Sample records for acceptor bound excitons

  1. Internal structure of acceptor-bound excitons in wide-band-gap wurtzite semiconductors

    NASA Astrophysics Data System (ADS)

    Gil, Bernard; Bigenwald, Pierre; Paskov, Plamen P.; Monemar, Bo

    2010-02-01

    We describe the internal structure of acceptor-bound excitons in wurtzite semiconductors. Our approach consists in first constructing, in the context of angular momentum algebra, the wave functions of the two-hole system that fulfill Pauli’s exclusion’s principle. Second, we construct the acceptor-bound exciton states by adding the electron states in a similar manner that two-hole states are constructed. We discuss the optical selection rules for the acceptor-bound exciton recombination. Finally, we compare our theory with experimental data for CdS and GaN. In the specific case of CdS for which much experimental information is available, we demonstrate that, compared with cubic semiconductors, the sign of the short-range hole-exchange interaction is reversed and more than one order of magnitude larger. The whole set of data is interpreted in the context of a large value of the short-range hole-exchange interaction Ξ0=3.4±0.2meV . This value dictates the splitting between the ground-state line I1 and the other transitions. The values we find for the electron-hole spin-exchange interaction and of the crystal-field splitting of the two-hole state are, respectively, -0.4±0.1 and 0.2±0.1meV . In the case of GaN, the experimental data for the acceptor-bound excitons in the case of Mg and Zn acceptors, show more than one bound-exciton line. We discuss a possible assignment of these states.

  2. Coupling of phonons with excitons bound to different donors and acceptors in hexagonal GaN

    NASA Astrophysics Data System (ADS)

    Korona, K. P.; Wysmoek, A.; Kuhl, J.; Kamiska, M.; Baranowski, J. M.; Look, D. C.; Park, S. S.

    2006-06-01

    Time-resolved measurements of GaN with different donors (oxygen or silicon) and acceptors (zinc or magnesium) showed pronounced bound exciton lines and their phonon replicas. The analysis included three phonon modes characteristic for the wurtzite (hexagonal) phase: A1(LO), E1(TO) and E2H. It was shown that relative amplitudes of replicas depended upon the chemical nature of the defects that the bind excitons. The replicas were stronger for acceptor- than for donor-related features. Huang-Rhys factors S = 0.06 +/- 0.02 and S = 0.025 +/- 0.01, were found for the A0X and the D0X LO replicas, respectively. A significant difference in phonon coupling to silicon and oxygen donor bound excitons has been observed.

  3. Subpicosecond Photoinduced Hole Transfer from a CdS Quantum Dot to a Molecular Acceptor Bound Through an Exciton-Delocalizing Ligand.

    PubMed

    Lian, Shichen; Weinberg, David J; Harris, Rachel D; Kodaimati, Mohamad S; Weiss, Emily A

    2016-06-28

    This paper describes the enhancement of the rate of hole transfer from a photoexcited CdS quantum dot (QD), with radius R = 2.0 nm, to a molecular acceptor, phenothiazine (PTZ), by linking the donor and acceptor through a phenyldithiocarbamate (PTC) linker, which is known to lower the confinement energy of the excitonic hole. Upon adsorption of PTC, the bandgap of the QD decreases due to delocalization of the exciton, primarily the excitonic hole, into interfacial states of mixed QD/PTC character. This delocalization enables hole transfer from the QD to PTZ in <300 fs (within the instrument response of the laser system) when linked by PTC, but not when linked by a benzoate group, which has a similar length and conjugation as PTC but does not delocalize the excitonic hole. Comparison of the two systems was aided by quantification of the surface coverage of benzoate and PTC-linked PTZ by (1)H NMR. This work provides direct spectroscopic evidence of the enhancement of the rate of hole extraction from a colloidal QD through covalent linkage of a hole acceptor through an exciton-delocalizing ligand.

  4. Bound exciton and free exciton states in GaSe thin slab.

    PubMed

    Wei, Chengrong; Chen, Xi; Li, Dian; Su, Huimin; He, Hongtao; Dai, Jun-Feng

    2016-09-22

    The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10 K. An obvious energy difference of about 34 meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL and absorption spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak is attributed to recombination of bound exciton at 10 K. This strong bound exciton effect is stable up to 50 K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with activation energy extracted as 0.5 meV, dominates PL emission.

  5. Free and bound excitons in thin wurtzite GaN layers on sapphire

    NASA Astrophysics Data System (ADS)

    Merz, C.; Kunzer, M.; Kaufmann, U.; Akasaki, I.; Amano, H.

    1996-05-01

    Free and bound excitons have been studied by photoluminescence in thin (0268-1242/11/5/010/img8) wurtzite-undoped GaN, n-type GaN:Si as well as p-type GaN:Mg and GaN:Zn layers grown by metal-organic chemical vapour phase deposition (MOCVD). An accurate value for the free A exciton binding energy and an estimate for the isotropically averaged hole mass of the uppermost 0268-1242/11/5/010/img9 valence band are deduced from the data on undoped samples. The acceptor-doped samples reveal recombination lines which are attributed to excitons bound to 0268-1242/11/5/010/img10 and 0268-1242/11/5/010/img11 respectively. These lines are spectrally clearly separated and the exciton localization energies are in line with Haynes' rule. Whenever a comparison is possible, it is found that the exciton lines in these thin MOCVD layers are ultraviolet-shifted by 20 to 25 meV as compared to quasi-bulk (0268-1242/11/5/010/img12) samples. This effect is interpreted in terms of the compressive hydrostatic stress component which thin GaN layers experience when grown on sapphire with an AlN buffer layer.

  6. Atomistic model for excitons: Capturing Strongly Bound Excitons in Monolayer Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Tseng, Frank; Simsek, Ergun; Gunlycke, Daniel

    2015-03-01

    Monolayer transition-metal dichalcogenides form a direct bandgap predicted in the visible regime making them attractive host materials for various electronic and optoelectronic applications. Due to a weak dielectric screening in these materials, strongly bound electron-hole pairs or excitons have binding energies up to at least several hundred meV's. While the conventional wisdom is to think of excitons as hydrogen-like quasi-particles, we show that the hydrogen model breaks down for these experimentally observed strongly bound, room-temperature excitons. To capture these non-hydrogen-like photo-excitations, we introduce an atomistic model for excitons that predicts both bright excitons and dark excitons, and their broken degeneracy in these two-dimensional materials. For strongly bound exciton states, the lattice potential significantly distorts the envelope wave functions, which affects predicted exciton peak energies. The combination of large binding energies and non-degeneracy of exciton states in monolayer transition metal dichalogendies may furthermore be exploited in room temperature applications where prolonged exciton lifetimes are necessary. This work has been funded by the Office of Naval Research (ONR), directly and through the Naval Research Laboratory (NRL). F.T and E.S acknowledge support from NRL through the NRC Research Associateship Program and ONR Summer Faculty Program, respectively.

  7. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide

    PubMed Central

    Carozo, Victor; Wang, Yuanxi; Fujisawa, Kazunori; Carvalho, Bruno R.; McCreary, Amber; Feng, Simin; Lin, Zhong; Zhou, Chanjing; Perea-López, Néstor; Elías, Ana Laura; Kabius, Bernd; Crespi, Vincent H.; Terrones, Mauricio

    2017-01-01

    Defects play a significant role in tailoring the optical properties of two-dimensional materials. Optical signatures of defect-bound excitons are important tools to probe defective regions and thus interrogate the optical quality of as-grown semiconducting monolayer materials. We have performed a systematic study of defect-bound excitons using photoluminescence (PL) spectroscopy combined with atomically resolved scanning electron microscopy and first-principles calculations. Spatially resolved PL spectroscopy at low temperatures revealed bound excitons that were present only on the edges of monolayer tungsten disulfide and not in the interior. Optical pumping of the bound excitons was sublinear, confirming their bound nature. Atomic-resolution images reveal that the areal density of monosulfur vacancies is much larger near the edges (0.92 ± 0.45 nm−2) than in the interior (0.33 ± 0.11 nm−2). Temperature-dependent PL measurements found a thermal activation energy of ~36 meV; surprisingly, this is much smaller than the bound-exciton binding energy of ~300 meV. We show that this apparent inconsistency is related to a thermal dissociation of the bound exciton that liberates the neutral excitons from negatively charged point defects. First-principles calculations confirm that sulfur monovacancies introduce midgap states that host optical transitions with finite matrix elements, with emission energies ranging from 200 to 400 meV below the neutral-exciton emission line. These results demonstrate that bound-exciton emission induced by monosulfur vacancies is concentrated near the edges of as-grown monolayer tungsten disulfide. PMID:28508048

  8. Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor-Acceptor Conjugated Polymers.

    PubMed

    Ayzner, Alexander L; Mei, Jianguo; Appleton, Anthony; DeLongchamp, Dean; Nardes, Alexandre; Benight, Stephanie; Kopidakis, Nikos; Toney, Michael F; Bao, Zhenan

    2015-12-30

    Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films.

  9. Charge-transfer excitons at organic semiconductor surfaces and interfaces.

    PubMed

    Zhu, X-Y; Yang, Q; Muntwiler, M

    2009-11-17

    When a material of low dielectric constant is excited electronically from the absorption of a photon, the Coulomb attraction between the excited electron and the hole gives rise to an atomic H-like quasi-particle called an exciton. The bound electron-hole pair also forms across a material interface, such as the donor/acceptor interface in an organic heterojunction solar cell; the result is a charge-transfer (CT) exciton. On the basis of typical dielectric constants of organic semiconductors and the sizes of conjugated molecules, one can estimate that the binding energy of a CT exciton across a donor/acceptor interface is 1 order of magnitude greater than k(B)T at room temperature (k(B) is the Boltzmann constant and T is the temperature). How can the electron-hole pair escape this Coulomb trap in a successful photovoltaic device? To answer this question, we use a crystalline pentacene thin film as a model system and the ubiquitous image band on the surface as the electron acceptor. We observe, in time-resolved two-photon photoemission, a series of CT excitons with binding energies < or = 0.5 eV below the image band minimum. These CT excitons are essential solutions to the atomic H-like Schrodinger equation with cylindrical symmetry. They are characterized by principal and angular momentum quantum numbers. The binding energy of the lowest lying CT exciton with 1s character is more than 1 order of magnitude higher than k(B)T at room temperature. The CT(1s) exciton is essentially the so-called exciplex and has a very low probability of dissociation. We conclude that hot CT exciton states must be involved in charge separation in organic heterojunction solar cells because (1) in comparison to CT(1s), hot CT excitons are more weakly bound by the Coulomb potential and more easily dissociated, (2) density-of-states of these hot excitons increase with energy in the Coulomb potential, and (3) electronic coupling from a donor exciton to a hot CT exciton across the D

  10. Time-resolved photon echoes from donor-bound excitons in ZnO epitaxial layers

    NASA Astrophysics Data System (ADS)

    Poltavtsev, S. V.; Kosarev, A. N.; Akimov, I. A.; Yakovlev, D. R.; Sadofev, S.; Puls, J.; Hoffmann, S. P.; Albert, M.; Meier, C.; Meier, T.; Bayer, M.

    2017-07-01

    The coherent optical response from 140 nm and 65 nm thick ZnO epitaxial layers is studied using four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D0XA ) at temperature of 1.8 K we evaluate optical coherence times T2=33 -50 ps corresponding to homogeneous line widths of 13 -19 μ eV , about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time T1=30 -40 ps, while pure dephasing is negligible. Temperature increase leads to a significant shortening of T2 due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D0XB ) is significantly faster (T2=3.6 ps ) and governed by pure dephasing processes.

  11. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties.

    PubMed

    Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  12. Phonon coupling in optical transitions for singlet-triplet pairs of bound excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Pistol, M. E.; Monemar, B.

    1986-05-01

    A model is presented for the observed strong difference in selection rules for coupling of phonons in the one-phonon sideband of optical spectra related to bound excitons in semiconductors. The present treatment is specialized to the case of a closely spaced pair of singlet-triplet character as the lowest electronic states, as is common for bound excitons associated with neutral complexes in materials like GaP and Si. The optical transition for the singlet bound-exciton state is found to couple strongly only to symmetric A1 modes. The triplet state has a similar coupling strength to A1 modes, but in addition strong contributions are found for replicas corresponding to high-density-of-states phonons TAX, LAX, and TOX. This can be explained by a treatment of particle-phonon coupling beyond the ordinary adiabatic approximation. A weak mixing between the singlet and triplet states is mediated by the phonon coupling, as described in first-order perturbation theory. The model derived in this work, for such phonon-induced mixing of closely spaced electronic states, is shown to explain the observed phonon coupling for several bound-exciton systems of singlet-triplet character in GaP. In addition, the observed oscillator strength of the forbidden triplet state may be explained as partly derived from phonon-induced mixing with the singlet state, which has a much larger oscillator strength.

  13. Strongly bound excitons in anatase TiO 2 single crystals and nanoparticles

    DOE PAGES

    Baldini, E.; Chiodo, L.; Dominguez, A.; ...

    2017-04-13

    Anatase TiO 2 is among the most studied materials for light-energy conversion applications, but the nature of its fundamental charge excitations is still unknown. Yet it is crucial to establish whether light absorption creates uncorrelated electron-hole pairs or bound excitons and, in the latter case, to determine their character. Here, by combining steady-state angle-resolved photoemission spectroscopy and spectroscopic ellipsometry with state-of-the-art ab initio calculations, we demonstrate that the direct optical gap of single crystals is dominated by a strongly bound exciton rising over the continuum of indirect interband transitions. This exciton possesses an intermediate character between the Wannier-Mott and Frenkelmore » regimes and displays a peculiar two-dimensional wavefunction in the three-dimensional lattice. The nature of the higher-energy excitations is also identified. Furthermore, the universal validity of our results is confirmed up to room temperature by observing the same elementary excitations in defect-rich samples (doped single crystals and nanoparticles) via ultrafast two-dimensional deep-ultraviolet spectroscopy.« less

  14. Magneto-optical properties and recombination dynamics of isoelectronic bound excitons in ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S. L.; Chen, W. M.; Buyanova, I. A.

    2014-02-21

    Magneto-optical and time-resolved photoluminescence (PL) spectroscopies are employed to evaluate electronic structure of a bound exciton (BX) responsible for the 3.364 eV line (labeled as I{sub 1}{sup *}) in bulk ZnO. From time-resolved PL spectroscopy, I{sub 1}{sup *} is concluded to originate from the exciton ground state. Based on performed magneto-PL studies, the g-factors of the involved electron and hole are determined as being g{sub e} = 1.98 and g{sub h}{sup ∥}(g{sub h}{sup ⊥}) = 1.2(1.62), respectively. These values are nearly identical to the reported g-factors for the I{sup *} line in ZnO (Phys. Rev. B 86, 235205 (2012)), which proves thatmore » I{sub 1}{sup *} should have a similar origin as I{sup *} and should arise from an exciton bound to an isoelectronic center with a hole-attractive potential.« less

  15. Cathodoluminescence of stacking fault bound excitons for local probing of the exciton diffusion length in single GaN nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogues, Gilles, E-mail: gilles.nogues@neel.cnrs.fr; Den Hertog, Martien; Inst. NEEL, CNRS, F-38042 Grenoble

    We perform correlated studies of individual GaN nanowires in scanning electron microscopy combined to low temperature cathodoluminescence, microphotoluminescence, and scanning transmission electron microscopy. We show that some nanowires exhibit well localized regions emitting light at the energy of a stacking fault bound exciton (3.42 eV) and are able to observe the presence of a single stacking fault in these regions. Precise measurements of the cathodoluminescence signal in the vicinity of the stacking fault give access to the exciton diffusion length near this location.

  16. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  17. Excited states of neutral donor bound excitons in GaN

    NASA Astrophysics Data System (ADS)

    Callsen, G.; Kure, T.; Wagner, M. R.; Butté, R.; Grandjean, N.

    2018-06-01

    We investigate the excited states of a neutral donor bound exciton (D0X) in bulk GaN by means of high-resolution, polychromatic photoluminescence excitation (PLE) spectroscopy. The optically most prominent donor in our sample is silicon accompanied by only a minor contribution of oxygen—the key for an unambiguous assignment of excited states. Consequently, we can observe a multitude of Si0X-related excitation channels with linewidths down to 200 μeV. Two groups of excitation channels are identified, belonging either to rotational-vibrational or electronic excited states of the hole in the Si0X complex. Such identification is achieved by modeling the excited states based on the equations of motion for a Kratzer potential, taking into account the particularly large anisotropy of effective hole masses in GaN. Furthermore, several ground- and excited states of the exciton-polaritons and the dominant bound exciton are observed in the photoluminescence (PL) and PLE spectra, facilitating an estimate of the associated complex binding energies. Our data clearly show that great care must be taken if only PL spectra of D0X centers in GaN are analyzed. Every PL feature we observe at higher emission energies with regard to the Si0X ground state corresponds to an excited state. Hence, any unambiguous peak identification renders PLE spectra highly valuable, as important spectral features are obscured in common PL spectra. Here, GaN represents a particular case among the wide-bandgap, wurtzite semiconductors, as comparably low localization energies for common D0X centers are usually paired with large emission linewidths and the prominent optical signature of exciton-polaritons, making the sole analysis of PL spectra a challenging task.

  18. A study of the red-shift of a neutral donor bound exciton in GaN nanorods by hydrogenation

    NASA Astrophysics Data System (ADS)

    Park, Byung-Guon; Lee, Sang-Tae; Reddeppa, Maddaka; Kim, Moon-Deock; Oh, Jae-Eung; Lee, Sang-Kwon

    2017-09-01

    In this paper we account for the physics behind the exciton peak shift in GaN nanorods (NRs) due to hydrogenation. GaN NRs were selectively grown on a patterned Ti/Si(111) substrate using plasma-assisted molecular beam epitaxy, and the effect of hydrogenation on their optical properties was investigated in detail using low-temperature photoluminescence measurements. Due to hydrogenation, the emissions corresponding to the donor-acceptor pair and yellow luminescence in GaN NRs were strongly suppressed, while the emission corresponding to the neutral to donor bound exciton (D0X) exhibited red-shift. Thermal annealing of hydrogenated GaN NRs demonstrated the recovery of the D0X and deep level emission. To determine the nature of the D0X peak shift due to hydrogenation, comparative studies were carried out on various diameters of GaN NRs, which can be controlled by different growth conditions and wet-etching times. Our experimental results reveal that the D0X shift depends on the diameter of the GaN NRs after hydrogenation. The results clearly demonstrate that the hydrogenation leads to band bending of GaN NRs as compensated by hydrogen ions, which causes a red-shift in the D0X emission.

  19. A study of the red-shift of a neutral donor bound exciton in GaN nanorods by hydrogenation.

    PubMed

    Park, Byung-Guon; Lee, Sang-Tae; Reddeppa, Maddaka; Kim, Moon-Deock; Oh, Jae-Eung; Lee, Sang-Kwon

    2017-09-08

    In this paper we account for the physics behind the exciton peak shift in GaN nanorods (NRs) due to hydrogenation. GaN NRs were selectively grown on a patterned Ti/Si(111) substrate using plasma-assisted molecular beam epitaxy, and the effect of hydrogenation on their optical properties was investigated in detail using low-temperature photoluminescence measurements. Due to hydrogenation, the emissions corresponding to the donor-acceptor pair and yellow luminescence in GaN NRs were strongly suppressed, while the emission corresponding to the neutral to donor bound exciton (D 0 X) exhibited red-shift. Thermal annealing of hydrogenated GaN NRs demonstrated the recovery of the D 0 X and deep level emission. To determine the nature of the D 0 X peak shift due to hydrogenation, comparative studies were carried out on various diameters of GaN NRs, which can be controlled by different growth conditions and wet-etching times. Our experimental results reveal that the D 0 X shift depends on the diameter of the GaN NRs after hydrogenation. The results clearly demonstrate that the hydrogenation leads to band bending of GaN NRs as compensated by hydrogen ions, which causes a red-shift in the D 0 X emission.

  20. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    DOE PAGES

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; ...

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl 3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length L D =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less

  1. DNA-mediated excitonic upconversion FRET switching

    DOE PAGES

    Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; ...

    2015-11-17

    Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffersmore » from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.« less

  2. Interfacial Molecular Packing Determines Exciton Dynamics in Molecular Heterostructures: The Case of Pentacene-Perfluoropentacene.

    PubMed

    Rinn, Andre; Breuer, Tobias; Wiegand, Julia; Beck, Michael; Hübner, Jens; Döring, Robin C; Oestreich, Michael; Heimbrodt, Wolfram; Witte, Gregor; Chatterjee, Sangam

    2017-12-06

    The great majority of electronic and optoelectronic devices depend on interfaces between p-type and n-type semiconductors. Finding matching donor-acceptor systems in molecular semiconductors remains a challenging endeavor because structurally compatible molecules may not necessarily be suitable with respect to their optical and electronic properties, and the large exciton binding energy in these materials may favor bound electron-hole pairs rather than free carriers or charge transfer at an interface. Regardless, interfacial charge-transfer exciton states are commonly considered as an intermediate step to achieve exciton dissociation. The formation efficiency and decay dynamics of such states will strongly depend on the molecular makeup of the interface, especially the relative alignment of donor and acceptor molecules. Structurally well-defined pentacene-perfluoropentacene heterostructures of different molecular orientations are virtually ideal model systems to study the interrelation between molecular packing motifs at the interface and their electronic properties. Comparing the emission dynamics of the heterosystems and the corresponding unitary films enables accurate assignment of every observable emission signal in the heterosystems. These heterosystems feature two characteristic interface-specific luminescence channels at around 1.4 and 1.5 eV that are not observed in the unitary samples. Their emission strength strongly depends on the molecular alignment of the respective donor and acceptor molecules, emphasizing the importance of structural control for device construction.

  3. Exciton Emission from Bare and Alq3/Gold Coated GaN Nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemesadat; Kuhnert, Gerd; Hommel, Detlef; Schmitzer, Heidrun; Wagner, Hans-Peter

    We study the excitonic and impurity related emission in bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL). The GaN nanorods were grown by molecular beam epitaxy. Alq3 as well as Alq3/gold covered nanorods were synthesized by organic molecular beam deposition. In the near-band edge region a donor-bound-exciton (D0X) emission is observed at 3.473 eV. Another emission band at 3.275 eV reveals LO-phonon replica and is attributed to a donor-acceptor-pair (DAP) luminescence. TR PL traces at 20 K show a nearly biexponential decay for the D0X with lifetimes of approximately 180 and 800 ps for both bare and Alq3 coated nanorods. In GaN nanorods which were coated with an Alq3 film and subsequently with a 10 nm thick gold layer we observe a PL quenching of D0X and DAP band and the lifetimes of the D0X transition shorten. The quenching behaviour is partially attributed to the energy-transfer from free excitons and donor-bound-excitons to plasmon oscillations in the gold layer.

  4. A helical perylene diimide-based acceptor for non-fullerene organic solar cells: synthesis, morphology and exciton dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wu, Mingliang; Shao, Guangwei; Hu, Jiahua; He, Guiying; Bu, Tongle; Yi, Jian-Peng; Xia, Jianlong

    2018-05-01

    Helical perylene diimide-based (hPDI) acceptors have been established as one of the most promising candidates for non-fullerene organic solar cells (OSCs). In this work, we report a novel hPDI-based molecule, hPDI2-CN2, as an electron acceptor for OSCs. Combining the hPDI2-CN2 with a low-bandgap polymeric donor (PTB7-Th), the blending film morphology exhibited high sensitivity to various treatments (such as thermal annealing and addition of solvent additives), as evidenced by atomic force microscope studies. The power conversion efficiency (PCE) was improved from 1.42% (as-cast device) to 2.76% after thermal annealing, and a PCE of 3.25% was achieved by further addition of 1,8-diiodooctane (DIO). Femtosecond transient absorption (TA) spectroscopy studies revealed that the improved thin-film morphology was highly beneficial for the charge carrier transport and collection. And a combination of fast exciton diffusion rate and the lowest recombination rate contributed to the best performance of the DIO-treated device. This result further suggests that the molecular conformation needs to be taken into account in the design of perylene diimide-based acceptors for OSCs.

  5. Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe2-Ag Plasmonic Hybrid Structures.

    PubMed

    Johnson, Alex D; Cheng, Fei; Tsai, Yutsung; Shih, Chih-Kang

    2017-07-12

    We have investigated how the photoluminescence (PL) of WSe 2 is modified when coupled to Ag plasmonic structures at low temperature. Chemical vapor deposition (CVD) grown monolayer WSe 2 flakes were transferred onto a Ag film and a Ag nanotriangle array that had a 1.5 nm Al 2 O 3 capping layer. Using low-temperature (7.5 K) micro-PL mapping, we simultaneously observed enhancement of the defect-bound exciton emission and quenching of the band edge exciton emission when the WSe 2 was on a plasmonic structure. The enhancement of the defect-bound exciton emission was significant with enhancement factors of up to ∼200 for WSe 2 on the nanotriangle array when compared to WSe 2 on a 1.5 nm Al 2 O 3 capped Si substrate with a 300 nm SiO 2 layer. The giant enhancement of the luminescence from the defect-bound excitons is understood in terms of the Purcell effect and increased light absorption. In contrast, the surprising result of luminescence quenching of the bright exciton state on the same plasmonic nanostructure is due to a rather unique electronic structure of WSe 2 : the existence of a dark state below the bright exciton state.

  6. Theoretical study on the cooperative exciton dissociation process based on dimensional and hot charge-transfer state effects in an organic photocell

    NASA Astrophysics Data System (ADS)

    Shimazaki, Tomomi; Nakajima, Takahito

    2016-06-01

    This paper discusses the exciton dissociation process at the donor-acceptor interface in organic photocells. In our previous study, we introduced a local temperature to handle the hot charge-transfer (CT) state and calculated the exciton dissociation probability based on the 1D organic semiconductor model [T. Shimazaki and T. Nakajima, Phys. Chem. Chem. Phys. 17, 12538 (2015)]. Although the hot CT state plays an essential role in exciton dissociations, the probabilities calculated are not high enough to efficiently separate bound electron-hole pairs. This paper focuses on the dimensional (entropy) effect together with the hot CT state effect and shows that cooperative behavior between both effects can improve the exciton dissociation process. In addition, we discuss cooperative effects with site-disorders and external-electric-fields.

  7. Non-fullerene electron acceptors for organic photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  8. Optical signature of Mg-doped GaN: Transfer processes

    NASA Astrophysics Data System (ADS)

    Callsen, G.; Wagner, M. R.; Kure, T.; Reparaz, J. S.; Bügler, M.; Brunnmeier, J.; Nenstiel, C.; Hoffmann, A.; Hoffmann, M.; Tweedie, J.; Bryan, Z.; Aygun, S.; Kirste, R.; Collazo, R.; Sitar, Z.

    2012-08-01

    Mg doping of high quality, metal organic chemical vapor deposition grown GaN films results in distinct traces in their photoluminescence and photoluminescence excitation spectra. We analyze GaN:Mg grown on sapphire substrates and identify two Mg related acceptor states, one additional acceptor state and three donor states that are involved in the donor-acceptor pair band transitions situated at 3.26-3.29 eV in GaN:Mg. The presented determination of the donor-acceptor pair band excitation channels by photoluminescence excitation spectroscopy in conjunction with temperature-dependent photoluminescence measurements results in a direct determination of the donor and acceptor binding, localization, and activation energies, which is put into a broader context based on Haynes's rule. Furthermore, we analyze the biexponential decay dynamics of the photoluminescence signal of the acceptor and donor bound excitons. As all observed lifetimes scale with the localization energy of the donor and acceptor related bound excitons, defect and complex bound excitons can be excluded as their origin. Detailed analysis of the exciton transfer processes in the close energetic vicinity of the GaN band edge reveals excitation via free and bound excitonic channels but also via an excited state as resolved for the deepest localized Mg related acceptor bound exciton. For the two Mg acceptor states, we determine binding energies of 164 ± 5 and 195 ± 5 meV, which is in good agreement with recent density functional theory results. This observation confirms and quantifies the general dual nature of acceptor states in GaN based on the presented analysis of the photoluminescence and photoluminescence excitation spectra.

  9. Theoretical study on the cooperative exciton dissociation process based on dimensional and hot charge-transfer state effects in an organic photocell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimazaki, Tomomi; Nakajima, Takahito

    2016-06-21

    This paper discusses the exciton dissociation process at the donor–acceptor interface in organic photocells. In our previous study, we introduced a local temperature to handle the hot charge-transfer (CT) state and calculated the exciton dissociation probability based on the 1D organic semiconductor model [T. Shimazaki and T. Nakajima, Phys. Chem. Chem. Phys. 17, 12538 (2015)]. Although the hot CT state plays an essential role in exciton dissociations, the probabilities calculated are not high enough to efficiently separate bound electron–hole pairs. This paper focuses on the dimensional (entropy) effect together with the hot CT state effect and shows that cooperative behaviormore » between both effects can improve the exciton dissociation process. In addition, we discuss cooperative effects with site-disorders and external-electric-fields.« less

  10. Simultaneous observation of free and defect-bound excitons in CH3NH3PbI3 using four-wave mixing spectroscopy

    NASA Astrophysics Data System (ADS)

    March, Samuel A.; Clegg, Charlotte; Riley, Drew B.; Webber, Daniel; Hill, Ian G.; Hall, Kimberley C.

    2016-12-01

    Solar cells incorporating organic-inorganic perovskite, which may be fabricated using low-cost solution-based processing, have witnessed a dramatic rise in efficiencies yet their fundamental photophysical properties are not well understood. The exciton binding energy, central to the charge collection process, has been the subject of considerable controversy due to subtleties in extracting it from conventional linear spectroscopy techniques due to strong broadening tied to disorder. Here we report the simultaneous observation of free and defect-bound excitons in CH3NH3PbI3 films using four-wave mixing (FWM) spectroscopy. Due to the high sensitivity of FWM to excitons, tied to their longer coherence decay times than unbound electron- hole pairs, we show that the exciton resonance energies can be directly observed from the nonlinear optical spectra. Our results indicate low-temperature binding energies of 13 meV (29 meV) for the free (defect-bound) exciton, with the 16 meV localization energy for excitons attributed to binding to point defects. Our findings shed light on the wide range of binding energies (2-55 meV) reported in recent years.

  11. Exciton management in organic photovoltaic multidonor energy cascades.

    PubMed

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.

  12. Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems.

    PubMed

    Yan, Yun-An

    2016-01-14

    The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a new short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today's nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.

  13. Reducing exciton binding energy by increasing thin film permittivity: an effective approach to enhance exciton separation efficiency in organic solar cells.

    PubMed

    Leblebici, Sibel Y; Chen, Teresa L; Olalde-Velasco, Paul; Yang, Wanli; Ma, Biwu

    2013-10-23

    Photocurrent generation in organic solar cells requires that excitons, which are formed upon light absorption, dissociate into free carriers at the interface of electron acceptor and donor materials. The high exciton binding energy, arising from the low permittivity of organic semiconductor films, generally causes low exciton separation efficiency and subsequently low power conversion efficiency. We demonstrate here, for the first time, that the exciton binding energy in B,O-chelated azadipyrromethene (BO-ADPM) donor films is reduced by increasing the film permittivity by blending the BO-ADPM donor with a high dielectric constant small molecule, camphoric anhydride (CA). Various spectroscopic techniques, including impedance spectroscopy, photon absorption and emission spectroscopies, as well as X-ray spectroscopies, are applied to characterize the thin film electronic and photophysical properties. Planar heterojunction solar cells are fabricated with a BO-ADPM:CA film as the electron donor and C60 as the acceptor. With an increase in the dielectric constant of the donor film from ∼4.5 to ∼11, the exciton binding energy is reduced and the internal quantum efficiency of the photovoltaic cells improves across the entire spectrum, with an ∼30% improvement in the BO-ADPM photoactive region.

  14. Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yun-An, E-mail: yunan@gznc.edu.cn

    2016-01-14

    The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a newmore » short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today’s nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.« less

  15. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer.

    PubMed

    Cnops, Kjell; Rand, Barry P; Cheyns, David; Verreet, Bregt; Empl, Max A; Heremans, Paul

    2014-03-07

    In order to increase the power conversion efficiency of organic solar cells, their absorption spectrum should be broadened while maintaining efficient exciton harvesting. This requires the use of multiple complementary absorbers, usually incorporated in tandem cells or in cascaded exciton-dissociating heterojunctions. Here we present a simple three-layer architecture comprising two non-fullerene acceptors and a donor, in which an energy-relay cascade enables an efficient two-step exciton dissociation process. Excitons generated in the remote wide-bandgap acceptor are transferred by long-range Förster energy transfer to the smaller-bandgap acceptor, and subsequently dissociate at the donor interface. The photocurrent originates from all three complementary absorbing materials, resulting in a quantum efficiency above 75% between 400 and 720 nm. With an open-circuit voltage close to 1 V, this leads to a remarkable power conversion efficiency of 8.4%. These results confirm that multilayer cascade structures are a promising alternative to conventional donor-fullerene organic solar cells.

  16. Theoretical and computational studies of excitons in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Barford, William; Bursill, Robert J.; Smith, Richard W.

    2002-09-01

    We present a theoretical and computational analysis of excitons in conjugated polymers. We use a tight-binding model of π-conjugated electrons, with 1/r interactions for large r. In both the weak-coupling limit (defined by W>>U) and the strong-coupling limit (defined by W<bound states are Mott-Wannier excitons, i.e., conduction-band electrons bound to valence-band holes. Singlet and triplet excitons whose relative wave functions are odd under a reflection of the relative coordinate are degenerate. Thus, the 2 1A+g and 1 3A-g states are degenerate in this limit. (2) In the strong-coupling limit the bound states are Mott-Hubbard excitons, i.e., particles in the upper Hubbard band bound to holes in the lower Hubbard band. These bound states occur in doublets of even and odd parity excitons. Triplet excitons are magnons bound to the singlet excitons, and hence are degenerate with their singlet counterparts. (3) In the intermediate-coupling regime Mott-Wannier excitons are the more appropriate description for large dimerization, while for the undimerized chain Mott-Hubbard excitons are the correct description. For dimerizations relevant to polyacetylene and polydiacetylene both Mott-Hubbard and Mott-Wannier excitons are present. (4) For all coupling strengths an infinite number of bound states exist for 1/r interactions for an infinite polymer. As a result of the discreteness of the lattice and the restrictions on the exciton wave functions in one dimension, the progression of states does not follow

  17. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.

    PubMed

    Kumar, Challa V; Duff, Michael R

    2008-12-01

    Specific donor and acceptor pairs have been assembled in bovine serum albumin (BSA), at neutral pH and room temperature, and these dye-protein complexes indicated efficient donor to acceptor singlet-singlet energy transfer. For example, pyrene-1-butyric acid served as the donor and Coumarin 540A served as the acceptor. Both the donor and the acceptor bind to BSA with affinity constants in excess of 2x10(5) M(-1), as measured in absorption and circular dichroism (CD) spectral titrations. Simultaneous binding of both the donor and the acceptor chromophores was supported by CD spectra and one chromophore did not displace the other from the protein host, even when limited concentrations of the host were used. For example, a 1:1:1 complex between the donor, acceptor and the host can be readily formed, and spectral data clearly show that the binding sites are mutually exclusive. The ternary complexes (two different ligands bound to the same protein molecule) provided opportunities to examine singlet-singlet energy transfer between the protein-bound chromophores. Donor emission was quenched by the addition of the acceptor, in the presence of limited amounts of BSA, while no energy transfer was observed in the absence of the protein host, under the same conditions. The excitation spectra of the donor-acceptor-host complexes clearly show the sensitization of acceptor emission by the donor. Protein denaturation, as induced by the addition of urea or increasing the temperature to 360 K, inhibited energy transfer, which indicate that protein structure plays an important role. Sensitization also proceeded at low temperature (77 K) and diffusion of the donor or the acceptor is not required for energy transfer. Stern-Volmer quenching plots show that the quenching constant is (3.1+/-0.2)x10(4) M(-1), at low acceptor concentrations (<35 microM). Other albumins such as human and porcine proteins also served as good hosts for the above experiments. For the first time, non

  18. Long-Lived Charge Separation at Heterojunctions between Semiconducting Single-Walled Carbon Nanotubes and Perylene Diimide Electron Acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Hyun Suk; Sisto, Thomas J.; Peurifoy, Samuel

    Nonfullerene electron acceptors have facilitated a recent surge in the efficiencies of organic solar cells, although fundamental studies of the nature of exciton dissociation at interfaces with nonfullerene electron acceptors are still relatively sparse. Semiconducting single-walled carbon nanotubes (s-SWCNTs), unique one-dimensional electron donors with molecule-like absorption and highly mobile charges, provide a model system for studying interfacial exciton dissociation. Here, we investigate excited-state photodynamics at the heterojunction between (6,5) s-SWCNTs and two perylene diimide (PDI)-based electron acceptors. Each of the PDI-based acceptors, hPDI2-pyr-hPDI2 and Trip-hPDI2, is deposited onto (6,5) s-SWCNT films to form a heterojunction bilayer. Transient absorption measurements demonstratemore » that photoinduced hole/electron transfer occurs at the photoexcited bilayer interfaces, producing long-lived separated charges with lifetimes exceeding 1.0 us. Both exciton dissociation and charge recombination occur more slowly for the hPDI2-pyr-hPDI2 bilayer than for the Trip-hPDI2 bilayer. To explain such differences, we discuss the potential roles of the thermodynamic charge transfer driving force available at each interface and the different molecular structure and intermolecular interactions of PDI-based acceptors. As a result, detailed photophysical analysis of these model systems can develop the fundamental understanding of exciton dissociation between organic electron donors and nonfullerene acceptors, which has not been systematically studied.« less

  19. Long-Lived Charge Separation at Heterojunctions between Semiconducting Single-Walled Carbon Nanotubes and Perylene Diimide Electron Acceptors

    DOE PAGES

    Kang, Hyun Suk; Sisto, Thomas J.; Peurifoy, Samuel; ...

    2018-04-13

    Nonfullerene electron acceptors have facilitated a recent surge in the efficiencies of organic solar cells, although fundamental studies of the nature of exciton dissociation at interfaces with nonfullerene electron acceptors are still relatively sparse. Semiconducting single-walled carbon nanotubes (s-SWCNTs), unique one-dimensional electron donors with molecule-like absorption and highly mobile charges, provide a model system for studying interfacial exciton dissociation. Here, we investigate excited-state photodynamics at the heterojunction between (6,5) s-SWCNTs and two perylene diimide (PDI)-based electron acceptors. Each of the PDI-based acceptors, hPDI2-pyr-hPDI2 and Trip-hPDI2, is deposited onto (6,5) s-SWCNT films to form a heterojunction bilayer. Transient absorption measurements demonstratemore » that photoinduced hole/electron transfer occurs at the photoexcited bilayer interfaces, producing long-lived separated charges with lifetimes exceeding 1.0 us. Both exciton dissociation and charge recombination occur more slowly for the hPDI2-pyr-hPDI2 bilayer than for the Trip-hPDI2 bilayer. To explain such differences, we discuss the potential roles of the thermodynamic charge transfer driving force available at each interface and the different molecular structure and intermolecular interactions of PDI-based acceptors. As a result, detailed photophysical analysis of these model systems can develop the fundamental understanding of exciton dissociation between organic electron donors and nonfullerene acceptors, which has not been systematically studied.« less

  20. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites.

    PubMed

    Gélvez-Rueda, María C; Hutter, Eline M; Cao, Duyen H; Renaud, Nicolas; Stoumpos, Constantinos C; Hupp, Joseph T; Savenije, Tom J; Kanatzidis, Mercouri G; Grozema, Ferdinand C

    2017-11-30

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron-hole pairs is of prime importance. In this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. We demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations.

  1. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites

    PubMed Central

    2017-01-01

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron–hole pairs is of prime importance. In this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. We demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations. PMID:29218073

  2. Triplet Tellurophene-Based Acceptors for Organic Solar Cells.

    PubMed

    Yang, Lei; Gu, Wenxing; Lv, Lei; Chen, Yusheng; Yang, Yufei; Ye, Pan; Wu, Jianfei; Hong, Ling; Peng, Aidong; Huang, Hui

    2018-01-22

    Triplet materials have been employed to achieve high-performing organic solar cells (OSCs) by extending the exciton lifetime and diffusion distances, while the triplet non-fullerene acceptor materials have never been reported for bulk heterojunction OSCs. Herein, for the first time, three triplet molecular acceptors based on tellurophene with different degrees of ring fusing were designed and synthesized for OSCs. Significantly, these molecules have long exciton lifetime and diffusion lengths, leading to efficient power conversion efficiency (7.52 %), which is the highest value for tellurophene-based OSCs. The influence of the extent of ring fusing on molecular geometry and OSCs performance was investigated to show the power conversion efficiencies (PCEs) continuously increased along with increasing the extent of ring fusing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    PubMed

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  4. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites

    DOE PAGES

    Gélvez-Rueda, María C.; Hutter, Eline M.; Cao, Duyen H.; ...

    2017-11-03

    The optoelectronic properties of hybrid perovskites can be easily tailored by varying their components. Specifically, mixing the common short organic cation (methylammonium (MA)) with a larger one (e.g., butyl ammonium (BA)) results in 2-dimensional perovskites with varying thicknesses of inorganic layers separated by the large organic cation. In both of these applications, a detailed understanding of the dissociation and recombination of electron–hole pairs is of prime importance. Here in this work, we give a clear experimental demonstration of the interconversion between bound excitons and free charges as a function of temperature by combining microwave conductivity techniques with photoluminescence measurements. Wemore » demonstrate that the exciton binding energy varies strongly (between 80 and 370 meV) with the thickness of the inorganic layers. Additionally, we show that the mobility of charges increases with the layer thickness, in agreement with calculated effective masses from electronic structure calculations.« less

  5. Magnetic field effect on the energy levels of an exciton in a GaAs quantum dot: Application for excitonic lasers.

    PubMed

    Jahan, K Luhluh; Boda, A; Shankar, I V; Raju, Ch Narasimha; Chatterjee, Ashok

    2018-03-22

    The problem of an exciton trapped in a Gaussian quantum dot (QD) of GaAs is studied in both two and three dimensions in the presence of an external magnetic field using the Ritz variational method, the 1/N expansion method and the shifted 1/N expansion method. The ground state energy and the binding energy of the exciton are obtained as a function of the quantum dot size, confinement strength and the magnetic field and compared with those available in the literature. While the variational method gives the upper bound to the ground state energy, the 1/N expansion method gives the lower bound. The results obtained from the shifted 1/N expansion method are shown to match very well with those obtained from the exact diagonalization technique. The variation of the exciton size and the oscillator strength of the exciton are also studied as a function of the size of the quantum dot. The excited states of the exciton are computed using the shifted 1/N expansion method and it is suggested that a given number of stable excitonic bound states can be realized in a quantum dot by tuning the quantum dot parameters. This can open up the possibility of having quantum dot lasers using excitonic states.

  6. Organic photosensitive cells having a reciprocal-carrier exciton blocking layer

    DOEpatents

    Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ; Thompson, Mark E [Anaheim Hills, CA

    2007-06-12

    A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10.sup.-7 cm.sup.2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.

  7. Exciton binding energy in a pyramidal quantum dot

    NASA Astrophysics Data System (ADS)

    Anitha, A.; Arulmozhi, M.

    2018-05-01

    The effects of spatially dependent effective mass, non-parabolicity of the conduction band and dielectric screening function on exciton binding energy in a pyramid-shaped quantum dot of GaAs have been investigated by variational method as a function of base width of the pyramid. We have assumed that the pyramid has a square base with area a× a and height of the pyramid H=a/2. The trial wave function of the exciton has been chosen according to the even mirror boundary condition, i.e. the wave function of the exciton at the boundary could be non-zero. The results show that (i) the non-parabolicity of the conduction band affects the light hole (lh) and heavy hole (hh) excitons to be more bound than that with parabolicity of the conduction band, (ii) the dielectric screening function (DSF) affects the lh and hh excitons to be more bound than that without the DSF and (iii) the spatially dependent effective mass (SDEM) affects the lh and hh excitons to be less bound than that without the SDEM. The combined effects of DSF and SDEM on exciton binding energy have also been calculated. The results are compared with those available in the literature.

  8. Directing energy transport in organic photovoltaic cells using interfacial exciton gates.

    PubMed

    Menke, S Matthew; Mullenbach, Tyler K; Holmes, Russell J

    2015-04-28

    Exciton transport in organic semiconductors is a critical, mediating process in many optoelectronic devices. Often, the diffusive and subdiffusive nature of excitons in these systems can limit device performance, motivating the development of strategies to direct exciton transport. In this work, directed exciton transport is achieved with the incorporation of exciton permeable interfaces. These interfaces introduce a symmetry-breaking imbalance in exciton energy transfer, leading to directed motion. Despite their obvious utility for enhanced exciton harvesting in organic photovoltaic cells (OPVs), the emergent properties of these interfaces are as yet uncharacterized. Here, directed exciton transport is conclusively demonstrated in both dilute donor and energy-cascade OPVs where judicious optimization of the interface allows exciton transport to the donor-acceptor heterojunction to occur considerably faster than when relying on simple diffusion. Generalized systems incorporating multiple exciton permeable interfaces are also explored, demonstrating the ability to further harness this phenomenon and expeditiously direct exciton motion, overcoming the diffusive limit.

  9. Hydrogen-related excitons and their excited-state transitions in ZnO

    NASA Astrophysics Data System (ADS)

    Heinhold, R.; Neiman, A.; Kennedy, J. V.; Markwitz, A.; Reeves, R. J.; Allen, M. W.

    2017-02-01

    The role of hydrogen in the photoluminescence (PL) of ZnO was investigated using four different types of bulk ZnO single crystal, with varying concentrations of unintentional hydrogen donor and Group I acceptor impurities. Photoluminescence spectra were measured at 3 K, with emission energies determined to ±50 μeV, before and after separate annealing in O2, N2, and H2 atmospheres. Using this approach, several new hydrogen-related neutral-donor-bound excitons, and their corresponding B exciton, ionized donor, and two electron satellite (TES) excited state transitions were identified and their properties further investigated using hydrogen and deuterium ion implantation. The commonly observed I4 (3.36272 eV) emission due to excitons bound to multicoordinated hydrogen inside an oxygen vacancy (HO), that is present in most ZnO material, was noticeably absent in hydrothermally grown (HT) ZnO and instead was replaced by a doublet of two closely lying recombination lines I4 b ,c (3.36219, 3.36237 eV) due to a hydrogen-related donor with a binding energy (ED) of 47.7 meV. A new and usually dominant recombination line I6 -H (3.36085 eV) due to a different hydrogen-related defect complex with an ED of 49.5 meV was also identified in HT ZnO. Here, I4 b ,c and I6 -H were stable up to approximately 400 and 600 °C, respectively, indicating that they are likely to contribute to the unintentional n -type conductivity of ZnO. Another doublet I5 (3.36137, 3.36148 eV) was identified in hydrogenated HT ZnO single crystals with low Li concentrations, and this was associated with a defect complex with an ED of 49.1 meV. A broad near band edge (NBE) emission centered at 3.366 eV was associated with excitons bound to subsurface hydrogen. We further demonstrate that hydrogen incorporates on different lattice sites for different annealing conditions and show that the new features I4 b ,c, I6 -H, and I5 most likely originate from the lithium-hydrogen defect complexes L iZn-HO , A l

  10. Organic photovoltaic cell incorporating electron conducting exciton blocking layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R.; Lassiter, Brian E.

    2014-08-26

    The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to anmore » analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.« less

  11. Calculation of rates of exciton dissociation into hot charge-transfer states in model organic photovoltaic interfaces

    NASA Astrophysics Data System (ADS)

    Vázquez, Héctor; Troisi, Alessandro

    2013-11-01

    We investigate the process of exciton dissociation in ordered and disordered model donor/acceptor systems and describe a method to calculate exciton dissociation rates. We consider a one-dimensional system with Frenkel states in the donor material and states where charge transfer has taken place between donor and acceptor. We introduce a Green's function approach to calculate the generation rates of charge-transfer states. For disorder in the Frenkel states we find a clear exponential dependence of charge dissociation rates with exciton-interface distance, with a distance decay constant β that increases linearly with the amount of disorder. Disorder in the parameters that describe (final) charge-transfer states has little effect on the rates. Exciton dissociation invariably leads to partially separated charges. In all cases final states are “hot” charge-transfer states, with electron and hole located far from the interface.

  12. Aluminum acceptor four particle bound exciton complex in 4H, 6H, and 3C SiC

    NASA Technical Reports Server (NTRS)

    Clemen, L. L.; Devaty, R. P.; Macmillan, M. F.; Yoganathan, M.; Choyke, W. J.; Larkin, D. J.; Powell, J. A.; Edmond, J. A.; Kong, H. S.

    1993-01-01

    Evidence is presented for a four particle acceptor complex in 3C, 6H, and 4H SiC, obtained in low-temperature photoluminescence and cathodoluminescence experiments. The new lines were observed in p-type films lightly doped with aluminum, of 6H, 4H, and 3C SiC grown on the silicon (0001) face of 6H SiC under special conditions. The lines increase in intensity as more aluminum is added during growth. The multiplicity of observed lines is consistent with symmetry-based models similar to those which have been proposed to describe 4A centers in p-type zincblende semiconductors.

  13. Charge carrier dynamics in organic semiconductors and their donor-acceptor composites: Numerical modeling of time-resolved photocurrent

    NASA Astrophysics Data System (ADS)

    Johnson, Brian; Kendrick, Mark J.; Ostroverkhova, Oksana

    2013-09-01

    We present a model that describes nanosecond (ns) time-scale photocurrent dynamics in functionalized anthradithiophene (ADT) films and ADT-based donor-acceptor (D/A) composites. By fitting numerically simulated photocurrents to experimental data, we quantify contributions of multiple pathways of charge carrier photogeneration to the photocurrent, as well as extract parameters that characterize charge transport (CT) in organic films including charge carrier mobilities, trap densities, hole trap depth, and trapping and recombination rates. In pristine ADT films, simulations revealed two competing charge photogeneration pathways: fast, occurring on picosecond (ps) or sub-ps time scales with efficiencies below 10%, and slow, which proceeds at the time scale of tens of nanoseconds, with efficiencies of about 11%-12%, at the applied electric fields of 40-80 kV/cm. The relative contribution of these pathways to the photocurrent was electric field dependent, with the contribution of the fast process increasing with applied electric field. However, the total charge photogeneration efficiency was weakly electric field dependent exhibiting values of 14%-20% of the absorbed photons. The remaining 80%-86% of the photoexcitation did not contribute to charge carrier generation at these time scales. In ADT-based D/A composites with 2 wt.% acceptor concentration, an additional pathway of charge photogeneration that proceeds via CT exciton dissociation contributed to the total charge photogeneration. In the composite with the functionalized pentacene (Pn) acceptor, which exhibits strong exciplex emission from a tightly bound D/A CT exciton, the contribution of the CT state to charge generation was small, ˜8%-12% of the total number of photogenerated charge carriers, dependent on the electric field. In contrast, in the composite with PCBM acceptor, the CT state contributed about a half of all photogenerated charge carriers. In both D/A composites, the charge carrier mobilities were

  14. Exciton-dominant electroluminescence from a diode of monolayer MoS{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Yu; Ye, Ziliang; Gharghi, Majid

    2014-05-12

    In two-dimensional monolayer MoS{sub 2}, excitons dominate the absorption and emission properties. However, the low electroluminescent efficiency and signal-to-noise ratio limit our understanding of the excitonic behavior of electroluminescence. Here, we study the microscopic origin of the electroluminescence from a diode of monolayer MoS{sub 2} fabricated on a heavily p-type doped silicon substrate. Direct and bound-exciton related recombination processes are identified from the electroluminescence. At a high electron-hole pair injection rate, Auger recombination of the exciton-exciton annihilation of the bound exciton emission is observed at room temperature. Moreover, the efficient electrical injection demonstrated here allows for the observation of amore » higher energy exciton peak of 2.255 eV in the monolayer MoS{sub 2} diode, attributed to the excited exciton state of a direct-exciton transition.« less

  15. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material.

    PubMed

    Long, Yun; Hedley, Gordon J; Ruseckas, Arvydas; Chowdhury, Mithun; Roland, Thomas; Serrano, Luis A; Cooke, Graeme; Samuel, Ifor D W

    2017-05-03

    Singlet exciton diffusion was studied in the efficient organic photovoltaic electron donor material DTS(FBTTh 2 ) 2 . Three complementary time-resolved fluorescence measurements were performed: quenching in planar heterojunctions with an electron acceptor, exciton-exciton annihilation, and fluorescence depolarization. The average exciton diffusivity increases upon annealing from 1.6 × 10 -3 to 3.6 × 10 -3 cm 2 s -1 , resulting in an enhancement of the mean two-dimensional exciton diffusion length (L D = (4Dτ) 1/2 ) from 15 to 27 nm. About 30% of the excitons get trapped very quickly in as-cast films. The high exciton diffusion coefficient of the material leads to it being able to harvest excitons efficiently from large donor domains in bulk heterojunctions.

  16. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic Material

    PubMed Central

    2017-01-01

    Singlet exciton diffusion was studied in the efficient organic photovoltaic electron donor material DTS(FBTTh2)2. Three complementary time-resolved fluorescence measurements were performed: quenching in planar heterojunctions with an electron acceptor, exciton–exciton annihilation, and fluorescence depolarization. The average exciton diffusivity increases upon annealing from 1.6 × 10–3 to 3.6 × 10–3 cm2 s–1, resulting in an enhancement of the mean two-dimensional exciton diffusion length (LD = (4Dτ)1/2) from 15 to 27 nm. About 30% of the excitons get trapped very quickly in as-cast films. The high exciton diffusion coefficient of the material leads to it being able to harvest excitons efficiently from large donor domains in bulk heterojunctions. PMID:28358189

  17. Interlayer excitons in a bulk van der Waals semiconductor.

    PubMed

    Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf

    2017-09-21

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.

  18. Optical properties of ZnO powder prepared by using a proteic sol-gel process

    NASA Astrophysics Data System (ADS)

    Kwon, Bong-Joon; Woo, Hyun-Joo; Park, Ji-Yeon; Jang, Kiwan; Lim, Seung-Hyuk; Cho, Yong-Hoon

    2013-03-01

    We have studied the optical properties of ZnO powder synthesized by using a proteic sol-gel process with coconut water as the precursor. The energy dispersive X-ray spectrometer and X-ray diffraction results show high purity of the synthesized ZnO powder. From the low-temperature (12 K) and power-dependent PL spectra, the donor-bound exciton, the acceptor-bound exciton, the donor-to-acceptor pair (DAP), and the phonon-replica of the DAP transition have been observed at 3.38, 3.34, 3.26, and 3.19 eV, respectively. The free exciton emission (˜3.3 eV) is also observed at 300 K in the temperature-dependent PL spectra.

  19. Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells.

    PubMed

    Wang, Yuheng; Zhang, Yajie; Lu, Guanghao; Feng, Xiaoshan; Xiao, Tong; Xie, Jing; Liu, Xiaoyan; Ji, Jiahui; Wei, Zhixiang; Bu, Laju

    2018-04-25

    Photon absorption-induced exciton generation plays an important role in determining the photovoltaic properties of donor/acceptor organic solar cells with an inverted architecture. However, the reconstruction of light harvesting and thus exciton generation at different locations within organic inverted device are still not well resolved. Here, we investigate the film depth-dependent light absorption spectra in a small molecule donor/acceptor film. Including depth-dependent spectra into an optical transfer matrix method allows us to reconstruct both film depth- and energy-dependent exciton generation profiles, using which short-circuit current and external quantum efficiency of the inverted device are simulated and compared with the experimental measurements. The film depth-dependent spectroscopy, from which we are able to simultaneously reconstruct light harvesting profile, depth-dependent composition distribution, and vertical energy level variations, provides insights into photovoltaic process. In combination with appropriate material processing methods and device architecture, the method proposed in this work will help optimizing film depth-dependent optical/electronic properties for high-performance solar cells.

  20. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  1. Subnanosecond control of excitons in coupled quantum well nanostructures: Photonic storage and Exciton Conveyer devices

    NASA Astrophysics Data System (ADS)

    Winbow, Alexander Graham

    Indirect excitons in GaAs coupled quantum well nanostructures are a versatile system for fundamental study of cold neutral bosonic gases and demonstration of novel optoelectronic devices based on excitons --- a bound electron--hole pair --- rather than electrons. Indirect exciton lifetimes range from nanoseconds to microseconds and cool rapidly after photoexcitation to the lattice temperature. Lithographically-patterned electrodes enable design of potential energy landscapes, and both energy and lifetime can be controlled in situ, rapidly, on timescales much shorter than the exciton lifetime. Such intrinsically optoelectronic devices can operate at speeds relevant to optical networks, and later be fabricated in other semiconductors for higher-temperature operation. Two different kinds of devices are demonstrated: Photon storage --- an optical memory --- with 250 ps rise time of the readout optical signal and storage time reaching microseconds was implemented with indirect excitons in CQW. The storage and release of photons was controlled by the gate voltage pulse, and the transient processes in the CQW studied by measuring the kinetics of the exciton emission spectra. This control of excitons on timescales much shorter than the exciton lifetime demonstrates the feasibility of studying excitons in in situ controlled electrostatic traps. The Exciton Conveyer is a laterally moving electrostatic lattice potential for actively transporting excitons. Generated by laterally modulated electrodes, the potential velocity and depth are controlled in situ by frequency and voltage. We observed exciton transport characterized by average exciton cloud spatial extension over several tens of microns, and observed dynamical localization--delocalization transitions for the excitons in the conveyer: In the localization regime of deeper potentials and moderate exciton density, excitons are moved by the conveyer; in the delocalized regime of shallower lattice potential or high exciton

  2. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics

    NASA Astrophysics Data System (ADS)

    Amori, Amanda R.; Hou, Zhentao; Krauss, Todd D.

    2018-04-01

    Understanding exciton dynamics in single-walled carbon nanotubes (SWCNTs) is essential to unlocking the many potential applications of these materials. This review summarizes recent progress in understanding exciton photophysics and, in particular, exciton dynamics in SWCNTs. We outline the basic physical and electronic properties of SWCNTs, as well as bright and dark transitions within the framework of a strongly bound one-dimensional excitonic model. We discuss the many facets of ultrafast carrier dynamics in SWCNTs, including both single-exciton states (bright and dark) and multiple-exciton states. Photophysical properties that directly relate to excitons and their dynamics, including exciton diffusion lengths, chemical and structural defects, environmental effects, and photoluminescence photon statistics as observed through photon antibunching measurements, are also discussed. Finally, we identify a few key areas for advancing further research in the field of SWCNT excitons and photonics.

