Sample records for accessible time scales

  1. Accessible methods for the dynamic time-scale decomposition of biochemical systems.

    PubMed

    Surovtsova, Irina; Simus, Natalia; Lorenz, Thomas; König, Artjom; Sahle, Sven; Kummer, Ursula

    2009-11-01

    The growing complexity of biochemical models asks for means to rationally dissect the networks into meaningful and rather independent subnetworks. Such foregoing should ensure an understanding of the system without any heuristics employed. Important for the success of such an approach is its accessibility and the clarity of the presentation of the results. In order to achieve this goal, we developed a method which is a modification of the classical approach of time-scale separation. This modified method as well as the more classical approach have been implemented for time-dependent application within the widely used software COPASI. The implementation includes different possibilities for the representation of the results including 3D-visualization. The methods are included in COPASI which is free for academic use and available at www.copasi.org. irina.surovtsova@bioquant.uni-heidelberg.de Supplementary data are available at Bioinformatics online.

  2. Time Discounting and Credit Market Access in a Large-Scale Cash Transfer Programme

    PubMed Central

    Handa, Sudhanshu; Martorano, Bruno; Halpern, Carolyn; Pettifor, Audrey; Thirumurthy, Harsha

    2017-01-01

    Summary Time discounting is thought to influence decision-making in almost every sphere of life, including personal finances, diet, exercise and sexual behavior. In this article we provide evidence on whether a national poverty alleviation program in Kenya can affect inter-temporal decisions. We administered a preferences module as part of a large-scale impact evaluation of the Kenyan Government’s Cash Transfer for Orphans and Vulnerable Children. Four years into the program we find that individuals in the treatment group are only marginally more likely to wait for future money, due in part to the erosion of the value of the transfer by inflation. However among the poorest households for whom the value of transfer is still relatively large we find significant program effects on the propensity to wait. We also find strong program effects among those who have access to credit markets though the program itself does not improve access to credit. PMID:28260842

  3. Time Discounting and Credit Market Access in a Large-Scale Cash Transfer Programme.

    PubMed

    Handa, Sudhanshu; Martorano, Bruno; Halpern, Carolyn; Pettifor, Audrey; Thirumurthy, Harsha

    2016-06-01

    Time discounting is thought to influence decision-making in almost every sphere of life, including personal finances, diet, exercise and sexual behavior. In this article we provide evidence on whether a national poverty alleviation program in Kenya can affect inter-temporal decisions. We administered a preferences module as part of a large-scale impact evaluation of the Kenyan Government's Cash Transfer for Orphans and Vulnerable Children. Four years into the program we find that individuals in the treatment group are only marginally more likely to wait for future money, due in part to the erosion of the value of the transfer by inflation. However among the poorest households for whom the value of transfer is still relatively large we find significant program effects on the propensity to wait. We also find strong program effects among those who have access to credit markets though the program itself does not improve access to credit.

  4. Real-time Data Access From Remote Observatories

    NASA Astrophysics Data System (ADS)

    Detrick, D. L.; Lutz, L. F.; Etter, J. E.; Rosenberg, T. J.; Weatherwax, A. T.

    2006-12-01

    Real-time access to solar-terrestrial data is becoming increasingly important, not only because it is now possible to acquire and access data rapidly via the internet, but also because of the need for timely publication of real-time data for analysis and modeling efforts. Currently, engineering-scaled summary data are available routinely on a daily basis from many observatories, but only when the observatories have continuous, or at least daily network access. Increasingly, the upgrading of remote data acquisition hardware makes it possible to provide data in real-time, and it is becoming normal to expect timely access to data products. The NSF- supported PENGUIn/AGO constellation of autonomous Antarctic research observatories has provided real-time data since December, 2002, when Iridium satellite modems were installed at three sites. The Iridium telecommunications links are maintained continuously, transferring data between the remote observatories and a U.S.-based data acquisition site. The time-limiting factor with this scenario is now the delay in completing a data record before transmission, which can be as short as minutes depending on the sampling rate. The single-channel data throughput of the current systems is 20-MB/day (megabytes per day), but planned installations will be capable of operating with multiple modem channels. The data records are currently posted immediately to a web site accessible by anonymous FTP client software, for use by the instruments' principal investigators, and survey plots of selected signals are published daily. The web publication facilities are being upgraded, in order to allow other interested researchers rapid access to engineering-scaled data products, in several common formats, as well as providing interactive plotting capabilities. The web site will provide access to data from other collaborating observatories (including South Pole and McMurdo Stations), as well as ancillary data accessible from public sites (e.g., Kp

  5. Access to a scale and self-weighing habits among public housing residents.

    PubMed

    Bramante, C T; Clark, J M; Gudzune, K A

    2018-05-31

    Having access to a scale is essential for individuals to engage in self-weighing; however, few studies examine scale access, particularly among low-income individuals. Our objectives were to (i) determine how many public housing residents have access to a scale and (ii) describe their self-weighing habits. We conducted a cross-sectional survey of public housing residents in Baltimore, MD, from August 2014 to August 2015. Participants answered questions about their access to a scale ('yes'/'no') and daily self-weighing habits ('no scale/never or hardly ever' vs. 'some/about half/much of the time/always'). We used t-tests or chi-square tests to examine the association of scale access with respondent characteristics. Overall, 266 adults participated (48% response rate). Mean age was 45 years with 86% women, 95% black and 54% with obesity. Only 32% had access to a scale; however, 78% of those with this access reported engaging in some self-weighing. Residents who lacked access to a scale were younger (P = 0.03), and more likely to be unemployed/disabled (P = 0.01) or food insecure (P < 0.01). While few public housing residents have access to a scale, those who do report daily self-weighing with some regularity. Financial hardship may influence scale access in this population, as potential proxies of this status were associated with no scale access. © 2018 World Obesity Federation.

  6. Numerical method for accessing the universal scaling function for a multiparticle discrete time asymmetric exclusion process

    NASA Astrophysics Data System (ADS)

    Chia, Nicholas; Bundschuh, Ralf

    2005-11-01

    In the universality class of the one-dimensional Kardar-Parisi-Zhang (KPZ) surface growth, Derrida and Lebowitz conjectured the universality of not only the scaling exponents, but of an entire scaling function. Since and Derrida and Lebowitz’s original publication [Phys. Rev. Lett. 80, 209 (1998)] this universality has been verified for a variety of continuous-time, periodic-boundary systems in the KPZ universality class. Here, we present a numerical method for directly examining the entire particle flux of the asymmetric exclusion process (ASEP), thus providing an alternative to more difficult cumulant ratios studies. Using this method, we find that the Derrida-Lebowitz scaling function (DLSF) properly characterizes the large-system-size limit (N→∞) of a single-particle discrete time system, even in the case of very small system sizes (N⩽22) . This fact allows us to not only verify that the DLSF properly characterizes multiple-particle discrete-time asymmetric exclusion processes, but also provides a way to numerically solve for quantities of interest, such as the particle hopping flux. This method can thus serve to further increase the ease and accessibility of studies involving even more challenging dynamics, such as the open-boundary ASEP.

  7. The development of a multi-dimensional gambling accessibility scale.

    PubMed

    Hing, Nerilee; Haw, John

    2009-12-01

    The aim of the current study was to develop a scale of gambling accessibility that would have theoretical significance to exposure theory and also serve to highlight the accessibility risk factors for problem gambling. Scale items were generated from the Productivity Commission's (Australia's Gambling Industries: Report No. 10. AusInfo, Canberra, 1999) recommendations and tested on a group with high exposure to the gambling environment. In total, 533 gaming venue employees (aged 18-70 years; 67% women) completed a questionnaire that included six 13-item scales measuring accessibility across a range of gambling forms (gaming machines, keno, casino table games, lotteries, horse and dog racing, sports betting). Also included in the questionnaire was the Problem Gambling Severity Index (PGSI) along with measures of gambling frequency and expenditure. Principal components analysis indicated that a common three factor structure existed across all forms of gambling and these were labelled social accessibility, physical accessibility and cognitive accessibility. However, convergent validity was not demonstrated with inconsistent correlations between each subscale and measures of gambling behaviour. These results are discussed in light of exposure theory and the further development of a multi-dimensional measure of gambling accessibility.

  8. A scale-invariant internal representation of time.

    PubMed

    Shankar, Karthik H; Howard, Marc W

    2012-01-01

    We propose a principled way to construct an internal representation of the temporal stimulus history leading up to the present moment. A set of leaky integrators performs a Laplace transform on the stimulus function, and a linear operator approximates the inversion of the Laplace transform. The result is a representation of stimulus history that retains information about the temporal sequence of stimuli. This procedure naturally represents more recent stimuli more accurately than less recent stimuli; the decrement in accuracy is precisely scale invariant. This procedure also yields time cells that fire at specific latencies following the stimulus with a scale-invariant temporal spread. Combined with a simple associative memory, this representation gives rise to a moment-to-moment prediction that is also scale invariant in time. We propose that this scale-invariant representation of temporal stimulus history could serve as an underlying representation accessible to higher-level behavioral and cognitive mechanisms. In order to illustrate the potential utility of this scale-invariant representation in a variety of fields, we sketch applications using minimal performance functions to problems in classical conditioning, interval timing, scale-invariant learning in autoshaping, and the persistence of the recency effect in episodic memory across timescales.

  9. JY1 time scale: a new Kalman-filter time scale designed at NIST

    NASA Astrophysics Data System (ADS)

    Yao, Jian; Parker, Thomas E.; Levine, Judah

    2017-11-01

    We report on a new Kalman-filter hydrogen-maser time scale (i.e. JY1 time scale) designed at the National Institute of Standards and Technology (NIST). The JY1 time scale is composed of a few hydrogen masers and a commercial Cs clock. The Cs clock is used as a reference clock to ease operations with existing data. Unlike other time scales, the JY1 time scale uses three basic time-scale equations, instead of only one equation. Also, this time scale can detect a clock error (i.e. time error, frequency error, or frequency drift error) automatically. These features make the JY1 time scale stiff and less likely to be affected by an abnormal clock. Tests show that the JY1 time scale deviates from the UTC by less than  ±5 ns for ~100 d, when the time scale is initially aligned to the UTC and then is completely free running. Once the time scale is steered to a Cs fountain, it can maintain the time with little error even if the Cs fountain stops working for tens of days. This can be helpful when we do not have a continuously operated fountain or when the continuously operated fountain accidentally stops, or when optical clocks run occasionally.

  10. Ensemble Pulsar Time Scale

    NASA Astrophysics Data System (ADS)

    Yin, Dong-shan; Gao, Yu-ping; Zhao, Shu-hong

    2017-07-01

    Millisecond pulsars can generate another type of time scale that is totally independent of the atomic time scale, because the physical mechanisms of the pulsar time scale and the atomic time scale are quite different from each other. Usually the pulsar timing observations are not evenly sampled, and the internals between two data points range from several hours to more than half a month. Further more, these data sets are sparse. All this makes it difficult to generate an ensemble pulsar time scale. Hence, a new algorithm to calculate the ensemble pulsar time scale is proposed. Firstly, a cubic spline interpolation is used to densify the data set, and make the intervals between data points uniform. Then, the Vondrak filter is employed to smooth the data set, and get rid of the high-frequency noises, and finally the weighted average method is adopted to generate the ensemble pulsar time scale. The newly released NANOGRAV (North American Nanohertz Observatory for Gravitational Waves) 9-year data set is used to generate the ensemble pulsar time scale. This data set includes the 9-year observational data of 37 millisecond pulsars observed by the 100-meter Green Bank telescope and the 305-meter Arecibo telescope. It is found that the algorithm used in this paper can reduce effectively the influence caused by the noises in pulsar timing residuals, and improve the long-term stability of the ensemble pulsar time scale. Results indicate that the long-term (> 1 yr) stability of the ensemble pulsar time scale is better than 3.4 × 10-15.

  11. Advances in time-scale algorithms

    NASA Technical Reports Server (NTRS)

    Stein, S. R.

    1993-01-01

    The term clock is usually used to refer to a device that counts a nearly periodic signal. A group of clocks, called an ensemble, is often used for time keeping in mission critical applications that cannot tolerate loss of time due to the failure of a single clock. The time generated by the ensemble of clocks is called a time scale. The question arises how to combine the times of the individual clocks to form the time scale. One might naively be tempted to suggest the expedient of averaging the times of the individual clocks, but a simple thought experiment demonstrates the inadequacy of this approach. Suppose a time scale is composed of two noiseless clocks having equal and opposite frequencies. The mean time scale has zero frequency. However if either clock fails, the time-scale frequency immediately changes to the frequency of the remaining clock. This performance is generally unacceptable and simple mean time scales are not used. First, previous time-scale developments are reviewed and then some new methods that result in enhanced performance are presented. The historical perspective is based upon several time scales: the AT1 and TA time scales of the National Institute of Standards and Technology (NIST), the A.1(MEAN) time scale of the US Naval observatory (USNO), the TAI time scale of the Bureau International des Poids et Measures (BIPM), and the KAS-1 time scale of the Naval Research laboratory (NRL). The new method was incorporated in the KAS-2 time scale recently developed by Timing Solutions Corporation. The goal is to present time-scale concepts in a nonmathematical form with as few equations as possible. Many other papers and texts discuss the details of the optimal estimation techniques that may be used to implement these concepts.

  12. Impact of increasing market access on a tropical small-scale fishery

    USGS Publications Warehouse

    Stevens, Kara; Irwin, Brian J.; Kramer, Daniel; Urquhart, Gerald

    2014-01-01

    Small-scale fisheries have historically been marginalized in management and policy investments, and they often remain under-reported in national economic and fisheries statistics. Even so, small-scale fisheries are not entirely buffered from the impacts of globalization, such as the introduction and expansion of markets. This study measures the long-term impact of market-access on a coastal fishery on Nicaragua׳s remote Atlantic Coast from approximately the time when fishermen had access to stable and predictable local markets until the present, when the region has been transformed by road connection. In the last four years, fisheries trade has expanded as road connection has facilitated export to distant markets. Fishery-independent surveys were used to measure changes in indicators of fish-community status such as length-frequency, mean trophic level, and relative biomass. Species-level changes in relative biomass of common snook Centropomus undecimalis and gafftopsail catfish Bagre marinus were also evaluated since these species are the most economically valuable and likely account for the most fish biomass in the system. Using historical records, reports, current observations and interviews, changes in indicators of fishing intensity and market access over the past 17 years were assessed. From 1994 to 2011, community and species-specific metrics of the lagoon fishery declined significantly across all indicators examined. The potential social and economic outcomes of the decline in the fishery are far-reaching for the region, because this tropical fishery comprises the main source of protein and income for residents of twelve indigenous and Afro-descendent communities.

  13. A Small-Scale, Feasibility Study of Academic Language Time in Primary Grade Language Arts

    ERIC Educational Resources Information Center

    Roskos, Kathleen A.; Zuzolo, Nicole; Primm, Ashley

    2017-01-01

    A small-scale feasibility study was conducted to explore the implementation of academic language time (ALT) in primary grade classrooms with and without access to digital devices. Academic language time is a structural change that dedicates a portion of language arts instructional time to direct vocabulary instruction using evidence-based…

  14. 75 FR 37479 - In the Matter of NuScale Power, Inc. and All Other Persons; Who Seek or Obtain Access to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... date of this Order, submit the fingerprints of one individual whom (a) NuScale nominates as the....\\2\\ NuScale may, at the same time or later, submit the fingerprints of other individuals to whom NuScale seeks to grant access to SGI. Fingerprints shall be submitted and reviewed in accordance with the...

  15. Timely access to mental health care among women veterans.

    PubMed

    Brunner, Julian; Schweizer, C Amanda; Canelo, Ismelda A; Leung, Lucinda B; Strauss, Jennifer L; Yano, Elizabeth M

    2018-04-05

    Using survey data on (N = 419) patients at Department of Veterans Affairs (VA) clinics we analyzed women veterans' reports of timely access to VA mental health care. We evaluated problems that patients might face in obtaining care, and examined subjective ratings of VA care as a function of timely access to mental health care. We found that 59% of participants reported "always" getting an appointment for mental health care as soon as needed. In adjusted analyses, two problems were negatively associated with timely access to mental health care: (a) medical appointments that interfere with other activities, and (b) difficulty getting questions answered between visits. Average subjective ratings of VA ranged from 8.2-8.6 out of 10, and 93% of participants would recommend VA care. Subjective ratings of VA were higher among women who reported timely access to mental health care. Findings suggest that overall experience of care is associated with timely access to mental health care, and that such access may be amenable to improvements related to clinic hours or mechanisms for answering patient questions between visits. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. New Insights into Dialysis Vascular Access: What Is the Optimal Vascular Access Type and Timing of Access Creation in CKD and Dialysis Patients?

    PubMed

    Woo, Karen; Lok, Charmaine E

    2016-08-08

    Optimal vascular access planning begins when the patient is in the predialysis stages of CKD. The choice of optimal vascular access for an individual patient and determining timing of access creation are dependent on a multitude of factors that can vary widely with each patient, including demographics, comorbidities, anatomy, and personal preferences. It is important to consider every patient's ESRD life plan (hence, their overall dialysis access life plan for every vascular access creation or placement). Optimal access type and timing of access creation are also influenced by factors external to the patient, such as surgeon experience and processes of care. In this review, we will discuss the key determinants in optimal access type and timing of access creation for upper extremity arteriovenous fistulas and grafts. Copyright © 2016 by the American Society of Nephrology.

  17. Time to aortic occlusion: It's all about access.

    PubMed

    Romagnoli, Anna; Teeter, William; Pasley, Jason; Hu, Peter; Hoehn, Melanie; Stein, Deborah; Scalea, Thomas; Brenner, Megan

    2017-12-01

    Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a less invasive method of proximal aortic occlusion compared with resuscitative thoracotomy with aortic cross-clamping (RTACC). This study compared time to aortic occlusion with REBOA and RTACC, both including and excluding time required for common femoral artery (CFA) cannulation. This was a retrospective, single-institution review of REBOA or RTACC performed between February 2013 and January 2016. Time of skin incision to aortic cross-clamp for RTACC, time required for CFA cannulation by percutaneous and open methods, and time from guide-wire insertion to balloon inflation at Zone 1 for REBOA, were obtained from videographic recordings. Eighteen RTACC and 21 REBOAs were performed. Median (Q1, Q3) time from skin incision to aortic cross-clamping was 317 seconds (227, 551 seconds). Median (Q1, Q3) time from start of arterial access to Zone 1 balloon occlusion was 474 seconds (431, 572 seconds) (vs. RTACC, p = 0.01). All REBOA procedures were performed with the same device. The median time to complete CFA cannulation was 247 seconds (range, 164-343 seconds), with no difference between percutaneous or open procedures (p = 0.07). The median (Q1, Q3) time to aortic occlusion in REBOA once arterial access had been established was 245 seconds (179, 295.5 seconds), which was significantly shorter than RTACC (p = 0.003). Once CFA access is achieved, time to aortic occlusion is faster with REBOA. Time to aortic occlusion is less than the time required to cannulate the CFA either by percutaneous or open approaches, emphasizing the importance of accurate and expedient CFA access. Resuscitative endovascular balloon occlusion of the aorta may represent a feasible alternative to thoracotomy for aortic occlusion. Time to aortic occlusion will likely decrease with the advent of newer REBOA technology. The rate-limiting portion of REBOA continues to be obtaining CFA access. Therapeutic, level V.

  18. Linear Time Algorithms to Restrict Insider Access using Multi-Policy Access Control Systems

    PubMed Central

    Mell, Peter; Shook, James; Harang, Richard; Gavrila, Serban

    2017-01-01

    An important way to limit malicious insiders from distributing sensitive information is to as tightly as possible limit their access to information. This has always been the goal of access control mechanisms, but individual approaches have been shown to be inadequate. Ensemble approaches of multiple methods instantiated simultaneously have been shown to more tightly restrict access, but approaches to do so have had limited scalability (resulting in exponential calculations in some cases). In this work, we take the Next Generation Access Control (NGAC) approach standardized by the American National Standards Institute (ANSI) and demonstrate its scalability. The existing publicly available reference implementations all use cubic algorithms and thus NGAC was widely viewed as not scalable. The primary NGAC reference implementation took, for example, several minutes to simply display the set of files accessible to a user on a moderately sized system. In our approach, we take these cubic algorithms and make them linear. We do this by reformulating the set theoretic approach of the NGAC standard into a graph theoretic approach and then apply standard graph algorithms. We thus can answer important access control decision questions (e.g., which files are available to a user and which users can access a file) using linear time graph algorithms. We also provide a default linear time mechanism to visualize and review user access rights for an ensemble of access control mechanisms. Our visualization appears to be a simple file directory hierarchy but in reality is an automatically generated structure abstracted from the underlying access control graph that works with any set of simultaneously instantiated access control policies. It also provide an implicit mechanism for symbolic linking that provides a powerful access capability. Our work thus provides the first efficient implementation of NGAC while enabling user privilege review through a novel visualization approach. This

  19. Institutional open access funds: now is the time.

    PubMed

    Eckman, Charles D; Weil, Beth T

    2010-05-25

    particularly heightened during this economic crisis when investments in subscriptions are increasingly difficult to justify, particularly given the alternate forms of open access to content and decreasing ability for libraries to reliably distinguish OA and non-OA content within the journal. We believe that institutions (and the sub-institutional units that manage collection funds) should be open to exploring alternative funding models for scholarly communication. Institutions should highly value funding models that promote universal access to their research output. And during an economic crisis, these institutions should question the extensive financial and human resource investments required by the subscription model, a model that both excludes nonauthorized users and entails large-scale and complex licensing and legal obligations. The time is now for broad-scale adoption of institutional OA funds.

