computing tight bounds on error rates for coded pulse-position modulation (PPM) on a Poisson channel at high signal-to-noise ratio have been derived. These equations and elements of the underlying theory are expected to be especially useful in designing codes for PPM optical communication systems. The equations and the underlying theory apply, more specifically, to a case in which a) At the transmitter, a linear outer code is concatenated with an inner code that includes an accumulator and a bit-to-PPM-symbol mapping (see figure) [this concatenation is known in the art as "accumulate-PPM" (abbreviated "APPM")]; b) The transmitted signal propagates on a memoryless binary-input Poisson channel; and c) At the receiver, near-maximum-likelihood (ML) decoding is effected through an iterative process. Such a coding/modulation/decoding scheme is a variation on the concept of turbo codes, which have complex structures, such that an exact analytical expression for the performance of a particular code is intractable. However, techniques for accurately estimating the performances of turbo codes have been developed. The performance of a typical turbo code includes (1) a "waterfall" region consisting of a steep decrease of error rate with increasing signal-to-noise ratio (SNR) at low to moderate SNR, and (2) an "error floor" region with a less steep decrease of error rate with increasing SNR at moderate to high SNR. The techniques used heretofore for estimating performance in the waterfall region have differed from those used for estimating performance in the error-floor region. For coded PPM, prior to the present derivations, equations for accurate prediction of the performance of coded PPM at high SNR did not exist, so that it was necessary to resort to time-consuming simulations in order to make such predictions. The present derivation makes it unnecessary to perform such time-consuming simulations.

  18. Agreeableness and Conscientiousness as Predictors of University Students' Self/Peer-Assessment Rating Error

    ERIC Educational Resources Information Center

    Birjandi, Parviz; Siyyari, Masood

    2016-01-01

    This paper presents the results of an investigation into the role of two personality traits (i.e. Agreeableness and Conscientiousness from the Big Five personality traits) in predicting rating error in the self-assessment and peer-assessment of composition writing. The average self/peer-rating errors of 136 Iranian English major undergraduates…

  19. Error analysis of high-rate GNSS precise point positioning for seismic wave measurement

    NASA Astrophysics Data System (ADS)

    Shu, Yuanming; Shi, Yun; Xu, Peiliang; Niu, Xiaoji; Liu, Jingnan

    2017-06-01

    High-rate GNSS precise point positioning (PPP) has been playing a more and more important role in providing precise positioning information in fast time-varying environments. Although kinematic PPP is commonly known to have a precision of a few centimeters, the precision of high-rate PPP within a short period of time has been reported recently with experiments to reach a few millimeters in the horizontal components and sub-centimeters in the vertical component to measure seismic motion, which is several times better than the conventional kinematic PPP practice. To fully understand the mechanism of mystified excellent performance of high-rate PPP within a short period of time, we have carried out a theoretical error analysis of PPP and conducted the corresponding simulations within a short period of time. The theoretical analysis has clearly indicated that the high-rate PPP errors consist of two types: the residual systematic errors at the starting epoch, which affect high-rate PPP through the change of satellite geometry, and the time-varying systematic errors between the starting epoch and the current epoch. Both the theoretical error analysis and simulated results are fully consistent with and thus have unambiguously confirmed the reported high precision of high-rate PPP, which has been further affirmed here by the real data experiments, indicating that high-rate PPP can indeed achieve the millimeter level of precision in the horizontal components and the sub-centimeter level of precision in the vertical component to measure motion within a short period of time. The simulation results have clearly shown that the random noise of carrier phases and higher order ionospheric errors are two major factors to affect the precision of high-rate PPP within a short period of time. The experiments with real data have also indicated that the precision of PPP solutions can degrade to the cm level in both the horizontal and vertical components, if the geometry of satellites is

  20. Comparison of disagreement and error rates for three types of interdepartmental consultations.

    PubMed

    Renshaw, Andrew A; Gould, Edwin W

    2005-12-01

    Previous studies have documented a relatively high rate of disagreement for interdepartmental consultations, but follow-up is limited. We reviewed the results of 3 types of interdepartmental consultations in our hospital during a 2-year period, including 328 incoming, 928 pathologist-generated outgoing, and 227 patient- or clinician-generated outgoing consults. The disagreement rate was significantly higher for incoming consults (10.7%) than for outgoing pathologist-generated consults (5.9%) (P = .06). Disagreement rates for outgoing patient- or clinician-generated consults were not significantly different from either other type (7.9%). Additional consultation, biopsy, or testing follow-up was available for 19 (54%) of 35, 14 (25%) of 55, and 6 (33%) of 18 incoming, outgoing pathologist-generated, and outgoing patient- or clinician-generated consults with disagreements, respectively; the percentage of errors varied widely (15/19 [79%], 8/14 [57%], and 2/6 [33%], respectively), but differences were not significant (P >.05 for each). Review of the individual errors revealed specific diagnostic areas in which improvement in performance might be made. Disagreement rates for interdepartmental consultation ranged from 5.9% to 10.7%, but only 33% to 79% represented errors. Additional consultation, tissue, and testing results can aid in distinguishing disagreements from errors.

  1. Model studies of the beam-filling error for rain-rate retrieval with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Ha, Eunho; North, Gerald R.

    1995-01-01

    Low-frequency (less than 20 GHz) single-channel microwave retrievals of rain rate encounter the problem of beam-filling error. This error stems from the fact that the relationship between microwave brightness temperature and rain rate is nonlinear, coupled with the fact that the field of view is large or comparable to important scales of variability of the rain field. This means that one may not simply insert the area average of the brightness temperature into the formula for rain rate without incurring both bias and random error. The statistical heterogeneity of the rain-rate field in the footprint of the instrument is key to determining the nature of these errors. This paper makes use of a series of random rain-rate fields to study the size of the bias and random error associated with beam filling. A number of examples are analyzed in detail: the binomially distributed field, the gamma, the Gaussian, the mixed gamma, the lognormal, and the mixed lognormal ('mixed' here means there is a finite probability of no rain rate at a point of space-time). Of particular interest are the applicability of a simple error formula due to Chiu and collaborators and a formula that might hold in the large field of view limit. It is found that the simple formula holds for Gaussian rain-rate fields but begins to fail for highly skewed fields such as the mixed lognormal. While not conclusively demonstrated here, it is suggested that the notionof climatologically adjusting the retrievals to remove the beam-filling bias is a reasonable proposition.

  2. Action errors, error management, and learning in organizations.

    PubMed

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  3. Derivation of an analytic expression for the error associated with the noise reduction rating

    NASA Astrophysics Data System (ADS)

    Murphy, William J.

    2005-04-01

    Hearing protection devices are assessed using the Real Ear Attenuation at Threshold (REAT) measurement procedure for the purpose of estimating the amount of noise reduction provided when worn by a subject. The rating number provided on the protector label is a function of the mean and standard deviation of the REAT results achieved by the test subjects. If a group of subjects have a large variance, then it follows that the certainty of the rating should be correspondingly lower. No estimate of the error of a protector's rating is given by existing standards or regulations. Propagation of errors was applied to the Noise Reduction Rating to develop an analytic expression for the hearing protector rating error term. Comparison of the analytic expression for the error to the standard deviation estimated from Monte Carlo simulation of subject attenuations yielded a linear relationship across several protector types and assumptions for the variance of the attenuations.

  4. Addressing Angular Single-Event Effects in the Estimation of On-Orbit Error Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David S.; Swift, Gary M.; Wirthlin, Michael J.

    2015-12-01

    Our study describes complications introduced by angular direct ionization events on space error rate predictions. In particular, prevalence of multiple-cell upsets and a breakdown in the application of effective linear energy transfer in modern-scale devices can skew error rates approximated from currently available estimation models. Moreover, this paper highlights the importance of angular testing and proposes a methodology to extend existing error estimation tools to properly consider angular strikes in modern-scale devices. Finally, these techniques are illustrated with test data provided from a modern 28 nm SRAM-based device.

  5. A Technological Innovation to Reduce Prescribing Errors Based on Implementation Intentions: The Acceptability and Feasibility of MyPrescribe.

    PubMed

    Keyworth, Chris; Hart, Jo; Thoong, Hong; Ferguson, Jane; Tully, Mary

    2017-08-01

    Although prescribing of medication in hospitals is rarely an error-free process, prescribers receive little feedback on their mistakes and ways to change future practices. Audit and feedback interventions may be an effective approach to modifying the clinical practice of health professionals, but these may pose logistical challenges when used in hospitals. Moreover, such interventions are often labor intensive. Consequently, there is a need to develop effective and innovative interventions to overcome these challenges and to improve the delivery of feedback on prescribing. Implementation intentions, which have been shown to be effective in changing behavior, link critical situations with an appropriate response; however, these have rarely been used in the context of improving prescribing practices. Semistructured qualitative interviews were conducted to evaluate the acceptability and feasibility of providing feedback on prescribing errors via MyPrescribe, a mobile-compatible website informed by implementation intentions. Data relating to 200 prescribing errors made by 52 junior doctors were collected by 11 hospital pharmacists. These errors were populated into MyPrescribe, where prescribers were able to construct their own personalized action plans. Qualitative interviews with a subsample of 15 junior doctors were used to explore issues regarding feasibility and acceptability of MyPrescribe and their experiences of using implementation intentions to construct prescribing action plans. Framework analysis was used to identify prominent themes, with findings mapped to the behavioral components of the COM-B model (capability, opportunity, motivation, and behavior) to inform the development of future interventions. MyPrescribe was perceived to be effective in providing opportunities for critical reflection on prescribing errors and to complement existing training (such as junior doctors' e-portfolio). The participants were able to provide examples of how they would use

  6. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    NASA Astrophysics Data System (ADS)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  7. Between-Batch Pharmacokinetic Variability Inflates Type I Error Rate in Conventional Bioequivalence Trials: A Randomized Advair Diskus Clinical Trial.

    PubMed

    Burmeister Getz, E; Carroll, K J; Mielke, J; Benet, L Z; Jones, B

    2017-03-01

    We previously demonstrated pharmacokinetic differences among manufacturing batches of a US Food and Drug Administration (FDA)-approved dry powder inhalation product (Advair Diskus 100/50) large enough to establish between-batch bio-inequivalence. Here, we provide independent confirmation of pharmacokinetic bio-inequivalence among Advair Diskus 100/50 batches, and quantify residual and between-batch variance component magnitudes. These variance estimates are used to consider the type I error rate of the FDA's current two-way crossover design recommendation. When between-batch pharmacokinetic variability is substantial, the conventional two-way crossover design cannot accomplish the objectives of FDA's statistical bioequivalence test (i.e., cannot accurately estimate the test/reference ratio and associated confidence interval). The two-way crossover, which ignores between-batch pharmacokinetic variability, yields an artificially narrow confidence interval on the product comparison. The unavoidable consequence is type I error rate inflation, to ∼25%, when between-batch pharmacokinetic variability is nonzero. This risk of a false bioequivalence conclusion is substantially higher than asserted by regulators as acceptable consumer risk (5%). © 2016 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of The American Society for Clinical Pharmacology and Therapeutics.

  8. Acceptable bit-rates for human face identification from CCTV imagery

    NASA Astrophysics Data System (ADS)

    Tsifouti, Anastasia; Triantaphillidou, Sophie; Bilissi, Efthimia; Larabi, Mohamed-Chaker

    2013-01-01

    The objective of this investigation is to produce recommendations for acceptable bit-rates of CCTV footage of people onboard London buses. The majority of CCTV recorders on buses use a proprietary format based on the H.264/AVC video coding standard, exploiting both spatial and temporal redundancy. Low bit-rates are favored in the CCTV industry but they compromise the image usefulness of the recorded imagery. In this context usefulness is defined by the presence of enough facial information remaining in the compressed image to allow a specialist to identify a person. The investigation includes four steps: 1) Collection of representative video footage. 2) The grouping of video scenes based on content attributes. 3) Psychophysical investigations to identify key scenes, which are most affected by compression. 4) Testing of recording systems using the key scenes and further psychophysical investigations. The results are highly dependent upon scene content. For example, very dark and very bright scenes were the most challenging to compress, requiring higher bit-rates to maintain useful information. The acceptable bit-rates are also found to be dependent upon the specific CCTV system used to compress the footage, presenting challenges in drawing conclusions about universal `average' bit-rates.

  9. A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo

    A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).

  10. Methodological variations and their effects on reported medication administration error rates.

    PubMed

    McLeod, Monsey Chan; Barber, Nick; Franklin, Bryony Dean

    2013-04-01

    Medication administration errors (MAEs) are a problem, yet methodological variation between studies presents a potential barrier to understanding how best to increase safety. Using the UK as a case-study, we systematically summarised methodological variations in MAE studies, and their effects on reported MAE rates. Nine healthcare databases were searched for quantitative observational MAE studies in UK hospitals. Methodological variations were analysed and meta-analysis of MAE rates performed using studies that used the same definitions. Odds ratios (OR) were calculated to compare MAE rates between intravenous (IV) and non-IV doses, and between paediatric and adult doses. We identified 16 unique studies reporting three MAE definitions, 44 MAE subcategories and four different denominators. Overall adult MAE rates were 5.6% of a total of 21 533 non-IV opportunities for error (OE) (95% CI 4.6% to 6.7%) and 35% of a total of 154 IV OEs (95% CI 2% to 68%). MAEs were five times more likely in IV than non-IV doses (pooled OR 5.1; 95% CI 3.5 to 7.5). Including timing errors of ±30 min increased the MAE rate from 27% to 69% of 320 IV doses in one study. Five studies were unclear as to whether the denominator included dose omissions; omissions accounted for 0%-13% of IV doses and 1.8%-5.1% of non-IV doses. Wide methodological variations exist even within one country, some with significant effects on reported MAE rates. We have made recommendations for future MAE studies; these may be applied both within and outside the UK.

  11. National suicide rates a century after Durkheim: do we know enough to estimate error?

    PubMed

    Claassen, Cynthia A; Yip, Paul S; Corcoran, Paul; Bossarte, Robert M; Lawrence, Bruce A; Currier, Glenn W

    2010-06-01

    Durkheim's nineteenth-century analysis of national suicide rates dismissed prior concerns about mortality data fidelity. Over the intervening century, however, evidence documenting various types of error in suicide data has only mounted, and surprising levels of such error continue to be routinely uncovered. Yet the annual suicide rate remains the most widely used population-level suicide metric today. After reviewing the unique sources of bias incurred during stages of suicide data collection and concatenation, we propose a model designed to uniformly estimate error in future studies. A standardized method of error estimation uniformly applied to mortality data could produce data capable of promoting high quality analyses of cross-national research questions.

  12. National Suicide Rates a Century after Durkheim: Do We Know Enough to Estimate Error?

    ERIC Educational Resources Information Center

    Claassen, Cynthia A.; Yip, Paul S.; Corcoran, Paul; Bossarte, Robert M.; Lawrence, Bruce A.; Currier, Glenn W.

    2010-01-01

    Durkheim's nineteenth-century analysis of national suicide rates dismissed prior concerns about mortality data fidelity. Over the intervening century, however, evidence documenting various types of error in suicide data has only mounted, and surprising levels of such error continue to be routinely uncovered. Yet the annual suicide rate remains the…

  13. What Are Error Rates for Classifying Teacher and School Performance Using Value-Added Models?

    ERIC Educational Resources Information Center

    Schochet, Peter Z.; Chiang, Hanley S.

    2013-01-01

    This article addresses likely error rates for measuring teacher and school performance in the upper elementary grades using value-added models applied to student test score gain data. Using a realistic performance measurement system scheme based on hypothesis testing, the authors develop error rate formulas based on ordinary least squares and…

  14. Topological quantum computing with a very noisy network and local error rates approaching one percent.

    PubMed

    Nickerson, Naomi H; Li, Ying; Benjamin, Simon C

    2013-01-01

    A scalable quantum computer could be built by networking together many simple processor cells, thus avoiding the need to create a single complex structure. The difficulty is that realistic quantum links are very error prone. A solution is for cells to repeatedly communicate with each other and so purify any imperfections; however prior studies suggest that the cells themselves must then have prohibitively low internal error rates. Here we describe a method by which even error-prone cells can perform purification: groups of cells generate shared resource states, which then enable stabilization of topologically encoded data. Given a realistically noisy network (≥10% error rate) we find that our protocol can succeed provided that intra-cell error rates for initialisation, state manipulation and measurement are below 0.82%. This level of fidelity is already achievable in several laboratory systems.

  15. The Interrelationships between Ratings of Speech and Facial Acceptability in Persons with Cleft Palate.

    ERIC Educational Resources Information Center

    Sinko, Garnet R.; Hedrick, Dona L.

    1982-01-01

    Thirty untrained young adult observers rated the speech and facial acceptablity of 20 speakers with cleft palate. The observers were reliable in rating both speech and facial acceptability. Judgments of facial acceptability were generally more positive, suggesting that speech is generally judged more negatively in speakers with cleft palate.…

  16. Error rates in forensic DNA analysis: definition, numbers, impact and communication.

    PubMed

    Kloosterman, Ate; Sjerps, Marjan; Quak, Astrid

    2014-09-01

    Forensic DNA casework is currently regarded as one of the most important types of forensic evidence, and important decisions in intelligence and justice are based on it. However, errors occasionally occur and may have very serious consequences. In other domains, error rates have been defined and published. The forensic domain is lagging behind concerning this transparency for various reasons. In this paper we provide definitions and observed frequencies for different types of errors at the Human Biological Traces Department of the Netherlands Forensic Institute (NFI) over the years 2008-2012. Furthermore, we assess their actual and potential impact and describe how the NFI deals with the communication of these numbers to the legal justice system. We conclude that the observed relative frequency of quality failures is comparable to studies from clinical laboratories and genetic testing centres. Furthermore, this frequency is constant over the five-year study period. The most common causes of failures related to the laboratory process were contamination and human error. Most human errors could be corrected, whereas gross contamination in crime samples often resulted in irreversible consequences. Hence this type of contamination is identified as the most significant source of error. Of the known contamination incidents, most were detected by the NFI quality control system before the report was issued to the authorities, and thus did not lead to flawed decisions like false convictions. However in a very limited number of cases crucial errors were detected after the report was issued, sometimes with severe consequences. Many of these errors were made in the post-analytical phase. The error rates reported in this paper are useful for quality improvement and benchmarking, and contribute to an open research culture that promotes public trust. However, they are irrelevant in the context of a particular case. Here case-specific probabilities of undetected errors are needed

  17. Average symbol error rate for M-ary quadrature amplitude modulation in generalized atmospheric turbulence and misalignment errors

    NASA Astrophysics Data System (ADS)

    Sharma, Prabhat Kumar

    2016-11-01

    A framework is presented for the analysis of average symbol error rate (SER) for M-ary quadrature amplitude modulation in a free-space optical communication system. The standard probability density function (PDF)-based approach is extended to evaluate the average SER by representing the Q-function through its Meijer's G-function equivalent. Specifically, a converging power series expression for the average SER is derived considering the zero-boresight misalignment errors in the receiver side. The analysis presented here assumes a unified expression for the PDF of channel coefficient which incorporates the M-distributed atmospheric turbulence and Rayleigh-distributed radial displacement for the misalignment errors. The analytical results are compared with the results obtained using Q-function approximation. Further, the presented results are supported by the Monte Carlo simulations.

  18. The Relationship among Correct and Error Oral Reading Rates and Comprehension.

    ERIC Educational Resources Information Center

    Roberts, Michael; Smith, Deborah Deutsch

    1980-01-01

    Eight learning disabled boys (10 to 12 years old) who were seriously deficient in both their oral reading and comprehension performances participated in the study which investigated, through an applied behavior analysis model, the interrelationships of three reading variables--correct oral reading rates, error oral reading rates, and percentage of…

  19. Sequential Tests of Multiple Hypotheses Controlling Type I and II Familywise Error Rates

    PubMed Central

    Bartroff, Jay; Song, Jinlin

    2014-01-01

    This paper addresses the following general scenario: A scientist wishes to perform a battery of experiments, each generating a sequential stream of data, to investigate some phenomenon. The scientist would like to control the overall error rate in order to draw statistically-valid conclusions from each experiment, while being as efficient as possible. The between-stream data may differ in distribution and dimension but also may be highly correlated, even duplicated exactly in some cases. Treating each experiment as a hypothesis test and adopting the familywise error rate (FWER) metric, we give a procedure that sequentially tests each hypothesis while controlling both the type I and II FWERs regardless of the between-stream correlation, and only requires arbitrary sequential test statistics that control the error rates for a given stream in isolation. The proposed procedure, which we call the sequential Holm procedure because of its inspiration from Holm’s (1979) seminal fixed-sample procedure, shows simultaneous savings in expected sample size and less conservative error control relative to fixed sample, sequential Bonferroni, and other recently proposed sequential procedures in a simulation study. PMID:25092948

  20. Aniseikonia quantification: error rate of rule of thumb estimation.

    PubMed

    Lubkin, V; Shippman, S; Bennett, G; Meininger, D; Kramer, P; Poppinga, P

    1999-01-01

    To find the error rate in quantifying aniseikonia by using "Rule of Thumb" estimation in comparison with proven space eikonometry. Study 1: 24 adult pseudophakic individuals were measured for anisometropia, and astigmatic interocular difference. Rule of Thumb quantification for prescription was calculated and compared with aniseikonia measurement by the classical Essilor Projection Space Eikonometer. Study 2: parallel analysis was performed on 62 consecutive phakic patients from our strabismus clinic group. Frequency of error: For Group 1 (24 cases): 5 ( or 21 %) were equal (i.e., 1% or less difference); 16 (or 67% ) were greater (more than 1% different); and 3 (13%) were less by Rule of Thumb calculation in comparison to aniseikonia determined on the Essilor eikonometer. For Group 2 (62 cases): 45 (or 73%) were equal (1% or less); 10 (or 16%) were greater; and 7 (or 11%) were lower in the Rule of Thumb calculations in comparison to Essilor eikonometry. Magnitude of error: In Group 1, in 10/24 (29%) aniseikonia by Rule of Thumb estimation was 100% or more greater than by space eikonometry, and in 6 of those ten by 200% or more. In Group 2, in 4/62 (6%) aniseikonia by Rule of Thumb estimation was 200% or more greater than by space eikonometry. The frequency and magnitude of apparent clinical errors of Rule of Thumb estimation is disturbingly large. This problem is greatly magnified by the time and effort and cost of prescribing and executing an aniseikonic correction for a patient. The higher the refractive error, the greater the anisometropia, and the worse the errors in Rule of Thumb estimation of aniseikonia. Accurate eikonometric methods and devices should be employed in all cases where such measurements can be made. Rule of thumb estimations should be limited to cases where such subjective testing and measurement cannot be performed, as in infants after unilateral cataract surgery.

  1. The Relationship of Error Rate and Comprehension in Second and Third Grade Oral Reading Fluency

    ERIC Educational Resources Information Center

    Abbott, Mary; Wills, Howard; Miller, Angela; Kaufman, Journ

    2012-01-01

    This study explored the relationships of oral reading speed and error rate on comprehension with second and third grade students with identified reading risk. The study included 920 second and 974 third graders. Results found a significant relationship between error rate, oral reading fluency, and reading comprehension performance, and…

  2. C-fuzzy variable-branch decision tree with storage and classification error rate constraints

    NASA Astrophysics Data System (ADS)

    Yang, Shiueng-Bien

    2009-10-01

    The C-fuzzy decision tree (CFDT), which is based on the fuzzy C-means algorithm, has recently been proposed. The CFDT is grown by selecting the nodes to be split according to its classification error rate. However, the CFDT design does not consider the classification time taken to classify the input vector. Thus, the CFDT can be improved. We propose a new C-fuzzy variable-branch decision tree (CFVBDT) with storage and classification error rate constraints. The design of the CFVBDT consists of two phases-growing and pruning. The CFVBDT is grown by selecting the nodes to be split according to the classification error rate and the classification time in the decision tree. Additionally, the pruning method selects the nodes to prune based on the storage requirement and the classification time of the CFVBDT. Furthermore, the number of branches of each internal node is variable in the CFVBDT. Experimental results indicate that the proposed CFVBDT outperforms the CFDT and other methods.

  3. Invariance of the bit error rate in the ancilla-assisted homodyne detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Yuhsuke; Takeoka, Masahiro; Sasaki, Masahide

    2010-11-15

    We investigate the minimum achievable bit error rate of the discrimination of binary coherent states with the help of arbitrary ancillary states. We adopt homodyne measurement with a common phase of the local oscillator and classical feedforward control. After one ancillary state is measured, its outcome is referred to the preparation of the next ancillary state and the tuning of the next mixing with the signal. It is shown that the minimum bit error rate of the system is invariant under the following operations: feedforward control, deformations, and introduction of any ancillary state. We also discuss the possible generalization ofmore » the homodyne detection scheme.« less

  4. Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors.

    PubMed

    Stevens, Kathleen E; Chang, Diana; Zwack, Erin E; Sebert, Michael E

    2011-01-01

    Competence for genetic transformation in Streptococcus pneumoniae develops in response to accumulation of a secreted peptide pheromone and was one of the initial examples of bacterial quorum sensing. Activation of this signaling system induces not only expression of the proteins required for transformation but also the production of cellular chaperones and proteases. We have shown here that activity of this pathway is sensitively responsive to changes in the accuracy of protein synthesis that are triggered by either mutations in ribosomal proteins or exposure to antibiotics. Increasing the error rate during ribosomal decoding promoted competence, while reducing the error rate below the baseline level repressed the development of both spontaneous and antibiotic-induced competence. This pattern of regulation was promoted by the bacterial HtrA serine protease. Analysis of strains with the htrA (S234A) catalytic site mutation showed that the proteolytic activity of HtrA selectively repressed competence when translational fidelity was high but not when accuracy was low. These findings redefine the pneumococcal competence pathway as a response to errors during protein synthesis. This response has the capacity to address the immediate challenge of misfolded proteins through production of chaperones and proteases and may also be able to address, through genetic exchange, upstream coding errors that cause intrinsic protein folding defects. The competence pathway may thereby represent a strategy for dealing with lesions that impair proper protein coding and for maintaining the coding integrity of the genome. The signaling pathway that governs competence in the human respiratory tract pathogen Streptococcus pneumoniae regulates both genetic transformation and the production of cellular chaperones and proteases. The current study shows that this pathway is sensitively controlled in response to changes in the accuracy of protein synthesis. Increasing the error rate during

  5. Error-associated behaviors and error rates for robotic geology

    NASA Technical Reports Server (NTRS)

    Anderson, Robert C.; Thomas, Geb; Wagner, Jacob; Glasgow, Justin

    2004-01-01

    This study explores human error as a function of the decision-making process. One of many models for human decision-making is Rasmussen's decision ladder [9]. The decision ladder identifies the multiple tasks and states of knowledge involved in decision-making. The tasks and states of knowledge can be classified by the level of cognitive effort required to make the decision, leading to the skill, rule, and knowledge taxonomy (Rasmussen, 1987). Skill based decisions require the least cognitive effort and knowledge based decisions require the greatest cognitive effort. Errors can occur at any of the cognitive levels.

  6. A comparison of endoscopic localization error rate between operating surgeons and referring endoscopists in colorectal cancer.

    PubMed

    Azin, Arash; Saleh, Fady; Cleghorn, Michelle; Yuen, Andrew; Jackson, Timothy; Okrainec, Allan; Quereshy, Fayez A

    2017-03-01

    Colonoscopy for colorectal cancer (CRC) has a localization error rate as high as 21 %. Such errors can have substantial clinical consequences, particularly in laparoscopic surgery. The primary objective of this study was to compare accuracy of tumor localization at initial endoscopy performed by either the operating surgeon or non-operating referring endoscopist. All patients who underwent surgical resection for CRC at a large tertiary academic hospital between January 2006 and August 2014 were identified. The exposure of interest was the initial endoscopist: (1) surgeon who also performed the definitive operation (operating surgeon group); and (2) referring gastroenterologist or general surgeon (referring endoscopist group). The outcome measure was localization error, defined as a difference in at least one anatomic segment between initial endoscopy and final operative location. Multivariate logistic regression was used to explore the association between localization error rate and the initial endoscopist. A total of 557 patients were included in the study; 81 patients in the operating surgeon cohort and 476 patients in the referring endoscopist cohort. Initial diagnostic colonoscopy performed by the operating surgeon compared to referring endoscopist demonstrated statistically significant lower intraoperative localization error rate (1.2 vs. 9.0 %, P = 0.016); shorter mean time from endoscopy to surgery (52.3 vs. 76.4 days, P = 0.015); higher tattoo localization rate (32.1 vs. 21.0 %, P = 0.027); and lower preoperative repeat endoscopy rate (8.6 vs. 40.8 %, P < 0.001). Initial endoscopy performed by the operating surgeon was protective against localization error on both univariate analysis, OR 7.94 (95 % CI 1.08-58.52; P = 0.016), and multivariate analysis, OR 7.97 (95 % CI 1.07-59.38; P = 0.043). This study demonstrates that diagnostic colonoscopies performed by an operating surgeon are independently associated with a lower localization error

  7. Type-II generalized family-wise error rate formulas with application to sample size determination.

    PubMed

    Delorme, Phillipe; de Micheaux, Pierre Lafaye; Liquet, Benoit; Riou, Jérémie

    2016-07-20

    Multiple endpoints are increasingly used in clinical trials. The significance of some of these clinical trials is established if at least r null hypotheses are rejected among m that are simultaneously tested. The usual approach in multiple hypothesis testing is to control the family-wise error rate, which is defined as the probability that at least one type-I error is made. More recently, the q-generalized family-wise error rate has been introduced to control the probability of making at least q false rejections. For procedures controlling this global type-I error rate, we define a type-II r-generalized family-wise error rate, which is directly related to the r-power defined as the probability of rejecting at least r false null hypotheses. We obtain very general power formulas that can be used to compute the sample size for single-step and step-wise procedures. These are implemented in our R package rPowerSampleSize available on the CRAN, making them directly available to end users. Complexities of the formulas are presented to gain insight into computation time issues. Comparison with Monte Carlo strategy is also presented. We compute sample sizes for two clinical trials involving multiple endpoints: one designed to investigate the effectiveness of a drug against acute heart failure and the other for the immunogenicity of a vaccine strategy against pneumococcus. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. High speed and adaptable error correction for megabit/s rate quantum key distribution.

    PubMed

    Dixon, A R; Sato, H

    2014-12-02

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.

  9. Use of error grid analysis to evaluate acceptability of a point of care prothrombin time meter.

    PubMed

    Petersen, John R; Vonmarensdorf, Hans M; Weiss, Heidi L; Elghetany, M Tarek

    2010-02-01

    Statistical methods (linear regression, correlation analysis, etc.) are frequently employed in comparing methods in the central laboratory (CL). Assessing acceptability of point of care testing (POCT) equipment, however, is more difficult because statistically significant biases may not have an impact on clinical care. We showed how error grid (EG) analysis can be used to evaluate POCT PT INR with the CL. We compared results from 103 patients seen in an anti-coagulation clinic that were on Coumadin maintenance therapy using fingerstick samples for POCT (Roche CoaguChek XS and S) and citrated venous blood samples for CL (Stago STAR). To compare clinical acceptability of results we developed an EG with zones A, B, C and D. Using 2nd order polynomial equation analysis, POCT results highly correlate with the CL for CoaguChek XS (R(2)=0. 955) and CoaguChek S (R(2)=0. 93), respectively but does not indicate if POCT results are clinically interchangeable with the CL. Using EG it is readily apparent which levels can be considered clinically identical to the CL despite analytical bias. We have demonstrated the usefulness of EG in determining acceptability of POCT PT INR testing and how it can be used to determine cut-offs where differences in POCT results may impact clinical care. Copyright 2009 Elsevier B.V. All rights reserved.

  10. The Impact of Soil Sampling Errors on Variable Rate Fertilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Hoskinson; R C. Rope; L G. Blackwood

    2004-07-01

    Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soil’s characteristics. Most often, spatial variability in the soil’s fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and amore » predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soil’s fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash

  11. Error rates and resource overheads of encoded three-qubit gates

    NASA Astrophysics Data System (ADS)

    Takagi, Ryuji; Yoder, Theodore J.; Chuang, Isaac L.

    2017-10-01

    A non-Clifford gate is required for universal quantum computation, and, typically, this is the most error-prone and resource-intensive logical operation on an error-correcting code. Small, single-qubit rotations are popular choices for this non-Clifford gate, but certain three-qubit gates, such as Toffoli or controlled-controlled-Z (ccz), are equivalent options that are also more suited for implementing some quantum algorithms, for instance, those with coherent classical subroutines. Here, we calculate error rates and resource overheads for implementing logical ccz with pieceable fault tolerance, a nontransversal method for implementing logical gates. We provide a comparison with a nonlocal magic-state scheme on a concatenated code and a local magic-state scheme on the surface code. We find the pieceable fault-tolerance scheme particularly advantaged over magic states on concatenated codes and in certain regimes over magic states on the surface code. Our results suggest that pieceable fault tolerance is a promising candidate for fault tolerance in a near-future quantum computer.

  12. Cost effectiveness of a pharmacist-led information technology intervention for reducing rates of clinically important errors in medicines management in general practices (PINCER).

    PubMed

    Elliott, Rachel A; Putman, Koen D; Franklin, Matthew; Annemans, Lieven; Verhaeghe, Nick; Eden, Martin; Hayre, Jasdeep; Rodgers, Sarah; Sheikh, Aziz; Avery, Anthony J

    2014-06-01

    We recently showed that a pharmacist-led information technology-based intervention (PINCER) was significantly more effective in reducing medication errors in general practices than providing simple feedback on errors, with cost per error avoided at £79 (US$131). We aimed to estimate cost effectiveness of the PINCER intervention by combining effectiveness in error reduction and intervention costs with the effect of the individual errors on patient outcomes and healthcare costs, to estimate the effect on costs and QALYs. We developed Markov models for each of six medication errors targeted by PINCER. Clinical event probability, treatment pathway, resource use and costs were extracted from literature and costing tariffs. A composite probabilistic model combined patient-level error models with practice-level error rates and intervention costs from the trial. Cost per extra QALY and cost-effectiveness acceptability curves were generated from the perspective of NHS England, with a 5-year time horizon. The PINCER intervention generated £2,679 less cost and 0.81 more QALYs per practice [incremental cost-effectiveness ratio (ICER): -£3,037 per QALY] in the deterministic analysis. In the probabilistic analysis, PINCER generated 0.001 extra QALYs per practice compared with simple feedback, at £4.20 less per practice. Despite this extremely small set of differences in costs and outcomes, PINCER dominated simple feedback with a mean ICER of -£3,936 (standard error £2,970). At a ceiling 'willingness-to-pay' of £20,000/QALY, PINCER reaches 59 % probability of being cost effective. PINCER produced marginal health gain at slightly reduced overall cost. Results are uncertain due to the poor quality of data to inform the effect of avoiding errors.

  13. High speed and adaptable error correction for megabit/s rate quantum key distribution

    PubMed Central

    Dixon, A. R.; Sato, H.

    2014-01-01

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90–94% of the ideal secure key rate over all fibre distances from 0–80 km. PMID:25450416

  14. Errors in laboratory medicine: practical lessons to improve patient safety.

    PubMed

    Howanitz, Peter J

    2005-10-01

    , specimen acceptability, proficiency testing, critical value reporting, blood product wastage, and blood culture contamination. Error rate benchmarks for these performance measures were cited and recommendations for improving patient safety presented. Not only has each of the 8 performance measures proven practical, useful, and important for patient care, taken together, they also fulfill regulatory requirements. All laboratories should consider implementing these performance measures and standardizing their own scientific designs, data analysis, and error reduction strategies according to findings from these published studies.

  15. Determination of Type I Error Rates and Power of Answer Copying Indices under Various Conditions

    ERIC Educational Resources Information Center

    Yormaz, Seha; Sünbül, Önder

    2017-01-01

    This study aims to determine the Type I error rates and power of S[subscript 1] , S[subscript 2] indices and kappa statistic at detecting copying on multiple-choice tests under various conditions. It also aims to determine how copying groups are created in order to calculate how kappa statistics affect Type I error rates and power. In this study,…

  16. A Very Efficient Transfer Function Bounding Technique on Bit Error Rate for Viterbi Decoded, Rate 1/N Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Lee, P. J.

    1984-01-01

    For rate 1/N convolutional codes, a recursive algorithm for finding the transfer function bound on bit error rate (BER) at the output of a Viterbi decoder is described. This technique is very fast and requires very little storage since all the unnecessary operations are eliminated. Using this technique, we find and plot bounds on the BER performance of known codes of rate 1/2 with K 18, rate 1/3 with K 14. When more than one reported code with the same parameter is known, we select the code that minimizes the required signal to noise ratio for a desired bit error rate of 0.000001. This criterion of determining goodness of a code had previously been found to be more useful than the maximum free distance criterion and was used in the code search procedures of very short constraint length codes. This very efficient technique can also be used for searches of longer constraint length codes.

  17. Type I and Type II error concerns in fMRI research: re-balancing the scale

    PubMed Central

    Cunningham, William A.

    2009-01-01

    Statistical thresholding (i.e. P-values) in fMRI research has become increasingly conservative over the past decade in an attempt to diminish Type I errors (i.e. false alarms) to a level traditionally allowed in behavioral science research. In this article, we examine the unintended negative consequences of this single-minded devotion to Type I errors: increased Type II errors (i.e. missing true effects), a bias toward studying large rather than small effects, a bias toward observing sensory and motor processes rather than complex cognitive and affective processes and deficient meta-analyses. Power analyses indicate that the reductions in acceptable P-values over time are producing dramatic increases in the Type II error rate. Moreover, the push for a mapwide false discovery rate (FDR) of 0.05 is based on the assumption that this is the FDR in most behavioral research; however, this is an inaccurate assessment of the conventions in actual behavioral research. We report simulations demonstrating that combined intensity and cluster size thresholds such as P < 0.005 with a 10 voxel extent produce a desirable balance between Types I and II error rates. This joint threshold produces high but acceptable Type II error rates and produces a FDR that is comparable to the effective FDR in typical behavioral science articles (while a 20 voxel extent threshold produces an actual FDR of 0.05 with relatively common imaging parameters). We recommend a greater focus on replication and meta-analysis rather than emphasizing single studies as the unit of analysis for establishing scientific truth. From this perspective, Type I errors are self-erasing because they will not replicate, thus allowing for more lenient thresholding to avoid Type II errors. PMID:20035017

  18. Influence of UAS Pilot Communication and Execution Delay on Controller's Acceptability Ratings of UAS-ATC Interactions

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Morales, Gregory; Chiappe, Dan; Strybel, Thomas Z.; Battiste, Vernol; Shively, Jay; Buker, Timothy J

    2013-01-01

    Successful integration of UAS in the NAS will require that UAS interactions with the air traffic management system be similar to interactions between manned aircraft and air traffic management. For example, UAS response times to air traffic controller (ATCo) clearances should be equivalent to those that are currently found to be acceptable with manned aircraft. Prior studies have examined communication delays with manned aircraft. Unfortunately, there is no analogous body of research for UAS. The goal of the present study was to determine how UAS pilot communication and execution delays affect ATCos' acceptability ratings of UAS pilot responses when the UAS is operating in the NAS. Eight radar-certified controllers managed traffic in a modified ZLA sector with one UAS flying in it. In separate scenarios, the UAS pilot verbal communication and execution delays were either short (1.5 s) or long (5 s) and either constant or variable. The ATCo acceptability of UAS pilot communication and execution delays were measured subjectively via post trial ratings. UAS verbal pilot communication delay, were rated as acceptable 92% of the time when the delay was short. This acceptability level decreased to 64% when the delay was long. UAS pilot execution delay had less of an influence on ATCo acceptability ratings in the present stimulation. Implications of these findings for UAS in the NAS integration are discussed.

  19. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System

    PubMed Central

    Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang

    2018-01-01

    The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions. PMID:29734707

  20. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System.

    PubMed

    Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang

    2018-05-04

    The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.

  1. Maximum inflation of the type 1 error rate when sample size and allocation rate are adapted in a pre-planned interim look.

    PubMed

    Graf, Alexandra C; Bauer, Peter

    2011-06-30

    We calculate the maximum type 1 error rate of the pre-planned conventional fixed sample size test for comparing the means of independent normal distributions (with common known variance) which can be yielded when sample size and allocation rate to the treatment arms can be modified in an interim analysis. Thereby it is assumed that the experimenter fully exploits knowledge of the unblinded interim estimates of the treatment effects in order to maximize the conditional type 1 error rate. The 'worst-case' strategies require knowledge of the unknown common treatment effect under the null hypothesis. Although this is a rather hypothetical scenario it may be approached in practice when using a standard control treatment for which precise estimates are available from historical data. The maximum inflation of the type 1 error rate is substantially larger than derived by Proschan and Hunsberger (Biometrics 1995; 51:1315-1324) for design modifications applying balanced samples before and after the interim analysis. Corresponding upper limits for the maximum type 1 error rate are calculated for a number of situations arising from practical considerations (e.g. restricting the maximum sample size, not allowing sample size to decrease, allowing only increase in the sample size in the experimental treatment). The application is discussed for a motivating example. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Prepopulated radiology report templates: a prospective analysis of error rate and turnaround time.

    PubMed

    Hawkins, C M; Hall, S; Hardin, J; Salisbury, S; Towbin, A J

    2012-08-01

    Current speech recognition software allows exam-specific standard reports to be prepopulated into the dictation field based on the radiology information system procedure code. While it is thought that prepopulating reports can decrease the time required to dictate a study and the overall number of errors in the final report, this hypothesis has not been studied in a clinical setting. A prospective study was performed. During the first week, radiologists dictated all studies using prepopulated standard reports. During the second week, all studies were dictated after prepopulated reports had been disabled. Final radiology reports were evaluated for 11 different types of errors. Each error within a report was classified individually. The median time required to dictate an exam was compared between the 2 weeks. There were 12,387 reports dictated during the study, of which, 1,173 randomly distributed reports were analyzed for errors. There was no difference in the number of errors per report between the 2 weeks; however, radiologists overwhelmingly preferred using a standard report both weeks. Grammatical errors were by far the most common error type, followed by missense errors and errors of omission. There was no significant difference in the median dictation time when comparing studies performed each week. The use of prepopulated reports does not alone affect the error rate or dictation time of radiology reports. While it is a useful feature for radiologists, it must be coupled with other strategies in order to decrease errors.

  3. Detection and avoidance of errors in computer software

    NASA Technical Reports Server (NTRS)

    Kinsler, Les

    1989-01-01

    The acceptance test errors of a computer software project to determine if the errors could be detected or avoided in earlier phases of development. GROAGSS (Gamma Ray Observatory Attitude Ground Support System) was selected as the software project to be examined. The development of the software followed the standard Flight Dynamics Software Development methods. GROAGSS was developed between August 1985 and April 1989. The project is approximately 250,000 lines of code of which approximately 43,000 lines are reused from previous projects. GROAGSS had a total of 1715 Change Report Forms (CRFs) submitted during the entire development and testing. These changes contained 936 errors. Of these 936 errors, 374 were found during the acceptance testing. These acceptance test errors were first categorized into methods of avoidance including: more clearly written requirements; detail review; code reading; structural unit testing; and functional system integration testing. The errors were later broken down in terms of effort to detect and correct, class of error, and probability that the prescribed detection method would be successful. These determinations were based on Software Engineering Laboratory (SEL) documents and interviews with the project programmers. A summary of the results of the categorizations is presented. The number of programming errors at the beginning of acceptance testing can be significantly reduced. The results of the existing development methodology are examined for ways of improvements. A basis is provided for the definition is a new development/testing paradigm. Monitoring of the new scheme will objectively determine its effectiveness on avoiding and detecting errors.

  4. Resampling-Based Empirical Bayes Multiple Testing Procedures for Controlling Generalized Tail Probability and Expected Value Error Rates: Focus on the False Discovery Rate and Simulation Study

    PubMed Central

    Dudoit, Sandrine; Gilbert, Houston N.; van der Laan, Mark J.

    2014-01-01

    Summary This article proposes resampling-based empirical Bayes multiple testing procedures for controlling a broad class of Type I error rates, defined as generalized tail probability (gTP) error rates, gTP(q, g) = Pr(g(Vn, Sn) > q), and generalized expected value (gEV) error rates, gEV(g) = E[g(Vn, Sn)], for arbitrary functions g(Vn, Sn) of the numbers of false positives Vn and true positives Sn. Of particular interest are error rates based on the proportion g(Vn, Sn) = Vn/(Vn + Sn) of Type I errors among the rejected hypotheses, such as the false discovery rate (FDR), FDR = E[Vn/(Vn + Sn)]. The proposed procedures offer several advantages over existing methods. They provide Type I error control for general data generating distributions, with arbitrary dependence structures among variables. Gains in power are achieved by deriving rejection regions based on guessed sets of true null hypotheses and null test statistics randomly sampled from joint distributions that account for the dependence structure of the data. The Type I error and power properties of an FDR-controlling version of the resampling-based empirical Bayes approach are investigated and compared to those of widely-used FDR-controlling linear step-up procedures in a simulation study. The Type I error and power trade-off achieved by the empirical Bayes procedures under a variety of testing scenarios allows this approach to be competitive with or outperform the Storey and Tibshirani (2003) linear step-up procedure, as an alternative to the classical Benjamini and Hochberg (1995) procedure. PMID:18932138

  5. Error Rates in Measuring Teacher and School Performance Based on Student Test Score Gains. NCEE 2010-4004

    ERIC Educational Resources Information Center

    Schochet, Peter Z.; Chiang, Hanley S.

    2010-01-01

    This paper addresses likely error rates for measuring teacher and school performance in the upper elementary grades using value-added models applied to student test score gain data. Using realistic performance measurement system schemes based on hypothesis testing, we develop error rate formulas based on OLS and Empirical Bayes estimators.…

  6. 18 CFR 300.20 - Interim acceptance and review of Bonneville Power Administration rates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Interim acceptance and review of Bonneville Power Administration rates. 300.20 Section 300.20 Conservation of Power and Water... Director of the Office of Energy Market Regulation; or (ii) Deny the Administrator's interim rate request...

  7. Inflation of the type I error: investigations on regulatory recommendations for bioequivalence of highly variable drugs.

    PubMed

    Wonnemann, Meinolf; Frömke, Cornelia; Koch, Armin

    2015-01-01

    We investigated different evaluation strategies for bioequivalence trials with highly variable drugs on their resulting empirical type I error and empirical power. The classical 'unscaled' crossover design with average bioequivalence evaluation, the Add-on concept of the Japanese guideline, and the current 'scaling' approach of EMA were compared. Simulation studies were performed based on the assumption of a single dose drug administration while changing the underlying intra-individual variability. Inclusion of Add-on subjects following the Japanese concept led to slight increases of the empirical α-error (≈7.5%). For the approach of EMA we noted an unexpected tremendous increase of the rejection rate at a geometric mean ratio of 1.25. Moreover, we detected error rates slightly above the pre-set limit of 5% even at the proposed 'scaled' bioequivalence limits. With the classical 'unscaled' approach and the Japanese guideline concept the goal of reduced subject numbers in bioequivalence trials of HVDs cannot be achieved. On the other hand, widening the acceptance range comes at the price that quite a number of products will be accepted bioequivalent that had not been accepted in the past. A two-stage design with control of the global α therefore seems the better alternative.

  8. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3.

    PubMed

    Han, Mira V; Thomas, Gregg W C; Lugo-Martinez, Jose; Hahn, Matthew W

    2013-08-01

    Current sequencing methods produce large amounts of data, but genome assemblies constructed from these data are often fragmented and incomplete. Incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. This means that methods attempting to estimate rates of gene duplication and loss often will be misled by such errors and that rates of gene family evolution will be consistently overestimated. Here, we present a method that takes these errors into account, allowing one to accurately infer rates of gene gain and loss among genomes even with low assembly and annotation quality. The method is implemented in the newest version of the software package CAFE, along with several other novel features. We demonstrate the accuracy of the method with extensive simulations and reanalyze several previously published data sets. Our results show that errors in genome annotation do lead to higher inferred rates of gene gain and loss but that CAFE 3 sufficiently accounts for these errors to provide accurate estimates of important evolutionary parameters.

  9. Accuracy of cited "facts" in medical research articles: A review of study methodology and recalculation of quotation error rate.

    PubMed

    Mogull, Scott A

    2017-01-01

    Previous reviews estimated that approximately 20 to 25% of assertions cited from original research articles, or "facts," are inaccurately quoted in the medical literature. These reviews noted that the original studies were dissimilar and only began to compare the methods of the original studies. The aim of this review is to examine the methods of the original studies and provide a more specific rate of incorrectly cited assertions, or quotation errors, in original research articles published in medical journals. Additionally, the estimate of quotation errors calculated here is based on the ratio of quotation errors to quotations examined (a percent) rather than the more prevalent and weighted metric of quotation errors to the references selected. Overall, this resulted in a lower estimate of the quotation error rate in original medical research articles. A total of 15 studies met the criteria for inclusion in the primary quantitative analysis. Quotation errors were divided into two categories: content ("factual") or source (improper indirect citation) errors. Content errors were further subdivided into major and minor errors depending on the degree that the assertion differed from the original source. The rate of quotation errors recalculated here is 14.5% (10.5% to 18.6% at a 95% confidence interval). These content errors are predominantly, 64.8% (56.1% to 73.5% at a 95% confidence interval), major errors or cited assertions in which the referenced source either fails to substantiate, is unrelated to, or contradicts the assertion. Minor errors, which are an oversimplification, overgeneralization, or trivial inaccuracies, are 35.2% (26.5% to 43.9% at a 95% confidence interval). Additionally, improper secondary (or indirect) citations, which are distinguished from calculations of quotation accuracy, occur at a rate of 10.4% (3.4% to 17.5% at a 95% confidence interval).

  10. Monitoring Error Rates In Illumina Sequencing.

    PubMed

    Manley, Leigh J; Ma, Duanduan; Levine, Stuart S

    2016-12-01

    Guaranteeing high-quality next-generation sequencing data in a rapidly changing environment is an ongoing challenge. The introduction of the Illumina NextSeq 500 and the depreciation of specific metrics from Illumina's Sequencing Analysis Viewer (SAV; Illumina, San Diego, CA, USA) have made it more difficult to determine directly the baseline error rate of sequencing runs. To improve our ability to measure base quality, we have created an open-source tool to construct the Percent Perfect Reads (PPR) plot, previously provided by the Illumina sequencers. The PPR program is compatible with HiSeq 2000/2500, MiSeq, and NextSeq 500 instruments and provides an alternative to Illumina's quality value (Q) scores for determining run quality. Whereas Q scores are representative of run quality, they are often overestimated and are sourced from different look-up tables for each platform. The PPR's unique capabilities as a cross-instrument comparison device, as a troubleshooting tool, and as a tool for monitoring instrument performance can provide an increase in clarity over SAV metrics that is often crucial for maintaining instrument health. These capabilities are highlighted.

  11. Shuttle bit rate synchronizer. [signal to noise ratios and error analysis

    NASA Technical Reports Server (NTRS)

    Huey, D. C.; Fultz, G. L.

    1974-01-01

    A shuttle bit rate synchronizer brassboard unit was designed, fabricated, and tested, which meets or exceeds the contractual specifications. The bit rate synchronizer operates at signal-to-noise ratios (in a bit rate bandwidth) down to -5 dB while exhibiting less than 0.6 dB bit error rate degradation. The mean acquisition time was measured to be less than 2 seconds. The synchronizer is designed around a digital data transition tracking loop whose phase and data detectors are integrate-and-dump filters matched to the Manchester encoded bits specified. It meets the reliability (no adjustments or tweaking) and versatility (multiple bit rates) of the shuttle S-band communication system through an implementation which is all digital after the initial stage of analog AGC and A/D conversion.

  12. The prevalence rates of refractive errors among children, adolescents, and adults in Germany.

    PubMed

    Jobke, Sandra; Kasten, Erich; Vorwerk, Christian

    2008-09-01

    The prevalence rates of myopia vary between 5% in Australian Aborigines to 84% in Hong Kong and Taiwan, 30% in Norwegian adults, and 49.5% in Swedish schoolchildren. The aim of this study was to determine the prevalence of refractive errors in German children, adolescents, and adults. The parents (aged 24-65 years) and their children (516 subjects aged 2-35 years) were asked to fill out a questionnaire about their refractive error and spectacle use. Emmetropia was defined as refractive status between +0.25D and -0.25D. Myopia was characterized as /=+0.5D. All information concerning refractive error were controlled by asking their opticians. The prevalence rates of myopia differed significantly between all investigated age groups: it was 0% in children aged 2-6 years, 5.5% in children aged 7-11 years, 21.0% in adolescents (aged 12-17 years) and 41.3% in adults aged 18-35 years (Pearson's Chi-square, p = 0.000). Furthermore, 9.8% of children aged 2-6 years were hyperopic, 6.4% of children aged 7-11 years, 3.7% of adolescents, and 2.9% of adults (p = 0.380). The prevalence of myopia in females (23.6%) was significantly higher than in males (14.6%, p = 0.018). The difference between the self-reported and the refractive error reported by their opticians was very small and was not significant (p = 0.850). In Germany, the prevalence of myopia seems to be somewhat lower than in Asia and Europe. There are few comparable studies concerning the prevalence rates of hyperopia.

  13. A forward error correction technique using a high-speed, high-rate single chip codec

    NASA Astrophysics Data System (ADS)

    Boyd, R. W.; Hartman, W. F.; Jones, Robert E.

    The authors describe an error-correction coding approach that allows operation in either burst or continuous modes at data rates of multiple hundreds of megabits per second. Bandspreading is low since the code rate is 7/8 or greater, which is consistent with high-rate link operation. The encoder, along with a hard-decision decoder, fits on a single application-specific integrated circuit (ASIC) chip. Soft-decision decoding is possible utilizing applique hardware in conjunction with the hard-decision decoder. Expected coding gain is a function of the application and is approximately 2.5 dB for hard-decision decoding at 10-5 bit-error rate with phase-shift-keying modulation and additive Gaussian white noise interference. The principal use envisioned for this technique is to achieve a modest amount of coding gain on high-data-rate, bandwidth-constrained channels. Data rates of up to 300 Mb/s can be accommodated by the codec chip. The major objective is burst-mode communications, where code words are composed of 32 n data bits followed by 32 overhead bits.

  14. Point-of-care blood glucose measurement errors overestimate hypoglycaemia rates in critically ill patients.

    PubMed

    Nya-Ngatchou, Jean-Jacques; Corl, Dawn; Onstad, Susan; Yin, Tom; Tylee, Tracy; Suhr, Louise; Thompson, Rachel E; Wisse, Brent E

    2015-02-01

    Hypoglycaemia is associated with morbidity and mortality in critically ill patients, and many hospitals have programmes to minimize hypoglycaemia rates. Recent studies have established the hypoglycaemic patient-day as a key metric and have published benchmark inpatient hypoglycaemia rates on the basis of point-of-care blood glucose data even though these values are prone to measurement errors. A retrospective, cohort study including all patients admitted to Harborview Medical Center Intensive Care Units (ICUs) during 2010 and 2011 was conducted to evaluate a quality improvement programme to reduce inappropriate documentation of point-of-care blood glucose measurement errors. Laboratory Medicine point-of-care blood glucose data and patient charts were reviewed to evaluate all episodes of hypoglycaemia. A quality improvement intervention decreased measurement errors from 31% of hypoglycaemic (<70 mg/dL) patient-days in 2010 to 14% in 2011 (p < 0.001) and decreased the observed hypoglycaemia rate from 4.3% of ICU patient-days to 3.4% (p < 0.001). Hypoglycaemic events were frequently recurrent or prolonged (~40%), and these events are not identified by the hypoglycaemic patient-day metric, which also may be confounded by a large number of very low risk or minimally monitored patient-days. Documentation of point-of-care blood glucose measurement errors likely overestimates ICU hypoglycaemia rates and can be reduced by a quality improvement effort. The currently used hypoglycaemic patient-day metric does not evaluate recurrent or prolonged events that may be more likely to cause patient harm. The monitored patient-day as currently defined may not be the optimal denominator to determine inpatient hypoglycaemic risk. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Priors in perception: Top-down modulation, Bayesian perceptual learning rate, and prediction error minimization.