  3. Molecular excitonic seesaws.

    PubMed

    Wilhelm, Philipp; Schedlbauer, Jakob; Hinderer, Florian; Hennen, Daniel; Höger, Sigurd; Vogelsang, Jan; Lupton, John M

    2018-04-17

    The breaking of molecular symmetry through photoexcitation is a ubiquitous but rather elusive process, which, for example, controls the microscopic efficiency of light harvesting in molecular aggregates. A molecular excitation within a π-conjugated segment will self-localize due to strong coupling to molecular vibrations, locally changing bond alternation in a process which is fundamentally nondeterministic. Probing such symmetry breaking usually relies on polarization-resolved fluorescence, which is most powerful on the level of single molecules. Here, we explore symmetry breaking by designing a large, asymmetric acceptor-donor-acceptor (A 1 -D-A 2 ) complex 10 nm in length, where excitation energy can flow from the donor, a π-conjugated oligomer, to either one of the two boron-dipyrromethene (bodipy) dye acceptors of different color. Fluorescence correlation spectroscopy (FCS) reveals a nondeterministic switching between the energy-transfer pathways from the oligomer to the two acceptor groups on the submillisecond timescale. We conclude that excitation energy transfer, and light harvesting in general, are fundamentally nondeterministic processes, which can be strongly perturbed by external stimuli. A simple demonstration of the relation between exciton localization within the extended π-system and energy transfer to the endcap is given by considering the selectivity of endcap emission through the polarization of the excitation light in triads with bent oligomer backbones. Bending leads to increased localization so that the molecule acquires bichromophoric characteristics in terms of its fluorescence photon statistics.

  4. Charge-transfer contributions to the excitonic coupling matrix element in BODIPY-based energy transfer cassettes

    NASA Astrophysics Data System (ADS)

    Spiegel, J. Dominik; Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M.

    2017-01-01

    BODIPY-based dyads serve as model systems for the investigation of excitation energy transfer (EET). Through-space EET is brought about by direct and exchange interactions between the transition densities of donor and acceptor localized states. The presence of a molecular linker gives rise to additional charge transfer (CT) contributions. Here, we present a novel approach for the calculation of the excitonic coupling matrix element (ECME) including CT contributions which is based on supermolecular one-electron transition density matrices (STD). The validity of the approach is assessed for a model system of two π -stacked ethylene molecules at varying intermolecular separation. Wave functions and electronic excitation energies of five EET cassettes comprising anthracene as exciton donor and BODIPY as exciton acceptor are obtained by the redesigned combined density functional theory and multireference configuration interaction (DFT/MRCI-R) method. CT contributions to the ECME are shown to be important in the covalently linked EET cassettes.

  5. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    DOE PAGES

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less

  6. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  7. Donor-Acceptor-Collector Ternary Crystalline Films for Efficient Solid-State Photon Upconversion.

    PubMed

    Ogawa, Taku; Hosoyamada, Masanori; Yurash, Brett; Nguyen, Thuc-Quyen; Yanai, Nobuhiro; Kimizuka, Nobuo

    2018-06-25

    It is pivotal to achieve efficient triplet-triplet annihilation based photon upconversion (TTA-UC) in the solid-state for enhancing potentials of renewable energy production devices. However, the UC efficiency of solid materials is largely limited by low fluorescence quantum yields that originate from the aggregation of TTA-UC chromophores, and also by severe back energy transfer from the acceptor singlet state to the singlet state of the triplet donor in the condensed state. In this work, to overcome these issues, we introduce a highly fluorescent singlet energy collector as the third component of donor-doped acceptor crystalline films, in which dual energy migration, i.e., triplet energy migration for TTA-UC and succeeding singlet energy migration for transferring energy to a collector, takes place. To demonstrate this scheme, a highly fluorescent singlet energy collector was added as the third component of donor-doped acceptor crystalline films. An anthracene-based acceptor containing alkyl chains and a carboxylic moiety is mixed with the triplet donor Pt(II) octaethylporphyrin (PtOEP) and the energy collector 2,5,8,11-tetra- tert-butylperylene (TTBP) in solution, and spin-coating of the mixed solution gives acceptor films of nanofibrous crystals homogeneously doped with PtOEP and TTBP. Interestingly, delocalized singlet excitons in acceptor crystals are found to diffuse effectively over the distance of ~37 nm. Thanks to this high diffusivity, only 0.5 mol% of doped TTBP can harvest most of the singlet excitons, which successfully doubles the solid-state fluorescent quantum yield of acceptor/TTBP blend films to 76%. Furthermore, since the donor PtOEP and the collector TTBP are separately isolated in the nanofibrous acceptor crystals, the singlet back energy transfer from the collector to the donor is effectively avoided. Such efficient singlet energy collection and inhibited back energy transfer processes result in a large increase of UC efficiency up to 9

  8. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory.

    PubMed

    Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael

    2012-08-14

    Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

  9. Exciton Rydberg series in mono- and few-layer WS2

    NASA Astrophysics Data System (ADS)

    Chernikov, Alexey; Berkelbach, Timothy C.; Hill, Heather M.; Rigosi, Albert; Li, Yilei; Aslan, Özgur B.; Hybertsen, Mark S.; Reichman, David R.; Heinz, Tony F.

    2014-03-01

    Considered a long-awaited semiconducting analogue to graphene, the family of atomically thin transition metal dichalcogenides (TMDs) attracted intense interest in the scientific community due to their remarkable physical properties resulting from the reduced dimensionality. A fundamental manifestation of the two-dimensional nature is a strong increase in the Coulomb interaction. The resulting formation of tightly bound excitons plays a crucial role for a majority of optical and transport phenomena. In our work, we investigate the excitons in atomically thin TMDs by optical micro-spectroscopy and apply a microscopic, ab-initio theoretical approach. We observe a full sequence of excited exciton states, i.e., the Rydberg series, in the monolayer WS2, identifying tightly bound excitons with energies exceeding 0.3 eV - almost an order of magnitude higher than in the corresponding, three-dimensional crystal. We also find significant deviations of the excitonic properties from the conventional hydrogenic physics - a direct evidence of a non-uniform dielectric environment. Finally, an excellent quantitative agreement is obtained between the experimental findings and the developed theoretical approach.

  10. Crossovers from excitons to plasmons in narrow-gap carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Uryu, Seiji

    2018-06-01

    Plasmons and excitons, bound states of electrons and holes, are collective charge excitations in solids. In this study, we numerically show that in most metallic carbon nanotubes, which are called narrow-gap carbon nanotubes, excitons cross over to plasmons as the wave vector increases. This indicates that resonance with the excitons changes to that with the plasmons by changing the nanotube length, which can explain the origin of observed peaks in the terahertz or far-infrared region in the optical absorption spectra of metallic carbon nanotubes. In the crossovers from excitons to plasmons, a depolarization effect on the many-body wave functions of the plasmons and excitons is clarified.

  11. Effect of π-bridge units on properties of A-π-D-π-A-type nonfullerene acceptors for organic solar cells.

    PubMed

    Wang, Yan-Ling; Li, Quan-Song; Li, Ze-Sheng

    2018-05-15

    Acceptor-π-donor-π-acceptor (A-π-D-π-A)-types of small molecules are very promising nonfullerene acceptors to overcome the drawbacks of fullerene derivatives such as the weak absorption ability and electronic adjustability. However, only few attempts have been made to develop π-bridge units to construct highly efficient acceptors in OSCs. Herein, taking the reported acceptor P1 as a reference, five small-structured acceptors (P2, P3, P4, P5, and P6) have been designed via the replacement of the π-bridge unit. A combination of quantum chemistry and Marcus theory approaches is employed to investigate the effect of different π-bridge units on the optical, electronic, and charge transport properties of P1-P6. The calculation results show that the designed molecules P2 and P5 can become potential acceptor replacements of P1 due to their red-shifted absorption bands, appropriate energy levels, low exciton binding energy, and high electron affinity and electron mobility. Additionally, compared with P3HT/P1, P3HT/P2 and P3HT/P5 exhibit stronger and wider absorption peaks, larger electron transfer distances (DCT), greater transferred charge amounts (Δq), and smaller overlaps (Λ), which shows that P2 and P5 have more significant electron transfer characteristics and favorable exciton dissociation capabilities for enhancing the short-circuit current density (JSC) and thus, they are potential acceptors in OSCs.

  12. Magnetooptics of Exciton Rydberg States in a Monolayer Semiconductor

    NASA Astrophysics Data System (ADS)

    Stier, A. V.; Wilson, N. P.; Velizhanin, K. A.; Kono, J.; Xu, X.; Crooker, S. A.

    2018-02-01

    We report 65 T magnetoabsorption spectroscopy of exciton Rydberg states in the archetypal monolayer semiconductor WSe2 . The strongly field-dependent and distinct energy shifts of the 2 s , 3 s , and 4 s excited neutral excitons permits their unambiguous identification and allows for quantitative comparison with leading theoretical models. Both the sizes (via low-field diamagnetic shifts) and the energies of the n s exciton states agree remarkably well with detailed numerical simulations using the nonhydrogenic screened Keldysh potential for 2D semiconductors. Moreover, at the highest magnetic fields, the nearly linear diamagnetic shifts of the weakly bound 3 s and 4 s excitons provide a direct experimental measure of the exciton's reduced mass mr=0.20 ±0.01 m0.

  13. Exciton emission from bare and hybrid plasmonic GaN nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemesadat; Kunert, Gerd; Hommel, Detlef; Ge, Jingxuan; Duscher, Gerd; Schmitzer, Heidrun; Wagner, Hans Peter

    We study the exciton emission of hybrid gold nanoparticle/Alq3 (aluminiumquinoline)/wurtzite GaN nanorods. GaN nanorods of 1.5 μm length and 250 nm diameter were grown by plasma assisted MBE. Hybrid GaN nanorods were synthesized by organic molecular beam deposition. Temperature and power dependent time integrated (TI) and time resolved (TR) photoluminescence (PL) measurements were performed on bare and hybrid structures. Bare nanorods show donor (D0,X) and acceptor bound (A0,X) exciton emission at 3.473 eV and at 3.463 eV, respectively. TR-PL trace modeling reveal lifetimes of 240 ps and 1.4 ns for the (D0,X) and (A0,X) transition. 10 nm gold coated GaN nanorods show a significant PL quenching and (D0,X) lifetime shortening which is tentatively attributed to impact ionization of (D0,X) due to hot electron injection from the gold nanoparticles. This is supported by electron energy loss spectroscopy that shows a redshift of a midgap state transition indicating a reduction of a preexisting band-bending at the nanorod surface due to positive charging of the gold nanoparticles. Inserting a nominally 5 nm thick Alq3 spacer between the nanorod and the gold reduces the PL quenching and lifetime shortening. Plasmonic nanorods with a 30 nm thick Alq3 spacer reveal lifetimes which are nearly identical to uncoated GaN nanorods.

  14. Selectively Modulating Triplet Exciton Formation in Host Materials for Highly Efficient Blue Electrophosphorescence.

    PubMed

    Li, Huanhuan; Bi, Ran; Chen, Ting; Yuan, Kai; Chen, Runfeng; Tao, Ye; Zhang, Hongmei; Zheng, Chao; Huang, Wei

    2016-03-23

    The concept of limiting the triplet exciton formation to fundamentally alleviate triplet-involved quenching effects is introduced to construct host materials for highly efficient and stable blue phosphorescent organic light-emitting diodes (PhOLEDs). The low triplet exciton formation is realized by small triplet exciton formation fraction and rate with high binding energy and high reorganization energy of triplet exciton. Demonstrated in two analogue molecules in conventional donor-acceptor molecule structure for bipolar charge injection and transport with nearly the same frontier orbital energy levels and triplet excited energies, the new concept host material shows significantly suppressed triplet exciton formation in the host to avoid quenching effects, leading to much improved device efficiencies and stabilities. The low-voltage-driving blue PhOLED devices exhibit maximum efficiencies of 43.7 cd A(-1) for current efficiency, 32.7 lm W(-1) for power efficiency, and 20.7% for external quantum efficiency with low roll-off and remarkable relative quenching effect reduction ratio up to 41%. Our fundamental solution for preventing quenching effects of long-lived triplet excitons provides exciting opportunities for fabricating high-performance devices using the advanced host materials with intrinsically small triplet exciton formation cross section.

  15. Excitons in boron nitride single layer

    NASA Astrophysics Data System (ADS)

    Galvani, Thomas; Paleari, Fulvio; Miranda, Henrique P. C.; Molina-Sánchez, Alejandro; Wirtz, Ludger; Latil, Sylvain; Amara, Hakim; Ducastelle, François

    2016-09-01

    Boron nitride single layer belongs to the family of two-dimensional materials whose optical properties are currently receiving considerable attention. Strong excitonic effects have already been observed in the bulk and still stronger effects are predicted for single layers. We present here a detailed study of these properties by combining ab initio calculations and a tight-binding Wannier analysis in both real and reciprocal space. Due to the simplicity of the band structure with single valence (π ) and conduction (π*) bands the tight-binding analysis becomes quasiquantitative with only two adjustable parameters and provides tools for a detailed analysis of the exciton properties. Strong deviations from the usual hydrogenic model are evidenced. The ground-state exciton is not a genuine Frenkel exciton, but a very localized tightly bound one. The other ones are similar to those found in transition-metal dichalcogenides and, although more localized, can be described within a Wannier-Mott scheme.

  16. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides

    DOE PAGES

    Selig, Malte; Berghäuser, Gunnar; Raja, Archana; ...

    2016-11-07

    Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. We investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS 2 and MoSe 2) through a study combining microscopic theory with spectroscopic measurements. We also show that the excitonicmore » coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. Particularly, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures, in WS 2.« less

  17. A study of polaritonic transparency in couplers made from excitonic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mahi R.; Racknor, Chris

    2015-03-14

    We have studied light matter interaction in quantum dot and exciton-polaritonic coupler hybrid systems. The coupler is made by embedding two slabs of an excitonic material (CdS) into a host excitonic material (ZnO). An ensemble of non-interacting quantum dots is doped in the coupler. The bound exciton polariton states are calculated in the coupler using the transfer matrix method in the presence of the coupling between the external light (photons) and excitons. These bound exciton-polaritons interact with the excitons present in the quantum dots and the coupler is acting as a reservoir. The Schrödinger equation method has been used tomore » calculate the absorption coefficient in quantum dots. It is found that when the distance between two slabs (CdS) is greater than decay length of evanescent waves the absorption spectrum has two peaks and one minimum. The minimum corresponds to a transparent state in the system. However, when the distance between the slabs is smaller than the decay length of evanescent waves, the absorption spectra has three peaks and two transparent states. In other words, one transparent state can be switched to two transparent states when the distance between the two layers is modified. This could be achieved by applying stress and strain fields. It is also found that transparent states can be switched on and off by applying an external control laser field.« less

  18. Enabling valley selective exciton scattering in monolayer WSe2 through upconversion

    PubMed Central

    Manca, M.; Glazov, M. M.; Robert, C.; Cadiz, F.; Taniguchi, T.; Watanabe, K.; Courtade, E.; Amand, T.; Renucci, P.; Marie, X.; Wang, G.; Urbaszek, B.

    2017-01-01

    Excitons, Coulomb bound electron–hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe2 monolayers combined with the presence of the valley degree of freedom is expected to provide new opportunities for controlling excitonic effects. But so far the bosonic character of exciton scattering processes remains largely unexplored in these two-dimensional materials. Here we show that scattering between B-excitons and A-excitons preferably happens within the same valley in momentum space. This leads to power dependent, negative polarization of the hot B-exciton emission. We use a selective upconversion technique for efficient generation of B-excitons in the presence of resonantly excited A-excitons at lower energy; we also observe the excited A-excitons state 2s. Detuning of the continuous wave, low-power laser excitation outside the A-exciton resonance (with a full width at half maximum of 4 meV) results in vanishing upconversion signal. PMID:28367962

  19. Three-Particle Complexes in Two-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Ganchev, Bogdan; Drummond, Neil; Aleiner, Igor; Fal'ko, Vladimir

    2015-03-01

    We evaluate binding energies of trions X±, excitons bound by a donor or acceptor charge XD (A ) , and overcharged acceptors or donors in two-dimensional atomic crystals by mapping the three-body problem in two dimensions onto one particle in a three-dimensional potential treatable by a purposely developed boundary-matching-matrix method. We find that in monolayers of transition metal dichalcogenides the dissociation energy of X± is typically much larger than that of localized exciton complexes, so that trions are more resilient to heating, despite the fact that their recombination line in optics is less redshifted from the exciton line than the line of XD (A ) .

  20. Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements

    NASA Astrophysics Data System (ADS)

    Feneberg, Martin; Däubler, Jürgen; Thonke, Klaus; Sauer, Rolf; Schley, Pascal; Goldhahn, Rüdiger

    2008-06-01

    Unintentionally degenerately doped n -type hexagonal wurtzite InN samples were studied by using Fourier-transform photoluminescence spectroscopy and reflectivity measurements. We found in luminescence overlapping band acceptor (e,A0) transitions related to two different acceptors with a strong enhancement of their intensities close to the Fermi energy of the electrons recombining with the localized holes. Our explanation is in terms of a Fermi-edge singularity of the electrons due to strongly increased electron-hole scattering. Electron-hole pairs with such resonantly enhanced oscillator strengths have been referred to as Mahan excitons. Temperature-dependent reflectivity measurements confirm this interpretation.

  1. Stimulated Emission of Terahertz Radiation from Internal ExcitonTransitions in Cu2O

    NASA Astrophysics Data System (ADS)

    Schmid, B. A.; Huber, R.; Shen, Y. R.; Kaindl, R. A.; Chemla, D. S.

    2006-03-01

    Excitons are among the most fundamental optical excitation modes in semiconductors. Resonant infrared pulses have been used to sensitively probe absorptive transitions between hydrogen-like bound pair states [1,2]. We report the first observation of the reverse quantum process: stimulated emission of electromagnetic radiation from intra-excitonic transitions [3]. Broadband terahertz pulses monitor the far-infrared electromagnetic response of Cu2O after ultrafast resonant photogeneration of 3p excitons. Stimulated emission from the 3p to the energetically lower 2s bound level occurs at a photon energy of 6.6 meV, with a cross section of ˜10-14 cm^2. Simultaneous excitation of both exciton levels, in turn, drives quantum beats which lead to efficient terahertz emission sharply peaked at the difference frequency. Our results demonstrate a new fundamental process of THz quantum optics and highlight analogies and differences between excitonic and atomic systems. [1] R. A. Kaindl et al., Nature 423, 734 (2003). [2] M. Kubouchi et al., Phys. Rev. Lett. 94, 016403 (2005). [3] R. Huber et al., Phys. Rev. Lett., to appear.

  2. Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Zhang, Minghua; Fu, Jiyong; Dias, A. C.; Qu, Fanyao

    2018-07-01

    We present a theory to address the photoluminescence (PL) intensity and valley polarization (VP) dynamics in monolayer WSe2, under the impact of excitonic dark states of both excitons and biexcitons. We find that the PL intensity of all excitonic channels including intravalley exciton (Xb), intravalley biexciton (XXk,k) and intervalley biexciton (XX) in particular for the XXk,k PL is enhanced by laser excitation fluence. In addition, our results indicate the anomalous temperature dependence of PL, i.e. increasing with temperature, as a result of favored phonon assisted dark-to-bright scatterings at high temperatures. Moreover, we observe that the PL is almost immune to intervalley scatterings, which trigger the exchange of excitonic states between the two valleys. As far as the valley polarization is concerned, we find that the VP of Xb shrinks as temperature increases, exhibiting opposite temperature response to PL, while the intravalley XXk,k VP is found almost independent of temperature. In contrast to both Xb and XXk,k, the intervalley XX VP identically vanishes, because of equal populations of excitons in the K and valleys bounded to form intervalley biexcitons. Notably, it is found that the Xb VP much more strongly depends on bright–dark scattering than that of XXk,k, making dark state act as a robust reservoir for valley polarization against intervalley scatterings for Xb at strong bright–dark scatterings, but not for XXk,k. Dark excitonic states enabled enhancement of VP benefits quantum technology for information processing based on the valley degree of freedom in valleytronic devices. Furthermore, the VP has strong dependence on intervalley scattering but maintains essentially constant with excitation fluence. Finally, the dependence of time evolution of PL and VP on temperature and excitation fluence is discussed.

  3. The origins of near band-edge transitions in hexagonal boron nitride epilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, X. Z.; Li, J.; Lin, J. Y.

    2016-02-01

    Photoluminescence spectroscopy has been employed to probe the near band-edge transitions in hexagonal BN (h-BN) epilayers synthesized under varying ammonia flow rates. The results suggest that the quasi-donor-acceptor pair emission line at 5.3 eV is due to the transition between the nitrogen vacancy and a deep acceptor, whereas the 5.5 eV emission line is due to the recombination of an exciton bound to a deep acceptor formed by carbon impurity occupying the nitrogen site. By growing h-BN under high ammonia flow rates, nitrogen vacancy related peaks can be eliminated and epilayers exhibiting pure free exciton emission have been obtained.

  4. Energy Migration in Organic Thin Films--From Excitons to Polarons

    NASA Astrophysics Data System (ADS)

    Mullenbach, Tyler K.

    The rise of organic photovoltaic devices (OPVs) and organic light-emitting devices has generated interest in the physics governing exciton and polaron dynamics in thin films. Energy transfer has been well studied in dilute solutions, but there are emergent properties in thin films and greater complications due to complex morphologies which must be better understood. Despite the intense interest in energy transport in thin films, experimental limitations have slowed discoveries. Here, a new perspective of OPV operation is presented where photovoltage, instead of photocurrent, plays the fundamental role. By exploiting this new vantage point the first method of measuring the diffusion length (LD) of dark (non-luminescent) excitons is developed, a novel photodetector is invented, and the ability to watch exciton arrival, in real-time, at the donor-acceptor heterojunction is presented. Using an enhanced understanding of exciton migration in thin films, paradigms for enhancing LD by molecular modifications are discovered, and the first exciton gate is experimentally and theoretically demonstrated. Generation of polarons from exciton dissociation represents a second phase of energy migration in OPVs that remains understudied. Current approaches are capable of measuring the rate of charge carrier recombination only at open-circuit. To enable a better understanding of polaron dynamics in thin films, two new approaches are presented which are capable of measuring both the charge carrier recombination and transit rates at any OPV operating voltage. These techniques pave the way for a more complete understanding of charge carrier kinetics in molecular thin films.

  5. Multidimensional Coherent Spectroscopy of GaAs Excitons and Quantum Microcavity Polaritons

    NASA Astrophysics Data System (ADS)

    Wilmer, Brian L.

    Light-matter interactions associated with excitons and exciton related complexes are explored in bulk GaAs and semiconductor microcavities using multidimensional coherent spectroscopy (MDCS). This approach provides rich spectra determining quantum excitation pathways, structural influences on the excitons, and coherence times. Polarization, excitation density, and temperature-dependent MDCS is performed on excitons in strained bulk GaAs layers, probing the coherent response for differing amounts of strain. Biaxial tensile strain lifts the degeneracy of heavy-hole and light-hole valence states, leading to an observed splitting of the associated excitons at low temperature. Increasing the strain increases the magnitude of the heavy-/light- hole exciton peak splitting, induces an asymmetry in the off-diagonal interaction coherences, increases the difference in the heavy- and light- hole exciton homogenous linewidths, and increases the inhomogeneous broadening of both exciton species. All results arise from strain-induced variations in the local electronic environment, which is not uniform along the growth direction of the thin layers. For cross-linear polarized excitation, wherein excitonic signals give way to biexcitonic signals, the high-strain sample shows evidence of bound light-, heavy- and mixed- hole biexcitons. 2DCS maps the anticrossing associated with normal mode splitting in a semiconductor microcavity. For a detuning range near zero, it is observed that there are two diagonal features related to the intra-action of exciton-polariton branches and two off-diagonal features related to coherent interaction between the polaritons. At negative detuning, the line shape properties of the diagonal intra-action features are distinguishable and can be associated with cavity-like and exciton-like modes. A biexcitonic companion feature is observed, shifted from the exciton feature by the biexciton binding energy. Closer to zero detuning, all features are enhanced and

  6. Exciton broadening in WS 2 /graphene heterostructures

    DOE PAGES

    Hill, Heather M.; Rigosi, Albert F.; Raja, Archana; ...

    2017-11-01

    Here, we have used optical spectroscopy to observe spectral broadening of WS 2 exciton reflectance peaks in heterostructures of monolayer WS 2 capped with mono- to few-layer graphene. The broadening is found to be similar for the A and B excitons and on the order of 5–10 meV. No strong dependence on the number of graphene layers was observed within experimental uncertainty. The broadening can be attributed to charge- and energy-transfer processes between the two materials, providing an observed lower bound for the corresponding time scales of 65 fs.

  7. Accelerating FRET between Near-Infrared Emitting Quantum Dots Using a Molecular J-Aggregate as an Exciton Bridge.

    PubMed

    Wang, Chen; Weiss, Emily A

    2017-09-13

    Fast energy transfer (EnT) among quantum dots (QDs) with near-infrared (NIR) emission is essential for fully exploiting their light harvesting and photon downconversion (multiexciton generation) abilities. This paper demonstrates a relayed EnT mechanism that accelerates the migration of NIR excitons between PbS QDs by a factor of 20 from that of one-step EnT through a polyelectrolyte and even a factor of ∼2 from that of one-step EnT between QDs in direct contact, by employing a J-aggregate (J-agg) of a cyanine dye as an exciton bridge. The donor QDs, acceptor QDs, and J-agg are electrostatically assembled into a sandwich structure with layer-by-layer deposition. Estimates of EnT rate and yield from transient and steady-state absorption and photoluminescence spectroscopies show that the rate-limiting step in the relay is EnT from the donor QD to the J-agg, while EnT from the J-agg to the acceptor QD occurs in <10 ps. A comparison of this system to the analogous solution-phase system suggests that the overall donor-to-acceptor EnT yield in the relay (18%) can be improved by depositing the J-agg with more intermolecular order. This work demonstrates the viability of relayed EnT through a molecular bridge as a strategy for accelerating long-distance exciton migration in assemblies of QDs, in particular in the near-infrared.

  8. Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.

    PubMed

    Wu, Guangfen; Li, Zi; Zhang, Xu; Lu, Gang

    2014-08-07

    Charge separation and exciton dynamics play a crucial role in determining the performance of excitonic photovoltaics. Using time-dependent density functional theory with a range-separated exchange-correlation functional as well as nonadiabatic ab initio molecular dynamics, we have studied the formation and dynamics of charge-transfer (CT) excitons at polymer/ZnO interface. The interfacial atomic structure, exciton density of states and conversions between exciton species are examined from first-principles. The exciton dynamics exhibits both adiabatic and nonadiabatic characters. While the adiabatic transitions are facilitated by C═C vibrations along the polymer (P3HT) backbone, the nonadiabatic transitions are realized by exciton hopping between the excited states. We find that the localized ZnO surface states lead to localized low-energy CT states and poor charge separation. In contrast, the surface states of crystalline C60 are indistinguishable from the bulk states, resulting in delocalized CT states and efficient charge separation in polymer/fullerene (P3HT/PCBM) heterojunctions. The hot CT states are found to cool down in an ultrafast time scale and may not play a major role in charge separation of P3HT/ZnO. Finally we suggest that the dimensions of nanostructured acceptors can be tuned to obtain both efficient charge separation and high open circuit voltages.

  9. Observation of long-lived interlayer excitons in monolayer MoSe 2–WSe 2 heterostructures

    DOE PAGES

    Rivera, Pasqual; Schaibley, John R.; Jones, Aaron M.; ...

    2015-02-24

    Van der Waals bound heterostructures constructed with two-dimensional materials, such as graphene, boron nitride and transition metal dichalcogenides, have sparked wide interest in both device physics and technologies at the two-dimensional limit. One highly coveted heterostructure is that of differing monolayer transition metal dichalcogenides with type-II band alignment, with bound electrons and holes localized in individual monolayers, that is, interlayer excitons. Here, we report the observation of interlayer excitons in monolayer MoSe 2–WSe 2 heterostructures by photoluminescence and photoluminescence excitation spectroscopy. The energy and luminescence intensity are highly tunable by an applied vertical gate voltage. Moreover, we measure an interlayermore » exciton lifetime of ~1.8 ns, an order of magnitude longer than intralayer excitons in monolayers. Ultimately, our work demonstrates optical pumping of interlayer electric polarization, which may provoke further exploration of interlayer exciton condensation, as well as new applications in two-dimensional lasers, light-emitting diodes and photovoltaic devices.« less

  10. Optical nonlinearities of excitons in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Soh, Daniel B. S.; Rogers, Christopher; Gray, Dodd J.; Chatterjee, Eric; Mabuchi, Hideo

    2018-04-01

    We calculate linear and nonlinear optical susceptibilities arising from the excitonic states of monolayer MoS2 for in-plane light polarizations, using second-quantized bound and unbound exciton operators. Optical selection rules are critical for obtaining the susceptibilities. We derive the valley-chirality rule for the second-order harmonic generation in monolayer MoS2 and find that the third-order harmonic process is efficient only for linearly polarized input light while the third-order two-photon process (optical Kerr effect) is efficient for circularly polarized light using a higher order exciton state. The absence of linear absorption due to the band gap and the unusually strong two-photon third-order nonlinearity make the monolayer MoS2 excitonic structure a promising resource for coherent nonlinear photonics.

  11. Donor exciton of cobalt and its interaction with lattice vibrations in the semiconductor crystal ZnO:Co

    NASA Astrophysics Data System (ADS)

    Gruzdev, N. B.; Sokolov, V. I.; Yemelchenko, G. A.

    2009-01-01

    Vibrational states interacting with a donor exciton in the compound ZnO:Co are revealed by the sensitive method of field exciton-vibrational spectroscopy. The vibrational modes of the electroabsorption spectrum of the compound ZnO:Co in the region of the donor exciton are given an interpretation based on the existing data on the symmetrized local density of states of the compounds ZnO and ZnO :Ni3+. The results are compared with the known data for II-VI:Ni compounds in the case of an acceptor exciton. The position of the donor level of the Co2+ ion relative to the bottom of the conduction band in the given compound is determined and found to conform well to the universal trend for donor levels of 3d ions in II-VI compounds.

  12. Reconfigurable exciton-plasmon interconversion for nanophotonic circuits

    PubMed Central

    Lee, Hyun Seok; Luong, Dinh Hoa; Kim, Min Su; Jin, Youngjo; Kim, Hyun; Yun, Seokjoon; Lee, Young Hee

    2016-01-01

    The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ∼200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ∼32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of∼190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits. PMID:27892463

  13. Strain-Gradient Modulated Exciton Emission in Bent ZnO Wires Probed by Cathodoluminescence.

    PubMed

    Fu, Xue-Wen; Li, Cai-Zhen; Fang, Liang; Liu, Da-Meng; Xu, Jun; Yu, Da-Peng; Liao, Zhi-Min

    2016-12-27

    Photoelectrical properties of semiconductor nanostructures are expected to be improved significantly by strain engineering. Besides the local strain, the strain gradient is promising to tune the luminescence properties by modifying the crystal symmetry. Here, we report the investigation of strain-gradient induced symmetry-breaking effect on excitonic states in pure bending ZnO microwires by high spatial-resolved cathodoluminescence at low temperature of 80 K. In addition to the local-strain induced light emission peak shift, the bound exciton emission photon energy shows an extraordinary jump of ∼16.6 meV at a high strain-gradient of 1.22% μm -1 , which is ascribed to the strain gradient induced symmetry-breaking. Such a symmetry-breaking lifts the energy degeneracy of the electronic band structures, which significantly modifies the electron-hole interactions and the fine structures of the bound exciton states. These results provide a further understanding of the strain gradient effect on the excitonic states and possess a potential for the applications in optoelectronic devices.

  14. Targeting ideal acceptor-donor materials based on hexabenzocoronene

    NASA Astrophysics Data System (ADS)

    Santos Silva, H.; Metz, Sebastian; Hiorns, Roger C.; Bégué, D.

    2018-06-01

    A series of new hybrid donor-acceptor materials based on hexabenzocoronenes (HBC) functionalized with electron donors is investigated by combining a variety of quantum mechanical and molecular dynamic methodologies for use in organic photovoltaic (OPV) devices. Segments of a low band gap alternating copolymer constructed of benzo[1,2-b;3,4-b]dithiophene and thieno[3,4-c]pyrrole-4,6-dione were attached to the conjugated HBC core. The copolymer was chosen for its known high performance in OPVs, and both moieties were singled out due to their exceptional resistance to photo-oxidation, an important requirement for such applications. The macromolecular topology of these systems are expected to induce supra-molecular columns, such as those common to discotic liquid crystals, conducive to the effective percolation of electrons in OPV devices. A challenge with these systems, that of the mixing of the electronic structures of the donor and acceptor moieties that result in excitonic losses and charge recombination, was diminished by trialling a range of linking units. It was found possible to propose ideal donor-acceptor structures with enhanced charge dissociations and transfers in the π-stacking direction for use in OPV and other organic electronic devices.

  15. Ground-state energy of an exciton-(LO) phonon system in a parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Gerlach, B.; Wüsthoff, J.; Smondyrev, M. A.

    1999-12-01

    This paper presents a variational study of the ground-state energy of an exciton-(LO) phonon system, which is spatially confined to a quantum well. The exciton-phonon interaction is of Fröhlich type, the confinement potentials are assumed to be parabolic functions of the coordinates. Making use of functional integral techniques, the phonon part of the problem can be eliminated exactly, leading us to an effective two-particle system, which has the same spectral properties as the original one. Subsequently, Jensen's inequality is applied to obtain an upper bound on the ground-state energy. The main intention of this paper is to analyze the influence of the quantum-well-induced localization of the exciton on its ground-state energy (or its binding energy, respectively). To do so, we neglect any mismatch of the masses or the dielectric constants, but admit an arbitrary strength of the confinement potentials. Our approach allows for a smooth interpolation of the ultimate limits of vanishing and infinite confinement, corresponding to the cases of a free three-dimensional and a free two-dimensional exciton-phonon system. The interpolation formula for the ground-state energy bound corresponds to similar formulas for the free polaron or the free exciton-phonon system. These bounds in turn are known to compare favorably with all previous ones, which we are aware of.

  16. Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach

    DOE PAGES

    Velizhanin, Kirill A.; Saxena, Avadh

    2015-11-01

    The most striking features of novel two-dimensional semiconductors (e.g., transition metal dichalcogenide monolayers or phosphorene) is a strong Coulomb interaction between charge carriers resulting in large excitonic effects. In particular, this leads to the formation of multicarrier bound states upon photoexcitation (e.g., excitons, trions, and biexcitons), which could remain stable at near-room temperatures and contribute significantly to the optical properties of such materials. In our work we have used the path integral Monte Carlo methodology to numerically study properties of multicarrier bound states in two-dimensional semiconductors. Specifically, we have accurately investigated and tabulated the dependence of single-exciton, trion, and biexcitonmore » binding energies on the strength of dielectric screening, including the limiting cases of very strong and very weak screening. Our results of this work are potentially useful in the analysis of experimental data and benchmarking of theoretical and computational models.« less

  17. Control of Geminate Recombination by the Material Composition and Processing Conditions in Novel Polymer: Nonfullerene Acceptor Photovoltaic Devices.

    PubMed

    Zhang, Jiangbin; Gu, Qinying; Do, Thu Trang; Rundel, Kira; Sonar, Prashant; Friend, Richard H; McNeill, Christopher R; Bakulin, Artem A

    2018-02-08

    Herein, we report on the charge dynamics of photovoltaic devices based on two novel small-molecule nonfullerene acceptors featuring a central ketone unit. Using ultrafast near-infrared spectroscopy with optical and photocurrent detection methods, we identify one of the key loss channels in the devices as geminate recombination (GR) of interfacial charge transfer states (CTSs). We find that the magnitude of GR is highly sensitive to the choice of solvent and annealing conditions. Interestingly, regardless of these processing conditions, the same lifetime for GR (∼130 ps) is obtained by both detection methods upon decomposing the complex broadband transient optical spectra, suggesting this time scale is inherent and independent of morphology. These observations suggest that the CTSs in the studied material blends are mostly strongly bound, and that charge generation from these states is highly inefficient. We further rationalize our results by considering the impact of the processing on the morphology of the mixed donor and acceptor domains and discuss the potential consequences of the early charge dynamics on the performance of emerging nonfullerene photovoltaic devices. Our results demonstrate that careful choice of processing conditions enables enhanced exciton harvesting and suppression of GR by more than 3 orders of magnitude.

  18. Impact of charge-transfer excitons in regioregular polythiophene on the charge separation at polythiophene-fullerene heterojunctions

    NASA Astrophysics Data System (ADS)

    Polkehn, M.; Tamura, H.; Burghardt, I.

    2018-01-01

    This study addresses the mechanism of ultrafast charge separation in regioregular oligothiophene-fullerene assemblies representative of poly-3-hexylthiophene (P3HT)-[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) heterojunctions, with special emphasis on the inclusion of charge transfer excitons in the oligothiophene phase. The formation of polaronic inter-chain charge separated species in highly ordered oligothiophene has been demonstrated in recent experiments and could have a significant impact on the net charge transfer to the fullerene acceptor. The present approach combines a first-principles parametrized multi-site Hamiltonian, based on time-dependent density functional theory calculations, with accurate quantum dynamics simulations using the multi-layer multi-configuration time-dependent Hartree method. Quantum dynamical studies are carried out for up to 182 electronic states and 112 phonon modes. The present analysis follows up on our previous study of (Huix-Rotllant et al 2015 J. Phys. Chem. Lett. 6 1702) and significantly expands the scope of this analysis by including the dynamical role of charge transfer excitons. Our investigation highlights the pronounced mixing of photogenerated Frenkel excitons with charge transfer excitons in the oligothiophene domain, and the opening of new transfer channels due the creation of such charge-separated species. As a result, it turns out that the interfacial donor/acceptor charge transfer state can be largely circumvented due to the presence of charge transfer excitons. However, the latter states in turn act as a trap, such that the free carrier yield observed on ultrafast time scales is tangibly reduced. The present analysis underscores the complexity of the transfer pathways at P3HT-PCBM type junctions.

  19. Influence of Nanostructure on the Exciton Dynamics of Multichromophore Donor–Acceptor Block Copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jianlong; Busby, Erik; Sanders, Samuel N.

    Here, we explore the synthesis and photophysics of nanostructured block copolymers that mimic light-harvesting complexes. We find that the combination of a polar and electron-rich boron dipyrromethene (BODIPY) block with a nonpolar electron-poor perylene diimide (PDI) block yields a polymer that self-assembles into ordered “nanoworms”. Numerical simulations are used to determine optimal compositions to achieve robust self-assembly. Photoluminescence spectroscopy is used to probe the rich exciton dynamics in these systems. Using controls, such as homopolymers and random copolymers, we analyze the mechanisms of the photoluminescence from these polymers. With this understanding it allows us to probe in detail the photophysicsmore » of the block copolymers, including the effects of their self-assembly into nanostructures on their excited-state properties. Similar to natural systems, ordered nanostructures result in properties that are starkly different than the properties of free polymers in solution, such as enhanced rates of electronic energy transfer and elimination of excitonic emission from disordered PDI trap states.« less

  20. Influence of Nanostructure on the Exciton Dynamics of Multichromophore Donor–Acceptor Block Copolymers

    DOE PAGES

    Xia, Jianlong; Busby, Erik; Sanders, Samuel N.; ...

    2017-03-27

    Here, we explore the synthesis and photophysics of nanostructured block copolymers that mimic light-harvesting complexes. We find that the combination of a polar and electron-rich boron dipyrromethene (BODIPY) block with a nonpolar electron-poor perylene diimide (PDI) block yields a polymer that self-assembles into ordered “nanoworms”. Numerical simulations are used to determine optimal compositions to achieve robust self-assembly. Photoluminescence spectroscopy is used to probe the rich exciton dynamics in these systems. Using controls, such as homopolymers and random copolymers, we analyze the mechanisms of the photoluminescence from these polymers. With this understanding it allows us to probe in detail the photophysicsmore » of the block copolymers, including the effects of their self-assembly into nanostructures on their excited-state properties. Similar to natural systems, ordered nanostructures result in properties that are starkly different than the properties of free polymers in solution, such as enhanced rates of electronic energy transfer and elimination of excitonic emission from disordered PDI trap states.« less

  1. Electronic structure and optical properties of triangular GaAs/AlGaAs quantum dots: Exciton and impurity states

    NASA Astrophysics Data System (ADS)

    Tiutiunnyk, A.; Akimov, V.; Tulupenko, V.; Mora-Ramos, M. E.; Kasapoglu, E.; Ungan, F.; Sökmen, I.; Morales, A. L.; Duque, C. A.

    2016-03-01

    Electronic structure and optical properties in equilateral triangular GaAs/Al0.3Ga0.7As quantum dots are studied extensively. The effects of donor and acceptor impurity atoms positioned in the orthocenter of the triangle, as well as of the external DC electric field are taken into account. Binding energies of the impurity, exciton energies, interband photoluminescence peak positions as well as linear and non-linear optical properties in THz range caused by transitions between excitonic states are calculated and discussed.

  2. Incorporating fluorinated moieties in fully conjugated donor-acceptor block copolymers

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin; Wang, Qing; Gomez, Enrique D.

    Fully conjugated donor-acceptor block copolymers are promising candidates for photovoltaics due to their ability to microphase separate at length scales commensurate with exciton diffusion lengths. These materials can also serve as model systems to study the relationship between molecular structure, microstructure, and optoelectronic properties of conjugated polymers. The development of new donor-acceptor block copolymers relies on the manipulation of the chemical structure to fine tune properties and improve overall performance when employed in photovoltaic devices. To this end, we have demonstrated the incorporation of fluorinated moieties in conjugated block copolymers. The introduction of fluorine, a strong electron withdrawing element, is known to influence phase separation and the bandgap, and as a result, optoelectronic properties. Fluorine was introduced to the acceptor block of poly(3-hexylthiophene-2,5-diyl)-block-poly((9,9-bis(2-octyl)fluorene-2,7-diyl)-alt-(4,7-di(thiophene-2-yl)-2,1,3-benzothiadiazole)-5 ',5?-diyl) (P3HT- b-PFTBT). PFTBTs were prepared with di-fluorinated and mono-fluorinated TBT. We find that fluorination impacts the bandgap, morphology and performance in devices.

  3. Electrical Tuning of Interlayer Exciton Gases in WSe2 Bilayers.

    PubMed

    Wang, Zefang; Chiu, Yi-Hsin; Honz, Kevin; Mak, Kin Fai; Shan, Jie

    2018-01-10

    van der Waals heterostructures formed by stacking two-dimensional atomic crystals are a unique platform for exploring new phenomena and functionalities. Interlayer excitons, bound states of spatially separated electron-hole pairs in van der Waals heterostructures, have demonstrated potential for rich valley physics and optoelectronics applications and been proposed to facilitate high-temperature superfluidity. Here, we demonstrate highly tunable interlayer excitons by an out-of-plane electric field in homobilayers of transition metal dichalcogenides. Continuous tuning of the exciton dipole from negative to positive orientation has been achieved, which is not possible in heterobilayers due to the presence of large built-in interfacial electric fields. A large linear field-induced redshift up to ∼100 meV has been observed in the exciton resonance energy. The Stark effect is accompanied by an enhancement of the exciton recombination lifetime by more than two orders of magnitude to >20 ns. The long recombination lifetime has allowed the creation of an interlayer exciton gas with density as large as 1.2 × 10 11 cm -2 by moderate continuous-wave optical pumping. Our results have paved the way for the realization of degenerate exciton gases in atomically thin semiconductors.

  4. Resolving ultrafast exciton migration in organic solids at the nanoscale

    NASA Astrophysics Data System (ADS)

    Ginsberg, Naomi

    The migration of Frenkel excitons, tightly-bound electron-hole pairs, in photosynthesis and in organic semiconducting films is critical to the efficiency of natural and artificial light harvesting. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton migration lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore. By combining the ultrafast super-resolved measurements with exciton hopping simulations we furthermore specify the nature (in addition to the extent) of exciton migration as a function of the intrinsic and ensemble chromophore energy scales that determine a spatio-energetic landscape for migration. In collaboration with: Samuel Penwell, Lucas Ginsberg, University of California, Berkeley and Rodrigo Noriega University of Utah.

  5. Model Prediction of Self-Rotating Excitons in Two-Dimensional Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Trushin, Maxim; Goerbig, Mark Oliver; Belzig, Wolfgang

    2018-05-01

    Using the quasiclassical concept of Berry curvature we demonstrate that a Dirac exciton—a pair of Dirac quasiparticles bound by Coulomb interactions—inevitably possesses an intrinsic angular momentum making the exciton effectively self-rotating. The model is applied to excitons in two-dimensional transition metal dichalcogenides, in which the charge carriers are known to be described by a Dirac-like Hamiltonian. We show that the topological self-rotation strongly modifies the exciton spectrum and, as a consequence, resolves the puzzle of the overestimated two-dimensional polarizability employed to fit earlier spectroscopic measurements.

  6. External quantum efficiency exceeding 100% in a singlet-exciton-fission-based solar cell

    NASA Astrophysics Data System (ADS)

    Baldo, Marc

    2013-03-01

    Singlet exciton fission can be used to split a molecular excited state in two. In solar cells, it promises to double the photocurrent from high energy photons, thereby breaking the single junction efficiency limit. We demonstrate organic solar cells that exploit singlet exciton fission in pentacene to generate more than one electron per incident photon in the visible spectrum. Using a fullerene acceptor, a poly(3-hexylthiophene) exciton confinement layer, and a conventional optical trapping scheme, the peak external quantum efficiency is (109 +/-1)% at λ = 670 nm for a 15-nm-thick pentacene film. The corresponding internal quantum efficiency is (160 +/-10)%. Independent confirmation of the high internal efficiency is obtained by analysis of the magnetic field effect on photocurrent, which determines that the triplet yield approaches 200% for pentacene films thicker than 5 nm. To our knowledge, this is the first solar cell to generate quantum efficiencies above 100% in the visible spectrum. Alternative multiple exciton generation approaches have been demonstrated previously in the ultraviolet, where there is relatively little sunlight. Singlet exciton fission differs from these other mechanisms because spin conservation disallows the usual dominant loss process: a thermal relaxation of the high-energy exciton into a single low-energy exciton. Consequently, pentacene is efficient in the visible spectrum at λ = 670 nm because only the collapse of the singlet exciton into twotriplets is spin-allowed. Supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001088.

  7. Theory of exciton transfer and diffusion in conjugated polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barford, William, E-mail: william.barford@chem.ox.ac.uk; Tozer, Oliver Robert; University College, University of Oxford, Oxford OX1 4BH

    We describe a theory of Förster-type exciton transfer between conjugated polymers. The theory is built on three assumptions. First, we assume that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, and described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω < J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. The resulting expression for themore » exciton transfer rate has a familiar form, being a function of the exciton transfer integral and the effective Franck-Condon factors. The effective Franck-Condon factors are functions of the effective Huang-Rhys parameters, which are inversely proportional to the chromophore size. The Born-Oppenheimer expressions were checked against DMRG calculations, and are found to be within 10% of the exact value for a tiny fraction of the computational cost. This theory of exciton transfer is then applied to model exciton migration in conformationally disordered poly(p-phenylene vinylene). Key to this modeling is the assumption that the donor and acceptor chromophores are defined by local exciton ground states (LEGSs). Since LEGSs are readily determined by the exciton center-of-mass wavefunction, this theory provides a quantitative link between polymer conformation and exciton migration. Our Monte Carlo simulations indicate that the exciton diffusion length depends weakly on the conformation of the polymer, with the diffusion length increasing slightly as the chromophores became straighter and longer. This is largely a geometrical effect: longer and straighter chromophores extend over larger distances. The calculated diffusion lengths of ∼10 nm are in good agreement with experiment. The

  8. Theory of exciton transfer and diffusion in conjugated polymers.

    PubMed

    Barford, William; Tozer, Oliver Robert

    2014-10-28

    We describe a theory of Förster-type exciton transfer between conjugated polymers. The theory is built on three assumptions. First, we assume that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, and described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω < J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. The resulting expression for the exciton transfer rate has a familiar form, being a function of the exciton transfer integral and the effective Franck-Condon factors. The effective Franck-Condon factors are functions of the effective Huang-Rhys parameters, which are inversely proportional to the chromophore size. The Born-Oppenheimer expressions were checked against DMRG calculations, and are found to be within 10% of the exact value for a tiny fraction of the computational cost. This theory of exciton transfer is then applied to model exciton migration in conformationally disordered poly(p-phenylene vinylene). Key to this modeling is the assumption that the donor and acceptor chromophores are defined by local exciton ground states (LEGSs). Since LEGSs are readily determined by the exciton center-of-mass wavefunction, this theory provides a quantitative link between polymer conformation and exciton migration. Our Monte Carlo simulations indicate that the exciton diffusion length depends weakly on the conformation of the polymer, with the diffusion length increasing slightly as the chromophores became straighter and longer. This is largely a geometrical effect: longer and straighter chromophores extend over larger distances. The calculated diffusion lengths of ~10 nm are in good agreement with experiment. The spectral

  9. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Daniel Beom Soo

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS 2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  10. Impact of Molecular Organization on Exciton Diffusion in Photosensitive Single-Crystal Halogenated Perylenediimides Charge Transfer Interfaces.

    PubMed

    Pinto, Rui M; Gouveia, Wilson; Maçôas, Ermelinda M S; Santos, Isabel C; Raja, Sebastian; Baleizão, Carlos; Alves, Helena

    2015-12-23

    The efficiency of organic photodetectors and optoelectronic devices is strongly limited by exciton diffusion, in particular for acceptor materials. Although mechanisms for exciton diffusion are well established, their correlation to molecular organization in real systems has received far less attention. In this report, organic single-crystals interfaces were probed with wavelength-dependent photocurrent spectroscopy and their crystal structure resolved using X-ray diffraction. All systems present a dynamic photoresponse, faster than 500 ms, up to 650 nm. A relationship between molecular organization and favorable exciton diffusion in substituted butyl-perylenediimides (PDIB) is established. This is demonstrated by a set of PDIBs with different intra- and interstack distances and short contacts and their impact on photoresponse. Given the short packing distances between PDIs cores along the same stacking direction (3.4-3.7 Å), and across parallel stacks (2.5 Å), singlet exciton in these PDIBs can follow both Förster and Dexter exciton diffusion, with the Dexter-type mechanism assuming special relevance for interstack exciton diffusion. Yet, the response is maximized in substituted PDIBs, where a 2D percolation network is formed through strong interstack contacts, allowing for PDIBs primary excitons to reach with great efficiency the splitting interface with crystalline rubrene. The importance of short contacts and molecular distances, which is often overlooked as a parameter to consider and optimize when choosing materials for excitonic devices, is emphasized.

  11. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction

    DOE PAGES

    Ross, Jason S.; Rivera, Pasqual; Schaibley, John; ...

    2016-12-22

    Semiconductor heterostructures are backbones for solid-state-based optoelectronic devices. Recent advances in assembly techniques for van der Waals heterostructures have enabled the band engineering of semiconductor heterojunctions for atomically thin optoelectronic devices. In two-dimensional heterostructures with type II band alignment, interlayer excitons, where Coulomb bound electrons and holes are confined to opposite layers, have shown promising properties for novel excitonic devices, including a large binding energy, micron-scale in-plane drift-diffusion, and a long population and valley polarization lifetime. Here, we demonstrate interlayer exciton optoelectronics based on electrostatically defined lateral p–n junctions in a MoSe 2–WSe 2 heterobilayer. Applying a forward bias enablesmore » the first observation of electroluminescence from interlayer excitons. At zero bias, the p–n junction functions as a highly sensitive photodetector, where the wavelength-dependent photocurrent measurement allows the direct observation of resonant optical excitation of the interlayer exciton. The resulting photocurrent amplitude from the interlayer exciton is about 200 times smaller than the resonant excitation of intralayer exciton. This implies that the interlayer exciton oscillator strength is 2 orders of magnitude smaller than that of the intralayer exciton due to the spatial separation of electron and hole to the opposite layers. Lastly, these results lay the foundation for exploiting the interlayer exciton in future 2D heterostructure optoelectronic devices.« less

  12. Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n Junction.

    PubMed

    Ross, Jason S; Rivera, Pasqual; Schaibley, John; Lee-Wong, Eric; Yu, Hongyi; Taniguchi, Takashi; Watanabe, Kenji; Yan, Jiaqiang; Mandrus, David; Cobden, David; Yao, Wang; Xu, Xiaodong

    2017-02-08

    Semiconductor heterostructures are backbones for solid-state-based optoelectronic devices. Recent advances in assembly techniques for van der Waals heterostructures have enabled the band engineering of semiconductor heterojunctions for atomically thin optoelectronic devices. In two-dimensional heterostructures with type II band alignment, interlayer excitons, where Coulomb bound electrons and holes are confined to opposite layers, have shown promising properties for novel excitonic devices, including a large binding energy, micron-scale in-plane drift-diffusion, and a long population and valley polarization lifetime. Here, we demonstrate interlayer exciton optoelectronics based on electrostatically defined lateral p-n junctions in a MoSe 2 -WSe 2 heterobilayer. Applying a forward bias enables the first observation of electroluminescence from interlayer excitons. At zero bias, the p-n junction functions as a highly sensitive photodetector, where the wavelength-dependent photocurrent measurement allows the direct observation of resonant optical excitation of the interlayer exciton. The resulting photocurrent amplitude from the interlayer exciton is about 200 times smaller than the resonant excitation of intralayer exciton. This implies that the interlayer exciton oscillator strength is 2 orders of magnitude smaller than that of the intralayer exciton due to the spatial separation of electron and hole to the opposite layers. These results lay the foundation for exploiting the interlayer exciton in future 2D heterostructure optoelectronic devices.

  13. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

    DOE PAGES

    Moody, Galan; Dass, Chandriker Kavir; Hao, Kai; ...

    2015-09-18

    In this paper, the band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe 2). The homogeneous linewidthmore » is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors.« less

  14. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

    PubMed Central

    Moody, Galan; Kavir Dass, Chandriker; Hao, Kai; Chen, Chang-Hsiao; Li, Lain-Jong; Singh, Akshay; Tran, Kha; Clark, Genevieve; Xu, Xiaodong; Berghäuser, Gunnar; Malic, Ermin; Knorr, Andreas; Li, Xiaoqin

    2015-01-01

    The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors. PMID:26382305

  15. Optical studies of native defects in π-conjugated donor-acceptor copolymers

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Khanal, Dipak; Lafalce, Evan; You, Wei; Valy Vardeny, Z.

    2018-04-01

    We used multiple spectroscopies such as photoinduced absorption (PIA), magneto photoinduced absorption, and doping induced absorption for studying native defects in π-conjugated donor-acceptor copolymer chains of benzodithio-phene fluorinated benzotriazole. The PIA spectrum contains characteristic photoinduced absorption bands that are due to polarons and triplet exciton species, whose strengths have different dependencies on the modulation frequency, temperature, and laser excitation, as well as magnetic field response. We found that the native defects in the copolymer chains serve as efficient traps that ionize the photoexcited excitons, thereby generating charge carriers whose characteristic optical properties are similar, but not equal to those of intrachain polarons formed by doping. The native defects density is of the order of 1017 cm-3 indicating that most of the copolymer chains contain native defects upon synthesis; however, this does not preclude their used-for photovoltaic applications.

  16. Harvesting Triplet Excitons with Exciplex Thermally Activated Delayed Fluorescence Emitters toward High Performance Heterostructured Organic Light-Emitting Field Effect Transistors.

    PubMed

    Song, Li; Hu, Yongsheng; Liu, Zheqin; Lv, Ying; Guo, Xiaoyang; Liu, Xingyuan

    2017-01-25

    The utilization of triplet excitons plays a key role in obtaining high emission efficiency for organic electroluminescent devices. However, to date, only phosphorescent materials have been implemented to harvest the triplet excitons in the organic light-emitting field effect transistors (OLEFETs). In this work, we report the first incorporation of exciplex thermally activated delayed fluorescence (TADF) emitters in heterostructured OLEFETs to harvest the triplet excitons. By developing a new kind of exciplex TADF emitter constituted by m-MTDATA (4,4',4″-tris(N-3-methylphenyl-N-phenylamino)triphenylamine) as the donor and OXD-7 (1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene) as the acceptor, an exciton utilization efficiency of 74.3% for the devices was achieved. It is found that the injection barrier between hole transport layer and emission layer as well as the ratio between donor and acceptor would influence the external quantum efficiency (EQE) significantly. Devices with a maximum EQE of 3.76% which is far exceeding the reported results for devices with conventional fluorescent emitters were successfully demonstrated. Moreover, the EQE at high brightness even outperformed the result for organic light-emitting diode based on the same emitter. Our results demonstrate that the exciplex TADF emitters can be promising candidates to develop OLEFETs with high performance.

  17. Direct Imaging of Exciton Transport in Tubular Porphyrin Aggregates by Ultrafast Microscopy.

    PubMed

    Wan, Yan; Stradomska, Anna; Knoester, Jasper; Huang, Libai

    2017-05-31

    Long-range exciton transport is a key challenge in achieving efficient solar energy harvesting in both organic solar cells and photosynthetic systems. Self-assembled molecular aggregates provide the potential for attaining long-range exciton transport through strong intermolecular coupling. However, there currently lacks an experimental tool to directly characterize exciton transport in space and in time to elucidate mechanisms. Here we report a direct visualization of exciton diffusion in tubular molecular aggregates by transient absorption microscopy with ∼200 fs time resolution and ∼50 nm spatial precision. These direct measurements provide exciton diffusion constants of 3-6 cm 2 s -1 for the tubular molecular aggregates, which are 3-5 times higher than a theoretical lower bound obtained by assuming incoherent hopping. These results suggest that coherent effects play a role, despite the fact that exciton states near the band bottom crucial for transport are only weakly delocalized (over <10 molecules). The methods presented here establish a direct approach for unraveling the mechanisms and main parameters underlying exciton transport in large molecular assemblies.