  20. PARLO: PArallel Run-Time Layout Optimization for Scientific Data Explorations with Heterogeneous Access Pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Zhenhuan; Boyuka, David; Zou, X

    Download Citation Email Print Request Permissions Save to Project The size and scope of cutting-edge scientific simulations are growing much faster than the I/O and storage capabilities of their run-time environments. The growing gap is exacerbated by exploratory, data-intensive analytics, such as querying simulation data with multivariate, spatio-temporal constraints, which induces heterogeneous access patterns that stress the performance of the underlying storage system. Previous work addresses data layout and indexing techniques to improve query performance for a single access pattern, which is not sufficient for complex analytics jobs. We present PARLO a parallel run-time layout optimization framework, to achieve multi-levelmore » data layout optimization for scientific applications at run-time before data is written to storage. The layout schemes optimize for heterogeneous access patterns with user-specified priorities. PARLO is integrated with ADIOS, a high-performance parallel I/O middleware for large-scale HPC applications, to achieve user-transparent, light-weight layout optimization for scientific datasets. It offers simple XML-based configuration for users to achieve flexible layout optimization without the need to modify or recompile application codes. Experiments show that PARLO improves performance by 2 to 26 times for queries with heterogeneous access patterns compared to state-of-the-art scientific database management systems. Compared to traditional post-processing approaches, its underlying run-time layout optimization achieves a 56% savings in processing time and a reduction in storage overhead of up to 50%. PARLO also exhibits a low run-time resource requirement, while also limiting the performance impact on running applications to a reasonable level.« less

  1. Scale-Limited Lagrange Stability and Finite-Time Synchronization for Memristive Recurrent Neural Networks on Time Scales.

    PubMed

    Xiao, Qiang; Zeng, Zhigang

    2017-10-01

    The existed results of Lagrange stability and finite-time synchronization for memristive recurrent neural networks (MRNNs) are scale-free on time evolvement, and some restrictions appear naturally. In this paper, two novel scale-limited comparison principles are established by means of inequality techniques and induction principle on time scales. Then the results concerning Lagrange stability and global finite-time synchronization of MRNNs on time scales are obtained. Scaled-limited Lagrange stability criteria are derived, in detail, via nonsmooth analysis and theory of time scales. Moreover, novel criteria for achieving the global finite-time synchronization are acquired. In addition, the derived method can also be used to study global finite-time stabilization. The proposed results extend or improve the existed ones in the literatures. Two numerical examples are chosen to show the effectiveness of the obtained results.

  2. Atomistic simulations of graphite etching at realistic time scales.

    PubMed

    Aussems, D U B; Bal, K M; Morgan, T W; van de Sanden, M C M; Neyts, E C

    2017-10-01

    Hydrogen-graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe time-scale limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of ∼10 20 m -2 s -1 . The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C-C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching - chemical erosion - is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.

  3. Access to timely formal dementia care in Europe: protocol of the Actifcare (ACcess to Timely Formal Care) study.

    PubMed

    Kerpershoek, Liselot; de Vugt, Marjolein; Wolfs, Claire; Jelley, Hannah; Orrell, Martin; Woods, Bob; Stephan, Astrid; Bieber, Anja; Meyer, Gabriele; Engedal, Knut; Selbaek, Geir; Handels, Ron; Wimo, Anders; Hopper, Louise; Irving, Kate; Marques, Maria; Gonçalves-Pereira, Manuel; Portolani, Elisa; Zanetti, Orazio; Verhey, Frans

    2016-08-23

    Previous findings indicate that people with dementia and their informal carers experience difficulties accessing and using formal care services due to a mismatch between needs and service use. This mismatch causes overall dissatisfaction and is a waste of the scarce financial care resources. This article presents the background and methods of the Actifcare (ACcess to Timely Formal Care) project. This is a European study aiming at best-practice development in finding timely access to formal care for community-dwelling people with dementia and their informal carers. There are five main objectives: 1) Explore predisposing and enabling factors associated with the use of formal care, 2) Explore the association between the use of formal care, needs and quality of life and 3) Compare these across European countries, 4) Understand the costs and consequences of formal care services utilization in people with unmet needs, 5) Determine the major costs and quality of life drivers and their relationship with formal care services across European countries. In a longitudinal cohort study conducted in eight European countries approximately 450 people with dementia and informal carers will be assessed three times in 1 year (baseline, 6 and 12 months). In this year we will closely monitor the process of finding access to formal care. Data on service use, quality of life and needs will be collected. The results of Actifcare are expected to reveal best-practices in organizing formal care. Knowledge about enabling and predisposing factors regarding access to care services, as well as its costs and consequences, can advance the state of the art in health systems research into pathways to dementia care, in order to benefit people with dementia and their informal carers.

  4. Predictors of nonfunctional arteriovenous access at hemodialysis initiation and timing of access creation: A registry-based study

    PubMed Central

    Metzger, Marie; Labeeuw, Michel; Ayav, Carole; Jacquelinet, Christian; Massy, Ziad A.; Stengel, Bénédicte

    2017-01-01

    Determinants of nonfunctional arteriovenous (AV) access, including timing of AV access creation, have not been sufficiently described. We studied 29 945 patients who had predialysis AV access placement and were included in the French REIN registry from 2005 through 2013. AV access was considered nonfunctional when dialysis began with a catheter. We estimated crude and adjusted odds ratio (OR) with 95% confidence intervals (CI) of nonfunctional versus functional AV access associated with case-mix, facility characteristics, and timing of AV access creation. Analyses were stratified by dialysis start condition (planned or as an emergency) and comorbidity profile. Overall, 18% patients had nonfunctional AV access at hemodialysis initiation. In the group with planned dialysis start, female gender (OR 1.43, 95% CI 1.32–1.56), diabetes (OR 1.28, 95% CI 1.15–1.44), and a higher number of cardiovascular comorbidities (OR 1.27, 95% CI 1.09–1.49, and 1.31, 1.05–1.64, for 3 and >3 cardiovascular comorbidities versus none, respectively) were independent predictors of nonfunctional AV access. A higher percentage of AV access creation at the region level was associated with a lower rate of nonfunctional AV access (OR 0.98, 95% CI 0.98–0.99 per 1% increase). The odds of nonfunctional AV access decreased as time from creation to hemodialysis initiation increased up to 3 months in nondiabetic patients with fewer than 2 cardiovascular comorbidities and 6 months in patients with diabetes or 2 or more such comorbidities. In conclusion, both patient characteristics and clinical practices may play a role in successful AV access use at hemodialysis initiation. Adjusting the timing of AV access creation to patients’ comorbidity profiles may improve functional AV access rates. PMID:28749967

  5. Predictors of nonfunctional arteriovenous access at hemodialysis initiation and timing of access creation: A registry-based study.

    PubMed

    Alencar de Pinho, Natalia; Coscas, Raphael; Metzger, Marie; Labeeuw, Michel; Ayav, Carole; Jacquelinet, Christian; Massy, Ziad A; Stengel, Bénédicte

    2017-01-01

    Determinants of nonfunctional arteriovenous (AV) access, including timing of AV access creation, have not been sufficiently described. We studied 29 945 patients who had predialysis AV access placement and were included in the French REIN registry from 2005 through 2013. AV access was considered nonfunctional when dialysis began with a catheter. We estimated crude and adjusted odds ratio (OR) with 95% confidence intervals (CI) of nonfunctional versus functional AV access associated with case-mix, facility characteristics, and timing of AV access creation. Analyses were stratified by dialysis start condition (planned or as an emergency) and comorbidity profile. Overall, 18% patients had nonfunctional AV access at hemodialysis initiation. In the group with planned dialysis start, female gender (OR 1.43, 95% CI 1.32-1.56), diabetes (OR 1.28, 95% CI 1.15-1.44), and a higher number of cardiovascular comorbidities (OR 1.27, 95% CI 1.09-1.49, and 1.31, 1.05-1.64, for 3 and >3 cardiovascular comorbidities versus none, respectively) were independent predictors of nonfunctional AV access. A higher percentage of AV access creation at the region level was associated with a lower rate of nonfunctional AV access (OR 0.98, 95% CI 0.98-0.99 per 1% increase). The odds of nonfunctional AV access decreased as time from creation to hemodialysis initiation increased up to 3 months in nondiabetic patients with fewer than 2 cardiovascular comorbidities and 6 months in patients with diabetes or 2 or more such comorbidities. In conclusion, both patient characteristics and clinical practices may play a role in successful AV access use at hemodialysis initiation. Adjusting the timing of AV access creation to patients' comorbidity profiles may improve functional AV access rates.

  6. Unified Access Architecture for Large-Scale Scientific Datasets

    NASA Astrophysics Data System (ADS)

    Karna, Risav

    2014-05-01

    Data-intensive sciences have to deploy diverse large scale database technologies for data analytics as scientists have now been dealing with much larger volume than ever before. While array databases have bridged many gaps between the needs of data-intensive research fields and DBMS technologies (Zhang 2011), invocation of other big data tools accompanying these databases is still manual and separate the database management's interface. We identify this as an architectural challenge that will increasingly complicate the user's work flow owing to the growing number of useful but isolated and niche database tools. Such use of data analysis tools in effect leaves the burden on the user's end to synchronize the results from other data manipulation analysis tools with the database management system. To this end, we propose a unified access interface for using big data tools within large scale scientific array database using the database queries themselves to embed foreign routines belonging to the big data tools. Such an invocation of foreign data manipulation routines inside a query into a database can be made possible through a user-defined function (UDF). UDFs that allow such levels of freedom as to call modules from another language and interface back and forth between the query body and the side-loaded functions would be needed for this purpose. For the purpose of this research we attempt coupling of four widely used tools Hadoop (hadoop1), Matlab (matlab1), R (r1) and ScaLAPACK (scalapack1) with UDF feature of rasdaman (Baumann 98), an array-based data manager, for investigating this concept. The native array data model used by an array-based data manager provides compact data storage and high performance operations on ordered data such as spatial data, temporal data, and matrix-based data for linear algebra operations (scidbusr1). Performances issues arising due to coupling of tools with different paradigms, niche functionalities, separate processes and output

  7. City-scale accessibility of emergency responders operating during flood events

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Yu, Dapeng; Pattison, Ian; Wilby, Robert; Bosher, Lee; Patel, Ramila; Thompson, Philip; Trowell, Keith; Draycon, Julia; Halse, Martin; Yang, Lili; Ryley, Tim

    2017-01-01

    scale. It also provides a readily transferable method for exploring the impacts of natural hazards or disruptions in other cities or regions based on historic, scenario-based events or real-time forecasting, if such data are available.

  8. Robotic percutaneous access to the kidney: comparison with standard manual access.

    PubMed

    Su, Li-Ming; Stoianovici, Dan; Jarrett, Thomas W; Patriciu, Alexandru; Roberts, William W; Cadeddu, Jeffrey A; Ramakumar, Sanjay; Solomon, Stephen B; Kavoussi, Louis R

    2002-09-01

    To evaluate the efficiency, accuracy, and safety of robotic percutaneous access to the kidney (PAKY) for percutaneous nephrolithotomy in comparison with conventional manual techniques. We compared the intraoperative access variables (number of access attempts, time to successful access, estimated blood loss, complications) of 23 patients who underwent robotic PAKY with the remote center of motion device (PAKY-RCM) with the same data from a contemporaneous series of 23 patients who underwent conventional manual percutaneous access to the kidney. The PAKY-RCM incorporates a robotic arm and a friction transmission with axial loading system to accurately position and insert a standard 18-gauge needle percutaneously into the kidney. The blood loss during percutaneous access was estimated on a four-point scale (1 = minimal to 4 = large). The color of effluent urine was graded on a four-point scale (1 = clear to 4 = red). The mean target calix width was 13.5 +/- 9.2 mm in the robotic group and 12.2 +/- 4.5 mm in the manual group (P = 0.57). When comparing PAKY-RCM with standard manual techniques, the mean number of attempts was 2.2 +/- 1.6 v 3.2 +/- 2.5 (P = 0.14), time to access was 10.4 +/- 6.5 minutes v 15.1 +/- 8.8 minutes (P = 0.06), estimated blood loss score was 1.3 +/- 0.49 v 1.7 +/- 0.66 (P = 0.14), and color of effluent urine following access was 2.0 +/- 0.90 v 2.1 +/- 0.7 (P = 0.82). The PAKY-RCM was successful in obtaining access in 87% (20 of 23) of cases. The other three patients (13%) required conversion to manual techniques. There were no major intraoperative complications in either group. Robotic PAKY is a feasible, safe, and efficacious method of obtaining renal access for nephrolithotomy. The number of attempts and time to access were comparable to those of standard manual percutaneous access techniques. These findings provide the groundwork for the development of a completely automated robot-assisted percutaneous renal access device.

  9. Random access in large-scale DNA data storage.

    PubMed

    Organick, Lee; Ang, Siena Dumas; Chen, Yuan-Jyue; Lopez, Randolph; Yekhanin, Sergey; Makarychev, Konstantin; Racz, Miklos Z; Kamath, Govinda; Gopalan, Parikshit; Nguyen, Bichlien; Takahashi, Christopher N; Newman, Sharon; Parker, Hsing-Yeh; Rashtchian, Cyrus; Stewart, Kendall; Gupta, Gagan; Carlson, Robert; Mulligan, John; Carmean, Douglas; Seelig, Georg; Ceze, Luis; Strauss, Karin

    2018-03-01

    Synthetic DNA is durable and can encode digital data with high density, making it an attractive medium for data storage. However, recovering stored data on a large-scale currently requires all the DNA in a pool to be sequenced, even if only a subset of the information needs to be extracted. Here, we encode and store 35 distinct files (over 200 MB of data), in more than 13 million DNA oligonucleotides, and show that we can recover each file individually and with no errors, using a random access approach. We design and validate a large library of primers that enable individual recovery of all files stored within the DNA. We also develop an algorithm that greatly reduces the sequencing read coverage required for error-free decoding by maximizing information from all sequence reads. These advances demonstrate a viable, large-scale system for DNA data storage and retrieval.

  10. Metabolic Imaging in Multiple Time Scales

    PubMed Central

    Ramanujan, V Krishnan

    2013-01-01

    We report here a novel combination of time-resolved imaging methods for probing mitochondrial metabolism multiple time scales at the level of single cells. By exploiting a mitochondrial membrane potential reporter fluorescence we demonstrate the single cell metabolic dynamics in time scales ranging from milliseconds to seconds to minutes in response to glucose metabolism and mitochondrial perturbations in real time. Our results show that in comparison with normal human mammary epithelial cells, the breast cancer cells display significant alterations in metabolic responses at all measured time scales by single cell kinetics, fluorescence recovery after photobleaching and by scaling analysis of time-series data obtained from mitochondrial fluorescence fluctuations. Furthermore scaling analysis of time-series data in living cells with distinct mitochondrial dysfunction also revealed significant metabolic differences thereby suggesting the broader applicability (e.g. in mitochondrial myopathies and other metabolic disorders) of the proposed strategies beyond the scope of cancer metabolism. We discuss the scope of these findings in the context of developing portable, real-time metabolic measurement systems that can find applications in preclinical and clinical diagnostics. PMID:24013043

  11. Rapid Access Real-Time device and Rapid Access software: new tools in the armamentarium of capsule endoscopy.

    PubMed

    Spada, Cristiano; Riccioni, Maria Elena; Costamagna, Guido

    2007-07-01

    Small bowel capsule endoscopy represents a significant advance in the investigation of the small bowel, allowing direct visualization of this section of the gastrointestinal system. More recently, new video capsules have been released, specifically designed to investigate the esophagus and the colon. In June 2006, Given Imaging Ltd received marketing clearance from the US FDA for the Rapid Access Real-Time (RT) and Rapid Access software. The Rapid Access RT is a handheld device that enables real-time viewing during capsule endoscopy procedures. To date, the clinical benefits of this device are unknown as studies on the Rapid Access RT system have not yet been published. However, it appears that the Rapid Access RT system may reduce the examination and reading time, and may impact significantly in cases where it is important to know the precise localization of the capsule (during PillCam ESO ingestion procedures, PillCam Colon examinations or when delayed gastric transit is suspected) or in case of severe gastrointestinal bleeding (when a therapeutic procedure is required urgently).

  12. Seeing with the nano-eye: accessing structure, function, and dynamics of matter on its natural length and time scales

    NASA Astrophysics Data System (ADS)

    Raschke, Markus

    2015-03-01

    To understand and ultimately control the properties of most functional materials, from molecular soft-matter to quantum materials, requires access to the structure, coupling, and dynamics on the elementary time and length scales that define the microscopic interactions in these materials. To gain the desired nanometer spatial resolution with simultaneous spectroscopic specificity we combine scanning probe microscopy with different optical, including coherent, nonlinear, and ultrafast spectroscopies. The underlying near-field interaction mediated by the atomic-force or scanning tunneling microscope tip provides the desired deep-sub wavelength nano-focusing enabling few-nm spatial resolution. I will introduce our generalization of the approach in terms of the near-field impedance matching to a quantum system based on special optical antenna-tip designs. The resulting enhanced and qualitatively new forms of light-matter interaction enable measurements of quantum dynamics in an interacting environment or to image the electromagnetic local density of states of thermal radiation. Other applications include the inter-molecular coupling and dynamics in soft-matter hetero-structures, surface plasmon interferometry as a probe of electronic structure and dynamics in graphene, and quantum phase transitions in correlated electron materials. These examples highlight the general applicability of the new near-field microscopy approach, complementing emergent X-ray and electron imaging tools, aiming towards the ultimate goal of probing matter on its most elementary spatio-temporal level.

  13. A comment on the use of flushing time, residence time, and age as transport time scales

    USGS Publications Warehouse

    Monsen, N.E.; Cloern, J.E.; Lucas, L.V.; Monismith, Stephen G.

    2002-01-01

    Applications of transport time scales are pervasive in biological, hydrologic, and geochemical studies yet these times scales are not consistently defined and applied with rigor in the literature. We compare three transport time scales (flushing time, age, and residence time) commonly used to measure the retention of water or scalar quantities transported with water. We identify the underlying assumptions associated with each time scale, describe procedures for computing these time scales in idealized cases, and identify pitfalls when real-world systems deviate from these idealizations. We then apply the time scale definitions to a shallow 378 ha tidal lake to illustrate how deviations between real water bodies and the idealized examples can result from: (1) non-steady flow; (2) spatial variability in bathymetry, circulation, and transport time scales; and (3) tides that introduce complexities not accounted for in the idealized cases. These examples illustrate that no single transport time scale is valid for all time periods, locations, and constituents, and no one time scale describes all transport processes. We encourage aquatic scientists to rigorously define the transport time scale when it is applied, identify the underlying assumptions in the application of that concept, and ask if those assumptions are valid in the application of that approach for computing transport time scales in real systems.

  14. Considering Time-Scale Requirements for the Future

    DTIC Science & Technology

    2013-05-01

    geocentric reference frame with the SI second realized on the rotating geoid as the scale unit. It is a continuous atomic time scale that was...the B8lycentric and Geocentric Celestial Reference Systems, two time scales, Barycentric Coor- dinate Time (TCB) and Geocentric Coordinate Time (TCG...defined in 2006 as a linear scaling of TCB having the approximate rate of TT. TCG is the time coordinate for the four dimensional geocentric coordinate

  15. Race and time from diagnosis to radical prostatectomy: does equal access mean equal timely access to the operating room?--Results from the SEARCH database.

    PubMed

    Bañez, Lionel L; Terris, Martha K; Aronson, William J; Presti, Joseph C; Kane, Christopher J; Amling, Christopher L; Freedland, Stephen J

    2009-04-01

    African American men with prostate cancer are at higher risk for cancer-specific death than Caucasian men. We determine whether significant delays in management contribute to this disparity. We hypothesize that in an equal-access health care system, time interval from diagnosis to treatment would not differ by race. We identified 1,532 African American and Caucasian men who underwent radical prostatectomy (RP) from 1988 to 2007 at one of four Veterans Affairs Medical Centers that comprise the Shared Equal-Access Regional Cancer Hospital (SEARCH) database with known biopsy date. We compared time from biopsy to RP between racial groups using linear regression adjusting for demographic and clinical variables. We analyzed risk of potential clinically relevant delays by determining odds of delays >90 and >180 days. Median time interval from diagnosis to RP was 76 and 68 days for African Americans and Caucasian men, respectively (P = 0.004). After controlling for demographic and clinical variables, race was not associated with the time interval between diagnosis and RP (P = 0.09). Furthermore, race was not associated with increased risk of delays >90 (P = 0.45) or >180 days (P = 0.31). In a cohort of men undergoing RP in an equal-access setting, there was no significant difference between racial groups with regard to time interval from diagnosis to RP. Thus, equal-access includes equal timely access to the operating room. Given our previous finding of poorer outcomes among African Americans, treatment delays do not seem to explain these observations. Our findings need to be confirmed in patients electing other treatment modalities and in other practice settings.

  16. Hormone-dependent control of developmental timing through regulation of chromatin accessibility

    PubMed Central

    Uyehara, Christopher M.; Nystrom, Spencer L.; Niederhuber, Matthew J.; Leatham-Jensen, Mary; Ma, Yiqin; Buttitta, Laura A.

    2017-01-01

    Specification of tissue identity during development requires precise coordination of gene expression in both space and time. Spatially, master regulatory transcription factors are required to control tissue-specific gene expression programs. However, the mechanisms controlling how tissue-specific gene expression changes over time are less well understood. Here, we show that hormone-induced transcription factors control temporal gene expression by regulating the accessibility of DNA regulatory elements. Using the Drosophila wing, we demonstrate that temporal changes in gene expression are accompanied by genome-wide changes in chromatin accessibility at temporal-specific enhancers. We also uncover a temporal cascade of transcription factors following a pulse of the steroid hormone ecdysone such that different times in wing development can be defined by distinct combinations of hormone-induced transcription factors. Finally, we show that the ecdysone-induced transcription factor E93 controls temporal identity by directly regulating chromatin accessibility across the genome. Notably, we found that E93 controls enhancer activity through three different modalities, including promoting accessibility of late-acting enhancers and decreasing accessibility of early-acting enhancers. Together, this work supports a model in which an extrinsic signal triggers an intrinsic transcription factor cascade that drives development forward in time through regulation of chromatin accessibility. PMID:28536147

  17. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, S. Y.