    PubMed

    Hohwy, Jakob

    2017-01-01

    I discuss top-down modulation of perception in terms of a variable Bayesian learning rate, revealing a wide range of prior hierarchical expectations that can modulate perception. I then switch to the prediction error minimization framework and seek to conceive cognitive penetration specifically as prediction error minimization deviations from a variable Bayesian learning rate. This approach retains cognitive penetration as a category somewhat distinct from other top-down effects, and carves a reasonable route between penetrability and impenetrability. It prevents rampant, relativistic cognitive penetration of perception and yet is consistent with the continuity of cognition and perception. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The effect of speaking rate on serial-order sound-level errors in normal healthy controls and persons with aphasia.

    PubMed

    Fossett, Tepanta R D; McNeil, Malcolm R; Pratt, Sheila R; Tompkins, Connie A; Shuster, Linda I

    Although many speech errors can be generated at either a linguistic or motoric level of production, phonetically well-formed sound-level serial-order errors are generally assumed to result from disruption of phonologic encoding (PE) processes. An influential model of PE (Dell, 1986; Dell, Burger & Svec, 1997) predicts that speaking rate should affect the relative proportion of these serial-order sound errors (anticipations, perseverations, exchanges). These predictions have been extended to, and have special relevance for persons with aphasia (PWA) because of the increased frequency with which speech errors occur and because their localization within the functional linguistic architecture may help in diagnosis and treatment. Supporting evidence regarding the effect of speaking rate on phonological encoding has been provided by studies using young normal language (NL) speakers and computer simulations. Limited data exist for older NL users and no group data exist for PWA. This study tested the phonologic encoding properties of Dell's model of speech production (Dell, 1986; Dell,et al., 1997), which predicts that increasing speaking rate affects the relative proportion of serial-order sound errors (i.e., anticipations, perseverations, and exchanges). The effects of speech rate on the error ratios of anticipation/exchange (AE), anticipation/perseveration (AP) and vocal reaction time (VRT) were examined in 16 normal healthy controls (NHC) and 16 PWA without concomitant motor speech disorders. The participants were recorded performing a phonologically challenging (tongue twister) speech production task at their typical and two faster speaking rates. A significant effect of increased rate was obtained for the AP but not the AE ratio. Significant effects of group and rate were obtained for VRT. Although the significant effect of rate for the AP ratio provided evidence that changes in speaking rate did affect PE, the results failed to support the model derived predictions

  17. Behavioral Treatments and Pharmacotherapy: Acceptability Ratings by Elderly Individuals in Residential Settings.

    ERIC Educational Resources Information Center

    Burgio, Louis D.; Sinnott, Jan

    1990-01-01

    Presented residents of life care community and nursing homes with scenarios of older woman. Client varied by cognitive capacity and behavior problem (aggression, verbal abuse, noncompliance). Participants rated three treatments: differential reinforcement of incompatible behavior (DRI), time-out, and haloperidol. All treatments were acceptable;…

  18. Error compensation for thermally induced errors on a machine tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krulewich, D.A.

    1996-11-08

    Heat flow from internal and external sources and the environment create machine deformations, resulting in positioning errors between the tool and workpiece. There is no industrially accepted method for thermal error compensation. A simple model has been selected that linearly relates discrete temperature measurements to the deflection. The biggest problem is how to locate the temperature sensors and to determine the number of required temperature sensors. This research develops a method to determine the number and location of temperature measurements.

  19. Relationships of consumer sensory ratings, marbling score, and shear force value to consumer acceptance of beef strip loin steaks.

    PubMed

    Platter, W J; Tatum, J D; Belk, K E; Chapman, P L; Scanga, J A; Smith, G C

    2003-11-01

    Logistic regression was used to quantify and characterize the effects of changes in marbling score, Warner-Bratzler shear force (WBSF), and consumer panel sensory ratings for tenderness, juiciness, or flavor on the probability of overall consumer acceptance of strip loin steaks from beef carcasses (n = 550). Consumers (n = 489) evaluated steaks for tenderness, juiciness, and flavor using nine-point hedonic scales (1 = like extremely and 9 = dislike extremely) and for overall steak acceptance (satisfied or not satisfied). Predicted acceptance of steaks by consumers was high (> 85%) when the mean consumer sensory rating for tenderness,juiciness, or flavor for a steak was 3 or lower on the hedonic scale. Conversely, predicted consumer acceptance of steaks was low (< or = 10%) when the mean consumer rating for tenderness, juiciness, or flavor for a steak was 5 or higher on the hedonic scale. As mean consumer sensory ratings for tenderness, juiciness, or flavor decreased from 3 to 5, the probability of acceptance of steaks by consumers diminished rapidly in a linear fashion. These results suggest that small changes in consumer sensory ratings for these sensory traits have dramatic effects on the probability of acceptance of steaks by consumers. Marbling score displayed a weak (adjusted R2 = 0.053), yet significant (P < 0.01), relationship to acceptance of steaks by consumers, and the shape of the predicted probability curve for steak acceptance was approximately linear over the entire range of marbling scores (Traces67 to Slightly Abundant97), suggesting that the likelihood of consumer acceptance of steaks increases approximately 10% for each full marbling score increase between Slight to Slightly Abundant. The predicted probability curve for consumer acceptance of steaks was sigmoidal for the WBSF model, with a steep decline in predicted probability of acceptance as WBSF values increased from 3.0 to 5.5 kg. Changes in WBSF within the high (> 5.5 kg) or low (< 3.0 kg

  20. The Error in Total Error Reduction

    PubMed Central

    Witnauer, James E.; Urcelay, Gonzalo P.; Miller, Ralph R.

    2013-01-01

    Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modelling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. PMID:23891930

  1. The error in total error reduction.

    PubMed

    Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R

    2014-02-01

    Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modeling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Maximum type 1 error rate inflation in multiarmed clinical trials with adaptive interim sample size modifications.

    PubMed

    Graf, Alexandra C; Bauer, Peter; Glimm, Ekkehard; Koenig, Franz

    2014-07-01

    Sample size modifications in the interim analyses of an adaptive design can inflate the type 1 error rate, if test statistics and critical boundaries are used in the final analysis as if no modification had been made. While this is already true for designs with an overall change of the sample size in a balanced treatment-control comparison, the inflation can be much larger if in addition a modification of allocation ratios is allowed as well. In this paper, we investigate adaptive designs with several treatment arms compared to a single common control group. Regarding modifications, we consider treatment arm selection as well as modifications of overall sample size and allocation ratios. The inflation is quantified for two approaches: a naive procedure that ignores not only all modifications, but also the multiplicity issue arising from the many-to-one comparison, and a Dunnett procedure that ignores modifications, but adjusts for the initially started multiple treatments. The maximum inflation of the type 1 error rate for such types of design can be calculated by searching for the "worst case" scenarios, that are sample size adaptation rules in the interim analysis that lead to the largest conditional type 1 error rate in any point of the sample space. To show the most extreme inflation, we initially assume unconstrained second stage sample size modifications leading to a large inflation of the type 1 error rate. Furthermore, we investigate the inflation when putting constraints on the second stage sample sizes. It turns out that, for example fixing the sample size of the control group, leads to designs controlling the type 1 error rate. © 2014 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Frame error rate for single-hop and dual-hop transmissions in 802.15.4 LoWPANs

    NASA Astrophysics Data System (ADS)

    Biswas, Sankalita; Ghosh, Biswajit; Chandra, Aniruddha; Dhar Roy, Sanjay

    2017-08-01

    IEEE 802.15.4 is a popular standard for personal area networks used in different low-rate short-range applications. This paper examines the error rate performance of 802.15.4 in fading wireless channel. An analytical model is formulated for evaluating frame error rate (FER); first, for direct single-hop transmission between two sensor nodes, and second, for dual-hop (DH) transmission using an in-between relay node. During modeling the transceiver design parameters are chosen according to the specifications set for both the 2.45 GHz and 868/915 MHz bands. We have also developed a simulation test bed for evaluating FER. Some results showed expected trends, such as FER is higher for larger payloads. Other observations are not that intuitive. It is interesting to note that the error rates are significantly higher for the DH case and demands a signal-to-noise ratio (SNR) penalty of about 7 dB. Also, the FER shoots from zero to one within a very small range of SNR.

  4. Does raising type 1 error rate improve power to detect interactions in linear regression models? A simulation study.

    PubMed

    Durand, Casey P

    2013-01-01

    Statistical interactions are a common component of data analysis across a broad range of scientific disciplines. However, the statistical power to detect interactions is often undesirably low. One solution is to elevate the Type 1 error rate so that important interactions are not missed in a low power situation. To date, no study has quantified the effects of this practice on power in a linear regression model. A Monte Carlo simulation study was performed. A continuous dependent variable was specified, along with three types of interactions: continuous variable by continuous variable; continuous by dichotomous; and dichotomous by dichotomous. For each of the three scenarios, the interaction effect sizes, sample sizes, and Type 1 error rate were varied, resulting in a total of 240 unique simulations. In general, power to detect the interaction effect was either so low or so high at α = 0.05 that raising the Type 1 error rate only served to increase the probability of including a spurious interaction in the model. A small number of scenarios were identified in which an elevated Type 1 error rate may be justified. Routinely elevating Type 1 error rate when testing interaction effects is not an advisable practice. Researchers are best served by positing interaction effects a priori and accounting for them when conducting sample size calculations.

  5. Rates of initial acceptance of PAP masks and outcomes of mask switching.

    PubMed

    Bachour, Adel; Vitikainen, Pirjo; Maasilta, Paula

    2016-05-01

    Recently, we noticed a considerable development in alleviating problems related to positive airway pressure (PAP) masks. In this study, we report on the initial PAP mask acceptance rates and the effects of mask switching on mask-related symptoms. We prospectively collected all cases of mask switching in our sleep unit for a period of 14 months. At the time of the study, we used ResMed™ CPAP devices and masks. Mask switching was defined as replacing a mask used for at least 1 day with another type of mask. Changing to a different size but keeping the same type of mask did not count as mask switching. Switching outcomes were considered failed if the initial problem persisted or reappeared during the year that followed switching. Our patient pool was 2768. We recorded 343 cases of mask switching among 267 patients. Of the 566 patients who began new PAP therapy, 108 (39 women) had switched masks, yielding an initial mask acceptance rate of 81 %. The reason for switching was poor-fit/uncomfortable mask in 39 %, leak-related in 30 %, outdated model in 25 %, and nasal stuffiness in 6 % of cases; mask switching resolved these problems in 61 %. Mask switching occurred significantly (p = 0.037) more often in women and in new PAP users. The odds ratio for abandoning PAP therapy within 1 year after mask switching was 7.2 times higher (interval 4.7-11.1) than not switching masks. The initial PAP mask acceptance rate was high. Patients who switched their masks are at greater risk for abandoning PAP therapy.

  6. Accuracy of cited “facts” in medical research articles: A review of study methodology and recalculation of quotation error rate

    PubMed Central

    2017-01-01

    Previous reviews estimated that approximately 20 to 25% of assertions cited from original research articles, or “facts,” are inaccurately quoted in the medical literature. These reviews noted that the original studies were dissimilar and only began to compare the methods of the original studies. The aim of this review is to examine the methods of the original studies and provide a more specific rate of incorrectly cited assertions, or quotation errors, in original research articles published in medical journals. Additionally, the estimate of quotation errors calculated here is based on the ratio of quotation errors to quotations examined (a percent) rather than the more prevalent and weighted metric of quotation errors to the references selected. Overall, this resulted in a lower estimate of the quotation error rate in original medical research articles. A total of 15 studies met the criteria for inclusion in the primary quantitative analysis. Quotation errors were divided into two categories: content ("factual") or source (improper indirect citation) errors. Content errors were further subdivided into major and minor errors depending on the degree that the assertion differed from the original source. The rate of quotation errors recalculated here is 14.5% (10.5% to 18.6% at a 95% confidence interval). These content errors are predominantly, 64.8% (56.1% to 73.5% at a 95% confidence interval), major errors or cited assertions in which the referenced source either fails to substantiate, is unrelated to, or contradicts the assertion. Minor errors, which are an oversimplification, overgeneralization, or trivial inaccuracies, are 35.2% (26.5% to 43.9% at a 95% confidence interval). Additionally, improper secondary (or indirect) citations, which are distinguished from calculations of quotation accuracy, occur at a rate of 10.4% (3.4% to 17.5% at a 95% confidence interval). PMID:28910404

  7. Acceptance threshold theory can explain occurrence of homosexual behaviour.

    PubMed

    Engel, Katharina C; Männer, Lisa; Ayasse, Manfred; Steiger, Sandra

    2015-01-01

    Same-sex sexual behaviour (SSB) has been documented in a wide range of animals, but its evolutionary causes are not well understood. Here, we investigated SSB in the light of Reeve's acceptance threshold theory. When recognition is not error-proof, the acceptance threshold used by males to recognize potential mating partners should be flexibly adjusted to maximize the fitness pay-off between the costs of erroneously accepting males and the benefits of accepting females. By manipulating male burying beetles' search time for females and their reproductive potential, we influenced their perceived costs of making an acceptance or rejection error. As predicted, when the costs of rejecting females increased, males exhibited more permissive discrimination decisions and showed high levels of SSB; when the costs of accepting males increased, males were more restrictive and showed low levels of SSB. Our results support the idea that in animal species, in which the recognition cues of females and males overlap to a certain degree, SSB is a consequence of an adaptive discrimination strategy to avoid the costs of making rejection errors. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Coding gains and error rates from the Big Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Onyszchuk, I. M.

    1991-01-01

    A prototype hardware Big Viterbi Decoder (BVD) was completed for an experiment with the Galileo Spacecraft. Searches for new convolutional codes, studies of Viterbi decoder hardware designs and architectures, mathematical formulations, and decompositions of the deBruijn graph into identical and hierarchical subgraphs, and very large scale integration (VLSI) chip design are just a few examples of tasks completed for this project. The BVD bit error rates (BER), measured from hardware and software simulations, are plotted as a function of bit signal to noise ratio E sub b/N sub 0 on the additive white Gaussian noise channel. Using the constraint length 15, rate 1/4, experimental convolutional code for the Galileo mission, the BVD gains 1.5 dB over the NASA standard (7,1/2) Maximum Likelihood Convolution Decoder (MCD) at a BER of 0.005. At this BER, the same gain results when the (255,233) NASA standard Reed-Solomon decoder is used, which yields a word error rate of 2.1 x 10(exp -8) and a BER of 1.4 x 10(exp -9). The (15, 1/6) code to be used by the Cometary Rendezvous Asteroid Flyby (CRAF)/Cassini Missions yields 1.7 dB of coding gain. These gains are measured with respect to symbols input to the BVD and increase with decreasing BER. Also, 8-bit input symbol quantization makes the BVD resistant to demodulated signal-level variations which may cause higher bandwidth than the NASA (7,1/2) code, these gains are offset by about 0.1 dB of expected additional receiver losses. Coding gains of several decibels are possible by compressing all spacecraft data.

  9. Sleep quality, but not quantity, is associated with self-perceived minor error rates among emergency department nurses.

    PubMed

    Weaver, Amy L; Stutzman, Sonja E; Supnet, Charlene; Olson, DaiWai M

    2016-03-01

    The emergency department (ED) is demanding and high risk. The impact of sleep quantity has been hypothesized to impact patient care. This study investigated the hypothesis that fatigue and impaired mentation, due to sleep disturbance and shortened overall sleeping hours, would lead to increased nursing errors. This is a prospective observational study of 30 ED nurses using self-administered survey and sleep architecture measured by wrist actigraphy as predictors of self-reported error rates. An actigraphy device was worn prior to working a 12-hour shift and nurses completed the Pittsburgh Sleep Quality Index (PSQI). Error rates were reported on a visual analog scale at the end of a 12-hour shift. The PSQI responses indicated that 73.3% of subjects had poor sleep quality. Lower sleep quality measured by actigraphy (hours asleep/hours in bed) was associated with higher self-perceived minor errors. Sleep quantity (total hours slept) was not associated with minor, moderate, nor severe errors. Our study found that ED nurses' sleep quality, immediately prior to a working 12-hour shift, is more predictive of error than sleep quantity. These results present evidence that a "good night's sleep" prior to working a nursing shift in the ED is beneficial for reducing minor errors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Symbol Error Rate of Underlay Cognitive Relay Systems over Rayleigh Fading Channel

    NASA Astrophysics Data System (ADS)

    Ho van, Khuong; Bao, Vo Nguyen Quoc

    Underlay cognitive systems allow secondary users (SUs) to access the licensed band allocated to primary users (PUs) for better spectrum utilization with the power constraint imposed on SUs such that their operation does not harm the normal communication of PUs. This constraint, which limits the coverage range of SUs, can be offset by relaying techniques that take advantage of shorter range communication for lower path loss. Symbol error rate (SER) analysis of underlay cognitive relay systems over fading channel has not been reported in the literature. This paper fills this gap. The derived SER expressions are validated by simulations and show that underlay cognitive relay systems suffer a high error floor for any modulation level.

  11. Accurate Bit Error Rate Calculation for Asynchronous Chaos-Based DS-CDMA over Multipath Channel

    NASA Astrophysics Data System (ADS)

    Kaddoum, Georges; Roviras, Daniel; Chargé, Pascal; Fournier-Prunaret, Daniele

    2009-12-01

    An accurate approach to compute the bit error rate expression for multiuser chaosbased DS-CDMA system is presented in this paper. For more realistic communication system a slow fading multipath channel is considered. A simple RAKE receiver structure is considered. Based on the bit energy distribution, this approach compared to others computation methods existing in literature gives accurate results with low computation charge. Perfect estimation of the channel coefficients with the associated delays and chaos synchronization is assumed. The bit error rate is derived in terms of the bit energy distribution, the number of paths, the noise variance, and the number of users. Results are illustrated by theoretical calculations and numerical simulations which point out the accuracy of our approach.

  12. Coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    Analysis of quantum error correcting (QEC) codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. We present analytic results for the logical error as a function of concatenation level and code distance for coherent errors under the repetition code. For data-only coherent errors, we find that the logical error is partially coherent and therefore non-Pauli. However, the coherent part of the error is negligible after two or more concatenation levels or at fewer than ɛ - (d - 1) error correction cycles. Here ɛ << 1 is the rotation angle error per cycle for a single physical qubit and d is the code distance. These results support the validity of modeling coherent errors using a Pauli channel under some minimum requirements for code distance and/or concatenation. We discuss extensions to imperfect syndrome extraction and implications for general QEC.

  13. Error Rates and Channel Capacities in Multipulse PPM

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Moision, Bruce

    2007-01-01

    A method of computing channel capacities and error rates in multipulse pulse-position modulation (multipulse PPM) has been developed. The method makes it possible, when designing an optical PPM communication system, to determine whether and under what conditions a given multipulse PPM scheme would be more or less advantageous, relative to other candidate modulation schemes. In conventional M-ary PPM, each symbol is transmitted in a time frame that is divided into M time slots (where M is an integer >1), defining an M-symbol alphabet. A symbol is represented by transmitting a pulse (representing 1) during one of the time slots and no pulse (representing 0 ) during the other M 1 time slots. Multipulse PPM is a generalization of PPM in which pulses are transmitted during two or more of the M time slots.

  14. Measurements of Aperture Averaging on Bit-Error-Rate

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; hide

    2005-01-01

    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.

  15. Measurements of aperture averaging on bit-error-rate

    NASA Astrophysics Data System (ADS)

    Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; Burdge, Geoffrey L.; Wayne, David; Pescatore, Robert

    2005-08-01

    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 m. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.

  16. Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors.

    PubMed

    Gustafsson, Mats G; Wallman, Mikael; Wickenberg Bolin, Ulrika; Göransson, Hanna; Fryknäs, M; Andersson, Claes R; Isaksson, Anders

    2010-06-01

    Successful use of classifiers that learn to make decisions from a set of patient examples require robust methods for performance estimation. Recently many promising approaches for determination of an upper bound for the error rate of a single classifier have been reported but the Bayesian credibility interval (CI) obtained from a conventional holdout test still delivers one of the tightest bounds. The conventional Bayesian CI becomes unacceptably large in real world applications where the test set sizes are less than a few hundred. The source of this problem is that fact that the CI is determined exclusively by the result on the test examples. In other words, there is no information at all provided by the uniform prior density distribution employed which reflects complete lack of prior knowledge about the unknown error rate. Therefore, the aim of the study reported here was to study a maximum entropy (ME) based approach to improved prior knowledge and Bayesian CIs, demonstrating its relevance for biomedical research and clinical practice. It is demonstrated how a refined non-uniform prior density distribution can be obtained by means of the ME principle using empirical results from a few designs and tests using non-overlapping sets of examples. Experimental results show that ME based priors improve the CIs when employed to four quite different simulated and two real world data sets. An empirically derived ME prior seems promising for improving the Bayesian CI for the unknown error rate of a designed classifier. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Two-dimensional optoelectronic interconnect-processor and its operational bit error rate

    NASA Astrophysics Data System (ADS)

    Liu, J. Jiang; Gollsneider, Brian; Chang, Wayne H.; Carhart, Gary W.; Vorontsov, Mikhail A.; Simonis, George J.; Shoop, Barry L.

    2004-10-01

    Two-dimensional (2-D) multi-channel 8x8 optical interconnect and processor system were designed and developed using complementary metal-oxide-semiconductor (CMOS) driven 850-nm vertical-cavity surface-emitting laser (VCSEL) arrays and the photodetector (PD) arrays with corresponding wavelengths. We performed operation and bit-error-rate (BER) analysis on this free-space integrated 8x8 VCSEL optical interconnects driven by silicon-on-sapphire (SOS) circuits. Pseudo-random bit stream (PRBS) data sequence was used in operation of the interconnects. Eye diagrams were measured from individual channels and analyzed using a digital oscilloscope at data rates from 155 Mb/s to 1.5 Gb/s. Using a statistical model of Gaussian distribution for the random noise in the transmission, we developed a method to compute the BER instantaneously with the digital eye-diagrams. Direct measurements on this interconnects were also taken on a standard BER tester for verification. We found that the results of two methods were in the same order and within 50% accuracy. The integrated interconnects were investigated in an optoelectronic processing architecture of digital halftoning image processor. Error diffusion networks implemented by the inherently parallel nature of photonics promise to provide high quality digital halftoned images.

  18. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    PubMed

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h.

  19. Error Analysis of Magnetohydrodynamic Angular Rate Sensor Combing with Coriolis Effect at Low Frequency.

    PubMed

    Ji, Yue; Xu, Mengjie; Li, Xingfei; Wu, Tengfei; Tuo, Weixiao; Wu, Jun; Dong, Jiuzhi

    2018-06-13

    The magnetohydrodynamic (MHD) angular rate sensor (ARS) with low noise level in ultra-wide bandwidth is developed in lasing and imaging applications, especially the line-of-sight (LOS) system. A modified MHD ARS combined with the Coriolis effect was studied in this paper to expand the sensor’s bandwidth at low frequency (<1 Hz), which is essential for precision LOS pointing and wide-bandwidth LOS jitter suppression. The model and the simulation method were constructed and a comprehensive solving method based on the magnetic and electric interaction methods was proposed. The numerical results on the Coriolis effect and the frequency response of the modified MHD ARS were detailed. In addition, according to the experimental results of the designed sensor consistent with the simulation results, an error analysis of model errors was discussed. Our study provides an error analysis method of MHD ARS combined with the Coriolis effect and offers a framework for future studies to minimize the error.

  20. Error rate performance of atmospheric laser communication based on bubble model

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Wang, Jin; Li, Yan

    2009-08-01

    Free-Space Optics (FSO) can provide an effective line-of-sight and wireless communication with high bandwidth over a short distance. As a promising field of wireless communication, FSO is being accepted as an alternative of the more expensive fiber-optic based solutions. Despite the advantages of FSO, atmospheric turbulence has a significant impact on laser beam propagating through the channel in the atmosphere over a long distance. Turbulent eddies of various size and refractive index result in intensity scintillation and phase wander, which can severely impair the quality of FSO communication system. In this paper, a new geometrical model is used to assess the effects of turbulence on laser beam in its propagation path. The atmosphere is modeled along the transmission path filled with spatial-distributed spherical bubbles. The size and refractive index discontinuity of each bubble is K-distributed. This Monte Carlo technique allows us to estimate the fluctuation of intensity and phase shifts along the path. A pair of uncollimated rays arrives at the receiver through different path, and an optical path difference is produced. This difference causes a delay between the two rays. At the receiver, as the two rays are superposed, the delay ultimately affects the judgement of the bits. In the simulation, we assume that when the delay exceeds half of the bit width, bit error is possible. On the contrary, when the delay is less than the bit width, the bit error will not happen. Based on this assumption, we calculate the BER under different conditions, and results are further analyzed.

  1. Unforced errors and error reduction in tennis

    PubMed Central

    Brody, H

    2006-01-01

    Only at the highest level of tennis is the number of winners comparable to the number of unforced errors. As the average player loses many more points due to unforced errors than due to winners by an opponent, if the rate of unforced errors can be reduced, it should lead to an increase in points won. This article shows how players can improve their game by understanding and applying the laws of physics to reduce the number of unforced errors. PMID:16632568

  2. Data-driven region-of-interest selection without inflating Type I error rate.

    PubMed

    Brooks, Joseph L; Zoumpoulaki, Alexia; Bowman, Howard

    2017-01-01

    In ERP and other large multidimensional neuroscience data sets, researchers often select regions of interest (ROIs) for analysis. The method of ROI selection can critically affect the conclusions of a study by causing the researcher to miss effects in the data or to detect spurious effects. In practice, to avoid inflating Type I error rate (i.e., false positives), ROIs are often based on a priori hypotheses or independent information. However, this can be insensitive to experiment-specific variations in effect location (e.g., latency shifts) reducing power to detect effects. Data-driven ROI selection, in contrast, is nonindependent and uses the data under analysis to determine ROI positions. Therefore, it has potential to select ROIs based on experiment-specific information and increase power for detecting effects. However, data-driven methods have been criticized because they can substantially inflate Type I error rate. Here, we demonstrate, using simulations of simple ERP experiments, that data-driven ROI selection can indeed be more powerful than a priori hypotheses or independent information. Furthermore, we show that data-driven ROI selection using the aggregate grand average from trials (AGAT), despite being based on the data at hand, can be safely used for ROI selection under many circumstances. However, when there is a noise difference between conditions, using the AGAT can inflate Type I error and should be avoided. We identify critical assumptions for use of the AGAT and provide a basis for researchers to use, and reviewers to assess, data-driven methods of ROI localization in ERP and other studies. © 2016 Society for Psychophysiological Research.

  3. Differential Effects of Incentives on Response Error, Response Rate, and Reliability of a Mailed Questionnaire.

    ERIC Educational Resources Information Center

    Brown, Darine F.; Hartman, Bruce

    1980-01-01

    Investigated issues associated with stimulating increased return rates to a mail questionnaire among school counselors. Results show that as the number of incentives received increased, the return rates increased in a linear fashion. The incentives did not introduce response error or affect the reliability of the Counselor Function Inventory.…

  4. Technology Acceptance and Course Completion Rates in Online Education: A Non-experimental, Mixed Method Study

    NASA Astrophysics Data System (ADS)

    Allison, Colelia

    As the need for quality online courses increase in demand, the acceptance of technology and completion rates become the focus of higher education. The purpose of this non-experimental, mixed method study was to examine the relationship between the university students' perceptions and acceptance of technology and learner completion rates with respect to the development of online courses. This study involved 61 participants from two universities regarding their perceived usefulness (PU) of technology, intent to use technology, and intent to complete a course. Two research questions were examined regarding student perceptions regarding technology employed in an online course and the relationship, if any, between technology acceptance and completion of an online university course. The technology acceptance model (TAM) was used to collect data on the usefulness of course activities and student intent to complete the course. An open-ended questionnaire was administered to collect information concerning student perceptions of course activities. Quantitative data was analyzed using SPSS and Qualtrics, which indicated there was not a significant relationship between technology acceptance and course completion (p = .154). Qualitative data were examined by pattern matching to create a concept map of the theoretical patterns between constructs. Pattern matching revealed many students favored the use of the Internet over Canvas. Furthermore, data showed students enrolled in online courses because of the flexibility and found the multimedia used in the courses as helpful in course completion. Insight was investigated to offer reasons and decisions concerning choice that were made by the students. Future recommendations are to expand mixed methods studies of technology acceptance in various disciplines to gain a better understanding of student perceptions of technology uses, intent to use, and course completion.

  5. Errors of car wheels rotation rate measurement using roller follower on test benches

    NASA Astrophysics Data System (ADS)

    Potapov, A. S.; Svirbutovich, O. A.; Krivtsov, S. N.

    2018-03-01

    The article deals with rotation rate measurement errors, which depend on the motor vehicle rate, on the roller, test benches. Monitoring of the vehicle performance under operating conditions is performed on roller test benches. Roller test benches are not flawless. They have some drawbacks affecting the accuracy of vehicle performance monitoring. Increase in basic velocity of the vehicle requires increase in accuracy of wheel rotation rate monitoring. It determines the degree of accuracy of mode identification for a wheel of the tested vehicle. To ensure measurement accuracy for rotation velocity of rollers is not an issue. The problem arises when measuring rotation velocity of a car wheel. The higher the rotation velocity of the wheel is, the lower the accuracy of measurement is. At present, wheel rotation frequency monitoring on roller test benches is carried out by following-up systems. Their sensors are rollers following wheel rotation. The rollers of the system are not kinematically linked to supporting rollers of the test bench. The roller follower is forced against the wheels of the tested vehicle by means of a spring-lever mechanism. Experience of the test bench equipment operation has shown that measurement accuracy is satisfactory at small rates of vehicles diagnosed on roller test benches. With a rising diagnostics rate, rotation velocity measurement errors occur in both braking and pulling modes because a roller spins about a tire tread. The paper shows oscillograms of changes in wheel rotation velocity and rotation velocity measurement system’s signals when testing a vehicle on roller test benches at specified rates.

  6. Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate

    NASA Astrophysics Data System (ADS)

    Chau, H. F.

    2002-12-01

    A secret key shared through quantum key distribution between two cooperative players is secure against any eavesdropping attack allowed by the laws of physics. Yet, such a key can be established only when the quantum channel error rate due to eavesdropping or imperfect apparatus is low. Here, a practical quantum key distribution scheme by making use of an adaptive privacy amplification procedure with two-way classical communication is reported. Then, it is proven that the scheme generates a secret key whenever the bit error rate of the quantum channel is less than 0.5-0.1(5)≈27.6%, thereby making it the most error resistant scheme known to date.

  7. Evolution at increased error rate leads to the coexistence of multiple adaptive pathways in an RNA virus.

    PubMed

    Cabanillas, Laura; Arribas, María; Lázaro, Ester

    2013-01-16

    When beneficial mutations present in different genomes spread simultaneously in an asexual population, their fixation can be delayed due to competition among them. This interference among mutations is mainly determined by the rate of beneficial mutations, which in turn depends on the population size, the total error rate, and the degree of adaptation of the population. RNA viruses, with their large population sizes and high error rates, are good candidates to present a great extent of interference. To test this hypothesis, in the current study we have investigated whether competition among beneficial mutations was responsible for the prolonged presence of polymorphisms in the mutant spectrum of an RNA virus, the bacteriophage Qβ, evolved during a large number of generations in the presence of the mutagenic nucleoside analogue 5-azacytidine. The analysis of the mutant spectra of bacteriophage Qβ populations evolved at artificially increased error rate shows a large number of polymorphic mutations, some of them with demonstrated selective value. Polymorphisms distributed into several evolutionary lines that can compete among them, making it difficult the emergence of a defined consensus sequence. The presence of accompanying deleterious mutations, the high degree of recurrence of the polymorphic mutations, and the occurrence of epistatic interactions generate a highly complex interference dynamics. Interference among beneficial mutations in bacteriophage Qβ evolved at increased error rate permits the coexistence of multiple adaptive pathways that can provide selective advantages by different molecular mechanisms. In this way, interference can be seen as a positive factor that allows the exploration of the different local maxima that exist in rugged fitness landscapes.

  8. Cost–Effective Prediction of Gender-Labeling Errors and Estimation of Gender-Labeling Error Rates in Candidate-Gene Association Studies

    PubMed Central

    Qu, Conghui; Schuetz, Johanna M.; Min, Jeong Eun; Leach, Stephen; Daley, Denise; Spinelli, John J.; Brooks-Wilson, Angela; Graham, Jinko

    2011-01-01

    We describe a statistical approach to predict gender-labeling errors in candidate-gene association studies, when Y-chromosome markers have not been included in the genotyping set. The approach adds value to methods that consider only the heterozygosity of X-chromosome SNPs, by incorporating available information about the intensity of X-chromosome SNPs in candidate genes relative to autosomal SNPs from the same individual. To our knowledge, no published methods formalize a framework in which heterozygosity and relative intensity are simultaneously taken into account. Our method offers the advantage that, in the genotyping set, no additional space is required beyond that already assigned to X-chromosome SNPs in the candidate genes. We also show how the predictions can be used in a two-phase sampling design to estimate the gender-labeling error rates for an entire study, at a fraction of the cost of a conventional design. PMID:22303327

  9. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests

    PubMed Central

    Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10−3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  10. Error and Error Mitigation in Low-Coverage Genome Assemblies

    PubMed Central

    Hubisz, Melissa J.; Lin, Michael F.; Kellis, Manolis; Siepel, Adam

    2011-01-01

    The recent release of twenty-two new genome sequences has dramatically increased the data available for mammalian comparative genomics, but twenty of these new sequences are currently limited to ∼2× coverage. Here we examine the extent of sequencing error in these 2× assemblies, and its potential impact in downstream analyses. By comparing 2× assemblies with high-quality sequences from the ENCODE regions, we estimate the rate of sequencing error to be 1–4 errors per kilobase. While this error rate is fairly modest, sequencing error can still have surprising effects. For example, an apparent lineage-specific insertion in a coding region is more likely to reflect sequencing error than a true biological event, and the length distribution of coding indels is strongly distorted by error. We find that most errors are contributed by a small fraction of bases with low quality scores, in particular, by the ends of reads in regions of single-read coverage in the assembly. We explore several approaches for automatic sequencing error mitigation (SEM), making use of the localized nature of sequencing error, the fact that it is well predicted by quality scores, and information about errors that comes from comparisons across species. Our automatic methods for error mitigation cannot replace the need for additional sequencing, but they do allow substantial fractions of errors to be masked or eliminated at the cost of modest amounts of over-correction, and they can reduce the impact of error in downstream phylogenomic analyses. Our error-mitigated alignments are available for download. PMID:21340033

  11. Impact of the flu mask regulation on health care personnel influenza vaccine acceptance rates.

    PubMed

    Edwards, Frances; Masick, Kevin D; Armellino, Donna

    2016-10-01

    Achieving high vaccination rates of health care personnel (HCP) is critical in preventing influenza transmission from HCP to patients and from patients to HCP; however, acceptance rates remain low. In 2013, New York State adopted the flu mask regulation, requiring unvaccinated HCP to wear a mask when in areas where patients are present. The purpose of this study assessed the impact of the flu mask regulation on the HCP influenza vaccination rate. A 13-question survey was distributed electronically and manually to the HCP to examine their knowledge of influenza transmission and the influenza vaccine and their personal vaccine acceptance history and perception about the use of the mask while working if not vaccinated. There were 1,905 respondents; 87% accepted the influenza vaccine, and 63% were first-time recipients who agreed the regulation influenced their vaccination decision. Of the respondents who declined the vaccine, 72% acknowledge HCP are at risk for transmitting influenza to patients, and 56% reported they did not receive enough information to make an educated decision. The flu mask protocol may have influenced HCP's choice to be vaccinated versus wearing a mask. The study findings supported that HCP may not have adequate knowledge on the morbidity and mortality associated with influenza. Regulatory agencies need to consider an alternative approach to increase HCP vaccination, such as mandating the influenza vaccine for HCP. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  12. Construct and Predictive Validity of Social Acceptability: Scores From High School Teacher Ratings on the School Intervention Rating Form

    ERIC Educational Resources Information Center

    Harrison, Judith R.; State, Talida M.; Evans, Steven W.; Schamberg, Terah

    2016-01-01

    The purpose of this study was to evaluate the construct and predictive validity of scores on a measure of social acceptability of class-wide and individual student intervention, the School Intervention Rating Form (SIRF), with high school teachers. Utilizing scores from 158 teachers, exploratory factor analysis revealed a three-factor (i.e.,…

  13. Residents' Ratings of Their Clinical Supervision and Their Self-Reported Medical Errors: Analysis of Data From 2009.

    PubMed

    Baldwin, DeWitt C; Daugherty, Steven R; Ryan, Patrick M; Yaghmour, Nicholas A; Philibert, Ingrid

    2018-04-01

    Medical errors and patient safety are major concerns for the medical and medical education communities. Improving clinical supervision for residents is important in avoiding errors, yet little is known about how residents perceive the adequacy of their supervision and how this relates to medical errors and other education outcomes, such as learning and satisfaction. We analyzed data from a 2009 survey of residents in 4 large specialties regarding the adequacy and quality of supervision they receive as well as associations with self-reported data on medical errors and residents' perceptions of their learning environment. Residents' reports of working without adequate supervision were lower than data from a 1999 survey for all 4 specialties, and residents were least likely to rate "lack of supervision" as a problem. While few residents reported that they received inadequate supervision, problems with supervision were negatively correlated with sufficient time for clinical activities, overall ratings of the residency experience, and attending physicians as a source of learning. Problems with supervision were positively correlated with resident reports that they had made a significant medical error, had been belittled or humiliated, or had observed others falsifying medical records. Although working without supervision was not a pervasive problem in 2009, when it happened, it appeared to have negative consequences. The association between inadequate supervision and medical errors is of particular concern.

  14. Effect of Vertical Rate Error on Recovery from Loss of Well Clear Between UAS and Non-Cooperative Intruders

    NASA Technical Reports Server (NTRS)

    Cone, Andrew; Thipphavong, David; Lee, Seung Man; Santiago, Confesor

    2016-01-01

    When an Unmanned Aircraft System (UAS) encounters an intruder and is unable to maintain required temporal and spatial separation between the two vehicles, it is referred to as a loss of well-clear. In this state, the UAS must make its best attempt to regain separation while maximizing the minimum separation between itself and the intruder. When encountering a non-cooperative intruder (an aircraft operating under visual flight rules without ADS-B or an active transponder) the UAS must rely on the radar system to provide the intruders location, velocity, and heading information. As many UAS have limited climb and descent performance, vertical position andor vertical rate errors make it difficult to determine whether an intruder will pass above or below them. To account for that, there is a proposal by RTCA Special Committee 228 to prohibit guidance systems from providing vertical guidance to regain well-clear to UAS in an encounter with a non-cooperative intruder unless their radar system has vertical position error below 175 feet (95) and vertical velocity errors below 200 fpm (95). Two sets of fast-time parametric studies was conducted, each with 54000 pairwise encounters between a UAS and non-cooperative intruder to determine the suitability of offering vertical guidance to regain well clear to a UAS in the presence of radar sensor noise. The UAS was not allowed to maneuver until it received well-clear recovery guidance. The maximum severity of the loss of well-clear was logged and used as the primary indicator of the separation achieved by the UAS. One set of 54000 encounters allowed the UAS to maneuver either vertically or horizontally, while the second permitted horizontal maneuvers, only. Comparing the two data sets allowed researchers to see the effect of allowing vertical guidance to a UAS for a particular encounter and vertical rate error. Study results show there is a small reduction in the average severity of a loss of well-clear when vertical maneuvers

  15. Systematic evidence review of rates and burden of harm of intravenous admixture drug preparation errors in healthcare settings

    PubMed Central

    Beer, Idal; Hoppe-Tichy, Torsten; Trbovich, Patricia

    2017-01-01

    Objective To examine published evidence on intravenous admixture preparation errors (IAPEs) in healthcare settings. Methods Searches were conducted in three electronic databases (January 2005 to April 2017). Publications reporting rates of IAPEs and error types were reviewed and categorised into the following groups: component errors, dose/calculation errors, aseptic technique errors and composite errors. The methodological rigour of each study was assessed using the Hawker method. Results Of the 34 articles that met inclusion criteria, 28 reported the site of IAPEs: central pharmacies (n=8), nursing wards (n=14), both settings (n=4) and other sites (n=3). Using the Hawker criteria, 14% of the articles were of good quality, 74% were of fair quality and 12% were of poor quality. Error types and reported rates varied substantially, including wrong drug (~0% to 4.7%), wrong diluent solution (0% to 49.0%), wrong label (0% to 99.0%), wrong dose (0% to 32.6%), wrong concentration (0.3% to 88.6%), wrong diluent volume (0.06% to 49.0%) and inadequate aseptic technique (0% to 92.7%)%). Four studies directly compared incidence by preparation site and/or method, finding error incidence to be lower for doses prepared within a central pharmacy versus the nursing ward and lower for automated preparation versus manual preparation. Although eight studies (24%) reported ≥1 errors with the potential to cause patient harm, no study directly linked IAPE occurrences to specific adverse patient outcomes. Conclusions The available data suggest a need to continue to optimise the intravenous preparation process, focus on improving preparation workflow, design and implement preventive strategies, train staff on optimal admixture protocols and implement standardisation. Future research should focus on the development of consistent error subtype definitions, standardised reporting methodology and reliable, reproducible methods to track and link risk factors with the burden of harm

  16. Feedback on prescribing errors to junior doctors: exploring views, problems and preferred methods.

    PubMed

    Bertels, Jeroen; Almoudaris, Alex M; Cortoos, Pieter-Jan; Jacklin, Ann; Franklin, Bryony Dean

    2013-06-01

    Prescribing errors are common in hospital inpatients. However, the literature suggests that doctors are often unaware of their errors as they are not always informed of them. It has been suggested that providing more feedback to prescribers may reduce subsequent error rates. Only few studies have investigated the views of prescribers towards receiving such feedback, or the views of hospital pharmacists as potential feedback providers. Our aim was to explore the views of junior doctors and hospital pharmacists regarding feedback on individual doctors' prescribing errors. Objectives were to determine how feedback was currently provided and any associated problems, to explore views on other approaches to feedback, and to make recommendations for designing suitable feedback systems. A large London NHS hospital trust. To explore views on current and possible feedback mechanisms, self-administered questionnaires were given to all junior doctors and pharmacists, combining both 5-point Likert scale statements and open-ended questions. Agreement scores for statements regarding perceived prescribing error rates, opinions on feedback, barriers to feedback, and preferences for future practice. Response rates were 49% (37/75) for junior doctors and 57% (57/100) for pharmacists. In general, doctors did not feel threatened by feedback on their prescribing errors. They felt that feedback currently provided was constructive but often irregular and insufficient. Most pharmacists provided feedback in various ways; however some did not or were inconsistent. They were willing to provide more feedback, but did not feel it was always effective or feasible due to barriers such as communication problems and time constraints. Both professional groups preferred individual feedback with additional regular generic feedback on common or serious errors. Feedback on prescribing errors was valued and acceptable to both professional groups. From the results, several suggested methods of providing

  17. Error coding simulations

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1993-01-01

    There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.

  18. Kurzweil Reading Machine: A Partial Evaluation of Its Optical Character Recognition Error Rate.

    ERIC Educational Resources Information Center

    Goodrich, Gregory L.; And Others

    1979-01-01

    A study designed to assess the ability of the Kurzweil reading machine (a speech reading device for the visually handicapped) to read three different type styles produced by five different means indicated that the machines tested had different error rates depending upon the means of producing the copy and upon the type style used. (Author/CL)

  19. Modeling coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  20. Maximum type I error rate inflation from sample size reassessment when investigators are blind to treatment labels.

    PubMed

    Żebrowska, Magdalena; Posch, Martin; Magirr, Dominic

    2016-05-30

    Consider a parallel group trial for the comparison of an experimental treatment to a control, where the second-stage sample size may depend on the blinded primary endpoint data as well as on additional blinded data from a secondary endpoint. For the setting of normally distributed endpoints, we demonstrate that this may lead to an inflation of the type I error rate if the null hypothesis holds for the primary but not the secondary endpoint. We derive upper bounds for the inflation of the type I error rate, both for trials that employ random allocation and for those that use block randomization. We illustrate the worst-case sample size reassessment rule in a case study. For both randomization strategies, the maximum type I error rate increases with the effect size in the secondary endpoint and the correlation between endpoints. The maximum inflation increases with smaller block sizes if information on the block size is used in the reassessment rule. Based on our findings, we do not question the well-established use of blinded sample size reassessment methods with nuisance parameter estimates computed from the blinded interim data of the primary endpoint. However, we demonstrate that the type I error rate control of these methods relies on the application of specific, binding, pre-planned and fully algorithmic sample size reassessment rules and does not extend to general or unplanned sample size adjustments based on blinded data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  1. Testing for clustering at many ranges inflates family-wise error rate (FWE).

    PubMed

    Loop, Matthew Shane; McClure, Leslie A

    2015-01-15

    Testing for clustering at multiple ranges within a single dataset is a common practice in spatial epidemiology. It is not documented whether this approach has an impact on the type 1 error rate. We estimated the family-wise error rate (FWE) for the difference in Ripley's K functions test, when testing at an increasing number of ranges at an alpha-level of 0.05. Case and control locations were generated from a Cox process on a square area the size of the continental US (≈3,000,000 mi2). Two thousand Monte Carlo replicates were used to estimate the FWE with 95% confidence intervals when testing for clustering at one range, as well as 10, 50, and 100 equidistant ranges. The estimated FWE and 95% confidence intervals when testing 10, 50, and 100 ranges were 0.22 (0.20 - 0.24), 0.34 (0.31 - 0.36), and 0.36 (0.34 - 0.38), respectively. Testing for clustering at multiple ranges within a single dataset inflated the FWE above the nominal level of 0.05. Investigators should construct simultaneous critical envelopes (available in spatstat package in R), or use a test statistic that integrates the test statistics from each range, as suggested by the creators of the difference in Ripley's K functions test.

  2. An investigation of error correcting techniques for OMV data

    NASA Technical Reports Server (NTRS)

    Ingels, Frank; Fryer, John

    1992-01-01

    Papers on the following topics are presented: considerations of testing the Orbital Maneuvering Vehicle (OMV) system with CLASS; OMV CLASS test results (first go around); equivalent system gain available from R-S encoding versus a desire to lower the power amplifier from 25 watts to 20 watts for OMV; command word acceptance/rejection rates for OMV; a memo concerning energy-to-noise ratio for the Viterbi-BSC Channel and the impact of Manchester coding loss; and an investigation of error correcting techniques for OMV and Advanced X-ray Astrophysics Facility (AXAF).

  3. Distribution of the Determinant of the Sample Correlation Matrix: Monte Carlo Type One Error Rates.

    ERIC Educational Resources Information Center

    Reddon, John R.; And Others

    1985-01-01

    Computer sampling from a multivariate normal spherical population was used to evaluate the type one error rates for a test of sphericity based on the distribution of the determinant of the sample correlation matrix. (Author/LMO)

  4. Research on the output bit error rate of 2DPSK signal based on stochastic resonance theory

    NASA Astrophysics Data System (ADS)

    Yan, Daqin; Wang, Fuzhong; Wang, Shuo

    2017-12-01

    Binary differential phase-shift keying (2DPSK) signal is mainly used for high speed data transmission. However, the bit error rate of digital signal receiver is high in the case of wicked channel environment. In view of this situation, a novel method based on stochastic resonance (SR) is proposed, which is aimed to reduce the bit error rate of 2DPSK signal by coherent demodulation receiving. According to the theory of SR, a nonlinear receiver model is established, which is used to receive 2DPSK signal under small signal-to-noise ratio (SNR) circumstances (between -15 dB and 5 dB), and compared with the conventional demodulation method. The experimental results demonstrate that when the input SNR is in the range of -15 dB to 5 dB, the output bit error rate of nonlinear system model based on SR has a significant decline compared to the conventional model. It could reduce 86.15% when the input SNR equals -7 dB. Meanwhile, the peak value of the output signal spectrum is 4.25 times as that of the conventional model. Consequently, the output signal of the system is more likely to be detected and the accuracy can be greatly improved.

  5. Classification Accuracy and Acceptability of the Integrated Screening and Intervention System Teacher Rating Form

    ERIC Educational Resources Information Center

    Daniels, Brian; Volpe, Robert J.; Fabiano, Gregory A.; Briesch, Amy M.

    2017-01-01

    This study examines the classification accuracy and teacher acceptability of a problem-focused screener for academic and disruptive behavior problems, which is directly linked to evidence-based intervention. Participants included 39 classroom teachers from 2 public school districts in the Northeastern United States. Teacher ratings were obtained…

  6. Attitudes of Mashhad Public Hospital's Nurses and Midwives toward the Causes and Rates of Medical Errors Reporting.

    PubMed

    Mobarakabadi, Sedigheh Sedigh; Ebrahimipour, Hosein; Najar, Ali Vafaie; Janghorban, Roksana; Azarkish, Fatemeh

    2017-03-01

    Patient's safety is one of the main objective in healthcare services; however medical errors are a prevalent potential occurrence for the patients in treatment systems. Medical errors lead to an increase in mortality rate of the patients and challenges such as prolonging of the inpatient period in the hospitals and increased cost. Controlling the medical errors is very important, because these errors besides being costly, threaten the patient's safety. To evaluate the attitudes of nurses and midwives toward the causes and rates of medical errors reporting. It was a cross-sectional observational study. The study population was 140 midwives and nurses employed in Mashhad Public Hospitals. The data collection was done through Goldstone 2001 revised questionnaire. SPSS 11.5 software was used for data analysis. To analyze data, descriptive and inferential analytic statistics were used. Standard deviation and relative frequency distribution, descriptive statistics were used for calculation of the mean and the results were adjusted as tables and charts. Chi-square test was used for the inferential analysis of the data. Most of midwives and nurses (39.4%) were in age range of 25 to 34 years and the lowest percentage (2.2%) were in age range of 55-59 years. The highest average of medical errors was related to employees with three-four years of work experience, while the lowest average was related to those with one-two years of work experience. The highest average of medical errors was during the evening shift, while the lowest were during the night shift. Three main causes of medical errors were considered: illegibile physician prescription orders, similarity of names in different drugs and nurse fatigueness. The most important causes for medical errors from the viewpoints of nurses and midwives are illegible physician's order, drug name similarity with other drugs, nurse's fatigueness and damaged label or packaging of the drug, respectively. Head nurse feedback, peer

  7. Type I Error Rates and Power Estimates of Selected Parametric and Nonparametric Tests of Scale.

    ERIC Educational Resources Information Center

    Olejnik, Stephen F.; Algina, James

    1987-01-01

    Estimated Type I Error rates and power are reported for the Brown-Forsythe, O'Brien, Klotz, and Siegal-Tukey procedures. The effect of aligning the data using deviations from group means or group medians is investigated. (RB)

  8. The decline and fall of Type II error rates

    Treesearch

    Steve Verrill; Mark Durst

    2005-01-01

    For general linear models with normally distributed random errors, the probability of a Type II error decreases exponentially as a function of sample size. This potentially rapid decline reemphasizes the importance of performing power calculations.

  9. [The effectiveness of error reporting promoting strategy on nurse's attitude, patient safety culture, intention to report and reporting rate].

    PubMed

    Kim, Myoungsoo

    2010-04-01

    The purpose of this study was to examine the impact of strategies to promote reporting of errors on nurses' attitude to reporting errors, organizational culture related to patient safety, intention to report and reporting rate in hospital nurses. A nonequivalent control group non-synchronized design was used for this study. The program was developed and then administered to the experimental group for 12 weeks. Data were analyzed using descriptive analysis, X(2)-test, t-test, and ANCOVA with the SPSS 12.0 program. After the intervention, the experimental group showed significantly higher scores for nurses' attitude to reporting errors (experimental: 20.73 vs control: 20.52, F=5.483, p=.021) and reporting rate (experimental: 3.40 vs control: 1.33, F=1998.083, p<.001). There was no significant difference in some categories for organizational culture and intention to report. The study findings indicate that strategies that promote reporting of errors play an important role in producing positive attitudes to reporting errors and improving behavior of reporting. Further advanced strategies for reporting errors that can lead to improved patient safety should be developed and applied in a broad range of hospitals.

  10. Speech Errors across the Lifespan

    ERIC Educational Resources Information Center

    Vousden, Janet I.; Maylor, Elizabeth A.

    2006-01-01

    Dell, Burger, and Svec (1997) proposed that the proportion of speech errors classified as anticipations (e.g., "moot and mouth") can be predicted solely from the overall error rate, such that the greater the error rate, the lower the anticipatory proportion (AP) of errors. We report a study examining whether this effect applies to changes in error…

  11. Systematic evidence review of rates and burden of harm of intravenous admixture drug preparation errors in healthcare settings.

    PubMed

    Hedlund, Nancy; Beer, Idal; Hoppe-Tichy, Torsten; Trbovich, Patricia

    2017-12-28

    To examine published evidence on intravenous admixture preparation errors (IAPEs) in healthcare settings. Searches were conducted in three electronic databases (January 2005 to April 2017). Publications reporting rates of IAPEs and error types were reviewed and categorised into the following groups: component errors, dose/calculation errors, aseptic technique errors and composite errors. The methodological rigour of each study was assessed using the Hawker method. Of the 34 articles that met inclusion criteria, 28 reported the site of IAPEs: central pharmacies (n=8), nursing wards (n=14), both settings (n=4) and other sites (n=3). Using the Hawker criteria, 14% of the articles were of good quality, 74% were of fair quality and 12% were of poor quality. Error types and reported rates varied substantially, including wrong drug (~0% to 4.7%), wrong diluent solution (0% to 49.0%), wrong label (0% to 99.0%), wrong dose (0% to 32.6%), wrong concentration (0.3% to 88.6%), wrong diluent volume (0.06% to 49.0%) and inadequate aseptic technique (0% to 92.7%)%). Four studies directly compared incidence by preparation site and/or method, finding error incidence to be lower for doses prepared within a central pharmacy versus the nursing ward and lower for automated preparation versus manual preparation. Although eight studies (24%) reported ≥1 errors with the potential to cause patient harm, no study directly linked IAPE occurrences to specific adverse patient outcomes. The available data suggest a need to continue to optimise the intravenous preparation process, focus on improving preparation workflow, design and implement preventive strategies, train staff on optimal admixture protocols and implement standardisation. Future research should focus on the development of consistent error subtype definitions, standardised reporting methodology and reliable, reproducible methods to track and link risk factors with the burden of harm associated with these errors. © Article

  12. Measurement of diffusion coefficients from solution rates of bubbles

    NASA Technical Reports Server (NTRS)

    Krieger, I. M.