  18. Valley excitons in two-dimensional semiconductors

    DOE PAGES

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; ...

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less

  19. Direct determination of exciton wavefunction amplitudes by the momentum-resolved photo-electron emission experiment

    NASA Astrophysics Data System (ADS)

    Ohnishi, Hiromasa; Tomita, Norikazu; Nasu, Keiichiro

    2018-03-01

    We study conceptional problems of a photo-electron emission (PEE) process from a free exciton in insulating crystals. In this PEE process, only the electron constituting the exciton is suddenly emitted out of the crystal, while the hole constituting the exciton is still left inside and forced to be recoiled back to its original valence band. This recoil on the hole is surely reflected in the spectrum of the PEE with a statistical distribution along the momentum-energy curve of the valence band. This distribution is nothing but the square of the exciton wavefunction amplitude, since it shows how the electron and the hole are originally bound together. Thus, the momentum-resolved PEE can directly determine the exciton wavefunction. These problems are clarified, taking the Γ and the saddle point excitons in GaAs, as typical examples. New PEE experiments are also suggested.

  20. Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe2.

    PubMed

    Zhang, Minghua; Fu, Jiyong; Dias, A C; Qu, Fanyao

    2018-05-18

    We present a theory to address the photoluminescence (PL) intensity and valley polarization (VP) dynamics in monolayer WSe$_2$, under the impact of excitonic dark states of both excitons and biexcitons. We find that the PL intensity of all excitonic channels including intravalley exciton (X$_{\\rm b}$), intravalley biexciton (XX$_{\\rm k,k}$) and intervalley biexciton (XX$_{\\rm k,k^\\prime}$) in particular for the {XX$_{\\rm k,k}$} PL is enhanced by laser excitation fluence. In addition, our results indicate the anomalous temperature dependence of PL, i.e., increasing with temperature, as a result of favored phonon assisted dark-to-bright scatterings at high temperatures. Moreover, we observe that the PL is almost immune to intervalley scatterings, which trigger the exchange of excitonic states between the two valleys. As far as the valley polarization is concerned, we find that the VP of X$_{\\rm b}$ shrinks as temperature increases, exhibiting opposite temperature response to PL, while the intravalley XX$_{\\rm k,k}$ VP is found almost independent of temperature. In contrast to both X$_{\\rm b}$ and XX$_{\\rm k,k}$, the intervalley XX$_{\\rm k,k^\\prime}$ VP identically vanishes, because of equal populations of excitons in the $K$ and $K^\\prime$ valleys bounded to form intervalley biexcitons. Notably, it is found that the X$_{\\rm b}$ VP much more strongly depends on bright-dark scattering than that of {XX$_{\\rm k,k}$}, making dark state act as a robust reservoir for valley polarization against intervalley scatterings for X$_{\\rm b}$ at strong bright-dark scatterings, but not for XX$_{\\rm k,k}$. Dark excitonic states enabled enhancement of VP benefits quantum technology for information processing based on the valley degree of freedom in valleytronic devices. Furthermore, the VP has strong dependence on intervalley scattering but maintains essentially constant with excitation fluence. Finally, the time evolution of PL and VP, depending on temperature and

  1. High Performing Ternary Solar Cells through Förster Resonance Energy Transfer between Nonfullerene Acceptors.

    PubMed

    Yang, Lei; Gu, Wenxing; Hong, Ling; Mi, Yang; Liu, Feng; Liu, Ming; Yang, Yufei; Sharma, Bigyan; Liu, Xinfeng; Huang, Hui

    2017-08-16

    Nonradiative Förster resonance energy transfer (FRET) is an important mechanism of organic solar cells, which can improve the exciton migration over a long distance, resulting in improvement of efficiency of solar cells. However, the current observations of FRET are very limited, and the efficiencies are less than 9%. In this study, FRET effect was first observed between two nonfullerene acceptors in ternary solar cells, which improved both the absorption range and exciton harvesting, leading to the dramatic enhancement in the short circuit current and power conversion efficiency. Moreover, this strategy is proved to be a versatile platform for conjugated polymers with different bandgaps, resulting in a remarkable efficiency of 10.4%. These results demonstrated a novel method to enhance the efficiency of organic soar cells.

  2. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide.

    PubMed

    Sun, Dezheng; Rao, Yi; Reider, Georg A; Chen, Gugang; You, Yumeng; Brézin, Louis; Harutyunyan, Avetik R; Heinz, Tony F

    2014-10-08

    Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature.

  3. Exciton-photon correlations in bosonic condensates of exciton-polaritons.

    PubMed

    Kavokin, Alexey V; Sheremet, Alexandra S; Shelykh, Ivan A; Lagoudakis, Pavlos G; Rubo, Yuri G

    2015-07-08

    Exciton-polaritons are mixed light-matter quasiparticles. We have developed a statistical model describing stochastic exciton-photon transitions within a condensate of exciton polaritons. We show that the exciton-photon correlator depends on the rate of incoherent exciton-photon transformations in the condensate. We discuss implications of this effect for the quantum statistics of photons emitted by polariton lasers.

  4. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy

    NASA Astrophysics Data System (ADS)

    Klots, A. R.; Newaz, A. K. M.; Wang, Bin; Prasai, D.; Krzyzanowska, H.; Lin, Junhao; Caudel, D.; Ghimire, N. J.; Yan, J.; Ivanov, B. L.; Velizhanin, K. A.; Burger, A.; Mandrus, D. G.; Tolk, N. H.; Pantelides, S. T.; Bolotin, K. I.

    2014-10-01

    The optical response of semiconducting monolayer transition-metal dichalcogenides (TMDCs) is dominated by strongly bound excitons that are stable even at room temperature. However, substrate-related effects such as screening and disorder in currently available specimens mask many anticipated physical phenomena and limit device applications of TMDCs. Here, we demonstrate that that these undesirable effects are strongly suppressed in suspended devices. Extremely robust (photogain > 1,000) and fast (response time < 1 ms) photoresponse allow us to study, for the first time, the formation, binding energies, and dissociation mechanisms of excitons in TMDCs through photocurrent spectroscopy. By analyzing the spectral positions of peaks in the photocurrent and by comparing them with first-principles calculations, we obtain binding energies, band gaps and spin-orbit splitting in monolayer TMDCs. For monolayer MoS2, in particular, we obtain an extremely large binding energy for band-edge excitons, Ebind >= 570 meV. Along with band-edge excitons, we observe excitons associated with a van Hove singularity of rather unique nature. The analysis of the source-drain voltage dependence of photocurrent spectra reveals exciton dissociation and photoconversion mechanisms in TMDCs.

  5. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy

    DOE PAGES

    Klots, A. R.; Newaz, A. K. M.; Wang, Bin; ...

    2014-10-16

    The optical response of semiconducting monolayer transition-metal dichalcogenides (TMDCs) is dominated by strongly bound excitons that are stable even at room temperature. However, substrate-related effects such as screening and disorder in currently available specimens mask many anticipated physical phenomena and limit device applications of TMDCs. Here, we demonstrate that that these undesirable effects are strongly suppressed in suspended devices. Extremely robust (photogain > 1,000) and fast (response time < 1 ms) photoresponse allow us to study, for the first time, the formation, binding energies, and dissociation mechanisms of excitons in TMDCs through photocurrent spectroscopy. By analyzing the spectral positions ofmore » peaks in the photocurrent and by comparing them with first-principles calculations, we obtain binding energies, band gaps and spin-orbit splitting in monolayer TMDCs. For monolayer MoS2, in particular, we obtain an extremely large binding energy for band-edge excitons, Ebind ≥ 570 meV. Along with band-edge excitons, we observe excitons associated with a van Hove singularity of rather unique nature. In conclusion, the analysis of the source-drain voltage dependence of photocurrent spectra reveals exciton dissociation and photoconversion mechanisms in TMDCs.« less

  6. Exciton-photon correlations in bosonic condensates of exciton-polaritons

    PubMed Central

    Kavokin, Alexey V.; Sheremet, Alexandra S.; Shelykh, Ivan A.; Lagoudakis, Pavlos G.; Rubo, Yuri G.

    2015-01-01

    Exciton-polaritons are mixed light-matter quasiparticles. We have developed a statistical model describing stochastic exciton-photon transitions within a condensate of exciton polaritons. We show that the exciton-photon correlator depends on the rate of incoherent exciton-photon transformations in the condensate. We discuss implications of this effect for the quantum statistics of photons emitted by polariton lasers. PMID:26153979

  7. Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ihly, Rachelle; Mistry, Kevin S.; Ferguson, Andrew J.

    2016-04-25

    Understanding the kinetics and energetics of interfacial electron transfer in molecular systems is crucial for the development of a broad array of technologies, including photovoltaics, solar fuel systems and energy storage. The Marcus formulation for electron transfer relates the thermodynamic driving force and reorganization energy for charge transfer between a given donor/acceptor pair to the kinetics and yield of electron transfer. Here we investigated the influence of the thermodynamic driving force for photoinduced electron transfer (PET) between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives by employing time-resolved microwave conductivity as a sensitive probe of interfacial exciton dissociation. For the firstmore » time, we observed the Marcus inverted region (in which driving force exceeds reorganization energy) and quantified the reorganization energy for PET for a model SWCNT/acceptor system. The small reorganization energies (about 130 meV, most of which probably arises from the fullerene acceptors) are beneficial in minimizing energy loss in photoconversion schemes.« less

  8. Charge Transfer and Collection in Dilute Organic Donor-Acceptor Heterojunction Blends.

    PubMed

    Ding, Kan; Liu, Xiao; Forrest, Stephen R

    2018-05-09

    Experimental and theoretical approaches are used to understand the role of nanomorphology on exciton dissociation and charge collection at dilute donor-acceptor (D-A) organic heterojunctions (HJs). Specifically, two charge transfer (CT) states in D-A mixed HJs comprising nanocrystalline domains of tetraphenyldibenzoperiflanthene (DBP) as the donor and C 70 as the acceptor are unambiguously related to the nanomorphology of the mixed layer. Alternating DBP:C 70 multilayer stacks are used to identify and control the optical properties of the CT states, as well as to simulate the dilute mixed heterojunctions. A kinetic Monte Carlo model along with photoluminescence spectroscopy and scanning transmission electron microscopy are used to quantitatively evaluate the layer morphology under various growth conditions. As a result, we are able to understand the counterintuitive observation of high charge extraction efficiency and device performance of DBP:C 70 mixed layer photovoltaics at surprisingly low (∼10%) donor concentrations.

  9. Organic photovoltaic cells based on unconventional electron donor fullerene and electron acceptor copper hexadecafluorophthalocyanine

    NASA Astrophysics Data System (ADS)

    Yang, J. L.; Sullivan, P.; Schumann, S.; Hancox, I.; Jones, T. S.

    2012-01-01

    We demonstrate organic discrete heterojunction photovoltaic cells based on fullerene (C60) and copper hexadecafluorophthalocyanine (F16CuPc), in which the C60 and F16CuPc act as the electron donor and the electron acceptor, respectively. The C60/F16CuPc cells fabricated with conventional and inverted architectures both exhibit comparable power conversion efficiencies. Furthermore, we show that the photocurrent in both cells is generated by a conventional exciton dissociation mechanism rather than the exciton recombination mechanism recently proposed for a similar C60/F16ZnPc system [Song et al., J. Am. Chem. Soc. 132, 4554 (2010)]. These results demonstrate that new unconventional material systems are a potential way to fabricate organic photovoltaic cells with inverted as well as conventional architectures.

  10. Mapping the nanoscale energetic landscape in conductive polymer films with spatially super-resolved exciton dynamics

    NASA Astrophysics Data System (ADS)

    Ginsberg, Naomi

    2015-03-01

    The migration of Frenkel excitons, tightly-bound electron-hole pairs, in polymeric organic semiconducting films is critical to the efficiency of bulk heterojunction solar cells. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton diffusion lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore.

  11. Influences of Exciton Diffusion and Exciton-Exciton Annihilation on Photon Emission Statistics of Carbon Nanotubes.

    PubMed

    Ma, Xuedan; Roslyak, Oleskiy; Duque, Juan G; Pang, Xiaoying; Doorn, Stephen K; Piryatinski, Andrei; Dunlap, David H; Htoon, Han

    2015-07-03

    Pump-dependent photoluminescence imaging and second-order photon correlation studies have been performed on individual single-walled carbon nanotubes (SWCNTs) at room temperature. These studies enable the extraction of both the exciton diffusion constant and the Auger recombination coefficient. A linear correlation between these parameters is attributed to the effect of environmental disorder in setting the exciton mean free path and capture-limited Auger recombination at this length scale. A suppression of photon antibunching is attributed to the creation of multiple spatially nonoverlapping excitons in SWCNTs, whose diffusion length is shorter than the laser spot size. We conclude that complete antibunching at room temperature requires an enhancement of the exciton-exciton annihilation rate that may become realizable in SWCNTs allowing for strong exciton localization.

  12. Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS2.

    PubMed

    Cunningham, Paul D; Hanbicki, Aubrey T; McCreary, Kathleen M; Jonker, Berend T

    2017-12-26

    Strong Coulomb attraction in monolayer transition metal dichalcogenides gives rise to tightly bound excitons and many-body interactions that dominate their optoelectronic properties. However, this Coulomb interaction can be screened through control of the surrounding dielectric environment as well as through applied voltage, which provides a potential means of tuning the bandgap, exciton binding energy, and emission wavelength. Here, we directly show that the bandgap and exciton binding energy can be optically tuned by means of the intensity of the incident light. Using transient absorption spectroscopy, we identify a sub-picosecond decay component in the excited-state dynamics of WS 2 that emerges for incident photon energies above the A-exciton resonance, which originates from a nonequilibrium population of charge carriers that form excitons as they cool. The generation of this charge-carrier population exhibits two distinct energy thresholds. The higher threshold is coincident with the onset of continuum states and therefore provides a direct optical means of determining both the bandgap and exciton binding energy. Using this technique, we observe a reduction in the exciton binding energy from 310 ± 30 to 220 ± 20 meV as the excitation density is increased from 3 × 10 11 to 1.2 × 10 12 photons/cm 2 . This reduction is due to dynamic dipolar screening of Coulomb interactions by excitons, which is the underlying physical process that initiates bandgap renormalization and leads to the insulator-metal transition in monolayer transition metal dichalcogenides.

  13. Influence of acceptor on charge mobility in stacked π-conjugated polymers

    NASA Astrophysics Data System (ADS)

    Sun, Shih-Jye; Menšík, Miroslav; Toman, Petr; Gagliardi, Alessio; Král, Karel

    2018-02-01

    We present a quantum molecular model to calculate mobility of π-stacked P3HT polymer layers with electron acceptor dopants coupled next to side groups in random position with respect to the linear chain. The hole density, the acceptor LUMO energy and the hybridization transfer integral between the acceptor and polymer were found to be very critical factors to the final hole mobility. For a dopant LUMO energy close and high above the top of the polymer valence band we have found a significant mobility increase with the hole concentration and with the dopant LUMO energy approaching the top of the polymer valence band. Higher mobility was achieved for small values of hybridization transfer integral between polymer and the acceptor, corresponding to the case of weakly bound acceptor. Strong couplings between the polymer and the acceptor with Coulomb repulsion interactions induced from the electron localizations was found to suppress the hole mobility.

  14. Exciton absorption of entangled photons in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  15. Photoinduced Hund excitons in the breakdown of a two-orbital Mott insulator

    NASA Astrophysics Data System (ADS)

    Rincón, Julián; Dagotto, Elbio; Feiguin, Adrian E.

    2018-06-01

    We study the photoinduced breakdown of a two-orbital Mott insulator and resulting metallic state. Using time-dependent density matrix renormalization group, we scrutinize the real-time dynamics of the half-filled two-orbital Hubbard model interacting with a resonant radiation field pulse. The breakdown, caused by production of doublon-holon pairs, is enhanced by Hund's exchange, which dynamically activates large orbital fluctuations. The melting of the Mott insulator is accompanied by a high to low spin transition with a concomitant reduction of antiferromagnetic spin fluctuations. Most notably, the overall time response is driven by the photogeneration of excitons with orbital character that are stabilized by Hund's coupling. These unconventional "Hund excitons" correspond to bound spin-singlet orbital-triplet doublon-holon pairs. We study exciton properties such as bandwidth, binding potential, and size within a semiclassical approach. The photometallic state results from a coexistence of Hund excitons and doublon-holon plasma.

  16. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    NASA Astrophysics Data System (ADS)

    Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.

    2016-12-01

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized "particle in a box" problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  17. Single molecule-level study of donor-acceptor interactions and nanoscale environment in blends

    NASA Astrophysics Data System (ADS)

    Quist, Nicole; Grollman, Rebecca; Rath, Jeremy; Robertson, Alex; Haley, Michael; Anthony, John; Ostroverkhova, Oksana

    2017-02-01

    Organic semiconductors have attracted considerable attention due to their applications in low-cost (opto)electronic devices. The most successful organic materials for applications that rely on charge carrier generation, such as solar cells, utilize blends of several types of molecules. In blends, the local environment strongly influences exciton and charge carrier dynamics. However, relationship between nanoscale features and photophysics is difficult to establish due to the lack of necessary spatial resolution. We use functionalized fluorinated pentacene (Pn) molecule as single molecule probes of intermolecular interactions and of the nanoscale environment in blends containing donor and acceptor molecules. Single Pn donor (D) molecules were imaged in PMMA in the presence of acceptor (A) molecules using wide-field fluorescence microscopy. Two sample configurations were realized: (i) a fixed concentration of Pn donor molecules, with increasing concentration of acceptor molecules (functionalized indenflouorene or PCBM) and (ii) a fixed concentration of acceptor molecules with an increased concentration of the Pn donor. The D-A energy transfer and changes in the donor emission due to those in the acceptor- modified polymer morphology were quantified. The increase in the acceptor concentration was accompanied by enhanced photobleaching and blinking of the Pn donor molecules. To better understand the underlying physics of these processes, we modeled photoexcited electron dynamics using Monte Carlo simulations. The simulated blinking dynamics were then compared to our experimental data, and the changes in the transition rates were related to the changes in the nanoscale environment. Our study provides insight into evolution of nanoscale environment during the formation of bulk heterojunctions.

  18. Highly Efficient Nondoped Green Organic Light-Emitting Diodes with Combination of High Photoluminescence and High Exciton Utilization.

    PubMed

    Wang, Chu; Li, Xianglong; Pan, Yuyu; Zhang, Shitong; Yao, Liang; Bai, Qing; Li, Weijun; Lu, Ping; Yang, Bing; Su, Shijian; Ma, Yuguang

    2016-02-10

    Photoluminescence (PL) efficiency and exciton utilization efficiency are two key parameters to harvest high-efficiency electroluminescence (EL) in organic light-emitting diodes (OLEDs). But it is not easy to simultaneously combine these two characteristics (high PL efficiency and high exciton utilization) into a fluorescent material. In this work, an efficient combination was achieved through two concepts of hybridized local and charge-transfer (CT) state (HLCT) and "hot exciton", in which the former is responsible for high PL efficiency while the latter contributes to high exciton utilization. On the basis of a tiny chemical modification in TPA-BZP, a green-light donor-acceptor molecule, we designed and synthesized CzP-BZP with this efficeient combination of high PL efficiency of η(PL) = 75% in the solid state and maximal exciton utilization efficiency up to 48% (especially, the internal quantum efficiency of η(IQE) = 35% substantially exceed 25% of spin statistics limit) in OLED. The nondoped OLED of CzP-BZP exhibited an excellent performance: a green emission with a CIE coordinate of (0.34, 0.60), a maximum current efficiency of 23.99 cd A(-1), and a maximum external quantum efficiency (EQE, η(EQE)) of 6.95%. This combined HLCT state and "hot exciton" strategy should be a practical way to design next-generation, low-cost, high-efficiency fluorescent OLED materials.

  19. Colloquium: Excitons in atomically thin transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chernikov, Alexey; Glazov, Mikhail M.; Heinz, Tony F.; Marie, Xavier; Amand, Thierry; Urbaszek, Bernhard

    2018-04-01

    Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal dichalcogenides is an especially promising platform for fundamental studies of two-dimensional (2D) systems, with potential applications in optoelectronics and valleytronics due to their direct band gap in the monolayer limit and highly efficient light-matter coupling. A crystal lattice with broken inversion symmetry combined with strong spin-orbit interactions leads to a unique combination of the spin and valley degrees of freedom. In addition, the 2D character of the monolayers and weak dielectric screening from the environment yield a significant enhancement of the Coulomb interaction. The resulting formation of bound electron-hole pairs, or excitons, dominates the optical and spin properties of the material. Here recent progress in understanding of the excitonic properties in monolayer TMDs is reviewed and future challenges are laid out. Discussed are the consequences of the strong direct and exchange Coulomb interaction, exciton light-matter coupling, and influence of finite carrier and electron-hole pair densities on the exciton properties in TMDs. Finally, the impact on valley polarization is described and the tuning of the energies and polarization observed in applied electric and magnetic fields is summarized.

  20. Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.

    PubMed

    Salazar, L J; Guzmán, D A; Rodríguez, F J; Quiroga, L

    2012-02-13

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.

  1. The Dual Role of Disorder on the Dissociation of Interfacial Charge Transfer Excitons

    NASA Astrophysics Data System (ADS)

    Shi, Liang; Lee, Chee-Kong; Willard, Adam

    In organic-based photovoltaics (OPV), dissociation of neutral photo-excitations (i.e., Frenkel excitons) into free charge carriers requires the excitons to overcome binding energy that can significantly exceed thermal energies. The inability of bound charges to overcome this large binding energy has been implicated as a primary source of efficiency loss in OPVs. Despite the potential impact on the performance of organic solar cells much remains to be understood about the microscopic mechanism of exciton dissociation in OPV materials. Here we explore the role of static molecular disorder in mediating this charge dissociation process. Using a simple lattice model of exciton dynamics we demonstrate that random spatial variations in the energetic landscape can mitigate the effects of the exciton binding energy by lowering the free energy barrier. By considering the competition between this thermodynamic effect and the disorder-induced slowing of dissociation kinetics we demonstrate that exciton dissociation yields are expected to depend non-monotonically on the degree of static disorder. We conclude that a certain amount of molecular-scale disorder is desirable in order to optimize the performance of organic photovoltaic materials.

  2. Universal formulation of excitonic linear absorption spectra in all semiconductor microstructures

    NASA Astrophysics Data System (ADS)

    Lefebvre, Pierre; Christol, Philippe; Mathieu, Henry

    1995-01-01

    We present a generalization of the well-known exciton absorption calculations of Elliott [Phys. Rev. 108, 1384 (1957)], in the 3-dimensional case, and of Shinada and Sugano [J. Phys. Soc. Japan 21, 1936 (1966)], for 2-dimensional media: We calculate the optical absorption spectra of bound and unbound exciton states, by using a metric space with a noninteger dimension α (1 < α), obtaining almost exactly the same theoretical lineshapes as those resulting from accurate but costly numerical approaches [Chuang et al. Phys. Rev. B, 43, 1500 (1991); Benner and Haug, Phys. Rev. B 47, 15750 (1993)].

  3. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon

    NASA Astrophysics Data System (ADS)

    Guo, Bing; Qiu, Z. R.; Wong, K. S.

    2003-04-01

    We report room-temperature time-integrated and time-resolved photoluminescence (PL) measurements on a nominally undoped wurtzite ZnO thin film grown on (001) silicon. A linear and sublinear excitation intensity Iex dependence of the PL intensity were observed for the 379.48-nm exciton line and the weak broad green band (˜510 nm), respectively. The green luminescence was found to decay as hyperbolic t-1, and its peak energy was observed to increase nearly logarithmically with increased Iex. These results are in an excellent agreement with the tunnel-assisted donor-deep-acceptor pair (DAP) model so that its large blueshifts of about 25 meV per decade increase in Iex can be accounted for by the screening of the fluctuating impurity potential. Also, the 30-ps fast decay of the exciton emission was attributed to the rapid trapping of carriers at luminescent impurities, while the short lifetime of τ1/e=200 ps for the green luminescence may be due to an alternative trapping by deeper centers in the ZnO. Finally, singly ionized oxygen and zinc vacancies have been tentatively invoked to act as donor-deep-acceptor candidates for the DAP luminescence, respectively.

  4. Identification of effective exciton-exciton annihilation in squaraine-squaraine copolymers.

    PubMed

    Hader, Kilian; May, Volkhard; Lambert, Christoph; Engel, Volker

    2016-05-11

    Ultrafast time-resolved transient absorption spectroscopy is able to monitor the fate of the excited state population in molecular aggregates or polymers. Due to many competing decay processes, the identification of exciton-exciton annihilation (EEA) is difficult. Here, we use a microscopic model to describe exciton annihilation processes in squaraine-squaraine copolymers. Transient absorption time traces measured at different laser powers exhibit an unusual time-dependence. The analysis points towards dynamics taking place on three time-scales. Immediately after laser-excitation a localization of excitons takes place within the femtosecond time-regime. This is followed by exciton-exciton annihilation which is responsible for a fast decay of the exciton population. At later times, excitations being localized on units which are not directly connected remain so that diffusion dominates the dynamics and leads to a slower decay. We thus provide evidence for EEA tracked by time-resolved spectroscopy which has not been reported that clearly before.

  5. Electron Acceptors Based on α-Substituted Perylene Diimide (PDI) for Organic Solar Cells

    DOE PAGES

    Zhao, Donglin; Wu, Qinghe; Cai, Zhengxu; ...

    2016-02-20

    The ortho-position functionalized perylene diimide derivatives (αPPID, αPBDT) were synthesized and used as the electron acceptors in nonfullerene organic photovoltaics. Due to the good planarity of ortho-position functionalized PDI, the αPPID and αPBDT show strong tendency to form aggregate because of their enhanced intermolecular pie-pie interaction. Moreover, they maintain the pure domains and the same packing order as in the pure film if they are blended with PBT7-TH and the SCLC measurement also shows the high electron mobility. The inverted OPVs employing αPDI-based compounds as acceptor and PBT7-TH as the donor give the highest PCE of 4.92 % for αPBDTmore » based device and 3.61 % for αPPID based device, which is 39 % and 4 % higher than that for their counterpart βPBDT and βPPID. The charge separation study shows the more efficient exciton dissociation at interfaces between PDI based compounds and PBT7-TH. In conclusion, the results suggest that compared to beta-substituted ones, alpha-substituted PDI derivatives are more promising electron acceptors for OPV.« less

  6. Ultrafast exciton migration in an HJ-aggregate: Potential surfaces and quantum dynamics

    NASA Astrophysics Data System (ADS)

    Binder, Robert; Polkehn, Matthias; Ma, Tianji; Burghardt, Irene

    2017-01-01

    Quantum dynamical and electronic structure calculations are combined to investigate the mechanism of exciton migration in an oligothiophene HJ aggregate, i.e., a combination of oligomer chains (J-type aggregates) and stacked aggregates of such chains (H-type aggregates). To this end, a Frenkel exciton model is parametrized by a recently introduced procedure [Binder et al., J. Chem. Phys. 141, 014101 (2014)] which uses oligomer excited-state calculations to perform an exact, point-wise mapping of coupled potential energy surfaces to an effective Frenkel model. Based upon this parametrization, the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method is employed to investigate ultrafast dynamics of exciton transfer in a small, asymmetric HJ aggregate model composed of 30 sites and 30 active modes. For a partially delocalized initial condition, it is shown that a torsional defect confines the trapped initial exciton, and planarization induces an ultrafast resonant transition between an HJ-aggregated segment and a covalently bound "dangling chain" end. This model is a minimal realization of experimentally investigated mixed systems exhibiting ultrafast exciton transfer between aggregated, highly planarized chains and neighboring disordered segments.

  7. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck; Jiang, Tao; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus B.

    2018-01-01

    Excitons, Coulomb-bound electron-hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (XD) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of XD states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the XD emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe2 on a gold substrate, we demonstrate 6 × 105-fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of ≥2 × 103 of the tip-sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics.

  8. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect.

    PubMed

    Park, Kyoung-Duck; Jiang, Tao; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus B

    2018-01-01

    Excitons, Coulomb-bound electron-hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (X D ) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of X D states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the X D emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe 2 on a gold substrate, we demonstrate ~6 × 10 5 -fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of ≥2 × 10 3 of the tip-sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics.

  9. Colloquium: Excitons in atomically thin transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gang; Chernikov, Alexey; Glazov, Mikhail M.

    Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal dichalcogenides is an especially promising platform for fundamental studies of two-dimensional (2D) systems, with potential applications in optoelectronics and valleytronics due to their direct band gap in the monolayer limit and highly efficient light-matter coupling. A crystal lattice with broken inversion symmetry combined with strong spin-orbit interactions leads to a unique combination of the spin and valley degrees of freedom. In addition, the 2D character of the monolayers and weakmore » dielectric screening from the environment yield a significant enhancement of the Coulomb interaction. The resulting formation of bound electron-hole pairs, or excitons, dominates the optical and spin properties of the material. In this article, recent progress in understanding of the excitonic properties in monolayer TMDs is reviewed and future challenges are laid out. Discussed are the consequences of the strong direct and exchange Coulomb interaction, exciton light-matter coupling, and influence of finite carrier and electron-hole pair densities on the exciton properties in TMDs. Finally, the impact on valley polarization is described and the tuning of the energies and polarization observed in applied electric and magnetic fields is summarized.« less

  10. Colloquium: Excitons in atomically thin transition metal dichalcogenides

    DOE PAGES

    Wang, Gang; Chernikov, Alexey; Glazov, Mikhail M.; ...

    2018-04-04

    Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal dichalcogenides is an especially promising platform for fundamental studies of two-dimensional (2D) systems, with potential applications in optoelectronics and valleytronics due to their direct band gap in the monolayer limit and highly efficient light-matter coupling. A crystal lattice with broken inversion symmetry combined with strong spin-orbit interactions leads to a unique combination of the spin and valley degrees of freedom. In addition, the 2D character of the monolayers and weakmore » dielectric screening from the environment yield a significant enhancement of the Coulomb interaction. The resulting formation of bound electron-hole pairs, or excitons, dominates the optical and spin properties of the material. In this article, recent progress in understanding of the excitonic properties in monolayer TMDs is reviewed and future challenges are laid out. Discussed are the consequences of the strong direct and exchange Coulomb interaction, exciton light-matter coupling, and influence of finite carrier and electron-hole pair densities on the exciton properties in TMDs. Finally, the impact on valley polarization is described and the tuning of the energies and polarization observed in applied electric and magnetic fields is summarized.« less

  11. Exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress.

    PubMed

    Gong, Ming; Zhang, Weiwei; Guo, Guang-Can; He, Lixin

    2011-06-03

    We derive a general relation between the fine-structure splitting (FSS) and the exciton polarization angle of self-assembled quantum dots under uniaxial stress. We show that the FSS lower bound under external stress can be predicted by the exciton polarization angle and FSS under zero stress. The critical stress can also be determined by monitoring the change in exciton polarization angle. We confirm the theory by performing atomistic pseudopotential calculations for the InAs/GaAs quantum dots. The work provides deep insight into the dot asymmetry and their optical properties and a useful guide in selecting quantum dots with the smallest FSS, which are crucial in entangled photon source applications.

  12. Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers

    PubMed Central

    Nakanotani, Hajime; Furukawa, Taro; Morimoto, Kei; Adachi, Chihaya

    2016-01-01

    Understanding exciton behavior in organic semiconductor molecules is crucial for the development of organic semiconductor-based excitonic devices such as organic light-emitting diodes and organic solar cells, and the tightly bound electron-hole pair forming an exciton is normally assumed to be localized on an organic semiconducting molecule. We report the observation of long-range coupling of electron-hole pairs in spatially separated electron-donating and electron-accepting molecules across a 10-nanometers-thick spacer layer. We found that the exciton energy can be tuned over 100 megaelectron volts and the fraction of delayed fluorescence can be increased by adjusting the spacer-layer thickness. Furthermore, increasing the spacer-layer thickness produced an organic light-emitting diode with an electroluminescence efficiency nearly eight times higher than that of a device without a spacer layer. Our results demonstrate the first example of a long-range coupled charge-transfer state between electron-donating and electron-accepting molecules in a working device. PMID:26933691

  13. A Comparison Between Magnetic Field Effects in Excitonic and Exciplex Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Sahin Tiras, Kevser; Wang, Yifei; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatte, Michael E.

    In flat-panel displays and lighting applications, organic light emitting diodes (OLEDs) have been widely used because of their efficient light emission, low-cost manufacturing and flexibility. The electrons and holes injected from the anode and cathode, respectively, form a tightly bound exciton as they meet at a molecule in organic layer. Excitons occur as spin singlets or triplets and the ratio between singlet and triplet excitons formed is 1:3 based on spin degeneracy. The internal quantum efficiency (IQE) of fluorescent-based OLEDs is limited 25% because only singlet excitons contribute the light emission. To overcome this limitation, thermally activated delayed fluorescent (TADF) materials have been introduced in the field of OLEDs. The exchange splitting between the singlet and triplet states of two-component exciplex systems is comparable to the thermal energy in TADF materials, whereas it is usually much larger in excitons. Reverse intersystem crossing occurs from triplet to singlet exciplex state, and this improves the IQE. An applied small magnetic field can change the spin dynamics of recombination in TADF blends. In this study, magnetic field effects on both excitonic and exciplex OLEDs will be presented and comparison similarities and differences will be made.

  14. Diamagnetic excitons and exciton magnetopolaritons in semiconductors

    NASA Astrophysics Data System (ADS)

    Seisyan, R. P.

    2012-05-01

    Interband magneto-absorption in semiconductors is reviewed in the light of the diamagnetic exciton (DE) concept. Beginning with a proof of the exciton nature of oscillating-magnetoabsorption (the DE discovery), development of the DE concept is discussed, including definition of observation conditions, quasi-cubic approximation for hexagonal crystals, quantum-well effects in artificial structures, and comprehension of an important role of the DE polariton. The successful use of the concept application to a broad range of substances is reviewed, namely quasi-Landau magnetic spectroscopy of the ‘Rydberg’ exciton states in cubic semiconductors such as InP and GaAs and in hexagonal ones such as CdSe, the proof of exciton participation in the formation of optical spectra in narrow-gap semiconductors such as InSb, InAs, and, especially, PbTe, observation of DE spectra in semiconductor solid solutions like InGaAs. The most fundamental findings of the DE spectroscopy for various quantum systems are brought together, including the ‘Coulomb-well’ effect, fine structure of discrete oscillatory states in the InGaAs/GaAs multiple quantum wells, the magneto-optical observation of above-barrier exciton. Prospects of the DE physics in ultrahigh magnetic field are discussed, including technological creation of controllable low-dimensional objects with extreme oscillator strengths, formation of magneto-quantum exciton polymer, and even modelling of the hydrogen behaviour in the atmosphere of a neutron star.

  15. Probing excitons in transition metal dichalcogenides by Drude-like exciton intraband absorption.

    PubMed

    Zhao, Siqi; He, Dawei; He, Jiaqi; Zhang, Xinwu; Yi, Lixin; Wang, Yongsheng; Zhao, Hui

    2018-05-24

    Understanding excitonic dynamics in two-dimensional semiconducting transition metal dichalcogenides is important for developing their optoelectronic applications. Recently, transient absorption techniques based on resonant excitonic absorption have been used to study various aspects of excitonic dynamics in these materials. The transient absorption in such measurements originates from phase-space state filling, bandgap renormalization, or screening effects. Here we report a new method to probe excitonic dynamics based on exciton intraband absorption. In this Drude-like process, probe photons are absorbed by excitons in their intraband excitation to higher energy states, causing a transient absorption signal. Although the magnitude of the transient absorption is lower than that of the resonant techniques, the new method is less restrictive on the selection of probe wavelength, has a larger linear range, and can provide complementary information on photocarrier dynamics. Using the WS2 monolayer and bulk samples as examples, we show that the new method can probe exciton-exciton annihilation at high densities and reveal exciton formation processes. We also found that the exciton intraband absorption cross section of the WS2 monolayer is on the order of 10-18 cm2.

  16. A study of the nature of the emission centres and mechanisms of radiative recombination in semi-insulating GaAs crystals (in English)

    NASA Astrophysics Data System (ADS)

    Komarov, V. G.; Motsnyi, F. V.; Motsnyi, V. F.; Zinets, O. S.

    The low temperature photoluminescence spectra of semi-insulating GaAs crystals grown by Czochralski method at different technological conditions have been studied. One of the main background impurities in such materials is carbon. The traditional high temperature annealing of semi-insulating GaAs wafers significantly aggravates their structure perfection because near the surface the creation of conductive layers with the thickness of several microns takes place. The fine structure of the bands of 1.514 and 1.490 eV has been registered. This structure caused by a) polariton emission from upper and low polariton branches; b) radiative recombination of free holes on shallow neutral donors (D^0, h); c) radiative recombination of excitons bound to shallow neutral donors (D^0, X) and to shallow carbon acceptors (C^0_{As}, X); d) excitons bound to the point structure defects (d, X); e) electron transitions between the conduction band and shallow neutral carbon acceptor; f) the electron transitions between donor-acceptor pairs in which carbon and possibly zinc are acceptors in the ground 1S_{3/2} state. The lux-intensity dependencies of the polariton emission from upper polariton branch and photoluminescence of (D^0, h), (C^0_{As}, X), (d, X) complexes are in good agreement with the theory. It is shown that one of the best available semi-insulating GaAs materials is a new commercial AGCP-5V material which differs from others by considerable concentration of shallow donors and new acceptors alongside of the known shallow C^0_{As} acceptor centres.

  17. Exciton transport, charge extraction, and loss mechanisms in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Scully, Shawn Ryan

    the primary losses that puts stringent requirements on the charge carrier mobilities in these cells is the recombination losses due to space charge build up at the heterojunction. Because electrons are confined to the acceptor and holes to the donor, net charge density always exists even when mobilities are matched, in contrast to bulk heterojunctions wherein matched mobilities lead to zero net charge. This net charge creates an electric field which opposes the built-in field and limits the current that can be carried away from this heterojunction. Using simulations we show that for relevant current densities charge carrier mobilities must be higher than 10-4 cm2/V.s to avoid significant losses due to space charge formation. In the last part of this work, we will focus on the second class of architectures in which exciton harvesting is efficient. We will present a systematic analysis of one of the leading polymer:fullerene bulk heterojunction cells to show that losses in this architecture are due to charge recombination. Using optical measurements and simulations, exciton harvesting measurements, and device characteristics we will show that the dominant loss is likely due to field-dependent geminate recombination of the electron and hole pair created immediately following exciton dissociation. No losses in this system are seen due to bimolecular recombination or space charge which provides information on charge-carrier mobility targets necessary for the future design of high efficiency organic photovoltaics.

  18. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S.; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J.; Schuck, P. James

    2017-08-01

    Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena—critical to both many-body physics exploration and device applications—presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  19. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}.

    PubMed

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J; Schuck, P James

    2017-08-25

    Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  20. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.

    PubMed

    Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H

    2013-06-18

    generated via singlet fission in pentacene can be dissociated at an interface with a suitable electron acceptor, such as fullerenes and infrared-absorbing inorganic semiconducting quantum dots. We highlight our recent reports of a pentacene/PbSe hybrid solar cell with a power conversion efficiency of 4.7% and of a pentacene/PbSe/amorphous silicon photovoltaic device. Although substantive challenges remain, both to better our understanding of the mechanism of singlet exciton fission and to optimize device performance, this realization of a solar cell where photocurrent is simultaneously contributed from a blue-absorbing fission-capable material and an infrared-absorbing conventional cell is an important step towards a dual-bandgap, single-junction, fission-enhanced photovoltaic device, which could one day surpass the Shockley-Queisser limit.

  1. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.

    PubMed

    El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K

    2014-06-01

    Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

  2. Observation of magnetic excitons in LaCoO3

    NASA Astrophysics Data System (ADS)

    Giblin, S. R.; Terry, I.; Clark, S. J.; Prokscha, T.; Prabhakaran, D.; Boothroyd, A. T.; Wu, J.; Leighton, C.

    2005-06-01

    An impurity-driven magnetic phase transition has been investigated in LaCoO3 at temperatures below that of the thermally induced spin state transition of the Co3+ ion. We have discovered a saturating component of the magnetisation, which we attribute to previously unobserved interactions between magnetic excitons. These conclusions are confirmed by muon spin spectroscopy which indicates an ordering temperature of 50 K in both the transverse and zero-field configurations. Low-energy muon measurements demonstrate that the magnetic behaviour is independent of implantation energy and hence a property of the bulk of the material. The magnetic exciton formation is attributed to the interaction between electrons bound at oxygen vacancies and neighbouring cobalt ions, and is proposed as the precursor to the magneto-electronic phase separation recently observed in doped lanthanum cobaltite.

  3. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons

    PubMed Central

    Tongay, Sefaattin; Suh, Joonki; Ataca, Can; Fan, Wen; Luce, Alexander; Kang, Jeong Seuk; Liu, Jonathan; Ko, Changhyun; Raghunathanan, Rajamani; Zhou, Jian; Ogletree, Frank; Li, Jingbo; Grossman, Jeffrey C.; Wu, Junqiao

    2013-01-01

    Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering. PMID:24029823

  4. Tailoring Quantum Dot Assemblies to Extend Exciton Coherence Times and Improve Exciton Transport

    NASA Astrophysics Data System (ADS)

    Seward, Kenton; Lin, Zhibin; Lusk, Mark

    2012-02-01

    The motion of excitons through nanostructured assemblies plays a central role in a wide range of physical phenomena including quantum computing, molecular electronics, photosynthetic processes, excitonic transistors and light emitting diodes. All of these technologies are severely handicapped, though, by quasi-particle lifetimes on the order of a nanosecond. The movement of excitons must therefore be as efficient as possible in order to move excitons meaningful distances. This is problematic for assemblies of small Si quantum dots (QDs), where excitons quickly localize and entangle with dot phonon modes. Ensuing exciton transport is then characterized by a classical random walk reduced to very short distances because of efficient recombination. We use a combination of master equation (Haken-Strobl) formalism and density functional theory to estimate the rate of decoherence in Si QD assemblies and its impact on exciton mobility. Exciton-phonon coupling and Coulomb interactions are calculated as a function of dot size, spacing and termination to minimize the rate of intra-dot phonon entanglement. This extends the time over which more efficient exciton transport, characterized by partial coherence, can be maintained.

  5. Exciton multiplication from first principles.

    PubMed

    Jaeger, Heather M; Hyeon-Deuk, Kim; Prezhdo, Oleg V

    2013-06-18

    Third-generation photovolatics require demanding cost and power conversion efficiency standards, which may be achieved through efficient exciton multiplication. Therefore, generating more than one electron-hole pair from the absorption of a single photon has vast ramifications on solar power conversion technology. Unlike their bulk counterparts, irradiated semiconductor quantum dots exhibit efficient exciton multiplication, due to confinement-enhanced Coulomb interactions and slower nonradiative losses. The exact characterization of the complicated photoexcited processes within quantum-dot photovoltaics is a work in progress. In this Account, we focus on the photophysics of nanocrystals and investigate three constituent processes of exciton multiplication, including photoexcitation, phonon-induced dephasing, and impact ionization. We quantify the role of each process in exciton multiplication through ab initio computation and analysis of many-electron wave functions. The probability of observing a multiple exciton in a photoexcited state is proportional to the magnitude of electron correlation, where correlated electrons can be simultaneously promoted across the band gap. Energies of multiple excitons are determined directly from the excited state wave functions, defining the threshold for multiple exciton generation. This threshold is strongly perturbed in the presence of surface defects, dopants, and ionization. Within a few femtoseconds following photoexcitation, the quantum state loses coherence through interactions with the vibrating atomic lattice. The phase relationship between single excitons and multiple excitons dissipates first, followed by multiple exciton fission. Single excitons are coupled to multiple excitons through Coulomb and electron-phonon interactions, and as a consequence, single excitons convert to multiple excitons and vice versa. Here, exciton multiplication depends on the initial energy and coupling magnitude and competes with electron

  6. Optical absorption by indirect excitons in a transition metal dichalcogenide/hexagonal boron nitride heterostructure

    NASA Astrophysics Data System (ADS)

    Brunetti, Matthew N.; Berman, Oleg L.; Kezerashvili, Roman Ya

    2018-06-01

    We study optical transitions in spatially indirect excitons in transition metal dichalcogenide (TMDC) heterostructures separated by an integer number of hexagonal boron nitride (h-BN) monolayers. By solving the Schrödinger equation with the Keldysh potential for a spatially indirect exciton, we obtain eigenfunctions and eigenenergies for the ground and excited states and study their dependence on the interlayer separation, controlled by varying the number of h-BN monolayers. The oscillator strength, optical absorption coefficient, and optical absorption factor, the fraction of incoming photons absorbed in the TMDC/h-BN/TMDC heterostructure, are evaluated and studied as a function of the interlayer separation. Using input parameters from the existing literature which give the largest and the smallest spatially indirect exciton binding energy, we provide upper and lower bounds on all quantities presented.

  7. Excitonic processes at organic heterojunctions

    NASA Astrophysics Data System (ADS)

    He, ShouJie; Lu, ZhengHong

    2018-02-01

    Understanding excitonic processes at organic heterojunctions is crucial for development of organic semiconductor devices. This article reviews recent research on excitonic physics that involve intermolecular charge transfer (CT) excitons, and progress on understanding relationships between various interface energy levels and key parameters governing various competing interface excitonic processes. These interface excitonic processes include radiative exciplex emission, nonradiative recombination, Auger electron emission, and CT exciton dissociation. This article also reviews various device applications involving interface CT excitons, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells, organic rectifying diodes, and ultralow-voltage Auger OLEDs.

  8. Energy and Information Transfer Via Coherent Exciton Wave Packets

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoning

    Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The

  9. Exciton dynamics at a single dislocation in GaN probed by picosecond time-resolved cathodoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W., E-mail: we.liu@epfl.ch, E-mail: gwenole.jacopin@epfl.ch; Carlin, J.-F.; Grandjean, N.

    2016-07-25

    We investigate the dynamics of donor bound excitons (D°X{sub A}) at T = 10 K around an isolated single edge dislocation in homoepitaxial GaN, using a picosecond time-resolved cathodoluminescence (TR-CL) setup with high temporal and spatial resolutions. An ∼ 1.3 meV dipole-like energy shift of D°X{sub A} is observed around the dislocation, induced by the local strain fields. By simultaneously recording the variations of both the exciton lifetime and the CL intensity across the dislocation, we directly assess the dynamics of excitons around the defect. Our observations are well reproduced by a diffusion model. It allows us to deduce an exciton diffusion length ofmore » ∼24 nm as well as an effective area of the dislocation with a radius of ∼95 nm, where the recombination can be regarded as entirely non-radiative.« less

  10. Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite

    DOE PAGES

    Luo, Liang; Men, Long; Liu, Zhaoyu; ...

    2017-06-01

    How photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Until now, the initial quantum dynamics following photoexcitation remains elusive in the hybrid perovskite system. Furthermore we reveal excitonic Rydberg states with distinct formation pathways by observing the multiple resonant, internal quantum transitions using ultrafast terahertz quasi-particle transport. Nonequilibrium emergent states evolve with a complex co-existence of excitons, carriers and phonons, where a delayed buildup of excitons under on- and off-resonant pumping conditions allows us to distinguish between the loss of electronic coherence and hot statemore » cooling processes. The nearly ~1 ps dephasing time, efficient electron scattering with discrete terahertz phonons and intermediate binding energy of ~13.5 meV in perovskites are distinct from conventional photovoltaic semiconductors. In addition to providing implications for coherent energy conversion, these are potentially relevant to the development of light-harvesting and electron-transport devices.« less

  11. Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Liang; Men, Long; Liu, Zhaoyu

    How photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Until now, the initial quantum dynamics following photoexcitation remains elusive in the hybrid perovskite system. Furthermore we reveal excitonic Rydberg states with distinct formation pathways by observing the multiple resonant, internal quantum transitions using ultrafast terahertz quasi-particle transport. Nonequilibrium emergent states evolve with a complex co-existence of excitons, carriers and phonons, where a delayed buildup of excitons under on- and off-resonant pumping conditions allows us to distinguish between the loss of electronic coherence and hot statemore » cooling processes. The nearly ~1 ps dephasing time, efficient electron scattering with discrete terahertz phonons and intermediate binding energy of ~13.5 meV in perovskites are distinct from conventional photovoltaic semiconductors. In addition to providing implications for coherent energy conversion, these are potentially relevant to the development of light-harvesting and electron-transport devices.« less

  12. Photoluminescence Study of N-Type Thermal Conversion in Semi-Insulating GaAs.

    DTIC Science & Technology

    1982-12-01

    free electron to the crystal. For example, in GaAs, a tellurium atom on an arsenic site (TeAs) or a silicon atom on a gallium site (SiGa) are donor atoms...Photoconductivity Photoluminescenc Silicon, SiGa 5.81 6.80 Germanium, GeGa 6.08 Sulfur, SAs 6.10 Selenium, SeAs 5.89 6.10 Tellurium , TeAs When an electron...34 to the neutral donor or acceptor (Ref 16:15). The following excitonic com- plexes have been observed in GaAs: (i) exciton bound to a neutron donor at

  13. State Counting for Excited Bands of the Fractional Quantum Hall Effect: Exclusion Rules for Bound Excitons

    NASA Astrophysics Data System (ADS)

    Coimbatore Balram, Ajit; Wójs, Arkadiusz; Jain, Jainendra

    2014-03-01

    Exact diagonalization studies have revealed that the energy spectrum of interacting electrons in the lowest Landau level splits, non-perturbatively, into bands. The theory of nearly free composite fermions (CFs) has been shown to be valid for the lowest band, and thus to capture the low temperature physics, but it over-predicts the number of states for the excited bands. We explain the state counting of higher bands in terms of composite fermions with an infinitely strong short range interaction between a CF particle and a CF hole. This interaction, the form of which we derive from the microscopic CF theory, eliminates configurations containing certain tightly bound CF excitons. With this modification, the CF theory reproduces, for all well-defined excited bands, an exact counting for ν > 1 / 3 , and an almost exact counting for ν <= 1 / 3 . The resulting insight clarifies that the corrections to the nearly free CF theory are not thermodynamically significant at sufficiently low temperatures, thus providing a microscopic explanation for why it has proved successful for the analysis of the various properties of the CF Fermi sea. NSF grants DMR-1005536 and DMR-0820404, Polish NCN grant 2011/01/B/ST3/04504 and EU Marie Curie Grant PCIG09-GA-2011-294186, Research Computing and Cyberinfrastructure, PSU and Wroclaw Centre for Networking and Supercomputing

  14. Photoinduced Hund excitons in the breakdown of a two-orbital Mott insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rincon, Julian; Dagotto, Elbio R.; Feiguin, Adrian E.

    We study the photoinduced breakdown of a two-orbital Mott insulator and resulting metallic state. Using time-dependent density matrix renormalization group, we scrutinize the real-time dynamics of the half-filled two-orbital Hubbard model interacting with a resonant radiation field pulse. The breakdown, caused by production of doublon-holon pairs, is enhanced by Hund's exchange, which dynamically activates large orbital fluctuations. The melting of the Mott insulator is accompanied by a high to low spin transition with a concomitant reduction of antiferromagnetic spin fluctuations. Most notably, the overall time response is driven by the photogeneration of excitons with orbital character that are stabilized bymore » Hund's coupling. These unconventional “Hund excitons” correspond to bound spin-singlet orbital-triplet doublon-holon pairs. We study exciton properties such as bandwidth, binding potential, and size within a semiclassical approach. In conclusion, the photometallic state results from a coexistence of Hund excitons and doublon-holon plasma.« less

  15. Photoinduced Hund excitons in the breakdown of a two-orbital Mott insulator

    DOE PAGES

    Rincon, Julian; Dagotto, Elbio R.; Feiguin, Adrian E.

    2018-06-05

    We study the photoinduced breakdown of a two-orbital Mott insulator and resulting metallic state. Using time-dependent density matrix renormalization group, we scrutinize the real-time dynamics of the half-filled two-orbital Hubbard model interacting with a resonant radiation field pulse. The breakdown, caused by production of doublon-holon pairs, is enhanced by Hund's exchange, which dynamically activates large orbital fluctuations. The melting of the Mott insulator is accompanied by a high to low spin transition with a concomitant reduction of antiferromagnetic spin fluctuations. Most notably, the overall time response is driven by the photogeneration of excitons with orbital character that are stabilized bymore » Hund's coupling. These unconventional “Hund excitons” correspond to bound spin-singlet orbital-triplet doublon-holon pairs. We study exciton properties such as bandwidth, binding potential, and size within a semiclassical approach. In conclusion, the photometallic state results from a coexistence of Hund excitons and doublon-holon plasma.« less

  16. Resolving the Spatial Structures of Bound Hole States in Black Phosphorus.

    PubMed

    Qiu, Zhizhan; Fang, Hanyan; Carvalho, Alexandra; Rodin, A S; Liu, Yanpeng; Tan, Sherman J R; Telychko, Mykola; Lv, Pin; Su, Jie; Wang, Yewu; Castro Neto, A H; Lu, Jiong

    2017-11-08

    Understanding the local electronic properties of individual defects and dopants in black phosphorus (BP) is of great importance for both fundamental research and technological applications. Here, we employ low-temperature scanning tunnelling microscope (LT-STM) to probe the local electronic structures of single acceptors in BP. We demonstrate that the charge state of individual acceptors can be reversibly switched by controlling the tip-induced band bending. In addition, acceptor-related resonance features in the tunnelling spectra can be attributed to the formation of Rydberg-like bound hole states. The spatial mapping of the quantum bound states shows two distinct shapes evolving from an extended ellipse shape for the 1s ground state to a dumbbell shape for the 2p x excited state. The wave functions of bound hole states can be well-described using the hydrogen-like model with anisotropic effective mass, corroborated by our theoretical calculations. Our findings not only provide new insight into the many-body interactions around single dopants in this anisotropic two-dimensional material but also pave the way to the design of novel quantum devices.

  17. Exciton characteristics in graphene epoxide.

    PubMed

    Zhu, Xi; Su, Haibin

    2014-02-25

    Exciton characteristics in graphene epoxide (GE) are investigated by density functional theory with quasi-particle corrections and many-body interactions. The nature of the exciton is influenced by epoxide content and detailed geometric configurations. Two kinds of excitons are identified in GE: Frenkel-like exciton originated from the sp(2) carbon cluster and charge-transfer exciton formed by localized states involving both oxygen and carbon atoms. The unusual blue shift associated with the Frenkel-like exciton leaking is highlighted. One scaling relationship is proposed to address the power-law dependence of Frenkel-like exciton binding strength on its size. The charge-transfer exciton appears in GE samples with the high oxygen coverage. Particularly, the exciton in GE structures exhibits long lifetime by analyzing both radiative and nonradiative decay processes. This study sheds light on the potential applications of GE-based structures with attractive high quantum yield in light emission and optoelectronic technology.

  18. Frenkel-Charge-Transfer exciton intermixing theory for molecular crystals with two isolated Frenkel exciton states.

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor; Popescu, Adrian

    We develop an analytical theory for the intra-intermolecular exciton intermixing in periodic 1D chains of planar organic molecules with two isolated low-lying Frenkel exciton states, typical of copper phthalocyanine (CuPc) and other transition metal phthalocyanine molecules. We formulate the Hamiltonian and use the exact Bogoliubov diagonalization procedure to derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer (CT) exciton state. By comparing our theoretical spectrum with available experimental CuPc absorption data, we obtain the parameters of the Frenkel-CT exciton intermixing in CuPc thin films. The two Frenkel exciton states here are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the CT exciton, showing the coupling constant 0.17 eV in agreement with earlier electron transport experiments. Our results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines. DOE-DE-SC0007117 (I.B.), UNC-GA ROI Grant (A.P.).

  19. Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Q. Q.; Muller, A.; Bianucci, P.; Rossi, E.; Xue, Q. K.; Takagahara, T.; Piermarocchi, C.; MacDonald, A. H.; Shih, C. K.

    2005-07-01

    Using photoluminescence spectroscopy, we have investigated the nature of Rabi oscillation damping during optical manipulation of excitonic qubits in self-assembled quantum dots. Rabi oscillations were recorded by varying the pulse amplitude for fixed pulse durations between 4ps and 10ps . Up to five periods are visible, making it possible to quantify the excitation dependent damping. We find that this damping is more pronounced for shorter pulse widths and show that its origin is the nonresonant excitation of carriers in the wetting layer, most likely involving bound-to-continuum and continuum-to-bound transitions.

  20. Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Shun-Wen; Theiss, Jesse; Hazra, Jubin

    2015-08-03

    We study photocurrent generation in individual, suspended carbon nanotube pn-junction diodes formed by electrostatic doping using two gate electrodes. Photocurrent spectra collected under various electrostatic doping concentrations reveal distinctive behaviors for free particle optical transitions and excitonic transitions. In particular, the photocurrent generated by excitonic transitions exhibits a strong gate doping dependence, while that of the free particle transitions is gate independent. Here, the built-in potential of the pn-junction is required to separate the strongly bound electron-hole pairs of the excitons, while free particle excitations do not require this field-assisted charge separation. We observe a sharp, well defined E{sub 11}more » free particle interband transition in contrast with previous photocurrent studies. Several steps are taken to ensure that the active charge separating region of these pn-junctions is suspended off the substrate in a suspended region that is substantially longer than the exciton diffusion length and, therefore, the photocurrent does not originate from a Schottky junction. We present a detailed model of the built-in fields in these pn-junctions, which, together with phonon-assistant exciton dissociation, predicts photocurrents on the same order of those observed experimentally.« less

  1. Distinctive Spectral Features of Exciton and Excimer States in the Ultrafast Electronic Deactivation of the Adenine Dinucleotide

    NASA Astrophysics Data System (ADS)

    Stuhldreier, Mayra C.; Röttger, Katharina; Temps, Friedrich

    We report the observation by transient absorption spectroscopy of distinctive spectro-temporal signatures of delocalized exciton versus relaxed, weakly bound excimer states in the ultrafast electronic deactivation after UV photoexcitation of the adenine dinucleotide.