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  18. Controllability of multiplex, multi-time-scale networks

    NASA Astrophysics Data System (ADS)

    Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.

    2016-09-01

    The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified

  19. Pair plasma relaxation time scales.

    PubMed

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  20. Qualitative insights into practice time management: does 'patient-centred time' in practice management offer a portal to improved access?

    PubMed Central

    Buetow, S; Adair, V; Coster, G; Hight, M; Gribben, B; Mitchell, E

    2002-01-01

    BACKGROUND: Different sets of literature suggest how aspects of practice time management can limit access to general practitioner (GP) care. Researchers have not organised this knowledge into a unified framework that can enhance understanding of barriers to, and opportunities for, improved access. AIM: To suggest a framework conceptualising how differences in professional and cultural understanding of practice time management in Auckland, New Zealand, influence access to GP care for children with chronic asthma. DESIGN OF STUDY: A qualitative study involving selective sampling, semi-structured interviews on barriers to access, and a general inductive approach. SETTING: Twenty-nine key informants and ten mothers of children with chronic, moderate to severe asthma and poor access to GP care in Auckland. METHOD: Development of a framework from themes describing barriers associated with, and needs for, practice time management. The themes were independently identified by two authors from transcribed interviews and confirmed through informant checking. Themes from key informant and patient interviews were triangulated with each other and with published literature. RESULTS: The framework distinguishes 'practice-centred time' from 'patient-centred time.' A predominance of 'practice-centred time' and an unmet opportunity for 'patient-centred time' are suggested by the persistence of five barriers to accessing GP care: limited hours of opening; traditional appointment systems; practice intolerance of missed appointments; long waiting times in the practice; and inadequate consultation lengths. None of the barriers is specific to asthmatic children. CONCLUSION: A unified framework was suggested for understanding how the organisation of practice work time can influence access to GP care by groups including asthmatic children. PMID:12528583

  1. Qualitative insights into practice time management: does 'patient-centred time' in practice management offer a portal to improved access?

    PubMed

    Buetow, S; Adair, V; Coster, G; Hight, M; Gribben, B; Mitchell, E

    2002-12-01

    Different sets of literature suggest how aspects of practice time management can limit access to general practitioner (GP) care. Researchers have not organised this knowledge into a unified framework that can enhance understanding of barriers to, and opportunities for, improved access. To suggest a framework conceptualising how differences in professional and cultural understanding of practice time management in Auckland, New Zealand, influence access to GP care for children with chronic asthma. A qualitative study involving selective sampling, semi-structured interviews on barriers to access, and a general inductive approach. Twenty-nine key informants and ten mothers of children with chronic, moderate to severe asthma and poor access to GP care in Auckland. Development of a framework from themes describing barriers associated with, and needs for, practice time management. The themes were independently identified by two authors from transcribed interviews and confirmed through informant checking. Themes from key informant and patient interviews were triangulated with each other and with published literature. The framework distinguishes 'practice-centred time' from 'patient-centred time.' A predominance of 'practice-centred time' and an unmet opportunity for 'patient-centred time' are suggested by the persistence of five barriers to accessing GP care: limited hours of opening; traditional appointment systems; practice intolerance of missed appointments; long waiting times in the practice; and inadequate consultation lengths. None of the barriers is specific to asthmatic children. A unified framework was suggested for understanding how the organisation of practice work time can influence access to GP care by groups including asthmatic children.

  2. Time-dependent corona models - Scaling laws

    NASA Technical Reports Server (NTRS)

    Korevaar, P.; Martens, P. C. H.

    1989-01-01

    Scaling laws are derived for the one-dimensional time-dependent Euler equations that describe the evolution of a spherically symmetric stellar atmosphere. With these scaling laws the results of the time-dependent calculations by Korevaar (1989) obtained for one star are applicable over the whole Hertzsprung-Russell diagram and even to elliptic galaxies. The scaling is exact for stars with the same M/R-ratio and a good approximation for stars with a different M/R-ratio. The global relaxation oscillation found by Korevaar (1989) is scaled to main sequence stars, a solar coronal hole, cool giants and elliptic galaxies.

  3. Measuring patient-centered medical home access and continuity in clinics with part-time clinicians.

    PubMed

    Rosland, Ann-Marie; Krein, Sarah L; Kim, Hyunglin Myra; Greenstone, Clinton L; Tremblay, Adam; Ratz, David; Saffar, Darcy; Kerr, Eve A

    2015-05-01

    Common patient-centered medical home (PCMH) performance measures value access to a single primary care provider (PCP), which may have unintended consequences for clinics that rely on part-time PCPs and team-based care. Retrospective analysis of 110,454 primary care visits from 2 Veterans Health Administration clinics from 2010 to 2012. Multi-level models examined associations between PCP availability in clinic, and performance on access and continuity measures. Patient experiences with access and continuity were compared using 2012 patient survey data (N = 2881). Patients of PCPs with fewer half-day clinic sessions per week were significantly less likely to get a requested same-day appointment with their usual PCP (predicted probability 17% for PCPs with 2 sessions/week, 20% for 5 sessions/week, and 26% for 10 sessions/week). Among requests that did not result in a same-day appointment with the usual PCP, there were no significant differences in same-day access to a different PCP, or access within 2 to 7 days with patients' usual PCP. Overall, patients had >92% continuity with their usual PCP at the hospital-based site regardless of PCP sessions/week. Patients of full-time PCPs reported timely appointments for urgent needs more often than patients of part-time PCPs (82% vs 71%; P < .01), but reported similar experiences with routine access and continuity. Part-time PCP performance appeared worse when using measures focused on same-day access to patients' usual PCP. However, clinic-level same-day access, same-week access to the usual PCP, and overall continuity were similar for patients of part-time and full-time PCPs. Measures of in-person access to a usual PCP do not capture alternate access approaches encouraged by PCMH, and often used by part-time providers, such as team-based or non-face-to-face care.

  4. Stability of Rasch Scales over Time

    ERIC Educational Resources Information Center

    Taylor, Catherine S.; Lee, Yoonsun

    2010-01-01

    Item response theory (IRT) methods are generally used to create score scales for large-scale tests. Research has shown that IRT scales are stable across groups and over time. Most studies have focused on items that are dichotomously scored. Now Rasch and other IRT models are used to create scales for tests that include polytomously scored items.…

  5. Patients report better satisfaction with part-time primary care physicians, despite less continuity of care and access.

    PubMed

    Panattoni, Laura; Stone, Ashley; Chung, Sukyung; Tai-Seale, Ming

    2015-03-01

    The growing number of primary care physicians (PCPs) reducing their clinical work hours has raised concerns about meeting the future demand for services and fulfilling the continuity and access mandates for patient-centered care. However, the patient's experience of care with part-time physicians is relatively unknown, and may be mediated by continuity and access to care outcomes. We aimed to examine the relationships between a physicians' clinical full-time equivalent (FTE), continuity of care, access to care, and patient satisfaction with the physician. We used a multi-level structural equation estimation, with continuity and access modeled as mediators, for a cross-section in 2010. The study included family medicine (n = 104) and internal medicine (n = 101) physicians in a multi-specialty group practice, along with their patient satisfaction survey responses (n = 12,688). Physician level FTE, continuity of care received by patients, continuity of care provided by physician, and a Press Ganey patient satisfaction with the physician score, on a 0-100 % scale, were measured. Access to care was measured as days to the third next-available appointment. Physician FTE was directly associated with better continuity of care received (0.172% per FTE, p < 0.001), better continuity of care provided (0.108% per FTE, p < 0.001), and better access to care (-0.033 days per FTE, p < 0.01), but worse patient satisfaction scores (-0.080% per FTE, p = 0.03). The continuity of care provided was a significant mediator (0.016% per FTE, p < 0.01) of the relationship between FTE and patient satisfaction; but overall, reduced clinical work hours were associated with better patient satisfaction (-0.053 % per FTE, p = 0.03). These results suggest that PCPs who choose to work fewer clinical hours may have worse continuity and access, but they may provide a better patient experience. Physician workforce planning should consider these care attributes when

  6. Household food insecurity access scale (HFIAS).

    PubMed

    Salvador Castell, Gemma; Pérez Rodrigo, Carmen; Ngo de la Cruz, Joy; Aranceta Bartrina, Javier

    2015-02-26

    In 1996, the World Food Summit reaffirmed the inalienable right that each person across the globe has to access safe, adequate and nutritious food. At that time a goal was established to reduce by half the number of undernourished persons worldwide by 2015, in other words the year that we are now commencing. Different countries and organisations considered the necessity of reaching consensus and developing indicators for measuring household food insecurity. The availability of a simple but evidence-based measurement method to identify nutritionally at-risk population groups constitutes an essential instrument for implementing strategies that effectively address relevant key issues. Copyright AULA MEDICA EDICIONES 2015. Published by AULA MEDICA. All rights reserved.

  7. Russian national time scale long-term stability

    NASA Astrophysics Data System (ADS)

    Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.

    1994-05-01

    The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.

  8. Russian national time scale long-term stability

    NASA Technical Reports Server (NTRS)

    Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.

    1994-01-01

    The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.

  9. Time scales involved in emergent market coherence

    NASA Astrophysics Data System (ADS)

    Kwapień, J.; Drożdż, S.; Speth, J.

    2004-06-01

    In addressing the question of the time scales characteristic for the market formation, we analyze high-frequency tick-by-tick data from the NYSE and from the German market. By using returns on various time scales ranging from seconds or minutes up to 2 days, we compare magnitude of the largest eigenvalue of the correlation matrix for the same set of securities but for different time scales. For various sets of stocks of different capitalization (and the average trading frequency), we observe a significant elevation of the largest eigenvalue with increasing time scale. Our results from the correlation matrix study can be considered as a manifestation of the so-called Epps effect. There is no unique explanation of this effect and it seems that many different factors play a role here. One of such factors is randomness in transaction moments for different stocks. Another interesting conclusion to be drawn from our results is that in the contemporary markets the emergence of significant correlations occurs on time scales much smaller than in the more distant history.

  10. Real-time Data Access to First Responders: A VORB application

    NASA Astrophysics Data System (ADS)

    Lu, S.; Kim, J. B.; Bryant, P.; Foley, S.; Vernon, F.; Rajasekar, A.; Meier, S.

    2006-12-01

    Getting information to first responders is not an easy task. The sensors that provide the information are diverse in formats and come from many disciplines. They are also distributed by location, transmit data at different frequencies and are managed and owned by autonomous administrative entities. Pulling such types of data in real-time, needs a very robust sensor network with reliable data transport and buffering capabilities. Moreover, the system should be extensible and scalable in numbers and sensor types. ROADNet is a real- time sensor network project at UCSD gathering diverse environmental data in real-time or near-real-time. VORB (Virtual Object Ring Buffer) is the middleware used in ROADNet offering simple, uniform and scalable real-time data management for discovering (through metadata), accessing and archiving real-time data and data streams. Recent development in VORB, a web API, has offered quick and simple real-time data integration with web applications. In this poster, we discuss one application developed as part of ROADNet. SMER (Santa Margarita Ecological Reserve) is located in interior Southern California, a region prone to catastrophic wildfires each summer and fall. To provide data during emergencies, we have applied the VORB framework to develop a web-based application for providing access to diverse sensor data including weather data, heat sensor information, and images from cameras. Wildfire fighters have access to real-time data about weather and heat conditions in the area and view pictures taken from cameras at multiple points in the Reserve to pinpoint problem areas. Moreover, they can browse archived images and sensor data from earlier times to provide a comparison framework. To show scalability of the system, we have expanded the sensor network under consideration through other areas in Southern California including sensors accessible by Los Angeles County Fire Department (LACOFD) and those available through the High Performance

  11. Mouse Activity across Time Scales: Fractal Scenarios

    PubMed Central

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  12. Scale-dependent intrinsic entropies of complex time series.

    PubMed

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).

  13. TimeSet: A computer program that accesses five atomic time services on two continents

    NASA Technical Reports Server (NTRS)

    Petrakis, P. L.

    1993-01-01

    TimeSet is a shareware program for accessing digital time services by telephone. At its initial release, it was capable of capturing time signals only from the U.S. Naval Observatory to set a computer's clock. Later the ability to synchronize with the National Institute of Standards and Technology was added. Now, in Version 7.10, TimeSet is able to access three additional telephone time services in Europe - in Sweden, Austria, and Italy - making a total of five official services addressable by the program. A companion program, TimeGen, allows yet another source of telephone time data strings for callers equipped with TimeSet version 7.10. TimeGen synthesizes UTC time data strings in the Naval Observatory's format from an accurately set and maintained DOS computer clock, and transmits them to callers. This allows an unlimited number of 'freelance' time generating stations to be created. Timesetting from TimeGen is made feasible by the advent of Becker's RighTime, a shareware program that learns the drift characteristics of a computer's clock and continuously applies a correction to keep it accurate, and also brings .01 second resolution to the DOS clock. With clock regulation by RighTime and periodic update calls by the TimeGen station to an official time source via TimeSet, TimeGen offers the same degree of accuracy within the resolution of the computer clock as any official atomic time source.

  14. Geobrowser Enhanced Access of Real-Time Antarctic Data

    NASA Astrophysics Data System (ADS)

    Breen, P.; Judge, D.; Cunningham, N.; Kirsch, P. J.

    2007-12-01

    A proof of principle project was initiated in the Fall of 2006 to develop a system enabling remote field station and ship borne data, collected in near real-time to be discovered, visualised and acquired through a web accessible framework. The two principal enabling drivers for this system were the recent improvements in communications with remote field stations and ships and the advent of low cost, easily accessible geobrowser technology providing the ability to visualise multiple, sometimes physically disparate datasets within a common interface. Strongly spatial in nature the oceanographic datasets suggested the incorporation of geobrowser (Google Earth) technology into this framework. A number of scientific benefits were identified by the project, these include the overall enhancing of the value of many of the datasets through their real-time contribution to forecasting models, satellite ground truthing and calibration of autonomous instrumentation. Improved efficacy of fieldwork led to rapid discovery of problems and the ability to deal with them promptly. The ability to correct or improve experiment parameters and increase capability of routine collection of high-quality data. In the past it may have been over a year before data arrived back at HQ potentially unusable, definitely unrepeatable and significantly reducing or delaying scientific output. The geobrowser interface provides the platform from which the spatial data is discovered, for example ship tracks and aspects of the physical oceanography such as sea surface temperature can be directly visualized. Importantly, ancillary and auxiliary information and metadata can be linked to the cruise data in a straightforward and accessible manner; scientists in Cambridge using a geobrowser were able to access and visualize cruise data from the Southern ocean 20 minutes after collection.

  15. Algorithm for optimal dialysis access timing.

    PubMed

    Heaf, J G

    2007-02-01

    Acute initiation of dialysis is associated with increased morbidity due to access and uremia complications. It is frequent despite early referral and regular out-patient control. We studied factors associated with end-stage renal disease (ESRD) progression in order to optimize the timing of dialysis access (DA). In a retrospective longitudinal study (Study 1), the biochemical and clinical course of 255 dialysis and 64 predialysis patients was registered to determine factors associated with dialysis-free survival (DFS). On the basis of these results an algorithm was developed to predict timely DA, defined as >6 weeks and <26 weeks before dialysis initiation, with too late placement weighted twice as harmful as too early. The algorithm was validated in a prospective study (Study 2) of 150 dialysis and 28 predialysis patients. Acute dialysis was associated with increased 90-day hospitalization (17.9 vs. 9.0 days) and mortality (14% vs. 6%). P-creatinine and p-urea were poor indicators of DFS. At any level of p-creatinine, DFS was shorter with lower creatinine clearance and vice versa. Patients with systemic renal disease had a significantly shorter DFS than primary renal disease, due to faster GFR loss and earlier dialysis initiation. Short DFS was seen with hypoalbuminemia and cachexia; these patients were recommended early DA. The following algorithm was used to time DA (units: 1iM and ml/min/1.73 m2): P-Creatinine - 50 x GFR + (100 if Systemic Renal Disease) >200. Use of the algorithm was associated with earlier dialysis placement and a fall in acute dialysis requirements from 50% to 23%. The incidence of too early DA was unchanged (7% vs. 9%), and was due to algorithm non-application. The algorithm failed to predict imminent dialysis in 10% of cases, primarily due to acute exacerbation of stable uremia. Dialysis initiation was advanced by approximately one month. A predialysis program based on early dialysis planning and GFR-based DA timing may reduce the

  16. A global map of travel time to cities to assess inequalities in accessibility in 2015

    NASA Astrophysics Data System (ADS)

    Weiss, D. J.; Nelson, A.; Gibson, H. S.; Temperley, W.; Peedell, S.; Lieber, A.; Hancher, M.; Poyart, E.; Belchior, S.; Fullman, N.; Mappin, B.; Dalrymple, U.; Rozier, J.; Lucas, T. C. D.; Howes, R. E.; Tusting, L. S.; Kang, S. Y.; Cameron, E.; Bisanzio, D.; Battle, K. E.; Bhatt, S.; Gething, P. W.

    2018-01-01

    The economic and man-made resources that sustain human wellbeing are not distributed evenly across the world, but are instead heavily concentrated in cities. Poor access to opportunities and services offered by urban centres (a function of distance, transport infrastructure, and the spatial distribution of cities) is a major barrier to improved livelihoods and overall development. Advancing accessibility worldwide underpins the equity agenda of ‘leaving no one behind’ established by the Sustainable Development Goals of the United Nations. This has renewed international efforts to accurately measure accessibility and generate a metric that can inform the design and implementation of development policies. The only previous attempt to reliably map accessibility worldwide, which was published nearly a decade ago, predated the baseline for the Sustainable Development Goals and excluded the recent expansion in infrastructure networks, particularly in lower-resource settings. In parallel, new data sources provided by Open Street Map and Google now capture transportation networks with unprecedented detail and precision. Here we develop and validate a map that quantifies travel time to cities for 2015 at a spatial resolution of approximately one by one kilometre by integrating ten global-scale surfaces that characterize factors affecting human movement rates and 13,840 high-density urban centres within an established geospatial-modelling framework. Our results highlight disparities in accessibility relative to wealth as 50.9% of individuals living in low-income settings (concentrated in sub-Saharan Africa) reside within an hour of a city compared to 90.7% of individuals in high-income settings. By further triangulating this map against socioeconomic datasets, we demonstrate how access to urban centres stratifies the economic, educational, and health status of humanity.

  17. A global map of travel time to cities to assess inequalities in accessibility in 2015.

    PubMed

    Weiss, D J; Nelson, A; Gibson, H S; Temperley, W; Peedell, S; Lieber, A; Hancher, M; Poyart, E; Belchior, S; Fullman, N; Mappin, B; Dalrymple, U; Rozier, J; Lucas, T C D; Howes, R E; Tusting, L S; Kang, S Y; Cameron, E; Bisanzio, D; Battle, K E; Bhatt, S; Gething, P W

    2018-01-18

    The economic and man-made resources that sustain human wellbeing are not distributed evenly across the world, but are instead heavily concentrated in cities. Poor access to opportunities and services offered by urban centres (a function of distance, transport infrastructure, and the spatial distribution of cities) is a major barrier to improved livelihoods and overall development. Advancing accessibility worldwide underpins the equity agenda of 'leaving no one behind' established by the Sustainable Development Goals of the United Nations. This has renewed international efforts to accurately measure accessibility and generate a metric that can inform the design and implementation of development policies. The only previous attempt to reliably map accessibility worldwide, which was published nearly a decade ago, predated the baseline for the Sustainable Development Goals and excluded the recent expansion in infrastructure networks, particularly in lower-resource settings. In parallel, new data sources provided by Open Street Map and Google now capture transportation networks with unprecedented detail and precision. Here we develop and validate a map that quantifies travel time to cities for 2015 at a spatial resolution of approximately one by one kilometre by integrating ten global-scale surfaces that characterize factors affecting human movement rates and 13,840 high-density urban centres within an established geospatial-modelling framework. Our results highlight disparities in accessibility relative to wealth as 50.9% of individuals living in low-income settings (concentrated in sub-Saharan Africa) reside within an hour of a city compared to 90.7% of individuals in high-income settings. By further triangulating this map against socioeconomic datasets, we demonstrate how access to urban centres stratifies the economic, educational, and health status of humanity.

  18. 'Time is costly': modelling the macroeconomic impact of scaling-up antiretroviral treatment in sub-Saharan Africa.

    PubMed

    Ventelou, Bruno; Moatti, Jean-Paul; Videau, Yann; Kazatchkine, Michel

    2008-01-02

    Macroeconomic policy requirements may limit the capacity of national and international policy-makers to allocate sufficient resources for scaling-up access to HIV care and treatment in developing countries. An endogenous growth model, which takes into account the evolution of society's human capital, was used to assess the macroeconomic impact of policies aimed at scaling-up access to HIV/AIDS treatment in six African countries (Angola, Benin, Cameroon, Central African Republic, Ivory Coast and Zimbabwe). The model results showed that scaling-up access to treatment in the affected population would limit gross domestic product losses due to AIDS although differently from country to country. In our simulated scenarios of access to antiretroviral therapy, only 10.3% of the AIDS shock is counterbalanced in Zimbabwe, against 85.2% in Angola and even 100.0% in Benin (a total recovery). For four out of the six countries (Angola, Benin, Cameroon, Ivory Coast), the macro-economic gains of scaling-up would become potentially superior to its associated costs in 2010. Despite the variability of HIV prevalence rates between countries, macro-economic estimates strongly suggest that a massive investment in scaling-up access to HIV treatment may efficiently counteract the detrimental long-term impact of the HIV pandemic on economic growth, to the extent that the AIDS shock has not already driven the economy beyond an irreversible 'no-development epidemiological trap'.