    1979-01-01

    The rate of solution of a stationary bubble is limited by the diffusion of dissolved gas molecules away from the bubble surface. Diffusion coefficients computed from measured rates of solution give mean values higher than accepted literature values, with standard errors as high as 10% for a single observation. Better accuracy is achieved with sparingly soluble gases, small bubbles, and highly viscous liquids. Accuracy correlates with the Grashof number, indicating that free convection is the major source of error. Accuracy should, therefore, be greatly increased in a gravity-free environment. The fact that the bubble will need no support is an additional important advantage of Spacelab for this measurement.

  13. Modeling Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    NASA Astrophysics Data System (ADS)

    Stephenson, Edward; Imig, Astrid

    2009-10-01

    The Storage Ring EDM Collaboration has obtained a set of measurements detailing the sensitivity of a storage ring polarimeter for deuterons to small geometrical and rate changes. Various schemes, such as the calculation of the cross ratio [1], can cancel effects due to detector acceptance differences and luminosity differences for states of opposite polarization. Such schemes fail at second-order in the errors, becoming sensitive to geometrical changes, polarization magnitude differences between opposite polarization states, and changes to the detector response with changing data rates. An expansion of the polarimeter response in a Taylor series based on small errors about the polarimeter operating point can parametrize such effects, primarily in terms of the logarithmic derivatives of the cross section and analyzing power. A comparison will be made to measurements obtained with the EDDA detector at COSY-J"ulich. [4pt] [1] G.G. Ohlsen and P.W. Keaton, Jr., NIM 109, 41 (1973).

  14. Information-Gathering Patterns Associated with Higher Rates of Diagnostic Error

    ERIC Educational Resources Information Center

    Delzell, John E., Jr.; Chumley, Heidi; Webb, Russell; Chakrabarti, Swapan; Relan, Anju

    2009-01-01

    Diagnostic errors are an important source of medical errors. Problematic information-gathering is a common cause of diagnostic errors among physicians and medical students. The objectives of this study were to (1) determine if medical students' information-gathering patterns formed clusters of similar strategies, and if so (2) to calculate the…

  15. The Relation Between Inflation in Type-I and Type-II Error Rate and Population Divergence in Genome-Wide Association Analysis of Multi-Ethnic Populations.

    PubMed

    Derks, E M; Zwinderman, A H; Gamazon, E R

    2017-05-01

    Population divergence impacts the degree of population stratification in Genome Wide Association Studies. We aim to: (i) investigate type-I error rate as a function of population divergence (F ST ) in multi-ethnic (admixed) populations; (ii) evaluate the statistical power and effect size estimates; and (iii) investigate the impact of population stratification on the results of gene-based analyses. Quantitative phenotypes were simulated. Type-I error rate was investigated for Single Nucleotide Polymorphisms (SNPs) with varying levels of F ST between the ancestral European and African populations. Type-II error rate was investigated for a SNP characterized by a high value of F ST . In all tests, genomic MDS components were included to correct for population stratification. Type-I and type-II error rate was adequately controlled in a population that included two distinct ethnic populations but not in admixed samples. Statistical power was reduced in the admixed samples. Gene-based tests showed no residual inflation in type-I error rate.

  16. Correlation of patient entry rates and physician documentation errors in dictated and handwritten emergency treatment records.

    PubMed

    Dawdy, M R; Munter, D W; Gilmore, R A

    1997-03-01

    This study was designed to examine the relationship between patient entry rates (a measure of physician work load) and documentation errors/omissions in both handwritten and dictated emergency treatment records. The study was carried out in two phases. Phase I examined handwritten records and Phase II examined dictated and transcribed records. A total of 838 charts for three common chief complaints (chest pain, abdominal pain, asthma/chronic obstructive pulmonary disease) were retrospectively reviewed and scored for the presence or absence of 11 predetermined criteria. Patient entry rates were determined by reviewing the emergency department patient registration logs. The data were analyzed using simple correlation and linear regression analysis. A positive correlation was found between patient entry rates and documentation errors in handwritten charts. No such correlation was found in the dictated charts. We conclude that work load may negatively affect documentation accuracy when charts are handwritten. However, the use of dictation services may minimize or eliminate this effect.

  17. Error baseline rates of five sample preparation methods used to characterize RNA virus populations.

    PubMed

    Kugelman, Jeffrey R; Wiley, Michael R; Nagle, Elyse R; Reyes, Daniel; Pfeffer, Brad P; Kuhn, Jens H; Sanchez-Lockhart, Mariano; Palacios, Gustavo F

    2017-01-01

    Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic "no amplification" method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a "targeted" amplification method, sequence-independent single-primer amplification (SISPA) as a "random" amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced "no amplification" method, and Illumina TruSeq RNA Access as a "targeted" enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4-5) of all compared methods.

  18. Error baseline rates of five sample preparation methods used to characterize RNA virus populations

    PubMed Central

    Kugelman, Jeffrey R.; Wiley, Michael R.; Nagle, Elyse R.; Reyes, Daniel; Pfeffer, Brad P.; Kuhn, Jens H.; Sanchez-Lockhart, Mariano; Palacios, Gustavo F.

    2017-01-01

    Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic “no amplification” method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a “targeted” amplification method, sequence-independent single-primer amplification (SISPA) as a “random” amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced “no amplification” method, and Illumina TruSeq RNA Access as a “targeted” enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4−5) of all compared methods. PMID:28182717

  19. Type I error rates of rare single nucleotide variants are inflated in tests of association with non-normally distributed traits using simple linear regression methods.

    PubMed

    Schwantes-An, Tae-Hwi; Sung, Heejong; Sabourin, Jeremy A; Justice, Cristina M; Sorant, Alexa J M; Wilson, Alexander F

    2016-01-01

    In this study, the effects of (a) the minor allele frequency of the single nucleotide variant (SNV), (b) the degree of departure from normality of the trait, and (c) the position of the SNVs on type I error rates were investigated in the Genetic Analysis Workshop (GAW) 19 whole exome sequence data. To test the distribution of the type I error rate, 5 simulated traits were considered: standard normal and gamma distributed traits; 2 transformed versions of the gamma trait (log 10 and rank-based inverse normal transformations); and trait Q1 provided by GAW 19. Each trait was tested with 313,340 SNVs. Tests of association were performed with simple linear regression and average type I error rates were determined for minor allele frequency classes. Rare SNVs (minor allele frequency < 0.05) showed inflated type I error rates for non-normally distributed traits that increased as the minor allele frequency decreased. The inflation of average type I error rates increased as the significance threshold decreased. Normally distributed traits did not show inflated type I error rates with respect to the minor allele frequency for rare SNVs. There was no consistent effect of transformation on the uniformity of the distribution of the location of SNVs with a type I error.

  20. An equivalence study of interview platform: Does videoconference technology impact medical school acceptance rates of different groups?

    PubMed

    Ballejos, Marlene P; Oglesbee, Scott; Hettema, Jennifer; Sapien, Robert

    2018-02-14

    Web-based interviewing may be an effective element of a medical school's larger approach to promotion of holistic review, as recommended by the Association of American Medical Colleges, by facilitating the feasibility of including rural and community physicians in the interview process. Only 10% of medical schools offer videoconference interviews to applicants and little is known about the impact of this interview modality on the admissions process. This study investigated the impact of overall acceptance rates using videoconference interviews and face-to-face interviews in the medical school selection process using an equivalence trial design. The University of New Mexico School of Medicine integrated a videoconferencing interview option for community and rural physician interviewers in a pseudo-random fashion during the 2014-2016 admissions cycles. Logistic regression was conducted to examine whether videoconference interviews impacted acceptance rates or the characteristics of accepted students. Demographic, admissions and diversity factors were analyzed that included applicant age, MCAT score, cumulative GPA, gender, underrepresented in medicine, socioeconomic status and geographic residency. Data from 752 interviews were analyzed. Adjusted rates of acceptance for face-to-face (37.0%; 95% CI 28.2, 46.7%) and videoconference (36.1%; 95% CI 17.8, 59.5%) interviews were within an a priori ± 5% margin of equivalence. Both interview conditions yielded highly diverse groups of admitted students. Having a higher medical college admission test score, grade point average, and self-identifying as disadvantaged increased odds of admission in both interview modalities. Integration of the videoconference interview did not impact the overall acceptance of a highly diverse and qualified group of applicants, and allowed rural and community physicians to participate in the medical school interview process as well as allowed campus faculty and medical student committee members

  1. Development and Validation of the Controller Acceptance Rating Scale (CARS): Results of Empirical Research

    NASA Technical Reports Server (NTRS)

    Lee, Katharine K.; Kerns, Karol; Bone, Randall

    2001-01-01

    The measurement of operational acceptability is important for the development, implementation, and evolution of air traffic management decision support tools. The Controller Acceptance Rating Scale was developed at NASA Ames Research Center for the development and evaluation of the Passive Final Approach Spacing Tool. CARS was modeled after a well-known pilot evaluation rating instrument, the Cooper-Harper Scale, and has since been used in the evaluation of the User Request Evaluation Tool, developed by MITRE's Center for Advanced Aviation System Development. In this paper, we provide a discussion of the development of CARS and an analysis of the empirical data collected with CARS to examine construct validity. Results of intraclass correlations indicated statistically significant reliability for the CARS. From the subjective workload data that were collected in conjunction with the CARS, it appears that the expected set of workload attributes was correlated with the CARS. As expected, the analysis also showed that CARS was a sensitive indicator of the impact of decision support tools on controller operations. Suggestions for future CARS development and its improvement are also provided.

  2. Rate Constants for Fine-Structure Excitations in O - H Collisions with Error Bars Obtained by Machine Learning

    NASA Astrophysics Data System (ADS)

    Vieira, Daniel; Krems, Roman

    2017-04-01

    Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.

  3. 45 CFR 98.102 - Content of Error Rate Reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Funds and State Matching and Maintenance-of-Effort (MOE Funds): (1) Percentage of cases with an error... cases in the sample with an error compared to the total number of cases in the sample; (2) Percentage of cases with an improper payment (both over and under payments), expressed as the total number of cases in...

  4. Definition of an Acceptable Glass composition Region (AGCR) via an Index System and a Partitioning Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D. K.; Taylor, A. S.; Edwards, T.B.

    2005-06-26

    The objective of this investigation was to appeal to the available ComPro{trademark} database of glass compositions and measured PCTs that have been generated in the study of High Level Waste (HLW)/Low Activity Waste (LAW) glasses to define an Acceptable Glass Composition Region (AGCR). The term AGCR refers to a glass composition region in which the durability response (as defined by the Product Consistency Test (PCT)) is less than some pre-defined, acceptable value that satisfies the Waste Acceptance Product Specifications (WAPS)--a value of 10 g/L was selected for this study. To assess the effectiveness of a specific classification or index systemmore » to differentiate between acceptable and unacceptable glasses, two types of errors (Type I and Type II errors) were monitored. A Type I error reflects that a glass with an acceptable durability response (i.e., a measured NL [B] < 10 g/L) is classified as unacceptable by the system of composition-based constraints. A Type II error occurs when a glass with an unacceptable durability response is classified as acceptable by the system of constraints. Over the course of the efforts to meet this objective, two approaches were assessed. The first (referred to as the ''Index System'') was based on the use of an evolving system of compositional constraints which were used to explore the possibility of defining an AGCR. This approach was primarily based on ''glass science'' insight to establish the compositional constraints. Assessments of the Brewer and Taylor Index Systems did not result in the definition of an AGCR. Although the Taylor Index System minimized Type I errors which allowed access to composition regions of interest to improve melt rate or increase waste loadings for DWPF as compared to the current durability model, Type II errors were also committed. In the context of the application of a particular classification system in the process control system, Type II errors are much more serious than Type I errors

  5. Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs

    NASA Astrophysics Data System (ADS)

    Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken

    2015-09-01

    To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.

  6. Errors and error rates in surgical pathology: an Association of Directors of Anatomic and Surgical Pathology survey.

    PubMed

    Cooper, Kumarasen

    2006-05-01

    This survey on errors in surgical pathology was commissioned by the Association of Directors of Anatomic and Surgical Pathology Council to explore broad perceptions and definitions of error in surgical pathology among its membership and to get some estimate of the perceived frequency of such errors. Overall, 41 laboratories were surveyed, with 34 responding to a confidential questionnaire. Six small, 13 medium, and 10 large laboratories (based on specimen volume), predominantly located in the United States, were surveyed (the remaining 5 laboratories did not provide this particular information). The survey questions, responses, and associated comments are presented. It is clear from this survey that we lack uniformity and consistency with respect to terminology, definitions, and the identification/documentation of errors in surgical pathology. An appeal is made for the urgent need to reach some consensus in order to address these discrepancies as we prepare to combat the issue of errors in surgical pathology.

  7. Correcting for sequencing error in maximum likelihood phylogeny inference.

    PubMed

    Kuhner, Mary K; McGill, James

    2014-11-04

    Accurate phylogenies are critical to taxonomy as well as studies of speciation processes and other evolutionary patterns. Accurate branch lengths in phylogenies are critical for dating and rate measurements. Such accuracy may be jeopardized by unacknowledged sequencing error. We use simulated data to test a correction for DNA sequencing error in maximum likelihood phylogeny inference. Over a wide range of data polymorphism and true error rate, we found that correcting for sequencing error improves recovery of the branch lengths, even if the assumed error rate is up to twice the true error rate. Low error rates have little effect on recovery of the topology. When error is high, correction improves topological inference; however, when error is extremely high, using an assumed error rate greater than the true error rate leads to poor recovery of both topology and branch lengths. The error correction approach tested here was proposed in 2004 but has not been widely used, perhaps because researchers do not want to commit to an estimate of the error rate. This study shows that correction with an approximate error rate is generally preferable to ignoring the issue. Copyright © 2014 Kuhner and McGill.

  8. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.

  9. Higher acceptance rates for abstracts written in English at a national research student meeting in a non-English speaking country.

    PubMed

    Khani, Afshin; Zarghami, Amin; Izadpanah, Fatemeh; Mahdizadeh, Hamid; Golestanifar, Leila

    2015-01-01

    The rate of English-written submissions is increasing in local meetings of non-English speaking countries. However, it seems that the quality of research and methodology of the studies has not progressed. This study aimed to evaluate the association of English writing and the acceptance for presentation following the peer-review process in the 13th Annual Research Congress of Iran's Medical Sciences Students (ARCIMSS). All 1817 complete abstracts submitted to the meeting were included in this cross-sectional study. Each was evaluated for the language of the text (English or Persian), final decision after peer review (accepted vs. rejected), presentation type (oral, poster discussion and poster) and the scores of reviewing process. There were 395 (21.7%) abstracts written in English and 1422 (78.3%) in Persian. The acceptance rate for English abstracts was 33.7% and for Persian 24.6% (OR = 1.56, 95% CI: 1.22-1.98). The rate of abstracts' acceptance for presentation in oral panels was significantly higher for English abstracts than for those in Persian (25.6% versus 15.7%, OR = 1.84, 95% CI: 1.14-2.99). By contrast, Persian abstracts were more likely to be accepted as poster panels than were English abstracts (74.9% versus 63.9%, OR = 1.68, 95% CI: 1.10-2.58). English-written abstracts have higher chance of acceptation in a non-English speaker country like Iran.

  10. Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains.

    PubMed

    Dettmer, Jan; Dosso, Stan E

    2012-10-01

    This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.

  11. Older Adults' Acceptance of Activity Trackers

    PubMed Central

    Preusse, Kimberly C.; Mitzner, Tracy L.; Fausset, Cara Bailey; Rogers, Wendy A.

    2016-01-01

    Objective To assess the usability and acceptance of activity tracking technologies by older adults. Method First in our multi-method approach, we conducted heuristic evaluations of two activity trackers that revealed potential usability barriers to acceptance. Next, questionnaires and interviews were administered to 16 older adults (Mage=70, SDage=3.09, rangeage= 65-75) before and after a 28-day field study to understand facilitators and additional barriers to acceptance. These measurements were supplemented with diary and usage data and assessed if and why users overcame usability issues. Results The heuristic evaluation revealed usability barriers in System Status Visibility; Error Prevention; and Consistency and Standards. The field study revealed additional barriers (e.g., accuracy, format), and acceptance-facilitators (e.g., goal-tracking, usefulness, encouragement). Discussion The acceptance of wellness management technologies, such as activity trackers, may be increased by addressing acceptance-barriers during deployment (e.g., providing tutorials on features that were challenging, communicating usefulness). PMID:26753803

  12. [Diagnostic Errors in Medicine].

    PubMed

    Buser, Claudia; Bankova, Andriyana

    2015-12-09

    The recognition of diagnostic errors in everyday practice can help improve patient safety. The most common diagnostic errors are the cognitive errors, followed by system-related errors and no fault errors. The cognitive errors often result from mental shortcuts, known as heuristics. The rate of cognitive errors can be reduced by a better understanding of heuristics and the use of checklists. The autopsy as a retrospective quality assessment of clinical diagnosis has a crucial role in learning from diagnostic errors. Diagnostic errors occur more often in primary care in comparison to hospital settings. On the other hand, the inpatient errors are more severe than the outpatient errors.

  13. Standardized error severity score (ESS) ratings to quantify risk associated with child restraint system (CRS) and booster seat misuse.

    PubMed

    Rudin-Brown, Christina M; Kramer, Chelsea; Langerak, Robin; Scipione, Andrea; Kelsey, Shelley

    2017-11-17

    Although numerous research studies have reported high levels of error and misuse of child restraint systems (CRS) and booster seats in experimental and real-world scenarios, conclusions are limited because they provide little information regarding which installation issues pose the highest risk and thus should be targeted for change. Beneficial to legislating bodies and researchers alike would be a standardized, globally relevant assessment of the potential injury risk associated with more common forms of CRS and booster seat misuse, which could be applied with observed error frequency-for example, in car seat clinics or during prototype user testing-to better identify and characterize the installation issues of greatest risk to safety. A group of 8 leading world experts in CRS and injury biomechanics, who were members of an international child safety project, estimated the potential injury severity associated with common forms of CRS and booster seat misuse. These injury risk error severity score (ESS) ratings were compiled and compared to scores from previous research that had used a similar procedure but with fewer respondents. To illustrate their application, and as part of a larger study examining CRS and booster seat labeling requirements, the new standardized ESS ratings were applied to objective installation performance data from 26 adult participants who installed a convertible (rear- vs. forward-facing) CRS and booster seat in a vehicle, and a child test dummy in the CRS and booster seat, using labels that only just met minimal regulatory requirements. The outcome measure, the risk priority number (RPN), represented the composite scores of injury risk and observed installation error frequency. Variability within the sample of ESS ratings in the present study was smaller than that generated in previous studies, indicating better agreement among experts on what constituted injury risk. Application of the new standardized ESS ratings to installation

  14. Sample size re-assessment leading to a raised sample size does not inflate type I error rate under mild conditions.

    PubMed

    Broberg, Per

    2013-07-19

    One major concern with adaptive designs, such as the sample size adjustable designs, has been the fear of inflating the type I error rate. In (Stat Med 23:1023-1038, 2004) it is however proven that when observations follow a normal distribution and the interim result show promise, meaning that the conditional power exceeds 50%, type I error rate is protected. This bound and the distributional assumptions may seem to impose undesirable restrictions on the use of these designs. In (Stat Med 30:3267-3284, 2011) the possibility of going below 50% is explored and a region that permits an increased sample size without inflation is defined in terms of the conditional power at the interim. A criterion which is implicit in (Stat Med 30:3267-3284, 2011) is derived by elementary methods and expressed in terms of the test statistic at the interim to simplify practical use. Mathematical and computational details concerning this criterion are exhibited. Under very general conditions the type I error rate is preserved under sample size adjustable schemes that permit a raise. The main result states that for normally distributed observations raising the sample size when the result looks promising, where the definition of promising depends on the amount of knowledge gathered so far, guarantees the protection of the type I error rate. Also, in the many situations where the test statistic approximately follows a normal law, the deviation from the main result remains negligible. This article provides details regarding the Weibull and binomial distributions and indicates how one may approach these distributions within the current setting. There is thus reason to consider such designs more often, since they offer a means of adjusting an important design feature at little or no cost in terms of error rate.

  15. Assessment of accuracy, fix success rate, and use of estimated horizontal position error (EHPE) to filter inaccurate data collected by a common commercially available GPS logger.

    PubMed

    Morris, Gail; Conner, L Mike

    2017-01-01

    Global positioning system (GPS) technologies have improved the ability of researchers to monitor wildlife; however, use of these technologies is often limited by monetary costs. Some researchers have begun to use commercially available GPS loggers as a less expensive means of tracking wildlife, but data regarding performance of these devices are limited. We tested a commercially available GPS logger (i-gotU GT-120) by placing loggers at ground control points with locations known to < 30 cm. In a preliminary investigation, we collected locations every 15 minutes for several days to estimate location error (LE) and circular error probable (CEP). Using similar methods, we then investigated the influence of cover on LE, CEP, and fix success rate (FSR) by constructing cover over ground control points. We found mean LE was < 10 m and mean 50% CEP was < 7 m. FSR was not significantly influenced by cover and in all treatments remained near 100%. Cover had a minor but significant effect on LE. Denser cover was associated with higher mean LE, but the difference in LE between the no cover and highest cover treatments was only 2.2 m. Finally, the most commonly used commercially available devices provide a measure of estimated horizontal position error (EHPE) which potentially may be used to filter inaccurate locations. Using data combined from the preliminary and cover investigations, we modeled LE as a function of EHPE and number of satellites. We found support for use of both EHPE and number of satellites in predicting LE; however, use of EHPE to filter inaccurate locations resulted in the loss of many locations with low error in return for only modest improvements in LE. Even without filtering, the accuracy of the logger was likely sufficient for studies which can accept average location errors of approximately 10 m.

  16. Automatically generated acceptance test: A software reliability experiment

    NASA Technical Reports Server (NTRS)

    Protzel, Peter W.

    1988-01-01

    This study presents results of a software reliability experiment investigating the feasibility of a new error detection method. The method can be used as an acceptance test and is solely based on empirical data about the behavior of internal states of a program. The experimental design uses the existing environment of a multi-version experiment previously conducted at the NASA Langley Research Center, in which the launch interceptor problem is used as a model. This allows the controlled experimental investigation of versions with well-known single and multiple faults, and the availability of an oracle permits the determination of the error detection performance of the test. Fault interaction phenomena are observed that have an amplifying effect on the number of error occurrences. Preliminary results indicate that all faults examined so far are detected by the acceptance test. This shows promise for further investigations, and for the employment of this test method on other applications.

  17. Guidelines for the assessment and acceptance of potential brain-dead organ donors

    PubMed Central

    Westphal, Glauco Adrieno; Garcia, Valter Duro; de Souza, Rafael Lisboa; Franke, Cristiano Augusto; Vieira, Kalinca Daberkow; Birckholz, Viviane Renata Zaclikevis; Machado, Miriam Cristine; de Almeida, Eliana Régia Barbosa; Machado, Fernando Osni; Sardinha, Luiz Antônio da Costa; Wanzuita, Raquel; Silvado, Carlos Eduardo Soares; Costa, Gerson; Braatz, Vera; Caldeira Filho, Milton; Furtado, Rodrigo; Tannous, Luana Alves; de Albuquerque, André Gustavo Neves; Abdala, Edson; Gonçalves, Anderson Ricardo Roman; Pacheco-Moreira, Lúcio Filgueiras; Dias, Fernando Suparregui; Fernandes, Rogério; Giovanni, Frederico Di; de Carvalho, Frederico Bruzzi; Fiorelli, Alfredo; Teixeira, Cassiano; Feijó, Cristiano; Camargo, Spencer Marcantonio; de Oliveira, Neymar Elias; David, André Ibrahim; Prinz, Rafael Augusto Dantas; Herranz, Laura Brasil; de Andrade, Joel

    2016-01-01

    Organ transplantation is the only alternative for many patients with terminal diseases. The increasing disproportion between the high demand for organ transplants and the low rate of transplants actually performed is worrisome. Some of the causes of this disproportion are errors in the identification of potential organ donors and in the determination of contraindications by the attending staff. Therefore, the aim of the present document is to provide guidelines for intensive care multi-professional staffs for the recognition, assessment and acceptance of potential organ donors. PMID:27737418

  18. Reduction in Hospital-Wide Clinical Laboratory Specimen Identification Errors following Process Interventions: A 10-Year Retrospective Observational Study

    PubMed Central

    Ning, Hsiao-Chen; Lin, Chia-Ni; Chiu, Daniel Tsun-Yee; Chang, Yung-Ta; Wen, Chiao-Ni; Peng, Shu-Yu; Chu, Tsung-Lan; Yu, Hsin-Ming; Wu, Tsu-Lan

    2016-01-01

    Background Accurate patient identification and specimen labeling at the time of collection are crucial steps in the prevention of medical errors, thereby improving patient safety. Methods All patient specimen identification errors that occurred in the outpatient department (OPD), emergency department (ED), and inpatient department (IPD) of a 3,800-bed academic medical center in Taiwan were documented and analyzed retrospectively from 2005 to 2014. To reduce such errors, the following series of strategies were implemented: a restrictive specimen acceptance policy for the ED and IPD in 2006; a computer-assisted barcode positive patient identification system for the ED and IPD in 2007 and 2010, and automated sample labeling combined with electronic identification systems introduced to the OPD in 2009. Results Of the 2000345 specimens collected in 2005, 1023 (0.0511%) were identified as having patient identification errors, compared with 58 errors (0.0015%) among 3761238 specimens collected in 2014, after serial interventions; this represents a 97% relative reduction. The total number (rate) of institutional identification errors contributed from the ED, IPD, and OPD over a 10-year period were 423 (0.1058%), 556 (0.0587%), and 44 (0.0067%) errors before the interventions, and 3 (0.0007%), 52 (0.0045%) and 3 (0.0001%) after interventions, representing relative 99%, 92% and 98% reductions, respectively. Conclusions Accurate patient identification is a challenge of patient safety in different health settings. The data collected in our study indicate that a restrictive specimen acceptance policy, computer-generated positive identification systems, and interdisciplinary cooperation can significantly reduce patient identification errors. PMID:27494020

  19. A meta-analysis of dropout rates in acceptance and commitment therapy.

    PubMed

    Ong, Clarissa W; Lee, Eric B; Twohig, Michael P

    2018-05-01

    Many psychotherapies, including cognitive behavioral therapy and acceptance and commitment therapy (ACT), have been found to be effective interventions for a range of psychological and behavioral health concerns. Another aspect of treatment utility to consider is dropout, as interventions only work if clients are engaged in them. To date, no research has used meta-analytic methods to examine dropout in ACT. Thus, the objectives of the present meta-analysis were to (1) determine the aggregate dropout rate for ACT in randomized controlled trials, (2) compare dropout rates in ACT to those in other psychotherapies, and (3) identify potential moderators of dropout in ACT. Our literature search yielded 68 studies, representing 4,729 participants. The weighted mean dropout rates in ACT exclusive conditions and ACT inclusive conditions (i.e., those that included an ACT intervention) were 15.8% (95% CI: 11.9%, 20.1%) and 16.0% (95% CI: 12.5%, 19.8%), respectively. ACT dropout rates were not significantly different from those of established psychological treatments. In addition, dropout rates did not vary by client characteristics or study methodological quality. However, master's-level clinicians/therapists (weighted mean = 29.9%, CI: 17.6%, 43.8%) were associated with higher dropout than psychologists (weighted mean = 12.4%, 95% CI: 6.7%, 19.4%). More research on manipulable, process variables that influence dropout is needed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The rate of cis-trans conformation errors is increasing in low-resolution crystal structures.

    PubMed

    Croll, Tristan Ian

    2015-03-01

    Cis-peptide bonds (with the exception of X-Pro) are exceedingly rare in native protein structures, yet a check for these is not currently included in the standard workflow for some common crystallography packages nor in the automated quality checks that are applied during submission to the Protein Data Bank. This appears to be leading to a growing rate of inclusion of spurious cis-peptide bonds in low-resolution structures both in absolute terms and as a fraction of solved residues. Most concerningly, it is possible for structures to contain very large numbers (>1%) of spurious cis-peptide bonds while still achieving excellent quality reports from MolProbity, leading to concerns that ignoring such errors is allowing software to overfit maps without producing telltale errors in, for example, the Ramachandran plot.

  1. Data Analysis & Statistical Methods for Command File Errors

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Waggoner, Bruce; Bryant, Larry

    2014-01-01

    This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.

  2. UGV acceptance testing

    NASA Astrophysics Data System (ADS)

    Kramer, Jeffrey A.; Murphy, Robin R.

    2006-05-01

    With over 100 models of unmanned vehicles now available for military and civilian safety, security or rescue applications, it is important to for agencies to establish acceptance testing. However, there appears to be no general guidelines for what constitutes a reasonable acceptance test. This paper describes i) a preliminary method for acceptance testing by a customer of the mechanical and electrical components of an unmanned ground vehicle system, ii) how it has been applied to a man-packable micro-robot, and iii) discusses the value of testing both to ensure that the customer has a workable system and to improve design. The test method automated the operation of the robot to repeatedly exercise all aspects and combinations of components on the robot for 6 hours. The acceptance testing process uncovered many failures consistent with those shown to occur in the field, showing that testing by the user does predict failures. The process also demonstrated that the testing by the manufacturer can provide important design data that can be used to identify, diagnose, and prevent long-term problems. Also, the structured testing environment showed that sensor systems can be used to predict errors and changes in performance, as well as uncovering unmodeled behavior in subsystems.

  3. Bootstrap-based methods for estimating standard errors in Cox's regression analyses of clustered event times.

    PubMed

    Xiao, Yongling; Abrahamowicz, Michal

    2010-03-30

    We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.

  4. Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.

    2018-06-01

    We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .

  5. Outlier removal, sum scores, and the inflation of the Type I error rate in independent samples t tests: the power of alternatives and recommendations.

    PubMed

    Bakker, Marjan; Wicherts, Jelte M

    2014-09-01

    In psychology, outliers are often excluded before running an independent samples t test, and data are often nonnormal because of the use of sum scores based on tests and questionnaires. This article concerns the handling of outliers in the context of independent samples t tests applied to nonnormal sum scores. After reviewing common practice, we present results of simulations of artificial and actual psychological data, which show that the removal of outliers based on commonly used Z value thresholds severely increases the Type I error rate. We found Type I error rates of above 20% after removing outliers with a threshold value of Z = 2 in a short and difficult test. Inflations of Type I error rates are particularly severe when researchers are given the freedom to alter threshold values of Z after having seen the effects thereof on outcomes. We recommend the use of nonparametric Mann-Whitney-Wilcoxon tests or robust Yuen-Welch tests without removing outliers. These alternatives to independent samples t tests are found to have nominal Type I error rates with a minimal loss of power when no outliers are present in the data and to have nominal Type I error rates and good power when outliers are present. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  6. Telephone reminder call in addition to mailing notification improved the acceptance rate of colonoscopy in patients with a positive fecal immunochemical test.

    PubMed

    Cha, Jae Myung; Lee, Joung Il; Joo, Kwang Ro; Shin, Hyun Phil; Park, Jae Jun

    2011-11-01

    Colorectal cancer (CRC) screening with a fecal immunochemical test (FIT) reduces CRC mortality; however, the acceptance rate of a colonoscopy in patients with a positive FIT was not high. The aim of this study was therefore to determine whether a telephone reminder call could increase the acceptance rate of colonoscopy in patients with a positive FIT. We performed FITs for asymptomatic participants aged 50 years or older. For patients with a positive FIT, a colonoscopy was recommended via mailing notification only (control group) or via a telephone reminder call after mailing notification (intervention group). The calls informed patients about the significance of a positive FIT and encouraged a colonoscopy following positive FITs. The FIT results were positive in 90 of 8,318 patients who received FITs. Fifty patients were advised to receive colonoscopy via mailing notification only, and 40 patients were advised via both a telephone reminder call and a mailing notification. The acceptance rate of colonoscopy was significantly higher in the intervention group than in the control group (p = 0.038). The lesion-detection rate for an advanced neoplasia was also significantly higher in the intervention group than in the control group (p = 0.046). According to multivariate logistic regression analysis, a telephone reminder was a significant determinant of colonoscopy acceptance in patients with a positive FIT (OR 4.33; 95% CI, 1.19-15.75; p = 0.026). Telephone reminder calls in addition to mailing notification improved the acceptance rate of colonoscopy in patients with a positive FIT.

  7. Estimation of pulse rate from ambulatory PPG using ensemble empirical mode decomposition and adaptive thresholding.

    PubMed

    Pittara, Melpo; Theocharides, Theocharis; Orphanidou, Christina

    2017-07-01

    A new method for deriving pulse rate from PPG obtained from ambulatory patients is presented. The method employs Ensemble Empirical Mode Decomposition to identify the pulsatile component from noise-corrupted PPG, and then uses a set of physiologically-relevant rules followed by adaptive thresholding, in order to estimate the pulse rate in the presence of noise. The method was optimized and validated using 63 hours of data obtained from ambulatory hospital patients. The F1 score obtained with respect to expertly annotated data was 0.857 and the mean absolute errors of estimated pulse rates with respect to heart rates obtained from ECG collected in parallel were 1.72 bpm for "good" quality PPG and 4.49 bpm for "bad" quality PPG. Both errors are within the clinically acceptable margin-of-error for pulse rate/heart rate measurements, showing the promise of the proposed approach for inclusion in next generation wearable sensors.

  8. Impact of Spacecraft Shielding on Direct Ionization Soft Error Rates for sub-130 nm Technologies

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Michael M.; Sanders, Anthony B.; Ladbury, Raymond L.; Oldham, Timothy R.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kenneth P.

    2010-01-01

    We use ray tracing software to model various levels of spacecraft shielding complexity and energy deposition pulse height analysis to study how it affects the direct ionization soft error rate of microelectronic components in space. The analysis incorporates the galactic cosmic ray background, trapped proton, and solar heavy ion environments as well as the October 1989 and July 2000 solar particle events.

  9. Impact of Spacecraft Shielding on Direct Ionization Soft Error Rates for Sub-130 nm Technologies

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Sanders, Anthony B.; Ladbury, Raymond L.; Oldham, Timothy R.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kenneth P.

    2010-01-01

    We use ray tracing software to model various levels of spacecraft shielding complexity and energy deposition pulse height analysis to study how it affects the direct ionization soft error rate of microelectronic components in space. The analysis incorporates the galactic cosmic ray background, trapped proton, and solar heavy ion environments as well as the October 1989 and July 2000 solar particle events.

  10. Sensory evaluation ratings and melting characteristics show that okra gum is an acceptable milk-fat ingredient substitute in chocolate frozen dairy dessert.

    PubMed

    Romanchik-Cerpovicz, Joelle E; Costantino, Amanda C; Gunn, Laura H

    2006-04-01

    Reducing dietary fat intake may lower the risk of developing coronary heart disease. This study examined the feasibility of substituting okra gum for 25%, 50%, 75%, or 100% milk fat in frozen chocolate dairy dessert. Fifty-six consumers evaluated the frozen dairy desserts using a hedonic scale. Consumers rated color, smell, texture, flavor, aftertaste, and overall acceptability characteristics of all products as acceptable. All ratings were similar among the products except for the aftertaste rating, which was significantly lower for chocolate frozen dairy dessert containing 100% milk-fat replacement with okra gum compared with the control (0% milk-fat replacement) (P<0.05). Whereas melting points of all products were similar, melting rates slowed significantly as milk-fat replacement with okra gum increased, suggesting that okra gum may increase the stability of frozen dairy desserts (P<0.05). Overall, this study shows that okra gum is an acceptable milk-fat ingredient substitute in chocolate frozen dairy dessert.

  11. Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy.

    PubMed

    Andersen, Claus E; Nielsen, Søren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari

    2009-11-01

    The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time

  12. Acceptance sampling for attributes via hypothesis testing and the hypergeometric distribution

    NASA Astrophysics Data System (ADS)

    Samohyl, Robert Wayne

    2017-10-01

    This paper questions some aspects of attribute acceptance sampling in light of the original concepts of hypothesis testing from Neyman and Pearson (NP). Attribute acceptance sampling in industry, as developed by Dodge and Romig (DR), generally follows the international standards of ISO 2859, and similarly the Brazilian standards NBR 5425 to NBR 5427 and the United States Standards ANSI/ASQC Z1.4. The paper evaluates and extends the area of acceptance sampling in two directions. First, by suggesting the use of the hypergeometric distribution to calculate the parameters of sampling plans avoiding the unnecessary use of approximations such as the binomial or Poisson distributions. We show that, under usual conditions, discrepancies can be large. The conclusion is that the hypergeometric distribution, ubiquitously available in commonly used software, is more appropriate than other distributions for acceptance sampling. Second, and more importantly, we elaborate the theory of acceptance sampling in terms of hypothesis testing rigorously following the original concepts of NP. By offering a common theoretical structure, hypothesis testing from NP can produce a better understanding of applications even beyond the usual areas of industry and commerce such as public health and political polling. With the new procedures, both sample size and sample error can be reduced. What is unclear in traditional acceptance sampling is the necessity of linking the acceptable quality limit (AQL) exclusively to the producer and the lot quality percent defective (LTPD) exclusively to the consumer. In reality, the consumer should also be preoccupied with a value of AQL, as should the producer with LTPD. Furthermore, we can also question why type I error is always uniquely associated with the producer as producer risk, and likewise, the same question arises with consumer risk which is necessarily associated with type II error. The resolution of these questions is new to the literature. The

  13. Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  14. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  15. Operational Interventions to Maintenance Error

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Walter, Diane; Dulchinos, VIcki

    1997-01-01

    A significant proportion of aviation accidents and incidents are known to be tied to human error. However, research of flight operational errors has shown that so-called pilot error often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the team7 concept for maintenance operations and in tailoring programs to fit the needs of technical opeRAtions. Nevertheless, there remains a dual challenge: 1) to develop human factors interventions which are directly supported by reliable human error data, and 2) to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.

  16. Demonstrating the robustness of population surveillance data: implications of error rates on demographic and mortality estimates.

    PubMed

    Fottrell, Edward; Byass, Peter; Berhane, Yemane

    2008-03-25

    As in any measurement process, a certain amount of error may be expected in routine population surveillance operations such as those in demographic surveillance sites (DSSs). Vital events are likely to be missed and errors made no matter what method of data capture is used or what quality control procedures are in place. The extent to which random errors in large, longitudinal datasets affect overall health and demographic profiles has important implications for the role of DSSs as platforms for public health research and clinical trials. Such knowledge is also of particular importance if the outputs of DSSs are to be extrapolated and aggregated with realistic margins of error and validity. This study uses the first 10-year dataset from the Butajira Rural Health Project (BRHP) DSS, Ethiopia, covering approximately 336,000 person-years of data. Simple programmes were written to introduce random errors and omissions into new versions of the definitive 10-year Butajira dataset. Key parameters of sex, age, death, literacy and roof material (an indicator of poverty) were selected for the introduction of errors based on their obvious importance in demographic and health surveillance and their established significant associations with mortality. Defining the original 10-year dataset as the 'gold standard' for the purposes of this investigation, population, age and sex compositions and Poisson regression models of mortality rate ratios were compared between each of the intentionally erroneous datasets and the original 'gold standard' 10-year data. The composition of the Butajira population was well represented despite introducing random errors, and differences between population pyramids based on the derived datasets were subtle. Regression analyses of well-established mortality risk factors were largely unaffected even by relatively high levels of random errors in the data. The low sensitivity of parameter estimates and regression analyses to significant amounts of

  17. Impact of automated dispensing cabinets on medication selection and preparation error rates in an emergency department: a prospective and direct observational before-and-after study.

    PubMed

    Fanning, Laura; Jones, Nick; Manias, Elizabeth

    2016-04-01

    The implementation of automated dispensing cabinets (ADCs) in healthcare facilities appears to be increasing, in particular within Australian hospital emergency departments (EDs). While the investment in ADCs is on the increase, no studies have specifically investigated the impacts of ADCs on medication selection and preparation error rates in EDs. Our aim was to assess the impact of ADCs on medication selection and preparation error rates in an ED of a tertiary teaching hospital. Pre intervention and post intervention study involving direct observations of nurses completing medication selection and preparation activities before and after the implementation of ADCs in the original and new emergency departments within a 377-bed tertiary teaching hospital in Australia. Medication selection and preparation error rates were calculated and compared between these two periods. Secondary end points included the impact on medication error type and severity. A total of 2087 medication selection and preparations were observed among 808 patients pre and post intervention. Implementation of ADCs in the new ED resulted in a 64.7% (1.96% versus 0.69%, respectively, P = 0.017) reduction in medication selection and preparation errors. All medication error types were reduced in the post intervention study period. There was an insignificant impact on medication error severity as all errors detected were categorised as minor. The implementation of ADCs could reduce medication selection and preparation errors and improve medication safety in an ED setting. © 2015 John Wiley & Sons, Ltd.

  18. Bit error rate performance of Image Processing Facility high density tape recorders

    NASA Technical Reports Server (NTRS)

    Heffner, P.

    1981-01-01

    The Image Processing Facility at the NASA/Goddard Space Flight Center uses High Density Tape Recorders (HDTR's) to transfer high volume image data and ancillary information from one system to another. For ancillary information, it is required that very low bit error rates (BER's) accompany the transfers. The facility processes about 10 to the 11th bits of image data per day from many sensors, involving 15 independent processing systems requiring the use of HDTR's. When acquired, the 16 HDTR's offered state-of-the-art performance of 1 x 10 to the -6th BER as specified. The BER requirement was later upgraded in two steps: (1) incorporating data randomizing circuitry to yield a BER of 2 x 10 to the -7th and (2) further modifying to include a bit error correction capability to attain a BER of 2 x 10 to the -9th. The total improvement factor was 500 to 1. Attention is given here to the background, technical approach, and final results of these modifications. Also discussed are the format of the data recorded by the HDTR, the magnetic tape format, the magnetic tape dropout characteristics as experienced in the Image Processing Facility, the head life history, and the reliability of the HDTR's.

  19. Task errors by emergency physicians are associated with interruptions, multitasking, fatigue and working memory capacity: a prospective, direct observation study.

    PubMed

    Westbrook, Johanna I; Raban, Magdalena Z; Walter, Scott R; Douglas, Heather

    2018-01-09

    Interruptions and multitasking have been demonstrated in experimental studies to reduce individuals' task performance. These behaviours are frequently used by clinicians in high-workload, dynamic clinical environments, yet their effects have rarely been studied. To assess the relative contributions of interruptions and multitasking by emergency physicians to prescribing errors. 36 emergency physicians were shadowed over 120 hours. All tasks, interruptions and instances of multitasking were recorded. Physicians' working memory capacity (WMC) and preference for multitasking were assessed using the Operation Span Task (OSPAN) and Inventory of Polychronic Values. Following observation, physicians were asked about their sleep in the previous 24 hours. Prescribing errors were used as a measure of task performance. We performed multivariate analysis of prescribing error rates to determine associations with interruptions and multitasking, also considering physician seniority, age, psychometric measures, workload and sleep. Physicians experienced 7.9 interruptions/hour. 28 clinicians were observed prescribing 239 medication orders which contained 208 prescribing errors. While prescribing, clinicians were interrupted 9.4 times/hour. Error rates increased significantly if physicians were interrupted (rate ratio (RR) 2.82; 95% CI 1.23 to 6.49) or multitasked (RR 1.86; 95% CI 1.35 to 2.56) while prescribing. Having below-average sleep showed a >15-fold increase in clinical error rate (RR 16.44; 95% CI 4.84 to 55.81). WMC was protective against errors; for every 10-point increase on the 75-point OSPAN, a 19% decrease in prescribing errors was observed. There was no effect of polychronicity, workload, physician gender or above-average sleep on error rates. Interruptions, multitasking and poor sleep were associated with significantly increased rates of prescribing errors among emergency physicians. WMC mitigated the negative influence of these factors to an extent. These

  20. Error coding simulations in C

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1994-01-01

    When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.

  1. SITE project. Phase 1: Continuous data bit-error-rate testing

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Kerczewski, Robert J.

    1992-01-01

    The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.

  2. Primer ID Validates Template Sampling Depth and Greatly Reduces the Error Rate of Next-Generation Sequencing of HIV-1 Genomic RNA Populations

    PubMed Central

    Zhou, Shuntai; Jones, Corbin; Mieczkowski, Piotr

    2015-01-01

    ABSTRACT Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize

  3. Error-Free Text Typing Performance of an Inductive Intra-Oral Tongue Computer Interface for Severely Disabled Individuals.

    PubMed

    Andreasen Struijk, Lotte N S; Bentsen, Bo; Gaihede, Michael; Lontis, Eugen R

    2017-11-01

    For severely paralyzed individuals, alternative computer interfaces are becoming increasingly essential for everyday life as social and vocational activities are facilitated by information technology and as the environment becomes more automatic and remotely controllable. Tongue computer interfaces have proven to be desirable by the users partly due to their high degree of aesthetic acceptability, but so far the mature systems have shown a relatively low error-free text typing efficiency. This paper evaluated the intra-oral inductive tongue computer interface (ITCI) in its intended use: Error-free text typing in a generally available text editing system, Word. Individuals with tetraplegia and able bodied individuals used the ITCI for typing using a MATLAB interface and for Word typing for 4 to 5 experimental days, and the results showed an average error-free text typing rate in Word of 11.6 correct characters/min across all participants and of 15.5 correct characters/min for participants familiar with tongue piercings. Improvements in typing rates between the sessions suggest that typing ratescan be improved further through long-term use of the ITCI.

  4. Acceptance threshold hypothesis is supported by chemical similarity of cuticular hydrocarbons in a stingless bee, Melipona asilvai.

    PubMed

    Nascimento, D L; Nascimento, F S

    2012-11-01

    The ability to discriminate nestmates from non-nestmates in insect societies is essential to protect colonies from conspecific invaders. The acceptance threshold hypothesis predicts that organisms whose recognition systems classify recipients without errors should optimize the balance between acceptance and rejection. In this process, cuticular hydrocarbons play an important role as cues of recognition in social insects. The aims of this study were to determine whether guards exhibit a restrictive level of rejection towards chemically distinct individuals, becoming more permissive during the encounters with either nestmate or non-nestmate individuals bearing chemically similar profiles. The study demonstrates that Melipona asilvai (Hymenoptera: Apidae: Meliponini) guards exhibit a flexible system of nestmate recognition according to the degree of chemical similarity between the incoming forager and its own cuticular hydrocarbons profile. Guards became less restrictive in their acceptance rates when they encounter non-nestmates with highly similar chemical profiles, which they probably mistake for nestmates, hence broadening their acceptance level.

  5. Who Do Hospital Physicians and Nurses Go to for Advice About Medications? A Social Network Analysis and Examination of Prescribing Error Rates.

    PubMed

    Creswick, Nerida; Westbrook, Johanna Irene

    2015-09-01

    To measure the weekly medication advice-seeking networks of hospital staff, to compare patterns across professional groups, and to examine these in the context of prescribing error rates. A social network analysis was conducted. All 101 staff in 2 wards in a large, academic teaching hospital in Sydney, Australia, were surveyed (response rate, 90%) using a detailed social network questionnaire. The extent of weekly medication advice seeking was measured by density of connections, proportion of reciprocal relationships by reciprocity, number of colleagues to whom each person provided advice by in-degree, and perceptions of amount and impact of advice seeking between physicians and nurses. Data on prescribing error rates from the 2 wards were compared. Weekly medication advice-seeking networks were sparse (density: 7% ward A and 12% ward B). Information sharing across professional groups was modest, and rates of reciprocation of advice were low (9% ward A, 14% ward B). Pharmacists provided advice to most people, and junior physicians also played central roles. Senior physicians provided medication advice to few people. Many staff perceived that physicians rarely sought advice from nurses when prescribing, but almost all believed that an increase in communication between physicians and nurses about medications would improve patient safety. The medication networks in ward B had higher measures for density, reciprocation, and fewer senior physicians who were isolates. Ward B had a significantly lower rate of both procedural and clinical prescribing errors than ward A (0.63 clinical prescribing errors per admission [95%CI, 0.47-0.79] versus 1.81/ admission [95%CI, 1.49-2.13]). Medication advice-seeking networks among staff on hospital wards are limited. Hubs of advice provision include pharmacists, junior physicians, and senior nurses. Senior physicians are poorly integrated into medication advice networks. Strategies to improve the advice-giving networks between senior

  6. Small refractive errors--their correction and practical importance.

    PubMed

    Skrbek, Matej; Petrová, Sylvie

    2013-04-01

    Small refractive errors present a group of specifc far-sighted refractive dispositions that are compensated by enhanced accommodative exertion and aren't exhibited by loss of the visual acuity. This paper should answer a few questions about their correction, flowing from theoretical presumptions and expectations of this dilemma. The main goal of this research was to (dis)confirm the hypothesis about convenience, efficiency and frequency of the correction that do not raise the visual acuity (or if the improvement isn't noticeable). The next goal was to examine the connection between this correction and other factors (age, size of the refractive error, etc.). The last aim was to describe the subjective personal rating of the correction of these small refractive errors, and to determine the minimal improvement of the visual acuity, that is attractive enough for the client to purchase the correction (glasses, contact lenses). It was confirmed, that there's an indispensable group of subjects with good visual acuity, where the correction is applicable, although it doesn't improve the visual acuity much. The main importance is to eliminate the asthenopia. The prime reason for acceptance of the correction is typically changing during the life, so as the accommodation is declining. Young people prefer the correction on the ground of the asthenopia, caused by small refractive error or latent strabismus; elderly people acquire the correction because of improvement of the visual acuity. Generally the correction was found useful in more than 30%, if the gain of the visual acuity was at least 0,3 of the decimal row.

  7. Passport Officers’ Errors in Face Matching

    PubMed Central

    White, David; Kemp, Richard I.; Jenkins, Rob; Matheson, Michael; Burton, A. Mike

    2014-01-01

    Photo-ID is widely used in security settings, despite research showing that viewers find it very difficult to match unfamiliar faces. Here we test participants with specialist experience and training in the task: passport-issuing officers. First, we ask officers to compare photos to live ID-card bearers, and observe high error rates, including 14% false acceptance of ‘fraudulent’ photos. Second, we compare passport officers with a set of student participants, and find equally poor levels of accuracy in both groups. Finally, we observe that passport officers show no performance advantage over the general population on a standardised face-matching task. Across all tasks, we observe very large individual differences: while average performance of passport staff was poor, some officers performed very accurately – though this was not related to length of experience or training. We propose that improvements in security could be made by emphasising personnel selection. PMID:25133682

  8. Passport officers' errors in face matching.

    PubMed

    White, David; Kemp, Richard I; Jenkins, Rob; Matheson, Michael; Burton, A Mike

    2014-01-01

    Photo-ID is widely used in security settings, despite research showing that viewers find it very difficult to match unfamiliar faces. Here we test participants with specialist experience and training in the task: passport-issuing officers. First, we ask officers to compare photos to live ID-card bearers, and observe high error rates, including 14% false acceptance of 'fraudulent' photos. Second, we compare passport officers with a set of student participants, and find equally poor levels of accuracy in both groups. Finally, we observe that passport officers show no performance advantage over the general population on a standardised face-matching task. Across all tasks, we observe very large individual differences: while average performance of passport staff was poor, some officers performed very accurately--though this was not related to length of experience or training. We propose that improvements in security could be made by emphasising personnel selection.

  9. General error analysis in the relationship between free thyroxine and thyrotropin and its clinical relevance.

    PubMed

    Goede, Simon L; Leow, Melvin Khee-Shing

    2013-01-01

    This treatise investigates error sources in measurements applicable to the hypothalamus-pituitary-thyroid (HPT) system of analysis for homeostatic set point computation. The hypothalamus-pituitary transfer characteristic (HP curve) describes the relationship between plasma free thyroxine [FT4] and thyrotropin [TSH]. We define the origin, types, causes, and effects of errors that are commonly encountered in TFT measurements and examine how we can interpret these to construct a reliable HP function for set point establishment. The error sources in the clinical measurement procedures are identified and analyzed in relation to the constructed HP model. The main sources of measurement and interpretation uncertainties are (1) diurnal variations in [TSH], (2) TFT measurement variations influenced by timing of thyroid medications, (3) error sensitivity in ranges of [TSH] and [FT4] (laboratory assay dependent), (4) rounding/truncation of decimals in [FT4] which in turn amplify curve fitting errors in the [TSH] domain in the lower [FT4] range, (5) memory effects (rate-independent hysteresis effect). When the main uncertainties in thyroid function tests (TFT) are identified and analyzed, we can find the most acceptable model space with which we can construct the best HP function and the related set point area.

  10. Peat Accumulation in the Everglades (USA) during the Past 4000 Years: Rates, Drivers, and Sources of Error

    NASA Astrophysics Data System (ADS)

    Glaser, P. H.; Volin, J. C.; Givnish, T. J.; Hansen, B. C.; Stricker, C. A.

    2012-12-01

    Tropical and sub-tropical wetlands are considered to be globally important sources for greenhouse gases but their capacity to store carbon is presumably limited by warm soil temperatures and high rates of decomposition. Unfortunately, these assumptions can be difficult to test across long timescales because the chronology, cumulative mass, and completeness of a sedimentary profile are often difficult to establish. We therefore made a detailed analysis of a core from the principal drainage outlet of the Everglades of South Florida, to assess these problems and determine the factors that could govern carbon accumulation in this large sub-tropical wetland. AMS-14C dating provided direct evidence for both hard-water and open-system sources of dating errors, whereas cumulative mass varied depending upon the type of method used. Radiocarbon dates of gastropod shells, nevertheless, seemed to provide a reliable chronology for this core once the hard-water error was quantified and subtracted. Long-term accumulation rates were then calculated to be 12.1 g m-2 yr-1 for carbon, which is less than half the average rate reported for northern and tropical peatlands. Moreover, accumulation rates remained slow and relatively steady for both organic and inorganic strata, and the slow rate of sediment accretion ( 0.2 mm yr-1) tracked the correspondingly slow rise in sea level (0.35 mm yr-1 ) reported for South Florida over the past 4000 years. These results suggest that sea level and the local geologic setting may impose long-term constraints on rates of sediment and carbon accumulation in the Everglades and other wetlands

  11. Freeform solar concentrator with a highly asymmetric acceptance cone

    NASA Astrophysics Data System (ADS)

    Wheelwright, Brian; Angel, J. Roger P.; Coughenour, Blake; Hammer, Kimberly

    2014-10-01

    A solar concentrator with a highly asymmetric acceptance cone is investigated. Concentrating photovoltaic systems require dual-axis sun tracking to maintain nominal concentration throughout the day. In addition to collecting direct rays from the solar disk, which subtends ~0.53 degrees, concentrating optics must allow for in-field tracking errors due to mechanical misalignment of the module, wind loading, and control loop biases. The angular range over which the concentrator maintains <90% of on-axis throughput is defined as the optical acceptance angle. Concentrators with substantial rotational symmetry likewise exhibit rotationally symmetric acceptance angles. In the field, this is sometimes a poor match with azimuth-elevation trackers, which have inherently asymmetric tracking performance. Pedestal-mounted trackers with low torsional stiffness about the vertical axis have better elevation tracking than azimuthal tracking. Conversely, trackers which rotate on large-footprint circular tracks are often limited by elevation tracking performance. We show that a line-focus concentrator, composed of a parabolic trough primary reflector and freeform refractive secondary, can be tailored to have a highly asymmetric acceptance angle. The design is suitable for a tracker with excellent tracking accuracy in the elevation direction, and poor accuracy in the azimuthal direction. In the 1000X design given, when trough optical errors (2mrad rms slope deviation) are accounted for, the azimuthal acceptance angle is +/- 1.65°, while the elevation acceptance angle is only +/-0.29°. This acceptance angle does not include the angular width of the sun, which consumes nearly all of the elevation tolerance at this concentration level. By decreasing the average concentration, the elevation acceptance angle can be increased. This is well-suited for a pedestal alt-azimuth tracker with a low cost slew bearing (without anti-backlash features).