  2. Internal transitions of neutral (X) and negatively charged (X(-)) magneto-excitons investigated by optically detected resonance (ODR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Nickel, Hans Andreas

    Optically detected resonance (ODR) spectroscopy, an experimental technique combining spectroscopy in the far-infrared and visible regimes of the spectrum, has been applied to non-intentionally- and modulation-doped, quasi-2D GaAs/AlGaAs heterostructures at low temperatures and high magnetic fields to study internal transitions of neutral (X) and negatively charged (X--) magneto-excitons. In quasi-2D GaAs/AlGaAs heterostructures with a low density of free carriers, such as undoped multiple-quantum-wells, the ground state of optical excitations is the neutral exciton. This hydrogenic system was studied by far-infrared ODR spectroscopy, and internal excitonic transitions (IETs) 1s → np+/- from the ground state (1s) to excited states (np+/-) were found. Three samples of different well widths were studied systematically, and the behavior of the observed transitions as a function of the sample well-width was as expected. A predicted consequence of an inherent symmetry to the system was verified experimentally for the first time by the simultaneous observation of IETs and electron and hole cyclotron resonance in one sample in one experiment. In addition, it was also found, that the observability of IETs is destroyed as soon as there is a sign of X---recombination in the photoluminescence spectrum. In quantum wells with a small number of excess electrons the ground state of the system under optical excitation is the negatively charged exciton, X--. This mobile system of a hole binding two electrons differs significantly in certain aspects from its immobile impurity analogue, the negatively charged donor ion D-- . The mobility of the charged complex is tied to a hidden symmetry of magnetic translations, which leads to a new selection rule, that forbids X-- bound-to-bound transitions, in contrast to the D -- system, in which these transitions are dominant. In this dissertation, several samples that show X-- recombination in photoluminescence measurements were studied with

  3. Exciton Transport and Perfect Coulomb Drag

    NASA Astrophysics Data System (ADS)

    Nandi, Debaleena

    2013-03-01

    Exciton condensation is realized in closely-spaced bilayer quantum Hall systems at νT = 1 when the total density in the two 2D electron layers matches the Landau level degeneracy. In this state, electrons in one layer become tightly bound to holes in the other layer, forming a condensate similar to the Cooper pairs in a superconductor. Being charge neutral, these excitons ought to be free to move throughout the bulk of the quantum Hall fluid. One therefore expects that electron current driven in one layer would spontaneously generate a ``hole'' current in the other layer, even in the otherwise insulating bulk of the 2D system. We demonstrate precisely this effect, using a Corbino geometry to defeat edge state transport. Our sample contains two essentially identical two-dimensional electron systems (2DES) in GaAs quantum wells separated by a thin AlGaAs barrier. It is patterned into an annulus with arms protruding from each rim that provide contact to each 2DES separately. A current drag geometry is realized by applying a drive voltage between the outer and inner rim on one 2DES layer while the two rims on the opposite layer are connected together in a closed loop. There is no direct electrical connection between the two layers. At νT = 1 the bulk of the Corbino annulus becomes insulating owing to the quantum Hall gap and net charge transport across the bulk is suppressed. Nevertheless, we find that in the drag geometry appreciable currents do flow in each layer. These currents are almost exactly equal magnitude but, crucially, flow in opposite directions. This phenomenon reflects exciton transport within the νT = 1 condensate, rather than its quasiparticle excitations. We find that quasiparticle transport competes with exciton transport at elevated temperatures, drive levels, and layer separations. This work represents a collaboration with A.D.K. Finck, J.P. Eisenstein, L.N. Pfeiffer and K.W. West. This work is supported by the NSF under grant DMR-1003080.

  4. Quantitative measurements of magnetic polaron binding on acceptors in CdMnTe alloys

    NASA Astrophysics Data System (ADS)

    Nhung, Tran Hong; Planel, R.

    1983-03-01

    The acceptor binding energy is measured as a function of Temperature and composition in Cd1-x Mnx Te alloys, by time resolved spectroscopy. The Bound magnetic polaron effect is measured and compared with a theory accouting for magnetic saturation and fluctuations.

  5. Temperature-dependent excitonic effects in the optical properties of single-layer MoS2

    NASA Astrophysics Data System (ADS)

    Molina-Sánchez, Alejandro; Palummo, Maurizia; Marini, Andrea; Wirtz, Ludger

    2016-04-01

    Temperature influences the performance of two-dimensional (2D) materials in optoelectronic devices. Indeed, the optical characterization of these materials is usually realized at room temperature. Nevertheless, most ab initio studies are still performed without including any temperature effect. As a consequence, important features are thus overlooked, such as the relative height of the excitonic peaks and their broadening, directly related to the temperature and to the nonradiative exciton relaxation time. We present ab initio calculations of the optical response of single-layer MoS2, a prototype 2D material, as a function of temperature using density functional theory and many-body perturbation theory. We compute the electron-phonon interaction using the full spinorial wave functions, i.e., fully taking into account the effects of spin-orbit interaction. We find that bound excitons (A and B peaks) and resonant excitons (C peak) exhibit different behavior with temperature, displaying different nonradiative linewidths. We conclude that the inhomogeneous broadening of the absorption spectra is mainly due to electron-phonon scattering mechanisms. Our calculations explain the shortcomings of previous (zero-temperature) theoretical spectra and match well with the experimental spectra acquired at room temperature. Moreover, we disentangle the contributions of acoustic and optical phonon modes to the quasiparticles and exciton linewidths. Our model also allows us to identify which phonon modes couple to each exciton state, which is useful for the interpretation of resonant Raman-scattering experiments.

  6. Single photon generation through exciton-exciton annihilation in air-suspended carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ishii, Akihiro; Uda, Takushi; Kato, Yuichiro K.

    Carbon nanotubes have great potential for single photon sources as they have stable exciton states even at room temperature and their emission wavelengths cover the telecommunication bands. In recent years, single photon emission from carbon nanotubes has been achieved by creating localized states of excitons. In contrast to such an approach, here we utilize mobile excitons and show that single photons can be generated in air-suspended carbon nanotubes, where exciton diffusion length is as long as several hundred nanometers and exciton-exciton annihilation is efficient. We perform photoluminescence microscopy on as-grown air-suspended carbon nanotubes in order to determine their chirality and suspended length. Photon correlation measurements are performed on nanotube emission at room temperature using a Hanbury-Brown-Twiss setup with InGaAs/InP single photon detectors. We observe antibunching with a clear excitation power dependence, where we obtain g (2) (0) value less than 0.5 at low excitation powers, indicating single photon generation. We show such g (2) (0) data with different chiralities and suspended lengths, and the effects of exciton diffusion on single photon generation processes are discussed. Work supported by KAKENHI (26610080, 16H05962), The Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform). A.I. is supported by MERIT and JSPS Research Fellowship, and T.U. is supported by ALPS.

  7. Exciton effects in the index of refraction of multiple quantum wells and superlattices

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.; Leburton, J. P.

    1986-01-01

    Theoretical calculations of the index of refraction of multiple quantum wells and superlattices are presented. The model incorporates both the bound and continuum exciton contributions for the gamma region transitions. In addition, the electronic band structure model has both superlattice and bulk alloy properties. The results indicate that large light-hole masses, i.e., of about 0.23, produced by band mixing effects, are required to account for the experimental data. Furthermore, it is shown that superlattice effects rapidly decrease for energies greater than the confining potential barriers. Overall, the theoretical results are in very good agreement with the experimental data and show the importance of including exciton effects in the index of refraction.

  8. An Efficient, "Burn in" Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor.

    PubMed

    Cha, Hyojung; Wu, Jiaying; Wadsworth, Andrew; Nagitta, Jade; Limbu, Saurav; Pont, Sebastian; Li, Zhe; Searle, Justin; Wyatt, Mark F; Baran, Derya; Kim, Ji-Seon; McCulloch, Iain; Durrant, James R

    2017-09-01

    A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'″-di(2-octyldodecyl)-2,2';5',2″;5″,2'″-quaterthiophen-5,5'″-diyl)] (PffBT4T-2OD) as a donor polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH-IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T-2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T-2OD:PC 71 BM solar cells show significant efficiency loss under simulated solar irradiation ("burn in" degradation) due to the trap-assisted recombination through increased photoinduced trap states, PffBT4T-2OD:EH-IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T-2OD:EH-IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T-2OD:PC 71 BM devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Complete quantum control of exciton qubits bound to isoelectronic centres.

    PubMed

    Éthier-Majcher, G; St-Jean, P; Boso, G; Tosi, A; Klem, J F; Francoeur, S

    2014-05-30

    In recent years, impressive demonstrations related to quantum information processing have been realized. The scalability of quantum interactions between arbitrary qubits within an array remains however a significant hurdle to the practical realization of a quantum computer. Among the proposed ideas to achieve fully scalable quantum processing, the use of photons is appealing because they can mediate long-range quantum interactions and could serve as buses to build quantum networks. Quantum dots or nitrogen-vacancy centres in diamond can be coupled to light, but the former system lacks optical homogeneity while the latter suffers from a low dipole moment, rendering their large-scale interconnection challenging. Here, through the complete quantum control of exciton qubits, we demonstrate that nitrogen isoelectronic centres in GaAs combine both the uniformity and predictability of atomic defects and the dipole moment of semiconductor quantum dots. This establishes isoelectronic centres as a promising platform for quantum information processing.

  10. A toy model to investigate the existence of excitons in the ground state of strongly-correlated semiconductor

    NASA Astrophysics Data System (ADS)

    Karima, H. R.; Majidi, M. A.

    2018-04-01

    Excitons, quasiparticles associated with bound states between an electron and a hole and are typically created when photons with a suitable energy are absorbed in a solid-state material. We propose to study a possible emergence of excitons, created not by photon absorption but the effect of strong electronic correlations. This study is motivated by a recent experimental study of a substrate material SrTiO3 (STO) that reveals strong exitonic signals in its optical conductivity. Here we conjecture that some excitons may already exist in the ground state as a result of the electronic correlations before the additional excitons being created later by photon absorption. To investigate the existence of excitons in the ground state, we propose to study a simple 4-energy-level model that mimics a situation in strongly-correlated semiconductors. The four levels are divided into two groups, lower and upper groups separated by an energy gap, Eg , mimicking the valence and the conduction bands, respectively. Further, we incorporate repulsive Coulomb interactions between the electrons. The model is then solved by exact diagonalization method. Our result shows that the toy model can demonstrate band gap widening or narrowing and the existence of exciton in the ground state depending on interaction parameter values.

  11. Direct Evidence of Exciton-Exciton Annihilation in Single-Crystalline Organic Metal Halide Nanotube Assemblies.

    PubMed

    Ma, Ying-Zhong; Lin, Haoran; Du, Mao-Hua; Doughty, Benjamin; Ma, Biwu

    2018-05-03

    Excitons in low-dimensional organic-inorganic metal halide hybrid structures are commonly thought to undergo rapid self-trapping following creation due to strong quantum confinement and exciton-phonon interaction. Here we report an experimental study probing the dynamics of these self-trapped excitons in the single-crystalline bulk assemblies of 1D organic metal halide nanotubes, (C 6 H 13 N 4 ) 3 Pb 2 Br 7 . Through time-resolved photoluminescence (PL) measurements at different excitation intensities, we observed a marked variation in the PL decay behavior that is manifested by an accelerated decay rate with increasing excitation fluence. Our results offer direct evidence of the occurrence of an exciton-exciton annihilation process, a nonlinear relaxation phenomenon that takes place only when some of the self-trapped excitons become mobile and can approach either each other or those trapped excitons. We further identify a fast and dominant PL decay component with a lifetime of ∼2 ns with a nearly invariant relative area for all acquired PL kinetics, suggesting that this rapid relaxation process is intrinsic.

  12. 4P-NPD ultra-thin films as efficient exciton blocking layers in DBP/C70 based organic solar cells

    NASA Astrophysics Data System (ADS)

    Patil, Bhushan R.; Liu, Yiming; Qamar, Talha; Rubahn, Horst-Günter; Madsen, Morten

    2017-09-01

    Exciton blocking effects from ultra-thin layers of N,N‧-di-1-naphthalenyl-N,N‧-diphenyl [1,1‧:4‧,1″:4″,1‴-quaterphenyl]-4,4‴-diamine (4P-NPD) were investigated in small molecule-based inverted organic solar cells (OSCs) using tetraphenyldibenzoperiflanthene as the electron donor material and fullerene (C70) as the electron acceptor material. The short-circuit current density (J SC) and power conversion efficiency (PCE) of the optimized OSCs with 0.7 nm thick 4P-NPD were approximately 16% and 24% higher, respectively, compared to reference devices without exciton blocking layers (EBLs). Drift diffusion-based device modeling was conducted to model the full current density-voltage (JV) characteristics and external quantum efficiency spectrum of the OSCs, and photoluminescence measurements were conducted to investigate the exciton blocking effects with increasing thicknesses of the 4P-NPD layer. Importantly, coupled optical and electrical modeling studies of the device behaviors and exciton generation rates and densities in the active layer for different 4P-NPD layer thicknesses were conducted, in order to gain a complete understanding of the observed increase in PCE for 4P-NPD layer thicknesses up to 1 nm, and the observed decrease in PCE for layer thicknesses beyond 1 nm. This work demonstrates a route for guiding the integration of EBLs in OSC devices.

  13. Exciton-exciton annihilation in a disordered molecular system by direct and multistep Förster transfer

    NASA Astrophysics Data System (ADS)

    Fennel, Franziska; Lochbrunner, Stefan

    2015-10-01

    Exciton annihilation dynamics in a disordered organic model system is investigated by ultrafast absorption spectroscopy. We show that the temporal evolution of the exciton density can be quantitatively understood by applying Förster energy transfer theory to describe the diffusion of the excitons as well as the annihilation step itself. To this end, previous formulations of Förster theory are extended to account for the inhomogeneous distribution of the S0-S1 transition energies resulting in an effective exciton diffusion constant. Two annihilation pathways are considered, the direct transfer of an exciton between two excited molecules and diffusive motion by multiple transfer steps towards a second exciton preceding the annihilation event. One pathway can be emphasized with respect to the other by tuning the exciton diffusion constant via the chromophore concentration. The investigated system allows one to extract all relevant parameters for the description and provides in this way a proof that the annihilation dynamics can be entirely understood and modeled by Förster energy transfer.

  14. Exciton-exciton scattering: Composite boson versus elementary boson

    NASA Astrophysics Data System (ADS)

    Combescot, M.; Betbeder-Matibet, O.; Combescot, R.

    2007-05-01

    This paper shows the necessity of introducing a quantum object, the “coboson,” to properly describe, through a fermion scheme, any composite particle, such as the exciton, which is made of two fermions. Although commonly dealt with as elementary bosons, these composite bosons—cobosons in short—differ from them due to their composite nature which makes the handling of their many-body effects quite different from the existing treatments valid for elementary bosons. As a direct consequence of this composite nature, there is no correct way to describe the interaction between cobosons as a potential V . This is rather dramatic because, with the Hamiltonian not written as H=H0+V , all the usual approaches to many-body effects fail. In particular, the standard form of the Fermi golden rule, written in terms of V , cannot be used to obtain the transition rates of two cobosons. To get them, we have had to construct an unconventional expression for this Fermi golden rule in which H only appears. Making use of this expression, we give here a detailed calculation of the time evolution of two excitons. We compare the results of this exact approach with the ones obtained by using an effective bosonic Hamiltonian in which the excitons are considered as elementary bosons with effective scatterings between them, these scatterings resulting from an elaborate mapping between the two-fermion space and the ideal boson space. We show that the relation between the inverse lifetime and the sum of the transition rates for elementary bosons differs from the one of the composite bosons by a factor of 1/2 , so that it is impossible to find effective scatterings between bosonic excitons giving these two physical quantities correctly, whatever the mapping from composite bosons to elementary bosons is. The present paper thus constitutes a strong mathematical proof that, in spite of a widely spread belief, we cannot forget the composite nature of these cobosons, even in the extremely low

  15. Formation of definite GaN p-n junction by Mg-ion implantation to n--GaN epitaxial layers grown on a high-quality free-standing GaN substrate

    NASA Astrophysics Data System (ADS)

    Oikawa, Takuya; Saijo, Yusuke; Kato, Shigeki; Mishima, Tomoyoshi; Nakamura, Tohru

    2015-12-01

    P-type conversion of n--GaN by Mg-ion implantation was successfully performed using high quality GaN epitaxial layers grown on free-standing low-dislocation-density GaN substrates. These samples showed low-temperature PL spectra quite similar to those observed from Mg-doped MOVPE-grown p-type GaN, consisting of Mg related donor-acceptor pair (DAP) and acceptor bound exciton (ABE) emission. P-n diodes fabricated by the Mg-ion implantation showed clear rectifying I-V characteristics and UV and blue light emissions were observed at forward biased conditions for the first time.

  16. Chromophore-Dependent Intramolecular Exciton-Vibrational Coupling in the FMO Complex: Quantification and Importance for Exciton Dynamics.

    PubMed

    Padula, Daniele; Lee, Myeong H; Claridge, Kirsten; Troisi, Alessandro

    2017-11-02

    In this paper, we adopt an approach suitable for monitoring the time evolution of the intramolecular contribution to the spectral density of a set of identical chromophores embedded in their respective environments. We apply the proposed method to the Fenna-Matthews-Olson (FMO) complex, with the objective to quantify the differences among site-dependent spectral densities and the impact of such differences on the exciton dynamics of the system. Our approach takes advantage of the vertical gradient approximation to reduce the computational demands of the normal modes analysis. We show that the region of the spectral density that is believed to strongly influence the exciton dynamics changes significantly in the timescale of tens of nanoseconds. We then studied the impact of the intramolecular vibrations on the exciton dynamics by considering a model of FMO in a vibronic basis and neglecting the interaction with the environment to isolate the role of the intramolecular exciton-vibration coupling. In agreement with the assumptions in the literature, we demonstrate that high frequency modes at energy much larger than the excitonic energy splitting have negligible influence on exciton dynamics despite the large exciton-vibration coupling. We also find that the impact of including the site-dependent spectral densities on exciton dynamics is not very significant, indicating that it may be acceptable to apply the same spectral density on all sites. However, care needs to be taken for the description of the exciton-vibrational coupling in the low frequency part of intramolecular modes because exciton dynamics is more susceptible to low frequency modes despite their small Huang-Rhys factors.

  17. Complexes of dipolar excitons in layered quasi-two-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor V.; Vladimirova, Maria R.

    2018-04-01

    We discuss neutral and charged complexes (biexcitons and trions) formed by indirect excitons in layered quasi-two-dimensional semiconductor heterostructures. Indirect excitons—long-lived neutral Coulomb-bound pairs of electrons and holes of different layers—have been known for semiconductor coupled quantum wells and have recently been reported for van der Waals heterostructures such as double bilayer graphene and transition-metal dichalcogenides. Using the configuration space approach, we derive the analytical expressions for the trion and biexciton binding energies as a function of interlayer distance. The method captures essential kinematics of complex formation to reveal significant binding energies, up to a few tens of meV for typical interlayer distances ˜3 -5 Å , with the trion binding energy always being greater than that of the biexciton. Our results can contribute to the understanding of more complex many-body phenomena such as exciton Bose-Einstein condensation and Wigner-like electron-hole crystallization in layered semiconductor heterostructures.

  18. Exciton generation/dissociation/charge-transfer enhancement in inorganic/organic hybrid solar cells by robust single nanocrystalline LnPxOy (Ln = Eu, Y) doping.

    PubMed

    Jin, Xiao; Sun, Weifu; Chen, Zihan; Wei, Taihuei; Chen, Chuyang; He, Xingdao; Yuan, Yongbiao; Li, Yue; Li, Qinghua

    2014-06-11

    Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole transfer. Inorganic/organic hybrid solar cell, although still in its infancy, has attracted great interest thus far. One of the promising ways to enhance exciton dissociation or electron-hole transport is the doping of lanthanide phosphate ions. However, the underlying photophysical mechanism remains poorly understood. Herein, by applying femtosecond transient absorption spectroscopy, we successfully distinguished hot electron, less energetic electron, hole transport from electron-hole recombination. Concrete evidence has been provided that lanthanide phosphate doping improves the efficiency of both hot electron and "less energetic" electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 12.7 ps, that is, more than 60% faster than pure TiO2 acceptor. Such improvement was ascribed to the facts that the conduction band (CB) edge energy level of TiO2 has been elevated by 0.2 eV, while the valence band level almost remains unchanged, thus not only narrowing the energy offset between CB levels of TiO2 and P3HT, but also meanwhile enlarging the band gap of TiO2 itself that permits one to inhibit electron-hole recombination within TiO2. Consequently, lanthanide phosphate doped TiO2/P3HT bulk-heterojunction solar cell has been demonstrated to be a promising hybrid solar cell, and a notable power conversion efficiency of 2.91% is therefore attained. This work indicates that lanthanide compound ions can efficiently facilitate exciton generation, dissociation, and charge transport, thus enhancing photovoltaic performance.

  19. Spatially indirect excitons in coupled quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Chih-Wei Eddy

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunitiesmore » for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer) 2 were

  20. The Role of FRET in Non-Fullerene Organic Solar Cells: Implications for Molecular Design.

    PubMed

    Gautam, Bhoj R; Younts, Robert; Carpenter, Joshua; Ade, Harald; Gundogdu, Kenan

    2018-04-19

    Non-fullerene acceptors (NFAs) have been demonstrated to be promising candidates for highly efficient organic photovoltaic (OPV) devices. The tunability of absorption characteristics of NFAs can be used to make OPVs with complementary donor-acceptor absorption to cover a broad range of the solar spectrum. However, both charge transfer from donor to acceptor moieties and energy (energy) transfer from high-bandgap to low-bandgap materials are possible in such structures. Here, we show that when charge transfer and exciton transfer processes are both present, the coexistence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low-bandgap material is hindered due to exciton population in the larger bandgap acceptor domains. Our results further show that excitons in low-bandgap material should have a relatively long lifetime compared to the transfer time of excitons from higher bandgap material in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.

  1. Balance the Carrier Mobility To Achieve High Performance Exciplex OLED Using a Triazine-Based Acceptor.

    PubMed

    Hung, Wen-Yi; Chiang, Pin-Yi; Lin, Shih-Wei; Tang, Wei-Chieh; Chen, Yi-Ting; Liu, Shih-Hung; Chou, Pi-Tai; Hung, Yi-Tzu; Wong, Ken-Tsung

    2016-02-01

    A star-shaped 1,3,5-triazine/cyano hybrid molecule CN-T2T was designed and synthesized as a new electron acceptor for efficient exciplex-based OLED emitter by mixing with a suitable electron donor (Tris-PCz). The CN-T2T/Tris-PCz exciplex emission shows a high ΦPL of 0.53 and a small ΔET-S = -0.59 kcal/mol, affording intrinsically efficient fluorescence and highly efficient exciton up-conversion. The large energy level offsets between Tris-PCz and CN-T2T and the balanced hole and electron mobility of Tris-PCz and CN-T2T, respectively, ensuring sufficient carrier density accumulated in the interface for efficient generation of exciplex excitons. Employing a facile device structure composed as ITO/4% ReO3:Tris-PCz (60 nm)/Tris-PCz (15 nm)/Tris-PCz:CN-T2T(1:1) (25 nm)/CN-T2T (50 nm)/Liq (0.5 nm)/Al (100 nm), in which the electron-hole capture is efficient without additional carrier injection barrier from donor (or acceptor) molecule and carriers mobilities are balanced in the emitting layer, leads to a highly efficient green exciplex OLED with external quantum efficiency (EQE) of 11.9%. The obtained EQE is 18% higher than that of a comparison device using an exciplex exhibiting a comparable ΦPL (0.50), in which TCTA shows similar energy levels but higher hole mobility as compared with Tris-PCz. Our results clearly indicate the significance of mobility balance in governing the efficiency of exciplex-based OLED. Exploiting the Tris-PCz:CN-T2T exciplex as the host, we further demonstrated highly efficient yellow and red fluorescent OLEDs by doping 1 wt % Rubrene and DCJTB as emitter, achieving high EQE of 6.9 and 9.7%, respectively.

  2. Exciton Seebeck effect in molecular systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yun-An, E-mail: yunan@nano.gznc.edu.cn; Cai, Shaohong

    2014-08-07

    We investigate the exciton dynamics under temperature difference with the hierarchical equations of motion. Through a nonperturbative simulation of the transient absorption of a heterogeneous trimer model, we show that the temperature difference causes exciton population redistribution and affects the exciton transfer time. It is found that one can reproduce not only the exciton population redistribution but also the change of the exciton transfer time induced by the temperature difference with a proper tuning of the site energies of the aggregate. In this sense, there exists a site energy shift equivalence for any temperature difference in a broad range. Thismore » phenomenon is similar to the Seebeck effect as well as spin Seebeck effect and can be named as exciton Seebeck effect.« less

  3. Exciton size and quantum transport in nanoplatelets.

    PubMed

    Pelzer, Kenley M; Darling, Seth B; Gray, Stephen K; Schaller, Richard D

    2015-12-14

    Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.

  4. Even exciton series in Cu2O

    NASA Astrophysics Data System (ADS)

    Schweiner, Frank; Main, Jörg; Wunner, Günter; Uihlein, Christoph

    2017-05-01

    Recent investigations of excitonic absorption spectra in cuprous oxide (Cu2O ) have shown that it is indispensable to account for the complex valence-band structure in the theory of excitons. In Cu2O , parity is a good quantum number and thus the exciton spectrum falls into two parts: the dipole-active exciton states of negative parity and odd angular momentum, which can be observed in one-photon absorption (Γ4- symmetry), and the exciton states of positive parity and even angular momentum, which can be observed in two-photon absorption (Γ5+ symmetry). The unexpected observation of D excitons in two-photon absorption has given first evidence that the dispersion properties of the Γ5+ orbital valence band are giving rise to a coupling of the yellow and green exciton series. However, a first theoretical treatment by Uihlein et al. [Phys. Rev. B 23, 2731 (1981), 10.1103/PhysRevB.23.2731] was based on a simplified spherical model. The observation of F excitons in one-photon absorption is a further proof of a coupling between yellow and green exciton states. Detailed investigations on the fine structure splitting of the F exciton by F. Schweiner et al. [Phys. Rev. B 93, 195203 (2016), 10.1103/PhysRevB.93.195203] have proved the importance of a more realistic theoretical treatment including terms with cubic symmetry. In this paper we show that the even and odd parity exciton system can be consistently described within the same theoretical approach. However, the Hamiltonian of the even parity system needs, in comparison to the odd exciton case, modifications to account for the very small radius of the yellow and green 1 S exciton. In the presented treatment, we take special care of the central-cell corrections, which comprise a reduced screening of the Coulomb potential at distances comparable to the polaron radius, the exchange interaction being responsible for the exciton splitting into ortho and para states, and the inclusion of terms in the fourth power of p in the

  5. Measuring the Influence of Dielectric Environment on 2D Excitons in Monolayer Semiconductors: Insight from High Magnetic Fields1

    NASA Astrophysics Data System (ADS)

    Stier, Andreas

    The relatively heavy electrons and holes in monolayer semiconductors such as MoS2 form tightly-bound excitons with large binding energies, thus motivating magneto-optical studies in high magnetic fields. Because 2D excitons in these materials necessarily lie close to a surface, their properties are expected to be strongly influenced by the surrounding dielectric environment. However, systematic studies exploring this role are challenging, in part because the most readily accessible exciton parameter - the exciton's optical transition energy - is largely unaffected by the surrounding medium. Here we show that the role of the dielectric environment can be revealed through its systematic influence on the size of the exciton, which can be directly measured via the diamagnetic shift of the exciton transition in high magnetic fields. Using exfoliated WSe2 monolayers affixed to single-mode optical fibers, we tune the surrounding dielectric environment by encapsulating the monolayers with different materials, and perform polarization resolved low-temperature magneto-absorption studies to 65 tesla. The systematic increase of the exciton's size with dielectric screening, and concurrent two-fold reduction in binding energy (also inferred from these measurements), is quantitatively compared with leading theoretical models based on the Keldysh potential. These results demonstrate how exciton properties can be tuned in future 2D devices and van der Waals heterostructures. 1In collaboration with S.A. Crooker (NHMFL); J. Kono (Rice University); K.M. McCreary, B.T. Jonker (Naval Research Lab); N.P. Wilson, G. Clark, X. Xu (University of Washington).

  6. Exciton size and quantum transport in nanoplatelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelzer, Kenley M., E-mail: kpelzer@anl.gov; Gray, Stephen K.; Darling, Seth B.

    2015-12-14

    Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we exploremore » this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.« less

  7. Fullerene derivatives as electron donor for organic photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Taojun; Wang, Xiao-Feng, E-mail: xf-wang@yz.yamagata-u.ac.jp, E-mail: ziruo@yz.yamagata-u.ac.jp; Sano, Takeshi

    2013-11-11

    We demonstrated the performance of unconventional, all-fullerene-based, planar heterojunction (PHJ) organic photovoltaic (OPV) cells using fullerene derivatives indene-C{sub 60} bisadduct (ICBA) and phenyl C{sub 61}-butyric acid methyl ester as the electron donors with fullerene C{sub 70} as the electron acceptor. Two different charge generation processes, including charge generation in the fullerene bulk and exciton dissociation at the donor-acceptor interface, have been found to exist in such all-fullerene-based PHJ cells and the contribution to the total photocurrent from each process is strongly dependent on the thickness of fullerene donor. The optimized 5 nm ICBA/40 nm C{sub 70} PHJ cell gives clear external quantummore » efficiency responses for the long-wavelength photons corresponding to the dissociation of strongly bound Frenkel excitons, which is hardly observed in fullerene-based single layer reference devices. This approach using fullerene as a donor material provides further possibilities for developing high performance OPV cells.« less

  8. A charge carrier transport model for donor-acceptor blend layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Janine, E-mail: janine.fischer@iapp.de; Widmer, Johannes; Koerner, Christian

    2015-01-28

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for themore » characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.« less

  9. Vaccine perception among acceptors and non-acceptors in Sokoto State, Nigeria.

    PubMed

    Murele, Bola; Vaz, Rui; Gasasira, Alex; Mkanda, Pascal; Erbeto, Tesfaye; Okeibunor, Joseph

    2014-05-30

    Vaccine perceptions among acceptors and non-acceptors of childhood vaccination were explored. Seventy-two care givers, among them, acceptors and non-acceptors were interviewed in-depth with an interview guide that assessed vaccine acceptance, social and personality factors, and health belief model (HBM) categories in relation to oral polio vaccine (perceived susceptibility, severity, cost barriers, general barriers, benefits, knowledge, and engagement in preventative health behaviours). Community leaders were purposively selected while parents were selected on the basis of availability while ensuring the different attitude to vaccines was covered. Results showed that the HBM framework was found to be appropriate for identifying and distinguishing vaccine acceptors and non-acceptors. In addition, the HBM categories of benefits and susceptibility were found to influence oral polio vaccine acceptance. Second, the opinion of family members about the oral polio vaccine moderated the relationship between number of social ties and vaccine acceptance. Further, oral polio vaccine acceptance was related to outbreaks of paralysis of any sort, but not aggregate scores of other preventative health behaviours. Implications of this study include the investigation of vaccine acceptance in a high risk population. Research was done to investigate vaccine acceptance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Dynamics of exciton transfer in coupled polymer chains.

    PubMed

    Zhang, Y L; Liu, X J; Sun, Z; An, Z

    2013-05-07

    The dynamics of singlet and triplet exciton transfer in coupled polymer chains are investigated within the Su-Schrieffer-Heeger+Pariser-Parr-Pople model including both electron-phonon (e-p) coupling and electron-electron (e-e) interactions, using a multi-configurational time-dependent Hartree-Fock dynamic method. In order to explain the processes involved, the effects of on-site and long-range e-e interactions on the locality of the singlet and triplet excitons are first investigated on an isolated chain. It is found that the locality of the singlet exciton decreases, while the locality of the triplet exciton increases with an increase in the on-site e-e interactions. On the other hand, an increase in the long-range e-e interaction results in a more localized singlet exciton and triplet exciton. In coupled polymer chains, we then quantitatively show the yields of singlet and triplet exciton transfer products under the same interchain coupling. It is found that the yield of singlet interchain excitons is much higher than that of triplet interchain excitons, that is to say, singlet exciton transfer is significantly easier than that for triplet excitons. This results from the fact that the singlet exciton is more delocalized than the triplet exciton. In addition, hopping of electrons with opposite spins between the coupled chains can facilitate the transfer of singlet excitons. The results are of great significance for understanding the photoelectric conversion process and developing high-power organic optoelectronic applications.

  11. Effect of Non-fullerene Acceptors' Side Chains on the Morphology and Photovoltaic Performance of Organic Solar Cells.

    PubMed

    Zhang, Cai'e; Feng, Shiyu; Liu, Yahui; Hou, Ran; Zhang, Zhe; Xu, Xinjun; Wu, Youzhi; Bo, Zhishan

    2017-10-04

    Three indacenodithieno[3,2-b]thiophene (IT) cored small molecular acceptors (ITIC-SC6, ITIC-SC8, and ITIC-SC2C6) were synthesized, and the influence of side chains on their performances in solar cells was systematically probed. Our investigations have demonstrated the variation of side chains greatly affects the charge dissociation, charge mobility, and morphology of the donor:acceptor blend films. ITIC-SC2C6 with four branched side chains showed improved solubility, which can ensure the polymer donor to form favorable fibrous nanostructure during the drying of the blend film. Consequently, devices based on PBDB-ST:ITIC-SC2C6 demonstrated higher charge mobility, more effective exciton dissociation, and the optimal power conversion efficiency up to 9.16% with an FF of 0.63, a J sc of 15.81 mA cm -2 , and a V oc of 0.92 V. These results reveal that the side chain engineering is a valid way of tuning the morphology of blend films and further improving PCE in polymer solar cells.

  12. Bose-Einstein condensation and indirect excitons: a review.

    PubMed

    Combescot, Monique; Combescot, Roland; Dubin, François

    2017-06-01

    We review recent progress on Bose-Einstein condensation (BEC) of semiconductor excitons. The first part deals with theory, the second part with experiments. This Review is written at a time where the problem of exciton Bose-Einstein condensation has just been revived by the understanding that the exciton condensate must be dark because the exciton ground state is not coupled to light. Here, we theoretically discuss this missed understanding before providing its experimental support through experiments that scrutinize indirect excitons made of spatially separated electrons and holes. The theoretical part first discusses condensation of elementary bosons. In particular, the necessary inhibition of condensate fragmentation by exchange interaction is stressed, before extending the discussion to interacting bosons with spin degrees of freedom. The theoretical part then considers composite bosons made of two fermions like semiconductor excitons. The spin structure of the excitons is detailed, with emphasis on the crucial fact that ground-state excitons are dark: indeed, this imposes the exciton Bose-Einstein condensate to be not coupled to light in the dilute regime. Condensate fragmentations are then reconsidered. In particular, it is shown that while at low density, the exciton condensate is fully dark, it acquires a bright component, coherent with the dark one, beyond a density threshold: in this regime, the exciton condensate is 'gray'. The experimental part first discusses optical creation of indirect excitons in quantum wells, and the detection of their photoluminescence. Exciton thermalisation is also addressed, as well as available approaches to estimate the exciton density. We then switch to specific experiments where indirect excitons form a macroscopic fragmented ring. We show that such ring provides efficient electrostatic trapping in the region of the fragments where an essentially-dark exciton Bose-Einstein condensate is formed at sub-Kelvin bath

  13. Quantum corrections of the truncated Wigner approximation applied to an exciton transport model.

    PubMed

    Ivanov, Anton; Breuer, Heinz-Peter

    2017-04-01

    We modify the path integral representation of exciton transport in open quantum systems such that an exact description of the quantum fluctuations around the classical evolution of the system is possible. As a consequence, the time evolution of the system observables is obtained by calculating the average of a stochastic difference equation which is weighted with a product of pseudoprobability density functions. From the exact equation of motion one can clearly identify the terms that are also present if we apply the truncated Wigner approximation. This description of the problem is used as a basis for the derivation of a new approximation, whose validity goes beyond the truncated Wigner approximation. To demonstrate this we apply the formalism to a donor-acceptor transport model.

  14. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, F.; Schmitzer, H.; Kunert, G.; Hommel, D.; Ge, J.; Duscher, G.; Langbein, W.; Wagner, H. P.

    2017-12-01

    We studied the emission of bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ˜1.5 μm length and ˜250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  15. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods.

    PubMed

    Mohammadi, F; Schmitzer, H; Kunert, G; Hommel, D; Ge, J; Duscher, G; Langbein, W; Wagner, H P

    2017-12-15

    We studied the emission of bare and aluminum quinoline (Alq 3 )/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ∼1.5 μm length and ∼250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq 3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq 3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq 3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  16. Temperature Evolution of Excitonic Absorptions in Cd(1-x)Zn(x)Te Materials

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Henry, Ross

    2007-01-01

    The studies consist of measuring the frequency dependent transmittance (T) and reflectance (R) above and below the optical band-gap in the UV/Visible and infrared frequency ranges for Cd(l-x),Zn(x),Te materials for x=0 and x=0.04. Measurements were also done in the temperature range from 5 to 300 K. The results show that the optical gap near 1.49 eV at 300 K increases to 1.62 eV at 5 K. Finally, we observe sharp absorption peaks near this gap energy at low temperatures. The close proximity of these peaks to the optical transition threshold suggests that they originate from the creation of bound electron-hole pairs or excitons. The decay of these excitonic absorptions may contribute to a photoluminescence and transient background response of these back-illuminated HgCdTe CCD detectors.

  17. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites

    NASA Astrophysics Data System (ADS)

    Blancon, J.-C.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C. M. M.; Appavoo, K.; Sfeir, M. Y.; Tretiak, S.; Ajayan, P. M.; Kanatzidis, M. G.; Even, J.; Crochet, J. J.; Mohite, A. D.

    2017-03-01

    Understanding and controlling charge and energy flow in state-of-the-art semiconductor quantum wells has enabled high-efficiency optoelectronic devices. Two-dimensional (2D) Ruddlesden-Popper perovskites are solution-processed quantum wells wherein the band gap can be tuned by varying the perovskite-layer thickness, which modulates the effective electron-hole confinement. We report that, counterintuitive to classical quantum-confined systems where photogenerated electrons and holes are strongly bound by Coulomb interactions or excitons, the photophysics of thin films made of Ruddlesden-Popper perovskites with a thickness exceeding two perovskite-crystal units (>1.3 nanometers) is dominated by lower-energy states associated with the local intrinsic electronic structure of the edges of the perovskite layers. These states provide a direct pathway for dissociating excitons into longer-lived free carriers that substantially improve the performance of optoelectronic devices.

  18. Exciton dispersion in molecular solids

    NASA Astrophysics Data System (ADS)

    Cudazzo, Pierluigi; Sottile, Francesco; Rubio, Angel; Gatti, Matteo

    2015-03-01

    The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron-hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier-Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe-Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators.

  19. Can Disorder Enhance Incoherent Exciton Diffusion?

    PubMed

    Lee, Elizabeth M Y; Tisdale, William A; Willard, Adam P

    2015-07-30

    Recent experiments aimed at probing the dynamics of excitons have revealed that semiconducting films composed of disordered molecular subunits, unlike expectations for their perfectly ordered counterparts, can exhibit a time-dependent diffusivity in which the effective early time diffusion constant is larger than that of the steady state. This observation has led to speculation about what role, if any, microscopic disorder may play in enhancing exciton transport properties. In this article, we present the results of a model study aimed at addressing this point. Specifically, we introduce a general model, based upon Förster theory, for incoherent exciton diffusion in a material composed of independent molecular subunits with static energetic disorder. Energetic disorder leads to heterogeneity in molecule-to-molecule transition rates, which we demonstrate has two important consequences related to exciton transport. First, the distribution of local site-specific hopping rates is broadened in a manner that results in a decrease in average exciton diffusivity relative to that in a perfectly ordered film. Second, since excitons prefer to make transitions that are downhill in energy, the steady state distribution of exciton energies is biased toward low-energy molecular subunits, those that exhibit reduced diffusivity relative to a perfectly ordered film. These effects combine to reduce the net diffusivity in a manner that is time dependent and grows more pronounced as disorder is increased. Notably, however, we demonstrate that the presence of energetic disorder can give rise to a population of molecular subunits with exciton transfer rates exceeding those of subunits in an energetically uniform material. Such enhancements may play an important role in processes that are sensitive to molecular-scale fluctuations in exciton density field.

  20. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    DOE PAGES

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; ...

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar tomore » other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.« less

  1. Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures

    PubMed Central

    Golmakaniyoon, Sepideh; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures. PMID:27698422

  2. Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feddi, E., E-mail: e.feddi@um5s.net.ma; Zouitine, A.; Oukerroum, A.

    We study the effect of an external electric field on an exciton bound to an ionized donor (D{sup +}, X) confined in a spherical quantum dot using a perturbative-variational method where the wave function and energy are developed in series of powers of the electric field strength. After testing this new approach in the determination of the band gap for some semiconductor materials, we generalize it to the case of (D{sup +}, X) in the presence of the electric field and for several materials ZnO, PbSe, and InAs, with significant values of the mass ratio. Three interesting results can bemore » deduced: First, we show that the present method allows to determine the ground state energy in the presence of a weak electric field in a simple way (E = E{sub 0} − αf{sup 2}) using the energy without electric field E{sub 0} and the polarizability α. The second point is that our theoretical predictions show that the polarizability of (D{sup +}, X) varies proportionally to R{sup 3.5} and follows an ordering α{sub D{sup 0}}« less

  3. Distinct exciton dissociation behavior of organolead trihalide perovskite and excitonic semiconductors studied in a same device

    DOE PAGES

    Hu, Miao; Bi, Cheng; Yuan, Yongbo; ...

    2015-01-15

    The nonexcitonic character for organometal trihalide perovskites is demonstrated by examining the field-dependent exciton dissociation behavior. Moreover, it is found that photogenerated excitons can be effectively dissociated into free charges inside perovskite without the assistance of charge extraction layer or external field, which is a stark contrast to the charge-separation behavior in excitonic materials in the same photovoltaic operation system.

  4. Excitonic Effects in Methylammonium Lead Halide Perovskites.

    PubMed

    Chen, Xihan; Lu, Haipeng; Yang, Ye; Beard, Matthew C

    2018-05-17

    The exciton binding energy in methylammonium lead iodide (MAPbI 3 ) is about 10 meV, around 1/3 of the available thermal energy ( k B T ∼ 26 meV) at room temperature. Thus, exciton populations are not stable at room temperature at moderate photoexcited carrier densities. However, excitonic resonances dominate the absorption onset. Furthermore, these resonances determine the transient absorbance and transient reflectance spectra. The exciton binding energy is a reflection of the Coulomb interaction energy between photoexcited electrons and holes. As such, it serves as a marker for the strength of electron/hole interactions and impacts a variety of phenomena, such as, absorption, radiative recombination, and Auger recombination. In this Perspective, we discuss the role of excitons and excitonic resonances in the optical properties of lead-halide perovskite semiconductors. Finally, we discuss how the strong light-matter interactions induce an optical stark effect splitting the doubly spin degenerate ground exciton states and are easily observed at room temperature.

  5. Subdiffusive exciton transport in quantum dot solids.

    PubMed

    Akselrod, Gleb M; Prins, Ferry; Poulikakos, Lisa V; Lee, Elizabeth M Y; Weidman, Mark C; Mork, A Jolene; Willard, Adam P; Bulović, Vladimir; Tisdale, William A

    2014-06-11

    Colloidal quantum dots (QDs) are promising materials for use in solar cells, light-emitting diodes, lasers, and photodetectors, but the mechanism and length of exciton transport in QD materials is not well understood. We use time-resolved optical microscopy to spatially visualize exciton transport in CdSe/ZnCdS core/shell QD assemblies. We find that the exciton diffusion length, which exceeds 30 nm in some cases, can be tuned by adjusting the inorganic shell thickness and organic ligand length, offering a powerful strategy for controlling exciton movement. Moreover, we show experimentally and through kinetic Monte Carlo simulations that exciton diffusion in QD solids does not occur by a random-walk process; instead, energetic disorder within the inhomogeneously broadened ensemble causes the exciton diffusivity to decrease over time. These findings reveal new insights into exciton dynamics in disordered systems and demonstrate the flexibility of QD materials for photonic and optoelectronic applications.

  6. Effective Mass Theory of 2D Excitons Revisited

    NASA Astrophysics Data System (ADS)

    Gonzalez, Joseph; Oleynik, Ivan

    Two-dimensional (2D) semiconducting materials possess an exceptionally unique set of electronic and excitonic properties due to the combined effects of quantum and dielectric confinement. Reliable determination of exciton binding energies from both first-principles many-body perturbation theory (GW/BSE) and experiment is very challenging due to the enormous computational expense as well as the tremendous technical difficulties in experiment.. Very recently, effective mass theories of 2D excitons have been developed as an attractive alternative for inexpensive and accurate evaluation of the exciton binding energies. In this presentation, we evaluate two effective mass theory approaches by Velizhanin et al and Olsen et al in predicting exciton binding energies across a wide range of 2D materials. We specifically analyze the trends related to the varying screening lengths and exciton effective masses. We also extended the effective mass theory of 2D excitons to include effects of electron and hole mass anisotropies (mx ≠ my) , the latter showing a substantial influence on exciton binding energies. The recent predictions of exciton binding energies being independent of the exciton effective mass and a linear correlation with the band gap of a specific material are also critically reexamined.

  7. Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique; Aplan, Melissa; Lee, Youngmin

    Weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. The lack of control of interfacial structure has also prevented studies of how driving forces promote charge photogeneration, leading to conflicting hypotheses in the organic photovoltaic literature. Our approach has focused on utilizing block copolymer architectures -where critical interfaces are controlled and stabilized by covalent bonds- to provide the hierarchical structure needed for high-performance organic electronics from self-assembled soft materials. For example, we have demonstrated control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers to achieve 3% power conversion efficiencies in non-fullerene photovoltaics. Furthermore, incorporating the donor-acceptor interface within the molecular structure facilitates studies of charge transfer processes. Conjugated block copolymers enable studies of the driving force needed for exciton dissociation to charge transfer states, which must be large to maximize charge photogeneration but must be minimized to prevent losses in photovoltage in solar cell devices. Our work has systematically varied the chemical structure, energetics, and dielectric constant to perturb charge transfer. As a consequence, we predict a minimum dielectric constant needed to minimize the driving force and therefore simultaneously maximize photocurrent and photovoltage in organic photovoltaic devices.

  8. Exciton dynamics and annihilation in WS2 2D semiconductors.

    PubMed

    Yuan, Long; Huang, Libai

    2015-04-28

    We systematically investigate the exciton dynamics in monolayered, bilayered, and trilayered WS2 two-dimensional (2D) crystals by time-resolved photoluminescence (TRPL) spectroscopy. The exciton lifetime when free of exciton annihilation was determined to be 806 ± 37 ps, 401 ± 25 ps, and 332 ± 19 ps for WS2 monolayer, bilayer, and trilayer, respectively. By measuring the fluorescence quantum yields, we also establish the radiative and nonradiative lifetimes of the direct and indirect excitons. The exciton decay in monolayered WS2 exhibits a strong excitation density-dependence, which can be described using an exciton-exciton annihilation (two-particle Auger recombination) model. The exciton-exciton annihilation rate for monolayered, bilayered, and trilayered WS2 was determined to be 0.41 ± 0.02, (6.00 ± 1.09) × 10(-3) and (1.88 ± 0.47) × 10(-3) cm(2) s(-1), respectively. Notably, the exciton-exciton annihilation rate is two orders of magnitude faster in the monolayer than in the bilayer and trilayer. We attribute the much slower exciton-exciton annihilation rate in the bilayer and trilayer to reduced many-body interaction and phonon-assisted exciton-exciton annihilation of indirect excitons.

  9. Probing exciton density of states through phonon-assisted emission in GaN epilayers: A and B exciton contributions

    NASA Astrophysics Data System (ADS)

    Cavigli, Lucia; Gabrieli, Riccardo; Gurioli, Massimo; Bogani, Franco; Feltin, Eric; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas; Vinattieri, Anna

    2010-09-01

    A detailed experimental investigation of the phonon-assisted emission in a high-quality c -plane GaN epilayer is presented up to 200 K. By performing photoluminescence and reflectivity measurements, we find important etaloning effects in the phonon-replica spectra, which have to be corrected before addressing the lineshape analysis. Direct experimental evidence for free exciton thermalization is found for the whole temperature range investigated. A close comparison with existing models for phonon replicas originating from a thermalized free exciton distribution shows that the simplified and commonly adopted description of the exciton-phonon interaction with a single excitonic band leads to a large discrepancy with experimental data. Only the consideration of the complex nature of the excitonic band in GaN, including A and B exciton contributions, allows accounting for the temperature dependence of the peak energy, intensity, and lineshape of the phonon replicas.

  10. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites

    DOE PAGES

    Blancon, Jean -Christophe Robert; Tsai, Hsinhan; Nie, Wanyi; ...

    2017-03-09

    Understanding and controlling charge and energy flow in state-of-the-art semiconductor quantum wells has enabled high-efficiency optoelectronic devices. Two-dimensional (2D) Ruddlesden-Popper perovskites are solution-processed quantum wells wherein the band gap can be tuned by varying the perovskite-layer thickness, which modulates the effective electron-hole confinement. We report that, counterintuitive to classical quantum-confined systems where photogenerated electrons and holes are strongly bound by Coulomb interactions or excitons, the photophysics of thin films made of Ruddlesden-Popper perovskites with a thickness exceeding two perovskite-crystal units (>1.3 nanometers) is dominated by lower-energy states associated with the local intrinsic electronic structure of the edges of the perovskitemore » layers. Furthermore, these states provide a direct pathway for dissociating excitons into longer-lived free carriers that substantially improve the performance of optoelectronic devices.« less

  11. Scaling laws of Rydberg excitons

    NASA Astrophysics Data System (ADS)

    Heckötter, J.; Freitag, M.; Fröhlich, D.; Aßmann, M.; Bayer, M.; Semina, M. A.; Glazov, M. M.

    2017-09-01

    Rydberg atoms have attracted considerable interest due to their huge interaction among each other and with external fields. They demonstrate characteristic scaling laws in dependence on the principal quantum number n for features such as the magnetic field for level crossing or the electric field of dissociation. Recently, the observation of excitons in highly excited states has allowed studying Rydberg physics in cuprous oxide crystals. Fundamentally different insights may be expected for Rydberg excitons, as the crystal environment and associated symmetry reduction compared to vacuum give not only optical access to many more states within an exciton multiplet but also extend the Hamiltonian for describing the exciton beyond the hydrogen model. Here we study experimentally and theoretically the scaling of several parameters of Rydberg excitons with n , for some of which we indeed find laws different from those of atoms. For others we find identical scaling laws with n , even though their origin may be distinctly different from the atomic case. At zero field the energy splitting of a particular multiplet n scales as n-3 due to crystal-specific terms in the Hamiltonian, e.g., from the valence band structure. From absorption spectra in magnetic field we find for the first crossing of levels with adjacent principal quantum numbers a Br∝n-4 dependence of the resonance field strength, Br, due to the dominant paramagnetic term unlike for atoms for which the diamagnetic contribution is decisive, resulting in a Br∝n-6 dependence. By contrast, the resonance electric field strength shows a scaling as Er∝n-5 as for Rydberg atoms. Also similar to atoms with the exception of hydrogen we observe anticrossings between states belonging to multiplets with different principal quantum numbers at these resonances. The energy splittings at the avoided crossings scale roughly as n-4, again due to crystal specific features in the exciton Hamiltonian. The data also allow us to

  12. Exciton-Exciton Annihilation as a Probe of Interchain Interactions in PPV-Oligomer Aggregates.

    PubMed

    Peteanu, Linda A; Chowdhury, Sanchari; Wildeman, Jurjen; Sfeir, Matthew Y

    2017-02-23

    One measure of exciton mobility in an aggregate is the efficiency of exciton-exciton annihilation (EEA). Both exciton mobilities and EEA are enhanced for aggregate morphologies in which the distances between chromophores and their relative orientations are favorable for Förster energy transfer. Here this principle is applied to gauge the strength of interchain interactions in aggregates of two substituted PPV oligomers of 7 (OPPV7) and 13 (OPPV13) phenylene rings. These are models of the semiconducting conjugated polymer MEH-PPV. The aggregates were formed by adding a poor solvent (methanol or water) to the oligomers dissolved in a good solvent. Aggregates formed from the longer-chain oligomer and/or by addition of the more polar solvent showed the largest contribution of EEA in their emission decay dynamics. This was found to correlate with the degree to which the steady-state emission spectrum of the monomer is altered by aggregation. The wavelength dependence of the EEA signal was also shown to be useful in differentiating emission features due to monomeric and aggregated chains when their spectra overlap significantly.

  13. Stark shift and electric-field-induced dissociation of excitons in monolayer MoS2 and h BN /MoS2 heterostructures

    NASA Astrophysics Data System (ADS)

    Haastrup, Sten; Latini, Simone; Bolotin, Kirill; Thygesen, Kristian S.

    2016-07-01

    Efficient conversion of photons into electrical current in two-dimensional semiconductors requires, as a first step, the dissociation of the strongly bound excitons into free electrons and holes. Here we calculate the dissociation rates and energy shift of excitons in monolayer MoS2 as a function of an applied in-plane electric field. The dissociation rates are obtained as the inverse lifetime of the resonant states of a two-dimensional hydrogenic Hamiltonian which describes the exciton within the Mott-Wannier model. The resonances are computed using complex scaling, and the effective masses and screened electron-hole interaction defining the hydrogenic Hamiltonian are computed from first principles. For field strengths above 0.1 V/nm the dissociation lifetime is shorter than 1 ps, which is below the lifetime associated with competing decay mechanisms. Interestingly, encapsulation of the MoS2 layer in just two layers of hexagonal boron nitride (h BN ), enhances the dissociation rate by around one order of magnitude due to the increased screening. This shows that dielectric engineering is an effective way to control exciton lifetimes in two-dimensional materials.

  14. Time-dependent transition density matrix for visualizing charge-transfer excitations in photoexcited organic donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Li, Yonghui; Ullrich, Carsten

    2013-03-01

    The time-dependent transition density matrix (TDM) is a useful tool to visualize and interpret the induced charges and electron-hole coherences of excitonic processes in large molecules. Combined with time-dependent density functional theory on a real-space grid (as implemented in the octopus code), the TDM is a computationally viable visualization tool for optical excitation processes in molecules. It provides real-time maps of particles and holes which gives information on excitations, in particular those that have charge-transfer character, that cannot be obtained from the density alone. Some illustration of the TDM and comparison with standard density difference plots will be shown for photoexcited organic donor-acceptor molecules. This work is supported by NSF Grant DMR-1005651

  15. Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system.

    PubMed

    Bruggemann, B; May, V

    2004-02-01

    Using the multiexciton density matrix theory of excitation energy transfer in chromophore complexes developed in a foregoing paper [J. Chem. Phys. 118, 746 (2003)], the computation of ultrafast transient absorption spectra is presented. Beside static disorder and standard mechanisms of excitation energy dissipation the theory incorporates exciton exciton annihilation (EEA) processes. To elucidate signatures of EEA in intensity dependent transient absorption data the approach is applied to the B850 ring of the LH2 found in rhodobacter sphaeroides. As main indications for two-exciton population and resulting EEA we found (i) a weakening of the dominant single-exciton bleaching structure in the transient absorption, and (ii) an intermediate suppression of long-wavelength and short-wavelength shoulders around the bleaching structure. The suppression is caused by stimulated emission from the two-exciton to the one-exciton state and the return of the shoulders follows from a depletion of two-exciton population according to EEA. The EEA-signature survives as a short-wavelength shoulder in the transient absorption if orientational and energetic disorder are taken into account. Therefore, the observation of the EEA-signatures should be possible when doing frequency resolved transient absorption experiments with a sufficiently strongly varying pump-pulse intensity. Copyright 2004 American Institute of Physics

  16. Polaronic exciton behavior in gas-phase water

    NASA Astrophysics Data System (ADS)

    Udal'tsov, Alexander V.

    2018-03-01

    Features of the absorption spectrum of gas-phase water in the energy range 7-10 eV have been considered applying polaronic exciton theory. The interaction of the incident photon generating polaronic exciton in water is described taking into account angular momentum of the electron so that polaronic exciton radii have been estimated in dependence on spin-orbit coupling under proton sharing. The suggested approach admits an estimate of kinetic and rotation energies of the polaronic exciton. As a result sixteen steps of half Compton wavelength, λC/2 = h/(2mec) changing polaronic exciton radius were found consistent with local maxima and shoulders in the spectrum. Thus, the absorption of gas-phase water in the energy range 8.5-10 eV has been interpreted in terms of polaronic exciton rotation mainly coupled with the proton sharing. The incident photon interaction with water is also considered in terms of Compton interaction, when the rotation energy plays a role like the energy loss of the incident photon under Compton scattering. The found symmetry and the other evidence allowed to conclude about polaronic exciton migration under the interaction angle 90°.

  17. Exciton Dynamics in Monolayer Transition Metal Dichalcogenides.

    PubMed

    Moody, Galan; Schaibley, John; Xu, Xiaodong

    2016-07-01

    Since the discovery of semiconducting monolayer transition metal dichalcogenides, a variety of experimental and theoretical studies have been carried out seeking to understand the intrinsic exciton population recombination and valley relaxation dynamics. Reports of the exciton decay time range from hundreds of femtoseconds to ten nanoseconds, while the valley depolarization time can exceed one nanosecond. At present, however, a consensus on the microscopic mechanisms governing exciton radiative and non-radiative recombination is lacking. The strong exciton oscillator strength resulting in up to ~ 20% absorption for a single monolayer points to ultrafast radiative recombination. However, the low quantum yield and large variance in the reported lifetimes suggest that non-radiative Auger-type processes obscure the intrinsic exciton radiative lifetime. In either case, the electron-hole exchange interaction plays an important role in the exciton spin and valley dynamics. In this article, we review the experiments and theory that have led to these conclusions and comment on future experiments that could complement our current understanding.