  19. Special Issue on Time Scale Algorithms

    DTIC Science & Technology

    2008-01-01

    are currently Two Way Satellite Time and Frequency Transfer ( TWSTFT ) and GPS carrier phase time transfer. The interest in time scale algorithms and...laboratory-specific innovations and practices, GNSS applications, UTC generation, TWSTFT applications, GPS applications, small-ensemble applications

  20. Detection of crossover time scales in multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  1. Access to care for patients with time-sensitive conditions in Pennsylvania.

    PubMed

    Salhi, Rama A; Edwards, J Matthew; Gaieski, David F; Band, Roger A; Abella, Benjamin S; Carr, Brendan G

    2014-05-01

    Collective knowledge and coordination of vital interventions for time-sensitive conditions (ST-segment elevation myocardial infarction [STEMI], stroke, cardiac arrest, and septic shock) could contribute to a comprehensive statewide emergency care system, but little is known about population access to the resources required. We seek to describe existing clinical management strategies for time-sensitive conditions in Pennsylvania hospitals. All Pennsylvania emergency departments (EDs) open in 2009 were surveyed about resource availability and practice patterns for time-sensitive conditions. The frequency with which EDs provided essential clinical bundles for each condition was assessed. Penalized maximum likelihood regressions were used to evaluate associations between ED characteristics and the presence of the 4 clinical bundles of care. We used geographic information science to calculate 60-minute ambulance access to the nearest facility with these clinical bundles. The percentage of EDs providing each of the 4 clinical bundles in 2009 ranged from 20% to 57% (stroke 20%, STEMI 32%, cardiac arrest 34%, sepsis 57%). For STEMI and stroke, presence of a board-certified/board-eligible emergency physician was significantly associated with presence of a clinical bundle. Only 8% of hospitals provided all 4 care bundles. However, 53% of the population was able to reach this minority of hospitals within 60 minutes. Reliably matching patient needs to ED resources in time-dependent illness is a critical component of a coordinated emergency care system. Population access to critical interventions for the time-dependent diseases discussed here is limited. A population-based planning approach and improved coordination of care could improve access to interventions for patients with time-sensitive conditions. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  2. Influence of chick hatch time and access to feed on broiler muscle development.

    PubMed

    Powell, D J; Velleman, S G; Cowieson, A J; Singh, M; Muir, W I

    2016-06-01

    The effect of hatch time and the timing of access to feed on growth rate and breast muscle development was assessed in Ross 308 broiler chickens. Chicks were removed from the incubator upon hatching, and classified as early (EH), midterm (MH), or late (LH) hatchers, based on the duration of their incubation. Feed and water were available either immediately at hatch, or 24 h after the conclusion of the hatch period. Hatchling body weight was uniform regardless of hatch time. Subsequently, bodyweight was increased in EH compared to LH birds following immediate access to feed, until 7 d in female, and 14 d in male birds. Relative breast weight was increased until 28 d in birds with immediate access to feed, and also EH and MH birds regardless of access to feed. Pectoralis major muscle morphology and expression of the myogenic regulatory factors myogenic determination factor 1 (MYOD1) and myogenin, and the proteoglycans syndecan-4, glypican-1, and decorin were measured. Myogenin and glypican-1 stimulate satellite cell (SC) differentiation. Glypican-1 expression was unaffected by treatment. A late increase in myogenin expression was observed in MH birds with delayed access to feed, and all LH birds. Syndecan-4 and MYOD1, expressed in proliferating SC, and decorin, which stimulates satellite cell proliferation and differentiation, were variably upregulated in the first wk posthatch in the same birds. These data suggest SC were activated and proliferating, but had reduced differentiation in later hatching and feed deprived birds. Conversely, EH birds with immediate access to feed had maximal myofiber width at 7 d, while fiber width was increased in birds with immediate access to feed compared to those with delayed access to feed through 40 d of age. These results demonstrate that delaying chick access to feed for 24 h upon removal from the incubator will impair muscle growth. Additionally, hatch time influences muscle development, with accelerated muscle growth in EH and

  3. On time scales and time synchronization using LORAN-C as a time reference signal

    NASA Technical Reports Server (NTRS)

    Chi, A. R.

    1974-01-01

    The long term performance of the eight LORAN-C chains is presented in terms of the Coordinated Universal Time (UTC) of the U.S. Naval Observatory (USNO); and the use of the LORAN-C navigation system for maintaining the user's clock to a UTC scale is described. The atomic time scale and the UTC of several national laboratories and observatories relative to the international atomic time are reported. Typical performance of several NASA tracking station clocks, relative to the USNO master clock, is also presented.

  4. Characteristic Time Scales of Characteristic Magmatic Processes and Systems

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2004-05-01

    Every specific magmatic process, regardless of spatial scale, has an associated characteristic time scale. Time scales associated with crystals alone are rates of growth, dissolution, settling, aggregation, annealing, and nucleation, among others. At the other extreme are the time scales associated with the dynamics of the entire magmatic system. These can be separated into two groups: those associated with system genetics (e.g., the production and transport of magma, establishment of the magmatic system) and those due to physical characteristics of the established system (e.g., wall rock failure, solidification front propagation and instability, porous flow). The detailed geometry of a specific magmatic system is particularly important to appreciate; although generic systems are useful, care must be taken to make model systems as absolutely realistic as possible. Fuzzy models produce fuzzy science. Knowledge of specific time scales is not necessarily useful or meaningful unless the hierarchical context of the time scales for a realistic magmatic system is appreciated. The age of a specific phenocryst or ensemble of phenocrysts, as determined from isotopic or CSD studies, is not meaningful unless something can be ascertained of the provenance of the crystals. For example, crystal size multiplied by growth rate gives a meaningful crystal age only if it is from a part of the system that has experienced semi-monotonic cooling prior to chilling; crystals entrained from a long-standing cumulate bed that were mechanically sorted in ascending magma may not reveal this history. Ragged old crystals rolling about in the system for untold numbers of flushing times record specious process times, telling more about the noise in the system than the life of typical, first generation crystallization processes. The most helpful process-related time scales are those that are known well and that bound or define the temporal style of the system. Perhaps the most valuable of these

  5. Liquidity crises on different time scales

    NASA Astrophysics Data System (ADS)

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  6. Liquidity crises on different time scales.

    PubMed

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  7. Multiple-time scales analysis of physiological time series under neural control

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Hausdorff, J. M.; Havlin, S.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.

    1998-01-01

    We discuss multiple-time scale properties of neurophysiological control mechanisms, using heart rate and gait regulation as model systems. We find that scaling exponents can be used as prognostic indicators. Furthermore, detection of more subtle degradation of scaling properties may provide a novel early warning system in subjects with a variety of pathologies including those at high risk of sudden death.

  8. Simulating recurrent event data with hazard functions defined on a total time scale.

    PubMed

    Jahn-Eimermacher, Antje; Ingel, Katharina; Ozga, Ann-Kathrin; Preussler, Stella; Binder, Harald

    2015-03-08

    In medical studies with recurrent event data a total time scale perspective is often needed to adequately reflect disease mechanisms. This means that the hazard process is defined on the time since some starting point, e.g. the beginning of some disease, in contrast to a gap time scale where the hazard process restarts after each event. While techniques such as the Andersen-Gill model have been developed for analyzing data from a total time perspective, techniques for the simulation of such data, e.g. for sample size planning, have not been investigated so far. We have derived a simulation algorithm covering the Andersen-Gill model that can be used for sample size planning in clinical trials as well as the investigation of modeling techniques. Specifically, we allow for fixed and/or random covariates and an arbitrary hazard function defined on a total time scale. Furthermore we take into account that individuals may be temporarily insusceptible to a recurrent incidence of the event. The methods are based on conditional distributions of the inter-event times conditional on the total time of the preceeding event or study start. Closed form solutions are provided for common distributions. The derived methods have been implemented in a readily accessible R script. The proposed techniques are illustrated by planning the sample size for a clinical trial with complex recurrent event data. The required sample size is shown to be affected not only by censoring and intra-patient correlation, but also by the presence of risk-free intervals. This demonstrates the need for a simulation algorithm that particularly allows for complex study designs where no analytical sample size formulas might exist. The derived simulation algorithm is seen to be useful for the simulation of recurrent event data that follow an Andersen-Gill model. Next to the use of a total time scale, it allows for intra-patient correlation and risk-free intervals as are often observed in clinical trial data

  9. Measuring the EMS patient access time interval and the impact of responding to high-rise buildings.

    PubMed

    Morrison, Laurie J; Angelini, Mark P; Vermeulen, Marian J; Schwartz, Brian

    2005-01-01

    To measure the patient access time interval and characterize its contribution to the total emergency medical services (EMS) response time interval; to compare the patient access time intervals for patients located three or more floors above ground with those less than three floors above or below ground, and specifically in the apartment subgroup; and to identify barriers that significantly impede EMS access to patients in high-rise apartments. An observational study of all patients treated by an emergency medical technician paramedics (EMT-P) crew was conducted using a trained independent observer to collect time intervals and identify potential barriers to access. Of 118 observed calls, 25 (21%) originated from patients three or more floors above ground. The overall median and 90th percentile (95% confidence interval) patient access time intervals were 1.61 (1.27, 1.91) and 3.47 (3.08, 4.05) minutes, respectively. The median interval was 2.73 (2.22, 3.03) minutes among calls from patients located three or more stories above ground compared with 1.25 (1.07, 1.55) minutes among those at lower levels. The patient access time interval represented 23.5% of the total EMS response time interval among calls originating less than three floors above or below ground and 32.2% of those located three or more stories above ground. The most frequently encountered barriers to access included security code entry requirements, lack of directional signs, and inability to fit the stretcher into the elevator. The patient access time interval is significantly long and represents a substantial component of the total EMS response time interval, especially among ambulance calls originating three or more floors above ground. A number of barriers appear to contribute to delayed paramedic access.

  10. Secure Access Control and Large Scale Robust Representation for Online Multimedia Event Detection

    PubMed Central

    Liu, Changyu; Li, Huiling

    2014-01-01

    We developed an online multimedia event detection (MED) system. However, there are a secure access control issue and a large scale robust representation issue when we want to integrate traditional event detection algorithms into the online environment. For the first issue, we proposed a tree proxy-based and service-oriented access control (TPSAC) model based on the traditional role based access control model. Verification experiments were conducted on the CloudSim simulation platform, and the results showed that the TPSAC model is suitable for the access control of dynamic online environments. For the second issue, inspired by the object-bank scene descriptor, we proposed a 1000-object-bank (1000OBK) event descriptor. Feature vectors of the 1000OBK were extracted from response pyramids of 1000 generic object detectors which were trained on standard annotated image datasets, such as the ImageNet dataset. A spatial bag of words tiling approach was then adopted to encode these feature vectors for bridging the gap between the objects and events. Furthermore, we performed experiments in the context of event classification on the challenging TRECVID MED 2012 dataset, and the results showed that the robust 1000OBK event descriptor outperforms the state-of-the-art approaches. PMID:25147840

  11. Secure access control and large scale robust representation for online multimedia event detection.

    PubMed

    Liu, Changyu; Lu, Bin; Li, Huiling

    2014-01-01

    We developed an online multimedia event detection (MED) system. However, there are a secure access control issue and a large scale robust representation issue when we want to integrate traditional event detection algorithms into the online environment. For the first issue, we proposed a tree proxy-based and service-oriented access control (TPSAC) model based on the traditional role based access control model. Verification experiments were conducted on the CloudSim simulation platform, and the results showed that the TPSAC model is suitable for the access control of dynamic online environments. For the second issue, inspired by the object-bank scene descriptor, we proposed a 1000-object-bank (1000OBK) event descriptor. Feature vectors of the 1000OBK were extracted from response pyramids of 1000 generic object detectors which were trained on standard annotated image datasets, such as the ImageNet dataset. A spatial bag of words tiling approach was then adopted to encode these feature vectors for bridging the gap between the objects and events. Furthermore, we performed experiments in the context of event classification on the challenging TRECVID MED 2012 dataset, and the results showed that the robust 1000OBK event descriptor outperforms the state-of-the-art approaches.

  12. Time-Scale Modification of Complex Acoustic Signals in Noise

    DTIC Science & Technology

    1994-02-04

    of a response from a closing stapler . 15 6 Short-time processing of long waveforms. 16 7 Time-scale expansion (x 2) of sequence of transients using...filter bank/overlap- add. 17 8 Time-scale expansion (x2) of a closing stapler using filter bank/overlap-add. 18 9 Composite subband time-scale...INTRODUCTION Short-duration complex sounds, as from the closing of a stapler or the tapping of a drum stick, often consist of a series of brief

  13. Implementation Strategies for Large-Scale Transport Simulations Using Time Domain Particle Tracking

    NASA Astrophysics Data System (ADS)

    Painter, S.; Cvetkovic, V.; Mancillas, J.; Selroos, J.

    2008-12-01

    Time domain particle tracking is an emerging alternative to the conventional random walk particle tracking algorithm. With time domain particle tracking, particles are moved from node to node on one-dimensional pathways defined by streamlines of the groundwater flow field or by discrete subsurface features. The time to complete each deterministic segment is sampled from residence time distributions that include the effects of advection, longitudinal dispersion, a variety of kinetically controlled retention (sorption) processes, linear transformation, and temporal changes in groundwater velocities and sorption parameters. The simulation results in a set of arrival times at a monitoring location that can be post-processed with a kernel method to construct mass discharge (breakthrough) versus time. Implementation strategies differ for discrete flow (fractured media) systems and continuous porous media systems. The implementation strategy also depends on the scale at which hydraulic property heterogeneity is represented in the supporting flow model. For flow models that explicitly represent discrete features (e.g., discrete fracture networks), the sampling of residence times along segments is conceptually straightforward. For continuous porous media, such sampling needs to be related to the Lagrangian velocity field. Analytical or semi-analytical methods may be used to approximate the Lagrangian segment velocity distributions in aquifers with low-to-moderate variability, thereby capturing transport effects of subgrid velocity variability. If variability in hydraulic properties is large, however, Lagrangian velocity distributions are difficult to characterize and numerical simulations are required; in particular, numerical simulations are likely to be required for estimating the velocity integral scale as a basis for advective segment distributions. Aquifers with evolving heterogeneity scales present additional challenges. Large-scale simulations of radionuclide

  14. Dynamic correlations at different time-scales with empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Nava, Noemi; Di Matteo, T.; Aste, Tomaso

    2018-07-01

    We introduce a simple approach which combines Empirical Mode Decomposition (EMD) and Pearson's cross-correlations over rolling windows to quantify dynamic dependency at different time scales. The EMD is a tool to separate time series into implicit components which oscillate at different time-scales. We apply this decomposition to intraday time series of the following three financial indices: the S&P 500 (USA), the IPC (Mexico) and the VIX (volatility index USA), obtaining time-varying multidimensional cross-correlations at different time-scales. The correlations computed over a rolling window are compared across the three indices, across the components at different time-scales and across different time lags. We uncover a rich heterogeneity of interactions, which depends on the time-scale and has important lead-lag relations that could have practical use for portfolio management, risk estimation and investment decisions.

  15. Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.

    PubMed

    Serebrinsky, Santiago A

    2011-03-01

    We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.

  16. Influence of hatch time and access to feed on intramuscular adipose tissue deposition in broilers.

    PubMed

    Powell, D J; Velleman, S G; Cowieson, A J; Singh, M; Muir, W I

    2016-06-01

    The effect of hatch time and subsequent access to feed on intramuscular adipose tissue deposition was studied in the pectoralis major muscle of male Ross 308 broiler chickens. Based on their hatch time chicks were classified as early (EH), midterm (MH), or late (LH) hatchers, with an average incubation duration of 497.7 h for EH, 508.8 h for MH, and 514.5 h for LH birds. Chicks were provided access to feed either immediately at hatch, or 24 h after the conclusion of the hatch window. Expression of the adipogenic regulatory genes peroxisome proliferator-activated receptor gamma (PPARγ), and stearoyl-CoA desaturase (SCD), were measured at the time of hatch, and zero, one, 4, 7, 28, and 40 d. Intramuscular adipocyte cell width and visualization of adipose tissue deposition was observed at 28 and 40 d. Expression of PPARγ was increased in the pectoralis major of LH birds at the time of hatch, zero, and one d. The expression of PPARγ at one and 7 d, and SCD at 7 d were increased in all birds that received delayed access to feed. At 28 d, adipocyte cell width was increased in LH birds with delayed access to feed, compared to EH and MH birds with delayed access to feed and LH birds with immediate access to feed. At 40 d, adipocyte cell width was increased in all birds that received delayed access to feed. Also at 40 d, there was a trend (P = 0.078) for more extensive intramuscular adipose tissue deposition in LH than EH birds, and in birds with delayed access to feed (P = 0.075). These data indicate delayed access to feed increases intramuscular adipose tissue deposition in the pectoralis major muscle, and suggest that hatch time influences this regulation. © 2016 Poultry Science Association Inc.

  17. An optimal modification of a Kalman filter for time scales

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    2003-01-01

    The Kalman filter in question, which was implemented in the time scale algorithm TA(NIST), produces time scales with poor short-term stability. A simple modification of the error covariance matrix allows the filter to produce time scales with good stability at all averaging times, as verified by simulations of clock ensembles.

  18. Estimating spatial accessibility to facilities on the regional scale: an extended commuting-based interaction potential model

    PubMed Central

    2011-01-01

    Background There is growing interest in the study of the relationships between individual health-related behaviours (e.g. food intake and physical activity) and measurements of spatial accessibility to the associated facilities (e.g. food outlets and sport facilities). The aim of this study is to propose measurements of spatial accessibility to facilities on the regional scale, using aggregated data. We first used a potential accessibility model that partly makes it possible to overcome the limitations of the most frequently used indices such as the count of opportunities within a given neighbourhood. We then propose an extended model in order to take into account both home and work-based accessibility for a commuting population. Results Potential accessibility estimation provides a very different picture of the accessibility levels experienced by the population than the more classical "number of opportunities per census tract" index. The extended model for commuters increases the overall accessibility levels but this increase differs according to the urbanisation level. Strongest increases are observed in some rural municipalities with initial low accessibility levels. Distance to major urban poles seems to play an essential role. Conclusions Accessibility is a multi-dimensional concept that should integrate some aspects of travel behaviour. Our work supports the evidence that the choice of appropriate accessibility indices including both residential and non-residential environmental features is necessary. Such models have potential implications for providing relevant information to policy-makers in the field of public health. PMID:21219597

  19. An algorithm for the Italian atomic time scale

    NASA Technical Reports Server (NTRS)

    Cordara, F.; Vizio, G.; Tavella, P.; Pettiti, V.

    1994-01-01

    During the past twenty years, the time scale at the IEN has been realized by a commercial cesium clock, selected from an ensemble of five, whose rate has been continuously steered towards UTC to maintain a long term agreement within 3 x 10(exp -13). A time scale algorithm, suitable for a small clock ensemble and capable of improving the medium and long term stability of the IEN time scale, has been recently designed taking care of reducing the effects of the seasonal variations and the sudden frequency anomalies of the single cesium clocks. The new time scale, TA(IEN), is obtained as a weighted average of the clock ensemble computed once a day from the time comparisons between the local reference UTC(IEN) and the single clocks. It is foreseen to include in the computation also ten cesium clocks maintained in other Italian laboratories to further improve its reliability and its long term stability. To implement this algorithm, a personal computer program in Quick Basic has been prepared and it has been tested at the IEN time and frequency laboratory. Results obtained using this algorithm on the real clocks data relative to a period of about two years are presented.

  20. Scaling properties in time-varying networks with memory

    NASA Astrophysics Data System (ADS)

    Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong

    2015-12-01

    The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.

  1. Health research needs more comprehensive accessibility measures: integrating time and transport modes from open data.

    PubMed

    Tenkanen, Henrikki; Saarsalmi, Perttu; Järv, Olle; Salonen, Maria; Toivonen, Tuuli

    2016-07-28

    In this paper, we demonstrate why and how both temporality and multimodality should be integrated in health related studies that include accessibility perspective, in this case healthy food accessibility. We provide evidence regarding the importance of using multimodal spatio-temporal accessibility measures when conducting research in urban contexts and propose a methodological approach for integrating different travel modes and temporality to spatial accessibility analyses. We use the Helsinki metropolitan area (Finland) as our case study region to demonstrate the effects of temporality and modality on the results. Spatial analyses were carried out on 250 m statistical grid squares. We measured travel times between the home location of inhabitants and open grocery stores providing healthy food at 5 p.m., 10 p.m., and 1 a.m. using public transportation and private cars. We applied the so-called door-to-door approach for the travel time measurements to obtain more realistic and comparable results between travel modes. The analyses are based on open access data and publicly available open-source tools, thus similar analyses can be conducted in urban regions worldwide. Our results show that both time and mode of transport have a prominent impact on the outcome of the analyses; thus, understanding the realities of accessibility in a city may be very different according to the setting of the analysis used. In terms of travel time, there is clear variation in the results at different times of the day. In terms of travel mode, our results show that when analyzed in a comparable manner, public transport can be an even faster mode than a private car to access healthy food, especially in central areas of the city where the service network is dense and public transportation system is effective. This study demonstrates that time and transport modes are essential components when modeling health-related accessibility in urban environments. Neglecting them from spatial

  2. Design Alternatives to Improve Access Time Performance of Disk Drives Under DOS and UNIX

    NASA Astrophysics Data System (ADS)

    Hospodor, Andy

    For the past 25 years, improvements in CPU performance have overshadowed improvements in the access time performance of disk drives. CPU performance has been slanted towards greater instruction execution rates, measured in millions of instructions per second (MIPS). However, the slant for performance of disk storage has been towards capacity and corresponding increased storage densities. The IBM PC, introduced in 1982, processed only a fraction of a MIP. Follow-on CPUs, such as the 80486 and 80586, sported 5-10 MIPS by 1992. Single user PCs and workstations, with one CPU and one disk drive, became the dominant application, as implied by their production volumes. However, disk drives did not enjoy a corresponding improvement in access time performance, although the potential still exists. The time to access a disk drive improves (decreases) in two ways: by altering the mechanical properties of the drive or by adding cache to the drive. This paper explores the improvement to access time performance of disk drives using cache, prefetch, faster rotation rates, and faster seek acceleration.