  12. Parallel transmission pulse design with explicit control for the specific absorption rate in the presence of radiofrequency errors.

    PubMed

    Martin, Adrian; Schiavi, Emanuele; Eryaman, Yigitcan; Herraiz, Joaquin L; Gagoski, Borjan; Adalsteinsson, Elfar; Wald, Lawrence L; Guerin, Bastien

    2016-06-01

    A new framework for the design of parallel transmit (pTx) pulses is presented introducing constraints for local and global specific absorption rate (SAR) in the presence of errors in the radiofrequency (RF) transmit chain. The first step is the design of a pTx RF pulse with explicit constraints for global and local SAR. Then, the worst possible SAR associated with that pulse due to RF transmission errors ("worst-case SAR") is calculated. Finally, this information is used to re-calculate the pulse with lower SAR constraints, iterating this procedure until its worst-case SAR is within safety limits. Analysis of an actual pTx RF transmit chain revealed amplitude errors as high as 8% (20%) and phase errors above 3° (15°) for spokes (spiral) pulses. Simulations show that using the proposed framework, pulses can be designed with controlled "worst-case SAR" in the presence of errors of this magnitude at minor cost of the excitation profile quality. Our worst-case SAR-constrained pTx design strategy yields pulses with local and global SAR within the safety limits even in the presence of RF transmission errors. This strategy is a natural way to incorporate SAR safety factors in the design of pTx pulses. Magn Reson Med 75:2493-2504, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Minimizing Experimental Error in Thinning Research

    Treesearch

    C. B. Briscoe

    1964-01-01

    Many diverse approaches have been made prescribing and evaluating thinnings on an objective basis. None of the techniques proposed hasbeen widely accepted. Indeed. none has been proven superior to the others nor even widely applicable. There are at least two possible reasons for this: none of the techniques suggested is of any general utility and/or experimental error...

  14. Trends and weekly and seasonal cycles in the rate of errors in the clinical management of hospitalized patients.

    PubMed

    Buckley, David; Bulger, David

    2012-08-01

    Studies on the rate of adverse events in hospitalized patients seldom examine temporal patterns. This study presents evidence of both weekly and annual cycles. The study is based on a large and diverse data set, with nearly 5 yrs of data from a voluntary staff-incident reporting system of a large public health care provider in rural southeastern Australia. The data of 63 health care facilities were included, ranging from large non-metropolitan hospitals to small community and aged health care facilities. Poisson regression incorporating an observation-driven autoregressive effect using the GLARMA framework was used to explain daily error counts with respect to long-term trend and weekly and annual effects, with procedural volume as an offset. The annual pattern was modeled using a first-order sinusoidal effect. The rate of errors reported demonstrated an increasing annual trend of 13.4% (95% confidence interval [CI] 10.6% to 16.3%); however, this trend was only significant for errors of minor or no harm to the patient. A strong "weekend effect" was observed. The incident rate ratio for the weekend versus weekdays was 2.74 (95% CI 2.55 to 2.93). The weekly pattern was consistent for incidents of all levels of severity, but it was more pronounced for less severe incidents. There was an annual cycle in the rate of incidents, the number of incidents peaking in October, on the 282 nd day of the year (spring in Australia), with an incident rate ratio 1.09 (95% CI 1.05 to 1.14) compared to the annual mean. There was no so-called "killing season" or "July effect," as the peak in incident rate was not related to the commencement of work by new medical school graduates. The major finding of this study is the rate of adverse events is greater on weekends and during spring. The annual pattern appears to be unrelated to the commencement of new graduates and potentially results from seasonal variation in the case mix of patients or the health of the medical workforce that alters

  15. [Errors in laboratory daily practice].

    PubMed

    Larrose, C; Le Carrer, D

    2007-01-01

    Legislation set by GBEA (Guide de bonne exécution des analyses) requires that, before performing analysis, the laboratory directors have to check both the nature of the samples and the patients identity. The data processing of requisition forms, which identifies key errors, was established in 2000 and in 2002 by the specialized biochemistry laboratory, also with the contribution of the reception centre for biological samples. The laboratories follow a strict criteria of defining acceptability as a starting point for the reception to then check requisition forms and biological samples. All errors are logged into the laboratory database and analysis report are sent to the care unit specifying the problems and the consequences they have on the analysis. The data is then assessed by the laboratory directors to produce monthly or annual statistical reports. This indicates the number of errors, which are then indexed to patient files to reveal the specific problem areas, therefore allowing the laboratory directors to teach the nurses and enable corrective action.

  16. The Reliability of Pedalling Rates Employed in Work Tests on the Bicycle Ergometer.

    ERIC Educational Resources Information Center

    Bolonchuk, W. W.

    The purpose of this study was to determine whether a group of volunteer subjects could produce and maintain a pedalling cadence within an acceptable range of error. This, in turn, would aid in determining the reliability of pedalling rates employed in work tests on the bicycle ergometer. Forty male college students were randomly given four…

  17. Error-Related Psychophysiology and Negative Affect

    ERIC Educational Resources Information Center

    Hajcak, G.; McDonald, N.; Simons, R.F.

    2004-01-01

    The error-related negativity (ERN/Ne) and error positivity (Pe) have been associated with error detection and response monitoring. More recently, heart rate (HR) and skin conductance (SC) have also been shown to be sensitive to the internal detection of errors. An enhanced ERN has consistently been observed in anxious subjects and there is some…

  18. Medication errors in anesthesia: unacceptable or unavoidable?

    PubMed

    Dhawan, Ira; Tewari, Anurag; Sehgal, Sankalp; Sinha, Ashish Chandra

    Medication errors are the common causes of patient morbidity and mortality. It adds financial burden to the institution as well. Though the impact varies from no harm to serious adverse effects including death, it needs attention on priority basis since medication errors' are preventable. In today's world where people are aware and medical claims are on the hike, it is of utmost priority that we curb this issue. Individual effort to decrease medication error alone might not be successful until a change in the existing protocols and system is incorporated. Often drug errors that occur cannot be reversed. The best way to 'treat' drug errors is to prevent them. Wrong medication (due to syringe swap), overdose (due to misunderstanding or preconception of the dose, pump misuse and dilution error), incorrect administration route, under dosing and omission are common causes of medication error that occur perioperatively. Drug omission and calculation mistakes occur commonly in ICU. Medication errors can occur perioperatively either during preparation, administration or record keeping. Numerous human and system errors can be blamed for occurrence of medication errors. The need of the hour is to stop the blame - game, accept mistakes and develop a safe and 'just' culture in order to prevent medication errors. The newly devised systems like VEINROM, a fluid delivery system is a novel approach in preventing drug errors due to most commonly used medications in anesthesia. Similar developments along with vigilant doctors, safe workplace culture and organizational support all together can help prevent these errors. Copyright © 2016. Published by Elsevier Editora Ltda.

  19. An observational study of drug administration errors in a Malaysian hospital (study of drug administration errors).

    PubMed

    Chua, S S; Tea, M H; Rahman, M H A

    2009-04-01

    Drug administration errors were the second most frequent type of medication errors, after prescribing errors but the latter were often intercepted hence, administration errors were more probably to reach the patients. Therefore, this study was conducted to determine the frequency and types of drug administration errors in a Malaysian hospital ward. This is a prospective study that involved direct, undisguised observations of drug administrations in a hospital ward. A researcher was stationed in the ward under study for 15 days to observe all drug administrations which were recorded in a data collection form and then compared with the drugs prescribed for the patient. A total of 1118 opportunities for errors were observed and 127 administrations had errors. This gave an error rate of 11.4 % [95% confidence interval (CI) 9.5-13.3]. If incorrect time errors were excluded, the error rate reduced to 8.7% (95% CI 7.1-10.4). The most common types of drug administration errors were incorrect time (25.2%), followed by incorrect technique of administration (16.3%) and unauthorized drug errors (14.1%). In terms of clinical significance, 10.4% of the administration errors were considered as potentially life-threatening. Intravenous routes were more likely to be associated with an administration error than oral routes (21.3% vs. 7.9%, P < 0.001). The study indicates that the frequency of drug administration errors in developing countries such as Malaysia is similar to that in the developed countries. Incorrect time errors were also the most common type of drug administration errors. A non-punitive system of reporting medication errors should be established to encourage more information to be documented so that risk management protocol could be developed and implemented.

  20. Perceptions of Social Behavior and Peer Acceptance in Kindergarten.

    ERIC Educational Resources Information Center

    Phillipsen, Leslie C.; Bridges, Sara K.; McLemore, T. Gayle; Saponaro, Lisa A.

    1999-01-01

    Used social behavior ratings from observers, teachers, and parents to predict kindergartners' perceptions of peer acceptance. Found that friendship skill predicted parent- and child-reported peer acceptance. Shyness/withdrawal inversely predicted teacher-reported peer acceptance. Aggression did not predict peer acceptance. Girls were rated as more…

  1. Effect of Electronic Editing on Error Rate of Newspaper.

    ERIC Educational Resources Information Center

    Randall, Starr D.

    1979-01-01

    A study of a North Carolina newspaper indicates that newspapers using fully integrated electronic editing systems have fewer errors in spelling, punctuation, sentence construction, hyphenation, and typography than newspapers not using electronic editing. (GT)

  2. Emergency department discharge prescription errors in an academic medical center

    PubMed Central

    Belanger, April; Devine, Lauren T.; Lane, Aaron; Condren, Michelle E.

    2017-01-01

    This study described discharge prescription medication errors written for emergency department patients. This study used content analysis in a cross-sectional design to systematically categorize prescription errors found in a report of 1000 discharge prescriptions submitted in the electronic medical record in February 2015. Two pharmacy team members reviewed the discharge prescription list for errors. Open-ended data were coded by an additional rater for agreement on coding categories. Coding was based upon majority rule. Descriptive statistics were used to address the study objective. Categories evaluated were patient age, provider type, drug class, and type and time of error. The discharge prescription error rate out of 1000 prescriptions was 13.4%, with “incomplete or inadequate prescription” being the most commonly detected error (58.2%). The adult and pediatric error rates were 11.7% and 22.7%, respectively. The antibiotics reviewed had the highest number of errors. The highest within-class error rates were with antianginal medications, antiparasitic medications, antacids, appetite stimulants, and probiotics. Emergency medicine residents wrote the highest percentage of prescriptions (46.7%) and had an error rate of 9.2%. Residents of other specialties wrote 340 prescriptions and had an error rate of 20.9%. Errors occurred most often between 10:00 am and 6:00 pm. PMID:28405061

  3. Context affects nestmate recognition errors in honey bees and stingless bees.

    PubMed

    Couvillon, Margaret J; Segers, Francisca H I D; Cooper-Bowman, Roseanne; Truslove, Gemma; Nascimento, Daniela L; Nascimento, Fabio S; Ratnieks, Francis L W

    2013-08-15

    Nestmate recognition studies, where a discriminator first recognises and then behaviourally discriminates (accepts/rejects) another individual, have used a variety of methodologies and contexts. This is potentially problematic because recognition errors in discrimination behaviour are predicted to be context-dependent. Here we compare the recognition decisions (accept/reject) of discriminators in two eusocial bees, Apis mellifera and Tetragonisca angustula, under different contexts. These contexts include natural guards at the hive entrance (control); natural guards held in plastic test arenas away from the hive entrance that vary either in the presence or absence of colony odour or the presence or absence of an additional nestmate discriminator; and, for the honey bee, the inside of the nest. For both honey bee and stingless bee guards, total recognition errors of behavioural discrimination made by guards (% nestmates rejected + % non-nestmates accepted) are much lower at the colony entrance (honey bee: 30.9%; stingless bee: 33.3%) than in the test arenas (honey bee: 60-86%; stingless bee: 61-81%; P<0.001 for both). Within the test arenas, the presence of colony odour specifically reduced the total recognition errors in honey bees, although this reduction still fell short of bringing error levels down to what was found at the colony entrance. Lastly, in honey bees, the data show that the in-nest collective behavioural discrimination by ca. 30 workers that contact an intruder is insufficient to achieve error-free recognition and is not as effective as the discrimination by guards at the entrance. Overall, these data demonstrate that context is a significant factor in a discriminators' ability to make appropriate recognition decisions, and should be considered when designing recognition study methodologies.

  4. Prospective and retrospective memory are differentially related to self-rated omission and commission errors in medication adherence in multimorbidity.

    PubMed

    Ihle, Andreas; Inauen, Jennifer; Scholz, Urte; König, Claudia; Holzer, Barbara; Zimmerli, Lukas; Battegay, Edouard; Tobias, Robert; Kliegel, Matthias

    2017-01-01

    We investigated the relations of self-rated omission errors (i.e., forgetting to take one's medication) and commission errors (i.e., unnecessary repetitions of medication intake because of forgetting that it has already been taken) in medication adherence in multimorbidity to prospective and retrospective memory performance. Moreover, we examined whether these relations were moderated by the number of medications that had to be taken. Eighty-four patients with multimorbidity (aged 28-84 years, M = 62.4) reported medication adherence regarding the last seven days and the number of medications they had to take. In addition, we administered psychometric tests on prospective memory (PM) and retrospective memory performance. We found that reported omission errors in medication adherence were related significantly to lower PM performance. This relationship was increased in individuals with a lower number of medications. In comparison, reported commission errors in medication adherence were related significantly to lower retrospective memory performance. This relationship was increased in individuals with a larger number of medications. Present data suggest that omission errors in medication adherence in multimorbidity may reflect primarily PM errors, particularly if few medications have to be taken, while commission errors may reflect mainly retrospective memory failures, especially with a large number of medications that need to be taken as prescribed. From an applied neuropsychological perspective, these results underline the importance of trying to enhance PM and retrospective memory performance in patients with multimorbidity.

  5. Effects of fog on the bit-error rate of a free-space laser communication system.

    PubMed

    Strickland, B R; Lavan, M J; Woodbridge, E; Chan, V

    1999-01-20

    Free-space laser communication (lasercom) systems are subject to performance degradation when heavy fog or smoke obscures the line of sight. The bit-error rate (BER) of a high-bandwidth (570 Mbits/s) lasercom system was correlated with the atmospheric transmission over a folded path of 2.4 km. BER's of 10(-7) were observed when the atmospheric transmission was as low as 0.25%, whereas BER's of less than 10(-10) were observed when the transmission was above 2.5%. System performance was approximately 10 dB less than calculated, with the discrepancy attributed to scintillation, multiple scattering, and absorption. Peak power of the 810-nm communications laser was 186 mW, and the beam divergence was purposely degraded to 830 murad. These results were achieved without the use of error correction schemes or active tracking. An optimized system with narrower beam divergence and active tracking could be expected to yield significantly better performance.

  6. Real-time soft error rate measurements on bulk 40 nm SRAM memories: a five-year dual-site experiment

    NASA Astrophysics Data System (ADS)

    Autran, J. L.; Munteanu, D.; Moindjie, S.; Saad Saoud, T.; Gasiot, G.; Roche, P.

    2016-11-01

    This paper reports five years of real-time soft error rate experimentation conducted with the same setup at mountain altitude for three years and then at sea level for two years. More than 7 Gbit of SRAM memories manufactured in CMOS bulk 40 nm technology have been subjected to the natural radiation background. The intensity of the atmospheric neutron flux has been continuously measured on site during these experiments using dedicated neutron monitors. As the result, the neutron and alpha component of the soft error rate (SER) have been very accurately extracted from these measurements, refining the first SER estimations performed in 2012 for this SRAM technology. Data obtained at sea level evidence, for the first time, a possible correlation between the neutron flux changes induced by the daily atmospheric pressure variations and the measured SER. Finally, all of the experimental data are compared with results obtained from accelerated tests and numerical simulation.

  7. A clinical study of patient acceptance and satisfaction of Varilux Plus and Varilux Infinity lenses.

    PubMed

    Cho, M H; Barnette, C B; Aiken, B; Shipp, M

    1991-06-01

    An independent study was conducted at the UAB School of Optometry to determine the clinical success with Varilux Plus (Varilux 2) and Varilux Infinity progressive addition lenses (PAL). Two hundred eighty patients (280) were fit between June 1988 and May 1989. The acceptance rate of 97.5 percent was based on the number of lenses ordered versus the number of lenses returned. Patients were contacted by telephone and asked to rate their level of satisfaction with their PALs. A chi-square (non-parametric) test revealed no statistically significant differences in levels of satisfaction with respect to gender, PAL type, or degree of presbyopia. Also, neither refractive error nor previous lens history had a measurable impact on patient satisfaction.

  8. Soft error rate simulation and initial design considerations of neutron intercepting silicon chip (NISC)

    NASA Astrophysics Data System (ADS)

    Celik, Cihangir

    Advances in microelectronics result in sub-micrometer electronic technologies as predicted by Moore's Law, 1965, which states the number of transistors in a given space would double every two years. The most available memory architectures today have submicrometer transistor dimensions. The International Technology Roadmap for Semiconductors (ITRS), a continuation of Moore's Law, predicts that Dynamic Random Access Memory (DRAM) will have an average half pitch size of 50 nm and Microprocessor Units (MPU) will have an average gate length of 30 nm over the period of 2008-2012. Decreases in the dimensions satisfy the producer and consumer requirements of low power consumption, more data storage for a given space, faster clock speed, and portability of integrated circuits (IC), particularly memories. On the other hand, these properties also lead to a higher susceptibility of IC designs to temperature, magnetic interference, power supply, and environmental noise, and radiation. Radiation can directly or indirectly affect device operation. When a single energetic particle strikes a sensitive node in the micro-electronic device, it can cause a permanent or transient malfunction in the device. This behavior is called a Single Event Effect (SEE). SEEs are mostly transient errors that generate an electric pulse which alters the state of a logic node in the memory device without having a permanent effect on the functionality of the device. This is called a Single Event Upset (SEU) or Soft Error . Contrary to SEU, Single Event Latchup (SEL), Single Event Gate Rapture (SEGR), or Single Event Burnout (SEB) they have permanent effects on the device operation and a system reset or recovery is needed to return to proper operations. The rate at which a device or system encounters soft errors is defined as Soft Error Rate (SER). The semiconductor industry has been struggling with SEEs and is taking necessary measures in order to continue to improve system designs in nano

  9. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo

    1986-01-01

    A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  10. Impact of Measurement Error on Synchrophasor Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yilu; Gracia, Jose R.; Ewing, Paul D.

    2015-07-01

    Phasor measurement units (PMUs), a type of synchrophasor, are powerful diagnostic tools that can help avert catastrophic failures in the power grid. Because of this, PMU measurement errors are particularly worrisome. This report examines the internal and external factors contributing to PMU phase angle and frequency measurement errors and gives a reasonable explanation for them. It also analyzes the impact of those measurement errors on several synchrophasor applications: event location detection, oscillation detection, islanding detection, and dynamic line rating. The primary finding is that dynamic line rating is more likely to be influenced by measurement error. Other findings include themore » possibility of reporting nonoscillatory activity as an oscillation as the result of error, failing to detect oscillations submerged by error, and the unlikely impact of error on event location and islanding detection.« less

  11. Errors in clinical laboratories or errors in laboratory medicine?

    PubMed

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  12. [Medical errors: inevitable but preventable].

    PubMed

    Giard, R W

    2001-10-27

    Medical errors are increasingly reported in the lay press. Studies have shown dramatic error rates of 10 percent or even higher. From a methodological point of view, studying the frequency and causes of medical errors is far from simple. Clinical decisions on diagnostic or therapeutic interventions are always taken within a clinical context. Reviewing outcomes of interventions without taking into account both the intentions and the arguments for a particular action will limit the conclusions from a study on the rate and preventability of errors. The interpretation of the preventability of medical errors is fraught with difficulties and probably highly subjective. Blaming the doctor personally does not do justice to the actual situation and especially the organisational framework. Attention for and improvement of the organisational aspects of error are far more important then litigating the person. To err is and will remain human and if we want to reduce the incidence of faults we must be able to learn from our mistakes. That requires an open attitude towards medical mistakes, a continuous effort in their detection, a sound analysis and, where feasible, the institution of preventive measures.

  13. Errors Affect Hypothetical Intertemporal Food Choice in Women

    PubMed Central

    Sellitto, Manuela; di Pellegrino, Giuseppe

    2014-01-01

    Growing evidence suggests that the ability to control behavior is enhanced in contexts in which errors are more frequent. Here we investigated whether pairing desirable food with errors could decrease impulsive choice during hypothetical temporal decisions about food. To this end, healthy women performed a Stop-signal task in which one food cue predicted high-error rate, and another food cue predicted low-error rate. Afterwards, we measured participants’ intertemporal preferences during decisions between smaller-immediate and larger-delayed amounts of food. We expected reduced sensitivity to smaller-immediate amounts of food associated with high-error rate. Moreover, taking into account that deprivational states affect sensitivity for food, we controlled for participants’ hunger. Results showed that pairing food with high-error likelihood decreased temporal discounting. This effect was modulated by hunger, indicating that, the lower the hunger level, the more participants showed reduced impulsive preference for the food previously associated with a high number of errors as compared with the other food. These findings reveal that errors, which are motivationally salient events that recruit cognitive control and drive avoidance learning against error-prone behavior, are effective in reducing impulsive choice for edible outcomes. PMID:25244534

  14. A Rejection Principle for Sequential Tests of Multiple Hypotheses Controlling Familywise Error Rates

    PubMed Central

    BARTROFF, JAY; SONG, JINLIN

    2015-01-01

    We present a unifying approach to multiple testing procedures for sequential (or streaming) data by giving sufficient conditions for a sequential multiple testing procedure to control the familywise error rate (FWER). Together we call these conditions a “rejection principle for sequential tests,” which we then apply to some existing sequential multiple testing procedures to give simplified understanding of their FWER control. Next the principle is applied to derive two new sequential multiple testing procedures with provable FWER control, one for testing hypotheses in order and another for closed testing. Examples of these new procedures are given by applying them to a chromosome aberration data set and to finding the maximum safe dose of a treatment. PMID:26985125

  15. Model error in covariance structure models: Some implications for power and Type I error

    PubMed Central

    Coffman, Donna L.

    2010-01-01

    The present study investigated the degree to which violation of the parameter drift assumption affects the Type I error rate for the test of close fit and power analysis procedures proposed by MacCallum, Browne, and Sugawara (1996) for both the test of close fit and the test of exact fit. The parameter drift assumption states that as sample size increases both sampling error and model error (i.e. the degree to which the model is an approximation in the population) decrease. Model error was introduced using a procedure proposed by Cudeck and Browne (1992). The empirical power for both the test of close fit, in which the null hypothesis specifies that the Root Mean Square Error of Approximation (RMSEA) ≤ .05, and the test of exact fit, in which the null hypothesis specifies that RMSEA = 0, is compared with the theoretical power computed using the MacCallum et al. (1996) procedure. The empirical power and theoretical power for both the test of close fit and the test of exact fit are nearly identical under violations of the assumption. The results also indicated that the test of close fit maintains the nominal Type I error rate under violations of the assumption. PMID:21331302

  16. Error, contradiction and reversal in science and medicine.

    PubMed

    Coccheri, Sergio

    2017-06-01

    Error and contradictions are not "per se" detrimental in science and medicine. Going back to the history of philosophy, Sir Francis Bacon stated that "truth emerges more readily from error than from confusion", and recently Popper introduced the concept of an approximate temporary truth that constitutes the engine of scientific progress. In biomedical research and in clinical practice we assisted during the last decades to many overturnings or reversals of concepts and practices. This phenomenon may discourage patients from accepting ordinary medical care and may favour the choice of alternative medicine. The media often enhance the disappointment for these discrepancies. In this note I recommend to transfer to patients the concept of a confirmed and dependable knowledge at the present time. However, physicians should tolerate uncertainty and accept the idea that medical concepts and applications are subjected to continuous progression, change and displacement. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  17. Estimating the designated use attainment decision error rates of US Environmental Protection Agency's proposed numeric total phosphorus criteria for Florida, USA, colored lakes.

    PubMed

    McLaughlin, Douglas B

    2012-01-01

    The utility of numeric nutrient criteria established for certain surface waters is likely to be affected by the uncertainty that exists in the presence of a causal link between nutrient stressor variables and designated use-related biological responses in those waters. This uncertainty can be difficult to characterize, interpret, and communicate to a broad audience of environmental stakeholders. The US Environmental Protection Agency (USEPA) has developed a systematic planning process to support a variety of environmental decisions, but this process is not generally applied to the development of national or state-level numeric nutrient criteria. This article describes a method for implementing such an approach and uses it to evaluate the numeric total P criteria recently proposed by USEPA for colored lakes in Florida, USA. An empirical, log-linear relationship between geometric mean concentrations of total P (a potential stressor variable) and chlorophyll a (a nutrient-related response variable) in these lakes-that is assumed to be causal in nature-forms the basis for the analysis. The use of the geometric mean total P concentration of a lake to correctly indicate designated use status, defined in terms of a 20 µg/L geometric mean chlorophyll a threshold, is evaluated. Rates of decision errors analogous to the Type I and Type II error rates familiar in hypothesis testing, and a 3rd error rate, E(ni) , referred to as the nutrient criterion-based impairment error rate, are estimated. The results show that USEPA's proposed "baseline" and "modified" nutrient criteria approach, in which data on both total P and chlorophyll a may be considered in establishing numeric nutrient criteria for a given lake within a specified range, provides a means for balancing and minimizing designated use attainment decision errors. Copyright © 2011 SETAC.

  18. Investigation on coupling error characteristics in angular rate matching based ship deformation measurement approach

    NASA Astrophysics Data System (ADS)

    Yang, Shuai; Wu, Wei; Wang, Xingshu; Xu, Zhiguang

    2018-01-01

    The coupling error in the measurement of ship hull deformation can significantly influence the attitude accuracy of the shipborne weapons and equipments. It is therefore important to study the characteristics of the coupling error. In this paper, an comprehensive investigation on the coupling error is reported, which has a potential of deducting the coupling error in the future. Firstly, the causes and characteristics of the coupling error are analyzed theoretically based on the basic theory of measuring ship deformation. Then, simulations are conducted for verifying the correctness of the theoretical analysis. Simulation results show that the cross-correlation between dynamic flexure and ship angular motion leads to the coupling error in measuring ship deformation, and coupling error increases with the correlation value between them. All the simulation results coincide with the theoretical analysis.

  19. Effects of amplitude distortions and IF equalization on satellite communication system bit-error rate performance

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Fujikawa, Gene; Svoboda, James S.; Lizanich, Paul J.

    1990-01-01

    Satellite communications links are subject to distortions which result in an amplitude versus frequency response which deviates from the ideal flat response. Such distortions result from propagation effects such as multipath fading and scintillation and from transponder and ground terminal hardware imperfections. Bit-error rate (BER) degradation resulting from several types of amplitude response distortions were measured. Additional tests measured the amount of BER improvement obtained by flattening the amplitude response of a distorted laboratory simulated satellite channel. The results of these experiments are presented.

  20. Characteristics of pediatric chemotherapy medication errors in a national error reporting database.

    PubMed

    Rinke, Michael L; Shore, Andrew D; Morlock, Laura; Hicks, Rodney W; Miller, Marlene R

    2007-07-01

    Little is known regarding chemotherapy medication errors in pediatrics despite studies suggesting high rates of overall pediatric medication errors. In this study, the authors examined patterns in pediatric chemotherapy errors. The authors queried the United States Pharmacopeia MEDMARX database, a national, voluntary, Internet-accessible error reporting system, for all error reports from 1999 through 2004 that involved chemotherapy medications and patients aged <18 years. Of the 310 pediatric chemotherapy error reports, 85% reached the patient, and 15.6% required additional patient monitoring or therapeutic intervention. Forty-eight percent of errors originated in the administering phase of medication delivery, and 30% originated in the drug-dispensing phase. Of the 387 medications cited, 39.5% were antimetabolites, 14.0% were alkylating agents, 9.3% were anthracyclines, and 9.3% were topoisomerase inhibitors. The most commonly involved chemotherapeutic agents were methotrexate (15.3%), cytarabine (12.1%), and etoposide (8.3%). The most common error types were improper dose/quantity (22.9% of 327 cited error types), wrong time (22.6%), omission error (14.1%), and wrong administration technique/wrong route (12.2%). The most common error causes were performance deficit (41.3% of 547 cited error causes), equipment and medication delivery devices (12.4%), communication (8.8%), knowledge deficit (6.8%), and written order errors (5.5%). Four of the 5 most serious errors occurred at community hospitals. Pediatric chemotherapy errors often reached the patient, potentially were harmful, and differed in quality between outpatient and inpatient areas. This study indicated which chemotherapeutic agents most often were involved in errors and that administering errors were common. Investigation is needed regarding targeted medication administration safeguards for these high-risk medications. Copyright (c) 2007 American Cancer Society.

  1. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  2. Error monitoring issues for common channel signaling

    NASA Astrophysics Data System (ADS)

    Hou, Victor T.; Kant, Krishna; Ramaswami, V.; Wang, Jonathan L.

    1994-04-01

    Motivated by field data which showed a large number of link changeovers and incidences of link oscillations between in-service and out-of-service states in common channel signaling (CCS) networks, a number of analyses of the link error monitoring procedures in the SS7 protocol were performed by the authors. This paper summarizes the results obtained thus far and include the following: (1) results of an exact analysis of the performance of the error monitoring procedures under both random and bursty errors; (2) a demonstration that there exists a range of error rates within which the error monitoring procedures of SS7 may induce frequent changeovers and changebacks; (3) an analysis of the performance ofthe SS7 level-2 transmission protocol to determine the tolerable error rates within which the delay requirements can be met; (4) a demonstration that the tolerable error rate depends strongly on various link and traffic characteristics, thereby implying that a single set of error monitor parameters will not work well in all situations; (5) some recommendations on a customizable/adaptable scheme of error monitoring with a discussion on their implementability. These issues may be particularly relevant in the presence of anticipated increases in SS7 traffic due to widespread deployment of Advanced Intelligent Network (AIN) and Personal Communications Service (PCS) as well as for developing procedures for high-speed SS7 links currently under consideration by standards bodies.

  3. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics

    PubMed Central

    Nesvizhskii, Alexey I.

    2010-01-01

    This manuscript provides a comprehensive review of the peptide and protein identification process using tandem mass spectrometry (MS/MS) data generated in shotgun proteomic experiments. The commonly used methods for assigning peptide sequences to MS/MS spectra are critically discussed and compared, from basic strategies to advanced multi-stage approaches. A particular attention is paid to the problem of false-positive identifications. Existing statistical approaches for assessing the significance of peptide to spectrum matches are surveyed, ranging from single-spectrum approaches such as expectation values to global error rate estimation procedures such as false discovery rates and posterior probabilities. The importance of using auxiliary discriminant information (mass accuracy, peptide separation coordinates, digestion properties, and etc.) is discussed, and advanced computational approaches for joint modeling of multiple sources of information are presented. This review also includes a detailed analysis of the issues affecting the interpretation of data at the protein level, including the amplification of error rates when going from peptide to protein level, and the ambiguities in inferring the identifies of sample proteins in the presence of shared peptides. Commonly used methods for computing protein-level confidence scores are discussed in detail. The review concludes with a discussion of several outstanding computational issues. PMID:20816881

  4. PRESAGE: Protecting Structured Address Generation against Soft Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram

    Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation (to index large arrays) have not been widely researched. We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGE is that any addressmore » computation scheme that flows an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Enabling the flow of errors allows one to situate detectors at loop exit points, and helps turn silent corruptions into easily detectable error situations. Our experiments using PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less

  5. Integrating 360° behavior-orientated feedback in communication skills training for medical undergraduates: concept, acceptance and students' self-ratings of communication competence.

    PubMed

    Engerer, Cosima; Berberat, Pascal O; Dinkel, Andreas; Rudolph, Baerbel; Sattel, Heribert; Wuensch, Alexander

    2016-10-18

    Feedback is considered a key didactic element in medical education, especially for teaching of communication skills. This study investigates the impact of a best evidence-based practice feedback concept within the context of communication skills training (CST). We evaluate this concept for acceptance and changes in students self-ratings of communication competence. Our CST integrating feedback process comprises a short theoretical introduction presenting standards for good communication and a constructive 360° feedback from three perspectives: feedback from peers, from standardized patients (SPs), and from a trainer. Feed-forward process was facilitated for documenting suggestions for improvements based on observable behaviors to maximize learning benefits. Our CST was applied to four groups of eight or nine students. We assessed the data on students' acceptance using a 6-point scale ranging from very good (1) to poor (6), applied a forced choice question to rank didactic items, and assessed changes in student' self-ratings of their communication competence on a 10-cm visual analogue scale (VAS). Thirty-four medical undergraduates (82 % female, 18 % male) in their first clinical year, with an average age of 21.4 years (SD = 1.0), participated in the new training. The concept achieved high acceptance from good to very good: overall impression (M = 1.56), sufficient interaction for discussion (M = 1.15), and constructive learning atmosphere (M = 1.18). Specific elements, such as practical training with SPs (M = 1.18) and feedback by SPs (M = 1.12), showed highest acceptance. The forced choice ranking placed all feedback elements at the top of the list (feedback (FB) by SPs, rank 2; FB by trainer, rank 3; FB by colleagues, rank 4), whereas theoretical elements were at the bottom (theoretical introduction, rank 7; memory card, rank 9). Overall, student self-ratings of communication competence significantly improved in nine of the ten

  6. Fault-tolerant quantum error detection.

    PubMed

    Linke, Norbert M; Gutierrez, Mauricio; Landsman, Kevin A; Figgatt, Caroline; Debnath, Shantanu; Brown, Kenneth R; Monroe, Christopher

    2017-10-01

    Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical state itself through direct measurement. We show the encoding and syndrome measurement of a fault-tolerantly prepared logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates and experimental calibration errors.

  7. Fault-tolerant quantum error detection

    PubMed Central

    Linke, Norbert M.; Gutierrez, Mauricio; Landsman, Kevin A.; Figgatt, Caroline; Debnath, Shantanu; Brown, Kenneth R.; Monroe, Christopher

    2017-01-01

    Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical state itself through direct measurement. We show the encoding and syndrome measurement of a fault-tolerantly prepared logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates and experimental calibration errors. PMID:29062889

  8. Software for Quantifying and Simulating Microsatellite Genotyping Error

    PubMed Central

    Johnson, Paul C.D.; Haydon, Daniel T.

    2007-01-01

    Microsatellite genetic marker data are exploited in a variety of fields, including forensics, gene mapping, kinship inference and population genetics. In all of these fields, inference can be thwarted by failure to quantify and account for data errors, and kinship inference in particular can benefit from separating errors into two distinct classes: allelic dropout and false alleles. Pedant is MS Windows software for estimating locus-specific maximum likelihood rates of these two classes of error. Estimation is based on comparison of duplicate error-prone genotypes: neither reference genotypes nor pedigree data are required. Other functions include: plotting of error rate estimates and confidence intervals; simulations for performing power analysis and for testing the robustness of error rate estimates to violation of the underlying assumptions; and estimation of expected heterozygosity, which is a required input. The program, documentation and source code are available from http://www.stats.gla.ac.uk/~paulj/pedant.html. PMID:20066126

  9. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1986-01-01

    A coding scheme for error control in data communication systems is investigated. The scheme is obtained by cascading two error correcting codes, called the inner and the outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon < 1/2. It is shown that, if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging from high rates to very low rates and Reed-Solomon codes are considered, and their probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates, say 0.1 to 0.01. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  10. NASA Model of "Threat and Error" in Pediatric Cardiac Surgery: Patterns of Error Chains.

    PubMed

    Hickey, Edward; Pham-Hung, Eric; Nosikova, Yaroslavna; Halvorsen, Fredrik; Gritti, Michael; Schwartz, Steven; Caldarone, Christopher A; Van Arsdell, Glen

    2017-04-01

    We introduced the National Aeronautics and Space Association threat-and-error model to our surgical unit. All admissions are considered flights, which should pass through stepwise deescalations in risk during surgical recovery. We hypothesized that errors significantly influence risk deescalation and contribute to poor outcomes. Patient flights (524) were tracked in real time for threats, errors, and unintended states by full-time performance personnel. Expected risk deescalation was wean from mechanical support, sternal closure, extubation, intensive care unit (ICU) discharge, and discharge home. Data were accrued from clinical charts, bedside data, reporting mechanisms, and staff interviews. Infographics of flights were openly discussed weekly for consensus. In 12% (64 of 524) of flights, the child failed to deescalate sequentially through expected risk levels; unintended increments instead occurred. Failed deescalations were highly associated with errors (426; 257 flights; p < 0.0001). Consequential errors (263; 173 flights) were associated with a 29% rate of failed deescalation versus 4% in flights with no consequential error (p < 0.0001). The most dangerous errors were apical errors typically (84%) occurring in the operating room, which caused chains of propagating unintended states (n = 110): these had a 43% (47 of 110) rate of failed deescalation (versus 4%; p < 0.0001). Chains of unintended state were often (46%) amplified by additional (up to 7) errors in the ICU that would worsen clinical deviation. Overall, failed deescalations in risk were extremely closely linked to brain injury (n = 13; p < 0.0001) or death (n = 7; p < 0.0001). Deaths and brain injury after pediatric cardiac surgery almost always occur from propagating error chains that originate in the operating room and are often amplified by additional ICU errors. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Impact of Temporal Masking of Flip-Flop Upsets on Soft Error Rates of Sequential Circuits

    NASA Astrophysics Data System (ADS)

    Chen, R. M.; Mahatme, N. N.; Diggins, Z. J.; Wang, L.; Zhang, E. X.; Chen, Y. P.; Liu, Y. N.; Narasimham, B.; Witulski, A. F.; Bhuva, B. L.; Fleetwood, D. M.

    2017-08-01

    Reductions in single-event (SE) upset (SEU) rates for sequential circuits due to temporal masking effects are evaluated. The impacts of supply voltage, combinational-logic delay, flip-flop (FF) SEU performance, and particle linear energy transfer (LET) values are analyzed for SE cross sections of sequential circuits. Alpha particles and heavy ions with different LET values are used to characterize the circuits fabricated at the 40-nm bulk CMOS technology node. Experimental results show that increasing the delay of the logic circuit present between FFs and decreasing the supply voltage are two effective ways of reducing SE error rates for sequential circuits for particles with low LET values due to temporal masking. SEU-hardened FFs benefit less from temporal masking than conventional FFs. Circuit hardening implications for SEU-hardened and unhardened FFs are discussed.

  12. Heart rate detection from an electronic weighing scale.

    PubMed

    González-Landaeta, R; Casas, O; Pallàs-Areny, R

    2007-01-01

    We propose a novel technique for heart rate detection on a subject that stands on a common electronic weighing scale. The detection relies on sensing force variations related to the blood acceleration in the aorta, works even if wearing footwear, and does not require any sensors attached to the body. We have applied our method to three different weighing scales, and estimated whether their sensitivity and frequency response suited heart rate detection. Scale sensitivities were from 490 nV/V/N to 1670 nV/V/N, all had an underdamped transient response and their dynamic gain error was below 19% at 10 Hz, which are acceptable values for heart rate estimation. We also designed a pulse detection system based on off-the-shelf integrated circuits, whose gain was about 70x10(3) and able to sense force variations about 240 mN. The signal-to-noise ratio (SNR) of the main peaks of the pulse signal detected was higher than 48 dB, which is large enough to estimate the heart rate by simple signal processing methods. To validate the method, the ECG and the force signal were simultaneously recorded on 12 volunteers. The maximal error obtained from heart rates determined from these two signals was +/-0.6 beats/minute.

  13. Errors in fluid therapy in medical wards.

    PubMed

    Mousavi, Maryam; Khalili, Hossein; Dashti-Khavidaki, Simin

    2012-04-01

    Intravenous fluid therapy remains an essential part of patients' care during hospitalization. There are only few studies that focused on fluid therapy in the hospitalized patients, and there is not any consensus statement about fluid therapy in patients who are hospitalized in medical wards. The aim of the present study was to assess intravenous fluid therapy status and related errors in the patients during the course of hospitalization in the infectious diseases wards of a referral teaching hospital. This study was conducted in the infectious diseases wards of Imam Khomeini Complex Hospital, Tehran, Iran. During a retrospective study, data related to intravenous fluid therapy were collected by two clinical pharmacists of infectious diseases from 2008 to 2010. Intravenous fluid therapy information including indication, type, volume and rate of fluid administration was recorded for each patient. An internal protocol for intravenous fluid therapy was designed based on literature review and available recommendations. The data related to patients' fluid therapy were compared with this protocol. The fluid therapy was considered appropriate if it was compatible with the protocol regarding indication of intravenous fluid therapy, type, electrolyte content and rate of fluid administration. Any mistake in the selection of fluid type, content, volume and rate of administration was considered as intravenous fluid therapy errors. Five hundred and ninety-six of medication errors were detected during the study period in the patients. Overall rate of fluid therapy errors was 1.3 numbers per patient during hospitalization. Errors in the rate of fluid administration (29.8%), incorrect fluid volume calculation (26.5%) and incorrect type of fluid selection (24.6%) were the most common types of errors. The patients' male sex, old age, baseline renal diseases, diabetes co-morbidity, and hospitalization due to endocarditis, HIV infection and sepsis are predisposing factors for the

  14. Analysis of Soft Error Rates in 65- and 28-nm FD-SOI Processes Depending on BOX Region Thickness and Body Bias by Monte-Carlo Based Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Kuiyuan; Umehara, Shigehiro; Yamaguchi, Junki; Furuta, Jun; Kobayashi, Kazutoshi

    2016-08-01

    This paper analyzes how body bias and BOX region thickness affect soft error rates in 65-nm SOTB (Silicon on Thin BOX) and 28-nm UTBB (Ultra Thin Body and BOX) FD-SOI processes. Soft errors are induced by alpha-particle and neutron irradiation and the results are then analyzed by Monte Carlo based simulation using PHITS-TCAD. The alpha-particle-induced single event upset (SEU) cross-section and neutron-induced soft error rate (SER) obtained by simulation are consistent with measurement results. We clarify that SERs decreased in response to an increase in the BOX thickness for SOTB while SERs in UTBB are independent of BOX thickness. We also discover SOTB develops a higher tolerance to soft errors when reverse body bias is applied while UTBB become more susceptible.

  15. Prediction of error rates in dose-imprinted memories on board CRRES by two different methods. [Combined Release and Radiation Effects Satellite

    NASA Technical Reports Server (NTRS)

    Brucker, G. J.; Stassinopoulos, E. G.

    1991-01-01

    An analysis of the expected space radiation effects on the single event upset (SEU) properties of CMOS/bulk memories onboard the Combined Release and Radiation Effects Satellite (CRRES) is presented. Dose-imprint data from ground test irradiations of identical devices are applied to the predictions of cosmic-ray-induced space upset rates in the memories onboard the spacecraft. The calculations take into account the effect of total dose on the SEU sensitivity of the devices as the dose accumulates in orbit. Estimates of error rates, which involved an arbitrary selection of a single pair of threshold linear energy transfer (LET) and asymptotic cross-section values, were compared to the results of an integration over the cross-section curves versus LET. The integration gave lower upset rates than the use of the selected values of the SEU parameters. Since the integration approach is more accurate and eliminates the need for an arbitrary definition of threshold LET and asymptotic cross section, it is recommended for all error rate predictions where experimental sigma-versus-LET curves are available.

  16. Mapping DNA polymerase errors by single-molecule sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David F.; Lu, Jenny; Chang, Seungwoo

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less

  17. Mapping DNA polymerase errors by single-molecule sequencing

    DOE PAGES

    Lee, David F.; Lu, Jenny; Chang, Seungwoo; ...

    2016-05-16

    Genomic integrity is compromised by DNA polymerase replication errors, which occur in a sequence-dependent manner across the genome. Accurate and complete quantification of a DNA polymerase's error spectrum is challenging because errors are rare and difficult to detect. We report a high-throughput sequencing assay to map in vitro DNA replication errors at the single-molecule level. Unlike previous methods, our assay is able to rapidly detect a large number of polymerase errors at base resolution over any template substrate without quantification bias. To overcome the high error rate of high-throughput sequencing, our assay uses a barcoding strategy in which each replicationmore » product is tagged with a unique nucleotide sequence before amplification. Here, this allows multiple sequencing reads of the same product to be compared so that sequencing errors can be found and removed. We demonstrate the ability of our assay to characterize the average error rate, error hotspots and lesion bypass fidelity of several DNA polymerases.« less

  18. Reduction of Maintenance Error Through Focused Interventions

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Walter, Diane; Rosekind, Mark R. (Technical Monitor)

    1997-01-01

    It is well known that a significant proportion of aviation accidents and incidents are tied to human error. In flight operations, research of operational errors has shown that so-called "pilot error" often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the "team" concept for maintenance operations and in tailoring programs to fit the needs of technical operations. Nevertheless, there remains a dual challenge: to develop human factors interventions which are directly supported by reliable human error data, and to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.

  19. Increased instrument intelligence--can it reduce laboratory error?

    PubMed

    Jekelis, Albert W

    2005-01-01

    Recent literature has focused on the reduction of laboratory errors and the potential impact on patient management. This study assessed the intelligent, automated preanalytical process-control abilities in newer generation analyzers as compared with older analyzers and the impact on error reduction. Three generations of immuno-chemistry analyzers were challenged with pooled human serum samples for a 3-week period. One of the three analyzers had an intelligent process of fluidics checks, including bubble detection. Bubbles can cause erroneous results due to incomplete sample aspiration. This variable was chosen because it is the most easily controlled sample defect that can be introduced. Traditionally, lab technicians have had to visually inspect each sample for the presence of bubbles. This is time consuming and introduces the possibility of human error. Instruments with bubble detection may be able to eliminate the human factor and reduce errors associated with the presence of bubbles. Specific samples were vortexed daily to introduce a visible quantity of bubbles, then immediately placed in the daily run. Errors were defined as a reported result greater than three standard deviations below the mean and associated with incomplete sample aspiration of the analyte of the individual analyzer Three standard deviations represented the target limits of proficiency testing. The results of the assays were examined for accuracy and precision. Efficiency, measured as process throughput, was also measured to associate a cost factor and potential impact of the error detection on the overall process. The analyzer performance stratified according to their level of internal process control The older analyzers without bubble detection reported 23 erred results. The newest analyzer with bubble detection reported one specimen incorrectly. The precision and accuracy of the nonvortexed specimens were excellent and acceptable for all three analyzers. No errors were found in the

  20. Image data compression having minimum perceptual error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1995-01-01

    A method for performing image compression that eliminates redundant and invisible image components is described. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  1. Relationship between Recent Flight Experience and Pilot Error General Aviation Accidents

    NASA Astrophysics Data System (ADS)

    Nilsson, Sarah J.

    Aviation insurance agents and fixed-base operation (FBO) owners use recent flight experience, as implied by the 90-day rule, to measure pilot proficiency in physical airplane skills, and to assess the likelihood of a pilot error accident. The generally accepted premise is that more experience in a recent timeframe predicts less of a propensity for an accident, all other factors excluded. Some of these aviation industry stakeholders measure pilot proficiency solely by using time flown within the past 90, 60, or even 30 days, not accounting for extensive research showing aeronautical decision-making and situational awareness training decrease the likelihood of a pilot error accident. In an effort to reduce the pilot error accident rate, the Federal Aviation Administration (FAA) has seen the need to shift pilot training emphasis from proficiency in physical airplane skills to aeronautical decision-making and situational awareness skills. However, current pilot training standards still focus more on the former than on the latter. The relationship between pilot error accidents and recent flight experience implied by the FAA's 90-day rule has not been rigorously assessed using empirical data. The intent of this research was to relate recent flight experience, in terms of time flown in the past 90 days, to pilot error accidents. A quantitative ex post facto approach, focusing on private pilots of single-engine general aviation (GA) fixed-wing aircraft, was used to analyze National Transportation Safety Board (NTSB) accident investigation archival data. The data were analyzed using t-tests and binary logistic regression. T-tests between the mean number of hours of recent flight experience of tricycle gear pilots involved in pilot error accidents (TPE) and non-pilot error accidents (TNPE), t(202) = -.200, p = .842, and conventional gear pilots involved in pilot error accidents (CPE) and non-pilot error accidents (CNPE), t(111) = -.271, p = .787, indicate there is no

  2. Human Factors Process Task Analysis: Liquid Oxygen Pump Acceptance Test Procedure at the Advanced Technology Development Center

    NASA Technical Reports Server (NTRS)

    Diorio, Kimberly A.; Voska, Ned (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on Human Factors Process Failure Modes and Effects Analysis (HF PFMEA). HF PFMEA includes the following 10 steps: Describe mission; Define System; Identify human-machine; List human actions; Identify potential errors; Identify factors that effect error; Determine likelihood of error; Determine potential effects of errors; Evaluate risk; Generate solutions (manage error). The presentation also describes how this analysis was applied to a liquid oxygen pump acceptance test.

  3. An educational and audit tool to reduce prescribing error in intensive care.

    PubMed

    Thomas, A N; Boxall, E M; Laha, S K; Day, A J; Grundy, D

    2008-10-01

    To reduce prescribing errors in an intensive care unit by providing prescriber education in tutorials, ward-based teaching and feedback in 3-monthly cycles with each new group of trainee medical staff. Prescribing audits were conducted three times in each 3-month cycle, once pretraining, once post-training and a final audit after 6 weeks. The audit information was fed back to prescribers with their correct prescribing rates, rates for individual error types and total error rates together with anonymised information about other prescribers' error rates. The percentage of prescriptions with errors decreased over each 3-month cycle (pretraining 25%, 19%, (one missing data point), post-training 23%, 6%, 11%, final audit 7%, 3%, 5% (p<0.0005)). The total number of prescriptions and error rates varied widely between trainees (data collection one; cycle two: range of prescriptions written: 1-61, median 18; error rate: 0-100%; median: 15%). Prescriber education and feedback reduce manual prescribing errors in intensive care.

  4. Quantum Error Correction with Biased Noise

    NASA Astrophysics Data System (ADS)

    Brooks, Peter

    Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security. At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level. In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations. In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction. In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled

  5. Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: rates, drivers, and sources of error

    USGS Publications Warehouse

    Glaser, Paul H.; Volin, John C.; Givnish, Thomas J.; Hansen, Barbara C. S.; Stricker, Craig A.

    2012-01-01

    Tropical and sub-tropical wetlands are considered to be globally important sources for greenhouse gases but their capacity to store carbon is presumably limited by warm soil temperatures and high rates of decomposition. Unfortunately, these assumptions can be difficult to test across long timescales because the chronology, cumulative mass, and completeness of a sedimentary profile are often difficult to establish. We therefore made a detailed analysis of a core from the principal drainage outlet of the Everglades of South Florida, to assess these problems and determine the factors that could govern carbon accumulation in this large sub-tropical wetland. Accelerator mass spectroscopy dating provided direct evidence for both hard-water and open-system sources of dating errors, whereas cumulative mass varied depending upon the type of method used. Radiocarbon dates of gastropod shells, nevertheless, seemed to provide a reliable chronology for this core once the hard-water error was quantified and subtracted. Long-term accumulation rates were then calculated to be 12.1 g m-2 yr-1 for carbon, which is less than half the average rate reported for northern and tropical peatlands. Moreover, accumulation rates remained slow and relatively steady for both organic and inorganic strata, and the slow rate of sediment accretion ( 0.2 mm yr-1) tracked the correspondingly slow rise in sea level (0.35 mm yr-1 ) reported for South Florida over the past 4000 years. These results suggest that sea level and the local geologic setting may impose long-term constraints on rates of sediment and carbon accumulation in the Everglades and other wetlands.

  6. Effects of Stopping Ions and LET Fluctuations on Soft Error Rate Prediction.

    DOE PAGES

    Weeden-Wright, S. L.; King, Michael Patrick; Hooten, N. C.; ...

    2015-02-01

    Variability in energy deposition from stopping ions and LET fluctuations is quantified for specific radiation environments. When compared to predictions using average LET via CREME96, LET fluctuations lead to an order-of-magnitude difference in effective flux and a nearly 4x decrease in predicted soft error rate (SER) in an example calculation performed on a commercial 65 nm SRAM. The large LET fluctuations reported here will be even greater for the smaller sensitive volumes that are characteristic of highly scaled technologies. End-of-range effects of stopping ions do not lead to significant inaccuracies in radiation environments with low solar activity unless the sensitivevolumemore » thickness is 100 μm or greater. In contrast, end-of-range effects for stopping ions lead to significant inaccuracies for sensitive- volume thicknesses less than 10 μm in radiation environments with high solar activity.« less

  7. PRESAGE: Protecting Structured Address Generation against Soft Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram

    Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation have not been widely researched (especially in the context of indexing large arrays). We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGEmore » is that any address computation scheme that propagates an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Ensuring the propagation of errors allows one to place detectors at loop exit points and helps turn silent corruptions into easily detectable error situations. Our experiments using the PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less

  8. Assessment of Metronidazole Susceptibility in Helicobacter pylori: Statistical Validation and Error Rate Analysis of Breakpoints Determined by the Disk Diffusion Test

    PubMed Central

    Chaves, Sandra; Gadanho, Mário; Tenreiro, Rogério; Cabrita, José

    1999-01-01

    Metronidazole susceptibility of 100 Helicobacter pylori strains was assessed by determining the inhibition zone diameters by disk diffusion test and the MICs by agar dilution and PDM Epsilometer test (E test). Linear regression analysis was performed, allowing the definition of significant linear relations, and revealed correlations of disk diffusion results with both E-test and agar dilution results (r2 = 0.88 and 0.81, respectively). No significant differences (P = 0.84) were found between MICs defined by E test and those defined by agar dilution, taken as a standard. Reproducibility comparison between E-test and disk diffusion tests showed that they are equivalent and with good precision. Two interpretative susceptibility schemes (with or without an intermediate class) were compared by an interpretative error rate analysis method. The susceptibility classification scheme that included the intermediate category was retained, and breakpoints were assessed for diffusion assay with 5-μg metronidazole disks. Strains with inhibition zone diameters less than 16 mm were defined as resistant (MIC > 8 μg/ml), those with zone diameters equal to or greater than 16 mm but less than 21 mm were considered intermediate (4 μg/ml < MIC ≤ 8 μg/ml), and those with zone diameters of 21 mm or greater were regarded as susceptible (MIC ≤ 4 μg/ml). Error rate analysis applied to this classification scheme showed occurrence frequencies of 1% for major errors and 7% for minor errors, when the results were compared to those obtained by agar dilution. No very major errors were detected, suggesting that disk diffusion might be a good alternative for determining the metronidazole sensitivity of H. pylori strains. PMID:10203543

  9. Refractive errors in medical students in Singapore.

    PubMed

    Woo, W W; Lim, K A; Yang, H; Lim, X Y; Liew, F; Lee, Y S; Saw, S M

    2004-10-01

    Refractive errors are becoming more of a problem in many societies, with prevalence rates of myopia in many Asian urban countries reaching epidemic proportions. This study aims to determine the prevalence rates of various refractive errors in Singapore medical students. 157 second year medical students (aged 19-23 years) in Singapore were examined. Refractive error measurements were determined using a stand-alone autorefractor. Additional demographical data was obtained via questionnaires filled in by the students. The prevalence rate of myopia in Singapore medical students was 89.8 percent (Spherical equivalence (SE) at least -0.50 D). Hyperopia was present in 1.3 percent (SE more than +0.50 D) of the participants and the overall astigmatism prevalence rate was 82.2 percent (Cylinder at least 0.50 D). Prevalence rates of myopia and astigmatism in second year Singapore medical students are one of the highest in the world.