  18. Exciton Dynamics in Monolayer Transition Metal Dichalcogenides

    PubMed Central

    Moody, Galan; Schaibley, John; Xu, Xiaodong

    2017-01-01

    Since the discovery of semiconducting monolayer transition metal dichalcogenides, a variety of experimental and theoretical studies have been carried out seeking to understand the intrinsic exciton population recombination and valley relaxation dynamics. Reports of the exciton decay time range from hundreds of femtoseconds to ten nanoseconds, while the valley depolarization time can exceed one nanosecond. At present, however, a consensus on the microscopic mechanisms governing exciton radiative and non-radiative recombination is lacking. The strong exciton oscillator strength resulting in up to ~ 20% absorption for a single monolayer points to ultrafast radiative recombination. However, the low quantum yield and large variance in the reported lifetimes suggest that non-radiative Auger-type processes obscure the intrinsic exciton radiative lifetime. In either case, the electron-hole exchange interaction plays an important role in the exciton spin and valley dynamics. In this article, we review the experiments and theory that have led to these conclusions and comment on future experiments that could complement our current understanding. PMID:28890600

  19. Intrachain exciton dynamics in conjugated polymer chains in solution.

    PubMed

    Tozer, Oliver Robert; Barford, William

    2015-08-28

    We investigate exciton dynamics on a polymer chain in solution induced by the Brownian rotational motion of the monomers. Poly(para-phenylene) is chosen as the model system and excitons are modeled via the Frenkel exciton Hamiltonian. The Brownian fluctuations of the torsional modes were modeled via the Langevin equation. The rotation of monomers in polymer chains in solution has a number of important consequences for the excited state properties. First, the dihedral angles assume a thermal equilibrium which causes off-diagonal disorder in the Frenkel Hamiltonian. This disorder Anderson localizes the Frenkel exciton center-of-mass wavefunctions into super-localized local exciton ground states (LEGSs) and higher-energy more delocalized quasi-extended exciton states (QEESs). LEGSs correspond to chromophores on polymer chains. The second consequence of rotations-that are low-frequency-is that their coupling to the exciton wavefunction causes local planarization and the formation of an exciton-polaron. This torsional relaxation causes additional self-localization. Finally, and crucially, the torsional dynamics cause the Frenkel Hamiltonian to be time-dependent, leading to exciton dynamics. We identify two distinct types of dynamics. At low temperatures, the torsional fluctuations act as a perturbation on the polaronic nature of the exciton state. Thus, the exciton dynamics at low temperatures is a small-displacement diffusive adiabatic motion of the exciton-polaron as a whole. The temperature dependence of the diffusion constant has a linear dependence, indicating an activationless process. As the temperature increases, however, the diffusion constant increases at a faster than linear rate, indicating a second non-adiabatic dynamics mechanism begins to dominate. Excitons are thermally activated into higher energy more delocalized exciton states (i.e., LEGSs and QEESs). These states are not self-localized by local torsional planarization. During the exciton's temporary

  20. Exciton transitions and oxygen as a donor in m-plane AlN homoepitaxial films

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary; Bryan, Isaac; Bobea, Milena; Hussey, Lindsay; Kirste, Ronny; Sitar, Zlatko; Collazo, Ramón

    2014-04-01

    High-resolution photoluminescence studies on m-plane (1-100) homoepitaxial films grown by metalorganic chemical vapor deposition on AlN revealed several sharp donor-bound exciton (DBX) peaks with a full width at half maximum as narrow as 550 μeV. Power dependent photoluminescence distinguished DBXs tied to the Γ5 free exciton (FX) from those tied to the Γ1 FX. Both the n = 2 and n = 1 excited states of the Γ5 and Γ1 were resolved, giving binding energies of 52 meV and 55 meV, respectively. The DBX transition at 6.006 eV was identified as originating from the neutral-donor-oxygen (O0X). This assignment was based on secondary ion mass spectroscopy measurements, peak position with respect to the Si0X, and deep defect luminescence peaks located at 3.25 eV and 3.58 eV.

  1. Exciton Level Structure and Dynamics in Tubular Porphyrin Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yan; Stradomska, Anna; Fong, Sarah

    2014-10-30

    We present an account of the optical properties of the Frenkel excitons in self-assembled porphyrin tubular aggregates that represent an analog to natural photosynthetic antennae. Using a combination of ultrafast optical spectroscopy and stochastic exciton modeling, we address both linear and nonlinear exciton absorption, relaxation pathways, and the role of disorder. The static disorder-dominated absorption and fluorescence line widths show little temperature dependence for the lowest excitons (Q band), which we successfully simulate using a model of exciton scattering on acoustic phonons in the host matrix. Temperature-dependent transient absorption of and fluorescence from the excitons in the tubular aggregates aremore » marked by nonexponential decays with time scales ranging from a few picoseconds to a few nanoseconds, reflecting complex relaxation mechanisms. Combined experimental and theoretical investigations indicate that nonradiative pathways induced by traps and defects dominate the relaxation of excitons in the tubular aggregates. We model the pumpprobe spectra and ascribe the excited-state absorption to transitions from one-exciton states to a manifold of mixed one- and two-exciton states. Our results demonstrate that while the delocalized Frenkel excitons (over 208 (1036) molecules for the optically dominant excitons in the Q (B) band) resulting from strong intermolecular coupling in these aggregates could potentially facilitate efficient energy transfer, fast relaxation due to defects and disorder probably present a major limitation for exciton transport over large distances.« less

  2. Associative Memory Acceptors.

    ERIC Educational Resources Information Center

    Card, Roger

    The properties of an associative memory are examined in this paper from the viewpoint of automata theory. A device called an associative memory acceptor is studied under real-time operation. The family "L" of languages accepted by real-time associative memory acceptors is shown to properly contain the family of languages accepted by one-tape,…

  3. Ultrafast dynamics of exciton fission in polycrystalline pentacene.

    PubMed

    Wilson, Mark W B; Rao, Akshay; Clark, Jenny; Kumar, R Sai Santosh; Brida, Daniele; Cerullo, Giulio; Friend, Richard H

    2011-08-10

    We use ultrafast transient absorption spectroscopy with sub-20 fs time resolution and broad spectral coverage to directly probe the process of exciton fission in polycrystalline thin films of pentacene. We observe that the overwhelming majority of initially photogenerated singlet excitons evolve into triplet excitons on an ∼80 fs time scale independent of the excitation wavelength. This implies that exciton fission occurs at a rate comparable to phonon-mediated exciton localization processes and may proceed directly from the initial, delocalized, state. The singlet population is identified due to the brief presence of stimulated emission, which is emitted at wavelengths which vary with the photon energy of the excitation pulse, a violation of Kasha's Rule that confirms that the lowest-lying singlet state is extremely short-lived. This direct demonstration that triplet generation is both rapid and efficient establishes multiple exciton generation by exciton fission as an attractive route to increased efficiency in organic solar cells. © 2011 American Chemical Society

  4. Ultrafast exciton relaxation in monolayer transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thilagam, A., E-mail: thilaphys@gmail.com

    2016-04-28

    We examine a mechanism by which excitons undergo ultrafast relaxation in common monolayer transition metal dichalcogenides. It is shown that at densities ≈1 × 10{sup 11 }cm{sup −2} and temperatures ≤60 K, excitons in well known monolayers (MoS{sub 2}, MoSe{sub 2}, WS{sub 2}, and WSe{sub 2}) exist as point-like structureless electron-hole quasi-particles. We evaluate the average rate of exciton energy relaxation due to acoustic phonons via the deformation potential and the piezoelectric coupling mechanisms and examine the effect of spreading of the excitonic wavefunction into the region perpendicular to the monolayer plane. Our results show that the exciton relaxation rate is enhanced with increasemore » in the exciton temperature, while it is decreased with increase in the lattice temperature. Good agreements with available experimental data are obtained when the calculations are extrapolated to room temperatures. A unified approach taking into account the deformation potential and piezoelectric coupling mechanisms shows that exciton relaxation induced by phonons is as significant as defect assisted scattering and trapping of excitons by surface states in monolayer transition metal dichalcogenides.« less

  5. Exciton coupling between enones: Quassinoids revisited.

    PubMed

    Pescitelli, Gennaro; Di Bari, Lorenzo

    2017-09-01

    The electronic circular dichroism (ECD) spectra of two previously reported quassinoids containing a pair of enone chromophores are revisited to gain insight into the consistency and applicability of the exciton chirality method. Our study is based on time-dependent Density Functional Theory calculations, transition and orbital analysis, and numerical exciton coupling calculations. In quassin (1) the enone/enone exciton coupling is quasi-degenerate, yielding strong rotational strengths that account for the observed ECD spectrum in the enone π-π* region. In perforalactone C (2) the nondegenerate coupling produces weak rotational strengths, and the ECD spectrum is dominated by other mechanisms of optical activity. We remark the necessity of a careful application of the nondegenerate exciton coupling method in similar cases. © 2017 Wiley Periodicals, Inc.

  6. Direct Imaging of Frenkel Exciton Transport by Ultrafast Microscopy.

    PubMed

    Zhu, Tong; Wan, Yan; Huang, Libai

    2017-07-18

    Long-range transport of Frenkel excitons is crucial for achieving efficient molecular-based solar energy harvesting. Understanding of exciton transport mechanisms is important for designing materials for solar energy applications. One major bottleneck in unraveling of exciton transport mechanisms is the lack of direct measurements to provide information in both spatial and temporal domains, imposed by the combination of fast energy transfer (typically ≤1 ps) and short exciton diffusion lengths (typically ≤100 nm). This challenge requires developing experimental tools to directly characterize excitation energy transport, and thus facilitate the elucidation of mechanisms. To address this challenge, we have employed ultrafast transient absorption microscopy (TAM) as a means to directly image exciton transport with ∼200 fs time resolution and ∼50 nm spatial precision. By mapping population in spatial and temporal domains, such approach has unraveled otherwise obscured information and provided important parameters for testing exciton transport models. In this Account, we discuss the recent progress in imaging Frenkel exciton migration in molecular crystals and aggregates by ultrafast microscopy. First, we establish the validity of the TAM methods by imaging singlet and triplet exciton transport in a series of polyacene single crystals that undergo singlet fission. A new singlet-mediated triplet transport pathway has been revealed by TAM, resulting from the equilibrium between triplet and singlet exciton populations. Such enhancement of triplet exciton transport enables triplet excitons to migrate as singlet excitons and leads to orders of magnitude faster apparent triplet exciton diffusion rate in the picosecond and nanosecond time scales, favorable for solar cell applications. Next we discuss how information obtained by ultrafast microscopy can evaluate coherent effects in exciton transport. We use tubular molecular aggregates that could support large exciton

  7. Exciton-phonon bound complex in single-walled carbon nanotubes revealed by high-field magneto-optical spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Weihang; Nakamura, Daisuke; Takeyama, Shojiro, E-mail: takeyama@issp.u-tokyo.ac.jp

    2013-12-02

    High-field magneto-optical spectroscopy was performed on highly enriched (6,5) single-walled carbon nanotubes. Spectra of phonon sidebands in both 1st and 2nd sub-bands were unchanged by an external magnetic field up to 52 T. The dark K-momentum singlet (D-K-S) exciton, which plays an important role for the external quantum efficiency of the system for both sub-bands in the near-infrared and the visible light region, respectively, was clarified to be the origin of the phonon sidebands.

  8. The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell

    2015-03-01

    Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.

  9. Exciton-vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates

    NASA Astrophysics Data System (ADS)

    Schröter, M.; Ivanov, S. D.; Schulze, J.; Polyutov, S. P.; Yan, Y.; Pullerits, T.; Kühn, O.

    2015-03-01

    The influence of exciton-vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein-pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton-vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton-vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton-vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton-vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system-bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM) method will be

  10. Unexpectedly Fast Phonon-Assisted Exciton Hopping between Carbon Nanotubes

    DOE PAGES

    Davoody, A. H.; Karimi, F.; Arnold, M. S.; ...

    2017-06-05

    Carbon-nanotube (CNT) aggregates are promising light-absorbing materials for photovoltaics. The hopping rate of excitons between CNTs directly affects the efficiency of these devices. We theoretically investigate phonon-assisted exciton hopping, where excitons scatter with phonons into a same-tube transition state, followed by intertube Coulomb scattering into the final state. Second-order hopping between bright excitonic states is as fast as the first-order process (~1 ps). For perpendicular CNTs, the high rate stems from the high density of phononic states; for parallel CNTs, the reason lies in relaxed selection rules. Moreover, second-order exciton transfer between dark and bright states, facilitated by phonons withmore » large angular momentum, has rates comparable to bright-to-bright transfer, so dark excitons provide an additional pathway for energy transfer in CNT composites. Furthermore, as dark excitons are difficult to probe in experiment, predictive theory is critical for understanding exciton dynamics in CNT composites.« less

  11. Unexpectedly Fast Phonon-Assisted Exciton Hopping between Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoody, A. H.; Karimi, F.; Arnold, M. S.

    Carbon-nanotube (CNT) aggregates are promising light-absorbing materials for photovoltaics. The hopping rate of excitons between CNTs directly affects the efficiency of these devices. We theoretically investigate phonon-assisted exciton hopping, where excitons scatter with phonons into a same-tube transition state, followed by intertube Coulomb scattering into the final state. Second-order hopping between bright excitonic states is as fast as the first-order process (~1 ps). For perpendicular CNTs, the high rate stems from the high density of phononic states; for parallel CNTs, the reason lies in relaxed selection rules. Moreover, second-order exciton transfer between dark and bright states, facilitated by phonons withmore » large angular momentum, has rates comparable to bright-to-bright transfer, so dark excitons provide an additional pathway for energy transfer in CNT composites. Furthermore, as dark excitons are difficult to probe in experiment, predictive theory is critical for understanding exciton dynamics in CNT composites.« less

  12. Excitons in Cuprous Oxide: Photoionization and Other Multiphoton Processes

    NASA Astrophysics Data System (ADS)

    Frazer, Nicholas Laszlo

    In cuprous oxide (Cu2O), momentum from the absorption of two infrared photons to make an orthoexciton is conserved and detected through the photon component of a resulting mixed exciton/photon (quadrupole exciton polariton) state. I demonstrated that this process, which actually makes the photon momentum more precisely defined, is disrupted by photoionization of excitons. Some processes are known to affect exciton propagation in both the pump and exciton stages, such as phonon emission, exciton-exciton (Auger) scattering, and third harmonic generation. These processes alone were not able to explain all observed losses of excitons or all detected scattering products, which lead me to design an optical pump-probe experiment to measure the exciton photoionization cross section, which is (3.9+/-0.2) x 10-22 m2. This dissertation describes the synthesis of cuprous oxide crystals using oxidation of copper, crystallization from melt with the optical floating zone method, and annealing. The cuprous oxide crystals were characterized using time and space resolved luminescence, leading to the discovery of new defect properties. Selection rules and overall efficiency of third harmonic generation in these crystals were characterized. Exciton photoionization was demonstrated through the depletion of polariton luminescence by an optical probe, the production of phonon linked luminescence as a scattering product, temporal delay of the probe, and time resolved luminescence. The results are integrated with the traditional dynamical model of exciton densities. An additional investigation of copper/cuprous oxide/gold photovoltaic devices is appended.

  13. Excitonic luminescence upconversion in a two-dimensional semiconductor

    DOE PAGES

    Jones, Aaron M.; Yu, Hongyi; Schaibley, John R.; ...

    2015-12-21

    Photon upconversion is an elementary light-matter interaction process in which an absorbed photon is re-emitted at higher frequency after extracting energy from the medium. Furthermore, this phenomenon lies at the heart of optical refrigeration in solids(1), where upconversion relies on anti-Stokes processes enabled either by rare-earth impurities(2) or exciton-phonon coupling(3). We demonstrate a luminescence upconversion process from a negatively charged exciton to a neutral exciton resonance in monolayer WSe2, producing spontaneous anti-Stokes emission with an energy gain of 30 meV. Polarization-resolved measurements find this process to be valley selective, unique to monolayer semiconductors(4). Since the charged exciton binding energy(5) closelymore » matches the 31 meV A(1)' optical phonon(6-9), we ascribe the spontaneous excitonic anti-Stokes to doubly resonant Raman scattering, where the incident and outgoing photons are in resonance with the charged and neutral excitons, respectively. Additionally, we resolve a charged exciton doublet with a 7 meV splitting, probably induced by exchange interactions, and show that anti-Stokes scattering is efficient only when exciting the doublet peak resonant with the phonon, further confirming the excitonic doubly resonant picture.« less

  14. Mapping the exciton diffusion in semiconductor nanocrystal solids.

    PubMed

    Kholmicheva, Natalia; Moroz, Pavel; Bastola, Ebin; Razgoniaeva, Natalia; Bocanegra, Jesus; Shaughnessy, Martin; Porach, Zack; Khon, Dmitriy; Zamkov, Mikhail

    2015-03-24

    Colloidal nanocrystal solids represent an emerging class of functional materials that hold strong promise for device applications. The macroscopic properties of these disordered assemblies are determined by complex trajectories of exciton diffusion processes, which are still poorly understood. Owing to the lack of theoretical insight, experimental strategies for probing the exciton dynamics in quantum dot solids are in great demand. Here, we develop an experimental technique for mapping the motion of excitons in semiconductor nanocrystal films with a subdiffraction spatial sensitivity and a picosecond temporal resolution. This was accomplished by doping PbS nanocrystal solids with metal nanoparticles that force the exciton dissociation at known distances from their birth. The optical signature of the exciton motion was then inferred from the changes in the emission lifetime, which was mapped to the location of exciton quenching sites. By correlating the metal-metal interparticle distance in the film with corresponding changes in the emission lifetime, we could obtain important transport characteristics, including the exciton diffusion length, the number of predissociation hops, the rate of interparticle energy transfer, and the exciton diffusivity. The benefits of this approach to device applications were demonstrated through the use of two representative film morphologies featuring weak and strong interparticle coupling.

  15. Exciton fission in monolayer transition metal dichalcogenide semiconductors.

    PubMed

    Steinhoff, A; Florian, M; Rösner, M; Schönhoff, G; Wehling, T O; Jahnke, F

    2017-10-27

    When electron-hole pairs are excited in a semiconductor, it is a priori not clear if they form a plasma of unbound fermionic particles or a gas of composite bosons called excitons. Usually, the exciton phase is associated with low temperatures. In atomically thin transition metal dichalcogenide semiconductors, excitons are particularly important even at room temperature due to strong Coulomb interaction and a large exciton density of states. Using state-of-the-art many-body theory, we show that the thermodynamic fission-fusion balance of excitons and electron-hole plasma can be efficiently tuned via the dielectric environment as well as charge carrier doping. We propose the observation of these effects by studying exciton satellites in photoemission and tunneling spectroscopy, which present direct solid-state counterparts of high-energy collider experiments on the induced fission of composite particles.

  16. Acousto-exciton interaction in a gas of 2D indirect dipolar excitons in the presence of disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalev, V. M.; Chaplik, A. V., E-mail: chaplik@isp.nsc.ru

    2016-03-15

    A theory for the linear and quadratic responses of a 2D gas of indirect dipolar excitons to an external surface acoustic wave perturbation in the presence of a static random potential is considered. The theory is constructed both for high temperatures, definitely greater than the exciton gas condensation temperature, and at zero temperature by taking into account the Bose–Einstein condensation effects. The particle Green functions, the density–density correlation function, and the quadratic response function are calculated by the “cross” diagram technique. The results obtained are used to calculate the absorption of Rayleigh surface waves and the acoustic exciton gas dragmore » by a Rayleigh wave. The damping of Bogoliubov excitations in an exciton condensate due to theirs scattering by a random potential has also been determined.« less

  17. Observation of Exciton-Exciton Interaction Mediated Valley Depolarization in Monolayer MoSe2.

    PubMed

    Mahmood, Fahad; Alpichshev, Zhanybek; Lee, Yi-Hsien; Kong, Jing; Gedik, Nuh

    2018-01-10

    The valley pseudospin in monolayer transition metal dichalcogenides (TMDs) has been proposed as a new way to manipulate information in various optoelectronic devices. This relies on a large valley polarization that remains stable over long time scales (hundreds of nanoseconds). However, time-resolved measurements report valley lifetimes of only a few picoseconds. This has been attributed to mechanisms such as phonon-mediated intervalley scattering and a precession of the valley pseudospin through electron-hole exchange. Here we use transient spin grating to directly measure the valley depolarization lifetime in monolayer MoSe 2 . We find a fast valley decay rate that scales linearly with the excitation density at different temperatures. This establishes the presence of strong exciton-exciton Coulomb exchange interactions enhancing the valley depolarization. Our work highlights the microscopic processes inhibiting the efficient use of the exciton valley pseudospin in monolayer TMDs.

  18. Single and double acceptor-levels of a carbon-hydrogen defect in n-type silicon

    NASA Astrophysics Data System (ADS)

    Stübner, R.; Scheffler, L.; Kolkovsky, Vl.; Weber, J.

    2016-05-01

    In the present study, we discuss the origin of two dominant deep levels (E42 and E262) observed in n-type Si, which is subjected to hydrogenation by wet chemical etching or a dc H-plasma treatment. Their activation enthalpies determined from Laplace deep level transient spectroscopy measurements are EC-0.06 eV (E42) and EC-0.51 eV (E262). The similar annealing behavior and identical depth profiles of E42 and E262 correlate them with two different charge states of the same defect. E262 is attributed to a single acceptor state due to the absence of the Poole-Frenkel effect and the lack of a capture barrier for electrons. The emission rate of E42 shows a characteristic enhancement with the electric field, which is consistent with the assignment to a double acceptor state. In samples with different carbon and hydrogen content, the depth profiles of E262 can be explained by a defect with one H-atom and one C-atom. From a comparison with earlier calculations [Andersen et al., Phys. Rev. B 66, 235205 (2002)], we attribute E42 to the double acceptor and E262 to the single acceptor state of the CH1AB configuration, where one H atom is directly bound to carbon in the anti-bonding position.

  19. Exciton transport in π-conjugated polymers with conjugation defects.

    PubMed

    Meng, Ruixuan; Li, Yuan; Li, Chong; Gao, Kun; Yin, Sun; Wang, Luxia

    2017-09-20

    In π-conjugated polymers for photovoltaic applications, intrinsic conjugation defects are known to play crucial roles in impacting exciton transport after photoexcitation. However, the understanding of the associated microscopic processes still remains limited. Here, we present a theoretical investigation of the effects of different conjugation defects on the dynamics of exciton transport in two linearly coupled poly(p-phenylene vinylene) (PPV) molecules. The model system is constructed by employing an extended version of the Su-Schrieffer-Heeger model and the exciton behaviors are simulated by means of a quantum nonadiabatic dynamics. We identify two types of conjugation defects, i.e., weakening conjugation and strengthening conjugation, which are demonstrated to play different roles in impacting the dynamics of exciton transport in the system. The weakening conjugation acts as an energy well inclined to trap a moving exciton, while the strengthening conjugation acts as an energy barrier inclined to block the exciton. We also systematically simulate both intrachain and interchain dynamics of exciton transport, and find that an exciton could experience a "short-time delaying", "trapping", "blocking", or "hopping" process, which is determined by the defect type, strength, and position. These findings provide a microscopic understanding of how the exciton transport dynamics can be impacted by conjugation defects in an actual polymer system.

  20. Topological Exciton Bands in Moire Heterojunctions.

    DOE PAGES

    Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.

    2017-04-05

    Moire patterns are common in Van der Waals heterostructures and can be used to apply periodic potentials to elementary excitations. Here, we show that the optical absorption spectrum of transition metal dichalcogenide bilayers is profoundly altered by long period moire patterns that introduce twist-angle dependent satellite excitonic peaks. Topological exciton bands with non-zero Chern numbers that support chiral excitonic edge states can be engineered by combining three ingredients: i) the valley Berry phase induced by electron-hole exchange interactions, ii) the moire potential, and iii) the valley Zeeman field.

  1. Crystalline Nanoporous Frameworks: a Nanolaboratory for Probing Excitonic Device Concepts.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Azoulay, Jason; Ford, Alexandra Caroline

    2014-09-01

    inaccessible in disordered systems. Implementing this concept also creates entirely new dimensions for device fabrication that could both improve performance, increase durability, and reduce costs with unprecedented control of over properties. This report summarizes the key results of this project and is divided into sections based on publications that resulted from the work. We begin in Section 2 with an investigation of light harvesting and energy transfer in a MOF infiltrated with donor and acceptor molecules of the type typically used in OPV devices (thiophenes and fullerenes, respectively). The results show that MOFs can provide multiple functions: as a light harvester, as a stabilizer and organizer or the infiltrated molecules, and as a facilitator of energy transfer. Section 3 describes computational design of MOF linker groups to accomplish light harvesting in the visible and facilitate charge separation and transport. The predictions were validated by UV-visible absorption spectroscopy, demonstrating that rational design of MOFs for light-harvesting purposes is feasible. Section 4 extends the infiltration concept discussed in Section to, which we now designate as "Molecule@MOF" to create an electrically conducting framework. The tailorability and high conductivity of this material are unprecedented, meriting publication in the journal Science and spawning several Technical Advances. Section 5 discusses processes we developed for depositing MOFs as thin films on substrates, a critical enabling technology for fabricating MOF-based electronic devices. Finally, in Section 6 we summarize results showing that a MOF thin film can be used as a sensitizer in a DSSC, demonstrating that MOFs can serve as active layers in excitonic devices. Overall, this project provides several crucial proofs-of- concept that the potential of MOFs for use in optoelectronic devices that we predicted several years ago [ 3 ] can be realized in practice.« less

  2. Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors.

    PubMed

    Yuan, Long; Wang, Ti; Zhu, Tong; Zhou, Mingwei; Huang, Libai

    2017-07-20

    Large binding energy and unique exciton fine structure make the transition metal dichalcogenides (TMDCs) an ideal platform to study exciton behaviors in two-dimensional (2D) systems. While excitons in these systems have been extensively researched, there currently lacks a consensus on mechanisms that control dynamics. In this Perspective, we discuss extrinsic and intrinsic factors in exciton dynamics, transport, and annihilation in 2D TMDCs. Intrinsically, dark and bright exciton energy splitting is likely to play a key role in modulating the dynamics. Extrinsically, defect scattering is prevalent in single-layer TMDCs, which leads to rapid picosecond decay and limits exciton transport. The exciton-exciton annihilation process in single-layer TMDCs is highly efficient, playing an important role in the nonradiative recombination rate in the high exciton density regime. Future challenges and opportunities to control exciton dynamics are discussed.

  3. Acceptors in ZnO

    DOE PAGES

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; ...

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peakmore » in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.« less

  4. Frenkel versus charge-transfer exciton dispersion in molecular crystals

    NASA Astrophysics Data System (ADS)

    Cudazzo, Pierluigi; Gatti, Matteo; Rubio, Angel; Sottile, Francesco

    2013-11-01

    By solving the many-body Bethe-Salpeter equation at finite momentum transfer, we characterize the exciton dispersion in two prototypical molecular crystals, picene and pentacene, in which localized Frenkel excitons compete with delocalized charge-transfer excitons. We explain the exciton dispersion on the basis of the interplay between electron and hole hopping and electron-hole exchange interaction, unraveling a simple microscopic description to distinguish Frenkel and charge-transfer excitons. This analysis is general and can be applied to other systems in which the electron wave functions are strongly localized, as in strongly correlated insulators.

  5. Exciton Binding Energy of Monolayer WS2

    PubMed Central

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-01-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 ± 0.01 eV around K valley in the Brillouin zone. PMID:25783023

  6. Bright triplet excitons in caesium lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian; Sercel, Peter C.; Shabaev, Andrew; Mehl, Michael J.; Michopoulos, John G.; Lambrakos, Samuel G.; Bernstein, Noam; Lyons, John L.; Stöferle, Thilo; Mahrt, Rainer F.; Kovalenko, Maksym V.; Norris, David J.; Rainò, Gabriele; Efros, Alexander L.

    2018-01-01

    Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund’s rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the ‘dark exciton’. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

  7. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (<100 meV), and thus allows RISC at ambient temperature. We found that the EL emission in OLED based on the exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  8. Halocarbons as hydrogen bond acceptors: a spectroscopic study of haloethylbenzenes (PhCH2CH2X, X = F, Cl, Br) and their hydrate clusters.

    PubMed

    Robertson, Patrick A; Villani, Luigi; Dissanayake, Uresha L M; Duncan, Luke F; Abbott, Belinda M; Wilson, David J D; Robertson, Evan G

    2018-03-28

    The electronic spectra of 2-bromoethylbenzene and its chloro and fluoro analogues have been recorded by resonant two-photon ionisation (R2PI) spectroscopy. Anti and gauche conformers have been assigned by rotational band contour analysis and IR-UV ion depletion spectroscopy in the CH region. Hydrate clusters of the anti conformers have also been observed, allowing the role of halocarbons as hydrogen bond acceptors to be examined in this context. The donor OH stretch of water bound to chlorine is red-shifted by 36 cm -1 , or 39 cm -1 in the case of bromine. Although classed as weak H-bond acceptors, halocarbons are favourable acceptor sites compared to π systems. Fluorine stands out as the weakest H-bond acceptor amongst the halogens. Chlorine and bromine are also weak H-bond acceptors, but allow for more geometric lability, facilitating complimentary secondary interactions within the host molecule. Ab initio and DFT quantum chemical calculations, both harmonic and anharmonic, aid the structural assignments and analysis.

  9. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.

    PubMed

    Kanemitsu, Yoshihiko

    2013-06-18

    Semiconducting nanomaterials such as single-walled carbon nanotubes (SWCNTs) and nanocrystals (NCs) exhibit unique size-dependent quantum properties. They have therefore attracted considerable attention from the viewpoints of fundamental physics and functional device applications. SWCNTs and NCs also provide an excellent new stage for experimental studies of many-body effects of electrons and excitons on optical processes in nanomaterials. In this Account, we discuss multiple exciton generation and recombination in SWCNTs and NCs for next-generation photovoltaics. Strongly correlated ensembles of conduction-band electrons and valence-band holes in semiconductors are complex quantum systems that exhibit unique optical phenomena. In bulk crystals, the carrier recombination dynamics can be described by a simple model, which includes the nonradiative single-carrier trapping rate, the radiative two-carrier recombination rate, and the nonradiative three-carrier Auger recombination rate. The nonradiative Auger recombination rate determines the carrier recombination dynamics at high carrier density and depends on the spatial localization of carriers in two-dimensional quantum wells. The Auger recombination and multiple exciton generation rates can be advantageously manipulated by nanomaterials with designated energy structures. In addition, SWCNTs and NCs show quantized recombination dynamics of multiple excitons and carriers. In one-dimensional SWCNTs, excitons have large binding energies and are very stable at room temperature. The extremely rapid Auger recombination between excitons determines the photoluminescence (PL) intensity, the PL linewidth, and the PL lifetime. SWCNTs can undergo multiple exciton generation, while strong exciton-exciton interactions and complicated exciton structures affect the quantized Auger rate and the multiple exciton generation efficiency. Interestingly, in zero-dimensional NC quantum dots, quantized Auger recombination causes unique

  10. Measurement of Exciton Binding Energy of Monolayer WS2

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhu, Bairen; Cui, Xiaodong

    Excitonic effects are prominent in monolayer crystal of transition metal dichalcogenides (TMDCs) because of spatial confinement and reduced Coulomb screening. Here we use linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE) to measure the exciton binding energy of monolayer WS2. Peaks for excitonic absorptions of the direct gap located at K valley of the Brillouin zone and transitions from multiple points near Γ point of the Brillouin zone, as well as trion side band are shown in the linear absorption spectra of WS2. But there is no gap between distinct excitons and the continuum of the interband transitions. Strong electron-phonon scattering, overlap of excitons around Γ point and the transfer of the oscillator strength from interband continuum to exciton states make it difficult to resolve the electronic interband transition edge even down to 10K. The gap between excited states of the band-edge exciton and the single-particle band is probed by TP-PLE measurements. And the energy difference between 1s exciton and the single-particle gap gives the exciton binding energy of monolayer WS2 to be about 0.71eV. The work is supported by Area of excellency (AoE/P-04/08), CRF of Hong Kong Research Grant Council (HKU9/CRF/13G) and SRT on New Materials of The University of Hong Kong.

  11. Pentacene Excitons in Strong Electric Fields.

    PubMed

    Kuhnke, Klaus; Turkowski, Volodymyr; Kabakchiev, Alexander; Lutz, Theresa; Rahman, Talat S; Kern, Klaus

    2018-02-05

    Electroluminescence spectroscopy of organic semiconductors in the junction of a scanning tunneling microscope (STM) provides access to the polarizability of neutral excited states in a well-characterized molecular geometry. We study the Stark shift of the self-trapped lowest singlet exciton at 1.6 eV in a pentacene nanocrystal. Combination of density functional theory (DFT) and time-dependent DFT (TDDFT) with experiment allows for assignment of the observation to a charge-transfer (CT) exciton. Its charge separation is perpendicular to the applied field, as the measured polarizability is moderate and the electric field in the STM junction is strong enough to dissociate a CT exciton polarized parallel to the applied field. The calculated electric-field-induced anisotropy of the exciton potential energy surface will also be of relevance to photovoltaic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Exciton Resonances in Novel Silicon Carbide Polymers

    NASA Astrophysics Data System (ADS)

    Burggraf, Larry; Duan, Xiaofeng

    2015-05-01

    A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.

  13. Light Harvesting for Organic Photovoltaics

    PubMed Central

    2016-01-01

    The field of organic photovoltaics has developed rapidly over the last 2 decades, and small solar cells with power conversion efficiencies of 13% have been demonstrated. Light absorbed in the organic layers forms tightly bound excitons that are split into free electrons and holes using heterojunctions of electron donor and acceptor materials, which are then extracted at electrodes to give useful electrical power. This review gives a concise description of the fundamental processes in photovoltaic devices, with the main emphasis on the characterization of energy transfer and its role in dictating device architecture, including multilayer planar heterojunctions, and on the factors that impact free carrier generation from dissociated excitons. We briefly discuss harvesting of triplet excitons, which now attracts substantial interest when used in conjunction with singlet fission. Finally, we introduce the techniques used by researchers for characterization and engineering of bulk heterojunctions to realize large photocurrents, and examine the formed morphology in three prototypical blends. PMID:27951633

  14. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene.

    PubMed

    Morrison, Adrian F; Herbert, John M

    2017-06-14

    Recently, we introduced an ab initio version of the Frenkel-Davydov exciton model for computing excited-state properties of molecular crystals and aggregates. Within this model, supersystem excited states are approximated as linear combinations of excitations localized on molecular sites, and the electronic Hamiltonian is constructed and diagonalized in a direct-product basis of non-orthogonal configuration state functions computed for isolated fragments. Here, we derive and implement analytic derivative couplings for this model, including nuclear derivatives of the natural transition orbital and symmetric orthogonalization transformations that are part of the approximation. Nuclear derivatives of the exciton Hamiltonian's matrix elements, required in order to compute the nonadiabatic couplings, are equivalent to the "Holstein" and "Peierls" exciton/phonon couplings that are widely discussed in the context of model Hamiltonians for energy and charge transport in organic photovoltaics. As an example, we compute the couplings that modulate triplet exciton transport in crystalline tetracene, which is relevant in the context of carrier diffusion following singlet exciton fission.

  15. InAs Band-Edge Exciton Fine Structure

    DTIC Science & Technology

    2015-07-29

    Chapter 1 InAs Band-Edge Exciton Fine Structure 1.1 Contributions This work was carried out in collaboration with Oscar Sandoval, a summer student at...diffusion,1,2 charg- ing,2,3 and excitonic fine structure.1,3–9 While spectral diffusion and charging are most likely photoinduced effects and thus can be...unavoidable. A complete understanding of the excitonic 1 Distribution A: Public Release energy landscape enables us to determine dephasing rates

  16. Transport of Indirect Excitons in High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Dorow, C. J.; Kuznetsova, Y. Y.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.

    Spatially- and spectrally-resolved photoluminescence measurements of indirect excitons in high magnetic fields are presented. The high magnetic field regime for excitons is realized when the cyclotron splitting compares to the exciton binding energy. Due to small mass and binding energy, the high magnetic field regime for excitons is achievable in lab, requiring a few Tesla. Long indirect exciton lifetimes allow large exciton transport distances before recombination, giving an opportunity to study transport and relaxation kinetics of indirect magnetoexcitons via optical imaging. Indirect excitons in several Landau level states are realized. 0e -0h indirect magnetoexcitons (formed from electrons and holes at zeroth Landau levels) travel over large distances and form an emission ring around the excitation spot. In contrast, the 1e -1h and 2e -2h states do not exhibit long transport distances, and the spatial profiles of the emission closely follow the laser excitation. The 0e -0h indirect magnetoexciton transport distance reduces with increasing magnetic field. Accompanying theoretical work explains these effects in terms of magnetoexciton energy relaxation and effective mass enhancement. Supported by NSF Grant No. 1407277. J.W. was supported by the EPSRC (Grant EP/L022990/1). C.J.D. was supported by the NSF Graduate Research Fellowship Program under Grant No. DGE-1144086.

  17. Effects of Be acceptors on the spin polarization of carriers in p-i-n resonant tunneling diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awan, I. T.; Galvão Gobato, Y.; Galeti, H. V. A.

    In this paper, we have investigated the effect of Be acceptors on the electroluminescence and the spin polarization in GaAs/AlAs p-i-n resonant tunneling diodes. The quantum well emission comprise two main lines separated by ∼20 meV attributed to excitonic and Be-related transitions, which intensities show remarkably abrupt variations at critical voltages, particularly at the electron resonant peak where it shows a high-frequency bistability. The circular-polarization degree of the quantum-well electroluminescence also shows strong and abrupt variations at the critical bias voltages and it attains relatively large values (of ∼−75% at 15 T). These effects may be explored to design novel devices formore » spintronic applications such as a high-frequency spin-oscillators.« less

  18. Universal ultrafast signatures of photoexcitations in conjugated polymers: excitons and charge-transfer polarons

    NASA Astrophysics Data System (ADS)

    McBranch, Duncan W.; Kraabel, Brett; Xu, Su; Wang, Hsing-Lin; Klimov, Victor I.

    1999-12-01

    Using subpicosecond transient absorption spectroscopy, we have investigated the primary photoexcitations in thin films and solution of several phenylene-based conjugated polymers and an oligomer. We identify two features in the transient absorption spectra and dynamics that are common to all of the materials which we have studied from this family. The first spectral feature is a photoinduced absorption (PA) band peaking near 1 eV which has intensity-dependent dynamics which match the stimulated emission dynamics exactly over two orders of magnitude in excitation density. This band is associated with singlet intrachain excitons. The second spectral feature (observed only in thin films and aggregated solutions) is a PA band peaking near 1.8 eV, which is longer-lived than the 1 eV exciton PA band, and which has dynamics that are independent (or weakly-dependent) on excitation density. This feature is attributed to charge separated (interchain) excitations. These excitations are generated through a bimolecular process. By comparing to samples in which charged excitations are created deliberately by doping with C6O, we assign these secondary species as bound polarons.

  19. Visualization of exciton transport in ordered and disordered molecular solids.

    PubMed

    Akselrod, Gleb M; Deotare, Parag B; Thompson, Nicholas J; Lee, Jiye; Tisdale, William A; Baldo, Marc A; Menon, Vinod M; Bulović, Vladimir

    2014-04-16

    Transport of nanoscale energy in the form of excitons is at the core of photosynthesis and the operation of a wide range of nanostructured optoelectronic devices such as solar cells, light-emitting diodes and excitonic transistors. Of particular importance is the relationship between exciton transport and nanoscale disorder, the defining characteristic of molecular and nanostructured materials. Here we report a spatial, temporal and spectral visualization of exciton transport in molecular crystals and disordered thin films. Using tetracene as an archetype molecular crystal, the imaging reveals that exciton transport occurs by random walk diffusion, with a transition to subdiffusion as excitons become trapped. By controlling the morphology of the thin film, we show that this transition to subdiffusive transport occurs at earlier times as disorder is increased. Our findings demonstrate that the mechanism of exciton transport depends strongly on the nanoscale morphology, which has wide implications for the design of excitonic materials and devices.

  20. Multi-exciton emission from solitary dopant states of carbon nanotubes.

    PubMed

    Ma, Xuedan; Hartmann, Nicolai F; Velizhanin, Kirill A; Baldwin, Jon K S; Adamska, Lyudmyla; Tretiak, Sergei; Doorn, Stephen K; Htoon, Han

    2017-11-02

    By separating the photons from slow and fast decays of single and multi-exciton states in a time gated 2 nd order photon correlation experiment, we show that solitary oxygen dopant states of single-walled carbon nanotubes (SWCNTs) allow emission of photon pairs with efficiencies as high as 44% of single exciton emission. Our pump dependent time resolved photoluminescence (PL) studies further reveal diffusion-limited exciton-exciton annihilation as the key process that limits the emission of multi-excitons at high pump fluences. We further postulate that creation of additional permanent exciton quenching sites occurring under intense laser irradiation leads to permanent PL quenching. With this work, we bring out multi-excitonic processes of solitary dopant states as a new area to be explored for potential applications in lasing and entangled photon generation.

  1. Excitonic instability in optically pumped three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Pertsova, Anna; Balatsky, Alexander V.

    2018-02-01

    Recently it was suggested that transient excitonic instability can be realized in optically pumped two-dimensional (2D) Dirac materials (DMs), such as graphene and topological insulator surface states. Here we discuss the possibility of achieving a transient excitonic condensate in optically pumped three-dimensional (3D) DMs, such as Dirac and Weyl semimetals, described by nonequilibrium chemical potentials for photoexcited electrons and holes. Similar to the equilibrium case with long-range interactions, we find that for pumped 3D DMs with screened Coulomb potential two possible excitonic phases exist, an excitonic insulator phase and the charge density wave phase originating from intranodal and internodal interactions, respectively. In the pumped case, the critical coupling for excitonic instability vanishes; therefore the two phases coexist for arbitrarily weak coupling strengths. The excitonic gap in the charge density wave phase is always the largest one. The competition between screening effects and the increase of the density of states with optical pumping results in a rich phase diagram for the transient excitonic condensate. Based on the static theory of screening, we find that under certain conditions the value of the dimensionless coupling constant screening in 3D DMs can be weaker than in 2D DMs. Furthermore, we identify the signatures of the transient excitonic condensate that could be probed by scanning tunneling spectroscopy, photoemission, and optical conductivity measurements. Finally, we provide estimates of critical temperatures and excitonic gaps for existing and hypothetical 3D DMs.

  2. Exciton-phonon system on a star graph: A perturbative approach.

    PubMed

    Yalouz, Saad; Pouthier, Vincent

    2016-05-01

    Based on the operatorial formulation of the perturbation theory, the properties of an exciton coupled with optical phonons on a star graph are investigated. Within this method, the dynamics is governed by an effective Hamiltonian, which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud whereas the phonons are clothed by virtual excitonic transitions. In spite of the coupling with the phonons, it is shown that the energy spectrum of the dressed exciton resembles that of a bare exciton. The only differences originate in a polaronic mechanism that favors an energy shift and a decay of the exciton hopping constant. By contrast, the motion of the exciton allows the phonons to propagate over the graph so that the dressed normal modes drastically differ from the localized modes associated to bare phonons. They define extended vibrations whose properties depend on the state occupied by the exciton that accompanies the phonons. It is shown that the phonon frequencies, either red shifted or blue shifted, are very sensitive to the model parameter in general, and to the size of the graph in particular.

  3. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers.

    PubMed

    Andernach, Rolf; Utzat, Hendrik; Dimitrov, Stoichko D; McCulloch, Iain; Heeney, Martin; Durrant, James R; Bronstein, Hugo

    2015-08-19

    We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple time scales and investigated the mechanism of triplet exciton formation. During sensitization, singlet exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and found that 60% of the complex triplet excitons were transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and upconversion layers.

  4. Acceptor Ionization Energies in GaN*

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Ban Chen, An

    2001-03-01

    The k.p Hamiltonian and a model potential are used to deduce the acceptor ionization energies in GaN from a systematic study of the chemical trend in GaAs, GaP, and InP. The acceptors studied include Be, Mg, Ca, Zn, and Cd on the cation sites and C, Si, and Ge on the anion sites. Our calculated acceptor ionization energies are estimated to be accurate to better than ten percent across the board. The ionization energies of C and Be (152 and 187 meV respectively) in wurtzite GaN are found to be lower than that of Mg (224 meV). The C was found to behave like the hydrogenic acceptor in all systems and it has the smallest ionization energy among all the acceptors studied.

  5. Polarization-dependent exciton dynamics in tetracene single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bo; Zhang, Chunfeng, E-mail: cfzhang@nju.edu.cn; Xu, Yanqing

    2014-12-28

    We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors.

  6. Plasmon-Exciton Coupling Interaction for Surface Catalytic Reactions.

    PubMed

    Wang, Jingang; Lin, Weihua; Xu, Xuefeng; Ma, Fengcai; Sun, Mengtao

    2018-05-01

    In this review, we firstly reveal the physical principle of plasmon-exciton coupling interaction with steady absorption spectroscopy, and ultrafast transition absorption spectroscopy, based on the pump-prop technology. Secondly, we introduce the fabrication of electro-optical device of two-dimensional semiconductor-nanostructure noble metals hybrid, based on the plasmon-exciton coupling interactions. Thirdly, we introduce the applications of plasmon-exciton coupling interaction in the field of surface catalytic reactions. Lastly, the perspective of plasmon-exciton coupling interaction and applications closed this review. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Process of negative-muon-induced formation of an ionized acceptor center ({sub μ}A){sup –} in crystals with the diamond structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belousov, Yu. M., E-mail: theorphys@phystech.edu

    The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom {sub μ}A coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon.more » Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.« less

  8. Single and double acceptor-levels of a carbon-hydrogen defect in n-type silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stübner, R.; Scheffler, L.; Kolkovsky, Vl., E-mail: kolkov@ifpan.edu.pl

    In the present study, we discuss the origin of two dominant deep levels (E42 and E262) observed in n-type Si, which is subjected to hydrogenation by wet chemical etching or a dc H-plasma treatment. Their activation enthalpies determined from Laplace deep level transient spectroscopy measurements are E{sub C}-0.06 eV (E42) and E{sub C}-0.51 eV (E262). The similar annealing behavior and identical depth profiles of E42 and E262 correlate them with two different charge states of the same defect. E262 is attributed to a single acceptor state due to the absence of the Poole-Frenkel effect and the lack of a capture barrier formore » electrons. The emission rate of E42 shows a characteristic enhancement with the electric field, which is consistent with the assignment to a double acceptor state. In samples with different carbon and hydrogen content, the depth profiles of E262 can be explained by a defect with one H-atom and one C-atom. From a comparison with earlier calculations [Andersen et al., Phys. Rev. B 66, 235205 (2002)], we attribute E42 to the double acceptor and E262 to the single acceptor state of the CH{sub 1AB} configuration, where one H atom is directly bound to carbon in the anti-bonding position.« less

  9. Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry

    PubMed Central

    Chestnov, Igor Yu.; Demirchyan, Sevak S.; Alodjants, Alexander P.; Rubo, Yuri G.; Kavokin, Alexey V.

    2016-01-01

    We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators. PMID:26790534

  10. Permanent Rabi oscillations in coupled exciton-photon systems with PT-symmetry.

    PubMed

    Chestnov, Igor Yu; Demirchyan, Sevak S; Alodjants, Alexander P; Rubo, Yuri G; Kavokin, Alexey V

    2016-01-21

    We propose a physical mechanism which enables permanent Rabi oscillations in driven-dissipative condensates of exciton-polaritons in semiconductor microcavities subjected to external magnetic fields. The method is based on stimulated scattering of excitons from the incoherent reservoir. We demonstrate that permanent non-decaying oscillations may appear due to the parity-time symmetry of the coupled exciton-photon system realized in a specific regime of pumping to the exciton state and depletion of the reservoir. At non-zero exciton-photon detuning, robust permanent Rabi oscillations occur with unequal amplitudes of exciton and photon components. Our predictions pave way to realization of integrated circuits based on exciton-polariton Rabi oscillators.

  11. Topologically protected excitons in porphyrin thin films

    NASA Astrophysics Data System (ADS)

    Yuen-Zhou, Joel; Saikin, Semion K.; Yao, Norman Y.; Aspuru-Guzik, Alán

    2014-11-01

    The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov-Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials.

  12. Quantum Hall signatures of dipolar Mahan excitons

    NASA Astrophysics Data System (ADS)

    Schinner, G. J.; Repp, J.; Kowalik-Seidl, K.; Schubert, E.; Stallhofer, M. P.; Rai, A. K.; Reuter, D.; Wieck, A. D.; Govorov, A. O.; Holleitner, A. W.; Kotthaus, J. P.

    2013-01-01

    We explore the photoluminescence of spatially indirect, dipolar Mahan excitons in a gated double quantum well diode containing a mesoscopic electrostatic trap for neutral dipolar excitons at low temperatures down to 250 mK and in quantizing magnetic fields. Mahan excitons in the surrounding of the trap, consisting of individual holes interacting with a degenerate two-dimensional electron system confined in one of the quantum wells, exhibit strong quantum Hall signatures at integer filling factors and related anomalies around filling factor ν=(2)/(3),(3)/(5), and (1)/(2), reflecting the formation of composite fermions. Interactions across the trap perimeter are found to influence the energy of the confined neutral dipolar excitons by the presence of the quantum Hall effects in the two-dimensional electron system surrounding the trap.

  13. Topologically protected excitons in porphyrin thin films.

    PubMed

    Yuen-Zhou, Joel; Saikin, Semion K; Yao, Norman Y; Aspuru-Guzik, Alán

    2014-11-01

    The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov-Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials.

  14. Observation of interlayer excitons in MoSe2 single crystals

    NASA Astrophysics Data System (ADS)

    Horng, Jason; Stroucken, Tineke; Zhang, Long; Paik, Eunice Y.; Deng, Hui; Koch, Stephan W.

    2018-06-01

    Interlayer excitons with direct optical transitions are observed coexisting with intralayer excitons in the same K valleys in bilayer, few-layer, and bulk MoSe2 single crystals by confocal reflection contrast spectroscopy. Quantitative analysis using the Dirac-Bloch equations provides unambiguous state assignment of all the measured resonances. The interlayer excitons in bilayer MoSe2 have a large binding energy of 153 meV and a narrow linewidth of 20 meV. Their spectral weight is comparable to the commonly studied higher-order intralayer excitons. At the same time, the interlayer excitons are characterized by distinct transition energies and permanent dipole moments, providing a promising high temperature and optically accessible platform for dipolar exciton physics.

  15. Cross-circularly polarized two-exciton states in one to three dimensions.

    PubMed

    Ajiki, Hiroshi

    2015-03-14

    Biexciton and two-exciton dissociated states of Frenkel-type excitons are studied theoretically using an exciton tight-binding (TB) model including a polarization degree of freedom. Because the biexciton consists of two cross-circularly polarized excitons, an on-site interaction (V) between the two excitons should be considered in addition to a nearest-neighbor two-exciton attractive interaction (δ). Although there are an infinitely large number of combinations of V and δ providing the observed binding energy of a biexciton, the wave function of the biexciton and two-exciton dissociated states is nearly independent of these parameter sets. This means that all the two-exciton states are uniquely determined from the exciton TB model. There are a spatially symmetric and an antisymmetric biexciton state for a one-dimensional (1D) lattice and two symmetric and one antisymmetric biexciton states at most for two- (2D) and three-dimensional (3D) lattices. In contrast, when the polarization degree of freedom is ignored, there is one biexciton state for 1D, 2D, and 3D lattices. For this study, a rapid and memory-saving calculation method for two-exciton states is extended to include the polarization degree of freedom.

  16. Cross-circularly polarized two-exciton states in one to three dimensions

    NASA Astrophysics Data System (ADS)

    Ajiki, Hiroshi

    2015-03-01

    Biexciton and two-exciton dissociated states of Frenkel-type excitons are studied theoretically using an exciton tight-binding (TB) model including a polarization degree of freedom. Because the biexciton consists of two cross-circularly polarized excitons, an on-site interaction (V) between the two excitons should be considered in addition to a nearest-neighbor two-exciton attractive interaction (δ). Although there are an infinitely large number of combinations of V and δ providing the observed binding energy of a biexciton, the wave function of the biexciton and two-exciton dissociated states is nearly independent of these parameter sets. This means that all the two-exciton states are uniquely determined from the exciton TB model. There are a spatially symmetric and an antisymmetric biexciton state for a one-dimensional (1D) lattice and two symmetric and one antisymmetric biexciton states at most for two- (2D) and three-dimensional (3D) lattices. In contrast, when the polarization degree of freedom is ignored, there is one biexciton state for 1D, 2D, and 3D lattices. For this study, a rapid and memory-saving calculation method for two-exciton states is extended to include the polarization degree of freedom.

  17. Covalently Bound Clusters of Alpha-Substituted PDI—Rival Electron Acceptors to Fullerene for Organic Solar Cells

    DOE PAGES

    Wu, Qinghe; Zhao, Donglin; Schneider, Alexander M.; ...

    2016-05-24

    Here, a cluster type of electron acceptor, TPB, bearing four α-perylenediimides (PDIs), was developed, in which the four PDIs form a cross-like molecular conformation while still partially conjugated with the BDT-Th core. The blend TPB:PTB7-Th films shows favorable morphology and efficient charge dissociation. The inverted solar cells exhibited the highest PCE of 8.47 % with the extraordinary high J sc values (>18 mA/cm 2), comparable with those of the corresponding PC 71BM/PBT7-Th based solar cells.

  18. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers.

    PubMed

    Zhou, Nanjia; Dudnik, Alexander S; Li, Ting I N G; Manley, Eric F; Aldrich, Thomas J; Guo, Peijun; Liao, Hsueh-Chung; Chen, Zhihua; Chen, Lin X; Chang, Robert P H; Facchetti, Antonio; Olvera de la Cruz, Monica; Marks, Tobin J

    2016-02-03

    The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE "sweet spot" at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for both polymer

  19. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nanjia; Dudnik, Alexander S.; Li, Ting I. N. G.

    2016-01-21

    The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhancesmore » donor–acceptor polymer–polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE “sweet spot” at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for

  20. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nanjia; Dudnik, Alexander S.; Li, Ting I. N. G.

    2015-12-31

    ABSTRACT: The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4- c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)- thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'- bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)- 2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The M n effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable M ns. Experimental and coarse-grain modeling results reveal that systematic M n variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing M n formore » both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (J sc). However, the greater disorder and intermixed feature proliferation accompanying increasing M n promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal M ns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer M ns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest M ns, the present two-dimensional M n optimization matrix strategy locates a PCE “sweet spot” at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired M n and highlights the importance of

  1. Effects of surface and interface traps on exciton and multi-exciton dynamics in core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Bozio, Renato; Righetto, Marcello; Minotto, Alessandro

    2017-08-01

    Exciton interactions and dynamics are the most important factors determining the exceptional photophysical properties of semiconductor quantum dots (QDs). In particular, best performances have been obtained for ingeniously engineered core/shell QDs. We have studied two factors entering in the exciton decay dynamics with adverse effects for the luminescence efficiency: exciton trapping at surface and interface traps, and non-radiative Auger recombination in QDs carrying either net charges or multiple excitons. In this work, we present a detailed study into the optical absorption, fluorescence dynamics and quantum yield, as well as ultrafast transient absorption properties of CdSe/CdS, CdSe/Cd0.5Zn0.5S, and CdSe/ZnS QDs as a function of shell thickness. It turns out that de-trapping processes play a pivotal role in determining steady state emission properties. By studying the excitation dependent photoluminescence quantum yields (PLQY) in different CdSe/CdxZn1-xS (x = 0, 0.5, 1) QDs, we demonstrate the different role played by hot and cold carrier trapping rates in determining fluorescence quantum yields. Finally, the use of global analysis allows us untangling the complex ultrafast transient absorption signals. Smoothing of interface potential, together with effective surface passivation, appear to be crucial factors in slowing down both Auger-based and exciton trapping recombination processes.

  2. Analysis of Triplet Exciton Loss Pathways in PTB7:PC71BM Bulk Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Kraus, Hannes; Heiber, Michael C.; Väth, Stefan; Kern, Julia; Deibel, Carsten; Sperlich, Andreas; Dyakonov, Vladimir

    2016-07-01

    A strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC71BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO). Using photoluminescence and spin-sensitive optically detected magnetic resonance (ODMR) measurements at low temperature, we find that TEs form on PC71BM via intersystem crossing from singlet excitons and on PTB7 via EBT mechanism. For DIO blends with smaller fullerene domains, an increased density of PTB7 TEs is observed. The EBT process is found to be significant only at very low temperature. At 300 K, no triplets are detected via ODMR, and electrically detected magnetic resonance on optimized solar cells indicates that TEs are only present on the fullerenes. We conclude that in PTB7:PC71BM devices, TE formation via EBT is impacted by fullerene domain size at low temperature, but at room temperature, EBT does not represent a dominant loss pathway.

  3. Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials

    DOE PAGES

    Kirschner, Matthew S.; Ding, Wendu; Li, Yuxiu; ...

    2017-12-01

    In this study, we demonstrate that coherent acoustic phonons derived from plasmonic nanoparticles can modulate electronic interactions with proximal excitonic molecular species. A series of gold bipyramids with systematically varied aspect ratios and corresponding localized surface plasmon resonance energies, functionalized with a J-aggregated thiacarbocyanine dye molecule, produce two hybridized states that exhibit clear anti-crossing behavior with a Rabi splitting energy of 120 meV. In metal nanoparticles, photoexcitation generates coherent acoustic phonons that cause oscillations in the plasmon resonance energy. In the coupled system, these photo-generated oscillations alter the metal nanoparticle’s energetic contribution to the hybridized system and, as a result,more » change the coupling between the plasmon and exciton. We demonstrate that such modulations in the hybridization is consistent across a wide range of bipyramid ensembles. We also use Finite-Difference Time Domain calculations to develop a simple model describing this behavior. Lastly, such oscillatory plasmonic-excitonic nanomaterials (OPENs) offer a route to manipulate and dynamically-tune the interactions of plasmonic/excitonic systems and unlock a range of potential applications.« less

  4. Magneto-optical quantum interferences in a system of spinor excitons

    NASA Astrophysics Data System (ADS)

    Kuan, Wen-Hsuan; Gudmundsson, Vidar

    2018-04-01

    In this work we investigate magneto-optical properties of two-dimensional semiconductor quantum-ring excitons with Rashba and Dresselhaus spin-orbit interactions threaded by a magnetic flux perpendicular to the plane of the ring. By calculating the excitonic Aharonov-Bohm spectrum, we study the Coulomb and spin-orbit effects on the Aharonov-Bohm features. From the light-matter interactions of the excitons, we find that for scalar excitons, there are open channels for spontaneous recombination resulting in a bright photoluminescence spectrum, whereas the forbidden recombination of dipolar excitons results in a dark photoluminescence spectrum. We investigate the generation of persistent charge and spin currents. The exploration of spin orientations manifests that by adjusting the strength of the spin-orbit interactions, the exciton can be constructed as a squeezed complex with specific spin polarization. Moreover, a coherently moving dipolar exciton acquires a nontrivial dual Aharonov-Casher phase, creating the possibility to generate persistent dipole currents and spin dipole currents. Our study reveals that in the presence of certain spin-orbit generated fields, the manipulation of the magnetic field provides a potential application for quantum-ring spinor excitons to be utilized in nano-scaled magneto-optical switches.