  3. Accessing Stereochemically Rich Sultams via Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS) Scale-out

    PubMed Central

    Organ, Michael G.; Hanson, Paul R.; Rolfe, Alan; Samarakoon, Thiwanka B.; Ullah, Farman

    2011-01-01

    The generation of stereochemically-rich benzothiaoxazepine-1,1′-dioxides for enrichment of high-throughput screening collections is reported. Utilizing a microwave-assisted, continuous flow organic synthesis platform (MACOS), scale-out of core benzothiaoxazepine-1,1′-dioxide scaffolds has been achieved on multi-gram scale using an epoxide opening/SNAr cyclization protocol. Diversification of these sultam scaffolds was attained via a microwave-assisted intermolecular SNAr reaction with a variety of amines. Overall, a facile, 2-step protocol generated a collection of benzothiaoxazepine-1,1′-dioxides possessing stereochemical complexity in rapid fashion, where all 8 stereoisomers were accessed from commercially available starting materials. PMID:22116791

  4. Real-time simulation of large-scale floods

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  5. Time-dependent scaling patterns in high frequency financial data

    NASA Astrophysics Data System (ADS)

    Nava, Noemi; Di Matteo, Tiziana; Aste, Tomaso

    2016-10-01

    We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices of various stock market indices. Our results reveal intraday trends where different time-horizons contribute with variable relative amplitudes over the course of the trading day. Our findings indicate that the time series we analysed have a non-stationary multifractal nature with predominantly persistent behaviour at the middle of the trading session and anti-persistent behaviour at the opening and at the closing of the session. We demonstrate that these patterns are statistically significant, robust, reproducible and characteristic of each stock market. We argue that any modelling, analytics or trading strategy must take into account these non-stationary intraday scaling patterns.

  6. Geospatial Data as a Service: Towards planetary scale real-time analytics

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.; Larraondo, P. R.; Antony, J.; Richards, C. J.

    2017-12-01

    The rapid growth of earth systems, environmental and geophysical datasets poses a challenge to both end-users and infrastructure providers. For infrastructure and data providers, tasks like managing, indexing and storing large collections of geospatial data needs to take into consideration the various use cases by which consumers will want to access and use the data. Considerable investment has been made by the Earth Science community to produce suitable real-time analytics platforms for geospatial data. There are currently different interfaces that have been defined to provide data services. Unfortunately, there is considerable difference on the standards, protocols or data models which have been designed to target specific communities or working groups. The Australian National University's National Computational Infrastructure (NCI) is used for a wide range of activities in the geospatial community. Earth observations, climate and weather forecasting are examples of these communities which generate large amounts of geospatial data. The NCI has been carrying out significant effort to develop a data and services model that enables the cross-disciplinary use of data. Recent developments in cloud and distributed computing provide a publicly accessible platform where new infrastructures can be built. One of the key components these technologies offer is the possibility of having "limitless" compute power next to where the data is stored. This model is rapidly transforming data delivery from centralised monolithic services towards ubiquitous distributed services that scale up and down adapting to fluctuations in the demand. NCI has developed GSKY, a scalable, distributed server which presents a new approach for geospatial data discovery and delivery based on OGC standards. We will present the architecture and motivating use-cases that drove GSKY's collaborative design, development and production deployment. We show our approach offers the community valuable exploratory

  7. Universal scaling function in discrete time asymmetric exclusion processes

    NASA Astrophysics Data System (ADS)

    Chia, Nicholas; Bundschuh, Ralf

    2005-03-01

    In the universality class of the one dimensional Kardar-Parisi-Zhang surface growth, Derrida and Lebowitz conjectured the universality of not only the scaling exponents, but of an entire scaling function. Since Derrida and Lebowitz' original publication this universality has been verified for a variety of continuous time systems in the KPZ universality class. We study the Derrida-Lebowitz scaling function for multi-particle versions of the discrete time Asymmetric Exclusion Process. We find that in this discrete time system the Derrida-Lebowitz scaling function not only properly characterizes the large system size limit, but even accurately describes surprisingly small systems. These results have immediate applications in searching biological sequence databases.

  8. Physics in space-time with scale-dependent metrics

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  9. Time Scale Optimization and the Hunt for Astronomical Cycles in Deep Time Strata

    NASA Astrophysics Data System (ADS)

    Meyers, Stephen R.

    2016-04-01

    A valuable attribute of astrochronology is the direct link between chronometer and climate change, providing a remarkable opportunity to constrain the evolution of the surficial Earth System. Consequently, the hunt for astronomical cycles in strata has spurred the development of a rich conceptual framework for climatic/oceanographic change, and has allowed exploration of the geologic record with unprecedented temporal resolution. Accompanying these successes, however, has been a persistent skepticism about appropriate astrochronologic testing and circular reasoning: how does one reliably test for astronomical cycles in stratigraphic data, especially when time is poorly constrained? From this perspective, it would seem that the merits and promise of astrochronology (e.g., a geologic time scale measured in ≤400 kyr increments) also serves as its Achilles heel, if the confirmation of such short rhythms defies rigorous statistical testing. To address these statistical challenges in astrochronologic testing, a new approach has been developed that (1) explicitly evaluates time scale uncertainty, (2) is resilient to common problems associated with spectrum confidence level assessment and 'multiple testing', and (3) achieves high statistical power under a wide range of conditions (it can identify astronomical cycles when present in data). Designated TimeOpt (for "time scale optimization"; Meyers 2015), the method employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This presentation will review the TimeOpt method, and demonstrate how the flexible statistical framework can be further extended to evaluate (and optimize upon) complex sedimentation rate models, enhancing the statistical power of the approach, and addressing the challenge of unsteady sedimentation. Meyers, S. R. (2015), The evaluation of eccentricity

  10. Accuracy metrics for judging time scale algorithms

    NASA Technical Reports Server (NTRS)

    Douglas, R. J.; Boulanger, J.-S.; Jacques, C.

    1994-01-01

    Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.

  11. Providing web-based tools for time series access and analysis

    NASA Astrophysics Data System (ADS)

    Eberle, Jonas; Hüttich, Christian; Schmullius, Christiane

    2014-05-01

    Time series information is widely used in environmental change analyses and is also an essential information for stakeholders and governmental agencies. However, a challenging issue is the processing of raw data and the execution of time series analysis. In most cases, data has to be found, downloaded, processed and even converted in the correct data format prior to executing time series analysis tools. Data has to be prepared to use it in different existing software packages. Several packages like TIMESAT (Jönnson & Eklundh, 2004) for phenological studies, BFAST (Verbesselt et al., 2010) for breakpoint detection, and GreenBrown (Forkel et al., 2013) for trend calculations are provided as open-source software and can be executed from the command line. This is needed if data pre-processing and time series analysis is being automated. To bring both parts, automated data access and data analysis, together, a web-based system was developed to provide access to satellite based time series data and access to above mentioned analysis tools. Users of the web portal are able to specify a point or a polygon and an available dataset (e.g., Vegetation Indices and Land Surface Temperature datasets from NASA MODIS). The data is then being processed and provided as a time series CSV file. Afterwards the user can select an analysis tool that is being executed on the server. The final data (CSV, plot images, GeoTIFFs) is visualized in the web portal and can be downloaded for further usage. As a first use case, we built up a complimentary web-based system with NASA MODIS products for Germany and parts of Siberia based on the Earth Observation Monitor (www.earth-observation-monitor.net). The aim of this work is to make time series analysis with existing tools as easy as possible that users can focus on the interpretation of the results. References: Jönnson, P. and L. Eklundh (2004). TIMESAT - a program for analysing time-series of satellite sensor data. Computers and Geosciences 30

  12. An Efficient Format for Nearly Constant-Time Access to Arbitrary Time Intervals in Large Trace Files

    DOE PAGES

    Chan, Anthony; Gropp, William; Lusk, Ewing

    2008-01-01

    A powerful method to aid in understanding the performance of parallel applications uses log or trace files containing time-stamped events and states (pairs of events). These trace files can be very large, often hundreds or even thousands of megabytes. Because of the cost of accessing and displaying such files, other methods are often used that reduce the size of the tracefiles at the cost of sacrificing detail or other information. This paper describes a hierarchical trace file format that provides for display of an arbitrary time window in a time independent of the total size of the file and roughlymore » proportional to the number of events within the time window. This format eliminates the need to sacrifice data to achieve a smaller trace file size (since storage is inexpensive, it is necessary only to make efficient use of bandwidth to that storage). The format can be used to organize a trace file or to create a separate file of annotations that may be used with conventional trace files. We present an analysis of the time to access all of the events relevant to an interval of time and we describe experiments demonstrating the performance of this file format.« less

  13. Time scales of supercooled water and implications for reversible polyamorphism

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Chandler, David

    2015-09-01

    Deeply supercooled water exhibits complex dynamics with large density fluctuations, ice coarsening and characteristic time scales extending from picoseconds to milliseconds. Here, we discuss implications of these time scales as they pertain to two-phase coexistence and to molecular simulations of supercooled water. Specifically, we argue that it is possible to discount liquid-liquid criticality because the time scales imply that correlation lengths for such behaviour would be bounded by no more than a few nanometres. Similarly, it is possible to discount two-liquid coexistence because the time scales imply a bounded interfacial free energy that cannot grow in proportion to a macroscopic surface area. From time scales alone, therefore, we see that coexisting domains of differing density in supercooled water can be no more than nanoscale transient fluctuations.

  14. Time scale bias in erosion rates of glaciated landscapes

    PubMed Central

    Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P.; Fischer, Woodward W.; Avouac, Jean-Philippe

    2016-01-01

    Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time. PMID:27713925

  15. Time scale bias in erosion rates of glaciated landscapes.

    PubMed

    Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P; Fischer, Woodward W; Avouac, Jean-Philippe

    2016-10-01

    Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time.

  16. Data Reorganization for Optimal Time Series Data Access, Analysis, and Visualization

    NASA Astrophysics Data System (ADS)

    Rui, H.; Teng, W. L.; Strub, R.; Vollmer, B.

    2012-12-01

    The way data are archived is often not optimal for their access by many user communities (e.g., hydrological), particularly if the data volumes and/or number of data files are large. The number of data records of a non-static data set generally increases with time. Therefore, most data sets are commonly archived by time steps, one step per file, often containing multiple variables. However, many research and application efforts need time series data for a given geographical location or area, i.e., a data organization that is orthogonal to the way the data are archived. The retrieval of a time series of the entire temporal coverage of a data set for a single variable at a single data point, in an optimal way, is an important and longstanding challenge, especially for large science data sets (i.e., with volumes greater than 100 GB). Two examples of such large data sets are the North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS), archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC; Hydrology Data Holdings Portal, http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings). To date, the NLDAS data set, hourly 0.125x0.125° from Jan. 1, 1979 to present, has a total volume greater than 3 TB (compressed). The GLDAS data set, 3-hourly and monthly 0.25x0.25° and 1.0x1.0° Jan. 1948 to present, has a total volume greater than 1 TB (compressed). Both data sets are accessible, in the archived time step format, via several convenient methods, including Mirador search and download (http://mirador.gsfc.nasa.gov/), GrADS Data Server (GDS; http://hydro1.sci.gsfc.nasa.gov/dods/), direct FTP (ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/), and Giovanni Online Visualization and Analysis (http://disc.sci.gsfc.nasa.gov/giovanni). However, users who need long time series currently have no efficient way to retrieve them. Continuing a longstanding tradition of facilitating data access, analysis, and

  17. Time scales of tunneling decay of a localized state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, Yue; Muga, J. G.; Sherman, E. Ya.

    2010-12-15

    Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observingmore » diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.« less

  18. Adolescent Time Attitude Scale: Adaptation into Turkish

    ERIC Educational Resources Information Center

    Çelik, Eyüp; Sahranç, Ümit; Kaya, Mehmet; Turan, Mehmet Emin

    2017-01-01

    This research is aimed at examining the validity and reliability of the Turkish version of the Time Attitude Scale. Data was collected from 433 adolescents; 206 males and 227 females participated in the study. Confirmatory factor analysis performed to discover the structural validity of the scale. The internal consistency method was used for…

  19. The Available Time Scale: Measuring Foster Parents' Available Time to Foster

    ERIC Educational Resources Information Center

    Cherry, Donna J.; Orme, John G.; Rhodes, Kathryn W.

    2009-01-01

    This article presents a new measure of available time specific to fostering, the Available Time Scale (ATS). It was tested with a national sample of 304 foster mothers and is designed to measure the amount of time foster parents are able to devote to fostering activities. The ATS has excellent reliability, and good support exists for its validity.…

  20. The Time Series Data Server (TSDS) for Standards-Compliant, Convenient, and Efficient Access to Time Series Data

    NASA Astrophysics Data System (ADS)

    Lindholm, D. M.; Weigel, R. S.; Wilson, A.; Ware Dewolfe, A.

    2009-12-01

    Data analysis in the physical sciences is often plagued by the difficulty in acquiring the desired data. A great deal of work has been done in the area of metadata and data discovery, however, many such discoveries simply provide links that lead directly to a data file. Often these files are impractically large, containing more time samples or variables than desired, and are slow to access. Once these files are downloaded, format issues further complicate using the data. Some data servers have begun to address these problems by improving data virtualization and ease of use. However, these services often don't scale to large datasets. Also, the generic nature of the data models used by these servers, while providing greater flexibility, may complicate setting up such a service for data providers and limit sufficient semantics that would otherwise simplify use for clients, machine or human. The Time Series Data Server (TSDS) aims to address these problems within the limited, yet common, domain of time series data. With the simplifying assumption that all data products served are a function of time, the server can optimize for data access based on time subsets, a common use case. The server also supports requests for specific variables, which can be of type scalar, structure, or sequence. It also supports data types with higher level semantics, such as "spectrum." The TSDS is implemented using Java Servlet technology and can be dropped into any servlet container and customized for a data provider's needs. The interface is based on OPeNDAP (http://opendap.org) and conforms to the Data Acces Protocol (DAP) 2.0, a NASA standard (ESDS-RFC-004), which defines a simple HTTP request and response paradigm. Thus a TSDS server instance is a compliant OPeNDAP server that can be accessed by any OPeNDAP client or directly via RESTful web service requests. The TSDS reads the data that it serves into a common data model via the NetCDF Markup Language (NcML, http

  1. A model for optimizing file access patterns using spatio-temporal parallelism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boonthanome, Nouanesengsy; Patchett, John; Geveci, Berk

    2013-01-01

    For many years now, I/O read time has been recognized as the primary bottleneck for parallel visualization and analysis of large-scale data. In this paper, we introduce a model that can estimate the read time for a file stored in a parallel filesystem when given the file access pattern. Read times ultimately depend on how the file is stored and the access pattern used to read the file. The file access pattern will be dictated by the type of parallel decomposition used. We employ spatio-temporal parallelism, which combines both spatial and temporal parallelism, to provide greater flexibility to possible filemore » access patterns. Using our model, we were able to configure the spatio-temporal parallelism to design optimized read access patterns that resulted in a speedup factor of approximately 400 over traditional file access patterns.« less

  2. Intramolecular stable isotope distributions detect plant metabolic responses on century time scales

    NASA Astrophysics Data System (ADS)

    Schleucher, Jürgen; Ehlers, Ina; Augusti, Angela; Betson, Tatiana

    2014-05-01

    vast majority of crop species. To access century time scales, we traced this metabolic signal in historic material of two crop species during the past 100 years and find the same response as predicted from the greenhouse experiments. This allows estimating how much photorespiration has been reduced due to the anthropogenic CO2 emission during the 20th century, and shows that plants have not acclimated to increasing [CO2] during more than 100 generations. In summary, we demonstrate that metabolic responses of plants to environmental changes create intramolecular isotope signals. These signals can be identified in manipulation experiments and can be retrieved from plant archives. The isotope abundance of each intramolecular position is set by specific isotope fractionations, such as enzyme isotope effects or hydrogen exchange with xylem water (Augusti et al., Chem. Geol. 2008). Therefore it may be possible to simultaneously reconstruct several physiologic or climate signals from an archive of a single molecule. The principles governing intramolecular isotope distributions are general for all metabolites and isotopes (D, 13C), therefore intramolecular isotope distributions can multiply the information content of paleo archives. In particular, they allow extraction of metabolic information on long time scales, thereby connecting plant physiology with paleo research.

  3. Essential Skills and Knowledge for Troubleshooting E-Resources Access Issues in a Web-Scale Discovery Environment

    ERIC Educational Resources Information Center

    Carter, Sunshine; Traill, Stacie

    2017-01-01

    Electronic resource access troubleshooting is familiar work in most libraries. The added complexity introduced when a library implements a web-scale discovery service, however, creates a strong need for well-organized, rigorous training to enable troubleshooting staff to provide the best service possible. This article outlines strategies, tools,…

  4. Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie

    PubMed Central

    Parker, Joseph; Struhl, Gary

    2015-01-01

    Organ growth is controlled by patterning signals that operate locally (e.g., Wingless/Ints [Wnts], Bone Morphogenetic Proteins [BMPs], and Hedgehogs [Hhs]) and scaled by nutrient-dependent signals that act systemically (e.g., Insulin-like peptides [ILPs] transduced by the Target of Rapamycin [TOR] pathway). How cells integrate these distinct inputs to generate organs of the appropriate size and shape is largely unknown. The transcriptional coactivator Yorkie (Yki, a YES-Associated Protein, or YAP) acts downstream of patterning morphogens and other tissue-intrinsic signals to promote organ growth. Yki activity is regulated primarily by the Warts/Hippo (Wts/Hpo) tumour suppressor pathway, which impedes nuclear access of Yki by a cytoplasmic tethering mechanism. Here, we show that the TOR pathway regulates Yki by a separate and novel mechanism in the Drosophila wing. Instead of controlling Yki nuclear access, TOR signaling governs Yki action after it reaches the nucleus by allowing it to gain access to its target genes. When TOR activity is inhibited, Yki accumulates in the nucleus but is sequestered from its normal growth-promoting target genes—a phenomenon we term “nuclear seclusion.” Hence, we posit that in addition to its well-known role in stimulating cellular metabolism in response to nutrients, TOR also promotes wing growth by liberating Yki from nuclear seclusion, a parallel pathway that we propose contributes to the scaling of wing size with nutrient availability. PMID:26474042

  5. Ensembl Genomes 2013: scaling up access to genome-wide data.

    PubMed

    Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael

    2014-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.

  6. Modes and emergent time scales of embayed beach dynamics

    NASA Astrophysics Data System (ADS)

    Ratliff, Katherine M.; Murray, A. Brad

    2014-10-01

    In this study, we use a simple numerical model (the Coastline Evolution Model) to explore alongshore transport-driven shoreline dynamics within generalized embayed beaches (neglecting cross-shore effects). Using principal component analysis (PCA), we identify two primary orthogonal modes of shoreline behavior that describe shoreline variation about its unchanging mean position: the rotation mode, which has been previously identified and describes changes in the mean shoreline orientation, and a newly identified breathing mode, which represents changes in shoreline curvature. Wavelet analysis of the PCA mode time series reveals characteristic time scales of these modes (typically years to decades) that emerge within even a statistically constant white-noise wave climate (without changes in external forcing), suggesting that these time scales can arise from internal system dynamics. The time scales of both modes increase linearly with shoreface depth, suggesting that the embayed beach sediment transport dynamics exhibit a diffusive scaling.

  7. Attending to Issues of Access in Contemporary Times: Centring a Significant Side Issue

    ERIC Educational Resources Information Center

    Cipollone, Kristin; Stich, Amy Elizabeth

    2012-01-01

    Although methodological discussions abound in qualitative research, little time is devoted to access, arguably one of the most important methodological components of social research. Access has often been treated as a side issue by scholarly sources, receiving only cursory attention, generally in a way that reduces it to a mere strategy and severs…

  8. Scale-invariant Green-Kubo relation for time-averaged diffusivity

    NASA Astrophysics Data System (ADS)

    Meyer, Philipp; Barkai, Eli; Kantz, Holger

    2017-12-01

    In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.

  9. A GeoServices Infrastructure for Near-Real-Time Access to Suomi NPP Satellite Data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Valente, E. G.; Hao, W.; Chettri, S.