  10. [Nurses' Innovation Acceptance of Barcode Technology].

    PubMed

    Cheng, Hui-Ping; Lee, Ting-Ting; Liu, Chieh-Yu; Hou, I-Ching

    2016-04-01

    Healthcare organizations have increasingly adopted barcode technology to improve care quality and work efficiency. Barcode technology is simple to use, so it is frequently used in patient identification, medication administration, and specimen collection processes. This study used a technology acceptance model and innovation diffusion theory to explore the innovation acceptance of barcode technology by nurses. The data were collected using a structured questionnaire with open-ended questions that was based on the technology acceptance model and innovation diffusion theory. The questionnaire was distributed to and collected from 200 nurses from March to May 2014. Data on laboratory reporting times and specimen rejection rates were collected as well. Variables that were found to have a significant relationship (p<.001) with innovation acceptance included (in order of importance): perceived usefulness (r=.722), perceived ease of use (r=.720), observability (r=.579), compatibility (r=.364), and trialability (r=.344). N-level nurses demonstrated higher acceptance than their N1 and N2 level peers (F=3.95, p<.05). Further, the mean laboratory reporting time decreased 109 minutes (t=10.03, p<.05) and the mean specimen rejection rate decreased from 2.18% to 0.28%. The results revealed that barcode technology has been accepted by nurses and that this technology effectively decreases both laboratory reporting times and specimen rejection rates. However, network speed and workflow should be further improved in order to benefit clinical practice.

  11. A cascaded coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Shu, L.; Kasami, T.

    1985-01-01

    A cascade coding scheme for error control is investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are evaluated. They seem to be quite suitable for satellite down-link error control.

  12. A cascaded coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Kasami, T.; Lin, S.

    1985-01-01

    A cascaded coding scheme for error control was investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are studied which seem to be quite suitable for satellite down-link error control.

  13. Uncorrected refractive errors and spectacle utilisation rate in Tehran: the unmet need

    PubMed Central

    Fotouhi, A; Hashemi, H; Raissi, B; Mohammad, K

    2006-01-01

    Aim To determine the prevalence of the met and unmet need for spectacles and their associated factors in the population of Tehran. Methods 6497 Tehran citizens were enrolled through random cluster sampling and were invited to a clinic for an interview and ophthalmic examination. 4354 (70.3%) participated in the survey, and refraction measurement results of 4353 people aged 5 years and over are presented. The unmet need for spectacles was defined as the proportion of people who did not use spectacles despite a correctable visual acuity of worse than 20/40 in the better eye. Results The need for spectacles in the studied population, standardised for age and sex, was 14.1% (95% confidence interval (CI), 12.8% to 15.4%). This need was met with appropriate spectacles in 416 people (9.3% of the total sample), while it was unmet in 230 people, representing 4.8% of the total sample population (95% CI, 4.1% to 5.4%). The spectacle coverage rate (met need/(met need + unmet need)) was 66.0%. Multivariate logistic regression showed that variables of age, education, and type of refractive error were associated with lack of spectacle correction. There was an increase in the unmet need with older age, lesser education, and myopia. Conclusion This survey determined the met and unmet need for spectacles in a Tehran population. It also identified high risk groups with uncorrected refractive errors to guide intervention programmes for the society. While the study showed the unmet need for spectacles and its determinants, more extensive studies towards the causes of unmet need are recommended. PMID:16488929

  14. [CIRRNET® - learning from errors, a success story].

    PubMed

    Frank, O; Hochreutener, M; Wiederkehr, P; Staender, S

    2012-06-01

    CIRRNET® is the network of local error-reporting systems of the Swiss Patient Safety Foundation. The network has been running since 2006 together with the Swiss Society for Anaesthesiology and Resuscitation (SGAR), and network participants currently include 39 healthcare institutions from all four different language regions of Switzerland. Further institutions can join at any time. Local error reports in CIRRNET® are bundled at a supraregional level, categorised in accordance with the WHO classification, and analysed by medical experts. The CIRRNET® database offers a solid pool of data with error reports from a wide range of medical specialist's areas and provides the basis for identifying relevant problem areas in patient safety. These problem areas are then processed in cooperation with specialists with extremely varied areas of expertise, and recommendations for avoiding these errors are developed by changing care processes (Quick-Alerts®). Having been approved by medical associations and professional medical societies, Quick-Alerts® are widely supported and well accepted in professional circles. The CIRRNET® database also enables any affiliated CIRRNET® participant to access all error reports in the 'closed user area' of the CIRRNET® homepage and to use these error reports for in-house training. A healthcare institution does not have to make every mistake itself - it can learn from the errors of others, compare notes with other healthcare institutions, and use existing knowledge to advance its own patient safety.

  15. 15 CFR 700.13 - Acceptance and rejection of rated orders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... order and transmit the acceptance or rejection in writing (hard copy), or in electronic format, within... rejection, pursuant to paragraphs (b) and (c) of this section, in writing (hard copy) or electronic format...

  16. Online Error Reporting for Managing Quality Control Within Radiology.

    PubMed

    Golnari, Pedram; Forsberg, Daniel; Rosipko, Beverly; Sunshine, Jeffrey L

    2016-06-01

    Information technology systems within health care, such as picture archiving and communication system (PACS) in radiology, can have a positive impact on production but can also risk compromising quality. The widespread use of PACS has removed the previous feedback loop between radiologists and technologists. Instead of direct communication of quality discrepancies found for an examination, the radiologist submitted a paper-based quality-control report. A web-based issue-reporting tool can help restore some of the feedback loop and also provide possibilities for more detailed analysis of submitted errors. The purpose of this study was to evaluate the hypothesis that data from use of an online error reporting software for quality control can focus our efforts within our department. For the 372,258 radiologic examinations conducted during the 6-month period study, 930 errors (390 exam protocol, 390 exam validation, and 150 exam technique) were submitted, corresponding to an error rate of 0.25 %. Within the category exam protocol, technologist documentation had the highest number of submitted errors in ultrasonography (77 errors [44 %]), while imaging protocol errors were the highest subtype error for computed tomography modality (35 errors [18 %]). Positioning and incorrect accession had the highest errors in the exam technique and exam validation error category, respectively, for nearly all of the modalities. An error rate less than 1 % could signify a system with a very high quality; however, a more likely explanation is that not all errors were detected or reported. Furthermore, staff reception of the error reporting system could also affect the reporting rate.

  17. Error and its meaning in forensic science.

    PubMed

    Christensen, Angi M; Crowder, Christian M; Ousley, Stephen D; Houck, Max M

    2014-01-01

    The discussion of "error" has gained momentum in forensic science in the wake of the Daubert guidelines and has intensified with the National Academy of Sciences' Report. Error has many different meanings, and too often, forensic practitioners themselves as well as the courts misunderstand scientific error and statistical error rates, often confusing them with practitioner error (or mistakes). Here, we present an overview of these concepts as they pertain to forensic science applications, discussing the difference between practitioner error (including mistakes), instrument error, statistical error, and method error. We urge forensic practitioners to ensure that potential sources of error and method limitations are understood and clearly communicated and advocate that the legal community be informed regarding the differences between interobserver errors, uncertainty, variation, and mistakes. © 2013 American Academy of Forensic Sciences.

  18. GY SAMPLING THEORY IN ENVIRONMENTAL STUDIES 2: SUBSAMPLING ERROR MEASUREMENTS

    EPA Science Inventory

    Sampling can be a significant source of error in the measurement process. The characterization and cleanup of hazardous waste sites require data that meet site-specific levels of acceptable quality if scientifically supportable decisions are to be made. In support of this effort,...

  19. Emperical Tests of Acceptance Sampling Plans

    NASA Technical Reports Server (NTRS)

    White, K. Preston, Jr.; Johnson, Kenneth L.

    2012-01-01

    Acceptance sampling is a quality control procedure applied as an alternative to 100% inspection. A random sample of items is drawn from a lot to determine the fraction of items which have a required quality characteristic. Both the number of items to be inspected and the criterion for determining conformance of the lot to the requirement are given by an appropriate sampling plan with specified risks of Type I and Type II sampling errors. In this paper, we present the results of empirical tests of the accuracy of selected sampling plans reported in the literature. These plans are for measureable quality characteristics which are known have either binomial, exponential, normal, gamma, Weibull, inverse Gaussian, or Poisson distributions. In the main, results support the accepted wisdom that variables acceptance plans are superior to attributes (binomial) acceptance plans, in the sense that these provide comparable protection against risks at reduced sampling cost. For the Gaussian and Weibull plans, however, there are ranges of the shape parameters for which the required sample sizes are in fact larger than the corresponding attributes plans, dramatically so for instances of large skew. Tests further confirm that the published inverse-Gaussian (IG) plan is flawed, as reported by White and Johnson (2011).

  20. Error management training and simulation education.

    PubMed

    Gardner, Aimee; Rich, Michelle

    2014-12-01

    The integration of simulation into the training of health care professionals provides context for decision making and procedural skills in a high-fidelity environment, without risk to actual patients. It was hypothesised that a novel approach to simulation-based education - error management training - would produce higher performance ratings compared with traditional step-by-step instruction. Radiology technology students were randomly assigned to participate in traditional procedural-based instruction (n = 11) or vicarious error management training (n = 11). All watched an instructional video and discussed how well each incident was handled (traditional instruction group) or identified where the errors were made (vicarious error management training). Students then participated in a 30-minute case-based simulation. Simulations were videotaped for performance analysis. Blinded experts evaluated performance using a predefined evaluation tool created specifically for the scenario. Blinded experts evaluated performance using a predefined evaluation tool created specifically for the scenario The vicarious error management group scored higher on observer-rated performance (Mean = 9.49) than students in the traditional instruction group (Mean = 9.02; p < 0.01). These findings suggest that incorporating the discussion of errors and how to handle errors during the learning session will better equip students when performing hands-on procedures and skills. This pilot study provides preliminary evidence for integrating error management skills into medical curricula and for the design of learning goals in simulation-based education. © 2014 John Wiley & Sons Ltd.

  1. Comparison of four different mobile devices for measuring heart rate and ECG with respect to aspects of usability and acceptance by older people.

    PubMed

    Ehmen, Hilko; Haesner, Marten; Steinke, Ines; Dorn, Mario; Gövercin, Mehmet; Steinhagen-Thiessen, Elisabeth

    2012-05-01

    In the area of product design and usability, most products are developed for the mass-market by technically oriented designers and developers for use by persons who themselves are also technically adept by today's standards. The demands of older people are commonly not given sufficient consideration within the early developmental process. In the present study, the usability and acceptability of four different devices meant to be worn for the measurement of heart rate or ECG were analyzed on the basis of qualitative subjective user ratings and structured interviews of twelve older participants. The data suggest that there was a relatively high acceptance concerning these belts by older adults but none of the four harnesses was completely usable. Especially problematic to the point of limiting satisfaction among older subjects were problems encountered while adjusting the length of the belt and/or closing the locking mechanism. The two devices intended for dedicated heart rate recording yielded the highest user ratings for design, and were clearly preferred for extended wearing time. Yet for all the devices participants identified several important deficiencies in their design, as well as suggestions for improvement. We conclude that the creation of an acceptable monitoring device for older persons requires designers and developers to consider the special demands and abilities of the target group. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Emotion perception and overconfidence in errors under stress in psychosis.

    PubMed

    Köther, Ulf; Lincoln, Tania M; Moritz, Steffen

    2018-03-21

    Vulnerability stress models are well-accepted in psychosis research, but the mechanisms that link stress to psychotic symptoms remain vague. Little is known about how social cognition and overconfidence in errors, two putative mechanisms for the pathogenesis of delusions, relate to stress. Using a repeated measures design, we tested four groups (N=120) with different liability to psychosis (schizophrenia patients [n=35], first-degree relatives [n=24], participants with attenuated positive symptoms [n=19] and healthy controls [n=28]) and depression patients (n=14) as a clinical control group under three randomized experimental conditions (no stress, noise and social stress). Parallel versions of the Emotion Perception and Confidence Task, which taps both emotion perception and confidence, were used in each condition. We recorded subjective stress, heart rate, skin conductance level and salivary cortisol to assess the stress response across different dimensions. Independent of the stress condition, patients with schizophrenia showed poorer emotion perception performance and higher confidence in emotion perception errors than participants with attenuated positive symptoms and healthy controls. However, they did not differ from patients with depression or first-degree relatives. Stress did not influence emotion perception or the extent of high-confident errors, but patients with schizophrenia showed an increase in high-confident emotion perception errors conditional on higher arousal. A possible clinical implication of our findings is the necessity to provide stress management programs that aim to reduce arousal. Moreover, patients with schizophrenia might benefit from interventions that help them to reduce overconfidence in their social cognition judgements in times in which they feel being under pressure. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Reliability of perceived neighbourhood conditions and the effects of measurement error on self-rated health across urban and rural neighbourhoods.

    PubMed

    Pruitt, Sandi L; Jeffe, Donna B; Yan, Yan; Schootman, Mario

    2012-04-01

    Limited psychometric research has examined the reliability of self-reported measures of neighbourhood conditions, the effect of measurement error on associations between neighbourhood conditions and health, and potential differences in the reliabilities between neighbourhood strata (urban vs rural and low vs high poverty). We assessed overall and stratified reliability of self-reported perceived neighbourhood conditions using five scales (social and physical disorder, social control, social cohesion, fear) and four single items (multidimensional neighbouring). We also assessed measurement error-corrected associations of these conditions with self-rated health. Using random-digit dialling, 367 women without breast cancer (matched controls from a larger study) were interviewed twice, 2-3 weeks apart. Test-retest (intraclass correlation coefficients (ICC)/weighted κ) and internal consistency reliability (Cronbach's α) were assessed. Differences in reliability across neighbourhood strata were tested using bootstrap methods. Regression calibration corrected estimates for measurement error. All measures demonstrated satisfactory internal consistency (α ≥ 0.70) and either moderate (ICC/κ=0.41-0.60) or substantial (ICC/κ=0.61-0.80) test-retest reliability in the full sample. Internal consistency did not differ by neighbourhood strata. Test-retest reliability was significantly lower among rural (vs urban) residents for two scales (social control, physical disorder) and two multidimensional neighbouring items; test-retest reliability was higher for physical disorder and lower for one multidimensional neighbouring item among the high (vs low) poverty strata. After measurement error correction, the magnitude of associations between neighbourhood conditions and self-rated health were larger, particularly in the rural population. Research is needed to develop and test reliable measures of perceived neighbourhood conditions relevant to the health of rural populations.

  4. Single Event Test Methodologies and System Error Rate Analysis for Triple Modular Redundant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Allen, Gregory; Edmonds, Larry D.; Swift, Gary; Carmichael, Carl; Tseng, Chen Wei; Heldt, Kevin; Anderson, Scott Arlo; Coe, Michael

    2010-01-01

    We present a test methodology for estimating system error rates of Field Programmable Gate Arrays (FPGAs) mitigated with Triple Modular Redundancy (TMR). The test methodology is founded in a mathematical model, which is also presented. Accelerator data from 90 nm Xilins Military/Aerospace grade FPGA are shown to fit the model. Fault injection (FI) results are discussed and related to the test data. Design implementation and the corresponding impact of multiple bit upset (MBU) are also discussed.

  5. Adolescent personality factors in self-ratings and peer nominations and their prediction of peer acceptance and peer rejection.

    PubMed

    Scholte, R H; van Aken, M A; van Lieshout, C F

    1997-12-01

    In this study, the robustness of the Big Five personality factors in adolescents' self-ratings and peer nominations was investigated. Data were obtained on 2,001 adolescents attending secondary school (885 girls; 1,116 boys; M age = 14.5 years). Exploratory and confirmatory factor analyses on the self-ratings confirmed the Big Five personality factors. In contrast, exploratory analysis on the peer nominations revealed five different factors: Aggression-Inattentiveness, Achievement-Withdrawal, Self-Confidence, Sociability, and Emotionality-Nervousness. It is suggested that peers evaluate group members not in terms of their personality but in terms of their group reputation. Peer evaluations contributed substantially to the prediction of peer acceptance and rejection; the Big Five personality factors based on self-ratings did not.

  6. Metadata-driven Delphi rating on the Internet.

    PubMed

    Deshpande, Aniruddha M; Shiffman, Richard N; Nadkarni, Prakash M

    2005-01-01

    Paper-based data collection and analysis for consensus development is inefficient and error-prone. Computerized techniques that could improve efficiency, however, have been criticized as costly, inconvenient and difficult to use. We designed and implemented a metadata-driven Web-based Delphi rating and analysis tool, employing the flexible entity-attribute-value schema to create generic, reusable software. The software can be applied to various domains by altering the metadata; the programming code remains intact. This approach greatly reduces the marginal cost of re-using the software. We implemented our software to prepare for the Conference on Guidelines Standardization. Twenty-three invited experts completed the first round of the Delphi rating on the Web. For each participant, the software generated individualized reports that described the median rating and the disagreement index (calculated from the Interpercentile Range Adjusted for Symmetry) as defined by the RAND/UCLA Appropriateness Method. We evaluated the software with a satisfaction survey using a five-level Likert scale. The panelists felt that Web data entry was convenient (median 4, interquartile range [IQR] 4.0-5.0), acceptable (median 4.5, IQR 4.0-5.0) and easily accessible (median 5, IQR 4.0-5.0). We conclude that Web-based Delphi rating for consensus development is a convenient and acceptable alternative to the traditional paper-based method.

  7. Altimeter error sources at the 10-cm performance level

    NASA Technical Reports Server (NTRS)

    Martin, C. F.

    1977-01-01

    Error sources affecting the calibration and operational use of a 10 cm altimeter are examined to determine the magnitudes of current errors and the investigations necessary to reduce them to acceptable bounds. Errors considered include those affecting operational data pre-processing, and those affecting altitude bias determination, with error budgets developed for both. The most significant error sources affecting pre-processing are bias calibration, propagation corrections for the ionosphere, and measurement noise. No ionospheric models are currently validated at the required 10-25% accuracy level. The optimum smoothing to reduce the effects of measurement noise is investigated and found to be on the order of one second, based on the TASC model of geoid undulations. The 10 cm calibrations are found to be feasible only through the use of altimeter passes that are very high elevation for a tracking station which tracks very close to the time of altimeter track, such as a high elevation pass across the island of Bermuda. By far the largest error source, based on the current state-of-the-art, is the location of the island tracking station relative to mean sea level in the surrounding ocean areas.

  8. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Brun, Todd; Quantum Research Team

    Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.

  9. Bit error rate analysis of the K channel using wavelength diversity

    NASA Astrophysics Data System (ADS)

    Shah, Dhaval; Kothari, Dilip Kumar; Ghosh, Anjan K.

    2017-05-01

    The presence of atmospheric turbulence in the free space causes fading and degrades the performance of a free space optical (FSO) system. To mitigate the turbulence-induced fading, multiple copies of the signal can be transmitted on a different wavelength. Each signal, in this case, will undergo different fadings. This is known as the wavelength diversity technique. Bit error rate (BER) performance of the FSO systems with wavelength diversity under strong turbulence condition is investigated. K-distribution is chosen to model a strong turbulence scenario. The source information is transmitted onto three carrier wavelengths of 1.55, 1.31, and 0.85 μm. The signals at the receiver side are combined using three different methods: optical combining (OC), equal gain combining (EGC), and selection combining (SC). Mathematical expressions are derived for the calculation of the BER for all three schemes (OC, EGC, and SC). Results are presented for the link distance of 2 and 3 km under strong turbulence conditions for all the combining methods. The performance of all three schemes is also compared. It is observed that OC provides better performance than the other two techniques. Proposed method results are also compared with the published article.

  10. Experimental investigation of false positive errors in auditory species occurrence surveys

    USGS Publications Warehouse

    Miller, David A.W.; Weir, Linda A.; McClintock, Brett T.; Grant, Evan H. Campbell; Bailey, Larissa L.; Simons, Theodore R.

    2012-01-01

    False positive errors are a significant component of many ecological data sets, which in combination with false negative errors, can lead to severe biases in conclusions about ecological systems. We present results of a field experiment where observers recorded observations for known combinations of electronically broadcast calling anurans under conditions mimicking field surveys to determine species occurrence. Our objectives were to characterize false positive error probabilities for auditory methods based on a large number of observers, to determine if targeted instruction could be used to reduce false positive error rates, and to establish useful predictors of among-observer and among-species differences in error rates. We recruited 31 observers, ranging in abilities from novice to expert, that recorded detections for 12 species during 180 calling trials (66,960 total observations). All observers made multiple false positive errors and on average 8.1% of recorded detections in the experiment were false positive errors. Additional instruction had only minor effects on error rates. After instruction, false positive error probabilities decreased by 16% for treatment individuals compared to controls with broad confidence interval overlap of 0 (95% CI: -46 to 30%). This coincided with an increase in false negative errors due to the treatment (26%; -3 to 61%). Differences among observers in false positive and in false negative error rates were best predicted by scores from an online test and a self-assessment of observer ability completed prior to the field experiment. In contrast, years of experience conducting call surveys was a weak predictor of error rates. False positive errors were also more common for species that were played more frequently, but were not related to the dominant spectral frequency of the call. Our results corroborate other work that demonstrates false positives are a significant component of species occurrence data collected by auditory

  11. Advancing the research agenda for diagnostic error reduction.

    PubMed

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  12. [Statistical Process Control (SPC) can help prevent treatment errors without increasing costs in radiotherapy].

    PubMed

    Govindarajan, R; Llueguera, E; Melero, A; Molero, J; Soler, N; Rueda, C; Paradinas, C

    2010-01-01

    Statistical Process Control (SPC) was applied to monitor patient set-up in radiotherapy and, when the measured set-up error values indicated a loss of process stability, its root cause was identified and eliminated to prevent set-up errors. Set up errors were measured for medial-lateral (ml), cranial-caudal (cc) and anterior-posterior (ap) dimensions and then the upper control limits were calculated. Once the control limits were known and the range variability was acceptable, treatment set-up errors were monitored using sub-groups of 3 patients, three times each shift. These values were plotted on a control chart in real time. Control limit values showed that the existing variation was acceptable. Set-up errors, measured and plotted on a X chart, helped monitor the set-up process stability and, if and when the stability was lost, treatment was interrupted, the particular cause responsible for the non-random pattern was identified and corrective action was taken before proceeding with the treatment. SPC protocol focuses on controlling the variability due to assignable cause instead of focusing on patient-to-patient variability which normally does not exist. Compared to weekly sampling of set-up error in each and every patient, which may only ensure that just those sampled sessions were set-up correctly, the SPC method enables set-up error prevention in all treatment sessions for all patients and, at the same time, reduces the control costs. Copyright © 2009 SECA. Published by Elsevier Espana. All rights reserved.

  13. Explaining errors in children's questions.

    PubMed

    Rowland, Caroline F

    2007-07-01

    The ability to explain the occurrence of errors in children's speech is an essential component of successful theories of language acquisition. The present study tested some generativist and constructivist predictions about error on the questions produced by ten English-learning children between 2 and 5 years of age. The analyses demonstrated that, as predicted by some generativist theories [e.g. Santelmann, L., Berk, S., Austin, J., Somashekar, S. & Lust. B. (2002). Continuity and development in the acquisition of inversion in yes/no questions: dissociating movement and inflection, Journal of Child Language, 29, 813-842], questions with auxiliary DO attracted higher error rates than those with modal auxiliaries. However, in wh-questions, questions with modals and DO attracted equally high error rates, and these findings could not be explained in terms of problems forming questions with why or negated auxiliaries. It was concluded that the data might be better explained in terms of a constructivist account that suggests that entrenched item-based constructions may be protected from error in children's speech, and that errors occur when children resort to other operations to produce questions [e.g. Dabrowska, E. (2000). From formula to schema: the acquisition of English questions. Cognitive Liguistics, 11, 83-102; Rowland, C. F. & Pine, J. M. (2000). Subject-auxiliary inversion errors and wh-question acquisition: What children do know? Journal of Child Language, 27, 157-181; Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. Cambridge, MA: Harvard University Press]. However, further work on constructivist theory development is required to allow researchers to make predictions about the nature of these operations.

  14. Learning without Borders: A Review of the Implementation of Medical Error Reporting in Médecins Sans Frontières

    PubMed Central

    Shanks, Leslie; Bil, Karla; Fernhout, Jena

    2015-01-01

    Objective To analyse the results from the first 3 years of implementation of a medical error reporting system in Médecins Sans Frontières-Operational Centre Amsterdam (MSF) programs. Methodology A medical error reporting policy was developed with input from frontline workers and introduced to the organisation in June 2010. The definition of medical error used was “the failure of a planned action to be completed as intended or the use of a wrong plan to achieve an aim.” All confirmed error reports were entered into a database without the use of personal identifiers. Results 179 errors were reported from 38 projects in 18 countries over the period of June 2010 to May 2013. The rate of reporting was 31, 42, and 106 incidents/year for reporting year 1, 2 and 3 respectively. The majority of errors were categorized as dispensing errors (62 cases or 34.6%), errors or delays in diagnosis (24 cases or 13.4%) and inappropriate treatment (19 cases or 10.6%). The impact of the error was categorized as no harm (58, 32.4%), harm (70, 39.1%), death (42, 23.5%) and unknown in 9 (5.0%) reports. Disclosure to the patient took place in 34 cases (19.0%), did not take place in 46 (25.7%), was not applicable for 5 (2.8%) cases and not reported for 94 (52.5%). Remedial actions introduced at headquarters level included guideline revisions and changes to medical supply procedures. At field level improvements included increased training and supervision, adjustments in staffing levels, and adaptations to the organization of the pharmacy. Conclusion It was feasible to implement a voluntary reporting system for medical errors despite the complex contexts in which MSF intervenes. The reporting policy led to system changes that improved patient safety and accountability to patients. Challenges remain in achieving widespread acceptance of the policy as evidenced by the low reporting and disclosure rates. PMID:26381622

  15. [Medication error management climate and perception for system use according to construction of medication error prevention system].

    PubMed

    Kim, Myoung Soo

    2012-08-01

    The purpose of this cross-sectional study was to examine current status of IT-based medication error prevention system construction and the relationships among system construction, medication error management climate and perception for system use. The participants were 124 patient safety chief managers working for 124 hospitals with over 300 beds in Korea. The characteristics of the participants, construction status and perception of systems (electric pharmacopoeia, electric drug dosage calculation system, computer-based patient safety reporting and bar-code system) and medication error management climate were measured in this study. The data were collected between June and August 2011. Descriptive statistics, partial Pearson correlation and MANCOVA were used for data analysis. Electric pharmacopoeia were constructed in 67.7% of participating hospitals, computer-based patient safety reporting systems were constructed in 50.8%, electric drug dosage calculation systems were in use in 32.3%. Bar-code systems showed up the lowest construction rate at 16.1% of Korean hospitals. Higher rates of construction of IT-based medication error prevention systems resulted in greater safety and a more positive error management climate prevailed. The supportive strategies for improving perception for use of IT-based systems would add to system construction, and positive error management climate would be more easily promoted.

  16. Analysis of case-only studies accounting for genotyping error.

    PubMed

    Cheng, K F

    2007-03-01

    The case-only design provides one approach to assess possible interactions between genetic and environmental factors. It has been shown that if these factors are conditionally independent, then a case-only analysis is not only valid but also very efficient. However, a drawback of the case-only approach is that its conclusions may be biased by genotyping errors. In this paper, our main aim is to propose a method for analysis of case-only studies when these errors occur. We show that the bias can be adjusted through the use of internal validation data, which are obtained by genotyping some sampled individuals twice. Our analysis is based on a simple and yet highly efficient conditional likelihood approach. Simulation studies considered in this paper confirm that the new method has acceptable performance under genotyping errors.

  17. The successively temporal error concealment algorithm using error-adaptive block matching principle

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Hsuan; Wu, Tsai-Hsing; Chen, Chao-Chyun

    2014-09-01

    Generally, the temporal error concealment (TEC) adopts the blocks around the corrupted block (CB) as the search pattern to find the best-match block in previous frame. Once the CB is recovered, it is referred to as the recovered block (RB). Although RB can be the search pattern to find the best-match block of another CB, RB is not the same as its original block (OB). The error between the RB and its OB limits the performance of TEC. The successively temporal error concealment (STEC) algorithm is proposed to alleviate this error. The STEC procedure consists of tier-1 and tier-2. The tier-1 divides a corrupted macroblock into four corrupted 8 × 8 blocks and generates a recovering order for them. The corrupted 8 × 8 block with the first place of recovering order is recovered in tier-1, and remaining 8 × 8 CBs are recovered in tier-2 along the recovering order. In tier-2, the error-adaptive block matching principle (EA-BMP) is proposed for the RB as the search pattern to recover remaining corrupted 8 × 8 blocks. The proposed STEC outperforms sophisticated TEC algorithms on average PSNR by 0.3 dB on the packet error rate of 20% at least.

  18. A web-based team-oriented medical error communication assessment tool: development, preliminary reliability, validity, and user ratings.

    PubMed

    Kim, Sara; Brock, Doug; Prouty, Carolyn D; Odegard, Peggy Soule; Shannon, Sarah E; Robins, Lynne; Boggs, Jim G; Clark, Fiona J; Gallagher, Thomas

    2011-01-01

    Multiple-choice exams are not well suited for assessing communication skills. Standardized patient assessments are costly and patient and peer assessments are often biased. Web-based assessment using video content offers the possibility of reliable, valid, and cost-efficient means for measuring complex communication skills, including interprofessional communication. We report development of the Web-based Team-Oriented Medical Error Communication Assessment Tool, which uses videotaped cases for assessing skills in error disclosure and team communication. Steps in development included (a) defining communication behaviors, (b) creating scenarios, (c) developing scripts, (d) filming video with professional actors, and (e) writing assessment questions targeting team communication during planning and error disclosure. Using valid data from 78 participants in the intervention group, coefficient alpha estimates of internal consistency were calculated based on the Likert-scale questions and ranged from α=.79 to α=.89 for each set of 7 Likert-type discussion/planning items and from α=.70 to α=.86 for each set of 8 Likert-type disclosure items. The preliminary test-retest Pearson correlation based on the scores of the intervention group was r=.59 for discussion/planning and r=.25 for error disclosure sections, respectively. Content validity was established through reliance on empirically driven published principles of effective disclosure as well as integration of expert views across all aspects of the development process. In addition, data from 122 medicine and surgical physicians and nurses showed high ratings for video quality (4.3 of 5.0), acting (4.3), and case content (4.5). Web assessment of communication skills appears promising. Physicians and nurses across specialties respond favorably to the tool.

  19. A Cycle of Redemption in a Medical Error Disclosure and Apology Program.

    PubMed

    Carmack, Heather J

    2014-06-01

    Physicians accept that they have an ethical responsibility to disclose and apologize for medical errors; however, when physicians make a medical error, they are often not given the opportunity to disclose and apologize for the mistake. In this article, I explore how one hospital negotiated the aftermath of medical mistakes through a disclosure and apology program. Specifically, I used Burke's cycle of redemption to position the hospital's disclosure and apology program as a redemption process and explore how the hospital physicians and administrators worked through the experiences of disclosing and apologizing for medical errors. © The Author(s) 2014.

  20. [Acceptance and understandability of various methods of health valuations for the chronically ill: willingness to pay, visual analogue scale and rating scale].

    PubMed

    Meder, M; Farin, E

    2009-11-01

    Health valuations are one way of measuring patient preferences with respect to the results of their treatment. The study examines three different methods of health valuations--willingness to pay (WTP), visual analogue scale (VAS), and a rating question for evaluating the subjective significance. The goal is to test the understandability and acceptance of these methods for implementation in questionnaires. In various rehabilitation centres, a total of six focus groups were conducted with 5-9 patients each with a mean age of 57.1 years. The illnesses considered were chronic-ischaemic heart disease, chronic back pain, and breast cancer. Patients filled out a questionnaire that was then discussed in the group. In addition to the quantitative evaluation of the data in the questionnaire, a qualitative analysis of the contents of the group discussion protocols was made. We have results from a total of 42 patients. 14.6% of the patients had "great difficulties" understanding the WTP or rated it as "completely incomprehensible"; this value was 7.3% for VAS and 0% for the rating scale. With respect to acceptance, 31.0% of the patients indicated that they were "not really" or "not at all" willing to answer such a WTP question in a questionnaire; this was 6.6% for the VAS, and again 0% for the rating scale. The qualitative analysis provided an indication as to why some patients view the WTP question in particular in a negative light. Many difficulties in understanding it were related to the formulation of the question and the structure of the questionnaire. However, the patients' statements also made it apparent that the hypothetical nature of the WTP questionnaire was not always recognised. The most frequent reason for the lack of acceptance of the WTP was the patients' fear of negative financial consequences of their responses. With respect to understandability and acceptance, VAS questions appear to be better suited for reflecting patient preferences than WTP questions. The

  1. Social deviance activates the brain's error-monitoring system.

    PubMed

    Kim, Bo-Rin; Liss, Alison; Rao, Monica; Singer, Zachary; Compton, Rebecca J

    2012-03-01

    Social psychologists have long noted the tendency for human behavior to conform to social group norms. This study examined whether feedback indicating that participants had deviated from group norms would elicit a neural signal previously shown to be elicited by errors and monetary losses. While electroencephalograms were recorded, participants (N = 30) rated the attractiveness of 120 faces and received feedback giving the purported average rating made by a group of peers. The feedback was manipulated so that group ratings either were the same as a participant's rating or deviated by 1, 2, or 3 points. Feedback indicating deviance from the group norm elicited a feedback-related negativity, a brainwave signal known to be elicited by objective performance errors and losses. The results imply that the brain treats deviance from social norms as an error.

  2. Horizon sensor errors calculated by computer models compared with errors measured in orbit

    NASA Technical Reports Server (NTRS)

    Ward, K. A.; Hogan, R.; Andary, J.

    1982-01-01

    Using a computer program to model the earth's horizon and to duplicate the signal processing procedure employed by the ESA (Earth Sensor Assembly), errors due to radiance variation have been computed for a particular time of the year. Errors actually occurring in flight at the same time of year are inferred from integrated rate gyro data for a satellite of the TIROS series of NASA weather satellites (NOAA-A). The predicted performance is compared with actual flight history.

  3. Reverse Transcription Errors and RNA-DNA Differences at Short Tandem Repeats.

    PubMed

    Fungtammasan, Arkarachai; Tomaszkiewicz, Marta; Campos-Sánchez, Rebeca; Eckert, Kristin A; DeGiorgio, Michael; Makova, Kateryna D

    2016-10-01

    Transcript variation has important implications for organismal function in health and disease. Most transcriptome studies focus on assessing variation in gene expression levels and isoform representation. Variation at the level of transcript sequence is caused by RNA editing and transcription errors, and leads to nongenetically encoded transcript variants, or RNA-DNA differences (RDDs). Such variation has been understudied, in part because its detection is obscured by reverse transcription (RT) and sequencing errors. It has only been evaluated for intertranscript base substitution differences. Here, we investigated transcript sequence variation for short tandem repeats (STRs). We developed the first maximum-likelihood estimator (MLE) to infer RT error and RDD rates, taking next generation sequencing error rates into account. Using the MLE, we empirically evaluated RT error and RDD rates for STRs in a large-scale DNA and RNA replicated sequencing experiment conducted in a primate species. The RT error rates increased exponentially with STR length and were biased toward expansions. The RDD rates were approximately 1 order of magnitude lower than the RT error rates. The RT error rates estimated with the MLE from a primate data set were concordant with those estimated with an independent method, barcoded RNA sequencing, from a Caenorhabditis elegans data set. Our results have important implications for medical genomics, as STR allelic variation is associated with >40 diseases. STR nonallelic transcript variation can also contribute to disease phenotype. The MLE and empirical rates presented here can be used to evaluate the probability of disease-associated transcripts arising due to RDD. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Continuous quantum error correction for non-Markovian decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkov, Ognyan; Brun, Todd A.; Communication Sciences Institute, University of Southern California, Los Angeles, California 90089

    2007-08-15

    We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximatelymore » follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics.« less

  5. Decreasing patient identification band errors by standardizing processes.

    PubMed

    Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie

    2013-04-01

    Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P < .001) and was maintained for 8 months. Standardization of ID bands and labels in conjunction with other interventions resulted in a statistical decrease in ID band error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.

  6. Prescribing errors during hospital inpatient care: factors influencing identification by pharmacists.

    PubMed

    Tully, Mary P; Buchan, Iain E

    2009-12-01

    To investigate the prevalence of prescribing errors identified by pharmacists in hospital inpatients and the factors influencing error identification rates by pharmacists throughout hospital admission. 880-bed university teaching hospital in North-west England. Data about prescribing errors identified by pharmacists (median: 9 (range 4-17) collecting data per day) when conducting routine work were prospectively recorded on 38 randomly selected days over 18 months. Proportion of new medication orders in which an error was identified; predictors of error identification rate, adjusted for workload and seniority of pharmacist, day of week, type of ward or stage of patient admission. 33,012 new medication orders were reviewed for 5,199 patients; 3,455 errors (in 10.5% of orders) were identified for 2,040 patients (39.2%; median 1, range 1-12). Most were problem orders (1,456, 42.1%) or potentially significant errors (1,748, 50.6%); 197 (5.7%) were potentially serious; 1.6% (n = 54) were potentially severe or fatal. Errors were 41% (CI: 28-56%) more likely to be identified at patient's admission than at other times, independent of confounders. Workload was the strongest predictor of error identification rates, with 40% (33-46%) less errors identified on the busiest days than at other times. Errors identified fell by 1.9% (1.5-2.3%) for every additional chart checked, independent of confounders. Pharmacists routinely identify errors but increasing workload may reduce identification rates. Where resources are limited, they may be better spent on identifying and addressing errors immediately after admission to hospital.

  7. Image Data Compression Having Minimum Perceptual Error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1997-01-01

    A method is presented for performing color or grayscale image compression that eliminates redundant and invisible image components. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The quantization matrix comprises visual masking by luminance and contrast technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  8. Children acceptance of laser dental treatment

    NASA Astrophysics Data System (ADS)

    Lazea, Andreea; Todea, Carmen

    2016-03-01

    Objectives: To evaluate the dental anxiety level and the degree of acceptance of laser assisted pedodontic treatments from the children part. Also, we want to underline the advantages of laser use in pediatric dentistry, to make this technology widely used in treating dental problems of our children patients. Methods: Thirty pediatric dental patients presented in the Department of Pedodontics, University of Medicine and Pharmacy "Victor Babeş", Timişoara were evaluated using the Wong-Baker pain rating scale, wich was administered postoperatory to all patients, to assess their level of laser therapy acceptance. Results: Wong-Baker faces pain rating scale (WBFPS) has good validity and high specificity; generally it's easy for children to use, easy to compare and has good feasibility. Laser treatment has been accepted and tolerated by pediatric patients for its ability to reduce or eliminate pain. Around 70% of the total sample showed an excellent acceptance of laser dental treatment. Conclusions: Laser technology is useful and effective in many clinical situations encountered in pediatric dentistry and a good level of pacient acceptance is reported during all laser procedures on hard and soft tissues.

  9. Organizational safety culture and medical error reporting by Israeli nurses.

    PubMed

    Kagan, Ilya; Barnoy, Sivia

    2013-09-01

    To investigate the association between patient safety culture (PSC) and the incidence and reporting rate of medical errors by Israeli nurses. Self-administered structured questionnaires were distributed to a convenience sample of 247 registered nurses enrolled in training programs at Tel Aviv University (response rate = 91%). The questionnaire's three sections examined the incidence of medication mistakes in clinical practice, the reporting rate for these errors, and the participants' views and perceptions of the safety culture in their workplace at three levels (organizational, departmental, and individual performance). Pearson correlation coefficients, t tests, and multiple regression analysis were used to analyze the data. Most nurses encountered medical errors from a daily to a weekly basis. Six percent of the sample never reported their own errors, while half reported their own errors "rarely or sometimes." The level of PSC was positively and significantly correlated with the error reporting rate. PSC, place of birth, error incidence, and not having an academic nursing degree were significant predictors of error reporting, together explaining 28% of variance. This study confirms the influence of an organizational safety climate on readiness to report errors. Senior healthcare executives and managers can make a major impact on safety culture development by creating and promoting a vision and strategy for quality and safety and fostering their employees' motivation to implement improvement programs at the departmental and individual level. A positive, carefully designed organizational safety culture can encourage error reporting by staff and so improve patient safety. © 2013 Sigma Theta Tau International.

  10. System care improves trauma outcome: patient care errors dominate reduced preventable death rate.

    PubMed

    Thoburn, E; Norris, P; Flores, R; Goode, S; Rodriguez, E; Adams, V; Campbell, S; Albrink, M; Rosemurgy, A

    1993-01-01

    A review of 452 trauma deaths in Hillsborough County, Florida, in 1984 documented that 23% of non-CNS trauma deaths were preventable and occurred because of inadequate resuscitation or delay in proper surgical care. In late 1988 Hillsborough County organized a County Trauma Agency (HCTA) to coordinate trauma care among prehospital providers and state-designated trauma centers. The purpose of this study was to review county trauma deaths after the inception of the HCTA to determine the frequency of preventable deaths. 504 trauma deaths occurring between October 1989 and April 1991 were reviewed. Through committee review, 10 deaths were deemed preventable; 2 occurred outside the trauma system. Of the 10 deaths, 5 preventable deaths occurred late in severely injured patients. The preventable death rate has decreased to 7.0% with system care. The causes of preventable deaths have changed from delayed or inadequate intervention to postoperative care errors.

  11. Achieving unequal error protection with convolutional codes

    NASA Technical Reports Server (NTRS)

    Mills, D. G.; Costello, D. J., Jr.; Palazzo, R., Jr.

    1994-01-01

    This paper examines the unequal error protection capabilities of convolutional codes. Both time-invariant and periodically time-varying convolutional encoders are examined. The effective free distance vector is defined and is shown to be useful in determining the unequal error protection (UEP) capabilities of convolutional codes. A modified transfer function is used to determine an upper bound on the bit error probabilities for individual input bit positions in a convolutional encoder. The bound is heavily dependent on the individual effective free distance of the input bit position. A bound relating two individual effective free distances is presented. The bound is a useful tool in determining the maximum possible disparity in individual effective free distances of encoders of specified rate and memory distribution. The unequal error protection capabilities of convolutional encoders of several rates and memory distributions are determined and discussed.

  12. Error-related brain activity and error awareness in an error classification paradigm.

    PubMed

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. iGen: An automated generator of simplified models with provable error bounds.

    NASA Astrophysics Data System (ADS)

    Tang, D.; Dobbie, S.

    2009-04-01

    Climate models employ various simplifying assumptions and parameterisations in order to increase execution speed. However, in order to draw conclusions about the Earths climate from the results of a climate simulation it is necessary to have information about the error that these assumptions and parameterisations introduce. A novel computer program, called iGen, is being developed which automatically generates fast, simplified models by analysing the source code of a slower, high resolution model. The resulting simplified models have provable bounds on error compared to the high resolution model and execute at speeds that are typically orders of magnitude faster. iGen's input is a definition of the prognostic variables of the simplified model, a set of bounds on acceptable error and the source code of a model that captures the behaviour of interest. In the case of an atmospheric model, for example, this would be a global cloud resolving model with very high resolution. Although such a model would execute far too slowly to be used directly in a climate model, iGen never executes it. Instead, it converts the code of the resolving model into a mathematical expression which is then symbolically manipulated and approximated to form a simplified expression. This expression is then converted back into a computer program and output as a simplified model. iGen also derives and reports formal bounds on the error of the simplified model compared to the resolving model. These error bounds are always maintained below the user-specified acceptable error. Results will be presented illustrating the success of iGen's analysis of a number of example models. These extremely encouraging results have lead on to work which is currently underway to analyse a cloud resolving model and so produce an efficient parameterisation of moist convection with formally bounded error.

  14. Vaccination against hepatitis A and B in persons subject to homelessness in inner Sydney: vaccine acceptance, completion rates and immunogenicity.

    PubMed

    Poulos, Roslyn G; Ferson, Mark J; Orr, Karen J; McCarthy, Michele A; Botham, Susan J; Stern, Jerome M; Lucey, Adrienne

    2010-04-01

    To determine acceptance, completion rates and immunogenicity of the standard vaccination schedule for hepatitis A (HAV) and B (HBV) in persons subject to homelessness. A convenience sample of clients (n=201) attending a medical clinic for homeless and disadvantaged persons in Sydney was enrolled. Serological screening for HAV and HBV was undertaken. An appropriate vaccination program was instituted. Post-vaccination serology determined serological response. Although many clients had serological evidence of past infection, at least 138 (69%) clients had the potential to benefit from vaccination. For hepatitis A and B vaccinations, completion rates were 73% (73 of 100 clients) and 75% (69 of 92 clients), respectively; after vaccination, protective antibody was found in 98.2% (56 of 57) and 72% (36 of 50) of clients, respectively. A successful vaccination program can be mounted with a vulnerable population. We consider a clinic with a well-established history of acceptance and utilisation by the target group; a low staff turnover and regular clientele; inclusion of vaccination as part of routine client care; and counselling (part of pre- and post-serological testing) essential components in achieving good vaccination completion rates. © 2010 The Authors. Journal Compilation © 2010 Public Health Association of Australia.

  15. Medication administration errors from a nursing viewpoint: a formal consensus of definition and scenarios using a Delphi technique.

    PubMed

    Shawahna, Ramzi; Masri, Dina; Al-Gharabeh, Rawan; Deek, Rawan; Al-Thayba, Lama; Halaweh, Masa

    2016-02-01

    To develop and achieve formal consensus on a definition of medication administration errors and scenarios that should or should not be considered as medication administration errors in hospitalised patient settings. Medication administration errors occur frequently in hospitalised patient settings. Currently, there is no formal consensus on a definition of medication administration errors or scenarios that should or should not be considered as medication administration errors. This was a descriptive study using Delphi technique. A panel of experts (n = 50) recruited from major hospitals, nursing schools and universities in Palestine took part in the study. Three Delphi rounds were followed to achieve consensus on a proposed definition of medication administration errors and a series of 61 scenarios representing potential medication administration error situations formulated into a questionnaire. In the first Delphi round, key contact nurses' views on medication administration errors were explored. In the second Delphi round, consensus was achieved to accept the proposed definition of medication administration errors and to include 36 (59%) scenarios and exclude 1 (1·6%) as medication administration errors. In the third Delphi round, consensus was achieved to consider further 14 (23%) and exclude 2 (3·3%) as medication administration errors while the remaining eight (13·1%) were considered equivocal. Of the 61 scenarios included in the Delphi process, experts decided to include 50 scenarios as medication administration errors, exclude three scenarios and include or exclude eight scenarios depending on the individual clinical situation. Consensus on a definition and scenarios representing medication administration errors can be achieved using formal consensus techniques. Researchers should be aware that using different definitions of medication administration errors, inclusion or exclusion of medication administration error situations could significantly affect

  16. Outpatient Prescribing Errors and the Impact of Computerized Prescribing

    PubMed Central

    Gandhi, Tejal K; Weingart, Saul N; Seger, Andrew C; Borus, Joshua; Burdick, Elisabeth; Poon, Eric G; Leape, Lucian L; Bates, David W

    2005-01-01

    Background Medication errors are common among inpatients and many are preventable with computerized prescribing. Relatively little is known about outpatient prescribing errors or the impact of computerized prescribing in this setting. Objective To assess the rates, types, and severity of outpatient prescribing errors and understand the potential impact of computerized prescribing. Design Prospective cohort study in 4 adult primary care practices in Boston using prescription review, patient survey, and chart review to identify medication errors, potential adverse drug events (ADEs) and preventable ADEs. Participants Outpatients over age 18 who received a prescription from 24 participating physicians. Results We screened 1879 prescriptions from 1202 patients, and completed 661 surveys (response rate 55%). Of the prescriptions, 143 (7.6%; 95% confidence interval (CI) 6.4% to 8.8%) contained a prescribing error. Three errors led to preventable ADEs and 62 (43%; 3% of all prescriptions) had potential for patient injury (potential ADEs); 1 was potentially life-threatening (2%) and 15 were serious (24%). Errors in frequency (n=77, 54%) and dose (n=26, 18%) were common. The rates of medication errors and potential ADEs were not significantly different at basic computerized prescribing sites (4.3% vs 11.0%, P=.31; 2.6% vs 4.0%, P=.16) compared to handwritten sites. Advanced checks (including dose and frequency checking) could have prevented 95% of potential ADEs. Conclusions Prescribing errors occurred in 7.6% of outpatient prescriptions and many could have harmed patients. Basic computerized prescribing systems may not be adequate to reduce errors. More advanced systems with dose and frequency checking are likely needed to prevent potentially harmful errors. PMID:16117752

  17. Designing an efficient LT-code with unequal error protection for image transmission

    NASA Astrophysics Data System (ADS)

    S. Marques, F.; Schwartz, C.; Pinho, M. S.; Finamore, W. A.

    2015-10-01

    recommended by CCSDS. In fact, to design a LT-code with an unequal error protection, the bit stream produced by the algorithm recommended by CCSDS must be partitioned in M disjoint sets of bits. Using the weighted approach, the LT-code produces M different failure probabilities for each set of bits, p1, ..., pM leading to a total probability of failure, p which is an average of p1, ..., pM. In general, the parameters of the LT-code with unequal error protection is chosen using a heuristic procedure. In this work, we analyze the problem of choosing the LT-code parameters to optimize two figure of merits: (a) the probability of achieving a minimum acceptable PSNR, and (b) the mean of PSNR, given that the minimum acceptable PSNR has been achieved. Given the rate-distortion curve achieved by CCSDS recommended algorithm, this work establishes a closed form of the mean of PSNR (given that the minimum acceptable PSNR has been achieved) as a function of p1, ..., pM. The main contribution of this work is the study of a criteria to select the parameters p1, ..., pM to optimize the performance of image transmission.

  18. Acceptability of the Urban Family Medicine Project among Physicians: A Cross-Sectional Study of Medical Offices, Iran.

    PubMed

    Kor, Elham Movahed; Rashidian, Arash; Hosseini, Mostafa; Azar, Farbod Ebadi Fard; Arab, Mohammad

    2016-10-01

    It is essential to organize private physicians in urban areas by developing urban family medicine in Iran. Acceptance of this project is currently low among physicians. The present research determined the factors affecting acceptability of the Urban Family Medicine Project among physicians working in the private sector of Mazandaran and Fars provinces in Iran. This descriptive-analytical and cross-sectional study was conducted in Mazandaran and Fars provinces. The target population was all physicians working in private offices in these regions. The sample size was calculated to be 860. The instrument contained 70 items that were modified in accordance with feedback from eight healthcare managers and a pilot sample of 50 physicians. Data was analyzed using the LISREL 8.80. The response rate was 82.21% and acceptability was almost 50% for all domains. The fit indices of the structural model were the chi-square to degree-of-freedom (2.79), normalized fit index (0.98), non-normalized fit index (0.99), comparative fit index (0.99), and root mean square error of approximation (0.05). Training facilities had no significant direct effect on acceptability; however, workload had a direct negative effect on acceptability. Other factors had direct positive effects on acceptability. Specification of the factors relating to acceptance of the project among private physicians is required to develop the project in urban areas. It is essential to upgrade the payment system, remedy cultural barriers, decrease the workload, improve the scope of practice and working conditions, and improve collaboration between healthcare professionals.

  19. Rates of medical errors and preventable adverse events among hospitalized children following implementation of a resident handoff bundle.

    PubMed

    Starmer, Amy J; Sectish, Theodore C; Simon, Dennis W; Keohane, Carol; McSweeney, Maireade E; Chung, Erica Y; Yoon, Catherine S; Lipsitz, Stuart R; Wassner, Ari J; Harper, Marvin B; Landrigan, Christopher P

    2013-12-04

    Handoff miscommunications are a leading cause of medical errors. Studies comprehensively assessing handoff improvement programs are lacking. To determine whether introduction of a multifaceted handoff program was associated with reduced rates of medical errors and preventable adverse events, fewer omissions of key data in written handoffs, improved verbal handoffs, and changes in resident-physician workflow. Prospective intervention study of 1255 patient admissions (642 before and 613 after the intervention) involving 84 resident physicians (42 before and 42 after the intervention) from July-September 2009 and November 2009-January 2010 on 2 inpatient units at Boston Children's Hospital. Resident handoff bundle, consisting of standardized communication and handoff training, a verbal mnemonic, and a new team handoff structure. On one unit, a computerized handoff tool linked to the electronic medical record was introduced. The primary outcomes were the rates of medical errors and preventable adverse events measured by daily systematic surveillance. The secondary outcomes were omissions in the printed handoff document and resident time-motion activity. Medical errors decreased from 33.8 per 100 admissions (95% CI, 27.3-40.3) to 18.3 per 100 admissions (95% CI, 14.7-21.9; P < .001), and preventable adverse events decreased from 3.3 per 100 admissions (95% CI, 1.7-4.8) to 1.5 (95% CI, 0.51-2.4) per 100 admissions (P = .04) following the intervention. There were fewer omissions of key handoff elements on printed handoff documents, especially on the unit that received the computerized handoff tool (significant reductions of omissions in 11 of 14 categories with computerized tool; significant reductions in 2 of 14 categories without computerized tool). Physicians spent a greater percentage of time in a 24-hour period at the patient bedside after the intervention (8.3%; 95% CI 7.1%-9.8%) vs 10.6% (95% CI, 9.2%-12.2%; P = .03). The average duration of verbal

  20. Teamwork and clinical error reporting among nurses in Korean hospitals.

    PubMed

    Hwang, Jee-In; Ahn, Jeonghoon

    2015-03-01

    To examine levels of teamwork and its relationships with clinical error reporting among Korean hospital nurses. The study employed a cross-sectional survey design. We distributed a questionnaire to 674 nurses in two teaching hospitals in Korea. The questionnaire included items on teamwork and the reporting of clinical errors. We measured teamwork using the Teamwork Perceptions Questionnaire, which has five subscales including team structure, leadership, situation monitoring, mutual support, and communication. Using logistic regression analysis, we determined the relationships between teamwork and error reporting. The response rate was 85.5%. The mean score of teamwork was 3.5 out of 5. At the subscale level, mutual support was rated highest, while leadership was rated lowest. Of the participating nurses, 522 responded that they had experienced at least one clinical error in the last 6 months. Among those, only 53.0% responded that they always or usually reported clinical errors to their managers and/or the patient safety department. Teamwork was significantly associated with better error reporting. Specifically, nurses with a higher team communication score were more likely to report clinical errors to their managers and the patient safety department (odds ratio = 1.82, 95% confidence intervals [1.05, 3.14]). Teamwork was rated as moderate and was positively associated with nurses' error reporting performance. Hospital executives and nurse managers should make substantial efforts to enhance teamwork, which will contribute to encouraging the reporting of errors and improving patient safety. Copyright © 2015. Published by Elsevier B.V.