  5. Charged excitons in a dilute two-dimensional electron gas in a high magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojs, Arkadiusz; Institute of Physics, Wroclaw University of Technology, Wroclaw 50-370,; Quinn, John J.

    2000-08-15

    A theory of charged excitons X{sup -} in a dilute two-dimensional (2D) electron gas in a high-magnetic field is presented. In contrast to previous calculations, three bound X{sup -} states (one singlet and two triplets) are found in a narrow and symmetric GaAs quantum well. The singlet and a ''bright'' triplet are the two optically active states observed in experiments. The bright triplet has the binding energy of about 1 meV, smaller than the singlet and a ''dark'' triplet. The interaction of bound X{sup -}'s with a dilute 2D electron gas is investigated using exact diagonalization techniques. It is foundmore » that the short-range character of the e-X{sup -} interactions effectively isolates bound X{sup -} states from a dilute e-h plasma. This results in the insensitivity of the photoluminescence spectrum to the filling factor {nu}, and a rapid decrease of the oscillator strength of the dark triplet X{sup -} as a function of {nu}{sup -1}. (c) 2000 The American Physical Society.« less

  6. Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors.

    PubMed

    Niehues, Iris; Schmidt, Robert; Drüppel, Matthias; Marauhn, Philipp; Christiansen, Dominik; Selig, Malte; Berghäuser, Gunnar; Wigger, Daniel; Schneider, Robert; Braasch, Lisa; Koch, Rouven; Castellanos-Gomez, Andres; Kuhn, Tilmann; Knorr, Andreas; Malic, Ermin; Rohlfing, Michael; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2018-03-14

    Semiconducting transition metal dichalcogenide (TMDC) monolayers have exceptional physical properties. They show bright photoluminescence due to their unique band structure and absorb more than 10% of the light at their excitonic resonances despite their atomic thickness. At room temperature, the width of the exciton transitions is governed by the exciton-phonon interaction leading to strongly asymmetric line shapes. TMDC monolayers are also extremely flexible, sustaining mechanical strain of about 10% without breaking. The excitonic properties strongly depend on strain. For example, exciton energies of TMDC monolayers significantly redshift under uniaxial tensile strain. Here, we demonstrate that the width and the asymmetric line shape of excitonic resonances in TMDC monolayers can be controlled with applied strain. We measure photoluminescence and absorption spectra of the A exciton in monolayer MoSe 2 , WSe 2 , WS 2 , and MoS 2 under uniaxial tensile strain. We find that the A exciton substantially narrows and becomes more symmetric for the selenium-based monolayer materials, while no change is observed for atomically thin WS 2 . For MoS 2 monolayers, the line width increases. These effects are due to a modified exciton-phonon coupling at increasing strain levels because of changes in the electronic band structure of the respective monolayer materials. This interpretation based on steady-state experiments is corroborated by time-resolved photoluminescence measurements. Our results demonstrate that moderate strain values on the order of only 1% are already sufficient to globally tune the exciton-phonon interaction in TMDC monolayers and hold the promise for controlling the coupling on the nanoscale.

  7. Exciton-plasmon coupling interactions: from principle to applications

    NASA Astrophysics Data System (ADS)

    Cao, En; Lin, Weihua; Sun, Mengtao; Liang, Wenjie; Song, Yuzhi

    2018-01-01

    The interaction of exciton-plasmon coupling and the conversion of exciton-plasmon-photon have been widely investigated experimentally and theoretically. In this review, we introduce the exciton-plasmon interaction from basic principle to applications. There are two kinds of exciton-plasmon coupling, which demonstrate different optical properties. The strong exciton-plasmon coupling results in two new mixed states of light and matter separated energetically by a Rabi splitting that exhibits a characteristic anticrossing behavior of the exciton-LSP energy tuning. Compared to strong coupling, such as surface-enhanced Raman scattering, surface plasmon (SP)-enhanced absorption, enhanced fluorescence, or fluorescence quenching, there is no perturbation between wave functions; the interaction here is called the weak coupling. SP resonance (SPR) arises from the collective oscillation induced by the electromagnetic field of light and can be used for investigating the interaction between light and matter beyond the diffraction limit. The study on the interaction between SPR and exaction has drawn wide attention since its discovery not only due to its contribution in deepening and broadening the understanding of SPR but also its contribution to its application in light-emitting diodes, solar cells, low threshold laser, biomedical detection, quantum information processing, and so on.

  8. Electronic and vibrational exciton coupling in oxidized trianglimines.

    PubMed

    Szymkowiak, Joanna; Kwit, Marcin

    2018-02-01

    Readily available chiral trianglimine and their (poly)oxygenated congeners represent a unique class of macrocyclic rigid compounds optimal for testing electronic and vibrational circular dichroism exciton chirality methods. Electronic and vibrational circular dichroism spectra of such trianglimines are strongly affected by polar substituents in macrocycle skeletons. Double substitution by OH groups in each aromatic fragment of the macrocycle causes sign reversal of the exciton couplet in the region of the strongest UV absorption. On the other hand, electronic circular dichroism spectrum of the macrocycle having 2 methoxy groups shows 2 exciton couplets-the long-wavelength positive and the second of the negative sign, observed at the shorter wavelengths. VCD spectra of macrocyclic imines show vibrational exciton couplets in the region of strong C=N stretches. The signs of these couplets are positive and the opposite of the diamine chirality. For trianglimine macrocycles the interpretation of VCD spectra in terms of excitons is much more convincing than for electronic circular dichroism spectra. By contrast, trans-1,2-diaminocyclohexane-based vicinal diimines, being a one-third of the respective macrocycle, do not exhibit any vibrational exciton effect. Experimental data were confronted with DFT calculations. We observed good-to-excellent agreement between experimental and computed data. © 2017 Wiley Periodicals, Inc.

  9. Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet-Triplet Energy Gap.

    PubMed

    Freeman, David M E; Musser, Andrew J; Frost, Jarvist M; Stern, Hannah L; Forster, Alexander K; Fallon, Kealan J; Rapidis, Alexandros G; Cacialli, Franco; McCulloch, Iain; Clarke, Tracey M; Friend, Richard H; Bronstein, Hugo

    2017-08-16

    The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and "bright" singlets, allowing thermal population exchange between them and eliminating a significant loss channel in devices. In conjugated polymers, this gap has proved resistant to modification. Here, we introduce a general approach to reduce the singlet-triplet energy gap in fully conjugated polymers, using a donor-orthogonal acceptor motif to spatially separate electron and hole wave functions. This new generation of conjugated polymers allows for a greatly reduced exchange energy, enhancing triplet formation and enabling thermally activated delayed fluorescence. We find that the mechanisms of both processes are driven by excited-state mixing between π-π*and charge-transfer states, affording new insight into reverse intersystem crossing.

  10. Excitonic effects and related properties in semiconductor nanostructures: roles of size and dimensionality

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Cheng, Liwen; Wang, Qiang

    2017-08-01

    The size- and dimensionality-dependence of excitonic effects and related properties in semiconductor nanostructures are theoretically studied in detail within the effective-mass approximation. When nanostructure sizes become smaller than the bulk exciton Bohr radius, excitonic effects are significantly enhanced with reducing size or dimensionality. This is as a result of quantum confinement in more directions leading to larger exciton binding energies and normalized exciton oscillator strengths. These excitonic effects originate from electron-hole Coulombic interactions, which strongly enhance the oscillator strength between the electron and hole. It is also established that the universal scaling of exciton binding energy versus the inverse of the exciton Bohr radius follows a linear scaling law. Herein, we propose a stretched exponential law for the size scaling of optical gap, which is in good agreement with the calculated data. Due to differences in the confinement dimensionality, the radiative lifetime of low-dimensional excitons becomes shorter than that of bulk excitons. The size dependence of the exciton radiative lifetimes is in good agreement with available experimental data. This strongly enhanced electron-hole exchange interaction is expected in low-dimensional structures due to enriched excitonic effects. The main difference in nanostructures compared to the bulk can be interpreted in terms of the enhanced excitonic effects induced by exciton localization. The enhanced excitonic effects are expected to be of importance in developing stable and high-efficiency nanoscale excitonic optoelectronic devices.

  11. Excitonic giant-dipole potentials in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Kurz, Markus; Grünwald, Peter; Scheel, Stefan

    2017-06-01

    In this paper we predict the existence of a novel species of Wannier excitons when exposed to crossed electric and magnetic fields. In particular, we present a theory of giant-dipole excitons in Cu2O in crossed fields. Within our theoretical approach we perform a pseudoseparation of the center-of-mass motion for the field-dressed excitonic species, thereby obtaining an effective single-particle Hamiltonian for the relative motion. For arbitrary gauge fields we exactly separate the gauge-dependent kinetic-energy terms from the effective single-particle interaction potential. Depending on the applied field strengths and the specific field orientation, the potential for the relative motion of electron and hole exhibits an outer well at spatial separations up to several micrometers and depths up to 380 μ eV , leading to possible permanent excitonic electric dipole moments of around 3 ×106 D.

  12. Exciton intrachain transport induced by interchain packing configurations in conjugated polymers.

    PubMed

    Meng, Ruixuan; Gao, Kun; Zhang, Gaiyan; Han, Shixuan; Yang, Fujiang; Li, Yuan; Xie, Shijie

    2015-07-28

    Based on a tight binding model combined with a nonadiabatic dynamics approach, we theoretically investigate the exciton intrachain transport in conjugated polymers with different interchain packing configurations. We construct two different interchain packing configurations, i.e. linear and exponential forms, and simulate the dynamical processes of the exciton transport in these systems. We find that, in both cases, there exists a distribution of driving force for exciton transport, which stems from the gradient of the exciton creation energy along the chains. This finding enriches the picture of exciton transport in polymers and provides a new idea to improve the exciton transport length in polymeric photovoltaic devices.

  13. Excitons in atomically thin 2D semiconductors and their applications

    DOE PAGES

    Xiao, Jun; Zhao, Mervin; Wang, Yuan; ...

    2017-01-01

    The research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS 2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. Here in this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical meansmore » is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.« less

  14. Excitons in atomically thin 2D semiconductors and their applications

    NASA Astrophysics Data System (ADS)

    Xiao, Jun; Zhao, Mervin; Wang, Yuan; Zhang, Xiang

    2017-06-01

    The research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.

  15. Excitons in the Fractional Quantum Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-09-01

    Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.

  16. Exploring what prompts ITIC to become a superior acceptor in organic solar cell by combining molecular dynamics simulation with quantum chemistry calculation.

    PubMed

    Pan, Qing-Qing; Li, Shuang-Bao; Duan, Ying-Chen; Wu, Yong; Zhang, Ji; Geng, Yun; Zhao, Liang; Su, Zhong-Min

    2017-11-29

    The interface characteristic is a crucial factor determining the power conversion efficiency of organic solar cells (OSCs). In this work, our aim is to conduct a comparative study on the interface characteristics between the very famous non-fullerene acceptor, ITIC, and a fullerene acceptor, PC71BM by combining molecular dynamics simulations with density functional theory. Based on some typical interface models of the acceptor ITIC or PC71BM and the donor PBDB-T selected from MD simulation, besides the evaluation of charge separation/recombination rates, the relative positions of Frenkel exciton (FE) states and the charge transfer states along with their oscillator strengths are also employed to estimate the charge separation abilities. The results show that, when compared with those for the PBDB-T/PC71BM interface, the CT states are more easily formed for the PBDB-T/ITIC interface by either the electron transfer from the FE state or direct excitation, indicating the better charge separation ability of the former. Moreover, the estimation of the charge separation efficiency manifests that although these two types of interfaces have similar charge recombination rates, the PBDB-T/ITIC interface possesses the larger charge separation rates than those of the PBDB-T/PC71BM interface. Therefore, the better match between PBDB-T and ITIC together with a larger charge separation efficiency at the interface are considered to be the reasons for the prominent performance of ITIC in OSCs.

  17. Dynamics of charge-transfer excitons in type-II semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Stein, M.; Lammers, C.; Richter, P.-H.; Fuchs, C.; Stolz, W.; Koch, M.; Vänskä, O.; Weseloh, M. J.; Kira, M.; Koch, S. W.

    2018-03-01

    The formation, decay, and coherence properties of charge-transfer excitons in semiconductor heterostructures are investigated by applying four-wave-mixing and terahertz spectroscopy in combination with a predictive microscopic theory. A charge-transfer process is identified where the optically induced coherences decay directly into a charge-transfer electron-hole plasma and exciton states. It is shown that charge-transfer excitons are more sensitive to the fermionic electron-hole substructure than regular excitons.

  18. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  19. Dexter energy transfer pathways

    PubMed Central

    Skourtis, Spiros S.; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M.; Beratan, David N.

    2016-01-01

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor–acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways. PMID:27382185

  20. Dexter energy transfer pathways.

    PubMed

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  1. Fractional Solitons in Excitonic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Su, Jung-Jung; Hsu, Ya-Fen

    The Josephson effect is especially appealing because it reveals macroscopically the quantum order and phase. Here we study this effect in an excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. Such a junction is proposed to take place in the quantum Hall bilayer (QHB) that makes it subtler than in superconductor because of the counterflow of excitonic supercurrent and the interlayer tunneling in QHB. We treat the system theoretically by first mapping it into a pseudospin ferromagnet then describing it by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, the excitonic Josephson junction can possess a family of fractional sine-Gordon solitons that resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Interestingly, each fractional soliton carries a topological charge Q which is not necessarily a half/full integer but can vary continuously. The resultant current-phase relation (CPR) shows that solitons with Q =ϕ0 / 2 π are the lowest energy states for small ϕ0. When ϕ0 > π , solitons with Q =ϕ0 / 2 π - 1 take place - the polarity of CPR is then switched.

  2. Exciton coupling in molecular crystals

    NASA Technical Reports Server (NTRS)

    Ake, R. L.

    1976-01-01

    The implications of perfect exciton coupling and molecular vibrations were investigated, as well as the effect they have on the lifetime of singlet and triplet excitons coupled in a limiting geometry. Crystalline bibenzyl, Cl4Hl4, provided a situation in which these mechanisms involving exciton coupling can be studied in the limit of perfect coupling between units due to the crystal's geometry. This geometry leads to a coupling between the two halves of the molecule resulting in a splitting of the molecular excited states. The study reported involves an experimental spectroscopic approach and begins with the purification of the bibenzyl. The principal experimental apparatus was an emission spectrometer. A closed cycle cryogenic system was used to vary the temperature of the sample between 20 K and 300 K. The desired results are the temperature-dependent emission spectra of the bibenzyl; in addition, the lifetimes and quantum yields measured at each temperature reveal the effect of competing radiationless processes.

  3. Spectral properties of excitons in the bilayer graphene

    NASA Astrophysics Data System (ADS)

    Apinyan, V.; Kopeć, T. K.

    2018-01-01

    In this paper, we consider the spectral properties of the bilayer graphene with the local excitonic pairing interaction between the electrons and holes. We consider the generalized Hubbard model, which includes both intralayer and interlayer Coulomb interaction parameters. The solution of the excitonic gap parameter is used to calculate the electronic band structure, single-particle spectral functions, the hybridization gap, and the excitonic coherence length in the bilayer graphene. We show that the local interlayer Coulomb interaction is responsible for the semimetal-semiconductor transition in the double layer system, and we calculate the hybridization gap in the band structure above the critical interaction value. The formation of the excitonic band gap is reported as the threshold process and the momentum distribution functions have been calculated numerically. We show that in the weak coupling limit the system is governed by the Bardeen-Cooper-Schrieffer (BCS)-like pairing state. Contrary, in the strong coupling limit the excitonic condensate states appear in the semiconducting phase, by forming the Dirac's pockets in the reciprocal space.

  4. Exciton Transport Simulations in Phenyl Cored Thiophene Dendrimers

    NASA Astrophysics Data System (ADS)

    Kim, Kwiseon; Erkan Kose, Muhammet; Graf, Peter; Kopidakis, Nikos; Rumbles, Garry; Shaheen, Sean E.

    2009-03-01

    Phenyl cored 3-arm and 4-arm thiophene dendrimers are promising materials for use in photovoltaic devices. It is important to understand the energy transfer mechanisms in these molecules to guide the synthesis of novel dendrimers with improved efficiency. A method is developed to estimate the exciton diffusion lengths for the dendrimers and similar chromophores in amorphous films. The approach exploits Fermi's Golden Rule to estimate the energy transfer rates for an ensemble of bimolecular complexes in random orientations. Using Poisson's equation to evaluate Coulomb integrals led to efficient calculation of excitonic couplings between the transition densities. Monte-Carlo simulations revealed the dynamics of energy transport in the dendrimers. Experimental exciton diffusion lengths of the dendrimers range 10 ˜ 20 nm, increasing with the size of the dendrimer. Simulated diffusion lengths correlate well with experiments. The chemical structure of the chromophore, the shape of the transition densities and the exciton lifetime are found to be the most important factors that determine the exciton diffusion length in amorphous films.

  5. Angular momentum transport with twisted exciton wave packets

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoning; Lusk, Mark T.

    2017-10-01

    A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.

  6. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    PubMed

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires.

    PubMed

    Yan, Jie-Yun

    2018-06-13

    Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.

  8. Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Yan, Jie-Yun

    2018-06-01

    Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.

  9. Theory for electric dipole superconductivity with an application for bilayer excitons.

    PubMed

    Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X C

    2015-07-08

    Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current.

  10. Theory for electric dipole superconductivity with an application for bilayer excitons

    PubMed Central

    Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X. C.

    2015-01-01

    Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current. PMID:26154838

  11. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  12. Novel exciton systems in 2D TMD monolayers and heterobilayers

    NASA Astrophysics Data System (ADS)

    Yu, Hongyi

    In this talk, two exciton systems in transition metal dichalcogenides (TMDs) monolayer and heterobilayer will be discussed. In TMD monolayers, the strong e-h Coulomb exchange interaction splits the exciton and trion dispersions into two branches with zero and finite gap, respectively. Each branch is a center-of-mass wave vector dependent coherent superposition of the two valleys, which leads to a valley-orbit coupling and possibly a trion valley Hall effect. The exchange interaction also eliminates the linear polarization of the negative trion PL emission. In TMD heterobilayers with a type-II band alignment, the low energy exciton has an interlayer configuration with the e and h localized in opposite layers. Because of the inevitable twist or/and lattice mismatch between the two layers, the bright interlayer excitons are located at finite center-of-mass velocities with a six-fold degeneracy. The corresponding photon emission is elliptically polarized, with the major axis locked to the direction of exciton velocity, and helicity determined by the valley indices of the e and h. Some experimental results on the interlayer excitons in the WSe2-MoSe2 heterobilayers will also be presented. The interlayer exciton exhibits a long lifetime as well as a long depolarization time, which facilitate the observation of a PL polarization ring pattern due to the valley dependent exciton-exciton interaction induced expansion. The works were supported by the Research Grant Council of Hong Kong (HKU17305914P, HKU705513P), the Croucher Foundation, and the HKU OYRA and ROP.

  13. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baruah, Tunna; Garnica, Amanda; Paggen, Marina

    2016-04-14

    We study the electronic structure of C{sub 60} fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Ourmore » results show that all functionalized fullerenes with an exception of the C{sub 60}-pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C{sub 60} fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C{sub 61}-butyric acid methyl ester (PCBM)-P3MT complex.« less

  14. An Ab Initio Exciton Model Including Charge-Transfer Excited States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xin; Parrish, Robert M.; Liu, Fang

    Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less

  15. An Ab Initio Exciton Model Including Charge-Transfer Excited States

    DOE PAGES

    Li, Xin; Parrish, Robert M.; Liu, Fang; ...

    2017-06-15

    Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less

  16. An Ab Initio Exciton Model Including Charge-Transfer Excited States.

    PubMed

    Li, Xin; Parrish, Robert M; Liu, Fang; Kokkila Schumacher, Sara I L; Martínez, Todd J

    2017-08-08

    The Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states [ Acc. Chem. Res. 2014 , 47 , 2857 - 2866 ]. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited states and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.

  17. Is there any Exciton (bottleneck) in an Excitonic Solar Cell: Revisiting the Prospects of Single-Semiconductor OPV

    NASA Astrophysics Data System (ADS)

    Alam, Muhammad

    2014-03-01

    The discovery dye sensitized and bulk heterojunction (BHJ) solar cells in early 1990s introduced a new class of PV technology that rely on (i) distributed photogeneration of excitons, (ii) dissociation of excitons into free carriers by the heterojunction between two organic semiconductors (OSC), and (iii) collection of free carriers through electron and hole transport layers. The success of the approach is undisputed: the highest efficiency OPV cells have all relied on variants of BHJ approach. Yet, three concerns related to the use of a pair of OSCs, namely, low Voc, process sensitivity, and reliability, suggest that the technology may never achieve efficiency-variability-reliability metrics comparable to inorganic solar cells. This encourages a reconsideration of the prospects of Single semiconductor OPV (SS-OPV), a system presumably doomed by the exciton bottleneck. In this talk, we use an inverted SS-OPV to demonstrate how the historical SS-OPV experiments may have been misinterpreted. No one disputes the signature of excitons in polymer under narrowband excitation, but our experiments show that exciton dissociation need not be a bottleneck for OPV under broadband solar illumination. We demonstrate that an alternate collection-limited theory consistently interprets the classical and new experiments, resolves puzzles such as efficiency loss with increasing light intensity, and voltage-dependent reverse photo-current, etc. The theory and experiments suggest a new ``perovskite-like'' strategy to efficiency-variability-reliability of organic solar cells. The work was supported by the Columbia DOE-EFRC (DE-SC0001085) and NSF-NCN (EEC-0228390).

  18. Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitonics.

    PubMed

    Guzelturk, Burak; Demir, Hilmi Volkan

    2015-06-18

    Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic-inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics.

  19. Surface photovoltage in exciton absorption range in CdS

    NASA Technical Reports Server (NTRS)

    Morawski, A.; Banisch, R.; Lagowski, J.

    1977-01-01

    The high resolution, intrinsic spectra of surface photovoltage are reported for semiconducting n-type CdS single crystals. At reduced temperatures (120-160 K) the spectra exhibit three sharp maxima due to A, B and C free exciton transitions. Energy positions of these lines and valence band parameters (spin-orbit and crystal field splittings) estimated from surface photovoltage are in good agreement with values obtained by other methods. The excitonic transitions are very sensitive to surface treatment, i.e. polishing, etching, background illumination and surface doping. The mechanism of direct interaction of free excitons with surface states is proposed to explain exciton lines in surface photovoltage.

  20. Exciton diffusion in disordered small molecules for organic photovoltaics: insights from first-principles simulations.

    PubMed

    Li, Z; Zhang, X; Lu, G

    2014-05-07

    Exciton diffusion in small molecules 3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione [DPP(TBFu)2] is studied using first-principles simulations. We have examined dependence of exciton diffusion on structure disorder, temperature and exciton energy. We find that exciton diffusion length and diffusivity increase with structural order, temperature and the initial exciton energy. Compared to conjugated polymer poly(3-hexylthiophene) (P3HT), DPP(TBFu)2 small molecules exhibit a much higher exciton diffusivity, but a shorter lifetime. The exciton diffusion length in DPP(TBFu)2 is 50% longer than that in P3HT, yielding a higher exciton harvesting efficiency; the physical origin behind these differences is discussed. The time evolutions of exciton energy, electron-hole distance, and exciton localization are explored, and the widely speculated exciton diffusion mechanism is confirmed theoretically. The connection between exciton diffusion and carrier mobilities is also studied. Finally we point out the possibility to estimate exciton diffusivity by measuring carrier mobilities under AC electric fields.

  1. Resolving ultrafast exciton migration in organic solids at the nanoscale

    NASA Astrophysics Data System (ADS)

    Penwell, Samuel B.; Ginsberg, Lucas D. S.; Noriega, Rodrigo; Ginsberg, Naomi S.

    2017-11-01

    Effectiveness of molecular-based light harvesting relies on transport of excitons to charge-transfer sites. Measuring exciton migration, however, has been challenging because of the mismatch between nanoscale migration lengths and the diffraction limit. Instead of using bulk substrate quenching methods, here we define quenching boundaries all-optically with sub-diffraction resolution, thus characterizing spatiotemporal exciton migration on its native nanometre and picosecond scales. By transforming stimulated emission depletion microscopy into a time-resolved ultrafast approach, we measure a 16-nm migration length in poly(2,5-di(hexyloxy)cyanoterephthalylidene) conjugated polymer films. Combined with Monte Carlo exciton hopping simulations, we show that migration in these films is essentially diffusive because intrinsic chromophore energetic disorder is comparable to chromophore inhomogeneous broadening. Our approach will enable previously unattainable correlation of local material structure to exciton migration character, applicable not only to photovoltaic or display-destined organic semiconductors but also to explaining the quintessential exciton migration exhibited in photosynthesis.

  2. Resolving ultrafast exciton migration in organic solids at the nanoscale.

    PubMed

    Penwell, Samuel B; Ginsberg, Lucas D S; Noriega, Rodrigo; Ginsberg, Naomi S

    2017-11-01

    Effectiveness of molecular-based light harvesting relies on transport of excitons to charge-transfer sites. Measuring exciton migration, however, has been challenging because of the mismatch between nanoscale migration lengths and the diffraction limit. Instead of using bulk substrate quenching methods, here we define quenching boundaries all-optically with sub-diffraction resolution, thus characterizing spatiotemporal exciton migration on its native nanometre and picosecond scales. By transforming stimulated emission depletion microscopy into a time-resolved ultrafast approach, we measure a 16-nm migration length in poly(2,5-di(hexyloxy)cyanoterephthalylidene) conjugated polymer films. Combined with Monte Carlo exciton hopping simulations, we show that migration in these films is essentially diffusive because intrinsic chromophore energetic disorder is comparable to chromophore inhomogeneous broadening. Our approach will enable previously unattainable correlation of local material structure to exciton migration character, applicable not only to photovoltaic or display-destined organic semiconductors but also to explaining the quintessential exciton migration exhibited in photosynthesis.

  3. One-Dimensional Singlet Exciton Diffusion in Poly(3-hexylthiophene) Crystalline Domains.

    PubMed

    Tamai, Yasunari; Matsuura, Yuu; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo

    2014-01-16

    Singlet exciton dynamics in crystalline domains of regioregular poly(3-hexylthiophene) (P3HT) films was studied by transient absorption spectroscopy. Upon the selective excitation of crystalline P3HT at the absorption edge, no red shift of the singlet exciton band was observed with an elapse of time, suggesting singlet exciton dynamics in relatively homogeneous P3HT crystalline domains without downhill relaxation in the energetic disorder. Even under such selective excitation conditions, the annihilation rate coefficient γ(t) was still dependent on time, γ(t) ∝ t(-1/2), which is attributed to anisotropic exciton diffusion in P3HT crystalline domains. From the annihilation rate coefficient, the singlet exciton diffusion coefficient D and exciton diffusion length LD in the crystalline domains were evaluated to be 7.9 × 10(-3) cm(2) s(-1) and 20 nm, respectively. The origin of the time-dependent exciton dynamics is discussed in terms of dimensionality.

  4. Single-exciton optical gain in semiconductor nanocrystals.

    PubMed

    Klimov, Victor I; Ivanov, Sergei A; Nanda, Jagjit; Achermann, Marc; Bezel, Ilya; McGuire, John A; Piryatinski, Andrei

    2007-05-24

    Nanocrystal quantum dots have favourable light-emitting properties. They show photoluminescence with high quantum yields, and their emission colours depend on the nanocrystal size--owing to the quantum-confinement effect--and are therefore tunable. However, nanocrystals are difficult to use in optical amplification and lasing. Because of an almost exact balance between absorption and stimulated emission in nanoparticles excited with single electron-hole pairs (excitons), optical gain can only occur in nanocrystals that contain at least two excitons. A complication associated with this multiexcitonic nature of light amplification is fast optical-gain decay induced by non-radiative Auger recombination, a process in which one exciton recombines by transferring its energy to another. Here we demonstrate a practical approach for obtaining optical gain in the single-exciton regime that eliminates the problem of Auger decay. Specifically, we develop core/shell hetero-nanocrystals engineered in such a way as to spatially separate electrons and holes between the core and the shell (type-II heterostructures). The resulting imbalance between negative and positive charges produces a strong local electric field, which induces a giant ( approximately 100 meV or greater) transient Stark shift of the absorption spectrum with respect to the luminescence line of singly excited nanocrystals. This effect breaks the exact balance between absorption and stimulated emission, and allows us to demonstrate optical amplification due to single excitons.

  5. Exciton size and binding energy limitations in one-dimensional organic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraner, S., E-mail: stefan.kraner@iapp.de; Koerner, C.; Leo, K.

    2015-12-28

    In current organic photovoltaic devices, the loss in energy caused by the charge transfer step necessary for exciton dissociation leads to a low open circuit voltage, being one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy to a value of the order of thermal energy, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley-Queisser limit. We determine the size of the excitons for different organic molecules and polymers by time dependent densitymore » functional theory calculations. For optically relevant transitions, the exciton size saturates around 0.7 nm for one-dimensional molecules with a size longer than about 4 nm. For the ladder-type polymer poly(benzimidazobenzophenanthroline), we obtain an exciton binding energy of about 0.3 eV, serving as a lower limit of the exciton binding energy for the organic materials investigated. Furthermore, we show that charge transfer transitions increase the exciton size and thus identify possible routes towards a further decrease of the exciton binding energy.« less

  6. Exciton size and binding energy limitations in one-dimensional organic materials.

    PubMed

    Kraner, S; Scholz, R; Plasser, F; Koerner, C; Leo, K

    2015-12-28

    In current organic photovoltaic devices, the loss in energy caused by the charge transfer step necessary for exciton dissociation leads to a low open circuit voltage, being one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy to a value of the order of thermal energy, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley-Queisser limit. We determine the size of the excitons for different organic molecules and polymers by time dependent density functional theory calculations. For optically relevant transitions, the exciton size saturates around 0.7 nm for one-dimensional molecules with a size longer than about 4 nm. For the ladder-type polymer poly(benzimidazobenzophenanthroline), we obtain an exciton binding energy of about 0.3 eV, serving as a lower limit of the exciton binding energy for the organic materials investigated. Furthermore, we show that charge transfer transitions increase the exciton size and thus identify possible routes towards a further decrease of the exciton binding energy.

  7. Decay channels of Al L sub 2,3 excitons and the absence of O K excitons in. alpha. -Al sub 2 O sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, W.L.; Jia, J.; Dong, Q.

    1991-12-15

    The Al {ital L}{sub 2,3} and O {ital K} thresholds for single-crystal {alpha}-Al{sub 2}O{sub 3} have been studied by photoemission. Energy-distribution curves, constant-initial-state (CIS), and constant-final-state (CFS) spectra are reported and compared to the absorption spectrum reported previously. An exciton appears as a doublet at threshold in the Al {ital L}{sub 2,3} CFS, CIS, and absorption spectra. The details of the Al {ital L}{sub 2,3} CFS spectrum and absorption spectrum are similar, while the exciton is the only feature present in the CIS spectrum. Comparisons of the various Al {ital L}{sub 2,3} spectra allow the probabilities of different exciton decaymore » channels to be determined. The probability for nonradiative direct recombination of the exciton is found to be (8{plus minus}1)% and the probability for Auger decay of the exciton is found to be (72{plus minus}20)%. Comparisons of the O {ital K} CIS and CFS spectra suggest that no O {ital K} exciton is formed.« less

  8. Low temperature exciton dynamics and structural changes in perylene bisimide aggregates

    NASA Astrophysics Data System (ADS)

    Wolter, Steffen; Magnus Westphal, Karl; Hempel, Magdalena; Würthner, Frank; Kühn, Oliver; Lochbrunner, Stefan

    2017-09-01

    The temperature dependent exciton dynamics of J-aggregates formed by a perylene bisimide dye is investigated down to liquid nitrogen temperature (77 K) by femtosecond pump-probe spectroscopy. The analysis of the transient absorption data using a diffusion model for the excitons does not only reveal an overall decrease of the exciton mobility, but also a change in the dimensionality of the exciton transport at low temperatures. This change in dimensionality is further investigated by kinetic Monte Carlo simulations, identifying weakly interlinked one-dimensional aggregate chains as the most likely structure at low temperatures. This causes the exciton transport to be highly anisotropic.

  9. Tailorable Exciton Transport in Doped Peptide–Amphiphile Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Lee A.; Sykes, Matthew E.; Wu, Yimin A.

    Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrinmore » molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.« less

  10. Tailorable Exciton Transport in Doped Peptide-Amphiphile Assemblies.

    PubMed

    Solomon, Lee A; Sykes, Matthew E; Wu, Yimin A; Schaller, Richard D; Wiederrecht, Gary P; Fry, H Christopher

    2017-09-26

    Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.

  11. Deep ultraviolet photoluminescence studies of aluminum-rich aluminum gallium nitride and aluminum nitride epilayers and nanostructures

    NASA Astrophysics Data System (ADS)

    Nepal, Neeraj

    -complex) -1. The energy levels of these deep acceptors in AlxGa 1-xN (0 ≤ x ≤ 1) alloys are pinned to a common energy level in the vacuum. AlGaN alloys predominantly exhibiting the bandedge and (V III-complex)1- transitions possess improved conductivities over those emitting predominantly (VIII)3- and (V III-complex)2- related transitions. These results thus answer the very basic question of high resistivity in Al-rich AlGaN alloys. Acceptor doped AlGaN alloys have been studied by deep UV PL. A PL emission line at 6.02 eV has been observed at 10 K in Mg-doped AlN. It is due to the recombination of an exciton bound to the neutral Mg acceptor (I1) with a binding energy, Ebx of 40 meV, which indicates large activation energy of the Mg acceptor. The observed large binding energy of the acceptor-bound exciton is consistent with relatively large binding energy of the Mg acceptor in AlN. With the energy level of 0.51 eV for Mg dopants in AlN, it is interesting and important to study other suitable acceptor dopants for AlN. Growth and optical studies of Zn-doped AlN epilayers has been carried out. The PL spectra of Zn-doped AlN epilayers exhibited two impurity emission lines at 5.40 and 4.50 eV, which were absent in undoped epilayers. They are assigned respectively, to the transitions of free electrons and electrons bound to triply positively charged nitrogen vacancies (0.90 eV deep) to the Zn0 acceptors. It was deduced that the Zn energy level is about 0.74 eV above the valence band edge, which is about 0.23 eV deeper than the Mg energy level in AlN. Nitrogen vacancies are the compensating defects in acceptor doped AlGaN alloys. A nitrogen vacancy (VN) related emission line was also observed in ion-implanted AlN at 5.87 eV and the energy level of singly charged VN1+ is found at 260 meV below the conduction band. As a consequence of large binding energy of VN 1+ as well as high formation energy, VN1+ in AlN cannot contribute significant n-type conductivity, which is consistent

  12. Excitonic AND Logic Gates on DNA Brick Nanobreadboards.

    PubMed

    Cannon, Brittany L; Kellis, Donald L; Davis, Paul H; Lee, Jeunghoon; Kuang, Wan; Hughes, William L; Graugnard, Elton; Yurke, Bernard; Knowlton, William B

    2015-03-18

    A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems.

  13. Excitonic AND Logic Gates on DNA Brick Nanobreadboards

    PubMed Central

    2015-01-01

    A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems. PMID:25839049

  14. Fullerene-bisadduct acceptors for polymer solar cells.

    PubMed

    Li, Yongfang

    2013-10-01

    Polymer solar cells (PSCs) have drawn great attention in recent years for their simple device structure, light weight, and low-cost fabrication in comparison with inorganic semiconductor solar cells. However, the power-conversion efficiency (PCE) of PSCs needs to be increased for their future application. The key issue for improving the PCE of PSCs is the design and synthesis of high-efficiency conjugated polymer donors and fullerene acceptors for the photovoltaic materials. For the acceptor materials, several fullerene-bisadduct acceptors with high LUMO energy levels have demonstrated excellent photovoltaic performance in PSCs with P3HT as a donor. In this Focus Review, recent progress in high-efficiency fullerene-bisadduct acceptors is discussed, including the bisadduct of PCBM, indene-C60 bisadduct (ICBA), indene-C70 bisadduct (IC70BA), DMPCBA, NCBA, and bisTOQC. The LUMO levels and photovoltaic performance of these bisadduct acceptors with P3HT as a donor are summarized and compared. In addition, the applications of an ICBA acceptor in new device structures and with other conjugated polymer donors than P3HT are also introduced and discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1981-08-18

    A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  16. Influence of Energetic Disorder on Exciton Lifetime and Photoluminescence Efficiency in Conjugated Polymers.

    PubMed

    Rörich, Irina; Mikhnenko, Oleksandr V; Gehrig, Dominik; Blom, Paul W M; Crăciun, N Irina

    2017-02-16

    Using time-resolved photoluminescence (TRPL) spectroscopy the exciton lifetime in a range of conjugated polymers is investigated. For poly(p-phenylenevinylene) (PPV)-based derivatives and a polyspirobifluorene copolymer (PSBF) we find that the exciton lifetime is correlated with the energetic disorder. Better ordered polymers exhibit a single exponential PL decay with exciton lifetimes of a few hundred picoseconds, whereas polymers with a larger degree of disorder show multiexponential PL decays with exciton lifetimes in the nanosecond regime. These observations are consistent with diffusion-limited exciton quenching at nonradiative recombination centers. The measured PL decay time reflects the time that excitons need to diffuse toward these quenching sites. Conjugated polymers with large energetic disorder and thus longer exciton lifetime also exhibit a higher photoluminescence quantum yield due to the slower exciton diffusion toward nonradiative quenching sites.

  17. Cooperative Singlet and Triplet Exciton Transport in Tetracene Crystals Visualized by Ultrafast Microscopys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yan; Guo, Zhi; Zhu, Tong

    2015-09-14

    Singlet fission presents an attractive solution to overcome the Shockley–Queisser limit by generating two triplet excitons from one singlet exciton. Although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. We report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. Moreover, these measurements revealmore » a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.« less

  18. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy

    NASA Astrophysics Data System (ADS)

    Wan, Yan; Guo, Zhi; Zhu, Tong; Yan, Suxia; Johnson, Justin; Huang, Libai

    2015-10-01

    Singlet fission presents an attractive solution to overcome the Shockley-Queisser limit by generating two triplet excitons from one singlet exciton. However, although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. Here, we report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. These measurements reveal a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.

  19. Superfluidity of dipolar excitons in a transition metal dichalcogenide double layer

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2017-09-01

    We study formation and superfluidity of dipolar excitons in double layer heterostructures formed by two transition metal dichalcogenide (TMDC) atomically thin layers. Considering screening effects for an electron-hole interaction via the harmonic oscillator approximation for the Keldysh potential, the analytical expressions for the exciton energy spectrum and the mean field critical temperature Tc for the superfluidity are obtained. It is shown that binding energies of A excitons are larger than for B excitons. The mean field critical temperature for a two-component dilute exciton system in a TMDC double layer is analyzed and shown that the latter is an increasing function of the factor Q , determined by the effective masses of A and B excitons and their reduced mass. Comparison of the calculations for Tc performed by employing the Coulomb and Keldysh interactions demonstrates the importance of screening effects in TMDC.

  20. Correction of the exciton Bohr radius in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Li, Run-Ze; Dong, Xi-Ying; Li, Zhi-Qing; Wang, Zi-Wu

    2018-07-01

    We theoretically investigate the correction of exciton Bohr radius in monolayer transition metal dichalcogenides (TMDCs) on different polar substrates arising from the exciton-optical phonon coupling, in which both the intrinsic longitudinal optical phonon and surface optical phonon modes couple with the exciton are taken into account. We find that the exciton Bohr radius is enlarged markedly due to these coupling. Moreover, it can be changed on a large scale by modulating the polarizability of polar substrate and the internal distance between the monolayer TMDCs and polar substrate. Theoretical result provides a potential explanation for the variation of the exciton Bohr radius in experimental measurement.

  1. Growth of Iron(III)-Reducing Bacteria on Clay Minerals as the Sole Electron Acceptor and Comparison of Growth Yields on a Variety of Oxidized Iron Forms†

    PubMed Central

    Kostka, Joel E.; Dalton, Dava D.; Skelton, Hayley; Dollhopf, Sherry; Stucki, Joseph W.

    2002-01-01

    Smectite clay minerals are abundant in soils and sediments worldwide and are typically rich in Fe. While recent investigations have shown that the structural Fe(III) bound in clay minerals is reduced by microorganisms, previous studies have not tested growth with clay minerals as the sole electron acceptor. Here we have demonstrated that a pure culture of Shewanella oneidensis strain MR-1 as well as enrichment cultures of Fe(III)-reducing bacteria from rice paddy soil and subsurface sediments are capable of conserving energy for growth with the structural Fe(III) bound in smectite clay as the sole electron acceptor. Pure cultures of S. oneidensis were used for more detailed growth rate and yield experiments on various solid- and soluble-phase electron acceptors [smectite, Fe(III) oxyhydroxide FeOOH, Fe(III) citrate, and oxygen] in the same minimal medium. Growth was assessed as direct cell counts or as an increase in cell carbon (measured as particulate organic carbon). Cell counts showed that similar growth of S. oneidensis (108 cells ml−1) occurred with smectitic Fe(III) and on other Fe forms [amorphous Fe(III) oxyhydroxide, and Fe citrate] or oxygen as the electron acceptor. In contrast, cell yields of S. oneidensis measured as the increase in cell carbon were similar on all Fe forms tested while yields on oxygen were five times higher, in agreement with thermodynamic predictions. Over a range of particle loadings (0.5 to 4 g liter−1), the increase in cell number was highly correlated to the amount of structural Fe in smectite reduced. From phylogenetic analysis of the complete 16S rRNA gene sequences, a predominance of clones retrieved from the clay mineral-reducing enrichment cultures were most closely related to the low-G+C gram-positive members of the Bacteria (Clostridium and Desulfitobacterium) and the δ-Proteobacteria (members of the Geobacteraceae). Results indicate that growth with smectitic Fe(III) is similar in magnitude to that with Fe

  2. Multistability of cavity exciton polaritons affected by the thermally generated exciton reservoir

    NASA Astrophysics Data System (ADS)

    Vishnevsky, D. V.; Solnyshkov, D. D.; Gippius, N. A.; Malpuech, G.

    2012-04-01

    Recently the buildup of an excitonic reservoir in a GaAs cavity polariton system under quasiresonant pumping has been demonstrated experimentally [S. S. Gavrilov , JETP Lett.JTPLA20021-364010.1134/S0021364010150105 92, 171 (2010)]. We show that in microcavities having a small Rabi splitting (typically GaAs cavities with a single quantum well), this reservoir can be efficiently populated by polariton-phonon scattering. We consider the influence of the exciton reservoir on the energy shifts of the resonantly pumped polariton modes. We show that the presence of this reservoir effectively reduces the spin anisotropy of the polariton-polariton interaction, in agreement with recent experimental measurements, where the multistability of cavity polaritons has been analyzed [T. K. Paraiso , Nat. Mater.1476-112210.1038/nmat2787 9, 655 (2010)].

  3. Identification of a triplet pair intermediate in singlet exciton fission in solution

    PubMed Central

    Stern, Hannah L.; Musser, Andrew J.; Gelinas, Simon; Parkinson, Patrick; Herz, Laura M.; Bruzek, Matthew J.; Anthony, John; Friend, Richard H.; Walker, Brian J.

    2015-01-01

    Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley–Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]—tetracene we find rapid (<100 ps) formation of excimers and a slower (∼10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process. PMID:26060309

  4. Molecular plasmonics: The role of rovibrational molecular states in exciton-plasmon materials under strong-coupling conditions

    NASA Astrophysics Data System (ADS)

    Sukharev, Maxim; Charron, Eric

    2017-03-01

    We extend the model of exciton-plasmon materials to include a rovibrational structure of molecules using wave-packet propagations on electronic potential energy surfaces. Our model replaces conventional two-level emitters with more complex molecules, allowing us to examine the influence of alignment and vibrational dynamics on strong coupling with surface plasmon-polaritons. We apply the model to a hybrid system comprising a thin layer of molecules placed on top of a periodic array of slits. Rigorous simulations are performed for two types of molecular systems described by vibrational bound-bound and bound-continuum electronic transitions. Calculations reveal new features in transmission, reflection, and absorption spectra, including the observation of significantly higher values of the Rabi splitting and vibrational patterns clearly seen in the corresponding spectra. We also examine the influence of anisotropic initial conditions on optical properties of hybrid materials, demonstrating that the optical response of the system is significantly affected by an initial prealignment of the molecules. Our work demonstrates that prealigned molecules could serve as an efficient probe for the subdiffraction characterization of the near-field near metal interfaces.

  5. Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Cadiz, F.; Robert, C.; Courtade, E.; Manca, M.; Martinelli, L.; Taniguchi, T.; Watanabe, K.; Amand, T.; Rowe, A. C. H.; Paget, D.; Urbaszek, B.; Marie, X.

    2018-04-01

    We have combined spatially resolved steady-state micro-photoluminescence with time-resolved photoluminescence to investigate the exciton diffusion in a WSe2 monolayer encapsulated with hexagonal boron nitride. At 300 K, we extract an exciton diffusion length of LX = 0.36 ± 0.02 μm and an exciton diffusion coefficient of DX = 14.5 ± 2 cm2/s. This represents a nearly 10-fold increase in the effective mobility of excitons with respect to several previously reported values on nonencapsulated samples. At cryogenic temperatures, the high optical quality of these samples has allowed us to discriminate the diffusion of the different exciton species: bright and dark neutral excitons, as well as charged excitons. The longer lifetime of dark neutral excitons yields a larger diffusion length of LXD=1.5 ±0.02 μ m.

  6. Anisotropic Exciton Rabi Oscillation in Single Telecommunication-Band Quantum Dot

    NASA Astrophysics Data System (ADS)

    Miyazawa, Toshiyuki; Nakaoka, Toshihiro; Watanabe, Katsuyuki; Kumagai, Naoto; Yokoyama, Naoki; Arakawa, Yasuhiko

    2010-06-01

    Anisotropic Rabi oscillation in the exciton state in a single InAs/GaAs quantum dot (QD) was demonstrated in the telecommunication-band by selecting two orthogonal polarization angles of the excitation laser. Our InAs QDs were embedded in an intrinsic layer of an n-i-Schottky diode, which provides an electric field to extract photoexcited carriers from QDs. Owing to the potential anisotropy of QDs, the fine structure splitting (FSS) energy in the exciton state in single InAs QDs was ˜110 µeV, measured by polarization-resolved photocurrent spectroscopy. The ratio between two different Rabi frequencies, which reflect anisotropic dipole moments of two orthogonal exciton states, was estimated to be ˜1.2. This demonstrates that the selective control of two orthogonal polarized exciton states is a promising technique for exciton-based-quantum information devices compatible with fiber optics.

  7. Understanding molecular structure dependence of exciton diffusion in conjugated small molecules

    NASA Astrophysics Data System (ADS)

    Li, Zi; Zhang, Xu; Woellner, Cristiano F.; Lu, Gang

    2014-04-01

    First-principles simulations are carried out to understand molecular structure dependence of exciton diffusion in a series of small conjugated molecules arranged in a disordered, crystalline, and blend structure. Exciton diffusion length (LD), lifetime, and diffusivity in four diketopyrrolopyrrole derivatives are calculated and the results compare very well with experimental values. The correlation between exciton diffusion and molecular structure is examined in detail. In the disordered molecule structure, a longer backbone length leads to a shorter exciton lifetime and a higher exciton diffusivity, but it does not change LD substantially. Removal of the end alkyl chains or the extra branch on the side alkyl chains reduces LD. In the crystalline structure, exciton diffusion exhibits a strong anisotropy whose origin can be elucidated from the intermolecular transition density interaction point of view. In the blend structure, LD increases with the crystalline ratios, which are estimated and consistent with the experimental results.

  8. Many-body effects and excitonic features in 2D biphenylene carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüder, Johann, E-mail: johann.luder@physics.uu.se; Puglia, Carla; Eriksson, Olle

    2016-01-14

    The remarkable excitonic effects in low dimensional materials in connection to large binding energies of excitons are of great importance for research and technological applications such as in solar energy and quantum information processing as well as for fundamental investigations. In this study, the unique electronic and excitonic properties of the two dimensional carbon network biphenylene carbon were investigated with GW approach and the Bethe-Salpeter equation accounting for electron correlation effects and electron-hole interactions, respectively. Biphenylene carbon exhibits characteristic features including bright and dark excitons populating the optical gap of 0.52 eV and exciton binding energies of 530 meV asmore » well as a technologically relevant intrinsic band gap of 1.05 eV. Biphenylene carbon’s excitonic features, possibly tuned, suggest possible applications in the field of solar energy and quantum information technology in the future.« less

  9. How Markovian is exciton dynamics in purple bacteria?

    NASA Astrophysics Data System (ADS)

    Vaughan, Felix; Linden, Noah; Manby, Frederick R.

    2017-03-01

    We investigate the extent to which the dynamics of excitons in the light-harvesting complex LH2 of purple bacteria can be described using a Markovian approximation. To analyse the degree of non-Markovianity in these systems, we introduce a measure based on fitting Lindblad dynamics, as well as employing a recently introduced trace-distance measure. We apply these measures to a chromophore-dimer model of exciton dynamics and use the hierarchical equation-of-motion method to take into account the broad, low-frequency phonon bath. With a smooth phonon bath, small amounts of non-Markovianity are present according to the trace-distance measure, but the dynamics is poorly described by a Lindblad master equation unless the excitonic dimer coupling strength is modified. Inclusion of underdamped, high-frequency modes leads to significant deviations from Markovian evolution in both measures. In particular, we find that modes that are nearly resonant with gaps in the excitonic spectrum produce dynamics that deviate most strongly from the Lindblad approximation, despite the trace distance measuring larger amounts of non-Markovianity for higher frequency modes. Overall we find that the detailed structure in the high-frequency region of the spectral density has a significant impact on the nature of the dynamics of excitons.

  10. Interface exciton at lateral heterojunction of monolayer semiconductors

    NASA Astrophysics Data System (ADS)

    Lau, Ka Wai; Gong, Zhirui; Yu, Hongyi; Yao, Wang

    Heterostructures based on 2D transition metal dichalcogenides (TMDs) have attracted extensive research interest recently due to the appealing physical properties of TMDs and new geometries for forming heterostructures. One such heterostructure is the lateral heterojunctions seamlessly formed in a monolayer crystal between two different types of TMDs, e.g. WSe2 and MoSe2. Such heterojunction exhibits a type II band alignment, with electrons (holes) having lower energy on the MoSe2 (WSe2) region. Here we present the study of an interface exciton at the 1D lateral junction of monolayer TMDs. With the distance dependent screening, we find that the interface exciton can have strong binding even though the electron-hole separation is much larger compare to the 2D excitons in TMDs. Neutral excitons are studied using two different approaches: the solution based on a real-space tight binding model, and the perturbation expansion in a hydrogen-like basis in an effective mass model. We have also used the latter method to study charged excitons at a MoSe2-WSe2-MoSe2 nanoscale junction. The work is supported by the Research Grant Council of Hong Kong (HKU705513P, HKU9/CRF/13G), the Croucher Foundation, and the HKU OYRA.

  11. Theory of Exciton Energy Transfer in Carbon Nanotube Composites

    DOE PAGES

    Davoody, A. H.; Karimi, F.; Arnold, M. S.; ...

    2016-06-24

    Here, we compute the exciton transfer (ET) rate between semiconducting single-wall carbon nanotubes (SWNTs). We show that the main reasons for the wide range of measured ET rates reported in the literature are (1) exciton confinement in local quantum wells stemming from disorder in the environment and (2) exciton thermalization between dark and bright states due to intratube scattering. The SWNT excitonic states are calculated by solving the Bethe–Salpeter equation using tight-binding basis functions. The ET rates due to intertube Coulomb interaction are computed via Fermi’s golden rule. In pristine samples, the ET rate between parallel (bundled) SWNTs of similarmore » chirality is very high (~10 14 s –1), while the ET rate for dissimilar or nonparallel tubes is considerably lower (~10 12 s –1). Exciton confinement reduces the ET rate between same-chirality parallel SWNTs by 2 orders of magnitude but has little effect otherwise. Consequently, the ET rate in most measurements will be on the order of 10 12 s –1, regardless of the tube relative orientation or chirality. Exciton thermalization between bright and dark states further reduces the ET rate to ~10 11 s –1. The ET rate also increases with increasing temperature and decreases with increasing dielectric constant of the surrounding medium.« less

  12. Theory of Exciton Energy Transfer in Carbon Nanotube Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoody, A. H.; Karimi, F.; Arnold, M. S.

    Here, we compute the exciton transfer (ET) rate between semiconducting single-wall carbon nanotubes (SWNTs). We show that the main reasons for the wide range of measured ET rates reported in the literature are (1) exciton confinement in local quantum wells stemming from disorder in the environment and (2) exciton thermalization between dark and bright states due to intratube scattering. The SWNT excitonic states are calculated by solving the Bethe–Salpeter equation using tight-binding basis functions. The ET rates due to intertube Coulomb interaction are computed via Fermi’s golden rule. In pristine samples, the ET rate between parallel (bundled) SWNTs of similarmore » chirality is very high (~10 14 s –1), while the ET rate for dissimilar or nonparallel tubes is considerably lower (~10 12 s –1). Exciton confinement reduces the ET rate between same-chirality parallel SWNTs by 2 orders of magnitude but has little effect otherwise. Consequently, the ET rate in most measurements will be on the order of 10 12 s –1, regardless of the tube relative orientation or chirality. Exciton thermalization between bright and dark states further reduces the ET rate to ~10 11 s –1. The ET rate also increases with increasing temperature and decreases with increasing dielectric constant of the surrounding medium.« less

  13. Localized diabatization applied to excitons in molecular crystals

    NASA Astrophysics Data System (ADS)

    Jin, Zuxin; Subotnik, Joseph E.

    2017-06-01

    Traditional ab initio electronic structure calculations of periodic systems yield delocalized eigenstates that should be understood as adiabatic states. For example, excitons are bands of extended states which superimpose localized excitations on every lattice site. However, in general, in order to study the effects of nuclear motion on exciton transport, it is standard to work with a localized description of excitons, especially in a hopping regime; even in a band regime, a localized description can be helpful. To extract localized excitons from a band requires essentially a diabatization procedure. In this paper, three distinct methods are proposed for such localized diabatization: (i) a simple projection method, (ii) a more general Pipek-Mezey localization scheme, and (iii) a variant of Boys diabatization. Approaches (i) and (ii) require localized, single-particle Wannier orbitals, while approach (iii) has no such dependence. These methods should be very useful for studying energy transfer through solids with ab initio calculations.

  14. Strong quantum coherence between Fermi liquid Mahan excitons

    DOE PAGES

    Paul, J.; Stevens, C. E.; Liu, C.; ...

    2016-04-14

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called “Mahan excitons.” The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the opticalmore » Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Furthermore, time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.« less

  15. Localized diabatization applied to excitons in molecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zuxin; Subotnik, Joseph E.

    Traditional ab initio electronic structure calculations of periodic systems yield delocalized eigenstates that should be understood as adiabatic states. For example, excitons are bands of extended states which superimpose localized excitations on every lattice site. However, in general, in order to study the effects of nuclear motion on exciton transport, it is standard to work with a localized description of excitons, especially in a hopping regime; even in a band regime, a localized description can be helpful. To extract localized excitons from a band requires essentially a diabatization procedure. In this paper, three distinct methods are proposed for such localizedmore » diabatization: (i) a simple projection method, (ii) a more general Pipek-Mezey localization scheme, and (iii) a variant of Boys diabatization. Approaches (i) and (ii) require localized, single-particle Wannier orbitals, while approach (iii) has no such dependence. Lastly, these methods should be very useful for studying energy transfer through solids with ab initio calculations.« less

  16. Strong Quantum Coherence between Fermi Liquid Mahan Excitons

    NASA Astrophysics Data System (ADS)

    Paul, J.; Stevens, C. E.; Liu, C.; Dey, P.; McIntyre, C.; Turkowski, V.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2016-04-01

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.

  17. Strong Quantum Coherence between Fermi Liquid Mahan Excitons.

    PubMed

    Paul, J; Stevens, C E; Liu, C; Dey, P; McIntyre, C; Turkowski, V; Reno, J L; Hilton, D J; Karaiskaj, D

    2016-04-15

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.

  18. Localized diabatization applied to excitons in molecular crystals

    DOE PAGES

    Jin, Zuxin; Subotnik, Joseph E.

    2017-06-28

    Traditional ab initio electronic structure calculations of periodic systems yield delocalized eigenstates that should be understood as adiabatic states. For example, excitons are bands of extended states which superimpose localized excitations on every lattice site. However, in general, in order to study the effects of nuclear motion on exciton transport, it is standard to work with a localized description of excitons, especially in a hopping regime; even in a band regime, a localized description can be helpful. To extract localized excitons from a band requires essentially a diabatization procedure. In this paper, three distinct methods are proposed for such localizedmore » diabatization: (i) a simple projection method, (ii) a more general Pipek-Mezey localization scheme, and (iii) a variant of Boys diabatization. Approaches (i) and (ii) require localized, single-particle Wannier orbitals, while approach (iii) has no such dependence. Lastly, these methods should be very useful for studying energy transfer through solids with ab initio calculations.« less

  19. Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Robert, C.; Amand, T.; Cadiz, F.; Lagarde, D.; Courtade, E.; Manca, M.; Taniguchi, T.; Watanabe, K.; Urbaszek, B.; Marie, X.