    2012-12-01

    The new Suomi National Polar-orbiting Partnership (NPP) satellite extends NASA's moderate-resolution, multispectral observations with a suite of powerful imagers and sounders to support a broad array of research and applications. However, NPP data products consist of a complex set of data and metadata files in highly specialized formats; which NPP's operational ground segment delivers to users only with several hours' delay. This severely limits their use in critical applications such as weather forecasting, emergency / disaster response, search and rescue, and other activities that require near-real-time access to satellite observations. Alternative approaches, based on distributed Direct Broadcast facilities, can reduce the delay in NPP data delivery from hours to minutes, and can make products more directly usable by practitioners in the field. To assess and fulfill this potential, we are developing a suite of software that couples Direct Broadcast data feeds with a streamlined, scalable processing chain and geospatial Web services, so as to permit many more time-sensitive applications to use NPP data. The resulting geoservices infrastructure links a variety of end-user tools and applications to NPP data from different sources, and to other rapidly-changing geospatial data. By using well-known, standard software interfaces (such as OGC Web Services or OPeNDAP), this infrastructure serves a variety of end-user analysis and visualization tools, giving them access into datasets of arbitrary size and resolution and allowing them to request and receive tailored products on demand. The standards-based approach may also streamline data sharing among independent satellite receiving facilities, thus helping them to interoperate in providing frequent, composite views of continent-scale or global regions. To enable others to build similar or derived systems, the service components we are developing (based in part on the Community Satellite Processing Package (CSPP) from

  10. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu

    2014-01-21

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally

  11. Cross-Scale Modelling of Subduction from Minute to Million of Years Time Scale

    NASA Astrophysics Data System (ADS)

    Sobolev, S. V.; Muldashev, I. A.

    2015-12-01

    Subduction is an essentially multi-scale process with time-scales spanning from geological to earthquake scale with the seismic cycle in-between. Modelling of such process constitutes one of the largest challenges in geodynamic modelling today.Here we present a cross-scale thermomechanical model capable of simulating the entire subduction process from rupture (1 min) to geological time (millions of years) that employs elasticity, mineral-physics-constrained non-linear transient viscous rheology and rate-and-state friction plasticity. The model generates spontaneous earthquake sequences. The adaptive time-step algorithm recognizes moment of instability and drops the integration time step to its minimum value of 40 sec during the earthquake. The time step is then gradually increased to its maximal value of 5 yr, following decreasing displacement rates during the postseismic relaxation. Efficient implementation of numerical techniques allows long-term simulations with total time of millions of years. This technique allows to follow in details deformation process during the entire seismic cycle and multiple seismic cycles. We observe various deformation patterns during modelled seismic cycle that are consistent with surface GPS observations and demonstrate that, contrary to the conventional ideas, the postseismic deformation may be controlled by viscoelastic relaxation in the mantle wedge, starting within only a few hours after the great (M>9) earthquakes. Interestingly, in our model an average slip velocity at the fault closely follows hyperbolic decay law. In natural observations, such deformation is interpreted as an afterslip, while in our model it is caused by the viscoelastic relaxation of mantle wedge with viscosity strongly varying with time. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-year time range. We will also present results of the modeling of deformation of the

  12. Evaluation of Scaling Invariance Embedded in Short Time Series

    PubMed Central

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356

  13. Monitoring scale scores over time via quality control charts, model-based approaches, and time series techniques.

    PubMed

    Lee, Yi-Hsuan; von Davier, Alina A

    2013-07-01

    Maintaining a stable score scale over time is critical for all standardized educational assessments. Traditional quality control tools and approaches for assessing scale drift either require special equating designs, or may be too time-consuming to be considered on a regular basis with an operational test that has a short time window between an administration and its score reporting. Thus, the traditional methods are not sufficient to catch unusual testing outcomes in a timely manner. This paper presents a new approach for score monitoring and assessment of scale drift. It involves quality control charts, model-based approaches, and time series techniques to accommodate the following needs of monitoring scale scores: continuous monitoring, adjustment of customary variations, identification of abrupt shifts, and assessment of autocorrelation. Performance of the methodologies is evaluated using manipulated data based on real responses from 71 administrations of a large-scale high-stakes language assessment.

  14. Hemispheric Asymmetries in Substorm Recovery Time Scales

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Chua, D H.; Germany, G. A.; Spann, James F.

    2009-01-01

    Previous statistical observations have shown that the recovery time scales of substorms occurring in the winter and near equinox (when the nighttime auroral zone was in darkness) are roughly twice as long as the recovery time scales for substorms occurring in the summer (when the nighttime auroral region was sunlit). This suggests that auroral substorms in the northern and southern hemispheres develop asymmetrically during solstice conditions with substorms lasting longer in the winter (dark) hemisphere than in the summer (sunlit) hemisphere. Additionally, this implies that more energy is deposited by electron precipitation in the winter hemisphere than in the summer one during substorms. This result, coupled with previous observations that have shown that auroral activity is more common when the ionosphere is in darkness and is suppressed when the ionosphere is in daylight, strongly suggests that the ionospheric conductivity plays an important role governing how magnetospheric energy is transferred to the ionosphere during substorms. Therefore, the ionosphere itself may dictate how much energy it will accept from the magnetosphere during substorms rather than this being an externally imposed quantity. Here, we extend our earlier work by statistically analyzing the recovery time scales for a large number of substorms observed in the conjugate hemispheres simultaneously by two orbiting global auroral imagers: Polar UVI and IMAGE FUV. Our current results are consistent with previous observations. The recovery time scales are observed to be longer in the winter (dark) hemisphere while the auroral activity has a shorter duration in the summer (sunlit) hemisphere. This leads to an asymmetric energy input from the magnetosphere to the ionosphere with more energy being deposited in the winter hemisphere than in the summer hemisphere.

  15. Stellar differential rotation and coronal time-scales

    NASA Astrophysics Data System (ADS)

    Gibb, G. P. S.; Jardine, M. M.; Mackay, D. H.

    2014-10-01

    We investigate the time-scales of evolution of stellar coronae in response to surface differential rotation and diffusion. To quantify this, we study both the formation time and lifetime of a magnetic flux rope in a decaying bipolar active region. We apply a magnetic flux transport model to prescribe the evolution of the stellar photospheric field, and use this to drive the evolution of the coronal magnetic field via a magnetofrictional technique. Increasing the differential rotation (i.e. decreasing the equator-pole lap time) decreases the flux rope formation time. We find that the formation time is dependent upon the lap time and the surface diffusion time-scale through the relation τ_Form ∝ √{τ_Lapτ_Diff}. In contrast, the lifetimes of flux ropes are proportional to the lap time (τLife∝τLap). With this, flux ropes on stars with a differential rotation of more than eight times the solar value have a lifetime of less than 2 d. As a consequence, we propose that features such as solar-like quiescent prominences may not be easily observable on such stars, as the lifetimes of the flux ropes which host the cool plasma are very short. We conclude that such high differential rotation stars may have very dynamical coronae.

  16. Learning Across Time Scales: Science, Policy, Management, and Communication

    NASA Astrophysics Data System (ADS)

    Stewart, M. M.

    2002-05-01

    This presentation will draw together common themes raised in the session and discuss lessons learned across time scales and their implications for managers and policy makers concerned with both climate change and variability. Session themes will be examined in the context of the upcoming World Summit on Sustainable Development (WSSD) and considered as opportunities for linking climate change policy discussions with lessons learned from the study of adaptation on seasonal to interannual time scales. The presentation will raise questions about future research directions, discuss recommendations for promoting learning across time scales, and explore options for better communicating the links between climate change and variability.

  17. Fine Scale Baleen Whale Behavior Observed Via Tagging Over Daily Time Scales

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Fine Scale Baleen Whale Behavior Observed Via Tagging...followed over time scales of days from an oceanographic vessel so that environmental sampling can be conducted in proximity to the tagged whale ...characterize the relationship between diel variability in the foraging behavior of baleen whales (North Atlantic right whales and sei whales ) and the

  18. "Socioeconomic inequalities in children's accessibility to food retailing: Examining the roles of mobility and time".

    PubMed

    Ravensbergen, Léa; Buliung, Ron; Wilson, Kathi; Faulkner, Guy

    2016-03-01

    Childhood overweight and obesity rates in Canada are at concerning levels, more apparently so for individuals of lower socioeconomic status (SES). Accessibility to food establishments likely influences patterns of food consumption, a contributor to body weight. Previous work has found that households living in lower income neighbourhoods tend to have greater geographical accessibility to unhealthy food establishments and lower accessibility to healthy food stores. This study contributes to the literature on neighbourhood inequalities in accessibility to healthy foods by explicitly focusing on children, an understudied population, and by incorporating mobility and time into metrics of accessibility. Accessibility to both healthy and unhealthy food retailing is measured within children's activity spaces using Road Network and Activity Location Buffering methods. Weekday vs. weekend accessibility to food establishments is then compared. The results suggest that children attending lower SES schools had almost two times the density of fast food establishments and marginally higher supermarket densities in their activity spaces. Children attending higher SES schools also had much larger activity spaces. All children had higher supermarket densities during weekdays than on weekend days. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An access control model with high security for distributed workflow and real-time application

    NASA Astrophysics Data System (ADS)

    Han, Ruo-Fei; Wang, Hou-Xiang

    2007-11-01

    The traditional mandatory access control policy (MAC) is regarded as a policy with strict regulation and poor flexibility. The security policy of MAC is so compelling that few information systems would adopt it at the cost of facility, except some particular cases with high security requirement as military or government application. However, with the increasing requirement for flexibility, even some access control systems in military application have switched to role-based access control (RBAC) which is well known as flexible. Though RBAC can meet the demands for flexibility but it is weak in dynamic authorization and consequently can not fit well in the workflow management systems. The task-role-based access control (T-RBAC) is then introduced to solve the problem. It combines both the advantages of RBAC and task-based access control (TBAC) which uses task to manage permissions dynamically. To satisfy the requirement of system which is distributed, well defined with workflow process and critically for time accuracy, this paper will analyze the spirit of MAC, introduce it into the improved T&RBAC model which is based on T-RBAC. At last, a conceptual task-role-based access control model with high security for distributed workflow and real-time application (A_T&RBAC) is built, and its performance is simply analyzed.

  20. A cross-sectional ecological study of spatial scale and geographic inequality in access to drinking-water and sanitation.

    PubMed

    Yu, Weiyu; Bain, Robert E S; Mansour, Shawky; Wright, Jim A

    2014-11-26

    Measuring inequality in access to safe drinking-water and sanitation is proposed as a component of international monitoring following the expiry of the Millennium Development Goals. This study aims to evaluate the utility of census data in measuring geographic inequality in access to drinking-water and sanitation. Spatially referenced census data were acquired for Colombia, South Africa, Egypt, and Uganda, whilst non-spatially referenced census data were acquired for Kenya. Four variants of the dissimilarity index were used to estimate geographic inequality in access to both services using large and small area units in each country through a cross-sectional, ecological study. Inequality was greatest for piped water in South Africa in 2001 (based on 53 areas (N) with a median population (MP) of 657,015; D = 0.5599) and lowest for access to an improved water source in Uganda in 2008 (N = 56; MP = 419,399; D = 0.2801). For sanitation, inequality was greatest for those lacking any facility in Kenya in 2009 (N = 158; MP = 216,992; D = 0.6981), and lowest for access to an improved facility in Uganda in 2002 (N = 56; MP = 341,954; D = 0.3403). Although dissimilarity index values were greater for smaller areal units, when study countries were ranked in terms of inequality, these ranks remained unaffected by the choice of large or small areal units. International comparability was limited due to definitional and temporal differences between censuses. This five-country study suggests that patterns of inequality for broad regional units do often reflect inequality in service access at a more local scale. This implies household surveys designed to estimate province-level service coverage can provide valuable insights into geographic inequality at lower levels. In comparison with household surveys, censuses facilitate inequality assessment at different spatial scales, but pose challenges in harmonising water and sanitation typologies across countries.

  1. Associations between Motivational Orientations and Chronically Accessible Outcomes in Leisure-Time Physical Activity: Are Appearance-Related Outcomes Controlling in Nature?

    ERIC Educational Resources Information Center

    McLachlan, Sarah; Hagger, Martin S.

    2010-01-01

    This study aimed to explore relations between chronically accessible outcomes in physical activity and scaled measures of motivational orientations from a self-determination perspective. Methods from construct and attitude accessibility research and the Levesque and Pelletier (2003) study were used to identify participants' chronically accessible…

  2. Rating scale for the assessment of competence in ultrasound-guided peripheral vascular access - a Delphi Consensus Study.

    PubMed

    Primdahl, Stine C; Todsen, Tobias; Clemmesen, Louise; Knudsen, Lars; Weile, Jesper

    2016-09-21

    Peripheral vascular access is vital for treatment and diagnostics of hospitalized patients. Ultrasound-guided vascular access (UGVA) is superior to the landmark technique. To ensure competence-based education, an assessment tool of UGVA competence is needed. We aimed to develop a global rating scale (RS) for assessment of UGVA competence based on opinions on the content from ultrasound experts in a modified Delphi consensus study. We included experts from anesthesiology, emergency medicine and radiology across university hospitals in Denmark. Nine elements were drafted based on existing literature and recommendations from international societies. In a multi-round survey, the experts rated the elements on a five-point Likert scale according to importance, and suggested missing elements. The final Delphi round occurred when >80% of the experts rated all elements ≥4 on the Likert scale. Sixteen experts consented to participate in the study, one withdrew consent prior to the first Delphi round, and 14 completed all three Delphi rounds. In the first Delphi round the experts excluded one element from the scale and changed the content of two elements. In the second Delphi round, the experts excluded one element from the scale. In the third Delphi round, consensus was obtained on the eight elements: preparation of utensils, ergonomics, preparation of the ultrasound device, identification of blood vessels, anatomy, hygiene, coordination of the needle, and completion of the procedure. We developed an RS for assessment of UGVA competence based on opinions of ultrasound experts through a modified Delphi consensus study.

  3. Evaluation of scaling invariance embedded in short time series.

    PubMed

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  4. 41 CFR 51-9.302 - Times, places and requirements for access requests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Times, places and requirements for access requests. 51-9.302 Section 51-9.302 Public Contracts and Property Management Other... Director may require a notarized statement of identity. The Executive Director shall ensure that such times...

  5. Relaxation Processes and Time Scale Transformation.

    DTIC Science & Technology

    1982-03-01

    the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...discussions of the master equation, 2and has recently been applied in cumulative damage models with discrete time parameter .3 However, it does not seem to...development parameter is taken tG be a positive, cumulative function that increases from an origin monotonically. Consider two continuous time scales e and t

  6. Resistivity scaling and electron relaxation times in metallic nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be; Imec, Kapeldreef 75, B-3001 Leuven; Sorée, Bart

    2014-08-14

    We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivitymore » scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.« less

  7. Accessing VA Healthcare During Large-Scale Natural Disasters.

    PubMed

    Der-Martirosian, Claudia; Pinnock, Laura; Dobalian, Aram

    2017-01-01

    Natural disasters can lead to the closure of medical facilities including the Veterans Affairs (VA), thus impacting access to healthcare for U.S. military veteran VA users. We examined the characteristics of VA patients who reported having difficulty accessing care if their usual source of VA care was closed because of natural disasters. A total of 2,264 veteran VA users living in the U.S. northeast region participated in a 2015 cross-sectional representative survey. The study used VA administrative data in a complex stratified survey design with a multimode approach. A total of 36% of veteran VA users reported having difficulty accessing care elsewhere, negatively impacting the functionally impaired and lower income VA patients.

  8. SkyDOT: a publicly accessible variability database, containing multiple sky surveys and real-time data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starr, D. L.; Wozniak, P. R.; Vestrand, W. T.

    2002-01-01

    SkyDOT (Sky Database for Objects in Time-Domain) is a Virtual Observatory currently comprised of data from the RAPTOR, ROTSE I, and OGLE I1 survey projects. This makes it a very large time domain database. In addition, the RAPTOR project provides SkyDOT with real-time variability data as well as stereoscopic information. With its web interface, we believe SkyDOT will be a very useful tool for both astronomers, and the public. Our main task has been to construct an efficient relational database containing all existing data, while handling a real-time inflow of data. We also provide a useful web interface allowing easymore » access to both astronomers and the public. Initially, this server will allow common searches, specific queries, and access to light curves. In the future we will include machine learning classification tools and access to spectral information.« less

  9. Hamilton-Jacobi-Bellman equations and approximate dynamic programming on time scales.

    PubMed

    Seiffertt, John; Sanyal, Suman; Wunsch, Donald C

    2008-08-01

    The time scales calculus is a key emerging area of mathematics due to its potential use in a wide variety of multidisciplinary applications. We extend this calculus to approximate dynamic programming (ADP). The core backward induction algorithm of dynamic programming is extended from its traditional discrete case to all isolated time scales. Hamilton-Jacobi-Bellman equations, the solution of which is the fundamental problem in the field of dynamic programming, are motivated and proven on time scales. By drawing together the calculus of time scales and the applied area of stochastic control via ADP, we have connected two major fields of research.

  10. Motivating and Facilitating Advancements in Space Weather Real-Time Data Availability: Factors, Data, and Access Methods

    NASA Astrophysics Data System (ADS)

    Pankratz, C. K.; Baker, D. N.; Jaynes, A. N.; Elkington, S. R.; Baltzer, T.; Sanchez, F.

    2017-12-01

    Society's growing reliance on complex and highly interconnected technological systems makes us increasingly vulnerable to the effects of space weather events - maybe more than for any other natural hazard. An extreme solar storm today could conceivably impact hundreds of the more than 1400 operating Earth satellites. Such an extreme storm could cause collapse of the electrical grid on continental scales. The effects on navigation, communication, and remote sensing of our home planet could be devastating to our social functioning. Thus, it is imperative that the scientific community address the question of just how severe events might become. At least as importantly, it is crucial that policy makers and public safety officials be informed by the facts on what might happen during extreme conditions. This requires essentially real-time alerts, warnings, and also forecasts of severe space weather events, which in turn demands measurements, models, and associated data products to be available via the most effective data discovery and access methods possible. Similarly, advancement in the fundamental scientific understanding of space weather processes is also vital, requiring that researchers have convenient and effective access to a wide variety of data sets and models from multiple sources. The space weather research community, as with many scientific communities, must access data from dispersed and often uncoordinated data repositories to acquire the data necessary for the analysis and modeling efforts that advance our understanding of solar influences and space physics on the Earth's environment. The Laboratory for Atmospheric and Space Physics (LASP), as a leading institution in both producing data products and advancing the state of scientific understanding of space weather processes, is well positioned to address many of these issues. In this presentation, we will outline the motivating factors for effective space weather data access, summarize the various data

  11. Reconstructions of solar irradiance on centennial time scales

    NASA Astrophysics Data System (ADS)

    Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria; Kok Leng, Yeo

    Solar irradiance is the main external source of energy to Earth's climate system. The record of direct measurements covering less than 40 years is too short to study solar influence on Earth's climate, which calls for reconstructions of solar irradiance into the past with the help of appropriate models. An obvious requirement to a competitive model is its ability to reproduce observed irradiance changes, and a successful example of such a model is presented by the SATIRE family of models. As most state-of-the-art models, SATIRE assumes that irradiance changes on time scales longer than approximately a day are caused by the evolving distribution of dark and bright magnetic features on the solar surface. The surface coverage by such features as a function of time is derived from solar observations. The choice of these depends on the time scale in question. Most accurate is the version of the model that employs full-disc spatially-resolved solar magnetograms and reproduces over 90% of the measured irradiance variation, including the overall decreasing trend in the total solar irradiance over the last four cycles. Since such magnetograms are only available for about four decades, reconstructions on time scales of centuries have to rely on disc-integrated proxies of solar magnetic activity, such as sunspot areas and numbers. Employing a surface flux transport model and sunspot observations as input, we have being able to produce synthetic magnetograms since 1700. This improves the temporal resolution of the irradiance reconstructions on centennial time scales. The most critical aspect of such reconstructions remains the uncertainty in the magnitude of the secular change.

  12. OMERO and Bio-Formats 5: flexible access to large bioimaging datasets at scale

    NASA Astrophysics Data System (ADS)

    Moore, Josh; Linkert, Melissa; Blackburn, Colin; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gillen, Kenneth; Leigh, Roger; Li, Simon; Lindner, Dominik; Moore, William J.; Patterson, Andrew J.; Pindelski, Blazej; Ramalingam, Balaji; Rozbicki, Emil; Tarkowska, Aleksandra; Walczysko, Petr; Allan, Chris; Burel, Jean-Marie; Swedlow, Jason

    2015-03-01

    The Open Microscopy Environment (OME) has built and released Bio-Formats, a Java-based proprietary file format conversion tool and OMERO, an enterprise data management platform under open source licenses. In this report, we describe new versions of Bio-Formats and OMERO that are specifically designed to support large, multi-gigabyte or terabyte scale datasets that are routinely collected across most domains of biological and biomedical research. Bio- Formats reads image data directly from native proprietary formats, bypassing the need for conversion into a standard format. It implements the concept of a file set, a container that defines the contents of multi-dimensional data comprised of many files. OMERO uses Bio-Formats to read files natively, and provides a flexible access mechanism that supports several different storage and access strategies. These new capabilities of OMERO and Bio-Formats make them especially useful for use in imaging applications like digital pathology, high content screening and light sheet microscopy that create routinely large datasets that must be managed and analyzed.

  13. The Importance of Rotational Time-scales in Accretion Variability

    NASA Astrophysics Data System (ADS)

    Costigan, Gráinne; Vink, Joirck; Scholz, Aleks; Testi, Leonardo; Ray, Tom

    2013-07-01

    For the first few million years, one of the dominant sources of emission from a low mass young stellar object is from accretion. This process regulates the flow of material and angular moments from the surroundings to the central object, and is thought to play an important role in the definition of the long term stellar properties. Variability is a well documented attribute of accretion, and has been observed on time-scales of from days to years. However, where these variations come from is not clear. Th current model for accretion is magnetospheric accretion, where the stellar magnetic field truncates the disc, allowing the matter to flow from the disc onto the surface of the star. This model allows for variations in the accretion rate to come from many different sources, such as the magnetic field, the circumstellar disc and the interaction of the different parts of the system. We have been studying unbiased samples of accretors in order to identify the dominant time-scales and typical magnitudes of variations. In this way different sources of variations can be excluded and any missing physics in these systems identified. Through our previous work with the Long-term Accretion Monitoring Program (LAMP), we found 10 accretors in the ChaI region, whose variability is dominated by short term variations of 2 weeks. This was the shortest time period between spectroscopic observations which spanned 15 months, and rules out large scale processes in the disk as origins of this variability. On the basis of this study we have gone further to study the accretion signature H-alpha, over the time-scales of minutes and days in a set of Herbig Ae and T Tauri stars. Using the same methods as we used in LAMP we found the dominant time-scales of variations to be days. These samples both point towards rotation period of these objects as being an important time-scale for accretion variations. This allows us to indicate which are the most likely sources of these variations.