  1. North error estimation based on solar elevation errors in the third step of sky-polarimetric Viking navigation.

    PubMed

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Egri, Ádám; Horváth, Gábor

    2016-07-01

    The theory of sky-polarimetric Viking navigation has been widely accepted for decades without any information about the accuracy of this method. Previously, we have measured the accuracy of the first and second steps of this navigation method in psychophysical laboratory and planetarium experiments. Now, we have tested the accuracy of the third step in a planetarium experiment, assuming that the first and second steps are errorless. Using the fists of their outstretched arms, 10 test persons had to estimate the elevation angles (measured in numbers of fists and fingers) of black dots (representing the position of the occluded Sun) projected onto the planetarium dome. The test persons performed 2400 elevation estimations, 48% of which were more accurate than ±1°. We selected three test persons with the (i) largest and (ii) smallest elevation errors and (iii) highest standard deviation of the elevation error. From the errors of these three persons, we calculated their error function, from which the North errors (the angles with which they deviated from the geographical North) were determined for summer solstice and spring equinox, two specific dates of the Viking sailing period. The range of possible North errors Δ ω N was the lowest and highest at low and high solar elevations, respectively. At high elevations, the maximal Δ ω N was 35.6° and 73.7° at summer solstice and 23.8° and 43.9° at spring equinox for the best and worst test person (navigator), respectively. Thus, the best navigator was twice as good as the worst one. At solstice and equinox, high elevations occur the most frequently during the day, thus high North errors could occur more frequently than expected before. According to our findings, the ideal periods for sky-polarimetric Viking navigation are immediately after sunrise and before sunset, because the North errors are the lowest at low solar elevations.

  2. North error estimation based on solar elevation errors in the third step of sky-polarimetric Viking navigation

    PubMed Central

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Egri, Ádám

    2016-01-01

    The theory of sky-polarimetric Viking navigation has been widely accepted for decades without any information about the accuracy of this method. Previously, we have measured the accuracy of the first and second steps of this navigation method in psychophysical laboratory and planetarium experiments. Now, we have tested the accuracy of the third step in a planetarium experiment, assuming that the first and second steps are errorless. Using the fists of their outstretched arms, 10 test persons had to estimate the elevation angles (measured in numbers of fists and fingers) of black dots (representing the position of the occluded Sun) projected onto the planetarium dome. The test persons performed 2400 elevation estimations, 48% of which were more accurate than ±1°. We selected three test persons with the (i) largest and (ii) smallest elevation errors and (iii) highest standard deviation of the elevation error. From the errors of these three persons, we calculated their error function, from which the North errors (the angles with which they deviated from the geographical North) were determined for summer solstice and spring equinox, two specific dates of the Viking sailing period. The range of possible North errors ΔωN was the lowest and highest at low and high solar elevations, respectively. At high elevations, the maximal ΔωN was 35.6° and 73.7° at summer solstice and 23.8° and 43.9° at spring equinox for the best and worst test person (navigator), respectively. Thus, the best navigator was twice as good as the worst one. At solstice and equinox, high elevations occur the most frequently during the day, thus high North errors could occur more frequently than expected before. According to our findings, the ideal periods for sky-polarimetric Viking navigation are immediately after sunrise and before sunset, because the North errors are the lowest at low solar elevations. PMID:27493566

  3. Measurement error is often neglected in medical literature: a systematic review.

    PubMed

    Brakenhoff, Timo B; Mitroiu, Marian; Keogh, Ruth H; Moons, Karel G M; Groenwold, Rolf H H; van Smeden, Maarten

    2018-06-01

    In medical research, covariates (e.g., exposure and confounder variables) are often measured with error. While it is well accepted that this introduces bias and imprecision in exposure-outcome relations, it is unclear to what extent such issues are currently considered in research practice. The objective was to study common practices regarding covariate measurement error via a systematic review of general medicine and epidemiology literature. Original research published in 2016 in 12 high impact journals was full-text searched for phrases relating to measurement error. Reporting of measurement error and methods to investigate or correct for it were quantified and characterized. Two hundred and forty-seven (44%) of the 565 original research publications reported on the presence of measurement error. 83% of these 247 did so with respect to the exposure and/or confounder variables. Only 18 publications (7% of 247) used methods to investigate or correct for measurement error. Consequently, it is difficult for readers to judge the robustness of presented results to the existence of measurement error in the majority of publications in high impact journals. Our systematic review highlights the need for increased awareness about the possible impact of covariate measurement error. Additionally, guidance on the use of measurement error correction methods is necessary. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Star tracker error analysis: Roll-to-pitch nonorthogonality

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1979-01-01

    An error analysis is described on an anomaly isolated in the star tracker software line of sight (LOS) rate test. The LOS rate cosine was found to be greater than one in certain cases which implied that either one or both of the star tracker measured end point unit vectors used to compute the LOS rate cosine had lengths greater than unity. The roll/pitch nonorthogonality matrix in the TNB CL module of the IMU software is examined as the source of error.

  5. Reduction in the write error rate of voltage-induced dynamic magnetization switching using the reverse bias method

    NASA Astrophysics Data System (ADS)

    Ikeura, Takuro; Nozaki, Takayuki; Shiota, Yoichi; Yamamoto, Tatsuya; Imamura, Hiroshi; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji

    2018-04-01

    Using macro-spin modeling, we studied the reduction in the write error rate (WER) of voltage-induced dynamic magnetization switching by enhancing the effective thermal stability of the free layer using a voltage-controlled magnetic anisotropy change. Marked reductions in WER can be achieved by introducing reverse bias voltage pulses both before and after the write pulse. This procedure suppresses the thermal fluctuations of magnetization in the initial and final states. The proposed reverse bias method can offer a new way of improving the writing stability of voltage-driven spintronic devices.

  6. Compact disk error measurements

    NASA Technical Reports Server (NTRS)

    Howe, D.; Harriman, K.; Tehranchi, B.

    1993-01-01

    The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.

  7. Evaluation of drug administration errors in a teaching hospital

    PubMed Central

    2012-01-01

    Background Medication errors can occur at any of the three steps of the medication use process: prescribing, dispensing and administration. We aimed to determine the incidence, type and clinical importance of drug administration errors and to identify risk factors. Methods Prospective study based on disguised observation technique in four wards in a teaching hospital in Paris, France (800 beds). A pharmacist accompanied nurses and witnessed the preparation and administration of drugs to all patients during the three drug rounds on each of six days per ward. Main outcomes were number, type and clinical importance of errors and associated risk factors. Drug administration error rate was calculated with and without wrong time errors. Relationship between the occurrence of errors and potential risk factors were investigated using logistic regression models with random effects. Results Twenty-eight nurses caring for 108 patients were observed. Among 1501 opportunities for error, 415 administrations (430 errors) with one or more errors were detected (27.6%). There were 312 wrong time errors, ten simultaneously with another type of error, resulting in an error rate without wrong time error of 7.5% (113/1501). The most frequently administered drugs were the cardiovascular drugs (425/1501, 28.3%). The highest risks of error in a drug administration were for dermatological drugs. No potentially life-threatening errors were witnessed and 6% of errors were classified as having a serious or significant impact on patients (mainly omission). In multivariate analysis, the occurrence of errors was associated with drug administration route, drug classification (ATC) and the number of patient under the nurse's care. Conclusion Medication administration errors are frequent. The identification of its determinants helps to undertake designed interventions. PMID:22409837

  8. Evaluation of drug administration errors in a teaching hospital.

    PubMed

    Berdot, Sarah; Sabatier, Brigitte; Gillaizeau, Florence; Caruba, Thibaut; Prognon, Patrice; Durieux, Pierre

    2012-03-12

    Medication errors can occur at any of the three steps of the medication use process: prescribing, dispensing and administration. We aimed to determine the incidence, type and clinical importance of drug administration errors and to identify risk factors. Prospective study based on disguised observation technique in four wards in a teaching hospital in Paris, France (800 beds). A pharmacist accompanied nurses and witnessed the preparation and administration of drugs to all patients during the three drug rounds on each of six days per ward. Main outcomes were number, type and clinical importance of errors and associated risk factors. Drug administration error rate was calculated with and without wrong time errors. Relationship between the occurrence of errors and potential risk factors were investigated using logistic regression models with random effects. Twenty-eight nurses caring for 108 patients were observed. Among 1501 opportunities for error, 415 administrations (430 errors) with one or more errors were detected (27.6%). There were 312 wrong time errors, ten simultaneously with another type of error, resulting in an error rate without wrong time error of 7.5% (113/1501). The most frequently administered drugs were the cardiovascular drugs (425/1501, 28.3%). The highest risks of error in a drug administration were for dermatological drugs. No potentially life-threatening errors were witnessed and 6% of errors were classified as having a serious or significant impact on patients (mainly omission). In multivariate analysis, the occurrence of errors was associated with drug administration route, drug classification (ATC) and the number of patient under the nurse's care. Medication administration errors are frequent. The identification of its determinants helps to undertake designed interventions.

  9. The Nature of Error in Adolescent Student Writing

    ERIC Educational Resources Information Center

    Wilcox, Kristen Campbell; Yagelski, Robert; Yu, Fang

    2014-01-01

    This study examined the nature and frequency of error in high school native English speaker (L1) and English learner (L2) writing. Four main research questions were addressed: Are there significant differences in students' error rates in English language arts (ELA) and social studies? Do the most common errors made by students differ in ELA…

  10. The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates

    NASA Technical Reports Server (NTRS)

    Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2008-01-01

    We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.

  11. [Detection and classification of medication errors at Joan XXIII University Hospital].

    PubMed

    Jornet Montaña, S; Canadell Vilarrasa, L; Calabuig Mũoz, M; Riera Sendra, G; Vuelta Arce, M; Bardají Ruiz, A; Gallart Mora, M J

    2004-01-01

    Medication errors are multifactorial and multidisciplinary, and may originate in processes such as drug prescription, transcription, dispensation, preparation and administration. The goal of this work was to measure the incidence of detectable medication errors that arise within a unit dose drug distribution and control system, from drug prescription to drug administration, by means of an observational method confined to the Pharmacy Department, as well as a voluntary, anonymous report system. The acceptance of this voluntary report system's implementation was also assessed. A prospective descriptive study was conducted. Data collection was performed at the Pharmacy Department from a review of prescribed medical orders, a review of pharmaceutical transcriptions, a review of dispensed medication and a review of medication returned in unit dose medication carts. A voluntary, anonymous report system centralized in the Pharmacy Department was also set up to detect medication errors. Prescription errors were the most frequent (1.12%), closely followed by dispensation errors (1.04%). Transcription errors (0.42%) and administration errors (0.69%) had the lowest overall incidence. Voluntary report involved only 4.25% of all detected errors, whereas unit dose medication cart review contributed the most to error detection. Recognizing the incidence and types of medication errors that occur in a health-care setting allows us to analyze their causes and effect changes in different stages of the process in order to ensure maximal patient safety.

  12. Refractive errors in children and adolescents in Bucaramanga (Colombia).

    PubMed

    Galvis, Virgilio; Tello, Alejandro; Otero, Johanna; Serrano, Andrés A; Gómez, Luz María; Castellanos, Yuly

    2017-01-01

    The aim of this study was to establish the frequency of refractive errors in children and adolescents aged between 8 and 17 years old, living in the metropolitan area of Bucaramanga (Colombia). This study was a secondary analysis of two descriptive cross-sectional studies that applied sociodemographic surveys and assessed visual acuity and refraction. Ametropias were classified as myopic errors, hyperopic errors, and mixed astigmatism. Eyes were considered emmetropic if none of these classifications were made. The data were collated using free software and analyzed with STATA/IC 11.2. One thousand two hundred twenty-eight individuals were included in this study. Girls showed a higher rate of ametropia than boys. Hyperopic refractive errors were present in 23.1% of the subjects, and myopic errors in 11.2%. Only 0.2% of the eyes had high myopia (≤-6.00 D). Mixed astigmatism and anisometropia were uncommon, and myopia frequency increased with age. There were statistically significant steeper keratometric readings in myopic compared to hyperopic eyes. The frequency of refractive errors that we found of 36.7% is moderate compared to the global data. The rates and parameters statistically differed by sex and age groups. Our findings are useful for establishing refractive error rate benchmarks in low-middle-income countries and as a baseline for following their variation by sociodemographic factors.

  13. Error Rates in Users of Automatic Face Recognition Software

    PubMed Central

    White, David; Dunn, James D.; Schmid, Alexandra C.; Kemp, Richard I.

    2015-01-01

    In recent years, wide deployment of automatic face recognition systems has been accompanied by substantial gains in algorithm performance. However, benchmarking tests designed to evaluate these systems do not account for the errors of human operators, who are often an integral part of face recognition solutions in forensic and security settings. This causes a mismatch between evaluation tests and operational accuracy. We address this by measuring user performance in a face recognition system used to screen passport applications for identity fraud. Experiment 1 measured target detection accuracy in algorithm-generated ‘candidate lists’ selected from a large database of passport images. Accuracy was notably poorer than in previous studies of unfamiliar face matching: participants made over 50% errors for adult target faces, and over 60% when matching images of children. Experiment 2 then compared performance of student participants to trained passport officers–who use the system in their daily work–and found equivalent performance in these groups. Encouragingly, a group of highly trained and experienced “facial examiners” outperformed these groups by 20 percentage points. We conclude that human performance curtails accuracy of face recognition systems–potentially reducing benchmark estimates by 50% in operational settings. Mere practise does not attenuate these limits, but superior performance of trained examiners suggests that recruitment and selection of human operators, in combination with effective training and mentorship, can improve the operational accuracy of face recognition systems. PMID:26465631

  14. POWER-ENHANCED MULTIPLE DECISION FUNCTIONS CONTROLLING FAMILY-WISE ERROR AND FALSE DISCOVERY RATES.

    PubMed

    Peña, Edsel A; Habiger, Joshua D; Wu, Wensong

    2011-02-01

    Improved procedures, in terms of smaller missed discovery rates (MDR), for performing multiple hypotheses testing with weak and strong control of the family-wise error rate (FWER) or the false discovery rate (FDR) are developed and studied. The improvement over existing procedures such as the Šidák procedure for FWER control and the Benjamini-Hochberg (BH) procedure for FDR control is achieved by exploiting possible differences in the powers of the individual tests. Results signal the need to take into account the powers of the individual tests and to have multiple hypotheses decision functions which are not limited to simply using the individual p -values, as is the case, for example, with the Šidák, Bonferroni, or BH procedures. They also enhance understanding of the role of the powers of individual tests, or more precisely the receiver operating characteristic (ROC) functions of decision processes, in the search for better multiple hypotheses testing procedures. A decision-theoretic framework is utilized, and through auxiliary randomizers the procedures could be used with discrete or mixed-type data or with rank-based nonparametric tests. This is in contrast to existing p -value based procedures whose theoretical validity is contingent on each of these p -value statistics being stochastically equal to or greater than a standard uniform variable under the null hypothesis. Proposed procedures are relevant in the analysis of high-dimensional "large M , small n " data sets arising in the natural, physical, medical, economic and social sciences, whose generation and creation is accelerated by advances in high-throughput technology, notably, but not limited to, microarray technology.

  15. A Simulation Analysis of Errors in the Measurement of Standard Electrochemical Rate Constants from Phase-Selective Impedance Data.

    DTIC Science & Technology

    1987-09-30

    RESTRICTIVE MARKINGSC Unclassif ied 2a SECURIly CLASSIFICATION ALIIMOA4TY 3 DIS1RSBj~jiOAVAILAB.I1Y OF RkPORI _________________________________ Approved...of the AC current, including the time dependence at a growing DME, at a given fixed potential either in the presence or the absence of an...the relative error in k b(app) is ob relatively small for ks (true) : 0.5 cm s-, and increases rapidly for ob larger rate constants as kob reaches the

  16. Correcting for particle counting bias error in turbulent flow

    NASA Technical Reports Server (NTRS)

    Edwards, R. V.; Baratuci, W.

    1985-01-01

    An ideal seeding device is proposed generating particles that exactly follow the flow out are still a major source of error, i.e., with a particle counting bias wherein the probability of measuring velocity is a function of velocity. The error in the measured mean can be as much as 25%. Many schemes have been put forward to correct for this error, but there is not universal agreement as to the acceptability of any one method. In particular it is sometimes difficult to know if the assumptions required in the analysis are fulfilled by any particular flow measurement system. To check various correction mechanisms in an ideal way and to gain some insight into how to correct with the fewest initial assumptions, a computer simulation is constructed to simulate laser anemometer measurements in a turbulent flow. That simulator and the results of its use are discussed.

  17. Consumers' acceptance of medicinal herbs: An application of the technology acceptance model (TAM).

    PubMed

    Jokar, Nargesh Khatun; Noorhosseini, Seyyed Ali; Allahyari, Mohammad Sadegh; Damalas, Christos A

    2017-07-31

    The shift in consumers' preferences from synthetic to 'natural' products has led to a resurgence of interest in medicinal plants, particularly in developing countries. However, research data about consumers' preferences for particular products is hard to find. The main objective of this study was to contribute to the general understanding of consumers' intention for selecting medicinal herbs for consumption. Factors underpinning consumers' acceptance of medicinal herbs were studied with the technology acceptance model (TAM) in Rasht City of Iran using a structured questionnaire. Most respondents had low to moderate familiarity with consumption of medicinal herbs. However, about half of the respondents (47.5%) showed a high level of acceptance of medicinal herbs. Herbs like spearmint (Mentha spicata L.), spinach (Spinacia oleracea L.), basil (Ocimum basilicum L.), Damask rose (Rosa × damascena Herrm.), saffron (Crocus sativus L.), cinnamon (Cinnamomum verum J.Presl), flixweed [Descurainia sophia (L.) Webb ex Prantl], red feathers (Echium amoenum Fisch. & C.A.Mey.), and green tea [Camellia sinensis (L.) Kuntze] had the highest consumption rate among the majority (over 75%) of citizens of Rasht. The highest rate of perceived usefulness of medicinal herbs was related to their perceived role in healing diseases. The variable of importance of use of medicinal herbs had the strongest direct effect and the variables of perceived usefulness and attitude towards use had the second and third strongest direct effect on the acceptance of medicinal herbs' use at p < 0.01. Findings provide a useful evaluation of the acceptance of medicinal herbs and may serve as a benchmark for future research and evaluation concerning the use of medicinal herbs over time. For plant producers, more effective and targeted crop development should be encouraged, whereas for retailers better marketing and delivery strategies should be sought. Copyright © 2017 Elsevier Ireland Ltd. All rights

  18. Preventing medication errors in cancer chemotherapy.

    PubMed

    Cohen, M R; Anderson, R W; Attilio, R M; Green, L; Muller, R J; Pruemer, J M

    1996-04-01

    Recommendations for preventing medication errors in cancer chemotherapy are made. Before a health care provider is granted privileges to prescribe, dispense, or administer antineoplastic agents, he or she should undergo a tailored educational program and possibly testing or certification. Appropriate reference materials should be developed. Each institution should develop a dose-verification process with as many independent checks as possible. A detailed checklist covering prescribing, transcribing, dispensing, and administration should be used. Oral orders are not acceptable. All doses should be calculated independently by the physician, the pharmacist, and the nurse. Dosage limits should be established and a review process set up for doses that exceed the limits. These limits should be entered into pharmacy computer systems, listed on preprinted order forms, stated on the product packaging, placed in strategic locations in the institution, and communicated to employees. The prescribing vocabulary must be standardized. Acronyms, abbreviations, and brand names must be avoided and steps taken to avoid other sources of confusion in the written orders, such as trailing zeros. Preprinted antineoplastic drug order forms containing checklists can help avoid errors. Manufacturers should be encouraged to avoid or eliminate ambiguities in drug names and dosing information. Patients must be educated about all aspects of their cancer chemotherapy, as patients represent a last line of defense against errors. An interdisciplinary team at each practice site should review every medication error reported. Pharmacists should be involved at all sites where antineoplastic agents are dispensed. Although it may not be possible to eliminate all medication errors in cancer chemotherapy, the risk can be minimized through specific steps. Because of their training and experience, pharmacists should take the lead in this effort.

  19. Analysis of the "naming game" with learning errors in communications.

    PubMed

    Lou, Yang; Chen, Guanrong

    2015-07-16

    Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.

  20. Correlation Between Analog Noise Measurements and the Expected Bit Error Rate of a Digital Signal Propagating Through Passive Components

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Theofylaktos, Onoufrios

    2012-01-01

    A method of determining the bit error rate (BER) of a digital circuit from the measurement of the analog S-parameters of the circuit has been developed. The method is based on the measurement of the noise and the standard deviation of the noise in the S-parameters. Once the standard deviation and the mean of the S-parameters are known, the BER of the circuit can be calculated using the normal Gaussian function.

  1. Unacceptably High Error Rates in Vitek 2 Testing of Cefepime Susceptibility in Extended-Spectrum-β-Lactamase-Producing Escherichia coli

    PubMed Central

    Rhodes, Nathaniel J.; Richardson, Chad L.; Heraty, Ryan; Liu, Jiajun; Malczynski, Michael; Qi, Chao

    2014-01-01

    While a lack of concordance is known between gold standard MIC determinations and Vitek 2, the magnitude of the discrepancy and its impact on treatment decisions for extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli are not. Clinical isolates of ESBL-producing E. coli were collected from blood, tissue, and body fluid samples from January 2003 to July 2009. Resistance genotypes were identified by PCR. Primary analyses evaluated the discordance between Vitek 2 and gold standard methods using cefepime susceptibility breakpoint cutoff values of 8, 4, and 2 μg/ml. The discrepancies in MICs between the methods were classified per convention as very major, major, and minor errors. Sensitivity, specificity, and positive and negative predictive values for susceptibility classifications were calculated. A total of 304 isolates were identified; 59% (179) of the isolates carried blaCTX-M, 47% (143) carried blaTEM, and 4% (12) carried blaSHV. At a breakpoint MIC of 8 μg/ml, Vitek 2 produced a categorical agreement of 66.8% and exhibited very major, major, and minor error rates of 23% (20/87 isolates), 5.1% (8/157 isolates), and 24% (73/304), respectively. The sensitivity, specificity, and positive and negative predictive values for a susceptibility breakpoint of 8 μg/ml were 94.9%, 61.2%, 72.3%, and 91.8%, respectively. The sensitivity, specificity, and positive and negative predictive values for a susceptibility breakpoint of 2 μg/ml were 83.8%, 65.3%, 41%, and 93.3%, respectively. Vitek 2 results in unacceptably high error rates for cefepime compared to those of agar dilution for ESBL-producing E. coli. Clinicians should be wary of making treatment decisions on the basis of Vitek 2 susceptibility results for ESBL-producing E. coli. PMID:24752253

  2. Errors in causal inference: an organizational schema for systematic error and random error.

    PubMed

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Understanding the acceptance factors of an Hospital Information System: evidence from a French University Hospital.

    PubMed

    Ologeanu-Taddei, R; Morquin, D; Domingo, H; Bourret, R

    2015-01-01

    The goal of this study was to examine the perceived usefulness, the perceived ease of use and the perceived behavioral control of a Hospital Information System (HIS) for the care staff. We administrated a questionnaire composed of open-end and closed questions, based on the main concepts of Technology Acceptance Model. As results, the perceived usefulness, ease of use and behavioral control (self-efficacy and organizational support) are correlated with medical occupations. As an example, we found that a half of the medical secretaries consider the HIS is ease of use, at the opposite to the anesthesiologists, surgeons and physicians. Medical secretaries reported also the highest rate of PBC and a high rate of PU. Pharmacists reported the highest rate of PU but a low rate of PBC, which is similar to the rate of the surgeons and physicians. Content analysis of open questions highlights factors influencing these constructs: ergonomics, errors in the documenting process, insufficient compatibility with the medical department or the occupational group. Consequently, we suggest that the gap between the perceptions of the different occupational groups may be explained by the use of different modules and by interdependency of the care stare staff.

  4. Rectifying calibration error of Goldmann applanation tonometer is easy!

    PubMed

    Choudhari, Nikhil S; Moorthy, Krishna P; Tungikar, Vinod B; Kumar, Mohan; George, Ronnie; Rao, Harsha L; Senthil, Sirisha; Vijaya, Lingam; Garudadri, Chandra Sekhar

    2014-11-01

    Purpose: Goldmann applanation tonometer (GAT) is the current Gold standard tonometer. However, its calibration error is common and can go unnoticed in clinics. Its company repair has limitations. The purpose of this report is to describe a self-taught technique of rectifying calibration error of GAT. Materials and Methods: Twenty-nine slit-lamp-mounted Haag-Streit Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland) were included in this cross-sectional interventional pilot study. The technique of rectification of calibration error of the tonometer involved cleaning and lubrication of the instrument followed by alignment of weights when lubrication alone didn't suffice. We followed the South East Asia Glaucoma Interest Group's definition of calibration error tolerance (acceptable GAT calibration error within ±2, ±3 and ±4 mm Hg at the 0, 20 and 60-mm Hg testing levels, respectively). Results: Twelve out of 29 (41.3%) GATs were out of calibration. The range of positive and negative calibration error at the clinically most important 20-mm Hg testing level was 0.5 to 20 mm Hg and -0.5 to -18 mm Hg, respectively. Cleaning and lubrication alone sufficed to rectify calibration error of 11 (91.6%) faulty instruments. Only one (8.3%) faulty GAT required alignment of the counter-weight. Conclusions: Rectification of calibration error of GAT is possible in-house. Cleaning and lubrication of GAT can be carried out even by eye care professionals and may suffice to rectify calibration error in the majority of faulty instruments. Such an exercise may drastically reduce the downtime of the Gold standard tonometer.

  5. Incidence of speech recognition errors in the emergency department.

    PubMed

    Goss, Foster R; Zhou, Li; Weiner, Scott G

    2016-09-01

    Physician use of computerized speech recognition (SR) technology has risen in recent years due to its ease of use and efficiency at the point of care. However, error rates between 10 and 23% have been observed, raising concern about the number of errors being entered into the permanent medical record, their impact on quality of care and medical liability that may arise. Our aim was to determine the incidence and types of SR errors introduced by this technology in the emergency department (ED). Level 1 emergency department with 42,000 visits/year in a tertiary academic teaching hospital. A random sample of 100 notes dictated by attending emergency physicians (EPs) using SR software was collected from the ED electronic health record between January and June 2012. Two board-certified EPs annotated the notes and conducted error analysis independently. An existing classification schema was adopted to classify errors into eight errors types. Critical errors deemed to potentially impact patient care were identified. There were 128 errors in total or 1.3 errors per note, and 14.8% (n=19) errors were judged to be critical. 71% of notes contained errors, and 15% contained one or more critical errors. Annunciation errors were the highest at 53.9% (n=69), followed by deletions at 18.0% (n=23) and added words at 11.7% (n=15). Nonsense errors, homonyms and spelling errors were present in 10.9% (n=14), 4.7% (n=6), and 0.8% (n=1) of notes, respectively. There were no suffix or dictionary errors. Inter-annotator agreement was 97.8%. This is the first estimate at classifying speech recognition errors in dictated emergency department notes. Speech recognition errors occur commonly with annunciation errors being the most frequent. Error rates were comparable if not lower than previous studies. 15% of errors were deemed critical, potentially leading to miscommunication that could affect patient care. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Analysis of calibration data for the uranium active neutron coincidence counting collar with attention to errors in the measured neutron coincidence rate

    DOE PAGES

    Croft, Stephen; Burr, Thomas Lee; Favalli, Andrea; ...

    2015-12-10

    We report that the declared linear density of 238U and 235U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar – Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of 235U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to modelmore » the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. Lastly, we find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters« less

  7. The effectiveness of risk management program on pediatric nurses' medication error.

    PubMed

    Dehghan-Nayeri, Nahid; Bayat, Fariba; Salehi, Tahmineh; Faghihzadeh, Soghrat

    2013-09-01

    Medication therapy is one of the most complex and high-risk clinical processes that nurses deal with. Medication error is the most common type of error that brings about damage and death to patients, especially pediatric ones. However, these errors are preventable. Identifying and preventing undesirable events leading to medication errors are the main risk management activities. The aim of this study was to investigate the effectiveness of a risk management program on the pediatric nurses' medication error rate. This study is a quasi-experimental one with a comparison group. In this study, 200 nurses were recruited from two main pediatric hospitals in Tehran. In the experimental hospital, we applied the risk management program for a period of 6 months. Nurses of the control hospital did the hospital routine schedule. A pre- and post-test was performed to measure the frequency of the medication error events. SPSS software, t-test, and regression analysis were used for data analysis. After the intervention, the medication error rate of nurses at the experimental hospital was significantly lower (P < 0.001) and the error-reporting rate was higher (P < 0.007) compared to before the intervention and also in comparison to the nurses of the control hospital. Based on the results of this study and taking into account the high-risk nature of the medical environment, applying the quality-control programs such as risk management can effectively prevent the occurrence of the hospital undesirable events. Nursing mangers can reduce the medication error rate by applying risk management programs. However, this program cannot succeed without nurses' cooperation.

  8. The Sustained Influence of an Error on Future Decision-Making.

    PubMed

    Schiffler, Björn C; Bengtsson, Sara L; Lundqvist, Daniel

    2017-01-01

    Post-error slowing (PES) is consistently observed in decision-making tasks after negative feedback. Yet, findings are inconclusive as to whether PES supports performance accuracy. We addressed the role of PES by employing drift diffusion modeling which enabled us to investigate latent processes of reaction times and accuracy on a large-scale dataset (>5,800 participants) of a visual search experiment with emotional face stimuli. In our experiment, post-error trials were characterized by both adaptive and non-adaptive decision processes. An adaptive increase in participants' response threshold was sustained over several trials post-error. Contrarily, an initial decrease in evidence accumulation rate, followed by an increase on the subsequent trials, indicates a momentary distraction of task-relevant attention and resulted in an initial accuracy drop. Higher values of decision threshold and evidence accumulation on the post-error trial were associated with higher accuracy on subsequent trials which further gives credence to these parameters' role in post-error adaptation. Finally, the evidence accumulation rate post-error decreased when the error trial presented angry faces, a finding suggesting that the post-error decision can be influenced by the error context. In conclusion, we demonstrate that error-related response adaptations are multi-component processes that change dynamically over several trials post-error.

  9. Evaluation of Trajectory Errors in an Automated Terminal-Area Environment

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Williams, David H.

    2003-01-01

    A piloted simulation experiment was conducted to document the trajectory errors associated with use of an airplane's Flight Management System (FMS) in conjunction with a ground-based ATC automation system, Center-TRACON Automation System (CTAS) in the terminal area. Three different arrival procedures were compared: current-day (vectors from ATC), modified (current-day with minor updates), and data link with FMS lateral navigation. Six active airline pilots flew simulated arrivals in a fixed-base simulator. The FMS-datalink procedure resulted in the smallest time and path distance errors, indicating that use of this procedure could reduce the CTAS arrival-time prediction error by about half over the current-day procedure. Significant sources of error contributing to the arrival-time error were crosstrack errors and early speed reduction in the last 2-4 miles before the final approach fix. Pilot comments were all very positive, indicating the FMS-datalink procedure was easy to understand and use, and the increased head-down time and workload did not detract from the benefit. Issues that need to be resolved before this method of operation would be ready for commercial use include development of procedures acceptable to controllers, better speed conformance monitoring, and FMS database procedures to support the approach transitions.

  10. A Swiss cheese error detection method for real-time EPID-based quality assurance and error prevention.

    PubMed

    Passarge, Michelle; Fix, Michael K; Manser, Peter; Stampanoni, Marco F M; Siebers, Jeffrey V

    2017-04-01

    ). Including cases that led to slightly modified but clinically equivalent plans, 89.1% were detected by the SCED method within 2°. Based on the type of check that detected the error, determination of error sources was achieved. With noise ranging from no random noise to four times the established noise value, the averaged relevant dose error detection rate of the SCED method was between 94.0% and 95.8% and that of gamma between 82.8% and 89.8%. An EPID-frame-based error detection process for VMAT deliveries was successfully designed and tested via simulations. The SCED method was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of relevant dose errors. Compared to a typical (3%, 3 mm) gamma analysis, the SCED method produced a higher detection rate for all introduced dose errors, identified errors in an earlier stage, displayed a higher robustness to noise variations, and indicated the error source. © 2017 American Association of Physicists in Medicine.

  11. Families as Partners in Hospital Error and Adverse Event Surveillance

    PubMed Central

    Khan, Alisa; Coffey, Maitreya; Litterer, Katherine P.; Baird, Jennifer D.; Furtak, Stephannie L.; Garcia, Briana M.; Ashland, Michele A.; Calaman, Sharon; Kuzma, Nicholas C.; O’Toole, Jennifer K.; Patel, Aarti; Rosenbluth, Glenn; Destino, Lauren A.; Everhart, Jennifer L.; Good, Brian P.; Hepps, Jennifer H.; Dalal, Anuj K.; Lipsitz, Stuart R.; Yoon, Catherine S.; Zigmont, Katherine R.; Srivastava, Rajendu; Starmer, Amy J.; Sectish, Theodore C.; Spector, Nancy D.; West, Daniel C.; Landrigan, Christopher P.

    2017-01-01

    IMPORTANCE Medical errors and adverse events (AEs) are common among hospitalized children. While clinician reports are the foundation of operational hospital safety surveillance and a key component of multifaceted research surveillance, patient and family reports are not routinely gathered. We hypothesized that a novel family-reporting mechanism would improve incident detection. OBJECTIVE To compare error and AE rates (1) gathered systematically with vs without family reporting, (2) reported by families vs clinicians, and (3) reported by families vs hospital incident reports. DESIGN, SETTING, AND PARTICIPANTS We conducted a prospective cohort study including the parents/caregivers of 989 hospitalized patients 17 years and younger (total 3902 patient-days) and their clinicians from December 2014 to July 2015 in 4 US pediatric centers. Clinician abstractors identified potential errors and AEs by reviewing medical records, hospital incident reports, and clinician reports as well as weekly and discharge Family Safety Interviews (FSIs). Two physicians reviewed and independently categorized all incidents, rating severity and preventability (agreement, 68%–90%; κ, 0.50–0.68). Discordant categorizations were reconciled. Rates were generated using Poisson regression estimated via generalized estimating equations to account for repeated measures on the same patient. MAIN OUTCOMES AND MEASURES Error and AE rates. RESULTS Overall, 746 parents/caregivers consented for the study. Of these, 717 completed FSIs. Their median (interquartile range) age was 32.5 (26–40) years; 380 (53.0%) were nonwhite, 566 (78.9%) were female, 603 (84.1%) were English speaking, and 380 (53.0%) had attended college. Of 717 parents/caregivers completing FSIs, 185 (25.8%) reported a total of 255 incidents, which were classified as 132 safety concerns (51.8%), 102 nonsafety-related quality concerns (40.0%), and 21 other concerns (8.2%). These included 22 preventable AEs (8.6%), 17 nonharmful

  12. Wireless fetal heart rate monitoring in inpatient full-term pregnant women: testing functionality and acceptability.

    PubMed

    Boatin, Adeline A; Wylie, Blair; Goldfarb, Ilona; Azevedo, Robin; Pittel, Elena; Ng, Courtney; Haberer, Jessica

    2015-01-01

    We tested functionality and acceptability of a wireless fetal monitoring prototype technology in pregnant women in an inpatient labor unit in the United States. Women with full-term singleton pregnancies and no evidence of active labor were asked to wear the prototype technology for 30 minutes. We assessed functionality by evaluating the ability to successfully monitor the fetal heartbeat for 30 minutes, transmit this data to Cloud storage and view the data on a web portal. Three obstetricians also rated fetal cardiotocographs on ease of readability. We assessed acceptability by administering closed and open-ended questions on perceived utility and likeability to pregnant women and clinicians interacting with the prototype technology. Thirty-two women were enrolled, 28 of whom (87.5%) successfully completed 30 minutes of fetal monitoring including transmission of cardiotocographs to the web portal. Four sessions though completed, were not successfully uploaded to the Cloud storage. Six non-study clinicians interacted with the prototype technology. The primary technical problem observed was a delay in data transmission between the prototype and the web portal, which ranged from 2 to 209 minutes. Delays were ascribed to Wi-Fi connectivity problems. Recorded cardiotocographs received a mean score of 4.2/5 (± 1.0) on ease of readability with an interclass correlation of 0.81(95%CI 0.45, 0.96). Both pregnant women and clinicians found the prototype technology likable (81.3% and 66.7% respectively), useful (96.9% and 66.7% respectively), and would either use it again or recommend its use to another pregnant woman (77.4% and 66.7% respectively). In this pilot study we found that this wireless fetal monitoring prototype technology has potential for use in a United States inpatient setting but would benefit from some technology changes. We found it to be acceptable to both pregnant women and clinicians. Further research is needed to assess feasibility of using this

  13. Error-trellis Syndrome Decoding Techniques for Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1984-01-01

    An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decoding is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.

  14. Error-trellis syndrome decoding techniques for convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1985-01-01

    An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decordig is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.

  15. High data rate Reed-Solomon encoding and decoding using VLSI technology

    NASA Technical Reports Server (NTRS)

    Miller, Warner; Morakis, James

    1987-01-01

    Presented as an implementation of a Reed-Solomon encode and decoder, which is 16-symbol error correcting, each symbol is 8 bits. This Reed-Solomon (RS) code is an efficient error correcting code that the National Aeronautics and Space Administration (NASA) will use in future space communications missions. A Very Large Scale Integration (VLSI) implementation of the encoder and decoder accepts data rates up 80 Mbps. A total of seven chips are needed for the decoder (four of the seven decoding chips are customized using 3-micron Complementary Metal Oxide Semiconduction (CMOS) technology) and one chip is required for the encoder. The decoder operates with the symbol clock being the system clock for the chip set. Approximately 1.65 billion Galois Field (GF) operations per second are achieved with the decoder chip set and 640 MOPS are achieved with the encoder chip.

  16. The influence of the structure and culture of medical group practices on prescription drug errors.

    PubMed

    Kralewski, John E; Dowd, Bryan E; Heaton, Alan; Kaissi, Amer

    2005-08-01

    This project was designed to identify the magnitude of prescription drug errors in medical group practices and to explore the influence of the practice structure and culture on those error rates. Seventy-eight practices serving an upper Midwest managed care (Care Plus) plan during 2001 were included in the study. Using Care Plus claims data, prescription drug error rates were calculated at the enrollee level and then were aggregated to the group practice that each enrollee selected to provide and manage their care. Practice structure and culture data were obtained from surveys of the practices. Data were analyzed using multivariate regression. Both the culture and the structure of these group practices appear to influence prescription drug error rates. Seeing more patients per clinic hour, more prescriptions per patient, and being cared for in a rural clinic were all strongly associated with more errors. Conversely, having a case manager program is strongly related to fewer errors in all of our analyses. The culture of the practices clearly influences error rates, but the findings are mixed. Practices with cohesive cultures have lower error rates but, contrary to our hypothesis, cultures that value physician autonomy and individuality also have lower error rates than those with a more organizational orientation. Our study supports the contention that there are a substantial number of prescription drug errors in the ambulatory care sector. Even by the strictest definition, there were about 13 errors per 100 prescriptions for Care Plus patients in these group practices during 2001. Our study demonstrates that the structure of medical group practices influences prescription drug error rates. In some cases, this appears to be a direct relationship, such as the effects of having a case manager program on fewer drug errors, but in other cases the effect appears to be indirect through the improvement of drug prescribing practices. An important aspect of this study is that

  17. Acceptability of HIV self-testing: a systematic literature review.

    PubMed

    Krause, Janne; Subklew-Sehume, Friederike; Kenyon, Chris; Colebunders, Robert

    2013-08-08

    The uptake of HIV testing and counselling services remains low in risk groups around the world. Fear of stigmatisation, discrimination and breach of confidentiality results in low service usage among risk groups. HIV self-testing (HST) is a confidential HIV testing option that enables people to find out their status in the privacy of their homes. We evaluated the acceptability of HST and the benefits and challenges linked to the introduction of HST. A literature review was conducted on the acceptability of HST in projects in which HST was offered to study participants. Besides acceptability rates of HST, accuracy rates of self-testing, referral rates of HIV-positive individuals into medical care, disclosure rates and rates of first-time testers were assessed. In addition, the utilisation rate of a telephone hotline for counselling issues and clients` attitudes towards HST were extracted. Eleven studies met the inclusion criteria (HST had been offered effectively to study participants and had been administered by participants themselves) and demonstrated universally high acceptability of HST among study populations. Studies included populations from resource poor settings (Kenya and Malawi) and from high-income countries (USA, Spain and Singapore). The majority of study participants were able to perform HST accurately with no or little support from trained staff. Participants appreciated the confidentiality and privacy but felt that the provision of adequate counselling services was inadequate. The review demonstrates that HST is an acceptable testing alternative for risk groups and can be performed accurately by the majority of self-testers. Clients especially value the privacy and confidentiality of HST. Linkage to counselling as well as to treatment and care services remain major challenges.

  18. Extending Moore's Law via Computationally Error Tolerant Computing.

    DOE PAGES

    Deng, Bobin; Srikanth, Sriseshan; Hein, Eric R.; ...

    2018-03-01

    Dennard scaling has ended. Lowering the voltage supply (V dd) to sub-volt levels causes intermittent losses in signal integrity, rendering further scaling (down) no longer acceptable as a means to lower the power required by a processor core. However, it is possible to correct the occasional errors caused due to lower V dd in an efficient manner and effectively lower power. By deploying the right amount and kind of redundancy, we can strike a balance between overhead incurred in achieving reliability and energy savings realized by permitting lower V dd. One promising approach is the Redundant Residue Number System (RRNS)more » representation. Unlike other error correcting codes, RRNS has the important property of being closed under addition, subtraction and multiplication, thus enabling computational error correction at a fraction of an overhead compared to conventional approaches. We use the RRNS scheme to design a Computationally-Redundant, Energy-Efficient core, including the microarchitecture, Instruction Set Architecture (ISA) and RRNS centered algorithms. Finally, from the simulation results, this RRNS system can reduce the energy-delay-product by about 3× for multiplication intensive workloads and by about 2× in general, when compared to a non-error-correcting binary core.« less

  19. Extending Moore's Law via Computationally Error Tolerant Computing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Bobin; Srikanth, Sriseshan; Hein, Eric R.

    Dennard scaling has ended. Lowering the voltage supply (V dd) to sub-volt levels causes intermittent losses in signal integrity, rendering further scaling (down) no longer acceptable as a means to lower the power required by a processor core. However, it is possible to correct the occasional errors caused due to lower V dd in an efficient manner and effectively lower power. By deploying the right amount and kind of redundancy, we can strike a balance between overhead incurred in achieving reliability and energy savings realized by permitting lower V dd. One promising approach is the Redundant Residue Number System (RRNS)more » representation. Unlike other error correcting codes, RRNS has the important property of being closed under addition, subtraction and multiplication, thus enabling computational error correction at a fraction of an overhead compared to conventional approaches. We use the RRNS scheme to design a Computationally-Redundant, Energy-Efficient core, including the microarchitecture, Instruction Set Architecture (ISA) and RRNS centered algorithms. Finally, from the simulation results, this RRNS system can reduce the energy-delay-product by about 3× for multiplication intensive workloads and by about 2× in general, when compared to a non-error-correcting binary core.« less

  20. Error-Resilient Unequal Error Protection of Fine Granularity Scalable Video Bitstreams

    NASA Astrophysics Data System (ADS)

    Cai, Hua; Zeng, Bing; Shen, Guobin; Xiong, Zixiang; Li, Shipeng

    2006-12-01

    This paper deals with the optimal packet loss protection issue for streaming the fine granularity scalable (FGS) video bitstreams over IP networks. Unlike many other existing protection schemes, we develop an error-resilient unequal error protection (ER-UEP) method that adds redundant information optimally for loss protection and, at the same time, cancels completely the dependency among bitstream after loss recovery. In our ER-UEP method, the FGS enhancement-layer bitstream is first packetized into a group of independent and scalable data packets. Parity packets, which are also scalable, are then generated. Unequal protection is finally achieved by properly shaping the data packets and the parity packets. We present an algorithm that can optimally allocate the rate budget between data packets and parity packets, together with several simplified versions that have lower complexity. Compared with conventional UEP schemes that suffer from bit contamination (caused by the bit dependency within a bitstream), our method guarantees successful decoding of all received bits, thus leading to strong error-resilience (at any fixed channel bandwidth) and high robustness (under varying and/or unclean channel conditions).

  1. Dual processing and diagnostic errors.

    PubMed

    Norman, Geoff

    2009-09-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical, conscious, and conceptual process, called System 2. Exemplar theories of categorization propose that many category decisions in everyday life are made by unconscious matching to a particular example in memory, and these remain available and retrievable individually. I then review studies of clinical reasoning based on these theories, and show that the two processes are equally effective; System 1, despite its reliance in idiosyncratic, individual experience, is no more prone to cognitive bias or diagnostic error than System 2. Further, I review evidence that instructions directed at encouraging the clinician to explicitly use both strategies can lead to consistent reduction in error rates.

  2. Sampling Errors of SSM/I and TRMM Rainfall Averages: Comparison with Error Estimates from Surface Data and a Sample Model

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.

  3. Evaluation of TRMM Ground-Validation Radar-Rain Errors Using Rain Gauge Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Jianxin; Wolff, David B.

    2009-01-01

    Ground-validation (GV) radar-rain products are often utilized for validation of the Tropical Rainfall Measuring Mission (TRMM) spaced-based rain estimates, and hence, quantitative evaluation of the GV radar-rain product error characteristics is vital. This study uses quality-controlled gauge data to compare with TRMM GV radar rain rates in an effort to provide such error characteristics. The results show that significant differences of concurrent radar-gauge rain rates exist at various time scales ranging from 5 min to 1 day, despite lower overall long-term bias. However, the differences between the radar area-averaged rain rates and gauge point rain rates cannot be explained as due to radar error only. The error variance separation method is adapted to partition the variance of radar-gauge differences into the gauge area-point error variance and radar rain estimation error variance. The results provide relatively reliable quantitative uncertainty evaluation of TRMM GV radar rain estimates at various times scales, and are helpful to better understand the differences between measured radar and gauge rain rates. It is envisaged that this study will contribute to better utilization of GV radar rain products to validate versatile spaced-based rain estimates from TRMM, as well as the proposed Global Precipitation Measurement, and other satellites.

  4. Medication Errors in Vietnamese Hospitals: Prevalence, Potential Outcome and Associated Factors

    PubMed Central

    Nguyen, Huong-Thao; Nguyen, Tuan-Dung; van den Heuvel, Edwin R.; Haaijer-Ruskamp, Flora M.; Taxis, Katja

    2015-01-01

    Background Evidence from developed countries showed that medication errors are common and harmful. Little is known about medication errors in resource-restricted settings, including Vietnam. Objectives To determine the prevalence and potential clinical outcome of medication preparation and administration errors, and to identify factors associated with errors. Methods This was a prospective study conducted on six wards in two urban public hospitals in Vietnam. Data of preparation and administration errors of oral and intravenous medications was collected by direct observation, 12 hours per day on 7 consecutive days, on each ward. Multivariable logistic regression was applied to identify factors contributing to errors. Results In total, 2060 out of 5271 doses had at least one error. The error rate was 39.1% (95% confidence interval 37.8%- 40.4%). Experts judged potential clinical outcomes as minor, moderate, and severe in 72 (1.4%), 1806 (34.2%) and 182 (3.5%) doses. Factors associated with errors were drug characteristics (administration route, complexity of preparation, drug class; all p values < 0.001), and administration time (drug round, p = 0.023; day of the week, p = 0.024). Several interactions between these factors were also significant. Nurse experience was not significant. Higher error rates were observed for intravenous medications involving complex preparation procedures and for anti-infective drugs. Slightly lower medication error rates were observed during afternoon rounds compared to other rounds. Conclusions Potentially clinically relevant errors occurred in more than a third of all medications in this large study conducted in a resource-restricted setting. Educational interventions, focusing on intravenous medications with complex preparation procedure, particularly antibiotics, are likely to improve patient safety. PMID:26383873

  5. A Posteriori Correction of Forecast and Observation Error Variances

    NASA Technical Reports Server (NTRS)

    Rukhovets, Leonid

    2005-01-01

    Proposed method of total observation and forecast error variance correction is based on the assumption about normal distribution of "observed-minus-forecast" residuals (O-F), where O is an observed value and F is usually a short-term model forecast. This assumption can be accepted for several types of observations (except humidity) which are not grossly in error. Degree of nearness to normal distribution can be estimated by the symmetry or skewness (luck of symmetry) a(sub 3) = mu(sub 3)/sigma(sup 3) and kurtosis a(sub 4) = mu(sub 4)/sigma(sup 4) - 3 Here mu(sub i) = i-order moment, sigma is a standard deviation. It is well known that for normal distribution a(sub 3) = a(sub 4) = 0.

  6. Human operator response to error-likely situations in complex engineering systems

    NASA Technical Reports Server (NTRS)

    Morris, Nancy M.; Rouse, William B.

    1988-01-01

    The causes of human error in complex systems are examined. First, a conceptual framework is provided in which two broad categories of error are discussed: errors of action, or slips, and errors of intention, or mistakes. Conditions in which slips and mistakes might be expected to occur are identified, based on existing theories of human error. Regarding the role of workload, it is hypothesized that workload may act as a catalyst for error. Two experiments are presented in which humans' response to error-likely situations were examined. Subjects controlled PLANT under a variety of conditions and periodically provided subjective ratings of mental effort. A complex pattern of results was obtained, which was not consistent with predictions. Generally, the results of this research indicate that: (1) humans respond to conditions in which errors might be expected by attempting to reduce the possibility of error, and (2) adaptation to conditions is a potent influence on human behavior in discretionary situations. Subjects' explanations for changes in effort ratings are also explored.

  7. Do Errors on Classroom Reading Tasks Slow Growth in Reading? Technical Report No. 404.

    ERIC Educational Resources Information Center

    Anderson, Richard C.; And Others

    A pervasive finding from research on teaching and classroom learning is that a low rate of error on classroom tasks is associated with large year to year gains in achievement, particularly for reading in the primary grades. The finding of a negative relationship between error rate, especially rate of oral reading errors, and gains in reading…

  8. Effects of Correlated Errors on the Analysis of Space Geodetic Data

    NASA Technical Reports Server (NTRS)

    Romero-Wolf, Andres; Jacobs, C. S.

    2011-01-01

    As thermal errors are reduced instrumental and troposphere correlated errors will increasingly become more important. Work in progress shows that troposphere covariance error models improve data analysis results. We expect to see stronger effects with higher data rates. Temperature modeling of delay errors may further reduce temporal correlations in the data.

  9. Error Sources in Proccessing LIDAR Based Bridge Inspection

    NASA Astrophysics Data System (ADS)

    Bian, H.; Chen, S. E.; Liu, W.

    2017-09-01

    Bridge inspection is a critical task in infrastructure management and is facing unprecedented challenges after a series of bridge failures. The prevailing visual inspection was insufficient in providing reliable and quantitative bridge information although a systematic quality management framework was built to ensure visual bridge inspection data quality to minimize errors during the inspection process. The LiDAR based remote sensing is recommended as an effective tool in overcoming some of the disadvantages of visual inspection. In order to evaluate the potential of applying this technology in bridge inspection, some of the error sources in LiDAR based bridge inspection are analysed. The scanning angle variance in field data collection and the different algorithm design in scanning data processing are the found factors that will introduce errors into inspection results. Besides studying the errors sources, advanced considerations should be placed on improving the inspection data quality, and statistical analysis might be employed to evaluate inspection operation process that contains a series of uncertain factors in the future. Overall, the development of a reliable bridge inspection system requires not only the improvement of data processing algorithms, but also systematic considerations to mitigate possible errors in the entire inspection workflow. If LiDAR or some other technology can be accepted as a supplement for visual inspection, the current quality management framework will be modified or redesigned, and this would be as urgent as the refine of inspection techniques.

  10. Prescribing Errors Involving Medication Dosage Forms

    PubMed Central

    Lesar, Timothy S

    2002-01-01

    CONTEXT Prescribing errors involving medication dose formulations have been reported to occur frequently in hospitals. No systematic evaluations of the characteristics of errors related to medication dosage formulation have been performed. OBJECTIVE To quantify the characteristics, frequency, and potential adverse patient effects of prescribing errors involving medication dosage forms . DESIGN Evaluation of all detected medication prescribing errors involving or related to medication dosage forms in a 631-bed tertiary care teaching hospital. MAIN OUTCOME MEASURES Type, frequency, and potential for adverse effects of prescribing errors involving or related to medication dosage forms. RESULTS A total of 1,115 clinically significant prescribing errors involving medication dosage forms were detected during the 60-month study period. The annual number of detected errors increased throughout the study period. Detailed analysis of the 402 errors detected during the last 16 months of the study demonstrated the most common errors to be: failure to specify controlled release formulation (total of 280 cases; 69.7%) both when prescribing using the brand name (148 cases; 36.8%) and when prescribing using the generic name (132 cases; 32.8%); and prescribing controlled delivery formulations to be administered per tube (48 cases; 11.9%). The potential for adverse patient outcome was rated as potentially “fatal or severe” in 3 cases (0.7%), and “serious” in 49 cases (12.2%). Errors most commonly involved cardiovascular agents (208 cases; 51.7%). CONCLUSIONS Hospitalized patients are at risk for adverse outcomes due to prescribing errors related to inappropriate use of medication dosage forms. This information should be considered in the development of strategies to prevent adverse patient outcomes resulting from such errors. PMID:12213138

  11. Chirp and error rate analyses of an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ converter.

    PubMed

    Lin, Chia-Chi; Kuo, Hao-Chung; Peng, Peng-Chun; Lin, Gong-Ru

    2008-03-31

    Optically injection-locked single-wavelength gain-switching VCSEL based all-optical converter is demonstrated to generate RZ data at 2.5 Gbit/s with bit-error-rate of 10(-9) under receiving power of -29.3 dBm. A modified rate equation model is established to elucidate the optical injection induced gain-switching and NRZ-to-RZ data conversion in the VCSEL. The peak-to-peak frequency chirp of the VCSEL based NRZ-to-RZ is 4.5 GHz associated with a reduced frequency chirp rate of 178 MHz/ps at input optical NRZ power of -21 dBm, which is almost decreasing by a factor of 1/3 comparing with chirp on the SOA based NRZ-to-RZ converter reported previously. The power penalty of the BER measured back-to-back is about 2 dB from 1 Gbit/s to 2.5 Gbit/s.

  12. Error begat error: design error analysis and prevention in social infrastructure projects.

    PubMed

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  13. Decrease in medical command errors with use of a "standing orders" protocol system.