    2017-10-01

    The intricate interplay between optically dark and bright excitons governs the light-matter interaction in transition metal dichalcogenide monolayers. We have performed a detailed investigation of the "spin-forbidden" dark excitons in WSe2 monolayers by optical spectroscopy in an out-of-plane magnetic field Bz. In agreement with the theoretical predictions deduced from group theory analysis, magnetophotoluminescence experiments reveal a zero-field splitting δ =0.6 ±0.1 meV between two dark exciton states. The low-energy state is strictly dipole forbidden (perfectly dark) at Bz=0 , while the upper state is partially coupled to light with z polarization ("gray" exciton). The first determination of the dark neutral exciton lifetime τD in a transition metal dichalcogenide monolayer is obtained by time-resolved photoluminescence. We measure τD˜110 ±10 ps for the gray exciton state, i.e., two orders of magnitude longer than the radiative lifetime of the bright neutral exciton at T =12 K .

  20. Large-k exciton dynamics in GaN epilayers: Nonthermal and thermal regimes

    NASA Astrophysics Data System (ADS)

    Vinattieri, Anna; Bogani, Franco; Cavigli, Lucia; Manzi, Donatella; Gurioli, Massimo; Feltin, Eric; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas

    2013-02-01

    We present a detailed investigation performed at low temperature (T<50 K) concerning the exciton dynamics in GaN epilayers grown on c-plane sapphire substrates, focusing on the exciton formation and the transition from the nonthermal to the thermal regime. The time-resolved kinetics of longitudinal-optical-phonon replicas is used to address the energy relaxation in the excitonic band. From picosecond time-resolved spectra, we bring evidence for a long lasting nonthermal excitonic distribution, which accounts for the first 50 ps. Such a behavior is confirmed in different experimental conditions when both nonresonant and resonant excitations are used. At low excitation power density, the exciton formation and their subsequent thermalization are dominated by impurity scattering rather than by acoustic phonon scattering. The estimate of the average energy of the excitons as a function of delay after the excitation pulse provides information on the relaxation time, which describes the evolution of the exciton population to the thermal regime.

  1. Organic photovoltaics: elucidating the ultra-fast exciton dissociation mechanism in disordered materials.

    PubMed

    Heitzer, Henry M; Savoie, Brett M; Marks, Tobin J; Ratner, Mark A

    2014-07-14

    Organic photovoltaics (OPVs) offer the opportunity for cheap, lightweight and mass-producible devices. However, an incomplete understanding of the charge generation process, in particular the timescale of dynamics and role of exciton diffusion, has slowed further progress in the field. We report a new Kinetic Monte Carlo model for the exciton dissociation mechanism in OPVs that addresses the origin of ultra-fast (<1 ps) dissociation by incorporating exciton delocalization. The model reproduces experimental results, such as the diminished rapid dissociation with increasing domain size, and also lends insight into the interplay between mixed domains, domain geometry, and exciton delocalization. Additionally, the model addresses the recent dispute on the origin of ultra-fast exciton dissociation by comparing the effects of exciton delocalization and impure domains on the photo-dynamics.This model provides insight into exciton dynamics that can advance our understanding of OPV structure-function relationships. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic-Inorganic Lead Halide Perovskites.

    PubMed

    Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina; Sadoughi, Golnaz; Habisreutinger, Severin N; Félix, Roberto; Wilks, Regan G; Snaith, Henry J; Bär, Marcus; Draxl, Claudia

    2018-04-19

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3 ) hybrid inorganic-organic perovskite and its binary phase PbI 2 . The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. The theoretical analysis complementing experimental observations provides the conceptual insights required for a full characterization of this complex material.

  3. Magnetic brightening and control of dark excitons in monolayer WSe2.

    PubMed

    Zhang, Xiao-Xiao; Cao, Ting; Lu, Zhengguang; Lin, Yu-Chuan; Zhang, Fan; Wang, Ying; Li, Zhiqiang; Hone, James C; Robinson, Joshua A; Smirnov, Dmitry; Louie, Steven G; Heinz, Tony F

    2017-09-01

    Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light-matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX 2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe 2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitons are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. These studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.

  4. Anisotropic Exciton Rabi Oscillation in Single Telecommunication-Band Quantum Dot

    NASA Astrophysics Data System (ADS)

    Toshiyuki Miyazawa,; Toshihiro Nakaoka,; Katsuyuki Watanabe,; Naoto Kumagai,; Naoki Yokoyama,; Yasuhiko Arakawa,

    2010-06-01

    Anisotropic Rabi oscillation in the exciton state in a single InAs/GaAs quantum dot (QD) was demonstrated in the telecommunication-band by selecting two orthogonal polarization angles of the excitation laser. Our InAs QDs were embedded in an intrinsic layer of an n-i-Schottky diode, which provides an electric field to extract photoexcited carriers from QDs. Owing to the potential anisotropy of QDs, the fine structure splitting (FSS) energy in the exciton state in single InAs QDs was ˜110 μeV, measured by polarization-resolved photocurrent spectroscopy. The ratio between two different Rabi frequencies, which reflect anisotropic dipole moments of two orthogonal exciton states, was estimated to be ˜1.2. This demonstrates that the selective control of two orthogonal polarized exciton states is a promising technique for exciton-based-quantum information devices compatible with fiber optics.

  5. Simulations of singlet exciton diffusion in organic semiconductors: a review

    DOE PAGES

    Bjorgaard, Josiah A.; Kose, Muhammet Erkan

    2014-12-22

    Our review describes the various aspects of simulation strategies for exciton diffusion in condensed phase thin films of organic semiconductors. Several methods for calculating energy transfer rate constants are discussed along with procedures for how to account for energetic disorder. Exciton diffusion can be modelled by using kinetic Monte-Carlo methods or master equations. Recent literature on simulation efforts for estimating exciton diffusion lengths of various conjugated polymers and small molecules are introduced. Moreover, these studies are discussed in the context of the effects of morphology on exciton diffusion and the necessity of accurate treatment of disorder for comparison of simulationmore » results with those of experiment.« less

  6. Calculations of acceptor ionization energies in GaN

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, A.-B.

    2001-03-01

    The k.p Hamiltonian and a model potential are used to deduce the acceptor ionization energies in GaN from a systematic study of the chemical trend in GaAs, GaP, and InP. The acceptors studied include Be, Mg, Ca, Zn, and Cd on the cation sites and C, Si, and Ge on the anion sites. Our calculated acceptor ionization energies are estimated to be accurate to better than 10% across the board. The ionization energies of C and Be (152 and 187 meV, respectively) in wurtzite GaN are found to be lower than that of Mg (224 meV). The C was found to behave like the hydrogenic acceptor in all systems and it has the smallest ionization energy among all the acceptors studied.

  7. Engineering and manipulating exciton wave packets

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoning; Montangero, Simone; Carr, Lincoln D.; Lusk, Mark T.

    2017-05-01

    When a semiconductor absorbs light, the resulting electron-hole superposition amounts to a uncontrolled quantum ripple that eventually degenerates into diffusion. If the conformation of these excitonic superpositions could be engineered, though, they would constitute a new means of transporting information and energy. We show that properly designed laser pulses can be used to create such excitonic wave packets. They can be formed with a prescribed speed, direction, and spectral make-up that allows them to be selectively passed, rejected, or even dissociated using superlattices. Their coherence also provides a handle for manipulation using active, external controls. Energy and information can be conveniently processed and subsequently removed at a distant site by reversing the original procedure to produce a stimulated emission. The ability to create, manage, and remove structured excitons comprises the foundation for optoexcitonic circuits with application to a wide range of quantum information, energy, and light-flow technologies. The paradigm is demonstrated using both tight-binding and time-domain density functional theory simulations.

  8. Radiative energy transfer from MoS2 excitons to surface plasmons

    NASA Astrophysics Data System (ADS)

    Kang, Yimin; Li, Bowen; Fang, Zheyu

    2017-12-01

    In this work, we demonstrated the energy transfer process from few-layer MoS2 to gold dimer arrays via ultrafast pump-probe spectroscopy. With the overlap between the MoS2 exciton and the designed plasmon dipolar modes in the frequency domain, the exciton energy can be radiatively transferred to plasmonic structures, excited the localized surface plasmon resonance, and then enhanced the oscillation of coherent acoustic phonons. Power-dependent differential reflection signals and an analytical model based on the rate equation of exciton density were carried out to quantitatively study the energy transfer process. Our finding explores the energy flow between MoS2 excitons and surface plasmons, and can be contributed to the design of exciton-plasmon structures utilizing ultrathin materials.

  9. Exciton-polaritons in cuprous oxide: Theory and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Schweiner, Frank; Ertl, Jan; Main, Jörg; Wunner, Günter; Uihlein, Christoph

    2017-12-01

    The observation of giant Rydberg excitons in cuprous oxide (Cu2O ) up to a principal quantum number of n =25 by T. Kazimierczuk et al. [Nature (London) 514, 343 (2014), 10.1038/nature13832] inevitably raises the question whether these quasiparticles must be described within a multipolariton framework since excitons and photons are always coupled in the solid. In this paper we present the theory of exciton-polaritons in Cu2O . To this end we extend the Hamiltonian which includes the complete valence-band structure, the exchange interaction, and the central-cell corrections effects, and which has been recently deduced by F. Schweiner et al. [Phys. Rev. B 95, 195201 (2017), 10.1103/PhysRevB.95.195201], for finite values of the exciton momentum ℏ K . We derive formulas to calculate not only dipole but also quadrupole oscillator strengths when using the complete basis of F. Schweiner et al., which has recently been proven as a powerful tool to calculate exciton spectra. Very complex polariton spectra for the three orientations of K along the axes [001 ] , [110 ] , and [111 ] of high symmetry are obtained and a strong mixing of exciton states is reported. The main focus is on the 1 S ortho-exciton-polariton, for which pronounced polariton effects have been measured in experiments. We set up a 5 ×5 matrix model, which accounts for both the polariton effect and the K -dependent splitting, and which allows treating the anisotropic polariton dispersion for any direction of K . We especially discuss the dispersions for K being oriented in the planes perpendicular to [1 1 ¯0 ] and [111 ] , for which experimental transmission spectra have been measured. Furthermore, we compare our results with experimental values of the K -dependent splitting, the group velocity, and the oscillator strengths of this exciton-polariton. The results are in good agreement. This proves the validity of the 5 ×5 matrix model as a useful theoretical model for further investigations on the 1 S

  10. Exciton-Delocalizing Ligands Can Speed Up Energy Migration in Nanocrystal Solids.

    PubMed

    Azzaro, Michael S; Dodin, Amro; Zhang, Diana Y; Willard, Adam P; Roberts, Sean T

    2018-05-09

    Researchers have long sought to use surface ligands to enhance energy migration in nanocrystal solids by decreasing the physical separation between nanocrystals and strengthening their electronic coupling. Exciton-delocalizing ligands, which possess frontier molecular orbitals that strongly mix with nanocrystal band-edge states, are well-suited for this role because they can facilitate carrier-wave function extension beyond the nanocrystal core, reducing barriers for energy transfer. This report details the use of the exciton-delocalizing ligand phenyldithiocarbamate (PDTC) to tune the transport rate and diffusion length of excitons in CdSe nanocrystal solids. A film composed of oleate-terminated CdSe nanocrystals is subjected to a solid-state ligand exchange to replace oleate with PDTC. Exciton migration in the films is subsequently investigated by femtosecond transient absorption. Our experiments indicate that the treatment of nanocrystal films with PDTC leads to rapid (∼400 fs) downhill energy migration (∼80 meV), while no such migration occurs in oleate-capped films. Kinetic Monte Carlo simulations allow us to extract both rates and length scales for exciton diffusion in PDTC-treated films. These simulations reproduce dynamics observed in transient absorption measurements over a range of temperatures and confirm excitons hop via a Miller-Abrahams mechanism. Importantly, our experiments and simulations show PDTC treatment increases the exciton hopping rate to 200 fs, an improvement of 5 orders of magnitude relative to oleate-capped films. This exciton hopping rate stands as one of the fastest determined for CdSe solids. The facile, room-temperature processing and improved transport properties offered by the solid-state exchange of exciton-delocalizing ligands show they offer promise for the construction of strongly coupled nanocrystal arrays.

  11. Acceptors in bulk and nanoscale ZnO

    NASA Astrophysics Data System (ADS)

    McCluskey, M. D.

    2012-02-01

    Zinc oxide (ZnO) is a semiconductor that emits bright UV light, with little wasted heat. This intrinsic feature makes it a promising material for energy-efficient white lighting, nano-lasers, and other optical applications. For devices to be competitive, however, it is necessary to develop reliable p-type doping. Although substitutional nitrogen has been considered as a potential p-type dopant for ZnO, theoretical and experimental work indicates that nitrogen is a deep acceptor and will not lead to p-type conductivity. This talk will highlight recent experiments on ZnO:N at low temperatures. A red/near-IR photoluminescence (PL) band is correlated with the presence of deep nitrogen acceptors. PL excitation (PLE) measurements show an absorption threshold of 2.26 eV, in good agreement with theory. Magnetic resonance experiments provide further evidence for this assignment. The results of these studies seem to rule out group-V elements as shallow acceptors in ZnO, contradicting numerous reports in the literature. If these acceptors do not work as advertised, is there a viable alternative? Optical studies on ZnO nanocrystals show some intriguing leads. At liquid-helium temperatures, a series of sharp IR absorption peaks arise from an unknown acceptor impurity. The data are consistent with a hydrogenic acceptor 0.46 eV above the valence band edge. While this binding energy is still too deep for many practical applications, it represents a significant improvement over the ˜ 1.3 eV binding energy for nitrogen acceptors. Nanocrystals present another twist. Due to their high surface-to-volume ratio, surface states are especially important. Specifically, electron-hole recombination at the surface give rises to a red luminescence band. From our PL and IR experiments, we have developed a ``unified'' model that attempts to explain acceptor and surface states in ZnO nanocrystals. This model could provide a useful framework for designing future nanoscale ZnO devices.

  12. Chemical trends for acceptor impurities in GaN

    NASA Astrophysics Data System (ADS)

    Neugebauer, Jörg; Van de Walle, Chris G.

    1999-03-01

    We present a comprehensive investigation of acceptor impurities in GaN, based on first-principles total-energy calculations. Two main factors are identified that determine acceptor incorporation: the strength of chemical bonding between the acceptor and its neighbors (which can be assessed by comparison with existing compounds) and the atomic size match between the acceptor and the host atom for which it substitutes. None of the candidates (Li, Na, K, Be, Zn, and Ca) exhibits characteristics which surpass those of Mg in all respects. Only Be emerges as a potential alternative dopant, although it may suffer from compensation by Be interstitial donors.

  13. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khromov, S.; Hemmingsson, C.; Monemar, B.

    2014-12-14

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits,more » quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10{sup 17} cm{sup −3} is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission.« less

  14. Exciton center-of-mass localization and dielectric environment effect in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Hichri, Aïda; Ben Amara, Imen; Ayari, Sabrine; Jaziri, Sihem

    2017-06-01

    The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional semiconductors. They have attracted increasing attention due to their unique optical properties originate from neutral and charged excitons. In this paper, we study the strong localization of exciton center-of-mass motion within random potential fluctuations caused by the monolayer defects. Here, we report negatively charged exciton formation in monolayer TMDs, notably tungsten disulfide WS2. Our theory is based on an effective mass model of neutral and charged excitons, parameterized by ab-initio calculations. Taking into the account the strong correlation between the monolayer WS2 and the surrounding dielectric environment, our theoretical results are in good agreement with one-photon photoluminescence (PL) and reflectivity measurements. We also show that the exciton state with p-symmetry, experimentally observed by two-photon PL emission, is energetically below the 2s-state. We use the equilibrium mass action law, to quantify the relative weight of exciton and trion PL. We show that exciton and trion emission can be tuned and controlled by external parameters like temperature, pumping, and injection electrons. Finally, in comparison with experimental measurements, we show that exciton emission in monolayer tungsten dichalcogenides is substantially reduced. This feature suggests that free exciton can be trapped in disordered potential wells to form a localized exciton and therefore offers a route toward novel optical properties.

  15. Electrically Controlled Coherent Excitonic Steady States in Semiconductor Bilayers

    NASA Astrophysics Data System (ADS)

    Xie, Ming; MacDonald, Allan

    Spatially indirect excitons are long lived bosonic quasiparticles that can form quasi-equilibrium condensed states. Optical access to these excitons has been limited by their small optical matrix elements. Here we propose a promising electrical process that can be used both to populate and to probe fluids of indirect excitons, and is analogous to the crossed Andreev reflection (CAR) process of Cooper pairs in superconductors. We consider vertically stacked multilayer heterostructures containing two transition metal dichalcogenide (TMD) layers that host the indirect excitons, graphene layers on the top and the bottom of the heterostructure, and hBN tunnel barrier layers of variable thickness. When the bias voltage between the graphene leads is smaller than the indirect gap, tunneling between the graphene leads and the TMD hetero-bilayer is possible only through the CAR process. Both DC and low frequency AC bias cases are explored and establish that electrical measurements can be used to determine crucial properties such as the condensate density, interaction strength and CAR tunneling amplitudes. We have also proposed a way to electrically manipulate another type of bosonic quasiparticles, cavity exciton-polaritons, in a laterally contacted structure.

  16. Tunable optical and excitonic properties of phosphorene via oxidation

    NASA Astrophysics Data System (ADS)

    Sadki, S.; Drissi, L. B.

    2018-06-01

    The optical properties and excitonic wave function of phosphorene oxides (PO) are studied using the first principle many-body Green function and the Bethe–Salpeter equation formalism. In this work, the optical properties are determined using ab initio calculations of the dielectric function. At the long wavelength limit q of EM wave (i.e. ), the dielectric function, the absorption spectrum, the lectivity, the electron energy loss spectra (EELS) and the wave function are calculated. The results show an excitonic binding energy of 818 meV with a bright exciton located in the armchair direction in pristine phosphorene. For PO, the arrangement of the oxygen atoms significantly influences the optical properties. In particular, the absorption spectrum is extended along the solar spectrum, with a high absorption coefficient observed in the dangling structures. The maximum lectivity values are observed for the high energies of the light spectrum. Moreover, the first EELS peak is located in the visible region in all the structures except for one configuration that exhibits the same behavior as pure phosphorene. Finally, the exciton effect reveals that all PO conformers have a dark exciton state, which is suitable for long-lived applications.

  17. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers

    DOE PAGES

    Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.

    2018-01-22

    In this paper, we present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moire pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moire Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moire potential energy restores circular opticalmore » selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. Finally, we discuss the possibility of using the moire pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.« less

  18. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers

    NASA Astrophysics Data System (ADS)

    Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.

    2018-01-01

    We present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moiré pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moiré Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moiré potential energy restores circular optical selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. We discuss the possibility of using the moiré pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.

  19. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.

    In this paper, we present a theory of optical absorption by interlayer excitons in a heterobilayer formed from transition metal dichalcogenides. The theory accounts for the presence of small relative rotations that produce a momentum shift between electron and hole bands located in different layers, and a moire pattern in real space. Because of the momentum shift, the optically active interlayer excitons are located at the moire Brillouin zone's corners, instead of at its center, and would have elliptical optical selection rules if the individual layers were translationally invariant. We show that the exciton moire potential energy restores circular opticalmore » selection rules by coupling excitons with different center of mass momenta. A variety of interlayer excitons with both senses of circular optical activity, and energies that are tunable by twist angle, are present at each valley. The lowest energy exciton states are generally localized near the exciton potential energy minima. Finally, we discuss the possibility of using the moire pattern to achieve scalable two-dimensional arrays of nearly identical quantum dots.« less

  20. Theoretical investigation of excitonic magnetism in LaSrCoO4

    NASA Astrophysics Data System (ADS)

    Fernández Afonso, J.; Sotnikov, A.; Kuneš, J.

    2018-04-01

    We use the LDA+U approach to search for possible ordered ground states of LaSrCoO4. We find a staggered arrangement of magnetic multipoles to be stable over a broad range of Co 3d interaction parameters. This ordered state can be described as a spin-density-wave-type condensate of dxy \\otimes dx^2-y^2 excitons carrying spin S  =  1. Further, we construct an effective strong-coupling model, calculate the exciton dispersion and investigate closing of the exciton gap, which marks the exciton condensation instability. Comparing the layered LaSrCoO4 with its pseudo cubic analog LaCoO3, we find that for the same interaction parameters the excitonic gap is smaller (possibly vanishing) in the layered cobaltite.

  1. Orientation-Dependent Exciton-Plasmon Coupling in Embedded Organic/Metal Nanowire Heterostructures.

    PubMed

    Li, Yong Jun; Hong, Yan; Peng, Qian; Yao, Jiannian; Zhao, Yong Sheng

    2017-10-24

    The excitation of surface plasmons by optical emitters based on exciton-plasmon coupling is important for plasmonic devices with active optical properties. It has been theoretically demonstrated that the orientation of exciton dipole can significantly influence the coupling strength, yet systematic study of the coupling process in nanostructures is still hindered by the lack of proper material systems. In this work, we have experimentally investigated the orientation-dependent exciton-plasmon coupling in a rationally designed organic/metal nanowire heterostructure system. The heterostructures were prepared by inserting silver nanowires into crystalline organic waveguides during the self-assembly of dye molecules. Structures with different exciton orientations exhibited varying coupling efficiencies. The near-field exciton-plasmon coupling facilitates the design of nanophotonic devices based on the directional surface plasmon polariton propagations.

  2. Low-Energy Excitation Spectra in the Excitonic Phase of Cobalt Oxides

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tomoki; Sugimoto, Koudai; Ohta, Yukinori

    2017-04-01

    We study the excitonic phase and low-energy excitation spectra of perovskite cobalt oxides. Constructing the five-orbital Hubbard model defined on the three-dimensional cubic lattice for the 3d bands of Pr0.5Ca0.5CoO3, we calculate the excitonic susceptibility in the normal state in the random-phase approximation (RPA) to show the presence of the instability toward excitonic condensation. On the basis of the excitonic ground state with a magnetic multipole obtained in the mean-field approximation, we calculate the dynamical susceptibility of the excitonic phase in the RPA and find that there appear a gapless collective excitation in the spin-transverse mode (Goldstone mode) and a gapful collective excitation in the spin-longitudinal mode (Higgs mode). The experimental relevance of our results is discussed.

  3. Selective Amplification of the Primary Exciton in a MoS_{2} Monolayer.

    PubMed

    Lee, Hyun Seok; Kim, Min Su; Jin, Youngjo; Han, Gang Hee; Lee, Young Hee; Kim, Jeongyong

    2015-11-27

    Optoelectronics applications for transition-metal dichalcogenides are still limited by weak light absorption and their complex exciton modes are easily perturbed by varying excitation conditions because they are inherent in atomically thin layers. Here, we propose a method of selectively amplifying the primary exciton (A^{0}) among the exciton complexes in monolayer MoS_{2} via cyclic reexcitation of cavity-free exciton-coupled plasmon propagation. This was implemented by partially overlapping a Ag nanowire on a MoS_{2} monolayer separated by a thin SiO_{2} spacer. Exciton-coupled plasmons in the nanowire enhance the A^{0} radiation in MoS_{2}. The cumulative amplification of emission enhancement by cyclic plasmon traveling reaches approximately twentyfold selectively for the A^{0}, while excluding other B exciton and multiexciton by significantly reduced band filling, without oscillatory spectra implying plasmonic cavity effects.

  4. Room-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregate.

    PubMed

    Caram, Justin R; Doria, Sandra; Eisele, Dörthe M; Freyria, Francesca S; Sinclair, Timothy S; Rebentrost, Patrick; Lloyd, Seth; Bawendi, Moungi G

    2016-11-09

    We report 1.6 ± 1 μm exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton-exciton annihilation signatures under weak excitation flux. Fitting to a one-dimensional diffusion model, we find an average exciton diffusion constant of 55 ± 20 cm 2 /s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm 2 /s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport.

  5. Bose-Einstein condensation and superfluidity of dipolar excitons in a phosphorene double layer

    NASA Astrophysics Data System (ADS)

    Berman, Oleg L.; Gumbs, Godfrey; Kezerashvili, Roman Ya.

    2017-07-01

    We study the formation of dipolar excitons and their superfluidity in a phosphorene double layer. The analytical expressions for the single dipolar exciton energy spectrum and wave function are obtained. It is predicted that a weakly interacting gas of dipolar excitons in a double layer of black phosphorus exhibits superfluidity due to the dipole-dipole repulsion between the dipolar excitons. In calculations are employed the Keldysh and Coulomb potentials for the interaction between the charge carriers to analyze the influence of the screening effects on the studied phenomena. It is shown that the critical velocity of superfluidity, the spectrum of collective excitations, concentrations of the superfluid and normal component, and mean-field critical temperature for superfluidity are anisotropic and demonstrate the dependence on the direction of motion of dipolar excitons. The critical temperature for superfluidity increases if the exciton concentration and the interlayer separation increase. It is shown that the dipolar exciton binding energy and mean-field critical temperature for superfluidity are sensitive to the electron and hole effective masses. The proposed experiment to observe a directional superfluidity of excitons is addressed.

  6. Lowest energy Frenkel and charge transfer exciton intermixing in one-dimensional copper phthalocyanine molecular lattice

    NASA Astrophysics Data System (ADS)

    Bondarev, I. V.; Popescu, A.; Younts, R. A.; Hoffman, B.; McAfee, T.; Dougherty, D. B.; Gundogdu, K.; Ade, H. W.

    2016-11-01

    We report the results of the combined experimental and theoretical studies of the low-lying exciton states in crystalline copper phthalocyanine. We derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer exciton state and compare it with temperature dependent optical absorption spectra measured experimentally, to obtain the parameters of the Frenkel-charge-transfer exciton intermixing. The two Frenkel exciton states are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the charge transfer exciton, showing the coupling constant 0.17 eV which agrees with earlier experimental measurements. These results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines.

  7. Photo-electrical and transport properties of hydrothermal ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onufrijevs, P., E-mail: onufrijevs@latnet.lv; Medvid, A.; Ščajev, P.

    2016-04-07

    We performed the studies of optical, photoelectric, and transport properties of a hydrothermal bulk n-type ZnO crystal by using the contactless optical techniques: photoluminescence, light-induced transient grating, and differential reflectivity. Optical studies revealed bound exciton and defect-related transitions between the donor states (at ∼60 meV and ∼240 meV below the conduction band) and the deep acceptor states (at 0.52 eV above the valence band). The acceptor state was ascribed to V{sub Zn}, and its thermal activation energy of 0.43 eV was determined. A low value of carrier diffusion coefficient (∼0.1 cm{sup 2}/s) at low excitations and temperatures up to 800 K was attributed to impact themore » recharged deep acceptors. Electron and hole mobilities of 140 and ∼80 cm{sup 2}/Vs, correspondently, were determined at room temperature. The decrease of carrier lifetime with excitation was ascribed to increasing rate of radiative recombination at low temperatures and nonradiative recombination above the room temperature.« less

  8. Wannier-Mott Excitons in Nanoscale Molecular Ices

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Muñoz Caro, G. M.; Aparicio, S.; Jiménez-Escobar, A.; Lasne, J.; Rosu-Finsen, A.; McCoustra, M. R. S.; Cassidy, A. M.; Field, D.

    2017-10-01

    The absorption of light to create Wannier-Mott excitons is a fundamental feature dictating the optical and photovoltaic properties of low band gap, high permittivity semiconductors. Such excitons, with an electron-hole separation an order of magnitude greater than lattice dimensions, are largely limited to these semiconductors but here we find evidence of Wannier-Mott exciton formation in solid carbon monoxide (CO) with a band gap of >8 eV and a low electrical permittivity. This is established through the observation that a change of a few degrees K in deposition temperature can shift the electronic absorption spectra of solid CO by several hundred wave numbers, coupled with the recent discovery that deposition of CO leads to the spontaneous formation of electric fields within the film. These so-called spontelectric fields, here approaching 4 ×107 V m-1 , are strongly temperature dependent. We find that a simple electrostatic model reproduces the observed temperature dependent spectral shifts based on the Stark effect on a hole and electron residing several nm apart, identifying the presence of Wannier-Mott excitons. The spontelectric effect in CO simultaneously explains the long-standing enigma of the sensitivity of vacuum ultraviolet spectra to the deposition temperature.

  9. Effective Tuning of Ketocyanine Derivatives through Acceptor Substitution.

    PubMed

    Poe, Ambata; Della Pelle, Andrea; Byrnes, Sean; Thayumanavan, S

    2015-05-18

    A series of ketocyanine derivatives possessing bis(diarylamino)fluorenyl donors and variable acceptors installed at the bridging carbon atom were synthesized to investigate how the electronic structure of the dye can be systemically tuned through stabilization of the cyanine-like character of the donor by increasing the acceptor strength. Analysis of the (1) H NMR spectra indicates that the "charge-separated" species dominates in these dyes, given that carbons possessing a positive or negative charge in the resonance structures of this state purposefully shift downfield or upfield, respectively, depending on the strength of the acceptor moiety. In DAA-Fl-PI, the acceptor strength and the gain of acceptor aromaticity indicates a predisposition of the separated state, indicated by asymmetry in the (1) H NMR spectrum, as well as uneven distribution of the HOMO on the fluorenyl donor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Selective excitation of exciton transitions in PTCDA crystals and films

    NASA Astrophysics Data System (ADS)

    Gangilenka, V. R.; Titova, L. V.; Smith, L. M.; Wagner, H. P.; Desilva, L. A. A.; Gisslén, L.; Scholz, R.

    2010-04-01

    Photoluminescence excitation studies on 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) single crystals and polycrystalline PTCDA films are compared to the calculated excitonic dispersion deduced from an exciton model including the coupling between Frenkel and charge transfer (CT) excitons along the stacking direction. For excitation energies below the 0-0 Frenkel exciton absorption band at 5 K these measurements enable the selective excitation of several CT states. The CT2 state involving stacked PTCDA molecules reveals two excitation resonances originating from different vibronic sublevels. Moreover, the fundamental transition of the CT1 exciton state delocalized over both basis molecules in the crystal unit cell has been identified from the corresponding excitation resonance. From the excitation energy dependence the fundamental transition energies of the CT2 and CT1 excitons have been deduced to occur at 1.95 and 1.98 eV, respectively. When the excitation energy exceeds ˜2.08eV , we observe a strong emission channel which is related to the indirect minimum of the lowest dispersion branch dominated by Frenkel excitons. Photoluminescence excitation spectroscopy measurements on polycrystalline PTCDA films reveal a strong CT2 signal intensity which is attributed to an increased density of defect-related CT2 states that are preferentially formed by slightly deformed or compressed stacked PTCDA molecules in the vicinity of defects or at grain boundaries. Temperature-dependent PL measurements in polycrystalline PTCDA films between 10 and 300 K at an excitation of 1.88 eV further allow a detailed investigation of the CT2 transition and its vibronic subband.

  11. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard.

    PubMed

    Gao, T; Estrecho, E; Bliokh, K Y; Liew, T C H; Fraser, M D; Brodbeck, S; Kamp, M; Schneider, C; Höfling, S; Yamamoto, Y; Nori, F; Kivshar, Y S; Truscott, A G; Dall, R G; Ostrovskaya, E A

    2015-10-22

    Exciton-polaritons are hybrid light-matter quasiparticles formed by strongly interacting photons and excitons (electron-hole pairs) in semiconductor microcavities. They have emerged as a robust solid-state platform for next-generation optoelectronic applications as well as for fundamental studies of quantum many-body physics. Importantly, exciton-polaritons are a profoundly open (that is, non-Hermitian) quantum system, which requires constant pumping of energy and continuously decays, releasing coherent radiation. Thus, the exciton-polaritons always exist in a balanced potential landscape of gain and loss. However, the inherent non-Hermitian nature of this potential has so far been largely ignored in exciton-polariton physics. Here we demonstrate that non-Hermiticity dramatically modifies the structure of modes and spectral degeneracies in exciton-polariton systems, and, therefore, will affect their quantum transport, localization and dynamical properties. Using a spatially structured optical pump, we create a chaotic exciton-polariton billiard--a two-dimensional area enclosed by a curved potential barrier. Eigenmodes of this billiard exhibit multiple non-Hermitian spectral degeneracies, known as exceptional points. Such points can cause remarkable wave phenomena, such as unidirectional transport, anomalous lasing/absorption and chiral modes. By varying parameters of the billiard, we observe crossing and anti-crossing of energy levels and reveal the non-trivial topological modal structure exclusive to non-Hermitian systems. We also observe mode switching and a topological Berry phase for a parameter loop encircling the exceptional point. Our findings pave the way to studies of non-Hermitian quantum dynamics of exciton-polaritons, which may uncover novel operating principles for polariton-based devices.

  12. Excitons and the lifetime of organic semiconductor devices.

    PubMed

    Forrest, Stephen R

    2015-06-28

    While excitons are responsible for the many beneficial optical properties of organic semiconductors, their non-radiative recombination within the material can result in material degradation due to the dumping of energy onto localized molecular bonds. This presents a challenge in developing strategies to exploit the benefits of excitons without negatively impacting the device operational stability. Here, we will briefly review the fundamental mechanisms leading to excitonic energy-driven device ageing in two example devices: blue emitting electrophosphorescent organic light emitting devices (PHOLEDs) and organic photovoltaic (OPV) cells. We describe strategies used to minimize or even eliminate this fundamental device degradation pathway. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Negatively charged excitons and photoluminescence in asymmetric quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Wojs, Arkadiusz; Quinn, John J.

    2001-02-15

    We study photoluminescence (PL) of charged excitons (X{sup -}) in narrow asymmetric quantum wells in high magnetic fields B. The binding of all X{sup -} states strongly depends on the separation {delta} of electron and hole layers. The most sensitive is the ''bright'' singlet, whose binding energy decreases quickly with increasing {delta} even at relatively small B. As a result, the value of B at which the singlet-triplet crossing occurs in the X{sup -} spectrum also depends on {delta}, and decreases from 35 T in a symmetric 10 nm GaAs well to 16 T for {delta}=0.5 nm. Since the criticalmore » values of {delta} at which different X{sup -} states unbind are surprisingly small compared to the well width, the observation of strongly bound X{sup -} states in an experimental PL spectrum implies virtually no layer displacement in the sample. This casts doubt on the interpretation of PL spectra of heterojunctions in terms of X{sup -} recombination.« less

  14. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers

    NASA Astrophysics Data System (ADS)

    Yu, Hongyi; Liu, Gui-Bin; Yao, Wang

    2018-07-01

    We investigate the optical properties of spin-triplet interlayer excitons in heterobilayer transition metal dichalcogenides in comparison with the spin-singlet ones. Surprisingly, the optical transition dipole of the spin-triplet exciton is found to be in the same order of magnitude to that of the spin-singlet exciton, in sharp contrast to the monolayer excitons where the spin-triplet species is considered as dark compared to the singlet. Unlike the monolayer excitons whose spin-conserved (spin-flip) transition dipole can only couple to light of in-plane (out-of-plane) polarisation, such restriction is removed for the interlayer excitons due to the breaking of the out-of-plane mirror symmetry. We find that as the interlayer atomic registry changes, the optical transition dipole of interlayer exciton crosses between in-plane ones of opposite circular polarizations and the out-of-plane one for both the spin-triplet and spin-singlet species. As a result, excitons of both species have non-negligible coupling into photon modes of both in-plane and out-of-plane propagations, another sharp difference from the monolayers where the exciton couples predominantly into the out-of-plane propagation channel. At given atomic registry, the spin-triplet and spin-singlet excitons have distinct valley polarisation selection rules, allowing the selective optical addressing of both the valley configuration and the spin-singlet/triplet configuration of interlayer excitons.

  15. Multiple exciton generation in chiral carbon nanotubes: Density functional theory based computation

    NASA Astrophysics Data System (ADS)

    Kryjevski, Andrei; Mihaylov, Deyan; Kilina, Svetlana; Kilin, Dmitri

    2017-10-01

    We use a Boltzmann transport equation (BE) to study time evolution of a photo-excited state in a nanoparticle including phonon-mediated exciton relaxation and the multiple exciton generation (MEG) processes, such as exciton-to-biexciton multiplication and biexciton-to-exciton recombination. BE collision integrals are computed using Kadanoff-Baym-Keldysh many-body perturbation theory based on density functional theory simulations, including exciton effects. We compute internal quantum efficiency (QE), which is the number of excitons generated from an absorbed photon in the course of the relaxation. We apply this approach to chiral single-wall carbon nanotubes (SWCNTs), such as (6,2) and (6,5). We predict efficient MEG in the (6,2) and (6,5) SWCNTs within the solar spectrum range starting at the 2Eg energy threshold and with QE reaching ˜1.6 at about 3Eg, where Eg is the electronic gap.

  16. Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.

    PubMed

    Donatini, Fabrice; Pernot, Julien

    2018-03-09

    In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.

  17. Multiple exciton generation in chiral carbon nanotubes: Density functional theory based computation.

    PubMed

    Kryjevski, Andrei; Mihaylov, Deyan; Kilina, Svetlana; Kilin, Dmitri

    2017-10-21

    We use a Boltzmann transport equation (BE) to study time evolution of a photo-excited state in a nanoparticle including phonon-mediated exciton relaxation and the multiple exciton generation (MEG) processes, such as exciton-to-biexciton multiplication and biexciton-to-exciton recombination. BE collision integrals are computed using Kadanoff-Baym-Keldysh many-body perturbation theory based on density functional theory simulations, including exciton effects. We compute internal quantum efficiency (QE), which is the number of excitons generated from an absorbed photon in the course of the relaxation. We apply this approach to chiral single-wall carbon nanotubes (SWCNTs), such as (6,2) and (6,5). We predict efficient MEG in the (6,2) and (6,5) SWCNTs within the solar spectrum range starting at the 2E g energy threshold and with QE reaching ∼1.6 at about 3E g , where E g is the electronic gap.

  18. Large Excitonic Reflectivity of Monolayer MoSe2 Encapsulated in Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Scuri, Giovanni; Zhou, You; High, Alexander A.; Wild, Dominik S.; Shu, Chi; De Greve, Kristiaan; Jauregui, Luis A.; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip; Lukin, Mikhail D.; Park, Hongkun

    2018-01-01

    We demonstrate that a single layer of MoSe2 encapsulated by hexagonal boron nitride can act as an electrically switchable mirror at cryogenic temperatures, reflecting up to 85% of incident light at the excitonic resonance. This high reflectance is a direct consequence of the excellent coherence properties of excitons in this atomically thin semiconductor. We show that the MoSe2 monolayer exhibits power-and wavelength-dependent nonlinearities that stem from exciton-based lattice heating in the case of continuous-wave excitation and exciton-exciton interactions when fast, pulsed laser excitation is used.

  19. Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boev, M. V.; Kovalev, V. M., E-mail: vadimkovalev@isp.nsc.ru

    We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor substrate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential and piezoelectric mechanisms of the SAW-exciton interaction are considered. We focus on the frequency and excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures both above and well below the critical temperature of Bose-Einstein condensation of the excitonic gas. We demonstrate that the SAW attenuation and velocitymore » renormalization are strongly different below and above the critical temperature.« less

  20. How localized acceptors limit p-type conductivity in GaN

    NASA Astrophysics Data System (ADS)

    Lyons, John L.

    2013-03-01

    Despite the impressive development of GaN as an optoelectronic material, p-type conductivity is still limited. Only a single acceptor impurity, magnesium, is known to lead to p-type GaN. But Mg is far from a well-behaved acceptor. Hydrogen is known to passivate Mg, necessitating a post-growth anneal for acceptor activation. In addition, the ionization energy is quite large (~ 200 meV in GaN), meaning only a few percent of Mg acceptors are ionized at room temperature. Thus, hole conductivity is limited, and high concentrations of Mg are required to achieve moderately p-type GaN. Other acceptor impurities have not proven to be effective p-type dopants, for reasons that are still unresolved. Using advanced first-principles calculations based on a hybrid functional, we investigate the electrical and optical properties of the isolated Mg acceptor and its complexes with hydrogen in GaN, InN, and AlN.[2] We employ a technique that overcomes the band-gap-problem of traditional density functional theory, and allows for quantitative predictions of acceptor ionization energies and optical transition energies. Our results allow us to explain the deep or shallow nature of the Mg acceptor and its relation to the optical signals observed in Mg-doped GaN. We also revisit the properties of other group-II acceptors in GaN. We find that all cation-site acceptors show behavior similar to MgGa, and lead to highly localized holes. The ZnGa and BeGa acceptors have ionization energies that are even larger than that of Mg, making them ineffective dopants. All acceptors cause large lattice distortions in their neutral charge state, in turn leading to deep, broad luminescence signals that can serve as a means of experimentally verifying the deep nature of these acceptors. This work was performed in collaboration with Audrius Alkauskas, Anderson Janotti, and Chris G. Van de Walle. It was supported by the NSF and by the Solid State Lighting and Energy Center at UCSB.

  1. Shallow versus deep nature of Mg acceptors in nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Lyons, John; Janotti, Anderson; van de Walle, Chris G.

    2012-02-01

    Although Mg doping is the only known method for achieving p-type conductivity in nitride semiconductors, Mg is not a perfect acceptor. Hydrogen is known to passivate the Mg acceptor, necessitating a post-growth anneal for acceptor activation. Furthermore, the acceptor ionization energy of Mg is relatively large (200 meV) in GaN, thus only a few percent of Mg acceptors are ionized at room temperature. Surprisingly, despite the importance of this impurity, open questions remain regarding the nature of the acceptor. Optical and magnetic resonance measurements on Mg-doped GaN indicate intriguing and complex behavior that depends on the growth, doping level, and thermal treatment of the samples. Motivated by these studies, we have revisited this topic by performing first-principles calculations based on a hybrid functional. We investigate the electrical and optical properties of the isolated Mg acceptor and its complexes with hydrogen in GaN, InN, and AlN. With the help of these advanced techniques we explain the deep or shallow nature of the Mg acceptor and its relation to optical signals often seen in Mg-doped GaN. We also explore the properties of the Mg acceptor in InN and AlN, allowing predictions of the behavior of the Mg dopant in ternary nitride alloys.

  2. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2015-04-01

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, 1H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  3. Fractional Solitons in Excitonic Josephson Junctions.

    PubMed

    Hsu, Ya-Fen; Su, Jung-Jung

    2015-10-29

    The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. The system is mapped into a pseudospin ferromagnet then described numerically by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, we identify a family of fractional sine-Gordon solitons which resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Each fractional soliton carries a topological charge Q that is not necessarily a half/full integer but can vary continuously. The calculated current-phase relation (CPR) shows that solitons with Q = ϕ0/2π is the lowest energy state starting from zero ϕ0 - until ϕ0 > π - then the alternative group of solitons with Q = ϕ0/2π - 1 takes place and switches the polarity of CPR.

  4. Molecular-wire behavior of OLED materials: exciton dynamics in multichromophoric Alq3-oligofluorene-Pt(II)porphyrin triads.

    PubMed

    Montes, Victor A; Pérez-Bolívar, César; Agarwal, Neeraj; Shinar, Joseph; Anzenbacher, Pavel

    2006-09-27

    Donor-bridge-acceptor triads consisting of the Alq3 complex, oligofluorene bridge, and PtII tetraphenylporphyrin (PtTPP) were synthesized. The triads were designed to study the energy level/distance-dependence in energy transfer both in a solution and in solid state. The materials show effective singlet transfer from the Alq3-fluorene fluorophore to the porphyrin, while the triplet energy transfer, owing to the shorter delocalization of triplet excitons, appears to take place via a triplet energy cascade. Using femtosecond transient spectroscopy, the rate of the singlet-singlet energy transfer was determined. The exponential dependence of the donor-acceptor distance and the respective energy transfer rates of 7.1 x 1010 to 1.0 x 109 s-1 with the attenuation factor â of 0.21 +/- 0.02 A-1 suggest that the energy transfer proceeds via a mixed incohererent wire/superexchange mechanism. In the OLEDs fabricated using the Alq3-oligofluorene-PtTPP triads with better triplet level alignment, the order of a magnitude increase in efficacy appears to be due to facile triplet energy transfer. The devices, where the triplet-triplet energy transfer is of paramount importance, showed high color purity emission (CIE X,Y: 0.706, 0.277), which is almost identical to the emission from thin films. Most importantly, we believe that the design principles demonstrated above are general and may be used to prepare OLED materials with enhanced quantum efficacy at lowered operational potentials, being crucial for improved lifespan of OLEDs.

  5. Localization length and intraband scattering of excitons in linear aggregates

    NASA Astrophysics Data System (ADS)

    Lemaistre, J. P.

    1999-07-01

    A theoretical model to describe the intraband scattering of excitons in linear aggregates of finite size which exhibit strong intermolecular interactions is presented. From the calculation of the aggregate eigenstates, the localization length of excitons is evaluated for various configurations featuring physical situations like trapping, edge effects, inclusion of diagonal and/or orientational disorders. The intraband scattering is studied by considering the exciton-phonon stochastic coupling induced by the thermal bath. This coupling creates local dynamical fluctuations in the site energies which are characterized by their amplitude ( Δ) and their correlation time ( τc). Expressions of scattering rates are provided and used in a Pauli master equation to calculate the time dependence of the eigenstates populations after initial excitation of the quasi exciton-band. It is shown that the time evolution of the lowest state population as well as the Stokes shift strongly depend on τc. Comparison of the theoretical results to time-resolved experiments performed on triaryl pyrylium salts allows us to interpret the observed Stokes shift and to derive an average value of the exciton-phonon correlation time.

  6. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

    NASA Astrophysics Data System (ADS)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob; da Silva Filho, Demétrio Antônio

    2018-05-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.

  7. Ultrafast electric phase control of a single exciton qubit

    NASA Astrophysics Data System (ADS)

    Widhalm, Alex; Mukherjee, Amlan; Krehs, Sebastian; Sharma, Nandlal; Kölling, Peter; Thiede, Andreas; Reuter, Dirk; Förstner, Jens; Zrenner, Artur

    2018-03-01

    We report on the coherent phase manipulation of quantum dot excitons by electric means. For our experiments, we use a low capacitance single quantum dot photodiode which is electrically controlled by a custom designed SiGe:C BiCMOS chip. The phase manipulation is performed and quantified in a Ramsey experiment, where ultrafast transient detuning of the exciton energy is performed synchronous to double pulse π/2 ps laser excitation. We are able to demonstrate electrically controlled phase manipulations with magnitudes up to 3π within 100 ps which is below the dephasing time of the quantum dot exciton.

  8. Detuning-Controlled Internal Oscillations in an Exciton-Polariton Condensate

    NASA Astrophysics Data System (ADS)

    Voronova, N. S.; Elistratov, A. A.; Lozovik, Yu. E.

    2015-10-01

    We theoretically analyze exciton-photon oscillatory dynamics within a homogenous polariton gas in the presence of energy detuning between the cavity and quantum well modes. Whereas pure Rabi oscillations consist of the particle exchange between the photon and exciton states in the polariton system without any oscillations of the phases of the two subcondensates, we demonstrate that any nonzero detuning results in oscillations of the relative phase of the photon and exciton macroscopic wave functions. Different initial conditions reveal a variety of behaviors of the relative phase between the two condensates, and a crossover from Rabi-like to Josephson-like oscillations is predicted.

  9. Isoelectronic bound-exciton photoluminescence in strained beryllium-doped Si0.92Ge0.08 epilayers and Si0.92Ge0.08/Si superlattices at ambient and elevated hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Kim, Sangsig; Chang, Ganlin; Herman, Irving P.; Bevk, Joze; Moore, Karen L.; Hall, Dennis G.

    1997-03-01

    Photoluminescence (PL) from a beryllium-doped Si0.92Ge0.08 epilayer and three different beryllium-doped Si0.92Ge0.08/Si superlattices (SL's) commensurately grown on Si(100) substrates is examined at 9 K at ambient pressure and, for the epilayer and one SL, as a function of hydrostatic pressure. In each structure, excitons bind to the isoelectronic Be pairs in the strained Si0.92Ge0.08 layers. The zero-phonon PL peaks of the epilayer and the in situ doped 50-Å Si0.92Ge0.08/100-Å Si SL shift linearly with pressure toward lower energy at the rate of 0.68+/-0.03 and 0.97+/-0.03 meV/kbar, respectively, which are near the 0.77-meV/kbar value for Si:Be. The PL energies at ambient and elevated pressure are analyzed by accounting for strain, quantum confinement, and exciton binding. A modified Hopfield-Thomas-Lynch model is used to model exciton binding to the Be pairs. This model, in which potential wells bind electrons to a site (that then trap holes), predicts a distribution of electron binding energies when an inhomogeneous distribution of potential-well depths is used. This accounts for the large PL linewidth and the decrease of linewidth with increasing pressure, among other observations. In SL's, the exciton binding energy is shown to depend on the width of the wells as well as the spatial distribution of Be dopants in the superlattice. Also, at and above 58 kbar a very unusual peak is observed in one of the SL's, which is associated with a free-exciton peak in Si, that shifts very fast with pressure (-6.02+/-0.03 meV/kbar).

  10. Excitons in Core-Shell Nanowires with Polygonal Cross Sections.

    PubMed

    Sitek, Anna; Urbaneja Torres, Miguel; Torfason, Kristinn; Gudmundsson, Vidar; Bertoni, Andrea; Manolescu, Andrei

    2018-04-11

    The distinctive prismatic geometry of semiconductor core-shell nanowires leads to complex localization patterns of carriers. Here, we describe the formation of optically active in-gap excitonic states induced by the interplay between localization of carriers in the corners and their mutual Coulomb interaction. To compute the energy spectra and configurations of excitons created in the conductive shell, we use a multielectron numerical approach based on the exact solution of the multiparticle Hamiltonian for electrons in the valence and conduction bands, which includes the Coulomb interaction in a nonperturbative manner. We expose the formation of well-separated quasidegenerate levels, and focus on the implications of the electron localization in the corners or on the sides of triangular, square, and hexagonal cross sections. We obtain excitonic in-gap states associated with symmetrically distributed electrons in the spin singlet configuration. They acquire large contributions due to Coulomb interaction, and thus are shifted to much higher energies than other states corresponding to the conduction electron and the vacancy localized in the same corner. We compare the results of the multielectron method with those of an electron-hole model, and we show that the latter does not reproduce the singlet excitonic states. We also obtain the exciton lifetime and explain selection rules which govern the recombination process.

  11. Exciton Dynamics and Many Body Interactions in Layered Semiconducting Materials Revealed with Non-linear Coherent Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dey, Prasenjit

    Atomically thin, semiconducting transition metal dichalogenides (TMDs), a special class of layered semiconductors, that can be shaped as a perfect two dimensional material, have garnered a lot of attention owing to their fascinating electronic properties which are achievable at the extreme nanoscale. In contrast to graphene, the most celebrated two-dimensional (2D) material thus far; TMDs exhibit a direct band gap in the monolayer regime. The presence of a non-zero bandgap along with the broken inversion symmetry in the monolayer limit brands semiconducting TMDs as the perfect candidate for future optoelectronic and valleytronics-based device application. These remarkable discoveries demand exploration of different materials that possess similar properties alike TMDs. Recently, III-VI layered semiconducting materials (example: InSe, GaSe etc.) have also emerged as potential materials for optical device based applications as, similar to TMDs, they can be shaped into a perfect two-dimensional form as well as possess a sizable band gap in their nano-regime. The perfect 2D character in layered materials cause enhancement of strong Coulomb interaction. As a result, excitons, a coulomb bound quasiparticle made of electron-hole pair, dominate the optical properties near the bandgap. The basis of development for future optoelectronic-based devices requires accurate characterization of the essential properties of excitons. Two fundamental parameters that characterize the quantum dynamics of excitons are: a) the dephasing rate, gamma, which represents the coherence loss due to the interaction of the excitons with their environment (for example- phonons, impurities, other excitons, etc.) and b) excited state population decay rate arising from radiative and non-radiative relaxation processes. The dephasing rate is representative of the time scale over which excitons can be coherently manipulated, therefore accurately probing the source of exciton decoherence is crucial for

  12. Spectral, thermal, XRD and SEM studies of charge-transfer complexation of hexamethylenediamine and three types of acceptors: π-, σ- and vacant orbital acceptors that include quinol, picric acid, bromine, iodine, SnCl4 and ZnCl2 acceptors

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.

    2013-11-01

    In this work, structural, thermal, morphological and pharmacological characterization was performed on the interactions between a hexamethylenediamine (HMDA) donor and three types of acceptors to understand the complexation behavior of diamines. The three types of acceptors include π-acceptors (i.e., quinol (QL) and picric acid (PA)), σ-acceptors (i.e., bromine and iodine) and vacant orbital acceptors (i.e., tin(IV) tetrachloride (SnCl4) and zinc chloride (ZnCl2)). The characterization of the obtained CT complexes was performed using elemental analysis, infrared (IR), Raman, 1H NMR and electronic absorption spectroscopy, powder X-ray diffraction (XRD) and thermogravimetric (TG) analysis. Their morphologies were studied using scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). The biological activities of the obtained CT complexes were tested for their antibacterial activities. The complex containing the QL acceptor exhibited a remarkable electronic spectrum with a strong, broad absorption band, which had an observed λmax that was at a much longer wavelength than those of the free reactants. In addition, this complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared to standard drugs. The complexes containing the PA, iodine, Sn(IV) and Zn(II) acceptors exhibited good thermal stability up to 240, 330, 275 and 295 °C, respectively. The complexes containing bromine, Sn(IV) and Zn(II) acceptors exhibited good crystallinity. In addition to its good crystallinity properties, the complex containing the bromine acceptor exhibits a remarkable morphology feature.

  13. Resonance Raman signature of intertube excitons in compositionally-defined carbon nanotube bundles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Jeffrey R.; Roslyak, Oleksiy; Duque, Juan G.

    Electronic interactions in low-dimensional nanomaterial heterostructures can lead to novel optical responses arising from exciton delocalization over the constituent materials. Similar phenomena have been suggested to arise between closely interacting semiconducting carbon nanotubes of identical structure. Such behavior in carbon nanotubes has potential to generate new exciton physics, impact exciton transport mechanisms in nanotube networks, and place nanotubes as one-dimensional models for such behaviors in systems of higher dimensionality. Here we use resonance Raman spectroscopy to probe intertube interactions in (6,5) chirality-enriched bundles. Raman excitation profiles for the radial breathing mode and G-mode display a previously unobserved sharp resonance feature.more » We show the feature is evidence for creation of intertube excitons and is identified as a Fano resonance arising from the interaction between intratube and intertube excitons. The universality of the model suggests that similar Raman excitation profile features may be observed for interlayer exciton resonances in 2D multilayered systems.« less

  14. Resonance Raman signature of intertube excitons in compositionally-defined carbon nanotube bundles

    DOE PAGES

    Simpson, Jeffrey R.; Roslyak, Oleksiy; Duque, Juan G.; ...

    2018-02-12

    Electronic interactions in low-dimensional nanomaterial heterostructures can lead to novel optical responses arising from exciton delocalization over the constituent materials. Similar phenomena have been suggested to arise between closely interacting semiconducting carbon nanotubes of identical structure. Such behavior in carbon nanotubes has potential to generate new exciton physics, impact exciton transport mechanisms in nanotube networks, and place nanotubes as one-dimensional models for such behaviors in systems of higher dimensionality. Here we use resonance Raman spectroscopy to probe intertube interactions in (6,5) chirality-enriched bundles. Raman excitation profiles for the radial breathing mode and G-mode display a previously unobserved sharp resonance feature.more » We show the feature is evidence for creation of intertube excitons and is identified as a Fano resonance arising from the interaction between intratube and intertube excitons. The universality of the model suggests that similar Raman excitation profile features may be observed for interlayer exciton resonances in 2D multilayered systems.« less

  15. Resonance Raman signature of intertube excitons in compositionally-defined carbon nanotube bundles.

    PubMed

    Simpson, Jeffrey R; Roslyak, Oleksiy; Duque, Juan G; Hároz, Erik H; Crochet, Jared J; Telg, Hagen; Piryatinski, Andrei; Walker, Angela R Hight; Doorn, Stephen K

    2018-02-12

    Electronic interactions in low-dimensional nanomaterial heterostructures can lead to novel optical responses arising from exciton delocalization over the constituent materials. Similar phenomena have been suggested to arise between closely interacting semiconducting carbon nanotubes of identical structure. Such behavior in carbon nanotubes has potential to generate new exciton physics, impact exciton transport mechanisms in nanotube networks, and place nanotubes as one-dimensional models for such behaviors in systems of higher dimensionality. Here we use resonance Raman spectroscopy to probe intertube interactions in (6,5) chirality-enriched bundles. Raman excitation profiles for the radial breathing mode and G-mode display a previously unobserved sharp resonance feature. We show the feature is evidence for creation of intertube excitons and is identified as a Fano resonance arising from the interaction between intratube and intertube excitons. The universality of the model suggests that similar Raman excitation profile features may be observed for interlayer exciton resonances in 2D multilayered systems.

  16. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic–Inorganic Lead Halide Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3) hybrid inorganic-organic perovskite and its binary phase PbI 2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. Furthermore, the theoretical analysis complementing experimental observationsmore » provides the conceptual insights required for a full characterization of this complex material.« less

  17. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic–Inorganic Lead Halide Perovskites

    DOE PAGES

    Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina; ...

    2018-03-23

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3) hybrid inorganic-organic perovskite and its binary phase PbI 2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. Furthermore, the theoretical analysis complementing experimental observationsmore » provides the conceptual insights required for a full characterization of this complex material.« less

  18. Strain Gradient Modulated Exciton Evolution and Emission in ZnO Fibers.

    PubMed

    Wei, Bin; Ji, Yuan; Gauvin, Raynald; Zhang, Ze; Zou, Jin; Han, Xiaodong

    2017-01-13

    One-dimensional semiconductor can undergo large deformation including stretching and bending. This homogeneous strain and strain gradient are an easy and effective way to tune the light emission properties and the performance of piezo-phototronic devices. Here, we report that with large strain gradients from 2.1-3.5% μm -1 , free-exciton emission was intensified, and the free-exciton interaction (FXI) emission became a prominent FXI-band at the tensile side of the ZnO fiber. These led to an asymmetric variation in energy and intensity along the cross-section as well as a redshift of the total near-band-edge (NBE) emission. This evolution of the exciton emission was directly demonstrated using spatially resolved CL spectrometry combined with an in situ tensile-bending approach at liquid nitrogen temperature for individual fibers and nanowires. A distinctive mechanism of the evolution of exciton emission is proposed: the enhancement of the free-exciton-related emission is attributed to the aggregated free excitons and their interaction in the narrow bandgap in the presence of high bandgap gradients and a transverse piezoelectric field. These results might facilitate new approaches for energy conversion and sensing applications via strained nanowires and fibers.