  14. Psychometric validation of the household food insecurity access scale among Inuit pregnant women from Northern Quebec.

    PubMed

    Teh, Lisa; Pirkle, Catherine; Furgal, Chris; Fillion, Myriam; Lucas, Michel

    2017-01-01

    Globally, food insecurity is a major public health concern. In North America, it is particularly prevalent in certain sub-groups, including Indigenous communities. Although many Indigenous and remote communities harvest and share food, most food security assessment tools focus on economic access. This study describes the psychometric evaluation of a modified Household Food Insecurity Access Scale (HFIAS), developed for mixed economies, to assess food insecurity among pregnant Inuit women. The HFIAS was administered to 130 pregnant women in Nunavik (Arctic region of Quebec), Canada. Data were fit to a Rasch Rating Scale Model (RSM) to determine the discrimination ability of the HFIAS. Person parameter (Theta) estimates were calculated based on the RSM to provide a more accurate scoring system of the modified HFIAS for this population. Theta values were compared to known correlates of food insecurity. Comparative fit indices showed preference for a modified version of the HFIAS over the original. Theta values displayed a continuum of severity estimates and those values indicating greater food insecurity were consistently linked to known correlates of food insecurity. Participants living in households with more than 1 hunter (Theta = -.45) or more than 1 fisher (Theta = -.43) experienced less food insecurity than those with no hunters (Theta = .48) or fishers (Theta = .49) in their household. The RSM indicated the scale showed good discriminatory ability. Subsequent analyses indicated that most scale items pertain to the classification of a household as moderately food insecure. The modified HFIAS shows potential for measuring food insecurity among pregnant women in Nunavik. This is an efficient instrument that can inform interventions targeting health conditions impacting groups that obtain food through both monetary and non-monetary means.

  15. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction.

    PubMed

    Yang, Yuedong; Li, Xiaomei; Zhao, Huiying; Zhan, Jian; Wang, Jihua; Zhou, Yaoqi

    2017-01-01

    As most RNA structures are elusive to structure determination, obtaining solvent accessible surface areas (ASAs) of nucleotides in an RNA structure is an important first step to characterize potential functional sites and core structural regions. Here, we developed RNAsnap, the first machine-learning method trained on protein-bound RNA structures for solvent accessibility prediction. Built on sequence profiles from multiple sequence alignment (RNAsnap-prof), the method provided robust prediction in fivefold cross-validation and an independent test (Pearson correlation coefficients, r, between predicted and actual ASA values are 0.66 and 0.63, respectively). Application of the method to 6178 mRNAs revealed its positive correlation to mRNA accessibility by dimethyl sulphate (DMS) experimentally measured in vivo (r = 0.37) but not in vitro (r = 0.07), despite the lack of training on mRNAs and the fact that DMS accessibility is only an approximation to solvent accessibility. We further found strong association across coding and noncoding regions between predicted solvent accessibility of the mutation site of a single nucleotide variant (SNV) and the frequency of that variant in the population for 2.2 million SNVs obtained in the 1000 Genomes Project. Moreover, mapping solvent accessibility of RNAs to the human genome indicated that introns, 5' cap of 5' and 3' cap of 3' untranslated regions, are more solvent accessible, consistent with their respective functional roles. These results support conformational selections as the mechanism for the formation of RNA-protein complexes and highlight the utility of genome-scale characterization of RNA tertiary structures by RNAsnap. The server and its stand-alone downloadable version are available at http://sparks-lab.org. © 2016 Yang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Extreme reaction times determine fluctuation scaling in human color vision

    NASA Astrophysics Data System (ADS)

    Medina, José M.; Díaz, José A.

    2016-11-01

    In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.

  17. A Pulsar Time Scale Based on Parkes Observations in 1995-2010

    NASA Astrophysics Data System (ADS)

    Rodin, A. E.; Fedorova, V. A.

    2018-06-01

    Timing of highly stable millisecond pulsars provides the possibility of independently verifying terrestrial time scales on intervals longer than a year. An ensemble pulsar time scale is constructed based on pulsar timing data obtained on the 64-m Parkes telescope (Australia) in 1995-2010. Optimal Wiener filters were applied to enhance the accuracy of the ensemble time scale. The run of the time-scale difference PTens-TT(BIPM2011) does not exceed 0.8 ± 0.4 μs over the entire studied time interval. The fractional instability of the difference PTens-TT(BIPM2011) over 15 years is σ z = (0.6 ± 1.6) × 10-15, which corresponds to an upper limit for the energy density of the gravitational-wave background Ω g h 2 10-10 and variations in the gravitational potential 10-15 Hz at the frequency 2 × 10-9 Hz.

  18. Selective visual scaling of time-scale processes facilitates broadband learning of isometric force frequency tracking.

    PubMed

    King, Adam C; Newell, Karl M

    2015-10-01

    The experiment investigated the effect of selectively augmenting faster time scales of visual feedback information on the learning and transfer of continuous isometric force tracking tasks to test the generality of the self-organization of 1/f properties of force output. Three experimental groups tracked an irregular target pattern either under a standard fixed gain condition or with selectively enhancement in the visual feedback display of intermediate (4-8 Hz) or high (8-12 Hz) frequency components of the force output. All groups reduced tracking error over practice, with the error lowest in the intermediate scaling condition followed by the high scaling and fixed gain conditions, respectively. Selective visual scaling induced persistent changes across the frequency spectrum, with the strongest effect in the intermediate scaling condition and positive transfer to novel feedback displays. The findings reveal an interdependence of the timescales in the learning and transfer of isometric force output frequency structures consistent with 1/f process models of the time scales of motor output variability.

  19. Monitoring forest dynamics with multi-scale and time series imagery.

    PubMed

    Huang, Chunbo; Zhou, Zhixiang; Wang, Di; Dian, Yuanyong

    2016-05-01

    To learn the forest dynamics and evaluate the ecosystem services of forest effectively, a timely acquisition of spatial and quantitative information of forestland is very necessary. Here, a new method was proposed for mapping forest cover changes by combining multi-scale satellite remote-sensing imagery with time series data. Using time series Normalized Difference Vegetation Index products derived from the Moderate Resolution Imaging Spectroradiometer images (MODIS-NDVI) and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images as data source, a hierarchy stepwise analysis from coarse scale to fine scale was developed for detecting the forest change area. At the coarse scale, MODIS-NDVI data with 1-km resolution were used to detect the changes in land cover types and a land cover change map was constructed using NDVI values at vegetation growing seasons. At the fine scale, based on the results at the coarse scale, Landsat TM/ETM+ data with 30-m resolution were used to precisely detect the forest change location and forest change trend by analyzing time series forest vegetation indices (IFZ). The method was tested using the data for Hubei Province, China. The MODIS-NDVI data from 2001 to 2012 were used to detect the land cover changes, and the overall accuracy was 94.02 % at the coarse scale. At the fine scale, the available TM/ETM+ images at vegetation growing seasons between 2001 and 2012 were used to locate and verify forest changes in the Three Gorges Reservoir Area, and the overall accuracy was 94.53 %. The accuracy of the two layer hierarchical monitoring results indicated that the multi-scale monitoring method is feasible and reliable.

  20. [Construction of the Time Management Scale and examination of the influence of time management on psychological stress response].

    PubMed

    Imura, Tomoya; Takamura, Masahiro; Okazaki, Yoshihiro; Tokunaga, Satoko

    2016-10-01

    We developed a scale to measure time management and assessed its reliability and validity. We then used this scale to examine the impact of time management on psychological stress response. In Study 1-1, we developed the scale and assessed its internal consistency and criterion-related validity. Findings from a factor analysis revealed three elements of time management, “time estimation,” “time utilization,” and “taking each moment as it comes.” In Study 1-2, we assessed the scale’s test-retest reliability. In Study 1-3, we assessed the validity of the constructed scale. The results indicate that the time management scale has good reliability and validity. In Study 2, we performed a covariance structural analysis to verify our model that hypothesized that time management influences perceived control of time and psychological stress response, and perceived control of time influences psychological stress response. The results showed that time estimation increases the perceived control of time, which in turn decreases stress response. However, we also found that taking each moment as it comes reduces perceived control of time, which in turn increases stress response.

  1. On Channel Sharing in Discrete-Time, Multi-Access Broadcast Communications,

    DTIC Science & Technology

    1980-09-01

    towards a physical intepretation . of the solutions. 1.4.3 THE PROBLEM OF CAPACITY Our discussion of capacity has two objectives. First, to explore...8021 (DARPA). Yemnii, Y., "On Channel Sharing in Discrete-Time, Multi-Access Broadcast Communication," Sep- tember 1980, UCLA-ENG-8061. (DARPA). 280 FILMED 9-83 DTIC 𔃾’W 9111 ’K4VFClMlP-- Om mFoca 1,00,

  2. Two time scale output feedback regulation for ill-conditioned systems

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Moerder, D. D.

    1986-01-01

    Issues pertaining to the well-posedness of a two time scale approach to the output feedback regulator design problem are examined. An approximate quadratic performance index which reflects a two time scale decomposition of the system dynamics is developed. It is shown that, under mild assumptions, minimization of this cost leads to feedback gains providing a second-order approximation of optimal full system performance. A simplified approach to two time scale feedback design is also developed, in which gains are separately calculated to stabilize the slow and fast subsystem models. By exploiting the notion of combined control and observation spillover suppression, conditions are derived assuring that these gains will stabilize the full-order system. A sequential numerical algorithm is described which obtains output feedback gains minimizing a broad class of performance indices, including the standard LQ case. It is shown that the algorithm converges to a local minimum under nonrestrictive assumptions. This procedure is adapted to and demonstrated for the two time scale design formulations.

  3. Appropriate time scales for nonlinear analyses of deterministic jump systems

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya

    2011-06-01

    In the real world, there are many phenomena that are derived from deterministic systems but which fluctuate with nonuniform time intervals. This paper discusses the appropriate time scales that can be applied to such systems to analyze their properties. The financial markets are an example of such systems wherein price movements fluctuate with nonuniform time intervals. However, it is common to apply uniform time scales such as 1-min data and 1-h data to study price movements. This paper examines the validity of such time scales by using surrogate data tests to ascertain whether the deterministic properties of the original system can be identified from uniform sampled data. The results show that uniform time samplings are often inappropriate for nonlinear analyses. However, for other systems such as neural spikes and Internet traffic packets, which produce similar outputs, uniform time samplings are quite effective in extracting the system properties. Nevertheless, uniform samplings often generate overlapping data, which can cause false rejections of surrogate data tests.

  4. Thermodynamics constrains allometric scaling of optimal development time in insects.

    PubMed

    Dillon, Michael E; Frazier, Melanie R

    2013-01-01

    Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The

  5. Parents' Verbal and Nonverbal Caring Behaviors and Child Distress During Cancer-Related Port Access Procedures: A Time-Window Sequential Analysis.

    PubMed

    Bai, Jinbing; Harper, Felicity W K; Penner, Louis A; Swanson, Kristen; Santacroce, Sheila J

    2017-11-01

    To study the relationship between parental verbal and nonverbal caring behaviors and child distress during cancer-related port access placement using correlational and time-window sequential analyses.
. Longitudinal, observational design.
. Children's Hospital of Michigan and St. Jude Children's Research Hospital.
. 43 child-parent dyads, each with two or three video recordings of the child undergoing cancer-related port placement.
. Two trained raters coded parent interaction behaviors and child distress using the Parent Caring Response Scoring System and Karmanos Child Coping and Distress Scale, respectively. Mixed modeling with generalized estimating equations examined the associations between parent interaction behaviors and parent distress, child distress, and child cooperation reported by multiple raters. Time-window sequential analyses were performed to investigate the temporal relationships in parent-child interactions within a five-second window.
. Parent caring behaviors, child distress, and child cooperation.
. Parent caring interaction behaviors were significantly correlated with parent distress, child distress, and child cooperation during repeated cancer port accessing. Sequential analyses showed that children were significantly less likely to display behavioral and verbal distress following parent caring behaviors than at any other time. If a child is already distressed, parent verbal and nonverbal caring behaviors can significantly reduce child behavioral and verbal distress.
. Parent caring behaviors, particularly the rarely studied nonverbal behaviors (e.g., eye contact, distance close to touch, supporting/allowing), can reduce the child's distress during cancer port accessing procedures.
. Studying parent-child interactions during painful cancer-related procedures can provide evidence to develop nursing interventions to support parents in caring for their child during painful procedures.

  6. Characteristic time scales for diffusion processes through layers and across interfaces

    NASA Astrophysics Data System (ADS)

    Carr, Elliot J.

    2018-04-01

    This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.

  7. Characteristic time scales for diffusion processes through layers and across interfaces.

    PubMed

    Carr, Elliot J

    2018-04-01

    This paper presents a simple tool for characterizing the time scale for continuum diffusion processes through layered heterogeneous media. This mathematical problem is motivated by several practical applications such as heat transport in composite materials, flow in layered aquifers, and drug diffusion through the layers of the skin. In such processes, the physical properties of the medium vary across layers and internal boundary conditions apply at the interfaces between adjacent layers. To characterize the time scale, we use the concept of mean action time, which provides the mean time scale at each position in the medium by utilizing the fact that the transition of the transient solution of the underlying partial differential equation model, from initial state to steady state, can be represented as a cumulative distribution function of time. Using this concept, we define the characteristic time scale for a multilayer diffusion process as the maximum value of the mean action time across the layered medium. For given initial conditions and internal and external boundary conditions, this approach leads to simple algebraic expressions for characterizing the time scale that depend on the physical and geometrical properties of the medium, such as the diffusivities and lengths of the layers. Numerical examples demonstrate that these expressions provide useful insight into explaining how the parameters in the model affect the time it takes for a multilayer diffusion process to reach steady state.

  8. Satellite attitude prediction by multiple time scales method

    NASA Technical Reports Server (NTRS)

    Tao, Y. C.; Ramnath, R.

    1975-01-01

    An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.

  9. Li-Yorke Chaos in Hybrid Systems on a Time Scale

    NASA Astrophysics Data System (ADS)

    Akhmet, Marat; Fen, Mehmet Onur

    2015-12-01

    By using the reduction technique to impulsive differential equations [Akhmet & Turan, 2006], we rigorously prove the presence of chaos in dynamic equations on time scales (DETS). The results of the present study are based on the Li-Yorke definition of chaos. This is the first time in the literature that chaos is obtained for DETS. An illustrative example is presented by means of a Duffing equation on a time scale.

  10. Interoperable Access to Near Real Time Ocean Observations with the Observing System Monitoring Center

    NASA Astrophysics Data System (ADS)

    O'Brien, K.; Hankin, S.; Mendelssohn, R.; Simons, R.; Smith, B.; Kern, K. J.

    2013-12-01

    The Observing System Monitoring Center (OSMC), a project funded by the National Oceanic and Atmospheric Administration's Climate Observations Division (COD), exists to join the discrete 'networks' of In Situ ocean observing platforms -- ships, surface floats, profiling floats, tide gauges, etc. - into a single, integrated system. The OSMC is addressing this goal through capabilities in three areas focusing on the needs of specific user groups: 1) it provides real time monitoring of the integrated observing system assets to assist management in optimizing the cost-effectiveness of the system for the assessment of climate variables; 2) it makes the stream of real time data coming from the observing system available to scientific end users into an easy-to-use form; and 3) in the future, it will unify the delayed-mode data from platform-focused data assembly centers into a standards- based distributed system that is readily accessible to interested users from the science and education communities. In this presentation, we will be focusing on the efforts of the OSMC to provide interoperable access to the near real time data stream that is available via the Global Telecommunications System (GTS). This is a very rich data source, and includes data from nearly all of the oceanographic platforms that are actively observing. We will discuss how the data is being served out using a number of widely used 'web services' (including OPeNDAP and SOS) and downloadable file formats (KML, csv, xls, netCDF), so that it can be accessed in web browsers and popular desktop analysis tools. We will also be discussing our use of the Environmental Research Division's Data Access Program (ERDDAP), available from NOAA/NMFS, which has allowed us to achieve our goals of serving the near real time data. From an interoperability perspective, it's important to note that access to the this stream of data is not just for humans, but also for machine-to-machine requests. We'll also delve into how we

  11. Macroscopic characterisations of Web accessibility

    NASA Astrophysics Data System (ADS)

    Lopes, Rui; Carriço, Luis

    2010-12-01

    The Web Science framework poses fundamental questions on the analysis of the Web, by focusing on how microscopic properties (e.g. at the level of a Web page or Web site) emerge into macroscopic properties and phenomena. One research topic on the analysis of the Web is Web accessibility evaluation, which centres on understanding how accessible a Web page is for people with disabilities. However, when framing Web accessibility evaluation on Web Science, we have found that existing research stays at the microscopic level. This article presents an experimental study on framing Web accessibility evaluation into Web Science's goals. This study resulted in novel accessibility properties of the Web not found at microscopic levels, as well as of Web accessibility evaluation processes themselves. We observed at large scale some of the empirical knowledge on how accessibility is perceived by designers and developers, such as the disparity of interpretations of accessibility evaluation tools warnings. We also found a direct relation between accessibility quality and Web page complexity. We provide a set of guidelines for designing Web pages, education on Web accessibility, as well as on the computational limits of large-scale Web accessibility evaluations.

  12. Psychometric validation of the household food insecurity access scale among Inuit pregnant women from Northern Quebec

    PubMed Central

    Teh, Lisa; Pirkle, Catherine; Fillion, Myriam

    2017-01-01

    Background Globally, food insecurity is a major public health concern. In North America, it is particularly prevalent in certain sub-groups, including Indigenous communities. Although many Indigenous and remote communities harvest and share food, most food security assessment tools focus on economic access. This study describes the psychometric evaluation of a modified Household Food Insecurity Access Scale (HFIAS), developed for mixed economies, to assess food insecurity among pregnant Inuit women. Methods The HFIAS was administered to 130 pregnant women in Nunavik (Arctic region of Quebec), Canada. Data were fit to a Rasch Rating Scale Model (RSM) to determine the discrimination ability of the HFIAS. Person parameter (Theta) estimates were calculated based on the RSM to provide a more accurate scoring system of the modified HFIAS for this population. Theta values were compared to known correlates of food insecurity. Results Comparative fit indices showed preference for a modified version of the HFIAS over the original. Theta values displayed a continuum of severity estimates and those values indicating greater food insecurity were consistently linked to known correlates of food insecurity. Participants living in households with more than 1 hunter (Theta = -.45) or more than 1 fisher (Theta = -.43) experienced less food insecurity than those with no hunters (Theta = .48) or fishers (Theta = .49) in their household. The RSM indicated the scale showed good discriminatory ability. Subsequent analyses indicated that most scale items pertain to the classification of a household as moderately food insecure. Conclusions The modified HFIAS shows potential for measuring food insecurity among pregnant women in Nunavik. This is an efficient instrument that can inform interventions targeting health conditions impacting groups that obtain food through both monetary and non-monetary means. PMID:28614392

  13. Interactive, open source, travel time scenario modelling: tools to facilitate participation in health service access analysis.

    PubMed

    Fisher, Rohan; Lassa, Jonatan

    2017-04-18

    Modelling travel time to services has become a common public health tool for planning service provision but the usefulness of these analyses is constrained by the availability of accurate input data and limitations inherent in the assumptions and parameterisation. This is particularly an issue in the developing world where access to basic data is limited and travel is often complex and multi-modal. Improving the accuracy and relevance in this context requires greater accessibility to, and flexibility in, travel time modelling tools to facilitate the incorporation of local knowledge and the rapid exploration of multiple travel scenarios. The aim of this work was to develop simple open source, adaptable, interactive travel time modelling tools to allow greater access to and participation in service access analysis. Described are three interconnected applications designed to reduce some of the barriers to the more wide-spread use of GIS analysis of service access and allow for complex spatial and temporal variations in service availability. These applications are an open source GIS tool-kit and two geo-simulation models. The development of these tools was guided by health service issues from a developing world context but they present a general approach to enabling greater access to and flexibility in health access modelling. The tools demonstrate a method that substantially simplifies the process for conducting travel time assessments and demonstrate a dynamic, interactive approach in an open source GIS format. In addition this paper provides examples from empirical experience where these tools have informed better policy and planning. Travel and health service access is complex and cannot be reduced to a few static modeled outputs. The approaches described in this paper use a unique set of tools to explore this complexity, promote discussion and build understanding with the goal of producing better planning outcomes. The accessible, flexible, interactive and

  14. Braille Telecaptioning: Making Real-Time Television Accessible to Deaf-Blind Consumers.

    ERIC Educational Resources Information Center

    Biederman-Anderson, L.

    1989-01-01

    A federal grant has been awarded to develop and test a prototype device to make closed-captioned television available to deaf-blind people. The Braille TeleCaption System, with output available in braille and large print, is currently being tested. Such new technology makes real-time viewing of news, weather, and entertainment accessible to…

  15. New time scale based k-epsilon model for near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Shih, T. H.

    1993-01-01

    A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.

  16. Scaling laws from geomagnetic time series

    USGS Publications Warehouse

    Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.

    1998-01-01

    The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.

  17. A framework for improving access and customer service times in health care: application and analysis at the UCLA Medical Center.