    PubMed

    Holliman, C J; Wuerz, R C; Meador, S A

    1994-05-01

    The purpose of this study was to determine the physician medical command error rates and paramedic error rates after implementation of a "standing orders" protocol system for medical command. These patient-care error rates were compared with the previously reported rates for a "required call-in" medical command system (Ann Emerg Med 1992; 21(4):347-350). A secondary aim of the study was to determine if the on-scene time interval was increased by the standing orders system. Prospectively conducted audit of prehospital advanced life support (ALS) trip sheets was made at an urban ALS paramedic service with on-line physician medical command from three local hospitals. All ALS run sheets from the start time of the standing orders system (April 1, 1991) for a 1-year period ending on March 30, 1992 were reviewed as part of an ongoing quality assurance program. Cases were identified as nonjustifiably deviating from regional emergency medical services (EMS) protocols as judged by agreement of three physician reviewers (the same methodology as a previously reported command error study in the same ALS system). Medical command and paramedic errors were identified from the prehospital ALS run sheets and categorized. Two thousand one ALS runs were reviewed; 24 physician errors (1.2% of the 1,928 "command" runs) and eight paramedic errors (0.4% of runs) were identified. The physician error rate was decreased from the 2.6% rate in the previous study (P < .0001 by chi 2 analysis). The on-scene time interval did not increase with the "standing orders" system.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. A national physician survey of diagnostic error in paediatrics.

    PubMed

    Perrem, Lucy M; Fanshawe, Thomas R; Sharif, Farhana; Plüddemann, Annette; O'Neill, Michael B

    2016-10-01

    This cross-sectional survey explored paediatric physician perspectives regarding diagnostic errors. All paediatric consultants and specialist registrars in Ireland were invited to participate in this anonymous online survey. The response rate for the study was 54 % (n = 127). Respondents had a median of 9-year clinical experience (interquartile range (IQR) 4-20 years). A diagnostic error was reported at least monthly by 19 (15.0 %) respondents. Consultants reported significantly less diagnostic errors compared to trainees (p value = 0.01). Cognitive error was the top-ranked contributing factor to diagnostic error, with incomplete history and examination considered to be the principal cognitive error. Seeking a second opinion and close follow-up of patients to ensure that the diagnosis is correct were the highest-ranked, clinician-based solutions to diagnostic error. Inadequate staffing levels and excessive workload were the most highly ranked system-related and situational factors. Increased access to and availability of consultants and experts was the most highly ranked system-based solution to diagnostic error. We found a low level of self-perceived diagnostic error in an experienced group of paediatricians, at variance with the literature and warranting further clarification. The results identify perceptions on the major cognitive, system-related and situational factors contributing to diagnostic error and also key preventative strategies. • Diagnostic errors are an important source of preventable patient harm and have an estimated incidence of 10-15 %. • They are multifactorial in origin and include cognitive, system-related and situational factors. What is New: • We identified a low rate of self-perceived diagnostic error in contrast to the existing literature. • Incomplete history and examination, inadequate staffing levels and excessive workload are cited as the principal contributing factors to diagnostic error in this study.

  15. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  16. Analysis of the “naming game” with learning errors in communications

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Chen, Guanrong

    2015-07-01

    Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.

  17. SU-F-T-383: Robustness for Patient Setup Error in Total Body Irradiation Using Volumetric Modulated Arc Therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y; National Cancer Center, Kashiwa, Chiba; Tachibana, H

    Purpose: Total body irradiation (TBI) and total marrow irradiation (TMI) using Tomotherapy have been reported. A gantry-based linear accelerator uses one isocenter during one rotational irradiation. Thus, 3–5 isocenter points should be used for a whole plan of TBI-VMAT during smoothing out the junctional dose distribution. IGRT provides accurate and precise patient setup for the multiple junctions, however it is evident that some setup errors should occur and affect accuracy of dose distribution in the area. In this study, we evaluated the robustness for patient’s setup error in VMAT-TBI. Methods: VMAT-TBI Planning was performed in an adult whole-body human phantommore » using Eclipse. Eight full arcs with four isocenter points using 6MV-X were used to cover the entire whole body. Dose distribution was optimized using two structures of patient’s body as PTV and lung. The two arcs were shared with one isocenter and the two arcs were 5 cm-overlapped with the other two arcs. Point absolute dose using ionization-chamber and planer relative dose distribution using film in the junctional regions were performed using water-equivalent slab phantom. In the measurements, several setup errors of (+5∼−5mm) were added. Results: The result of the chamber measurement shows the deviations were within ±3% when the setup errors were within ±3 mm. In the planer evaluation, the pass ratio of gamma evaluation (3%/2mm) shows more than 90% if the errors within ±3 mm. However, there were hot/cold areas in the edge of the junction even with acceptable gamma pass ratio. 5 mm setup error caused larger hot and cold areas and the dosimetric acceptable areas were decreased in the overlapped areas. Conclusion: It can be clinically acceptable for VMAT-TBI when patient setup error is within ±3mm. Averaging effects from patient random error would be helpful to blur the hot/cold area in the junction.« less

  18. Application of human reliability analysis to nursing errors in hospitals.

    PubMed

    Inoue, Kayoko; Koizumi, Akio

    2004-12-01

    Adverse events in hospitals, such as in surgery, anesthesia, radiology, intensive care, internal medicine, and pharmacy, are of worldwide concern and it is important, therefore, to learn from such incidents. There are currently no appropriate tools based on state-of-the art models available for the analysis of large bodies of medical incident reports. In this study, a new model was developed to facilitate medical error analysis in combination with quantitative risk assessment. This model enables detection of the organizational factors that underlie medical errors, and the expedition of decision making in terms of necessary action. Furthermore, it determines medical tasks as module practices and uses a unique coding system to describe incidents. This coding system has seven vectors for error classification: patient category, working shift, module practice, linkage chain (error type, direct threat, and indirect threat), medication, severity, and potential hazard. Such mathematical formulation permitted us to derive two parameters: error rates for module practices and weights for the aforementioned seven elements. The error rate of each module practice was calculated by dividing the annual number of incident reports of each module practice by the annual number of the corresponding module practice. The weight of a given element was calculated by the summation of incident report error rates for an element of interest. This model was applied specifically to nursing practices in six hospitals over a year; 5,339 incident reports with a total of 63,294,144 module practices conducted were analyzed. Quality assurance (QA) of our model was introduced by checking the records of quantities of practices and reproducibility of analysis of medical incident reports. For both items, QA guaranteed legitimacy of our model. Error rates for all module practices were approximately of the order 10(-4) in all hospitals. Three major organizational factors were found to underlie medical

  19. Residents' numeric inputting error in computerized physician order entry prescription.

    PubMed

    Wu, Xue; Wu, Changxu; Zhang, Kan; Wei, Dong

    2016-04-01

    Computerized physician order entry (CPOE) system with embedded clinical decision support (CDS) can significantly reduce certain types of prescription error. However, prescription errors still occur. Various factors such as the numeric inputting methods in human computer interaction (HCI) produce different error rates and types, but has received relatively little attention. This study aimed to examine the effects of numeric inputting methods and urgency levels on numeric inputting errors of prescription, as well as categorize the types of errors. Thirty residents participated in four prescribing tasks in which two factors were manipulated: numeric inputting methods (numeric row in the main keyboard vs. numeric keypad) and urgency levels (urgent situation vs. non-urgent situation). Multiple aspects of participants' prescribing behavior were measured in sober prescribing situations. The results revealed that in urgent situations, participants were prone to make mistakes when using the numeric row in the main keyboard. With control of performance in the sober prescribing situation, the effects of the input methods disappeared, and urgency was found to play a significant role in the generalized linear model. Most errors were either omission or substitution types, but the proportion of transposition and intrusion error types were significantly higher than that of the previous research. Among numbers 3, 8, and 9, which were the less common digits used in prescription, the error rate was higher, which was a great risk to patient safety. Urgency played a more important role in CPOE numeric typing error-making than typing skills and typing habits. It was recommended that inputting with the numeric keypad had lower error rates in urgent situation. An alternative design could consider increasing the sensitivity of the keys with lower frequency of occurrence and decimals. To improve the usability of CPOE, numeric keyboard design and error detection could benefit from spatial

  20. Antiretroviral medication prescribing errors are common with hospitalization of HIV-infected patients.

    PubMed

    Commers, Tessa; Swindells, Susan; Sayles, Harlan; Gross, Alan E; Devetten, Marcel; Sandkovsky, Uriel

    2014-01-01

    Errors in prescribing antiretroviral therapy (ART) often occur with the hospitalization of HIV-infected patients. The rapid identification and prevention of errors may reduce patient harm and healthcare-associated costs. A retrospective review of hospitalized HIV-infected patients was carried out between 1 January 2009 and 31 December 2011. Errors were documented as omission, underdose, overdose, duplicate therapy, incorrect scheduling and/or incorrect therapy. The time to error correction was recorded. Relative risks (RRs) were computed to evaluate patient characteristics and error rates. A total of 289 medication errors were identified in 146/416 admissions (35%). The most common was drug omission (69%). At an error rate of 31%, nucleoside reverse transcriptase inhibitors were associated with an increased risk of error when compared with protease inhibitors (RR 1.32; 95% CI 1.04-1.69) and co-formulated drugs (RR 1.59; 95% CI 1.19-2.09). Of the errors, 31% were corrected within the first 24 h, but over half (55%) were never remedied. Admissions with an omission error were 7.4 times more likely to have all errors corrected within 24 h than were admissions without an omission. Drug interactions with ART were detected on 51 occasions. For the study population (n = 177), an increased risk of admission error was observed for black (43%) compared with white (28%) individuals (RR 1.53; 95% CI 1.16-2.03) but no significant differences were observed between white patients and other minorities or between men and women. Errors in inpatient ART were common, and the majority were never detected. The most common errors involved omission of medication, and nucleoside reverse transcriptase inhibitors had the highest rate of prescribing error. Interventions to prevent and correct errors are urgently needed.

  1. SEU induced errors observed in microprocessor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asenek, V.; Underwood, C.; Oldfield, M.

    In this paper, the authors present software tools for predicting the rate and nature of observable SEU induced errors in microprocessor systems. These tools are built around a commercial microprocessor simulator and are used to analyze real satellite application systems. Results obtained from simulating the nature of SEU induced errors are shown to correlate with ground-based radiation test data.

  2. Controlling qubit drift by recycling error correction syndromes

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin

    2015-03-01

    Physical qubits are susceptible to systematic drift, above and beyond the stochastic Markovian noise that motivates quantum error correction. This parameter drift must be compensated - if it is ignored, error rates will rise to intolerable levels - but compensation requires knowing the parameters' current value, which appears to require halting experimental work to recalibrate (e.g. via quantum tomography). Fortunately, this is untrue. I show how to perform on-the-fly recalibration on the physical qubits in an error correcting code, using only information from the error correction syndromes. The algorithm for detecting and compensating drift is very simple - yet, remarkably, when used to compensate Brownian drift in the qubit Hamiltonian, it achieves a stabilized error rate very close to the theoretical lower bound. Against 1/f noise, it is less effective only because 1/f noise is (like white noise) dominated by high-frequency fluctuations that are uncompensatable. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  3. LiDAR error estimation with WAsP engineering

    NASA Astrophysics Data System (ADS)

    Bingöl, F.; Mann, J.; Foussekis, D.

    2008-05-01

    The LiDAR measurements, vertical wind profile in any height between 10 to 150m, are based on assumption that the measured wind is a product of a homogenous wind. In reality there are many factors affecting the wind on each measurement point which the terrain plays the main role. To model LiDAR measurements and predict possible error in different wind directions for a certain terrain we have analyzed two experiment data sets from Greece. In both sites LiDAR and met, mast data have been collected and the same conditions are simulated with RisØ/DTU software, WAsP Engineering 2.0. Finally measurement data is compared with the model results. The model results are acceptable and very close for one site while the more complex one is returning higher errors at higher positions and in some wind directions.

  4. Genetic Assay for Transcription Errors: Methods to Monitor Treatments or Chemicals that Increase the Error Rate of RNA synthesis | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI) developed a genetic assay for detecting transcription errors in RNA synthesis. This new assay extends the familiar concept of an Ames test which monitors DNA damage and synthesis errors to the previously inaccessible issue of RNA synthesis fidelity. The FDA requires genetic DNA focused tests for all drug approval as it assesses the in vivo mutagenic and carcinogenic potential of a drug. The new assay will open an approach to monitoring the impact of treatments on the accuracy of RNA synthesis. Errors in transcription have been hypothesized to be a component of aging and age-related diseases. The National Cancer Institute (NCI) seeks licensing partners for the genetic assay.

  5. Moments and Root-Mean-Square Error of the Bayesian MMSE Estimator of Classification Error in the Gaussian Model.

    PubMed

    Zollanvari, Amin; Dougherty, Edward R

    2014-06-01

    The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.

  6. The Spectrum of Replication Errors in the Absence of Error Correction Assayed Across the Whole Genome of Escherichia coli.

    PubMed

    Niccum, Brittany A; Lee, Heewook; MohammedIsmail, Wazim; Tang, Haixu; Foster, Patricia L

    2018-06-15

    When the DNA polymerase that replicates the Escherichia coli chromosome, DNA Pol III, makes an error, there are two primary defenses against mutation: proofreading by the epsilon subunit of the holoenzyme and mismatch repair. In proofreading deficient strains, mismatch repair is partially saturated and the cell's response to DNA damage, the SOS response, may be partially induced. To investigate the nature of replication errors, we used mutation accumulation experiments and whole genome sequencing to determine mutation rates and mutational spectra across the entire chromosome of strains deficient in proofreading, mismatch repair, and the SOS response. We report that a proofreading-deficient strain has a mutation rate 4,000-fold greater than wild-type strains. While the SOS response may be induced in these cells, it does not contribute to the mutational load. Inactivating mismatch repair in a proofreading-deficient strain increases the mutation rate another 1.5-fold. DNA polymerase has a bias for converting G:C to A:T base pairs, but proofreading reduces the impact of these mutations, helping to maintain the genomic G:C content. These findings give an unprecedented view of how polymerase and error-correction pathways work together to maintain E. coli' s low mutation rate of 1 per thousand generations. Copyright © 2018, Genetics.

  7. Acceptability of using electronic vending machines to deliver oral rapid HIV self-testing kits: a qualitative study.

    PubMed

    Young, Sean D; Daniels, Joseph; Chiu, ChingChe J; Bolan, Robert K; Flynn, Risa P; Kwok, Justin; Klausner, Jeffrey D

    2014-01-01

    Rates of unrecognized HIV infection are significantly higher among Latino and Black men who have sex with men (MSM). Policy makers have proposed that HIV self-testing kits and new methods for delivering self-testing could improve testing uptake among minority MSM. This study sought to conduct qualitative assessments with MSM of color to determine the acceptability of using electronic vending machines to dispense HIV self-testing kits. African American and Latino MSM were recruited using a participant pool from an existing HIV prevention trial on Facebook. If participants expressed interest in using a vending machine to receive an HIV self-testing kit, they were emailed a 4-digit personal identification number (PIN) code to retrieve the test from the machine. We followed up with those who had tested to assess their willingness to participate in an interview about their experience. Twelve kits were dispensed and 8 interviews were conducted. In general, participants expressed that the vending machine was an acceptable HIV test delivery method due to its novelty and convenience. Acceptability of this delivery model for HIV testing kits was closely associated with three main factors: credibility, confidentiality, and convenience. Future research is needed to address issues, such as user-induced errors and costs, before scaling up the dispensing method.

  8. Detecting trends in raptor counts: power and type I error rates of various statistical tests

    USGS Publications Warehouse

    Hatfield, J.S.; Gould, W.R.; Hoover, B.A.; Fuller, M.R.; Lindquist, E.L.

    1996-01-01

    We conducted simulations that estimated power and type I error rates of statistical tests for detecting trends in raptor population count data collected from a single monitoring site. Results of the simulations were used to help analyze count data of bald eagles (Haliaeetus leucocephalus) from 7 national forests in Michigan, Minnesota, and Wisconsin during 1980-1989. Seven statistical tests were evaluated, including simple linear regression on the log scale and linear regression with a permutation test. Using 1,000 replications each, we simulated n = 10 and n = 50 years of count data and trends ranging from -5 to 5% change/year. We evaluated the tests at 3 critical levels (alpha = 0.01, 0.05, and 0.10) for both upper- and lower-tailed tests. Exponential count data were simulated by adding sampling error with a coefficient of variation of 40% from either a log-normal or autocorrelated log-normal distribution. Not surprisingly, tests performed with 50 years of data were much more powerful than tests with 10 years of data. Positive autocorrelation inflated alpha-levels upward from their nominal levels, making the tests less conservative and more likely to reject the null hypothesis of no trend. Of the tests studied, Cox and Stuart's test and Pollard's test clearly had lower power than the others. Surprisingly, the linear regression t-test, Collins' linear regression permutation test, and the nonparametric Lehmann's and Mann's tests all had similar power in our simulations. Analyses of the count data suggested that bald eagles had increasing trends on at least 2 of the 7 national forests during 1980-1989.

  9. Paediatric in-patient prescribing errors in Malaysia: a cross-sectional multicentre study.

    PubMed

    Khoo, Teik Beng; Tan, Jing Wen; Ng, Hoong Phak; Choo, Chong Ming; Bt Abdul Shukor, Intan Nor Chahaya; Teh, Siao Hean

    2017-06-01

    Background There is a lack of large comprehensive studies in developing countries on paediatric in-patient prescribing errors in different settings. Objectives To determine the characteristics of in-patient prescribing errors among paediatric patients. Setting General paediatric wards, neonatal intensive care units and paediatric intensive care units in government hospitals in Malaysia. Methods This is a cross-sectional multicentre study involving 17 participating hospitals. Drug charts were reviewed in each ward to identify the prescribing errors. All prescribing errors identified were further assessed for their potential clinical consequences, likely causes and contributing factors. Main outcome measures Incidence, types, potential clinical consequences, causes and contributing factors of the prescribing errors. Results The overall prescribing error rate was 9.2% out of 17,889 prescribed medications. There was no significant difference in the prescribing error rates between different types of hospitals or wards. The use of electronic prescribing had a higher prescribing error rate than manual prescribing (16.9 vs 8.2%, p < 0.05). Twenty eight (1.7%) prescribing errors were deemed to have serious potential clinical consequences and 2 (0.1%) were judged to be potentially fatal. Most of the errors were attributed to human factors, i.e. performance or knowledge deficit. The most common contributing factors were due to lack of supervision or of knowledge. Conclusions Although electronic prescribing may potentially improve safety, it may conversely cause prescribing errors due to suboptimal interfaces and cumbersome work processes. Junior doctors need specific training in paediatric prescribing and close supervision to reduce prescribing errors in paediatric in-patients.

  10. ADHD knowledge, misconceptions, and treatment acceptability.

    PubMed

    Sciutto, Mark J

    2015-02-01

    Despite the availability of several effective treatments, many children with ADHD do not receive adequate services. A variety of factors may influence help-seeking behavior among families of children with ADHD. This study explores two factors that may influence help-seeking decisions: knowledge and misconceptions of ADHD and treatment acceptability. A total of 196 participants completed measures of ADHD knowledge and use of information sources prior to rating the acceptability of two interventions: stimulant medication and sugar elimination diets. Higher levels of ADHD misconceptions were associated with lower acceptance of medication and higher acceptance of dietary interventions. However, analysis of individual misconceptions suggests that specific misconceptions are differentially related to perceptions of individual treatments. It may be important for clinicians to assess and deliberately target specific misconceptions as part of treatment for ADHD. © 2013 SAGE Publications.

  11. Upper bounds on the error probabilities and asymptotic error exponents in quantum multiple state discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audenaert, Koenraad M. R., E-mail: koenraad.audenaert@rhul.ac.uk; Department of Physics and Astronomy, University of Ghent, S9, Krijgslaan 281, B-9000 Ghent; Mosonyi, Milán, E-mail: milan.mosonyi@gmail.com

    2014-10-01

    We consider the multiple hypothesis testing problem for symmetric quantum state discrimination between r given states σ₁, …, σ{sub r}. By splitting up the overall test into multiple binary tests in various ways we obtain a number of upper bounds on the optimal error probability in terms of the binary error probabilities. These upper bounds allow us to deduce various bounds on the asymptotic error rate, for which it has been hypothesized that it is given by the multi-hypothesis quantum Chernoff bound (or Chernoff divergence) C(σ₁, …, σ{sub r}), as recently introduced by Nussbaum and Szkoła in analogy with Salikhov'smore » classical multi-hypothesis Chernoff bound. This quantity is defined as the minimum of the pairwise binary Chernoff divergences min{sub j« less

  12. [Validation of a method for notifying and monitoring medication errors in pediatrics].

    PubMed

    Guerrero-Aznar, M D; Jiménez-Mesa, E; Cotrina-Luque, J; Villalba-Moreno, A; Cumplido-Corbacho, R; Fernández-Fernández, L

    2014-12-01

    To analyze the impact of a multidisciplinary and decentralized safety committee in the pediatric management unit, and the joint implementation of a computing network application for reporting medication errors, monitoring the follow-up of the errors, and an analysis of the improvements introduced. An observational, descriptive, cross-sectional, pre-post intervention study was performed. An analysis was made of medication errors reported to the central safety committee in the twelve months prior to introduction, and those reported to the decentralized safety committee in the management unit in the nine months after implementation, using the computer application, and the strategies generated by the analysis of reported errors. Number of reported errors/10,000 days of stay, number of reported errors with harm per 10,000 days of stay, types of error, categories based on severity, stage of the process, and groups involved in the notification of medication errors. Reported medication errors increased 4.6 -fold, from 7.6 notifications of medication errors per 10,000 days of stay in the pre-intervention period to 36 in the post-intervention, rate ratio 0.21 (95% CI; 0.11-0.39) (P<.001). The medication errors with harm or requiring monitoring reported per 10,000 days of stay, was virtually unchanged from one period to the other ratio rate 0,77 (95% IC; 0,31-1,91) (P>.05). The notification of potential errors or errors without harm per 10,000 days of stay increased 17.4-fold (rate ratio 0.005., 95% CI; 0.001-0.026, P<.001). The increase in medication errors notified in the post-intervention period is a reflection of an increase in the motivation of health professionals to report errors through this new method. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  13. Designing to Control Flight Crew Errors

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Willshire, Kelli F.

    1997-01-01

    It is widely accepted that human error is a major contributing factor in aircraft accidents. There has been a significant amount of research in why these errors occurred, and many reports state that the design of flight deck can actually dispose humans to err. This research has led to the call for changes in design according to human factors and human-centered principles. The National Aeronautics and Space Administration's (NASA) Langley Research Center has initiated an effort to design a human-centered flight deck from a clean slate (i.e., without constraints of existing designs.) The effort will be based on recent research in human-centered design philosophy and mission management categories. This design will match the human's model of the mission and function of the aircraft to reduce unnatural or non-intuitive interfaces. The product of this effort will be a flight deck design description, including training and procedures, and a cross reference or paper trail back to design hypotheses, and an evaluation of the design. The present paper will discuss the philosophy, process, and status of this design effort.

  14. Mythbusters: Examining Rape Myth Acceptance among U.S. University Students

    ERIC Educational Resources Information Center

    Navarro, John C.; Tewksbury, Richard

    2017-01-01

    This study examined rape myth acceptance among 727 university students from 21 U.S. institutions with the updated Illinois Rape Myth Acceptance scale. Findings showed sorority members rejected rape myths at greater rates than non-sorority members, but fraternity members were similar to non-fraternity members. Higher rape myth acceptance was…

  15. Global distortion of GPS networks associated with satellite antenna model errors

    NASA Astrophysics Data System (ADS)

    Cardellach, E.; Elósegui, P.; Davis, J. L.

    2007-07-01

    Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by ˜1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PCO errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm yr-1 level, which will impact high-precision crustal deformation studies.

  16. Global Distortion of GPS Networks Associated with Satellite Antenna Model Errors

    NASA Technical Reports Server (NTRS)

    Cardellach, E.; Elosequi, P.; Davis, J. L.

    2007-01-01

    Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by approx.1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PC0 errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm/yr level, which will impact high-precision crustal deformation studies.

  17. Share 35 Changes Center Level Liver Acceptance Practices

    PubMed Central

    Goldberg, David S.; Levine, Matthew; Karp, Seth; Gilroy, Richard; Peter, L

    2017-01-01

    Share 35 was implemented to provide improved access to organs for patients with MELD scores ≥35. However, little is known about the impact of Share 35 on organ offer acceptance rates. We evaluated all liver offers to adult patients that were ultimately transplanted between 1/1/2011–12/31/2015. The analyses focused on patients ranked in the top five positions of a given match run, and used multi-level mixed-effects models, clustering on individual waitlist candidate and transplant center. There was a significant interaction between Share 35 era and MELD category (p<0.001). Comparing offers to MELD score ≥35 patients, offers post-Share 35 were 36% less likely to be accepted compared to offers to MELD score ≥35 patients pre-Share 35 (adjusted OR: 0.64). There was no clinically meaningful difference in the DRI of livers that were declined for patients with an allocation MELD score ≥35 in the pre- vs post-Share 35 era. Organ offer acceptance rates for patients with an allocation MELD≥35 decreased in every region post-Share 35; the magnitude of these changes was bigger in regions 2, 3, 4, 5, 6, 7, and 11, compared to regions 8 and 9 that had regional sharing in place pre-Share 35. There were significant changes in organ offer acceptance rates at the center level pre- vs post-Share 35, and these changes varied across centers (p<0.001). Conclusions In liver transplant candidates achieving a MELD score ≥35, liver acceptance of offers declined significantly after implementation of Share 35. The alterations in behavior at the center level suggest that practice patterns changed as a direct result of Share 35. Changes in organ acceptance under even broader organ sharing (redistricting) would likely be even greater, posing major logistical and operational challenges, while potentially increasing discard rates, thus decreasing the total number of transplant nationally. PMID:28240804

  18. Structure and dating errors in the geologic time scale and periodicity in mass extinctions

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.

  19. Changes in medical errors after implementation of a handoff program.

    PubMed

    Starmer, Amy J; Spector, Nancy D; Srivastava, Rajendu; West, Daniel C; Rosenbluth, Glenn; Allen, April D; Noble, Elizabeth L; Tse, Lisa L; Dalal, Anuj K; Keohane, Carol A; Lipsitz, Stuart R; Rothschild, Jeffrey M; Wien, Matthew F; Yoon, Catherine S; Zigmont, Katherine R; Wilson, Karen M; O'Toole, Jennifer K; Solan, Lauren G; Aylor, Megan; Bismilla, Zia; Coffey, Maitreya; Mahant, Sanjay; Blankenburg, Rebecca L; Destino, Lauren A; Everhart, Jennifer L; Patel, Shilpa J; Bale, James F; Spackman, Jaime B; Stevenson, Adam T; Calaman, Sharon; Cole, F Sessions; Balmer, Dorene F; Hepps, Jennifer H; Lopreiato, Joseph O; Yu, Clifton E; Sectish, Theodore C; Landrigan, Christopher P

    2014-11-06

    Miscommunications are a leading cause of serious medical errors. Data from multicenter studies assessing programs designed to improve handoff of information about patient care are lacking. We conducted a prospective intervention study of a resident handoff-improvement program in nine hospitals, measuring rates of medical errors, preventable adverse events, and miscommunications, as well as resident workflow. The intervention included a mnemonic to standardize oral and written handoffs, handoff and communication training, a faculty development and observation program, and a sustainability campaign. Error rates were measured through active surveillance. Handoffs were assessed by means of evaluation of printed handoff documents and audio recordings. Workflow was assessed through time-motion observations. The primary outcome had two components: medical errors and preventable adverse events. In 10,740 patient admissions, the medical-error rate decreased by 23% from the preintervention period to the postintervention period (24.5 vs. 18.8 per 100 admissions, P<0.001), and the rate of preventable adverse events decreased by 30% (4.7 vs. 3.3 events per 100 admissions, P<0.001). The rate of nonpreventable adverse events did not change significantly (3.0 and 2.8 events per 100 admissions, P=0.79). Site-level analyses showed significant error reductions at six of nine sites. Across sites, significant increases were observed in the inclusion of all prespecified key elements in written documents and oral communication during handoff (nine written and five oral elements; P<0.001 for all 14 comparisons). There were no significant changes from the preintervention period to the postintervention period in the duration of oral handoffs (2.4 and 2.5 minutes per patient, respectively; P=0.55) or in resident workflow, including patient-family contact and computer time. Implementation of the handoff program was associated with reductions in medical errors and in preventable adverse events

  20. Perceptually tuned low-bit-rate video codec for ATM networks

    NASA Astrophysics Data System (ADS)

    Chou, Chun-Hsien

    1996-02-01

    In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.

  1. Errors, error detection, error correction and hippocampal-region damage: data and theories.

    PubMed

    MacKay, Donald G; Johnson, Laura W

    2013-11-01

    This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Global Distribution of Net Electron Acceptance in Subseafloor Sediment

    NASA Astrophysics Data System (ADS)

    Fulfer, V. M.; Pockalny, R. A.; D'Hondt, S.

    2017-12-01

    We quantified the global distribution of net electron acceptance rates (e-/m2/year) in subseafloor sediment (>1.5 meters below seafloor [mbsf]) using (i) a modified version of the chemical-reaction-rate algorithm by Wang et al. (2008), (ii) physical properties and dissolved oxygen and sulfate data from interstitial waters of sediment cores collected by the Ocean Drilling Program, Integrated Ocean Drilling Program, International Ocean Discovery Program, and U.S. coring expeditions, and (iii) correlation of net electron acceptance rates to global oceanographic properties. Calculated net rates vary from 4.8 x 1019 e-/m2/year for slowly accumulating abyssal clay to 1.2 x 1023 e-/m2/year for regions of high sedimentation rate. Net electron acceptance rate correlates strongly with mean sedimentation rate. Where sedimentation rate is very low (e.g., 1 m/Myr), dissolved oxygen penetrates more than 70 mbsf and is the primary terminal electron acceptor. Where sedimentation rate is moderate (e.g., 3 to 60 m/Myr), dissolved sulfate penetrates as far as 700 mbsf and is the principal terminal electron acceptor. Where sedimentation rate is high (e.g., > 60 m/Myr), dissolved sulfate penetrates only meters, but is the principal terminal electron acceptor in subseafloor sediment to the depth of sulfate penetration. Because microbial metabolism continues at greater depths than the depth of sulfate penetration in fast-accumulating sediment, complete quantification of subseafloor metabolic rates will require consideration of other chemical species.

  3. Complications: acknowledging, managing, and coping with human error.

    PubMed

    Helo, Sevann; Moulton, Carol-Anne E

    2017-08-01

    Errors are inherent in medicine due to the imperfectness of human nature. Health care providers may have a difficult time accepting their fallibility, acknowledging mistakes, and disclosing errors. Fear of litigation, shame, blame, and concern about reputation are just some of the barriers preventing physicians from being more candid with their patients, despite the supporting body of evidence that patients cite poor communication and lack of transparency as primary drivers to file a lawsuit in the wake of a medical complication. Proper error disclosure includes a timely explanation of what happened, who was involved, why the error occurred, and how it will be prevented in the future. Medical mistakes afford the opportunity for individuals and institutions to be candid about their weaknesses while improving patient care processes. When a physician takes the Hippocratic Oath they take on a tremendous sense of responsibility for the care of their patients, and often bear the burden of their mistakes in isolation. Physicians may struggle with guilt, shame, and a crisis of confidence, which may thwart efforts to identify areas for improvement that can lead to meaningful change. Coping strategies for providers include discussing the event with others, seeking professional counseling, and implementing quality improvement projects. Physicians and health care organizations need to find adaptive ways to deal with complications that will benefit patients, providers, and their institutions.

  4. Complications: acknowledging, managing, and coping with human error

    PubMed Central

    Moulton, Carol-Anne E.

    2017-01-01

    Errors are inherent in medicine due to the imperfectness of human nature. Health care providers may have a difficult time accepting their fallibility, acknowledging mistakes, and disclosing errors. Fear of litigation, shame, blame, and concern about reputation are just some of the barriers preventing physicians from being more candid with their patients, despite the supporting body of evidence that patients cite poor communication and lack of transparency as primary drivers to file a lawsuit in the wake of a medical complication. Proper error disclosure includes a timely explanation of what happened, who was involved, why the error occurred, and how it will be prevented in the future. Medical mistakes afford the opportunity for individuals and institutions to be candid about their weaknesses while improving patient care processes. When a physician takes the Hippocratic Oath they take on a tremendous sense of responsibility for the care of their patients, and often bear the burden of their mistakes in isolation. Physicians may struggle with guilt, shame, and a crisis of confidence, which may thwart efforts to identify areas for improvement that can lead to meaningful change. Coping strategies for providers include discussing the event with others, seeking professional counseling, and implementing quality improvement projects. Physicians and health care organizations need to find adaptive ways to deal with complications that will benefit patients, providers, and their institutions. PMID:28904910

  5. Significant and Sustained Reduction in Chemotherapy Errors Through Improvement Science.

    PubMed

    Weiss, Brian D; Scott, Melissa; Demmel, Kathleen; Kotagal, Uma R; Perentesis, John P; Walsh, Kathleen E

    2017-04-01

    A majority of children with cancer are now cured with highly complex chemotherapy regimens incorporating multiple drugs and demanding monitoring schedules. The risk for error is high, and errors can occur at any stage in the process, from order generation to pharmacy formulation to bedside drug administration. Our objective was to describe a program to eliminate errors in chemotherapy use among children. To increase reporting of chemotherapy errors, we supplemented the hospital reporting system with a new chemotherapy near-miss reporting system. After the model for improvement, we then implemented several interventions, including a daily chemotherapy huddle, improvements to the preparation and delivery of intravenous therapy, headphones for clinicians ordering chemotherapy, and standards for chemotherapy administration throughout the hospital. Twenty-two months into the project, we saw a centerline shift in our U chart of chemotherapy errors that reached the patient from a baseline rate of 3.8 to 1.9 per 1,000 doses. This shift has been sustained for > 4 years. In Poisson regression analyses, we found an initial increase in error rates, followed by a significant decline in errors after 16 months of improvement work ( P < .001). After the model for improvement, our improvement efforts were associated with significant reductions in chemotherapy errors that reached the patient. Key drivers for our success included error vigilance through a huddle, standardization, and minimization of interruptions during ordering.

  6. Network Adjustment of Orbit Errors in SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Bahr, Hermann; Hanssen, Ramon

    2010-03-01

    Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.

  7. Preventable Medical Errors Driven Modeling of Medical Best Practice Guidance Systems.

    PubMed

    Ou, Andrew Y-Z; Jiang, Yu; Wu, Po-Liang; Sha, Lui; Berlin, Richard B

    2017-01-01

    In a medical environment such as Intensive Care Unit, there are many possible reasons to cause errors, and one important reason is the effect of human intellectual tasks. When designing an interactive healthcare system such as medical Cyber-Physical-Human Systems (CPHSystems), it is important to consider whether the system design can mitigate the errors caused by these tasks or not. In this paper, we first introduce five categories of generic intellectual tasks of humans, where tasks among each category may lead to potential medical errors. Then, we present an integrated modeling framework to model a medical CPHSystem and use UPPAAL as the foundation to integrate and verify the whole medical CPHSystem design models. With a verified and comprehensive model capturing the human intellectual tasks effects, we can design a more accurate and acceptable system. We use a cardiac arrest resuscitation guidance and navigation system (CAR-GNSystem) for such medical CPHSystem modeling. Experimental results show that the CPHSystem models help determine system design flaws and can mitigate the potential medical errors caused by the human intellectual tasks.

  8. Bit error rate tester using fast parallel generation of linear recurring sequences

    DOEpatents

    Pierson, Lyndon G.; Witzke, Edward L.; Maestas, Joseph H.

    2003-05-06

    A fast method for generating linear recurring sequences by parallel linear recurring sequence generators (LRSGs) with a feedback circuit optimized to balance minimum propagation delay against maximal sequence period. Parallel generation of linear recurring sequences requires decimating the sequence (creating small contiguous sections of the sequence in each LRSG). A companion matrix form is selected depending on whether the LFSR is right-shifting or left-shifting. The companion matrix is completed by selecting a primitive irreducible polynomial with 1's most closely grouped in a corner of the companion matrix. A decimation matrix is created by raising the companion matrix to the (n*k).sup.th power, where k is the number of parallel LRSGs and n is the number of bits to be generated at a time by each LRSG. Companion matrices with 1's closely grouped in a corner will yield sparse decimation matrices. A feedback circuit comprised of XOR logic gates implements the decimation matrix in hardware. Sparse decimation matrices can be implemented with minimum number of XOR gates, and therefore a minimum propagation delay through the feedback circuit. The LRSG of the invention is particularly well suited to use as a bit error rate tester on high speed communication lines because it permits the receiver to synchronize to the transmitted pattern within 2n bits.

  9. Non-health care facility anticonvulsant medication errors in the United States.

    PubMed

    DeDonato, Emily A; Spiller, Henry A; Casavant, Marcel J; Chounthirath, Thitphalak; Hodges, Nichole L; Smith, Gary A

    2018-06-01

    This study provides an epidemiological description of non-health care facility medication errors involving anticonvulsant drugs. A retrospective analysis of National Poison Data System data was conducted on non-health care facility medication errors involving anticonvulsant drugs reported to US Poison Control Centers from 2000 through 2012. During the study period, 108,446 non-health care facility medication errors involving anticonvulsant pharmaceuticals were reported to US Poison Control Centers, averaging 8342 exposures annually. The annual frequency and rate of errors increased significantly over the study period, by 96.6 and 76.7%, respectively. The rate of exposures resulting in health care facility use increased by 83.3% and the rate of exposures resulting in serious medical outcomes increased by 62.3%. In 2012, newer anticonvulsants, including felbamate, gabapentin, lamotrigine, levetiracetam, other anticonvulsants (excluding barbiturates), other types of gamma aminobutyric acid, oxcarbazepine, topiramate, and zonisamide, accounted for 67.1% of all exposures. The rate of non-health care facility anticonvulsant medication errors reported to Poison Control Centers increased during 2000-2012, resulting in more frequent health care facility use and serious medical outcomes. Newer anticonvulsants, although often considered safer and more easily tolerated, were responsible for much of this trend and should still be administered with caution.

  10. Antidepressant and antipsychotic medication errors reported to United States poison control centers.

    PubMed

    Kamboj, Alisha; Spiller, Henry A; Casavant, Marcel J; Chounthirath, Thitphalak; Hodges, Nichole L; Smith, Gary A

    2018-05-08

    To investigate unintentional therapeutic medication errors associated with antidepressant and antipsychotic medications in the United States and expand current knowledge on the types of errors commonly associated with these medications. A retrospective analysis of non-health care facility unintentional therapeutic errors associated with antidepressant and antipsychotic medications was conducted using data from the National Poison Data System. From 2000 to 2012, poison control centers received 207 670 calls reporting unintentional therapeutic errors associated with antidepressant or antipsychotic medications that occurred outside of a health care facility, averaging 15 975 errors annually. The rate of antidepressant-related errors increased by 50.6% from 2000 to 2004, decreased by 6.5% from 2004 to 2006, and then increased 13.0% from 2006 to 2012. The rate of errors related to antipsychotic medications increased by 99.7% from 2000 to 2004 and then increased by 8.8% from 2004 to 2012. Overall, 70.1% of reported errors occurred among adults, and 59.3% were among females. The medications most frequently associated with errors were selective serotonin reuptake inhibitors (30.3%), atypical antipsychotics (24.1%), and other types of antidepressants (21.5%). Most medication errors took place when an individual inadvertently took or was given a medication twice (41.0%), inadvertently took someone else's medication (15.6%), or took the wrong medication (15.6%). This study provides a comprehensive overview of non-health care facility unintentional therapeutic errors associated with antidepressant and antipsychotic medications. The frequency and rate of these errors increased significantly from 2000 to 2012. Given that use of these medications is increasing in the US, this study provides important information about the epidemiology of the associated medication errors. Copyright © 2018 John Wiley & Sons, Ltd.

  11. European public acceptance of euthanasia: socio-demographic and cultural factors associated with the acceptance of euthanasia in 33 European countries.

    PubMed

    Cohen, Joachim; Marcoux, Isabelle; Bilsen, Johan; Deboosere, Patrick; van der Wal, Gerrit; Deliens, Luc

    2006-08-01

    In many European countries, the last decade has been marked by an increasing debate about the acceptability and regulation of euthanasia and other end-of-life decisions in medical practice. Growing public sensibility to a 'right to die' for terminally ill patients has been one of the main constituents of these debates. Within this context, we sought to describe and compare acceptance of euthanasia among the general public in 33 European countries. We used the European Values Study data of 1999-2000 with a total of 41125 respondents (63% response rate) in 33 European countries. The main outcome measure concerned the acceptance of euthanasia (defined as 'terminating the life of the incurably sick', rated on a scale from 1 to 10). Results showed that the acceptance of euthanasia tended to be high in some countries (e.g. the Netherlands, Denmark, France, Sweden), while a markedly low acceptance was found in others (e.g. Romania, Malta and Turkey). A multivariate ordinal regression showed that weaker religious belief was the most important factor associated with a higher acceptance; however, there were also socio-demographic differences: younger cohorts, people from non-manual social classes, and people with a higher educational level tended to have a higher acceptance of euthanasia. While religious belief, socio-demographic factors, and also moral values (i.e. the belief in the right to self-determination) could largely explain the differences between countries, our findings suggest that perceptions regarding euthanasia are probably also influenced by national traditions and history (e.g. Germany). Thus, we demonstrated clear cross-national differences with regard to the acceptance of euthanasia, which can serve as an important basis for further debate and research in the specific countries.

  12. Eliminating US hospital medical errors.

    PubMed

    Kumar, Sameer; Steinebach, Marc

    2008-01-01

    Healthcare costs in the USA have continued to rise steadily since the 1980s. Medical errors are one of the major causes of deaths and injuries of thousands of patients every year, contributing to soaring healthcare costs. The purpose of this study is to examine what has been done to deal with the medical-error problem in the last two decades and present a closed-loop mistake-proof operation system for surgery processes that would likely eliminate preventable medical errors. The design method used is a combination of creating a service blueprint, implementing the six sigma DMAIC cycle, developing cause-and-effect diagrams as well as devising poka-yokes in order to develop a robust surgery operation process for a typical US hospital. In the improve phase of the six sigma DMAIC cycle, a number of poka-yoke techniques are introduced to prevent typical medical errors (identified through cause-and-effect diagrams) that may occur in surgery operation processes in US hospitals. It is the authors' assertion that implementing the new service blueprint along with the poka-yokes, will likely result in the current medical error rate to significantly improve to the six-sigma level. Additionally, designing as many redundancies as possible in the delivery of care will help reduce medical errors. Primary healthcare providers should strongly consider investing in adequate doctor and nurse staffing, and improving their education related to the quality of service delivery to minimize clinical errors. This will lead to an increase in higher fixed costs, especially in the shorter time frame. This paper focuses additional attention needed to make a sound technical and business case for implementing six sigma tools to eliminate medical errors that will enable hospital managers to increase their hospital's profitability in the long run and also ensure patient safety.

  13. Experimental investigation of observation error in anuran call surveys

    USGS Publications Warehouse

    McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R.

    2010-01-01

    Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presenceabsence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5 of all positive detections, with individual observers exhibiting false-positive rates between 0.5 and 14. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys. ?? 2010 The Wildlife Society.

  14. False Positives in Multiple Regression: Unanticipated Consequences of Measurement Error in the Predictor Variables

    ERIC Educational Resources Information Center

    Shear, Benjamin R.; Zumbo, Bruno D.

    2013-01-01

    Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…

  15. Using snowball sampling method with nurses to understand medication administration errors.

    PubMed

    Sheu, Shuh-Jen; Wei, Ien-Lan; Chen, Ching-Huey; Yu, Shu; Tang, Fu-In

    2009-02-01

    We aimed to encourage nurses to release information about drug administration errors to increase understanding of error-related circumstances and to identify high-alert situations. Drug administration errors represent the majority of medication errors, but errors are underreported. Effective ways are lacking to encourage nurses to actively report errors. Snowball sampling was conducted to recruit participants. A semi-structured questionnaire was used to record types of error, hospital and nurse backgrounds, patient consequences, error discovery mechanisms and reporting rates. Eighty-five nurses participated, reporting 328 administration errors (259 actual, 69 near misses). Most errors occurred in medical surgical wards of teaching hospitals, during day shifts, committed by nurses working fewer than two years. Leading errors were wrong drugs and doses, each accounting for about one-third of total errors. Among 259 actual errors, 83.8% resulted in no adverse effects; among remaining 16.2%, 6.6% had mild consequences and 9.6% had serious consequences (severe reaction, coma, death). Actual errors and near misses were discovered mainly through double-check procedures by colleagues and nurses responsible for errors; reporting rates were 62.5% (162/259) vs. 50.7% (35/69) and only 3.5% (9/259) vs. 0% (0/69) were disclosed to patients and families. High-alert situations included administration of 15% KCl, insulin and Pitocin; using intravenous pumps; and implementation of cardiopulmonary resuscitation (CPR). Snowball sampling proved to be an effective way to encourage nurses to release details concerning medication errors. Using empirical data, we identified high-alert situations. Strategies for reducing drug administration errors by nurses are suggested. Survey results suggest that nurses should double check medication administration in known high-alert situations. Nursing management can use snowball sampling to gather error details from nurses in a non

  16. Your Health Care May Kill You: Medical Errors.

    PubMed

    Anderson, James G; Abrahamson, Kathleen

    2017-01-01

    Recent studies of medical errors have estimated errors may account for as many as 251,000 deaths annually in the United States (U.S)., making medical errors the third leading cause of death. Error rates are significantly higher in the U.S. than in other developed countries such as Canada, Australia, New Zealand, Germany and the United Kingdom (U.K). At the same time less than 10 percent of medical errors are reported. This study describes the results of an investigation of the effectiveness of the implementation of the MEDMARX Medication Error Reporting system in 25 hospitals in Pennsylvania. Data were collected on 17,000 errors reported by participating hospitals over a 12-month period. Latent growth curve analysis revealed that reporting of errors by health care providers increased significantly over the four quarters. At the same time, the proportion of corrective actions taken by the hospitals remained relatively constant over the 12 months. A simulation model was constructed to examine the effect of potential organizational changes resulting from error reporting. Four interventions were simulated. The results suggest that improving patient safety requires more than voluntary reporting. Organizational changes need to be implemented and institutionalized as well.

  17. The incidence and severity of errors in pharmacist-written discharge medication orders.

    PubMed

    Onatade, Raliat; Sawieres, Sara; Veck, Alexandra; Smith, Lindsay; Gore, Shivani; Al-Azeib, Sumiah

    2017-08-01

    Background Errors in discharge prescriptions are problematic. When hospital pharmacists write discharge prescriptions improvements are seen in the quality and efficiency of discharge. There is limited information on the incidence of errors in pharmacists' medication orders. Objective To investigate the extent and clinical significance of errors in pharmacist-written discharge medication orders. Setting 1000-bed teaching hospital in London, UK. Method Pharmacists in this London hospital routinely write discharge medication orders as part of the clinical pharmacy service. Convenient days, based on researcher availability, between October 2013 and January 2014 were selected. Pre-registration pharmacists reviewed all discharge medication orders written by pharmacists on these days and identified discrepancies between the medication history, inpatient chart, patient records and discharge summary. A senior clinical pharmacist confirmed the presence of an error. Each error was assigned a potential clinical significance rating (based on the NCCMERP scale) by a physician and an independent senior clinical pharmacist, working separately. Main outcome measure Incidence of errors in pharmacist-written discharge medication orders. Results 509 prescriptions, written by 51 pharmacists, containing 4258 discharge medication orders were assessed (8.4 orders per prescription). Ten prescriptions (2%), contained a total of ten erroneous orders (order error rate-0.2%). The pharmacist considered that one error had the potential to cause temporary harm (0.02% of all orders). The physician did not rate any of the errors with the potential to cause harm. Conclusion The incidence of errors in pharmacists' discharge medication orders was low. The quality, safety and policy implications of pharmacists routinely writing discharge medication orders should be further explored.

  18. Acetaminophen attenuates error evaluation in cortex

    PubMed Central

    Kam, Julia W.Y.; Heine, Steven J.; Inzlicht, Michael; Handy, Todd C.

    2016-01-01

    Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants’ ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual’s Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. PMID:26892161

  19. Cooperative MIMO communication at wireless sensor network: an error correcting code approach.

    PubMed

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.

  20. Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach

    PubMed Central

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732

  1. How psychotherapists handle treatment errors – an ethical analysis

    PubMed Central

    2013-01-01

    Background Dealing with errors in psychotherapy is challenging, both ethically and practically. There is almost no empirical research on this topic. We aimed (1) to explore psychotherapists’ self-reported ways of dealing with an error made by themselves or by colleagues, and (2) to reconstruct their reasoning according to the two principle-based ethical approaches that are dominant in the ethics discourse of psychotherapy, Beauchamp & Childress (B&C) and Lindsay et al. (L). Methods We conducted 30 semi-structured interviews with 30 psychotherapists (physicians and non-physicians) and analysed the transcripts using qualitative content analysis. Answers were deductively categorized according to the two principle-based ethical approaches. Results Most psychotherapists reported that they preferred to an disclose error to the patient. They justified this by spontaneous intuitions and common values in psychotherapy, rarely using explicit ethical reasoning. The answers were attributed to the following categories with descending frequency: 1. Respect for patient autonomy (B&C; L), 2. Non-maleficence (B&C) and Responsibility (L), 3. Integrity (L), 4. Competence (L) and Beneficence (B&C). Conclusions Psychotherapists need specific ethical and communication training to complement and articulate their moral intuitions as a support when disclosing their errors to the patients. Principle-based ethical approaches seem to be useful for clarifying the reasons for disclosure. Further research should help to identify the most effective and acceptable ways of error disclosure in psychotherapy. PMID:24321503

  2. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    NASA Astrophysics Data System (ADS)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.

  3. Impact of geophysical model error for recovering temporal gravity field model

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Luo, Zhicai; Wu, Yihao; Li, Qiong; Xu, Chuang

    2016-07-01

    The impact of geophysical model error on recovered temporal gravity field models with both real and simulated GRACE observations is assessed in this paper. With real GRACE observations, we build four temporal gravity field models, i.e., HUST08a, HUST11a, HUST04 and HUST05. HUST08a and HUST11a are derived from different ocean tide models (EOT08a and EOT11a), while HUST04 and HUST05 are derived from different non-tidal models (AOD RL04 and AOD RL05). The statistical result shows that the discrepancies of the annual mass variability amplitudes in six river basins between HUST08a and HUST11a models, HUST04 and HUST05 models are all smaller than 1 cm, which demonstrates that geophysical model error slightly affects the current GRACE solutions. The impact of geophysical model error for future missions with more accurate satellite ranging is also assessed by simulation. The simulation results indicate that for current mission with range rate accuracy of 2.5 × 10- 7 m/s, observation error is the main reason for stripe error. However, when the range rate accuracy improves to 5.0 × 10- 8 m/s in the future mission, geophysical model error will be the main source for stripe error, which will limit the accuracy and spatial resolution of temporal gravity model. Therefore, observation error should be the primary error source taken into account at current range rate accuracy level, while more attention should be paid to improving the accuracy of background geophysical models for the future mission.

  4. ADEPT, a dynamic next generation sequencing data error-detection program with trimming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Shihai; Lo, Chien-Chi; Li, Po-E

    Illumina is the most widely used next generation sequencing technology and produces millions of short reads that contain errors. These sequencing errors constitute a major problem in applications such as de novo genome assembly, metagenomics analysis and single nucleotide polymorphism discovery. In this study, we present ADEPT, a dynamic error detection method, based on the quality scores of each nucleotide and its neighboring nucleotides, together with their positions within the read and compares this to the position-specific quality score distribution of all bases within the sequencing run. This method greatly improves upon other available methods in terms of the truemore » positive rate of error discovery without affecting the false positive rate, particularly within the middle of reads. We conclude that ADEPT is the only tool to date that dynamically assesses errors within reads by comparing position-specific and neighboring base quality scores with the distribution of quality scores for the dataset being analyzed. The result is a method that is less prone to position-dependent under-prediction, which is one of the most prominent issues in error prediction. The outcome is that ADEPT improves upon prior efforts in identifying true errors, primarily within the middle of reads, while reducing the false positive rate.« less

  5. ADEPT, a dynamic next generation sequencing data error-detection program with trimming

    DOE PAGES

    Feng, Shihai; Lo, Chien-Chi; Li, Po-E; ...

    2016-02-29

    Illumina is the most widely used next generation sequencing technology and produces millions of short reads that contain errors. These sequencing errors constitute a major problem in applications such as de novo genome assembly, metagenomics analysis and single nucleotide polymorphism discovery. In this study, we present ADEPT, a dynamic error detection method, based on the quality scores of each nucleotide and its neighboring nucleotides, together with their positions within the read and compares this to the position-specific quality score distribution of all bases within the sequencing run. This method greatly improves upon other available methods in terms of the truemore » positive rate of error discovery without affecting the false positive rate, particularly within the middle of reads. We conclude that ADEPT is the only tool to date that dynamically assesses errors within reads by comparing position-specific and neighboring base quality scores with the distribution of quality scores for the dataset being analyzed. The result is a method that is less prone to position-dependent under-prediction, which is one of the most prominent issues in error prediction. The outcome is that ADEPT improves upon prior efforts in identifying true errors, primarily within the middle of reads, while reducing the false positive rate.« less

  6. Conditions for the optical wireless links bit error ratio determination

    NASA Astrophysics Data System (ADS)

    Kvíčala, Radek

    2017-11-01

    To determine the quality of the Optical Wireless Links (OWL), there is necessary to establish the availability and the probability of interruption. This quality can be defined by the optical beam bit error rate (BER). Bit error rate BER presents the percentage of successfully transmitted bits. In practice, BER runs into the problem with the integration time (measuring time) determination. For measuring and recording of BER at OWL the bit error ratio tester (BERT) has been developed. The 1 second integration time for the 64 kbps radio links is mentioned in the accessible literature. However, it is impossible to use this integration time for singularity of coherent beam propagation.

  7. Mimicking Aphasic Semantic Errors in Normal Speech Production: Evidence from a Novel Experimental Paradigm

    ERIC Educational Resources Information Center

    Hodgson, Catherine; Lambon Ralph, Matthew A.

    2008-01-01

    Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study…

  8. Influence of measurement error on Maxwell's demon

    NASA Astrophysics Data System (ADS)

    Sørdal, Vegard; Bergli, Joakim; Galperin, Y. M.

    2017-06-01

    In any general cycle of measurement, feedback, and erasure, the measurement will reduce the entropy of the system when information about the state is obtained, while erasure, according to Landauer's principle, is accompanied by a corresponding increase in entropy due to the compression of logical and physical phase space. The total process can in principle be fully reversible. A measurement error reduces the information obtained and the entropy decrease in the system. The erasure still gives the same increase in entropy, and the total process is irreversible. Another consequence of measurement error is that a bad feedback is applied, which further increases the entropy production if the proper protocol adapted to the expected error rate is not applied. We consider the effect of measurement error on a realistic single-electron box Szilard engine, and we find the optimal protocol for the cycle as a function of the desired power P and error ɛ .