  19. Energy splitting of excitons in gapped Dirac materials

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zhou, Jianhui; Shan, Wenyu; Yao, Wang; Okamoto, Satoshi

    2015-03-01

    We show that there is an energy splitting between excitons with opposite angular momentum in gapped Dirac materials, such as monolayers of transition metal dichalcogenides and gapped surface states of topological insulators. This splitting can be traced back to the chiral nature of Dirac electrons. We also discuss the optical selection rule of excitons in gap Dirac materials and clarify the relationship to its single-particle counterpart. A simple estimation of the splitting (~ 10 meV) in monolayer transition metal dichalcogenides is given . Our result reveals the limitation of the venerable hydrogenic model of excitons, and highlights the importance of the Berry phase in This work is supported by DOE (No. DE-SC0012509), and AFOSR (No. FA9550-14-1-0277).

  20. A novel method for determination of alpha1,6fucosyltransferase activity using a reducing oligosaccharide from egg yolk as a specific acceptor.

    PubMed

    Yazawa, S; Kochibe, N; Nishimura, T; Shima, C; Takai, I; Adachi, M; Asao, T; Hada, T; Enoki, Y; Juneja, L R

    1998-09-01

    A new method for determination of alpha1,6fucosyltransferase activity has been described. Recently, the disialyl-biantennary undecasaccharide was prepared in high yield from egg yolk [(1996), Carbohydr Lett 2: 137-42]. By treatment of this oligosaccharide with neuraminidase and beta-galactosidase, we readily obtained an asialo-agalacto-biantennary heptasaccharide (GlcNAcbeta 1,2Manalpha1,6[GlcNAcbeta1,2Manalpha1,3]Manbeta1 ,4GlcNAcbeta1,4GlcNAc). Using this asialo-agalacto-oligosaccharide as an acceptor, fucosyltransferases from human plasma and extracts of various human hepatoma cell lines were assayed in the presence of GDP-[3H]fucose. The reaction mixture was applied to a column of GlcNAc-binding, Psathyrella velutina lectin coupled gel. All the fucosylated acceptor were bound to the column which was eluted with 50 mM GlcNAc. Structural analyses revealed that only the innermost GlcNAc residue of the acceptor was fucosylated through an alpha1,6-linkage, and the oligosaccharide prepared could be used as a specific acceptor for alpha1,6fucosyltransferase. The present method was used to screen plasma alpha1,6fucosyltransferase in several patient groups, and significantly elevated activities were found in samples from patients with liver diseases, including chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma.

  1. Contrasting performance of donor-acceptor copolymer pairs in ternary blend solar cells and two-acceptor copolymers in binary blend solar cells.

    PubMed

    Khlyabich, Petr P; Rudenko, Andrey E; Burkhart, Beate; Thompson, Barry C

    2015-02-04

    Here two contrasting approaches to polymer-fullerene solar cells are compared. In the first approach, two distinct semi-random donor-acceptor copolymers are blended with phenyl-C61-butyric acid methyl ester (PC61BM) to form ternary blend solar cells. The two poly(3-hexylthiophene)-based polymers contain either the acceptor thienopyrroledione (TPD) or diketopyrrolopyrrole (DPP). In the second approach, semi-random donor-acceptor copolymers containing both TPD and DPP acceptors in the same polymer backbone, termed two-acceptor polymers, are blended with PC61BM to give binary blend solar cells. The two approaches result in bulk heterojunction solar cells that have the same molecular active-layer components but differ in the manner in which these molecular components are mixed, either by physical mixing (ternary blend) or chemical "mixing" in the two-acceptor (binary blend) case. Optical properties and photon-to-electron conversion efficiencies of the binary and ternary blends were found to have similar features and were described as a linear combination of the individual components. At the same time, significant differences were observed in the open-circuit voltage (Voc) behaviors of binary and ternary blend solar cells. While in case of two-acceptor polymers, the Voc was found to be in the range of 0.495-0.552 V, ternary blend solar cells showed behavior inherent to organic alloy formation, displaying an intermediate, composition-dependent and tunable Voc in the range from 0.582 to 0.684 V, significantly exceeding the values achieved in the two-acceptor containing binary blend solar cells. Despite the differences between the physical and chemical mixing approaches, both pathways provided solar cells with similar power conversion efficiencies, highlighting the advantages of both pathways toward highly efficient organic solar cells.

  2. Valley-Selective Exciton Bistability in a Suspended Monolayer Semiconductor.

    PubMed

    Xie, Hongchao; Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-09

    We demonstrate robust optical bistability, the phenomenon of two well-discriminated stable states depending upon the history of the optical input, in fully suspended monolayers of WSe 2 at low temperatures near the exciton resonance. Optical bistability has been achieved under continuous-wave optical excitation that is red-detuned from the exciton resonance at an intensity level of 10 3 W/cm 2 . The observed bistability is originated from a photothermal mechanism, which provides both optical nonlinearity and passive feedback, two essential elements for optical bistability. The low thermal conductance of suspended samples is primarily responsible for the low excitation intensities required for optical bistability. Under a finite out-of-plane magnetic field, the exciton bistability becomes helicity dependent due to the exciton valley Zeeman effect, which enables repeatable switching of the sample reflectance by light polarization. Our study has opened up exciting opportunities in controlling light with light, including its wavelength, power, and polarization, using monolayer semiconductors.

  3. Energy bands and acceptor binding energies of GaN

    NASA Astrophysics Data System (ADS)

    Xia, Jian-Bai; Cheah, K. W.; Wang, Xiao-Liang; Sun, Dian-Zhao; Kong, Mei-Ying

    1999-04-01

    The energy bands of zinc-blende and wurtzite GaN are calculated with the empirical pseudopotential method, and the pseudopotential parameters for Ga and N atoms are given. The calculated energy bands are in agreement with those obtained by the ab initio method. The effective-mass theory for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN for both structures are given. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor are 24 and 142 meV for the zinc-blende structure, 20 and 131, and 97 meV for the wurtzite structure, respectively, which are consistent with recent experimental results. It is proposed that there are two kinds of acceptor in wurtzite GaN. One kind is the general acceptor such as C, which substitutes N, which satisfies the effective-mass theory. The other kind of acceptor includes Mg, Zn, Cd, etc., the binding energy of these acceptors is deviated from that given by the effective-mass theory. In this report, wurtzite GaN is grown by the molecular-beam epitaxy method, and the photoluminescence spectra were measured. Three main peaks are assigned to the donor-acceptor transitions from two kinds of acceptors. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material.

  4. Phonon-assisted oscillatory exciton dynamics in monolayer MoSe 2

    DOE PAGES

    Chow, Colin M.; Yu, Hongyi; Jones, Aaron M.; ...

    2017-10-13

    In monolayer semiconductor transition metal dichalcogenides, the exciton–phonon interaction strongly affects the photocarrier dynamics. Here, we report on an unusual oscillatory enhancement of the neutral exciton photoluminescence with the excitation laser frequency in monolayer MoSe 2. The frequency of oscillation matches that of the M-point longitudinal acoustic phonon, LA(M), suggesting the significance of zone-edge acoustic phonons and hence the deformation potential in exciton-phonon coupling in MoSe 2. Moreover, oscillatory behavior is observed in the steady-state emission linewidth and in time-resolved PLE data, which reveals variation with excitation energy in the exciton lifetime. These results clearly expose the key role playedmore » by phonons in the exciton formation and relaxation dynamics of two-dimensional van der Waals semiconductors.« less

  5. Excitonic condensation with different pairing symmetries in double quantum wells

    NASA Astrophysics Data System (ADS)

    Jamell, Christopher

    2009-03-01

    Double quantum wells with one containing electrons and the other containing holes as carriers are a promising candidate for condensation of dipolar excitons with lifetime much larger than lifetime of excitons in bulk semiconductors. When the inter-well distance is comparable to the interparticle distance within a single well, d <=rsaB, inter-well coherence is expected to lead to an excitonic condensation. We explore the ground state of a balanced system as a function of inter-well distance d and the carrier density n2D. We present Hartree-Fock mean-field results for the quasiparticle and order parameter dispersion with different pairing symmetries. We obtain the quasiparticle density of states in each case. These results lay the ground work for mean-field study of excitonic condensate states with spontaneously broken translational symmetry.

  6. Excitonic effects in dense media: breakdown of intrinsic optical bistability

    NASA Astrophysics Data System (ADS)

    Yudson, V. I.; Reineker, P.

    1994-12-01

    The steady-state nonlinear response to optical excitation is studied for a thin layer containing “two-level-atoms” (TLA). For a high density of TLAs their dipole-dipole interaction and finite excitonic bandwidth effects become important. We demonstrate that the commonly used local-field approximation ignoring excitonic band effects breaks down. Considering a system of ordered TLAs corresponding to Frenkel excitons in molecular crystals we show that excitonic effects cause an instability of spatially uniform solutions and decrease drastically the existence range of the intrinsic optical bistability of a layer. The possibility of “fast instability”, developing with an increment large in comparison with relaxation rates and the Rabi frequency, also raises the question whether the local field approximation still holds for the description of transient optical phenomena in dense media.

  7. Excitonic effects in dense media: breakdown of intrinsic optical bistability

    NASA Astrophysics Data System (ADS)

    Yudson, V. I.; Reineker, P.

    The steady-state nonlinear response to optical excitation is studied for a thin layer containing “two-level-atoms” (TLA). For a high density of TLAs their dipole-dipole interaction and finite excitonic bandwidth effects become important. We demonstrate that the commonly used local-field approximation ignoring excitonic band effects breaks down. Considering a system of ordered TLAs corresponding to Frenkel excitons in molecular crystals we show that excitonic effects cause an instability of spatially uniform solutions and decrease drastically the existence range of the intrinsic optical bistability of a layer. The possibility of “fast instability”, developing with an increment large in comparison with relaxation rates and the Rabi frequency, also raises the question whether the local field approximation still holds for the description of transient optical phenomena in dense media.

  8. electric dipole superconductor in bilayer exciton system

    NASA Astrophysics Data System (ADS)

    Sun, Qing-Feng; Jiang, Qing-Dong; Bao, Zhi-Qiang; Xie, X. C.

    Recently, it was reported that the bilayer exciton systems could exhibit many new phenomena, including the large bilayer counterflow conductivity, the Coulomb drag, etc. These phenomena imply the formation of exciton condensate superfluid state. On the other hand, it is now well known that the superconductor is the condensate superfluid state of the Cooper pairs, which can be viewed as electric monopoles. In other words, the superconductor state is the electric monopole condensate superfluid state. Thus, one may wonder whether there exists electric dipole superfluid state. In this talk, we point out that the exciton in a bilayer system can be considered as a charge neutral electric dipole. And we derive the London-type and Ginzburg-Landau-type equations of electric dipole superconductivity. From these equations, we discover the Meissner-type effect (against spatial variation of magnetic fields), and the dipole current Josephson effect. The frequency in the AC Josephson effect of the dipole current is equal to that in the normal (monopole) superconductor. These results can provide direct evidence for the formation of exciton superfluid state in the bilayer systems and pave new ways to obtain the electric dipole current. We gratefully acknowledge the financial support by NBRP of China (2012CB921303 and 2015CB921102) and NSF-China under Grants Nos. 11274364 and 11574007.

  9. Fermi-edge exciton-polaritons in doped semiconductor microcavities with finite hole mass

    NASA Astrophysics Data System (ADS)

    Pimenov, Dimitri; von Delft, Jan; Glazman, Leonid; Goldstein, Moshe

    2017-10-01

    The coupling between a 2D semiconductor quantum well and an optical cavity gives rise to combined light-matter excitations, the exciton-polaritons. These were usually measured when the conduction band is empty, making the single polariton physics a simple single-body problem. The situation is dramatically different in the presence of a finite conduction-band population, where the creation or annihilation of a single exciton involves a many-body shakeup of the Fermi sea. Recent experiments in this regime revealed a strong modification of the exciton-polariton spectrum. Previous theoretical studies concerned with nonzero Fermi energy mostly relied on the approximation of an immobile valence-band hole with infinite mass, which is appropriate for low-mobility samples only; for high-mobility samples, one needs to consider a mobile hole with large but finite mass. To bridge this gap, we present an analytical diagrammatic approach and tackle a model with short-ranged (screened) electron-hole interaction, studying it in two complementary regimes. We find that the finite hole mass has opposite effects on the exciton-polariton spectra in the two regimes: in the first, where the Fermi energy is much smaller than the exciton binding energy, excitonic features are enhanced by the finite mass. In the second regime, where the Fermi energy is much larger than the exciton binding energy, finite mass effects cut off the excitonic features in the polariton spectra, in qualitative agreement with recent experiments.

  10. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Fouladi-Oskouei, J.; Shojaei, S.; Liu, Z.

    2018-04-01

    The effects of quantum confinement on excitons in parabolic quantum dots of monolayer transition metal dichalcogenides (TMDC QDs) are investigated within a massive Dirac fermion model. A giant spin-valley coupling of the TMDC QDs is obtained, larger than that of monolayer TMDC sheets and consistent with recent experimental measurements. The exciton transition energy and the binding energy are calculated, and it is found that the strong quantum confinement results in extremely high exciton binding energies. The enormously large exciton binding energy in TMDC QDs (({{E}{{B2D}}}∼ 500 meV)<{{E}{{BQD}}}~≲ 1800 meV for different kinds of TMDC QDs) ensures that the many body interactions play a significant role in the investigation of the optical properties of these novel nanostructures. The estimated oscillator strength and radiative lifetime of excitons are strongly size-dependent and indicate a giant oscillator strength enhancement and ultrafast radiative annihilation of excitons, varying from a few tens of femtoseconds to a few picoseconds. We found that the spin-dependent band gap, spin-valley coupling, binding energy and excitonic effects can be tuned by quantum confinements, leading to tunable quantum dots in monolayer TMDCs. This finding offers new functionality in engineering the interaction of a 2D material with light and creates promise for the quantum manipulation of spin and valley degrees of freedom in TMDC nanostructures, enabling versatile novel 2D quantum photonic and optoelectronic nanodevices.

  11. Magneto-exciton transitions in laterally coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Barticevic, Zdenka; Pacheco, Monica; Duque, Carlos A.; Oliveira, Luiz E.

    2008-03-01

    We present a study of the electronic and optical properties of laterally coupled quantum dots. The excitonic spectra of this system under the effects of an external magnetic field applied perpendicular to the plane of the dots is obtained, with the potential of every individual dot taken as the superposition of a quantum well potential along the axial direction with a lateral parabolic confinement potential, and the coupled two- dot system then modeled by a superposition of the potentials of each dot, with their minima at different positions and truncated at the intersection plane. The wave functions and eigenvalues are obtained in the effective-mass approximation by using an extended variational approach in which the magneto- exciton states are simultaneously obtained [1]. The allowed magneto-exciton transitions are investigated by using circularly polarized radiation in the plane perpendicular to the magnetic field. We present results on the excitonic absorption coefficient as a function of the photon energy for different geometric quantum-dot confinement and magnetic-field values. Reference: [1] Z. Barticevic, M. Pacheco, C. A. Duque and L. E. Oliveira, Phys. Rev. B 68, 073312 (2003).

  12. Numerical method for N electrons bound to a polar quantum dot with a Coulomb impurity

    NASA Astrophysics Data System (ADS)

    Yau, J. K.; Lee, C. M.

    2003-03-01

    A numerical method is proposed to calculate the Frohlich Hamiltonian containing N electrons bound to polar quantum dot with a Coulomb impurity without transformation to the coordination frame of the center of mass and by direct diagonalization. As an example to demonstrate the formalism of this method, the low-lying spectra of three interacting electrons bound to an on-center Coulomb impurity, both for accepter and donor, are calculated and analyzed in a polar quantum dot under a perpendicular magnetic field. Taking polaron effect into account, the physical meaning of the phonon-induced terms, both self-square terms and cross terms of the Hamiltonian are discussed. The calculation can also be applied to systems containing particles with opposite charges, such as excitons.

  13. Organic solar cells based on non-fullerene acceptors

    NASA Astrophysics Data System (ADS)

    Hou, Jianhui; Inganäs, Olle; Friend, Richard H.; Gao, Feng

    2018-02-01

    Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.

  14. Confocal shift interferometry of coherent emission from trapped dipolar excitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repp, J.; Nanosystems Initiative Munich; Center for NanoScience and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München

    2014-12-15

    We introduce a confocal shift-interferometer based on optical fibers. The presented spectroscopy allows measuring coherence maps of luminescent samples with a high spatial resolution even at cryogenic temperatures. We apply the spectroscopy onto electrostatically trapped, dipolar excitons in a semiconductor double quantum well. We find that the measured spatial coherence length of the excitonic emission coincides with the point spread function of the confocal setup. The results are consistent with a temporal coherence of the excitonic emission down to temperatures of 250 mK.

  15. Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahab; Baumberg, Jeremy J.; Vijaya Prakash, G.

    2013-12-01

    Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C12H25NH3)2PbI4(1-y)Br4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices.

  16. TOPICAL REVIEW: O- bound small polarons in oxide materials

    NASA Astrophysics Data System (ADS)

    Schirmer, O. F.

    2006-11-01

    Holes bound to acceptor defects in oxide crystals are often localized by lattice distortion at just one of the equivalent oxygen ligands of the defect. Such holes thus form small polarons in symmetric clusters of a few oxygen ions. An overview on mainly the optical manifestations of those clusters is given. The article is essentially divided into two parts: the first one covers the basic features of the phenomena and their explanations, exemplified by several paradigmatic defects; in the second part numerous oxide materials are presented which exhibit bound small polaron optical properties. The first part starts with summaries on the production of bound hole polarons and the identification of their structure. It is demonstrated why they show strong, wide absorption bands, usually visible, based on polaron stabilization energies of typically 1 eV. The basic absorption process is detailed with a fictitious two-well system. Clusters with four, six and twelve equivalent ions are realized in various oxide compounds. In these cases several degenerate optically excited polaron states occur, leading to characteristic final state resonance splittings. The peak energies of the absorption bands as well as the sign of the transfer energy depend on the topology of the clusters. A special section is devoted to the distinction between interpolaron and intrapolaron optical transitions. The latter are usually comparatively weak. The oxide compounds exhibiting bound hole small polaron absorptions include the alkaline earth oxides (e.g. MgO), BeO and ZnO, the perovskites BaTiO3 and KTaO3, quartz, the sillenites (e.g. Bi12TiO20), Al2O3, LiNbO3, topaz and various other materials. There are indications that the magnetic crystals NiO, doped with Li, and LaMnO3, doped with Sr, also show optical features caused by bound hole polarons. Beyond being elementary paradigms for the properties of small polarons in general, the defect species treated can be used to explain radiation and light

  17. Magnetic brightening and control of dark excitons in monolayer WSe 2

    DOE PAGES

    Zhang, Xiao -Xiao; Cao, Ting; Lu, Zhengguang; ...

    2017-06-26

    Monolayer transition metal dichalcogenide crystals, as direct-gap materials with strong light–matter interactions, have attracted much recent attention. Because of their spin-polarized valence bands and a predicted spin splitting at the conduction band edges, the lowest-lying excitons in WX 2 (X = S, Se) are expected to be spin-forbidden and optically dark. To date, however, there has been no direct experimental probe of these dark excitons. Here, we show how an in-plane magnetic field can brighten the dark excitons in monolayer WSe2 and permit their properties to be observed experimentally. Precise energy levels for both the neutral and charged dark excitonsmore » are obtained and compared with ab initio calculations using the GW-BSE approach. As a result of their spin configuration, the brightened dark excitons exhibit much-increased emission and valley lifetimes. Furthermore, these studies directly probe the excitonic spin manifold and reveal the fine spin-splitting at the conduction band edges.« less

  18. Electro-optical modeling of bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Kirchartz, Thomas; Pieters, Bart E.; Taretto, Kurt; Rau, Uwe

    2008-11-01

    We introduce a model for charge separation in bulk heterojunction solar cells that combines exciton transport to the interface between donor and acceptor phases with the dissociation of the bound electron/hole pair. We implement this model into a standard semiconductor device simulator, thereby creating a convenient method to simulate the optical and electrical characteristics of a bulk heterojunction solar cell with a commercially available program. By taking into account different collection probabilities for the excitons in the polymer and the fullerene, we are able to reproduce absorptance, internal and external quantum efficiency, as well as current/voltage curves of bulk heterojunction solar cells. We further investigate the influence of mobilities of the free excitons as well as the mobilities of the free charge carriers on the performance of bulk heterojunction solar cells. We find that, in general, the highest efficiencies are achieved with the highest mobilities. However, an optimum finite mobility of free charge carriers can result from a large recombination velocity at the contacts. In contrast, Langevin-type of recombination cannot lead to finite optimum mobilities even though this mechanism has a strong dependence on the free carrier mobilities.

  19. Optical Absorption in Degenerately Doped Semiconductors: Mott Transition or Mahan Excitons?

    NASA Astrophysics Data System (ADS)

    Schleife, André; Rödl, Claudia; Fuchs, Frank; Hannewald, Karsten; Bechstedt, Friedhelm

    2011-12-01

    Electron doping turns semiconductors conductive even when they have wide fundamental band gaps. The degenerate electron gas in the lowest conduction-band states, e.g., of a transparent conducting oxide, drastically modifies the Coulomb interaction between the electrons and, hence, the optical properties close to the absorption edge. We describe these effects by developing an ab initio technique which captures also the Pauli blocking and the Fermi-edge singularity at the optical-absorption onset, that occur in addition to quasiparticle and excitonic effects. We answer the question whether free carriers induce an excitonic Mott transition or trigger the evolution of Wannier-Mott excitons into Mahan excitons. The prototypical n-type zinc oxide is studied as an example.

  20. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton.

    PubMed

    Shi, Jinwei; Lin, Meng-Hsien; Chen, I-Tung; Mohammadi Estakhri, Nasim; Zhang, Xin-Quan; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alù, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    2017-06-26

    Atomically thin lateral heterostructures based on transition metal dichalcogenides have recently been demonstrated. In monolayer transition metal dichalcogenides, exciton energy transfer is typically limited to a short range (~1 μm), and additional losses may be incurred at the interfacial regions of a lateral heterostructure. To overcome these challenges, here we experimentally implement a planar metal-oxide-semiconductor structure by placing a WS 2 /MoS 2 monolayer heterostructure on top of an Al 2 O 3 -capped Ag single-crystalline plate. We find that the exciton energy transfer range can be extended to tens of microns in the hybrid structure mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, allowing cascaded exciton energy transfer from one transition metal dichalcogenides region supporting high-energy exciton resonance to a different transition metal dichalcogenides region in the lateral heterostructure with low-energy exciton resonance. The realized planar hybrid structure combines two-dimensional light-emitting materials with planar plasmonic waveguides and offers great potential for developing integrated photonic and plasmonic devices.Exciton energy transfer in monolayer transition metal dichalcogenides is limited to short distances. Here, Shi et al. fabricate a planar metal-oxide-semiconductor structure and show that exciton energy transfer can be extended to tens of microns, mediated by an exciton-surface-plasmon-polariton-exciton conversion mechanism.

  1. Multiple Exciton Generation in Semiconductor Nanostructures: DFT-based Computation

    NASA Astrophysics Data System (ADS)

    Mihaylov, Deyan; Kryjevski, Andrei; Kilin, Dmitri; Kilina, Svetlana; Vogel, Dayton

    Multiple exciton generation (MEG) in nm-sized H-passivated Si nanowires (NWs), and quasi 2D nanofilms depends strongly on the degree of the core structural disorder as shown by the perturbation theory calculations based on the DFT simulations. In perturbation theory, we work to the 2nd order in the electron-photon coupling and in the (approximate) RPA-screened Coulomb interaction. We also include the effect of excitons for which we solve Bethe-Salpeter Equation. To describe MEG we calculate exciton-to-biexciton as well as biexciton-to-exciton rates and quantum efficiency (QE). We consider 3D arrays of Si29H36 quantum dots, NWs, and quasi 2D silicon nanofilms, all with both crystalline and amorphous core structures. Efficient MEG with QE of 1.3 up to 1.8 at the photon energy of about 3Egap is predicted in these nanoparticles except for the crystalline NW and film where QE ~=1. MEG in the amorphous nanoparticles is enhanced by the electron localization due to structural disorder. The exciton effects significantly red-shift QE vs. photon energy curves. Nm-sized a-Si NWs and films are predicted to have effective MEG within the solar spectrum range. Also, we find efficient MEG in the chiral single-wall Carbon nanotubes and in a perovskite nanostructure.

  2. Accessing the dark exciton spin in deterministic quantum-dot microlenses

    NASA Astrophysics Data System (ADS)

    Heindel, Tobias; Thoma, Alexander; Schwartz, Ido; Schmidgall, Emma R.; Gantz, Liron; Cogan, Dan; Strauß, Max; Schnauber, Peter; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, Andre; Rodt, Sven; Gershoni, David; Reitzenstein, Stephan

    2017-12-01

    The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates |↑ ⇑ ±↓ ⇓ ⟩. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.

  3. Relative ordering between bright and dark excitons in single-walled carbon nanotubes.

    PubMed

    Zhou, Weihang; Nakamura, Daisuke; Liu, Huaping; Kataura, Hiromichi; Takeyama, Shojiro

    2014-11-11

    The ordering and relative energy splitting between bright and dark excitons are critical to the optical properties of single-walled carbon nanotubes (SWNTs), as they eventually determine the radiative and non-radiative recombination processes of generated carriers. In this work, we report systematic high-field magneto-optical study on the relative ordering between bright and dark excitons in SWNTs. We identified the relative energy position of the dark exciton unambiguously by brightening it in ultra-high magnetic field. The bright-dark excitonic ordering was found to depend not only on the tube structure, but also on the type of transitions. For the 1(st) sub-band transition, the bright exciton appears to be higher in energy than its dark counterpart for any chiral species and is robust against environmental effect. While for the 2(nd) sub-band, their relative ordering was found to be chirality-sensitive: the bright exciton can be either higher or lower than the dark one, depending on the specific nanotube structures. These findings provide new clues for engineering the optical and electronic properties of SWNTs.

  4. Entanglement between exciton and mechanical modes via dissipation-induced coupling

    NASA Astrophysics Data System (ADS)

    Sete, Eyob A.; Eleuch, H.; Ooi, C. H. Raymond

    2015-09-01

    We analyze the entanglement between two matter modes in a hybrid quantum system consisting of a microcavity, a quantum well, and a mechanical oscillator. Although the exciton mode in the quantum well and the mechanical oscillator are initially uncoupled, their interaction through the microcavity field results in an indirect exciton-mode-mechanical-mode coupling. We show that this coupling is a Fano-Agarwal-type coupling induced by the decay of the exciton and the mechanical modes caused by the leakage of photons through the microcavity to the environment. Using experimental parameters and for slowly varying microcavity field, we show that the generated coupling leads to an exciton-mode-mechanical-mode entanglement. The maximum entanglement is achieved at the avoided level crossing frequency, where the hybridization of the two modes is maximum. The entanglement is also robust against the phonon thermal bath temperature.

  5. Influence of intra-pigment vibrations on dynamics of photosynthetic exciton.

    PubMed

    Sato, Yoshihiro; Doolittle, Brian

    2014-11-14

    We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency.

  6. Optical Selection Rule of Excitons in Gapped Chiral Fermion Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoou; Shan, Wen-Yu; Xiao, Di

    2018-02-01

    We show that the exciton optical selection rule in gapped chiral fermion systems is governed by their winding number w , a topological quantity of the Bloch bands. Specifically, in a CN-invariant chiral fermion system, the angular momentum of bright exciton states is given by w ±1 +n N with n being an integer. We demonstrate our theory by proposing two chiral fermion systems capable of hosting dark s -like excitons: gapped surface states of a topological crystalline insulator with C4 rotational symmetry and biased 3 R -stacked MoS2 bilayers. In the latter case, we show that gating can be used to tune the s -like excitons from bright to dark by changing the winding number. Our theory thus provides a pathway to electrical control of optical transitions in two-dimensional material.

  7. Interlayer Coupling and Gate-Tunable Excitons in Transition Metal Dichalcogenide Heterostructures

    DOE PAGES

    Gao, Shiyuan; Yang, Li; Spataru, Catalin Dan

    2017-11-22

    Bilayer van der Waals (vdW) heterostructures such as MoS 2/WS 2 and MoSe 2/WSe 2 have attracted much attention recently, particularly because of their type II band alignments and the formation of interlayer exciton as the lowest-energy excitonic state. In this work, we calculate the electronic and optical properties of such heterostructures with the first-principles GW+Bethe–Salpeter Equation (BSE) method and reveal the important role of interlayer coupling in deciding the excited-state properties, including the band alignment and excitonic properties. Our calculation shows that due to the interlayer coupling, the low energy excitons can be widely tuned by a vertical gatemore » field. In particular, the dipole oscillator strength and radiative lifetime of the lowest energy exciton in these bilayer heterostructures is varied by over an order of magnitude within a practical external gate field. We also build a simple model that captures the essential physics behind this tunability and allows the extension of the ab initio results to a large range of electric fields. In conclusion, our work clarifies the physical picture of interlayer excitons in bilayer vdW heterostructures and predicts a wide range of gate-tunable excited-state properties of 2D optoelectronic devices.« less

  8. Strain Gradient Modulated Exciton Evolution and Emission in ZnO Fibers

    PubMed Central

    Wei, Bin; Ji, Yuan; Gauvin, Raynald; Zhang, Ze; Zou, Jin; Han, Xiaodong

    2017-01-01

    One-dimensional semiconductor can undergo large deformation including stretching and bending. This homogeneous strain and strain gradient are an easy and effective way to tune the light emission properties and the performance of piezo-phototronic devices. Here, we report that with large strain gradients from 2.1–3.5% μm−1, free-exciton emission was intensified, and the free-exciton interaction (FXI) emission became a prominent FXI-band at the tensile side of the ZnO fiber. These led to an asymmetric variation in energy and intensity along the cross-section as well as a redshift of the total near-band-edge (NBE) emission. This evolution of the exciton emission was directly demonstrated using spatially resolved CL spectrometry combined with an in situ tensile-bending approach at liquid nitrogen temperature for individual fibers and nanowires. A distinctive mechanism of the evolution of exciton emission is proposed: the enhancement of the free-exciton-related emission is attributed to the aggregated free excitons and their interaction in the narrow bandgap in the presence of high bandgap gradients and a transverse piezoelectric field. These results might facilitate new approaches for energy conversion and sensing applications via strained nanowires and fibers. PMID:28084427

  9. Femtosecond Pump-Push-Probe and Pump-Dump-Probe Spectroscopy of Conjugated Polymers: New Insight and Opportunities.

    PubMed

    Kee, Tak W

    2014-09-18

    Conjugated polymers are an important class of soft materials that exhibit a wide range of applications. The excited states of conjugated polymers, often referred to as excitons, can either deactivate to yield the ground state or dissociate in the presence of an electron acceptor to form charge carriers. These interesting properties give rise to their luminescence and the photovoltaic effect. Femtosecond spectroscopy is a crucial tool for studying conjugated polymers. Recently, more elaborate experimental configurations utilizing three optical pulses, namely, pump-push-probe and pump-dump-probe, have been employed to investigate the properties of excitons and charge-transfer states of conjugated polymers. These studies have revealed new insight into femtosecond torsional relaxation and detrapping of bound charge pairs of conjugated polymers. This Perspective highlights (1) the recent achievements by several research groups in using pump-push-probe and pump-dump-probe spectroscopy to study conjugated polymers and (2) future opportunities and potential challenges of these techniques.

  10. Fractional Solitons in Excitonic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Hsu, Ya-Fen; Su, Jung-Jung

    2015-10-01

    The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. The system is mapped into a pseudospin ferromagnet then described numerically by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, we identify a family of fractional sine-Gordon solitons which resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Each fractional soliton carries a topological charge Q that is not necessarily a half/full integer but can vary continuously. The calculated current-phase relation (CPR) shows that solitons with Q = ϕ0/2π is the lowest energy state starting from zero ϕ0 - until ϕ0 > π - then the alternative group of solitons with Q = ϕ0/2π - 1 takes place and switches the polarity of CPR.

  11. Exciton binding energy in GaAsBiN spherical quantum dot heterostructures

    NASA Astrophysics Data System (ADS)

    Das, Subhasis; Dhar, S.

    2017-03-01

    The ground state exciton binding energies (EBE) of heavy hole excitons in GaAs1-x-yBixNy - GaAs spherical quantum dots (QD) are calculated using a variational approach under 1s hydrogenic wavefunctions within the framework of effective mass approximation. Both the nitrogen and the bismuth content in the material are found to affect the binding energy, in particular for larger nitrogen content and lower dot radii. Calculations also show that the ground state exciton binding energies of heavy holes increase more at smaller dot sizes as compared to that for the light hole excitons.

  12. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue.

    PubMed

    Huang, Jier; Huang, Zhuangqun; Yang, Ye; Zhu, Haiming; Lian, Tianquan

    2010-04-07

    Multiexciton generation in quantum dots (QDs) may provide a new approach for improving the solar-to-electric power conversion efficiency in QD-based solar cells. However, it remains unclear how to extract these excitons before the ultrafast exciton-exciton annihilation process. In this study we investigate multiexciton dissociation dynamics in CdSe QDs adsorbed with methylene blue (MB(+)) molecules by transient absorption spectroscopy. We show that excitons in QDs dissociate by ultrafast electron transfer to MB(+) with an average time constant of approximately 2 ps. The charge separated state is long-lived (>1 ns), and the charge recombination rate increases with the number of dissociated excitons. Up to three MB(+) molecules per QD can be reduced by exciton dissociation. Our result demonstrates that ultrafast interfacial charge separation can effectively compete with exciton-exciton annihilation, providing a viable approach for utilizing short-lived multiple excitons in QDs.

  13. Coherent Exciton Dynamics in the Presence of Underdamped Vibrations

    DOE PAGES

    Dijkstra, Arend G.; Wang, Chen; Cao, Jianshu; ...

    2015-01-22

    Recent ultrafast optical experiments show that excitons in large biological light-harvesting complexes are coupled to molecular vibration modes. These high-frequency vibrations will not only affect the optical response, but also drive the exciton transport. Here, using a model dimer system, the frequency of the underdamped vibration is shown to have a strong effect on the exciton dynamics such that quantum coherent oscillations in the system can be present even in the case of strong noise. Two mechanisms are identified to be responsible for the enhanced transport efficiency: critical damping due to the tunable effective strength of the coupling to themore » bath, and resonance coupling where the vibrational frequency coincides with the energy gap in the system. The interplay of these two mechanisms determines parameters responsible for the most efficient transport, and these optimal control parameters are comparable to those in realistic light-harvesting complexes. Interestingly, oscillations in the excitonic coherence at resonance are suppressed in comparison to the case of an off-resonant vibration.« less

  14. Self-trapping limited exciton diffusion in a monomeric perylene crystal as revealed by femtosecond transient absorption microscopy.

    PubMed

    Yago, Tomoaki; Tamaki, Yoshiaki; Furube, Akihiro; Katoh, Ryuzi

    2008-08-14

    Self-trapping and singlet-singlet annihilation of the free excitons in a monomeric (beta) perylene crystal were studied by using femtosecond transient absorption microscopy. The free exciton generated by the photo-excitation of the beta-perylene crystal relaxed to the self-trapped exciton with a rate constant of 7 x 10(10) s(-1). The singlet-singlet annihilation of the free exciton observed under the high excitation density conditions was competed with the self-trapping of the free exciton; we estimated the annihilation rate constant for the free exciton to be 1 x 10(-8) cm(3) s(-1) from the excitation density dependence of the free exciton decay. After self-trapping of the free exciton, no annihilation was observed in the 100 ps time range, suggesting that the diffusion coefficient was reduced drastically by self-trapping. The results show that the major factor limiting the exciton diffusion in the beta-perylene crystal is a relaxation of the free exciton to the self-trapped exciton, and not the lifetime of the exciton. Though the singlet-singlet annihilation rate constants and fluorescence lifetime of the beta-perylene crystal are similar to those of the anthracene crystal, the estimated exciton diffusion length (2 nm) in the beta-perylene crystal is much smaller than that (100 nm) in the anthracene crystal as a result of the exciton self-trapping.

  15. Interlayer excitons in MoSe2/WSe2 heterostructures from first principles

    NASA Astrophysics Data System (ADS)

    Gillen, Roland; Maultzsch, Janina

    2018-04-01

    Based on ab initio theoretical calculations of the optical spectra of vertical heterostructures of MoSe2 (or MoS2) and WSe2 sheets, we reveal two spin-orbit-split Rydberg series of excitonic states below the A excitons of MoSe2 and WSe2 with a significant binding energy on the order of 250 meV for the first excitons in the series. At the same time, we predict from accurate many-body G0W0 calculations that crystallographically aligned MoSe2/WSe2 heterostructures exhibit an indirect fundamental band gap. Due to the type-II nature of the MoSe2/WSe2 heterostructure, the indirect transition and the exciton Rydberg series corresponding to a direct transition exhibit a distinct interlayer nature with spatial charge separation of the coupled electrons and holes. Our calculations confirm the recent experimental observation of a doublet nature of the long-lived states in photoluminescence spectra of Mo X2/W Y2 heterostructures, and we attribute these two contributions to momentum-direct interlayer excitons at the K point of the hexagonal Brillouin zone and to momentum-indirect excitons at the indirect fundamental band gap. Our calculations further suggest a noticeable effect of stacking order on the electronic band gaps and on the peak energies of the interlayer excitons and their oscillation strengths.

  16. Optical spectroscopy of bulk GaN crystals grown from a Na-Ga melt

    NASA Astrophysics Data System (ADS)

    Skromme, B. J.; Palle, K. C.; Poweleit, C. D.; Yamane, H.; Aoki, M.; DiSalvo, F. J.

    2002-11-01

    Colorless transparent platelet and prismatic GaN crystals up to 3-4 mm, grown from a Na-Ga melt (0.6-0.7 mol fraction of Na) at temperatures of 700-800 °C in a modest (5 MPa) pressure of N2, are characterized using Raman scattering, room and low temperature photoluminescence, and reflectance. They exhibit sharp free and bound exciton luminescence features (down to 0.22 meV full width at half maximum), including multiple excited states. Residual Mg and Zn acceptors and a 33.6 meV donor (possibly ON) are identified. Raman spectra suggest free carrier concentrations down to the low to mid 1016 cm-3 range.

  17. Coherent detection of THz-induced sideband emission from excitons in the nonperturbative regime

    NASA Astrophysics Data System (ADS)

    Uchida, K.; Otobe, T.; Mochizuki, T.; Kim, C.; Yoshita, M.; Tanaka, K.; Akiyama, H.; Pfeiffer, L. N.; West, K. W.; Hirori, H.

    2018-04-01

    Strong interaction of a terahertz (THz) wave with excitons induces nonperturbative optical effects such as Rabi splitting and high-order sideband generation. Here, we investigated coherent properties of THz-induced sideband emissions from GaAs/AlGaAs multiquantum wells. With increasing THz electric field, optical susceptibility of the THz-dressed exciton shows a redshift with spectral broadening and extraordinary phase shift. This implies that the field ionization of the 1 s exciton modifies the THz-dressed exciton in the nonperturbative regime.

  18. Excitons, trions, and biexcitons in transition-metal dichalcogenides: Magnetic-field dependence

    NASA Astrophysics Data System (ADS)

    Van der Donck, M.; Zarenia, M.; Peeters, F. M.

    2018-05-01

    The influence of a perpendicular magnetic field on the binding energy and structural properties of excitons, trions, and biexcitons in monolayers of semiconducting transition metal dichalcogenides (TMDs) is investigated. The stochastic variational method (SVM) with a correlated Gaussian basis is used to calculate the different properties of these few-particle systems. In addition, we present a simplified variational approach which supports the SVM results for excitons as a function of magnetic field. The exciton diamagnetic shift is compared with recent experimental results, and we extend this concept to trions and biexcitons. The effect of a local potential fluctuation, which we model by a circular potential well, on the binding energy of trions and biexcitons is investigated and found to significantly increase the binding of those excitonic complexes.

  19. An Overview of Electron Acceptors in Microbial Fuel Cells

    PubMed Central

    Ucar, Deniz; Zhang, Yifeng; Angelidaki, Irini

    2017-01-01

    Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed at the cathode as electron acceptors through reduction. Some contaminants can also function as electron mediators at the anode or cathode. While previous studies have done a thorough assessment of electron donors, cathodic electron acceptors and mediators have not been as well described. Oxygen is widely used as an electron acceptor due to its high oxidation potential and ready availability. Recent studies, however, have begun to assess the use of different electron acceptors because of the (1) diversity of redox potential, (2) needs of alternative and more efficient cathode reaction, and (3) expanding of MFC based technologies in different areas. The aim of this review was to evaluate the performance and applicability of various electron acceptors and mediators used in MFCs. This review also evaluated the corresponding performance, advantages and disadvantages, and future potential applications of select electron acceptors (e.g., nitrate, iron, copper, perchlorate) and mediators. PMID:28469607

  20. Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding

    PubMed Central

    Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076

  1. Diabatization for Time-Dependent Density Functional Theory: Exciton Transfers and Related Conical Intersections.

    PubMed

    Tamura, Hiroyuki

    2016-11-23

    Intermolecular exciton transfers and related conical intersections are analyzed by diabatization for time-dependent density functional theory. The diabatic states are expressed as a linear combination of the adiabatic states so as to emulate the well-defined reference states. The singlet exciton coupling calculated by the diabatization scheme includes contributions from the Coulomb (Förster) and electron exchange (Dexter) couplings. For triplet exciton transfers, the Dexter coupling, charge transfer integral, and diabatic potentials of stacked molecules are calculated for analyzing direct and superexchange pathways. We discuss some topologies of molecular aggregates that induce conical intersections on the vanishing points of the exciton coupling, namely boundary of H- and J-aggregates and T-shape aggregates, as well as canceled exciton coupling to the bright state of H-aggregate, i.e., selective exciton transfer to the dark state. The diabatization scheme automatically accounts for the Berry phase by fixing the signs of reference states while scanning the coordinates.

  2. A study of acceptors and non-acceptors of family planning methods among three tribal communities.

    PubMed

    Mutharayappa, R

    1995-03-01

    Primary data were collected from 399 currently married women of the Marati, Malekudiya, and Koraga tribes in the Dakshina Kannada district of Karnataka State in this study of the implementation of family planning programs in tribal areas. The Marati, Malekudiya, and Koraga tribes are three different endogamous tribal populations living in similar ecological conditions. Higher levels of literacy and a high rate of acceptance of family planning methods, however, have been observed among these tribes compared to the rest of the tribal population in the state. 46.4% of currently married women aged 15-49 years in the tribes were acceptors of family planning methods, having a mean 3.7 children. The majority of acceptors opted for tubectomy and vasectomy. The adoption of spacing methods is less common among tribal people. Most acceptors received their operations through government health facilities. They were motivated mainly by female health workers and received both cash and other incentives to accept family planning. The main reason for non-acceptance of family planning among non-acceptors was the desire to conceive and bear more children. The data indicate that most of the tribal households are nuclear families with household size more or less similar to that of the general population. They have a higher literacy rate than the rest of the tribal population in the state, with literacy levels between males and females and between the three tribes being quite different; the school enrollment ratio is relatively higher for both boys and girls.

  3. Exciton-Polariton Dynamics of a Monolayer Semiconductor Coupled to a Microcavity

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Jung; Stanev, Teodor K.; Stern, Nathaniel P.; Cain, Jeffrey D.; Dravid, Vinayak P.

    Strong light-matter interactions, evidenced by exciton-polariton states, have been observed in the two-dimensional limit with monolayer transition metal dichalcogenides (TMDs) embedded in a microcavity. Because of the valley degree of freedom in monolayer TMDs, these hybrid light-matter states can exhibit valley polarization as in a bare monolayer, with strongly-coupled dynamics determined by the relative rates of exciton relaxation and intervalley scattering, which can be highly modified in on-resonant cavities. Here, we test this intuitive picture of the polarized exciton-polariton dynamics with monolayer MoS2 coupled to detuned cavities. Upper and lower polariton branches exhibit distinct decay rates indicative of different cavity dynamics. As with on-resonant, strongly-coupled exciton-polaritons, the weakly-coupled regime causes exciton-polariton valley polarization to persist at room temperature, demonstrating that dynamics of valley-polarized excitations can be controlled by engineering light-matter interactions. This work is supported by the U.S. Department of Energy (BES DE-SC0012130) and the National Science Foundation MRSEC program (DMR-1121262). N.P.S. is an Alfred P. Sloan Research Fellow.

  4. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities

    NASA Astrophysics Data System (ADS)

    Graf, Arko; Held, Martin; Zakharko, Yuriy; Tropf, Laura; Gather, Malte C.; Zaumseil, Jana

    2017-09-01

    Exciton-polaritons are hybrid light-matter particles that form upon strong coupling of an excitonic transition to a cavity mode. As bosons, polaritons can form condensates with coherent laser-like emission. For organic materials, optically pumped condensation was achieved at room temperature but electrically pumped condensation remains elusive due to insufficient polariton densities. Here we combine the outstanding optical and electronic properties of purified, solution-processed semiconducting (6,5) single-walled carbon nanotubes (SWCNTs) in a microcavity-integrated light-emitting field-effect transistor to realize efficient electrical pumping of exciton-polaritons at room temperature with high current densities (>10 kA cm-2) and tunability in the near-infrared (1,060 nm to 1,530 nm). We demonstrate thermalization of SWCNT polaritons, exciton-polariton pumping rates ~104 times higher than in current organic polariton devices, direct control over the coupling strength (Rabi splitting) via the applied gate voltage, and a tenfold enhancement of polaritonic over excitonic emission. This powerful material-device combination paves the way to carbon-based polariton emitters and possibly lasers.

  5. Excitons in strongly correlated oxide nanocrystals NicMg1-cO

    NASA Astrophysics Data System (ADS)

    Sokolov, V. I.; Churmanov, V. N.; Pustovarov, V. A.; Gruzdev, N. B.; Uimin, M. A.; Byzov, I. V.; Zatsepin, A. F.; Kuznetsova, J. A.

    2018-05-01

    This paper reports about excitons in strongly correlated oxide nanocrystals NicMg1-cO (c = 0.008 and c = 1). At 8 K two weak peaks were firstly observed in the optical density spectrum of NiO nanocrystals at the energies of 3.510 eV and 3.543 eV. The intensity of the peaks subsides with an increase of temperature and a decrease of nanoparticle sizes from 25 nm to 10 nm. The peaks were attributed to the formation of p-d charge transfer excitons {d9h}. A tunneling annihilation for {d9h} excitons diminishes their lifetime drastically, even at low temperatures. This fact is considered as an inherent feature in the p-d charge transfer excitons {d9h}, which makes them significantly different from the Wannier-Mott excitons for semiconductors with direct allowed transitions. We believe that energy shift between two peaks originates due to the spin-orbit splitting of the top of the valence band, equals 33 meV. In p-d charge transfer photoluminescence excitation spectrum of NicMg1-cO (c = 0.008), we have revealed two [d9h] exciton lines near the charge transfer band edge. Energy shift of these lines (equals 25 meV) is due to the spin-orbit splitting of MgO valence band top.

  6. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com; Universidad Nacional de Colombia, Bogota; Almonacid, Hannia

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of theirmore » critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.« less

  7. Method for producing and regenerating a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA

    1982-01-01

    A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.

  8. Degradation mechanisms of optoelectric properties of GaN via highly-charged 209Bi33+ ions irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, L. Q.; Zhang, C. H.; Xian, Y. Q.; Liu, J.; Ding, Z. N.; Yan, T. X.; Chen, Y. G.; Su, C. H.; Li, J. Y.; Liu, H. P.

    2018-05-01

    N-type gallium nitride (GaN) epitaxial layers were subjected to 990-keV Bi33+ ions irradiation to various fluences. Optoelectric properties of the irradiated-GaN specimens were studied by means of Raman scattering and variable temperature photoluminescence (PL) spectroscopy. Raman spectra reveal that both the free-carrier concentration and its mobility generally decrease with a successive increase in ion fluence. Electro-optic mechanisms dominated the electrical transport to a fluence of 1.061 × 1012 Bi33+/cm2. Above this fluence, electrical properties were governed by the deformation potential. The appearance of vacancy-type defects results in an abrupt degradation in electrical transports. Varying temperature photoluminescence (PL) spectra display that all emission lines of 1.061 × 1012 Bi33+/cm2-irradiated specimen present a general remarkable thermal redshift, quenching, and broadening, including donor-bound-exciton peak, yellow luminescence band, and LO-phonon replicas. Moreover, as the temperature rises, a transformation from excitons (donor-acceptor pairs' luminescence) to band-to-band transitions (donor-acceptor combinations) was found, and the shrinkage effect of the band gap dominated the shift of the peak position gradually, especially the temperature increases above 150 K. In contrast to the un-irradiated specimen, a sensitive temperature dependence of all photoluminescence (PL) lines' intensity obtained from 1.061 × 1012 Bi33+/cm2-irradiated specimen was found. Mechanisms underlying were discussed.

  9. Assessment of a New Type of Coin Acceptor

    DOT National Transportation Integrated Search

    1983-04-01

    An assessment of the Mars Money Systems Model CD 540-1 coin acceptor associated with farecard vendors was conducted at the Port Authority Transit Corp. as part of an appraisal of automatic fare collection (AFC) equipment. The Mars acceptor consistent...

  10. Exciton Scattering approach for conjugated macromolecules: from electronic spectra to electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Tretiak, Sergei

    2014-03-01

    The exciton scattering (ES) technique is a multiscale approach developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, the electronic excitations in the molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph. The exciton propagation on the linear segments is characterized by the exciton dispersion, whereas the exciton scattering on the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized ``particle in a box'' problems on the graph that represents the molecule. All parameters can be extracted from quantum-chemical computations of small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within considered molecular family could be performed with negligible numerical effort. The exciton scattering properties of molecular vertices can be further described by tight-binding or equivalently lattice models. The on-site energies and hopping constants are obtained from the exciton dispersion and scattering matrices. Such tight-binding model approach is particularly useful to describe the exciton-phonon coupling, energetic disorder and incoherent energy transfer in large branched conjugated molecules. Overall the ES applications accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  11. Suppression of exciton dephasing in sidewall-functionalized carbon nanotubes embedded into metallo-dielectric antennas.

    PubMed

    Shayan, Kamran; He, Xiaowei; Luo, Yue; Rabut, Claire; Li, Xiangzhi; Hartmann, Nicolai F; Blackburn, Jeffrey L; Doorn, Stephen K; Htoon, Han; Strauf, Stefan

    2018-06-26

    Covalent functionalization of single-walled carbon nanotubes (SWCNTs) is a promising route to enhance the quantum yield of exciton emission and can lead to single-photon emission at room temperature. However, the spectral linewidth of the defect-related E11* emission remains rather broad. Here, we systematically investigate the low-temperature exciton emission of individual SWCNTs that have been dispersed with sodium-deoxycholate (DOC) and polyfluorene (PFO-BPy), are grown by laser vaporization (LV) or by CoMoCat techniques and are functionalized with oxygen as well as 3,5-dichlorobenzene groups. The E11 excitons in oxygen-functionalized SWCNTs remain rather broad with up to 10 meV linewidth while exciton emission from 3,5-dichlorobenzene functionalized SWCNTs is found to be about one order of magnitude narrower. In all cases, wrapping with PFO-BPy provides significantly better protection against pump induced dephasing compared to DOC. To further study the influence of exciton localization on pump-induced dephasing, we have embedded the functionalized SWCNTs into metallo-dielectric antenna cavities to maximize light collection. We show that 0D excitons attributed to the E11* emission of 3,5-dichlorobenzene quantum defects of LV-grown SWCNTs can display near resolution-limited linewidths down to 35 μeV. Interestingly, these 0D excitons give rise to a 3-fold suppressed pump-induced exciton dephasing compared to the E11 excitons in the same SWCNT. These findings provide a foundation to build a unified description of the emergence of novel optical behavior from the interplay of covalently introduced defects, dispersants, and exciton confinement in SWCNTs and might further lead to the realization of indistinguishable photons from carbon nanotubes.

  12. Effect of periodic potential on exciton states in semiconductor carbon nanotubes

    DOE PAGES

    Roslyak, Oleksiy; Piryatinski, Andrei

    2016-05-28

    Here we develop a theoretical background to treat exciton states in semiconductor single-walled carbon nanotubes (SWCNTs) in the presence of a periodic potential induced by a surface acoustic wave (SAW) propagating along SWCNT. The formalism accounts for the electronic band splitting into the Floquet subbands induced by the Bragg scattering on the SAW potential. Optical transitions between the Floquet states and correlated electron–hole pairs (excitons) are numerically examined. Formation of new van Hove singularities within the edges of Floquet sub-bands and associated transfer of the exciton oscillator strengths resulting in the photoluminescence quenching are predicted. The simulations demonstrate the excitonmore » energy red Stark shift and reduction in the exciton binding energy. We provide comparison of our results with reported theoretical and experimental studies.« less

  13. Direct Imaging of Long-Range Exciton Transport in Quantum Dot Superlattices by Ultrafast Microscopy.

    PubMed

    Yoon, Seog Joon; Guo, Zhi; Dos Santos Claro, Paula C; Shevchenko, Elena V; Huang, Libai

    2016-07-26

    Long-range charge and exciton transport in quantum dot (QD) solids is a crucial challenge in utilizing QDs for optoelectronic applications. Here, we present a direct visualization of exciton diffusion in highly ordered CdSe QDs superlattices by mapping exciton population using ultrafast transient absorption microscopy. A temporal resolution of ∼200 fs and a spatial precision of ∼50 nm of this technique provide a direct assessment of the upper limit for exciton transport in QD solids. An exciton diffusion length of ∼125 nm has been visualized in the 3 ns experimental time window and an exciton diffusion coefficient of (2.5 ± 0.2) × 10(-2) cm(2) s(-1) has been measured for superlattices constructed from 3.6 nm CdSe QDs with center-to-center distance of 6.7 nm. The measured exciton diffusion constant is in good agreement with Förster resonance energy transfer theory. We have found that exciton diffusion is greatly enhanced in the superlattices over the disordered films with an order of magnitude higher diffusion coefficient, pointing toward the role of disorder in limiting transport. This study provides important understandings on energy transport mechanisms in both the spatial and temporal domains in QD solids.

  14. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals

    NASA Astrophysics Data System (ADS)

    Tahara, Hirokazu; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-12-01

    The generation and recombination dynamics of multiple excitons in nanocrystals (NCs) have attracted much attention from the viewpoints of fundamental physics and device applications. However, the quantum coherence of multiple exciton states in NCs still remains unclear due to a lack of experimental support. Here, we report the first observation of harmonic dipole oscillations in PbS/CdS core-shell NCs using a phase-locked interference detection method for transient absorption. From the ultrafast coherent dynamics and excitation-photon-fluence dependence of the oscillations, we found that multiple excitons cause the harmonic dipole oscillations with ω , 2 ω , and 3 ω oscillations, even though the excitation pulse energy is set to the exciton resonance frequency, ω . This observation is closely related to the quantum coherence of multiple exciton states in NCs, providing important insights into multiple exciton generation mechanisms.

  15. Alternansucrase acceptor reactions with D-tagatose and L-glucose.

    PubMed

    Côté, Gregory L; Dunlap, Christopher A; Appell, Michael; Momany, Frank A

    2005-02-07

    Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.

  16. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities

    NASA Astrophysics Data System (ADS)

    Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.

    2016-10-01

    Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.

  17. Impact of the glass transition on exciton dynamics in polymer thin films

    NASA Astrophysics Data System (ADS)

    Ehrenreich, Philipp; Proepper, Daniel; Graf, Alexander; Jores, Stefan; Boris, Alexander V.; Schmidt-Mende, Lukas

    2017-11-01

    In the development of organic electronics, unlimited design possibilities of conjugated polymers offer a wide variety of mechanical and electronic properties. Thereby, it is crucially important to reveal universal physical characteristics that allow efficient and forward developments of new chemical compounds. In particular for organic solar cells, a deeper understanding of exciton dynamics in polymer films can help to improve the charge generation process further. For this purpose, poly(3-hexylthiophene) (P3HT) is commonly used as a model system, although exciton decay kinetics have found different interpretations. Using temperature-dependent time-resolved photoluminescence spectroscopy in combination with low-temperature spectroscopic ellipsometry, we can show that P3HT is indeed a model system in which excitons follow a simple diffusion/hopping model. Based on our results we can exclude the relevance of hot-exciton emission as well as a dynamic torsional relaxation upon photoexcitation on a ps time scale. Instead, we depict the glass transition temperature of polymers to strongly affect exciton dynamics.

  18. Method for producing and regenerating a synthetic CO[sub 2] acceptor

    DOEpatents

    Lancet, M. S.; Curran, G. P.; Gorin, E.

    1982-05-18

    A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.

  19. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.

    PubMed

    Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang

    2017-03-08

    Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.

  20. Mapping the Relationship between Glycosyl Acceptor Reactivity and Glycosylation Stereoselectivity.

    PubMed

    van der Vorm, Stefan; van Hengst, Jacob M A; Bakker, Marloes; Overkleeft, Herman S; van der Marel, Gijsbert A; Codée, Jeroen D C

    2018-03-30

    The reactivity of both coupling partners-the glycosyl donor and acceptor-is decisive for the outcome of a glycosylation reaction, in terms of both yield and stereoselectivity. Where the reactivity of glycosyl donors is well understood and can be controlled through manipulation of the functional/protecting-group pattern, the reactivity of glycosyl acceptor alcohols is poorly understood. We here present an operationally simple system to gauge glycosyl acceptor reactivity, which employs two conformationally locked donors with stereoselectivity that critically depends on the reactivity of the nucleophile. A wide array of acceptors was screened and their structure-reactivity/stereoselectivity relationships established. By systematically varying the protecting groups, the reactivity of glycosyl acceptors can be adjusted to attain stereoselective cis-glucosylations. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.