  9. SU-G-BRB-03: Assessing the Sensitivity and False Positive Rate of the Integrated Quality Monitor (IQM) Large Area Ion Chamber to MLC Positioning Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehnke, E McKenzie; DeMarco, J; Steers, J

    2016-06-15

    Purpose: To examine both the IQM’s sensitivity and false positive rate to varying MLC errors. By balancing these two characteristics, an optimal tolerance value can be derived. Methods: An un-modified SBRT Liver IMRT plan containing 7 fields was randomly selected as a representative clinical case. The active MLC positions for all fields were perturbed randomly from a square distribution of varying width (±1mm to ±5mm). These unmodified and modified plans were measured multiple times each by the IQM (a large area ion chamber mounted to a TrueBeam linac head). Measurements were analyzed relative to the initial, unmodified measurement. IQM readingsmore » are analyzed as a function of control points. In order to examine sensitivity to errors along a field’s delivery, each measured field was divided into 5 groups of control points, and the maximum error in each group was recorded. Since the plans have known errors, we compared how well the IQM is able to differentiate between unmodified and error plans. ROC curves and logistic regression were used to analyze this, independent of thresholds. Results: A likelihood-ratio Chi-square test showed that the IQM could significantly predict whether a plan had MLC errors, with the exception of the beginning and ending control points. Upon further examination, we determined there was ramp-up occurring at the beginning of delivery. Once the linac AFC was tuned, the subsequent measurements (relative to a new baseline) showed significant (p <0.005) abilities to predict MLC errors. Using the area under the curve, we show the IQM’s ability to detect errors increases with increasing MLC error (Spearman’s Rho=0.8056, p<0.0001). The optimal IQM count thresholds from the ROC curves are ±3%, ±2%, and ±7% for the beginning, middle 3, and end segments, respectively. Conclusion: The IQM has proven to be able to detect not only MLC errors, but also differences in beam tuning (ramp-up). Partially supported by the Susan Scott

  10. On Time/Space Aggregation of Fine-Scale Error Estimates (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, G. J.

    2013-12-01

    Estimating errors inherent in fine time/space-scale satellite precipitation data sets is still an on-going problem and a key area of active research. Complicating features of these data sets include the intrinsic intermittency of the precipitation in space and time and the resulting highly skewed distribution of precipitation rates. Additional issues arise from the subsampling errors that satellites introduce, the errors due to retrieval algorithms, and the correlated error that retrieval and merger algorithms sometimes introduce. Several interesting approaches have been developed recently that appear to make progress on these long-standing issues. At the same time, the monthly averages over 2.5°x2.5° grid boxes in the Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) precipitation data set follow a very simple sampling-based error model (Huffman 1997) with coefficients that are set using coincident surface and GPCP SG data. This presentation outlines the unsolved problem of how to aggregate the fine-scale errors (discussed above) to an arbitrary time/space averaging volume for practical use in applications, reducing in the limit to simple Gaussian expressions at the monthly 2.5°x2.5° scale. Scatter diagrams with different time/space averaging show that the relationship between the satellite and validation data improves due to the reduction in random error. One of the key, and highly non-linear, issues is that fine-scale estimates tend to have large numbers of cases with points near the axes on the scatter diagram (one of the values is exactly or nearly zero, while the other value is higher). Averaging 'pulls' the points away from the axes and towards the 1:1 line, which usually happens for higher precipitation rates before lower rates. Given this qualitative observation of how aggregation affects error, we observe that existing aggregation rules, such as the Steiner et al. (2003) power law, only depend on the aggregated precipitation rate

  11. Reduction in chemotherapy order errors with computerized physician order entry.

    PubMed

    Meisenberg, Barry R; Wright, Robert R; Brady-Copertino, Catherine J

    2014-01-01

    To measure the number and type of errors associated with chemotherapy order composition associated with three sequential methods of ordering: handwritten orders, preprinted orders, and computerized physician order entry (CPOE) embedded in the electronic health record. From 2008 to 2012, a sample of completed chemotherapy orders were reviewed by a pharmacist for the number and type of errors as part of routine performance improvement monitoring. Error frequencies for each of the three distinct methods of composing chemotherapy orders were compared using statistical methods. The rate of problematic order sets-those requiring significant rework for clarification-was reduced from 30.6% with handwritten orders to 12.6% with preprinted orders (preprinted v handwritten, P < .001) to 2.2% with CPOE (preprinted v CPOE, P < .001). The incidence of errors capable of causing harm was reduced from 4.2% with handwritten orders to 1.5% with preprinted orders (preprinted v handwritten, P < .001) to 0.1% with CPOE (CPOE v preprinted, P < .001). The number of problem- and error-containing chemotherapy orders was reduced sequentially by preprinted order sets and then by CPOE. CPOE is associated with low error rates, but it did not eliminate all errors, and the technology can introduce novel types of errors not seen with traditional handwritten or preprinted orders. Vigilance even with CPOE is still required to avoid patient harm.

  12. Spacecraft and propulsion technician error

    NASA Astrophysics Data System (ADS)

    Schultz, Daniel Clyde

    Commercial aviation and commercial space similarly launch, fly, and land passenger vehicles. Unlike aviation, the U.S. government has not established maintenance policies for commercial space. This study conducted a mixed methods review of 610 U.S. space launches from 1984 through 2011, which included 31 failures. An analysis of the failure causal factors showed that human error accounted for 76% of those failures, which included workmanship error accounting for 29% of the failures. With the imminent future of commercial space travel, the increased potential for the loss of human life demands that changes be made to the standardized procedures, training, and certification to reduce human error and failure rates. Several recommendations were made by this study to the FAA's Office of Commercial Space Transportation, space launch vehicle operators, and maintenance technician schools in an effort to increase the safety of the space transportation passengers.

  13. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1990-01-01

    An expurgated upper bound on the event error probability of trellis coded modulation is presented. This bound is used to derive a lower bound on the minimum achievable free Euclidean distance d sub (free) of trellis codes. It is shown that the dominant parameters for both bounds, the expurgated error exponent and the asymptotic d sub (free) growth rate, respectively, can be obtained from the cutoff-rate R sub O of the transmission channel by a simple geometric construction, making R sub O the central parameter for finding good trellis codes. Several constellations are optimized with respect to the bounds.

  14. RECKONER: read error corrector based on KMC.

    PubMed

    Dlugosz, Maciej; Deorowicz, Sebastian

    2017-04-01

    Presence of sequencing errors in data produced by next-generation sequencers affects quality of downstream analyzes. Accuracy of them can be improved by performing error correction of sequencing reads. We introduce a new correction algorithm capable of processing eukaryotic close to 500 Mbp-genome-size, high error-rated data using less than 4 GB of RAM in about 35 min on 16-core computer. Program is freely available at http://sun.aei.polsl.pl/REFRESH/reckoner . sebastian.deorowicz@polsl.pl. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  15. The Differences in Error Rate and Type between IELTS Writing Bands and Their Impact on Academic Workload

    ERIC Educational Resources Information Center

    Müller, Amanda

    2015-01-01

    This paper attempts to demonstrate the differences in writing between International English Language Testing System (IELTS) bands 6.0, 6.5 and 7.0. An analysis of exemplars provided from the IELTS test makers reveals that IELTS 6.0, 6.5 and 7.0 writers can make a minimum of 206 errors, 96 errors and 35 errors per 1000 words. The following section…

  16. Efficient error correction for next-generation sequencing of viral amplicons.

    PubMed

    Skums, Pavel; Dimitrova, Zoya; Campo, David S; Vaughan, Gilberto; Rossi, Livia; Forbi, Joseph C; Yokosawa, Jonny; Zelikovsky, Alex; Khudyakov, Yury

    2012-06-25

    Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses.The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm.

  17. Factors that influence the generation of autobiographical memory conjunction errors.

    PubMed

    Devitt, Aleea L; Monk-Fromont, Edwin; Schacter, Daniel L; Addis, Donna Rose

    2016-01-01

    The constructive nature of memory is generally adaptive, allowing us to efficiently store, process and learn from life events, and simulate future scenarios to prepare ourselves for what may come. However, the cost of a flexibly constructive memory system is the occasional conjunction error, whereby the components of an event are authentic, but the combination of those components is false. Using a novel recombination paradigm, it was demonstrated that details from one autobiographical memory (AM) may be incorrectly incorporated into another, forming AM conjunction errors that elude typical reality monitoring checks. The factors that contribute to the creation of these conjunction errors were examined across two experiments. Conjunction errors were more likely to occur when the corresponding details were partially rather than fully recombined, likely due to increased plausibility and ease of simulation of partially recombined scenarios. Brief periods of imagination increased conjunction error rates, in line with the imagination inflation effect. Subjective ratings suggest that this inflation is due to similarity of phenomenological experience between conjunction and authentic memories, consistent with a source monitoring perspective. Moreover, objective scoring of memory content indicates that increased perceptual detail may be particularly important for the formation of AM conjunction errors.

  18. American Recovery and Reinvestment Act of 2009. Interim Report on Customer Acceptance, Retention, and Response to Time-Based Rates from the Consumer Behavior Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappers, Peter; Hans, Liesel; Scheer, Richard

    Time-based rate programs1, enabled by utility investments in advanced metering infrastructure (AMI), are increasingly being considered by utilities as tools to reduce peak demand and enable customers to better manage consumption and costs. There are several customer systems that are relatively new to the marketplace and have the potential for improving the effectiveness of these programs, including in-home displays (IHDs), programmable communicating thermostats (PCTs), and web portals. Policy and decision makers are interested in more information about customer acceptance, retention, and response before moving forward with expanded deployments of AMI-enabled new rates and technologies. Under the Smart Grid Investment Grantmore » Program (SGIG), the U.S. Department of Energy (DOE) partnered with several utilities to conduct consumer behavior studies (CBS). The goals involved applying randomized and controlled experimental designs for estimating customer responses more precisely and credibly to advance understanding of time-based rates and customer systems, and provide new information for improving program designs, implementation strategies, and evaluations. The intent was to produce more robust and credible analysis of impacts, costs, benefits, and lessons learned and assist utility and regulatory decision makers in evaluating investment opportunities involving time-based rates. To help achieve these goals, DOE developed technical guidelines to help the CBS utilities estimate customer acceptance, retention, and response more precisely.« less

  19. Errors in radiation oncology: A study in pathways and dosimetric impact

    PubMed Central

    Drzymala, Robert E.; Purdy, James A.; Michalski, Jeff

    2005-01-01

    As complexity for treating patients increases, so does the risk of error. Some publications have suggested that record and verify (R&V) systems may contribute in propagating errors. Direct data transfer has the potential to eliminate most, but not all, errors. And although the dosimetric consequences may be obvious in some cases, a detailed study does not exist. In this effort, we examined potential errors in terms of scenarios, pathways of occurrence, and dosimetry. Our goal was to prioritize error prevention according to likelihood of event and dosimetric impact. For conventional photon treatments, we investigated errors of incorrect source‐to‐surface distance (SSD), energy, omitted wedge (physical, dynamic, or universal) or compensating filter, incorrect wedge or compensating filter orientation, improper rotational rate for arc therapy, and geometrical misses due to incorrect gantry, collimator or table angle, reversed field settings, and setup errors. For electron beam therapy, errors investigated included incorrect energy, incorrect SSD, along with geometric misses. For special procedures we examined errors for total body irradiation (TBI, incorrect field size, dose rate, treatment distance) and LINAC radiosurgery (incorrect collimation setting, incorrect rotational parameters). Likelihood of error was determined and subsequently rated according to our history of detecting such errors. Dosimetric evaluation was conducted by using dosimetric data, treatment plans, or measurements. We found geometric misses to have the highest error probability. They most often occurred due to improper setup via coordinate shift errors or incorrect field shaping. The dosimetric impact is unique for each case and depends on the proportion of fields in error and volume mistreated. These errors were short‐lived due to rapid detection via port films. The most significant dosimetric error was related to a reversed wedge direction. This may occur due to incorrect collimator

  20. Electronic adherence monitoring device performance and patient acceptability: a randomized control trial.

    PubMed

    Chan, Amy Hai Yan; Stewart, Alistair William; Harrison, Jeff; Black, Peter Nigel; Mitchell, Edwin Arthur; Foster, Juliet Michelle

    2017-05-01

    To investigate the performance and patient acceptability of an inhaler electronic monitoring device in a real-world childhood asthma population. Children 6 to 15 years presenting with asthma to the hospital emergency department and prescribed inhaled corticosteroids were included. Participants were randomized to receive a device with reminder features enabled or disabled for use with their preventer. Device quality control tests were conducted. Questionnaires on device acceptability, utility and ergonomics were completed at six months. A total of 1306 quality control tests were conducted; 84% passed pre-issue and 87% return testing. The most common failure reason was actuation under-recording. Acceptability scores were high, with higher scores in the reminder than non-reminder group (median, 5 th -95 th percentile: 4.1, 3.1-5.0 versus 3.7, 2.3-4.8; p < 0.001). Most (>90%) rated the device easy to use. Feedback was positive across five themes: device acceptability, ringtone acceptability, suggestions for improvement, effect on medication use, and effect on asthma control. This study investigates electronic monitoring device performance and acceptability in children using quantitative and qualitative measures. Results indicate satisfactory reliability, although failure rates of 13-16% indicate the importance of quality control. Favorable acceptability ratings support the use of these devices in children.

  1. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    PubMed

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  2. Development of an errorable car-following driver model

    NASA Astrophysics Data System (ADS)

    Yang, H.-H.; Peng, H.

    2010-06-01

    An errorable car-following driver model is presented in this paper. An errorable driver model is one that emulates human driver's functions and can generate both nominal (error-free), as well as devious (with error) behaviours. This model was developed for evaluation and design of active safety systems. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. The stochastic car-following behaviour was first analysed and modelled as a random process. Three error-inducing behaviours were then introduced. First, human perceptual limitation was studied and implemented. Distraction due to non-driving tasks was then identified based on the statistical analysis of the driving data. Finally, time delay of human drivers was estimated through a recursive least-square identification process. By including these three error-inducing behaviours, rear-end collisions with the lead vehicle could occur. The simulated crash rate was found to be similar but somewhat higher than that reported in traffic statistics.

  3. Approaching Error-Free Customer Satisfaction through Process Change and Feedback Systems

    ERIC Educational Resources Information Center

    Berglund, Kristin M.; Ludwig, Timothy D.

    2009-01-01

    Employee-based errors result in quality defects that can often impact customer satisfaction. This study examined the effects of a process change and feedback system intervention on error rates of 3 teams of retail furniture distribution warehouse workers. Archival records of error codes were analyzed and aggregated as the measure of quality. The…

  4. Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.

    PubMed

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.

  5. Measurement of Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    NASA Astrophysics Data System (ADS)

    Imig, Astrid; Stephenson, Edward

    2009-10-01

    The Storage Ring EDM Collaboration was using the Cooler Synchrotron (COSY) and the EDDA detector at the Forschungszentrum J"ulich to explore systematic errors in very sensitive storage-ring polarization measurements. Polarized deuterons of 235 MeV were used. The analyzer target was a block of 17 mm thick carbon placed close to the beam so that white noise applied to upstream electrostatic plates increases the vertical phase space of the beam, allowing deuterons to strike the front face of the block. For a detector acceptance that covers laboratory angles larger than 9 ^o, the efficiency for particles to scatter into the polarimeter detectors was about 0.1% (all directions) and the vector analyzing power was about 0.2. Measurements were made of the sensitivity of the polarization measurement to beam position and angle. Both vector and tensor asymmetries were measured using beams with both vector and tensor polarization. Effects were seen that depend upon both the beam geometry and the data rate in the detectors.

  6. Acceptability of cancer chemoprevention trials: impact of the design

    PubMed Central

    Maisonneuve, Anne-Sophie; Huiart, Laetitia; Rabayrol, Laetitia; Horsman, Doug; Didelot, Remi; Sobol, Hagay; Eisinger, Francois

    2008-01-01

    Background: Chemoprevention could significantly reduce cancer burden. Assessment of efficacy and risk/benefit balance is at best achieved through randomized clinical trials. Methods: At a periodic health examination center 1463 adults were asked to complete a questionnaire about their willingness to be involved in different kinds of preventive clinical trials. Results: Among the 851 respondents (58.2%), 228 (26.8%) agreed to participate in a hypothetical chemoprevention trial aimed at reducing the incidence of lung cancer and 116 (29.3%) of 396 women agreed to a breast cancer chemoprevention trial. Randomization would not restrain participation (acceptability rate: 87.7% for lung cancer and 93.0% for breast cancer). In these volunteers, short-term trials (1 year) reached a high level of acceptability: 71.5% and 73.7% for lung and breast cancer prevention respectively. In contrast long-term trials (5 years or more) were far less acceptable: 9.2% for lung cancer (OR=7.7 CI95% 4.4-14.0) and 10.5 % for breast cancer (OR=6.9 CI95% 3.2-15.8). For lung cancer prevention, the route of administration impacts on acceptability with higher rate 53.1% for a pill vs. 7.9% for a spray (OR=6.7 CI95% 3.6-12.9). Conclusion: Overall healthy individuals are not keen to be involved in chemo-preventive trials, the design of which could however increase the acceptability rate. PMID:18769562

  7. Quantification of uncertainty in machining operations for on-machine acceptance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claudet, Andre A.; Tran, Hy D.; Su, Jiann-Chemg

    2008-09-01

    Manufactured parts are designed with acceptance tolerances, i.e. deviations from ideal design conditions, due to unavoidable errors in the manufacturing process. It is necessary to measure and evaluate the manufactured part, compared to the nominal design, to determine whether the part meets design specifications. The scope of this research project is dimensional acceptance of machined parts; specifically, parts machined using numerically controlled (NC, or also CNC for Computer Numerically Controlled) machines. In the design/build/accept cycle, the designer will specify both a nominal value, and an acceptable tolerance. As part of the typical design/build/accept business practice, it is required to verifymore » that the part did meet acceptable values prior to acceptance. Manufacturing cost must include not only raw materials and added labor, but also the cost of ensuring conformance to specifications. Ensuring conformance is a substantial portion of the cost of manufacturing. In this project, the costs of measurements were approximately 50% of the cost of the machined part. In production, cost of measurement would be smaller, but still a substantial proportion of manufacturing cost. The results of this research project will point to a science-based approach to reducing the cost of ensuring conformance to specifications. The approach that we take is to determine, a priori, how well a CNC machine can manufacture a particular geometry from stock. Based on the knowledge of the manufacturing process, we are then able to decide features which need further measurements from features which can be accepted 'as is' from the CNC. By calibration of the machine tool, and establishing a machining accuracy ratio, we can validate the ability of CNC to fabricate to a particular level of tolerance. This will eliminate the costs of checking for conformance for relatively large tolerances.« less

  8. Analysis of the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery☆

    PubMed Central

    Arba-Mosquera, Samuel; Aslanides, Ioannis M.

    2012-01-01

    Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.

  9. Acceptability of Using Electronic Vending Machines to Deliver Oral Rapid HIV Self-Testing Kits: A Qualitative Study

    PubMed Central

    Young, Sean D.; Daniels, Joseph; Chiu, ChingChe J.; Bolan, Robert K.; Flynn, Risa P.; Kwok, Justin; Klausner, Jeffrey D.

    2014-01-01

    Introduction Rates of unrecognized HIV infection are significantly higher among Latino and Black men who have sex with men (MSM). Policy makers have proposed that HIV self-testing kits and new methods for delivering self-testing could improve testing uptake among minority MSM. This study sought to conduct qualitative assessments with MSM of color to determine the acceptability of using electronic vending machines to dispense HIV self-testing kits. Materials and Methods African American and Latino MSM were recruited using a participant pool from an existing HIV prevention trial on Facebook. If participants expressed interest in using a vending machine to receive an HIV self-testing kit, they were emailed a 4-digit personal identification number (PIN) code to retrieve the test from the machine. We followed up with those who had tested to assess their willingness to participate in an interview about their experience. Results Twelve kits were dispensed and 8 interviews were conducted. In general, participants expressed that the vending machine was an acceptable HIV test delivery method due to its novelty and convenience. Discussion Acceptability of this delivery model for HIV testing kits was closely associated with three main factors: credibility, confidentiality, and convenience. Future research is needed to address issues, such as user-induced errors and costs, before scaling up the dispensing method. PMID:25076208

  10. A hybrid method for synthetic aperture ladar phase-error compensation

    NASA Astrophysics Data System (ADS)

    Hua, Zhili; Li, Hongping; Gu, Yongjian

    2009-07-01

    As a high resolution imaging sensor, synthetic aperture ladar data contain phase-error whose source include uncompensated platform motion and atmospheric turbulence distortion errors. Two previously devised methods, rank one phase-error estimation algorithm and iterative blind deconvolution are reexamined, of which a hybrid method that can recover both the images and PSF's without any a priori information on the PSF is built to speed up the convergence rate by the consideration in the choice of initialization. To be integrated into spotlight mode SAL imaging model respectively, three methods all can effectively reduce the phase-error distortion. For each approach, signal to noise ratio, root mean square error and CPU time are computed, from which we can see the convergence rate of the hybrid method can be improved because a more efficient initialization set of blind deconvolution. Moreover, by making a further discussion of the hybrid method, the weight distribution of ROPE and IBD is found to be an important factor that affects the final result of the whole compensation process.

  11. Using EHR Data to Detect Prescribing Errors in Rapidly Discontinued Medication Orders.

    PubMed

    Burlison, Jonathan D; McDaniel, Robert B; Baker, Donald K; Hasan, Murad; Robertson, Jennifer J; Howard, Scott C; Hoffman, James M

    2018-01-01

    Previous research developed a new method for locating prescribing errors in rapidly discontinued electronic medication orders. Although effective, the prospective design of that research hinders its feasibility for regular use. Our objectives were to assess a method to retrospectively detect prescribing errors, to characterize the identified errors, and to identify potential improvement opportunities. Electronically submitted medication orders from 28 randomly selected days that were discontinued within 120 minutes of submission were reviewed and categorized as most likely errors, nonerrors, or not enough information to determine status. Identified errors were evaluated by amount of time elapsed from original submission to discontinuation, error type, staff position, and potential clinical significance. Pearson's chi-square test was used to compare rates of errors across prescriber types. In all, 147 errors were identified in 305 medication orders. The method was most effective for orders that were discontinued within 90 minutes. Duplicate orders were most common; physicians in training had the highest error rate ( p  < 0.001), and 24 errors were potentially clinically significant. None of the errors were voluntarily reported. It is possible to identify prescribing errors in rapidly discontinued medication orders by using retrospective methods that do not require interrupting prescribers to discuss order details. Future research could validate our methods in different clinical settings. Regular use of this measure could help determine the causes of prescribing errors, track performance, and identify and evaluate interventions to improve prescribing systems and processes. Schattauer GmbH Stuttgart.

  12. The Surveillance Error Grid

    PubMed Central

    Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B.; Kirkman, M. Sue; Kovatchev, Boris

    2014-01-01

    Introduction: Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. Methods: A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. Results: SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments

  13. The surveillance error grid.

    PubMed

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  14. A real-time heat strain risk classifier using heart rate and skin temperature.

    PubMed

    Buller, Mark J; Latzka, William A; Yokota, Miyo; Tharion, William J; Moran, Daniel S

    2008-12-01

    Heat injury is a real concern to workers engaged in physically demanding tasks in high heat strain environments. Several real-time physiological monitoring systems exist that can provide indices of heat strain, e.g. physiological strain index (PSI), and provide alerts to medical personnel. However, these systems depend on core temperature measurement using expensive, ingestible thermometer pills. Seeking a better solution, we suggest the use of a model which can identify the probability that individuals are 'at risk' from heat injury using non-invasive measures. The intent is for the system to identify individuals who need monitoring more closely or who should apply heat strain mitigation strategies. We generated a model that can identify 'at risk' (PSI 7.5) workers from measures of heart rate and chest skin temperature. The model was built using data from six previously published exercise studies in which some subjects wore chemical protective equipment. The model has an overall classification error rate of 10% with one false negative error (2.7%), and outperforms an earlier model and a least squares regression model with classification errors of 21% and 14%, respectively. Additionally, the model allows the classification criteria to be adjusted based on the task and acceptable level of risk. We conclude that the model could be a valuable part of a multi-faceted heat strain management system.

  15. Acceptability of hypothetical dengue vaccines among travelers.

    PubMed

    Benoit, Christine M; MacLeod, William B; Hamer, Davidson H; Sanchez-Vegas, Carolina; Chen, Lin H; Wilson, Mary E; Karchmer, Adolf W; Yanni, Emad; Hochberg, Natasha S; Ooi, Winnie W; Kogelman, Laura; Barnett, Elizabeth D

    2013-01-01

    Dengue viruses have spread widely in recent decades and cause tens of millions of infections mostly in tropical and subtropical areas. Vaccine candidates are being studied aggressively and may be ready for licensure soon. We surveyed patients with past or upcoming travel to dengue-endemic countries to assess rates and determinants of acceptance for four hypothetical dengue vaccines with variable efficacy and adverse event (AE) profiles. Acceptance ratios were calculated for vaccines with varied efficacy and AE risk. Acceptance of the four hypothetical vaccines ranged from 54% for the vaccine with lower efficacy and serious AE risk to 95% for the vaccine with higher efficacy and minor AE risk. Given equal efficacy, vaccines with lower AE risk were better accepted than those with higher AE risk; given equivalent AE risk, vaccines with higher efficacy were better accepted than those with lower efficacy. History of Japanese encephalitis vaccination was associated with lower vaccine acceptance for one of the hypothetical vaccines. US-born travelers were more likely than non-US born travelers to accept a vaccine with 75% efficacy and a risk of minor AEs (p = 0.003). Compared with North American-born travelers, Asian- and African-born travelers were less likely to accept both vaccines with 75% efficacy. Most travelers would accept a safe and efficacious dengue vaccine if one were available. Travelers valued fewer potential AEs over increased vaccine efficacy. © 2013 International Society of Travel Medicine.

  16. Modular error embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark

    1999-01-01

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  17. Acetaminophen attenuates error evaluation in cortex.

    PubMed

    Randles, Daniel; Kam, Julia W Y; Heine, Steven J; Inzlicht, Michael; Handy, Todd C

    2016-06-01

    Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants' ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual's Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Functionality and acceptability of a wireless fetal heart rate monitoring device in term pregnant women in rural Southwestern Uganda.

    PubMed

    Mugyenyi, Godfrey R; Atukunda, Esther C; Ngonzi, Joseph; Boatin, Adeline; Wylie, Blair J; Haberer, Jessica E

    2017-06-08

    Over 3 million stillbirths occur annually in sub Saharan Africa; most occur intrapartum and are largely preventable. The standard of care for fetal heart rate (FHR) assessment in most sub-Saharan African settings is a Pinard Stethoscope, limiting observation to one person, at one point in time. We aimed to test the functionality and acceptability of a wireless FHR monitor that could allow for expanded monitoring capacity in rural Southwestern Uganda. In a mixed method prospective study, we enrolled 1) non-laboring healthy term pregnant women to wear the device for 30 min and 2) non-study clinicians to observe its use. The battery-powered prototype uses Doppler technology to measure fetal cardiotocographs (CTG), which are displayed via an android device and wirelessly transmit to cloud storage where they are accessible via a password protected website. Prototype functionality was assessed by the ability to obtain and transmit a 30-min CTG. Three obstetricians independently rated CTGs for readability and agreement between raters was calculated. All participants completed interviews on acceptability. Fifty pregnant women and 7 clinicians were enrolled. 46 (92.0%) CTGs were successfully recorded and stored. Mean scores for readability were 4.71, 4.71 and 4.83 (out of 5) with high agreement (intra class correlation 0.84; 95% CI 0.74 to 0.91). All pregnant women reported liking or really liking the device, as well as high levels of comfort, flexibility and usefulness of the prototype; all would recommend it to others. Clinicians described the prototype as portable, flexible, easy-to-use and a time saver. Adequate education for clinicians and women also seemed to improve correct usage and minimise concerns on safety of the device. This prototype wireless FHR monitor functioned well in a low-resource setting and was found to be acceptable and useful to both pregnant women and clinicians. The device also seemed to have potential to improve the experience of the users

  19. Optimization of Trade-offs in Error-free Image Transmission

    NASA Astrophysics Data System (ADS)

    Cox, Jerome R.; Moore, Stephen M.; Blaine, G. James; Zimmerman, John B.; Wallace, Gregory K.

    1989-05-01

    The availability of ubiquitous wide-area channels of both modest cost and higher transmission rate than voice-grade lines promises to allow the expansion of electronic radiology services to a larger community. The band-widths of the new services becoming available from the Integrated Services Digital Network (ISDN) are typically limited to 128 Kb/s, almost two orders of magnitude lower than popular LANs can support. Using Discrete Cosine Transform (DCT) techniques, a compressed approximation to an image may be rapidly transmitted. However, intensity or resampling transformations of the reconstructed image may reveal otherwise invisible artifacts of the approximate encoding. A progressive transmission scheme reported in ISO Working Paper N800 offers an attractive solution to this problem by rapidly reconstructing an apparently undistorted image from the DCT coefficients and then subse-quently transmitting the error image corresponding to the difference between the original and the reconstructed images. This approach achieves an error-free transmission without sacrificing the perception of rapid image delivery. Furthermore, subsequent intensity and resampling manipulations can be carried out with confidence. DCT coefficient precision affects the amount of error information that must be transmitted and, hence the delivery speed of error-free images. This study calculates the overall information coding rate for six radiographic images as a function of DCT coefficient precision. The results demonstrate that a minimum occurs for each of the six images at an average coefficient precision of between 0.5 and 1.0 bits per pixel (b/p). Apparently undistorted versions of these six images can be transmitted with a coding rate of between 0.25 and 0.75 b/p while error-free versions can be transmitted with an overall coding rate between 4.5 and 6.5 b/p.

  20. Efficient error correction for next-generation sequencing of viral amplicons

    PubMed Central

    2012-01-01

    Background Next-generation sequencing allows the analysis of an unprecedented number of viral sequence variants from infected patients, presenting a novel opportunity for understanding virus evolution, drug resistance and immune escape. However, sequencing in bulk is error prone. Thus, the generated data require error identification and correction. Most error-correction methods to date are not optimized for amplicon analysis and assume that the error rate is randomly distributed. Recent quality assessment of amplicon sequences obtained using 454-sequencing showed that the error rate is strongly linked to the presence and size of homopolymers, position in the sequence and length of the amplicon. All these parameters are strongly sequence specific and should be incorporated into the calibration of error-correction algorithms designed for amplicon sequencing. Results In this paper, we present two new efficient error correction algorithms optimized for viral amplicons: (i) k-mer-based error correction (KEC) and (ii) empirical frequency threshold (ET). Both were compared to a previously published clustering algorithm (SHORAH), in order to evaluate their relative performance on 24 experimental datasets obtained by 454-sequencing of amplicons with known sequences. All three algorithms show similar accuracy in finding true haplotypes. However, KEC and ET were significantly more efficient than SHORAH in removing false haplotypes and estimating the frequency of true ones. Conclusions Both algorithms, KEC and ET, are highly suitable for rapid recovery of error-free haplotypes obtained by 454-sequencing of amplicons from heterogeneous viruses. The implementations of the algorithms and data sets used for their testing are available at: http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-algorithm PMID:22759430

  1. Beyond hypercorrection: remembering corrective feedback for low-confidence errors.

    PubMed

    Griffiths, Lauren; Higham, Philip A

    2018-02-01

    Correcting errors based on corrective feedback is essential to successful learning. Previous studies have found that corrections to high-confidence errors are better remembered than low-confidence errors (the hypercorrection effect). The aim of this study was to investigate whether corrections to low-confidence errors can also be successfully retained in some cases. Participants completed an initial multiple-choice test consisting of control, trick and easy general-knowledge questions, rated their confidence after answering each question, and then received immediate corrective feedback. After a short delay, they were given a cued-recall test consisting of the same questions. In two experiments, we found high-confidence errors to control questions were better corrected on the second test compared to low-confidence errors - the typical hypercorrection effect. However, low-confidence errors to trick questions were just as likely to be corrected as high-confidence errors. Most surprisingly, we found that memory for the feedback and original responses, not confidence or surprise, were significant predictors of error correction. We conclude that for some types of material, there is an effortful process of elaboration and problem solving prior to making low-confidence errors that facilitates memory of corrective feedback.

  2. MEDICAL ERROR: CIVIL AND LEGAL ASPECT.

    PubMed

    Buletsa, S; Drozd, O; Yunin, O; Mohilevskyi, L

    2018-03-01

    The scientific article is focused on the research of the notion of medical error, medical and legal aspects of this notion have been considered. The necessity of the legislative consolidation of the notion of «medical error» and criteria of its legal estimation have been grounded. In the process of writing a scientific article, we used the empirical method, general scientific and comparative legal methods. A comparison of the concept of medical error in civil and legal aspects was made from the point of view of Ukrainian, European and American scientists. It has been marked that the problem of medical errors is known since ancient times and in the whole world, in fact without regard to the level of development of medicine, there is no country, where doctors never make errors. According to the statistics, medical errors in the world are included in the first five reasons of death rate. At the same time the grant of medical services practically concerns all people. As a man and his life, health in Ukraine are acknowledged by a higher social value, medical services must be of high-quality and effective. The grant of not quality medical services causes harm to the health, and sometimes the lives of people; it may result in injury or even death. The right to the health protection is one of the fundamental human rights assured by the Constitution of Ukraine; therefore the issue of medical errors and liability for them is extremely relevant. The authors make conclusions, that the definition of the notion of «medical error» must get the legal consolidation. Besides, the legal estimation of medical errors must be based on the single principles enshrined in the legislation and confirmed by judicial practice.

  3. Predicting and interpreting identification errors in military vehicle training using multidimensional scaling.

    PubMed

    Bohil, Corey J; Higgins, Nicholas A; Keebler, Joseph R

    2014-01-01

    We compared methods for predicting and understanding the source of confusion errors during military vehicle identification training. Participants completed training to identify main battle tanks. They also completed card-sorting and similarity-rating tasks to express their mental representation of resemblance across the set of training items. We expected participants to selectively attend to a subset of vehicle features during these tasks, and we hypothesised that we could predict identification confusion errors based on the outcomes of the card-sort and similarity-rating tasks. Based on card-sorting results, we were able to predict about 45% of observed identification confusions. Based on multidimensional scaling of the similarity-rating data, we could predict more than 80% of identification confusions. These methods also enabled us to infer the dimensions receiving significant attention from each participant. This understanding of mental representation may be crucial in creating personalised training that directs attention to features that are critical for accurate identification. Participants completed military vehicle identification training and testing, along with card-sorting and similarity-rating tasks. The data enabled us to predict up to 84% of identification confusion errors and to understand the mental representation underlying these errors. These methods have potential to improve training and reduce identification errors leading to fratricide.

  4. Smart photodetector arrays for error control in page-oriented optical memory

    NASA Astrophysics Data System (ADS)

    Schaffer, Maureen Elizabeth

    1998-12-01

    Page-oriented optical memories (POMs) have been proposed to meet high speed, high capacity storage requirements for input/output intensive computer applications. This technology offers the capability for storage and retrieval of optical data in two-dimensional pages resulting in high throughput data rates. Since currently measured raw bit error rates for these systems fall several orders of magnitude short of industry requirements for binary data storage, powerful error control codes must be adopted. These codes must be designed to take advantage of the two-dimensional memory output. In addition, POMs require an optoelectronic interface to transfer the optical data pages to one or more electronic host systems. Conventional charge coupled device (CCD) arrays can receive optical data in parallel, but the relatively slow serial electronic output of these devices creates a system bottleneck thereby eliminating the POM advantage of high transfer rates. Also, CCD arrays are "unintelligent" interfaces in that they offer little data processing capabilities. The optical data page can be received by two-dimensional arrays of "smart" photo-detector elements that replace conventional CCD arrays. These smart photodetector arrays (SPAs) can perform fast parallel data decoding and error control, thereby providing an efficient optoelectronic interface between the memory and the electronic computer. This approach optimizes the computer memory system by combining the massive parallelism and high speed of optics with the diverse functionality, low cost, and local interconnection efficiency of electronics. In this dissertation we examine the design of smart photodetector arrays for use as the optoelectronic interface for page-oriented optical memory. We review options and technologies for SPA fabrication, develop SPA requirements, and determine SPA scalability constraints with respect to pixel complexity, electrical power dissipation, and optical power limits. Next, we examine data

  5. Paying less but harvesting more: the effect of unconscious acceptance in regulating frustrating emotion.

    PubMed

    Ding, NanXiang; Yang, JieMin; Liu, YingYing; Yuan, JiaJin

    2015-08-01

    Previous studies indicate that emotion regulation may occur unconsciously, without the cost of cognitive effort, while conscious acceptance may enhance negative experiences despite having potential long-term health benefits. Thus, it is important to overcome this weakness to boost the efficacy of the acceptance strategy in negative emotion regulation. As unconscious regulation occurs with little cost of cognitive resources, the current study hypothesizes that unconscious acceptance regulates the emotional consequence of negative events more effectively than does conscious acceptance. Subjects were randomly assigned to conscious acceptance, unconscious acceptance and no-regulation conditions. A frustrating arithmetic task was used to induce negative emotion. Emotional experiences were assessed on the Positive Affect and Negative Affect Scale while emotion- related physiological activation was assessed by heart-rate reactivity. Results showed that conscious acceptance had a significant negative affective consequence, which was absent during unconscious acceptance. That is, unconscious acceptance was linked with little reduction of positive affect during the experience of frustration, while this reduction was prominent in the control and conscious acceptance groups. Instructed, conscious acceptance resulted in a greater reduction of positive affect than found for the control group. In addition, both conscious and unconscious acceptance strategies significantly decreased emotion-related heart-rate activity (to a similar extent) in comparison with the control condition. Moreover, heart-rate reactivity was positively correlated with negative affect and negatively correlated with positive affect during the frustration phase relative to the baseline phase, in both the control and unconscious acceptance groups. Thus, unconscious acceptance not only reduces emotion-related physiological activity but also better protects mood stability compared with conscious acceptance. This

  6. Superdense coding interleaved with forward error correction

    DOE PAGES

    Humble, Travis S.; Sadlier, Ronald J.

    2016-05-12

    Superdense coding promises increased classical capacity and communication security but this advantage may be undermined by noise in the quantum channel. We present a numerical study of how forward error correction (FEC) applied to the encoded classical message can be used to mitigate against quantum channel noise. By studying the bit error rate under different FEC codes, we identify the unique role that burst errors play in superdense coding, and we show how these can be mitigated against by interleaving the FEC codewords prior to transmission. As a result, we conclude that classical FEC with interleaving is a useful methodmore » to improve the performance in near-term demonstrations of superdense coding.« less

  7. Nurses' perceptions, acceptance, and use of a novel in-room pediatric ICU technology: testing an expanded technology acceptance model.

    PubMed

    Holden, Richard J; Asan, Onur; Wozniak, Erica M; Flynn, Kathryn E; Scanlon, Matthew C

    2016-11-15

    The value of health information technology (IT) ultimately depends on end users accepting and appropriately using it for patient care. This study examined pediatric intensive care unit nurses' perceptions, acceptance, and use of a novel health IT, the Large Customizable Interactive Monitor. An expanded technology acceptance model was tested by applying stepwise linear regression to data from a standardized survey of 167 nurses. Nurses reported low-moderate ratings of the novel IT's ease of use and low to very low ratings of usefulness, social influence, and training. Perceived ease of use, usefulness for patient/family involvement, and usefulness for care delivery were associated with system satisfaction (R 2  = 70%). Perceived usefulness for care delivery and patient/family social influence were associated with intention to use the system (R 2  = 65%). Satisfaction and intention were associated with actual system use (R 2  = 51%). The findings have implications for research, design, implementation, and policies for nursing informatics, particularly novel nursing IT. Several changes are recommended to improve the design and implementation of the studied IT.

  8. Analysis of counting errors in the phase/Doppler particle analyzer

    NASA Technical Reports Server (NTRS)

    Oldenburg, John R.

    1987-01-01

    NASA is investigating the application of the Phase Doppler measurement technique to provide improved drop sizing and liquid water content measurements in icing research. The magnitude of counting errors were analyzed because these errors contribute to inaccurate liquid water content measurements. The Phase Doppler Particle Analyzer counting errors due to data transfer losses and coincidence losses were analyzed for data input rates from 10 samples/sec to 70,000 samples/sec. Coincidence losses were calculated by determining the Poisson probability of having more than one event occurring during the droplet signal time. The magnitude of the coincidence loss can be determined, and for less than a 15 percent loss, corrections can be made. The data transfer losses were estimated for representative data transfer rates. With direct memory access enabled, data transfer losses are less than 5 percent for input rates below 2000 samples/sec. With direct memory access disabled losses exceeded 20 percent at a rate of 50 samples/sec preventing accurate number density or mass flux measurements. The data transfer losses of a new signal processor were analyzed and found to be less than 1 percent for rates under 65,000 samples/sec.

  9. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review.

    PubMed

    Frankenfield, David; Roth-Yousey, Lori; Compher, Charlene

    2005-05-01

    An assessment of energy needs is a necessary component in the development and evaluation of a nutrition care plan. The metabolic rate can be measured or estimated by equations, but estimation is by far the more common method. However, predictive equations might generate errors large enough to impact outcome. Therefore, a systematic review of the literature was undertaken to document the accuracy of predictive equations preliminary to deciding on the imperative to measure metabolic rate. As part of a larger project to determine the role of indirect calorimetry in clinical practice, an evidence team identified published articles that examined the validity of various predictive equations for resting metabolic rate (RMR) in nonobese and obese people and also in individuals of various ethnic and age groups. Articles were accepted based on defined criteria and abstracted using evidence analysis tools developed by the American Dietetic Association. Because these equations are applied by dietetics practitioners to individuals, a key inclusion criterion was research reports of individual data. The evidence was systematically evaluated, and a conclusion statement and grade were developed. Four prediction equations were identified as the most commonly used in clinical practice (Harris-Benedict, Mifflin-St Jeor, Owen, and World Health Organization/Food and Agriculture Organization/United Nations University [WHO/FAO/UNU]). Of these equations, the Mifflin-St Jeor equation was the most reliable, predicting RMR within 10% of measured in more nonobese and obese individuals than any other equation, and it also had the narrowest error range. No validation work concentrating on individual errors was found for the WHO/FAO/UNU equation. Older adults and US-residing ethnic minorities were underrepresented both in the development of predictive equations and in validation studies. The Mifflin-St Jeor equation is more likely than the other equations tested to estimate RMR to within 10% of

  10. Measurement error of mean sac diameter and crown-rump length among pregnant women at Mulago hospital, Uganda.

    PubMed

    Ali, Sam; Byanyima, Rosemary Kusaba; Ononge, Sam; Ictho, Jerry; Nyamwiza, Jean; Loro, Emmanuel Lako Ernesto; Mukisa, John; Musewa, Angella; Nalutaaya, Annet; Ssenyonga, Ronald; Kawooya, Ismael; Temper, Benjamin; Katamba, Achilles; Kalyango, Joan; Karamagi, Charles

    2018-05-04

    Ultrasonography is essential in the prenatal diagnosis and care for the pregnant mothers. However, the measurements obtained often contain a small percentage of unavoidable error that may have serious clinical implications if substantial. We therefore evaluated the level of intra and inter-observer error in measuring mean sac diameter (MSD) and crown-rump length (CRL) in women between 6 and 10 weeks' gestation at Mulago hospital. This was a cross-sectional study conducted from January to March 2016. We enrolled 56 women with an intrauterine single viable embryo. The women were scanned using a transvaginal (TVS) technique by two observers who were blinded of each other's measurements. Each observer measured the CRL twice and the MSD once for each woman. Intra-class correlation coefficients (ICCs), 95% limits of agreement (LOA) and technical error of measurement (TEM) were used for analysis. Intra-observer ICCs for CRL measurements were 0.995 and 0.993 while inter-observer ICCs were 0.988 for CRL and 0.955 for MSD measurements. Intra-observer 95% LOA for CRL were ± 2.04 mm and ± 1.66 mm. Inter-observer LOA were ± 2.35 mm for CRL and ± 4.87 mm for MSD. The intra-observer relative TEM for CRL were 4.62% and 3.70% whereas inter-observer relative TEM were 5.88% and 5.93% for CRL and MSD respectively. Intra- and inter-observer error of CRL and MSD measurements among pregnant women at Mulago hospital were acceptable. This implies that at Mulago hospital, the error in pregnancy dating is within acceptable margins of ±3 days in first trimester, and the CRL and MSD cut offs of ≥7 mm and ≥ 25 mm respectively are fit for diagnosis of miscarriage on TVS. These findings should be extrapolated to the whole country with caution. Sonographers can achieve acceptable and comparable diagnostic accuracy levels of MSD and CLR measurements with proper training and adherence to practice guidelines.

  11. Unifying error structures in commonly used biotracer mixing models.

    PubMed

    Stock, Brian C; Semmens, Brice X

    2016-10-01

    Mixing models are statistical tools that use biotracers to probabilistically estimate the contribution of multiple sources to a mixture. These biotracers may include contaminants, fatty acids, or stable isotopes, the latter of which are widely used in trophic ecology to estimate the mixed diet of consumers. Bayesian implementations of mixing models using stable isotopes (e.g., MixSIR, SIAR) are regularly used by ecologists for this purpose, but basic questions remain about when each is most appropriate. In this study, we describe the structural differences between common mixing model error formulations in terms of their assumptions about the predation process. We then introduce a new parameterization that unifies these mixing model error structures, as well as implicitly estimates the rate at which consumers sample from source populations (i.e., consumption rate). Using simulations and previously published mixing model datasets, we demonstrate that the new error parameterization outperforms existing models and provides an estimate of consumption. Our results suggest that the error structure introduced here will improve future mixing model estimates of animal diet. © 2016 by the Ecological Society of America.

  12. Challenge and Error: Critical Events and Attention-Related Errors

    ERIC Educational Resources Information Center

    Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel

    2011-01-01

    Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…

  13. Error Mitigation for Short-Depth Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Temme, Kristan; Bravyi, Sergey; Gambetta, Jay M.

    2017-11-01

    Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the errors in the computation are introduced. Near-term applications of early quantum devices, such as quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources, so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson's deferred approach to the limit. The second method cancels errors by resampling randomized circuits according to a quasiprobability distribution.

  14. Factors that influence the generation of autobiographical memory conjunction errors

    PubMed Central

    Devitt, Aleea L.; Monk-Fromont, Edwin; Schacter, Daniel L.; Addis, Donna Rose

    2015-01-01

    The constructive nature of memory is generally adaptive, allowing us to efficiently store, process and learn from life events, and simulate future scenarios to prepare ourselves for what may come. However, the cost of a flexibly constructive memory system is the occasional conjunction error, whereby the components of an event are authentic, but the combination of those components is false. Using a novel recombination paradigm, it was demonstrated that details from one autobiographical memory may be incorrectly incorporated into another, forming autobiographical memory conjunction errors that elude typical reality monitoring checks. The factors that contribute to the creation of these conjunction errors were examined across two experiments. Conjunction errors were more likely to occur when the corresponding details were partially rather than fully recombined, likely due to increased plausibility and ease of simulation of partially recombined scenarios. Brief periods of imagination increased conjunction error rates, in line with the imagination inflation effect. Subjective ratings suggest that this inflation is due to similarity of phenomenological experience between conjunction and authentic memories, consistent with a source monitoring perspective. Moreover, objective scoring of memory content indicates that increased perceptual detail may be particularly important for the formation of autobiographical memory conjunction errors. PMID:25611492

  15. Zero tolerance prescribing: a strategy to reduce prescribing errors on the paediatric intensive care unit.

    PubMed

    Booth, Rachelle; Sturgess, Emma; Taberner-Stokes, Alison; Peters, Mark

    2012-11-01

    To establish the baseline prescribing error rate in a tertiary paediatric intensive care unit (PICU) and to determine the impact of a zero tolerance prescribing (ZTP) policy incorporating a dedicated prescribing area and daily feedback of prescribing errors. A prospective, non-blinded, observational study was undertaken in a 12-bed tertiary PICU over a period of 134 weeks. Baseline prescribing error data were collected on weekdays for all patients for a period of 32 weeks, following which the ZTP policy was introduced. Daily error feedback was introduced after a further 12 months. Errors were sub-classified as 'clinical', 'non-clinical' and 'infusion prescription' errors and the effects of interventions considered separately. The baseline combined prescribing error rate was 892 (95 % confidence interval (CI) 765-1,019) errors per 1,000 PICU occupied bed days (OBDs), comprising 25.6 % clinical, 44 % non-clinical and 30.4 % infusion prescription errors. The combined interventions of ZTP plus daily error feedback were associated with a reduction in the combined prescribing error rate to 447 (95 % CI 389-504) errors per 1,000 OBDs (p < 0.0001), an absolute risk reduction of 44.5 % (95 % CI 40.8-48.0 %). Introduction of the ZTP policy was associated with a significant decrease in clinical and infusion prescription errors, while the introduction of daily error feedback was associated with a significant reduction in non-clinical prescribing errors. The combined interventions of ZTP and daily error feedback were associated with a significant reduction in prescribing errors in the PICU, in line with Department of Health requirements of a 40 % reduction within 5 years.

  16. Information systems and human error in the lab.

    PubMed

    Bissell, Michael G

    2004-01-01

    Health system costs in clinical laboratories are incurred daily due to human error. Indeed, a major impetus for automating clinical laboratories has always been the opportunity it presents to simultaneously reduce cost and improve quality of operations by decreasing human error. But merely automating these processes is not enough. To the extent that introduction of these systems results in operators having less practice in dealing with unexpected events or becoming deskilled in problemsolving, however new kinds of error will likely appear. Clinical laboratories could potentially benefit by integrating findings on human error from modern behavioral science into their operations. Fully understanding human error requires a deep understanding of human information processing and cognition. Predicting and preventing negative consequences requires application of this understanding to laboratory operations. Although the occurrence of a particular error at a particular instant cannot be absolutely prevented, human error rates can be reduced. The following principles are key: an understanding of the process of learning in relation to error; understanding the origin of errors since this knowledge can be used to reduce their occurrence; optimal systems should be forgiving to the operator by absorbing errors, at least for a time; although much is known by industrial psychologists about how to write operating procedures and instructions in ways that reduce the probability of error, this expertise is hardly ever put to use in the laboratory; and a feedback mechanism must be designed into the system that enables the operator to recognize in real time that an error has occurred.

  17. FRamework Assessing Notorious Contributing Influences for Error (FRANCIE): Perspective on Taxonomy Development to Support Error Reporting and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lon N. Haney; David I. Gertman

    2003-04-01

    Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human errormore » analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.« less

  18. Being a Victim of Medical Error in Brazil: An (Un)Real Dilemma

    PubMed Central

    Mendonça, Vitor Silva; Custódio, Eda Marconi

    2016-01-01

    Medical error stems from inadequate professional conduct that is capable of producing harm to life or exacerbating the health of another, whether through act or omission. This situation has become increasingly common in Brazil and worldwide. In this study, the aim was to understand what being the victim of medical error is like and to investigate the circumstances imposed on this condition of victims in Brazil. A semi-structured interview was conducted with twelve people who had gone through situations of medical error in their lives, creating a space for narratives of their experiences and deep reflection on the phenomenon. The concept of medical error has a negative connotation, often being associated with the incompetence of a medical professional. Medical error in Brazil is demonstrated by low-quality professional performance and represents the current reality of the country because of the common lack of respect and consideration for patients. Victims often remark on their loss of identity, as their social functions have been interrupted and they do not expect to regain such. It was found, however, little assumption of error in the involved doctors’ discourses and attitudes, which felt a need to judge the medical conduct in an attempt to assert their rights. Medical error in Brazil presents a punitive character and is little discussed in medical and scientific circles. The stigma of medical error is closely connected to the value and cultural judgments of the country, making it difficult to accept, both by victims and professionals. PMID:27403461

  19. Effect of a hospital policy of not accepting free infant formula on in-hospital formula supplementation rates and breast-feeding duration.

    PubMed

    Tarrant, Marie; Lok, Kris Yw; Fong, Daniel Yt; Lee, Irene Ly; Sham, Alice; Lam, Christine; Wu, Kendra M; Bai, Dorothy L; Wong, Ka Lun; Wong, Emmy My; Chan, Noel Pt; Dodgson, Joan E

    2015-10-01

    To investigate the effect of public hospitals in Hong Kong not accepting free infant formula from manufacturers on in-hospital formula supplementation rates and breast-feeding duration. Prospective cohort study. In-patient postnatal units of four public hospitals in Hong Kong. Two cohorts of breast-feeding mother-infant pairs (n 2560). Cohort 1 (n 1320) was recruited before implementation of the policy to stop accepting free infant formula and cohort 2 (n 1240) was recruited after policy implementation. Participants were followed prospectively for 12 months or until they stopped breast-feeding. The mean number of formula supplements given to infants in the first 24 h was 2·70 (sd 3·11) in cohort 1 and 1·17 (sd 1·94) in cohort 2 (P<0·001). The proportion of infants who were exclusively breast-fed during the hospital stay increased from 17·7 % in cohort 1 to 41·3 % in cohort 2 (P<0·001) and the risk of breast-feeding cessation was significantly lower in cohort 2 (hazard ratio=0·81; 95 % CI 0·73, 0·90). Participants who non-exclusively breast-fed during the hospital stay had a significantly higher risk of stopping any or exclusive breast-feeding. Higher levels of formula supplementation also increased the risk of breast-feeding cessation in a dose-response pattern. After implementation of a hospital policy to pay market price for infant formula, rates of in-hospital formula supplementation were reduced and the rates of in-hospital exclusive breast-feeding and breast-feeding duration increased.

  20. Latent class analysis of acceptability and willingness to pay for self-HIV testing in a United States urban neighbourhood with high rates of HIV infection.

    PubMed

    Nunn, Amy; Brinkley-Rubinstein, Lauren; Rose, Jennifer; Mayer, Kenneth; Stopka, Thomas; Towey, Caitlin; Harvey, Julia; Santamaria, Karina; Sabatino, Kelly; Trooskin, Stacey; Chan, Philip A

    2017-01-17

    Acceptability and willingness to both take and pay for HIV self-tests (HIVSTs) in US neighbourhoods with high rates of HIV infection are not well understood. We surveyed 1,535 individuals about acceptability and willingness to take and pay for an HIVST in a predominately African American neighbourhood with 3% HIV seroprevalence. We recruited individuals presenting for HIV screening services in a community-based programme. Latent class analysis (LCA) grouped individuals with similar patterns of HIV-risk behaviours and determined which groups would be most willing to use and buy HIVSTs. Nearly 90% of respondents were willing to use an HIVST; 55% were willing to buy HIVSTs, but only 23% were willing to pay the market price of US $40. Four distinct groups emerged and were characterized by risk behaviours: (1) low risk ( N  = 324); (2) concurrent partnerships ( N  = 346); (3) incarceration and substance use ( N  = 293); and (4) condomless sex/multiple partners ( N  = 538). Individuals in the low-risk class were less willing to self-test compared to concurrent sexual partners (OR = 0.39, p  = .003) and incarceration and substance use (OR = 0.46, p  = .011) classes. There were no significant differences across classes in the amount individuals were willing to pay for an HIVST. HIVSTs were overwhelmingly acceptable but cost prohibitive; most participants were unwilling to pay the market rate of US $40. Subsidizing and implementing HIVST programmes in communities with high rates of infection present a public health opportunity, particularly among individuals reporting condomless sex with multiple partners, concurrent sexual partnerships and those with incarceration and substance use histories.