    PubMed

    Duda, Catherine; Rajaram, Kumar; Barz, Christiane; Rosenthal, J Thomas

    2013-01-01

    There has been an increasing emphasis on health care efficiency and costs and on improving quality in health care settings such as hospitals or clinics. However, there has not been sufficient work on methods of improving access and customer service times in health care settings. The study develops a framework for improving access and customer service time for health care settings. In the framework, the operational concept of the bottleneck is synthesized with queuing theory to improve access and reduce customer service times without reduction in clinical quality. The framework is applied at the Ronald Reagan UCLA Medical Center to determine the drivers for access and customer service times and then provides guidelines on how to improve these drivers. Validation using simulation techniques shows significant potential for reducing customer service times and increasing access at this institution. Finally, the study provides several practice implications that could be used to improve access and customer service times without reduction in clinical quality across a range of health care settings from large hospitals to small community clinics.

  18. Experimental quantification of nonlinear time scales in inertial wave rotating turbulence

    NASA Astrophysics Data System (ADS)

    Yarom, Ehud; Salhov, Alon; Sharon, Eran

    2017-12-01

    We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.

  19. Scale and time dependence of serial correlations in word-length time series of written texts

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.

  20. Contextualising renal patient routines: Everyday space-time contexts, health service access, and wellbeing.

    PubMed

    McQuoid, Julia; Jowsey, Tanisha; Talaulikar, Girish

    2017-06-01

    Stable routines are key to successful illness self-management for the growing number of people living with chronic illness around the world. Yet, the influence of chronically ill individuals' everyday contexts in supporting routines is poorly understood. This paper takes a space-time geographical approach to explore the everyday space-time contexts and routines of individuals with chronic kidney disease (CKD). We ask: what is the relationship between renal patients' space-time contexts and their ability to establish and maintain stable routines, and, what role does health service access play in this regard? We draw from a qualitative case study of 26 individuals with CKD in Australia. Data comprised self-reported two day participant diaries and semi-structured interviews. Thematic analysis of interview transcripts was guided by an inductive-deductive approach. We examined the embeddedness of routines within the space-time contexts of participants' everyday lives. We found that participants' everyday space-time contexts were highly complex, especially for those receiving dialysis and/or employed, making routines difficult to establish and vulnerable to disruption. Health service access helped shape participants' everyday space-time contexts, meaning that incidences of unpredictability in accessing health services set-off 'ripple effects' within participants' space-time contexts, disrupting routines and making everyday life negotiation more difficult. The ability to absorb ripple effects from unpredictable health services without disrupting routines varied by space-time context. Implications of these findings for the deployment of the concept of routine in health research, the framing of patient success in self-managing illness, and health services design are discussed. In conclusion, efforts to understand and support individuals in establishing and maintaining routines that support health and wellbeing can benefit from approaches that contextualise and de

  1. Contextualising renal patient routines: Everyday space-time contexts, health service access, and wellbeing

    PubMed Central

    McQuoid, Julia; Jowsey, Tanisha; Talaulikar, Girish

    2017-01-01

    Stable routines are key to successful illness self-management for the growing number of people living with chronic illness around the world. Yet, the influence of chronically ill individuals’ everyday contexts in supporting routines is poorly understood. This paper takes a space-time geographical approach to explore the everyday space-time contexts and routines of individuals with chronic kidney disease (CKD). We ask: what is the relationship between renal patients’ space-time contexts and their ability to establish and maintain stable routines, and, what role does health service access play in this regard? We draw from a qualitative case study of 26 individuals with CKD in Australia. Data comprised self-reported two day participant diaries and semi-structured interviews. Thematic analysis of interview transcripts was guided by an inductive-deductive approach. We examined the embeddedness of routines within the space-time contexts of participants’ everyday lives. We found that participants’ everyday space-time contexts were highly complex, especially for those receiving dialysis and/or employed, making routines difficult to establish and vulnerable to disruption. Health service access helped shape participants’ everyday space-time contexts, meaning that incidences of unpredictability in accessing health services set-off ‘ripple effects’ within participants’ space-time contexts, disrupting routines and making everyday life negotiation more difficult. The ability to absorb ripple effects from unpredictable health services without disrupting routines varied by space-time context. Implications of these findings for the deployment of the concept of routine in health research, the framing of patient success in self-managing illness, and health services design are discussed. In conclusion, efforts to understand and support individuals in establishing and maintaining routines that support health and wellbeing can benefit from approaches that contextualise

  2. Singular perturbation and time scale approaches in discrete control systems

    NASA Technical Reports Server (NTRS)

    Naidu, D. S.; Price, D. B.

    1988-01-01

    After considering a singularly perturbed discrete control system, a singular perturbation approach is used to obtain outer and correction subsystems. A time scale approach is then applied via block diagonalization transformations to decouple the system into slow and fast subsystems. To a zeroth-order approximation, the singular perturbation and time-scale approaches are found to yield equivalent results.

  3. Backpropagation and ordered derivatives in the time scales calculus.

    PubMed

    Seiffertt, John; Wunsch, Donald C

    2010-08-01

    Backpropagation is the most widely used neural network learning technique. It is based on the mathematical notion of an ordered derivative. In this paper, we present a formulation of ordered derivatives and the backpropagation training algorithm using the important emerging area of mathematics known as the time scales calculus. This calculus, with its potential for application to a wide variety of inter-disciplinary problems, is becoming a key area of mathematics. It is capable of unifying continuous and discrete analysis within one coherent theoretical framework. Using this calculus, we present here a generalization of backpropagation which is appropriate for cases beyond the specifically continuous or discrete. We develop a new multivariate chain rule of this calculus, define ordered derivatives on time scales, prove a key theorem about them, and derive the backpropagation weight update equations for a feedforward multilayer neural network architecture. By drawing together the time scales calculus and the area of neural network learning, we present the first connection of two major fields of research.

  4. 9 CFR 355.20 - Inspector to have access to plant at all times.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFIED PRODUCTS FOR DOGS, CATS, AND OTHER CARNIVORA... Procedure § 355.20 Inspector to have access to plant at all times. For the purpose of examination or...

  5. A Group Simulation of the Development of the Geologic Time Scale.

    ERIC Educational Resources Information Center

    Bennington, J. Bret

    2000-01-01

    Explains how to demonstrate to students that the relative dating of rock layers is redundant. Uses two column diagrams to simulate stratigraphic sequences from two different geological time scales and asks students to complete the time scale. (YDS)

  6. Interspecific interference competition at the resource patch scale: do large herbivores spatially avoid elephants while accessing water?

    PubMed

    Ferry, Nicolas; Dray, Stéphane; Fritz, Hervé; Valeix, Marion

    2016-11-01

    Animals may anticipate and try to avoid, at some costs, physical encounters with other competitors. This may ultimately impact their foraging distribution and intake rates. Such cryptic interference competition is difficult to measure in the field, and extremely little is known at the interspecific level. We tested the hypothesis that smaller species avoid larger ones because of potential costs of interference competition and hence expected them to segregate from larger competitors at the scale of a resource patch. We assessed fine-scale spatial segregation patterns between three African herbivore species (zebra Equus quagga, kudu Tragelaphus strepsiceros and giraffe Giraffa camelopardalis) and a megaherbivore, the African elephant Loxodonta africana, at the scale of water resource patches in the semi-arid ecosystem of Hwange National Park, Zimbabwe. Nine waterholes were monitored every two weeks during the dry season of a drought year, and observational scans of the spatial distribution of all herbivores were performed every 15 min. We developed a methodological approach to analyse such fine-scale spatial data. Elephants increasingly used waterholes as the dry season progressed, as did the probability of co-occurrence and agonistic interaction with elephants for the three study species. All three species segregated from elephants at the beginning of the dry season, suggesting a spatial avoidance of elephants and the existence of costs of being close to them. However, contrarily to our expectations, herbivores did not segregate from elephants the rest of the dry season but tended to increasingly aggregate with elephants as the dry season progressed. We discuss these surprising results and the existence of a trade-off between avoidance of interspecific interference competition and other potential factors such as access to quality water, which may have relative associated costs that change with the time of the year. © 2016 The Authors. Journal of Animal Ecology

  7. Accessing near real-time Antarctic meteorological data through an OGC Sensor Observation Service (SOS)

    NASA Astrophysics Data System (ADS)

    Kirsch, Peter; Breen, Paul

    2013-04-01

    We wish to highlight outputs of a project conceived from a science requirement to improve discovery and access to Antarctic meteorological data in near real-time. Given that the data was distributed in both spatial and temporal domains and is to be accessed across several science disciplines, the creation of an interoperable, OGC compliant web service was deemed the most appropriate approach. We will demonstrate an implementation of the OGC SOS Interface Standard to discover, browse, and access Antarctic meteorological data-sets. A selection of programmatic (R, Perl) and web client interfaces utilizing open technologies ( e.g. jQuery, Flot, openLayers ) will be demonstrated. In addition we will show how high level abstractions can be constructed to allow the users flexible and straightforward access to SOS retrieved data.

  8. Evaluation of ultrasound-guided vascular access in dogs.

    PubMed

    Chamberlin, Scott C; Sullivan, Lauren A; Morley, Paul S; Boscan, Pedro

    2013-01-01

    To describe the technique and determine the feasibility, success rate, perceived difficulty, and time to vascular access using ultrasound guidance for jugular vein catheterization in a cardiac arrest dog model. Prospective descriptive study. University teaching hospital. Nine Walker hounds. A total of 27 jugular catheterizations were performed postcardiac arrest using ultrasound guidance. Catheterizations were recorded based on the order in which they were performed and presence/absence of a hematoma around the vein. Time (minutes) until successful vascular access and perceived difficulty in achieving vascular access (scale of 1 = easy to 10 = difficult) were recorded for each catheterization. Mean time to vascular access was 1.9 minutes (95% confidence interval, 1.1-3.4 min) for catheterizations without hematoma, versus 4.3 minutes (1.8-10.1 min) for catheterizations with hematoma (P = 0.1). Median perceived difficulty was 2 of 10 (range 1-7) for catheterizations without hematoma, versus 2 of 10 (range 1-8) for catheterizations with hematoma (P = 0.3). A learning curve was evaluated by comparing mean time to vascular access and perceived difficulty in initial versus subsequent catheterizations. Mean time to vascular access was 2.5 minutes (1.0-6.4 min) in the initial 13 catheterizations versus 3.3 minutes (1.5-7.5 min) in the subsequent 14 catheterizations (P = 0.6). Median perceived difficulty in the first 13 catheterizations (3, range 1-8) was significantly greater (P = 0.049) than median perceived difficulty in the subsequent 14 catheterizations (2, range 1-6). Ultrasound-guided jugular catheterization is associated with a learning curve but is successful in obtaining rapid vascular access in dogs. Further prospective studies are warranted to confirm the utility of this technique in a clinical setting. © Veterinary Emergency and Critical Care Society 2013.

  9. The role of topography on catchment‐scale water residence time

    USGS Publications Warehouse

    McGuire, K.J.; McDonnell, Jeffery J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J.

    2005-01-01

    The age, or residence time, of water is a fundamental descriptor of catchment hydrology, revealing information about the storage, flow pathways, and source of water in a single integrated measure. While there has been tremendous recent interest in residence time estimation to characterize watersheds, there are relatively few studies that have quantified residence time at the watershed scale, and fewer still that have extended those results beyond single catchments to larger landscape scales. We examined topographic controls on residence time for seven catchments (0.085–62.4 km2) that represent diverse geologic and geomorphic conditions in the western Cascade Mountains of Oregon. Our primary objective was to determine the dominant physical controls on catchment‐scale water residence time and specifically test the hypothesis that residence time is related to the size of the basin. Residence times were estimated by simple convolution models that described the transfer of precipitation isotopic composition to the stream network. We found that base flow mean residence times for exponential distributions ranged from 0.8 to 3.3 years. Mean residence time showed no correlation to basin area (r2 < 0.01) but instead was correlated (r2 = 0.91) to catchment terrain indices representing the flow path distance and flow path gradient to the stream network. These results illustrate that landscape organization (i.e., topography) rather than basin area controls catchment‐scale transport. Results from this study may provide a framework for describing scale‐invariant transport across climatic and geologic conditions, whereby the internal form and structure of the basin defines the first‐order control on base flow residence time.

  10. Time and length scales within a fire and implications for numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TIESZEN,SHELDON R.

    2000-02-02

    A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principlesmore » solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.« less

  11. The Ocean Observatories Initiative: Unprecedented access to real-time data streaming from the Cabled Array through OOI Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Knuth, F.; Vardaro, M.; Belabbassi, L.; Smith, M. J.; Garzio, L. M.; Crowley, M. F.; Kerfoot, J.; Kawka, O. E.

    2016-02-01

    The National Science Foundation's Ocean Observatories Initiative (OOI), is a broad-scale, multidisciplinary facility that will transform oceanographic research by providing users with unprecedented access to long-term datasets from a variety of deployed physical, chemical, biological, and geological sensors. The Cabled Array component of the OOI, installed and operated by the University of Washington, is located on the Juan de Fuca tectonic plate off the coast of Oregon. It is a unique network of >100 cabled instruments and instrumented moorings transmitting data to shore in real-time via fiber optic technology. Instruments now installed include HD video and digital still cameras, mass spectrometers, a resistivity-temperature probe inside the orifice of a high-temperature hydrothermal vent, upward-looking ADCP's, pH and pC02 sensors, Horizontal Electrometer Pressure Inverted Echosounders and many others. Here, we present the technical aspects of data streaming from the Cabled Array through the OOI Cyberinfrastructure. We illustrate the types of instruments and data products available, data volume and density, processing levels and algorithms used, data delivery methods, file formats and access methods through the graphical user interface. Our goal is to facilitate the use and access to these unprecedented, co-registered oceanographic datasets. We encourage researchers to collaborate through the use of these simultaneous, interdisciplinary measurements, in the exploration of short-lived events (tectonic, volcanic, biological, severe storms), as well as long-term trends in ocean systems (circulation patterns, climate change, ocean acidity, ecosystem shifts).

  12. User-Centered Indexing for Adaptive Information Access

    NASA Technical Reports Server (NTRS)

    Chen, James R.; Mathe, Nathalie

    1996-01-01

    We are focusing on information access tasks characterized by large volume of hypermedia connected technical documents, a need for rapid and effective access to familiar information, and long-term interaction with evolving information. The problem for technical users is to build and maintain a personalized task-oriented model of the information to quickly access relevant information. We propose a solution which provides user-centered adaptive information retrieval and navigation. This solution supports users in customizing information access over time. It is complementary to information discovery methods which provide access to new information, since it lets users customize future access to previously found information. It relies on a technique, called Adaptive Relevance Network, which creates and maintains a complex indexing structure to represent personal user's information access maps organized by concepts. This technique is integrated within the Adaptive HyperMan system, which helps NASA Space Shuttle flight controllers organize and access large amount of information. It allows users to select and mark any part of a document as interesting, and to index that part with user-defined concepts. Users can then do subsequent retrieval of marked portions of documents. This functionality allows users to define and access personal collections of information, which are dynamically computed. The system also supports collaborative review by letting users share group access maps. The adaptive relevance network provides long-term adaptation based both on usage and on explicit user input. The indexing structure is dynamic and evolves over time. Leading and generalization support flexible retrieval of information under similar concepts. The network is geared towards more recent information access, and automatically manages its size in order to maintain rapid access when scaling up to large hypermedia space. We present results of simulated learning experiments.

  13. AccessMod 3.0: computing geographic coverage and accessibility to health care services using anisotropic movement of patients

    PubMed Central

    Ray, Nicolas; Ebener, Steeve

    2008-01-01

    Background Access to health care can be described along four dimensions: geographic accessibility, availability, financial accessibility and acceptability. Geographic accessibility measures how physically accessible resources are for the population, while availability reflects what resources are available and in what amount. Combining these two types of measure into a single index provides a measure of geographic (or spatial) coverage, which is an important measure for assessing the degree of accessibility of a health care network. Results This paper describes the latest version of AccessMod, an extension to the Geographical Information System ArcView 3.×, and provides an example of application of this tool. AccessMod 3 allows one to compute geographic coverage to health care using terrain information and population distribution. Four major types of analysis are available in AccessMod: (1) modeling the coverage of catchment areas linked to an existing health facility network based on travel time, to provide a measure of physical accessibility to health care; (2) modeling geographic coverage according to the availability of services; (3) projecting the coverage of a scaling-up of an existing network; (4) providing information for cost effectiveness analysis when little information about the existing network is available. In addition to integrating travelling time, population distribution and the population coverage capacity specific to each health facility in the network, AccessMod can incorporate the influence of landscape components (e.g. topography, river and road networks, vegetation) that impact travelling time to and from facilities. Topographical constraints can be taken into account through an anisotropic analysis that considers the direction of movement. We provide an example of the application of AccessMod in the southern part of Malawi that shows the influences of the landscape constraints and of the modes of transportation on geographic coverage

  14. Two-time scale fatigue modelling: application to damage

    NASA Astrophysics Data System (ADS)

    Devulder, Anne; Aubry, Denis; Puel, Guillaume

    2010-05-01

    A temporal multiscale modelling applied to fatigue damage evolution in cortical bone is presented. Microdamage accumulation in cortical bone, ensued from daily activities, leads to impaired mechanical properties, in particular by reducing the bone stiffness and inducing fatigue. However, bone damage is also known as a stimulus to bone remodelling, whose aim is to repair and generate new bone, adapted to its environment. This biological process by removing fatigue damage seems essential to the skeleton lifetime. As daily activities induce high frequency cycles (about 10,000 cycles a day), identifying two-time scale is very fruitful: a fast one connected with the high frequency cyclic loading and a slow one related to a quasi-static loading. A scaling parameter is defined between the intrinsic time (bone lifetime of several years) and the high frequency loading (few seconds). An asymptotic approach allows to decouple the two scales and to take into account history effects (Guennouni and Aubry in CR Acad Sci Paris Ser II 20:1765-1767, 1986). The method is here applied to a simple case of fatigue damage and a real cortical bone microstructure. A significant reduction in the amount of computation time in addition to a small computational error between time homogenized and non homogenized models are obtained. This method seems thus to give new perspectives to assess fatigue damage and, with regard to bone, to give a better understanding of bone remodelling.

  15. Identification of varying time scales in sediment transport using the Hilbert-Huang Transform method

    NASA Astrophysics Data System (ADS)

    Kuai, Ken Z.; Tsai, Christina W.

    2012-02-01

    SummarySediment transport processes vary at a variety of time scales - from seconds, hours, days to months and years. Multiple time scales exist in the system of flow, sediment transport and bed elevation change processes. As such, identification and selection of appropriate time scales for flow and sediment processes can assist in formulating a system of flow and sediment governing equations representative of the dynamic interaction of flow and particles at the desired details. Recognizing the importance of different varying time scales in the fluvial processes of sediment transport, we introduce the Hilbert-Huang Transform method (HHT) to the field of sediment transport for the time scale analysis. The HHT uses the Empirical Mode Decomposition (EMD) method to decompose a time series into a collection of the Intrinsic Mode Functions (IMFs), and uses the Hilbert Spectral Analysis (HSA) to obtain instantaneous frequency data. The EMD extracts the variability of data with different time scales, and improves the analysis of data series. The HSA can display the succession of time varying time scales, which cannot be captured by the often-used Fast Fourier Transform (FFT) method. This study is one of the earlier attempts to introduce the state-of-the-art technique for the multiple time sales analysis of sediment transport processes. Three practical applications of the HHT method for data analysis of both suspended sediment and bedload transport time series are presented. The analysis results show the strong impact of flood waves on the variations of flow and sediment time scales at a large sampling time scale, as well as the impact of flow turbulence on those time scales at a smaller sampling time scale. Our analysis reveals that the existence of multiple time scales in sediment transport processes may be attributed to the fractal nature in sediment transport. It can be demonstrated by the HHT analysis that the bedload motion time scale is better represented by the

  16. Time scales of radiation damage decay in four optical materials

    NASA Astrophysics Data System (ADS)

    Grupp, Frank; Geis, Norbert; Katterloher, Reinhard; Bender, Ralf

    2017-09-01

    In the framework of the qualification campaigns for the near infrared spectrometer and photometer instrument (NISP) on board the ESA/EUCLID satellite six optical materials where characterized with respect to their transmission losses after a radiation dose representing the mission exposure to high energy particles in the outer Lagrange point L2. Data was taken between 500 and 2000nm on six 25mm thick coated probes. Thickness and coating being representative for the NISP flight configuration. With this paper we present results owing up the radiation damage shown in [1]. We where able to follow up the decay of the radiation damage over almost one year under ambient conditions. This allows us to distinguish between curing effects that happen on different time-scales. As for some of the materials no radiation damage and thus no curing was detected, all materials that showed significant radiation damage in the measured passband showed two clearly distinguished time scales of curing. Up to 70% of the transmission losses cured on half decay time scales of several tens of days, while the rest of the damage cures on time scales of years.

  17. Multidimensional scaling of musical time estimations.

    PubMed

    Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel

    2011-06-01

    The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.

  18. Multiple time scale analysis of pressure oscillations in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  19. How accessible are coral reefs to people? A global assessment based on travel time.

    PubMed

    Maire, Eva; Cinner, Joshua; Velez, Laure; Huchery, Cindy; Mora, Camilo; Dagata, Stephanie; Vigliola, Laurent; Wantiez, Laurent; Kulbicki, Michel; Mouillot, David

    2016-04-01

    The depletion of natural resources has become a major issue in many parts of the world, with the most accessible resources being most at risk. In the terrestrial realm, resource depletion has classically been related to accessibility through road networks. In contrast, in the marine realm, the impact on living resources is often framed into the Malthusian theory of human density around ecosystems. Here, we develop a new framework to estimate the accessibility of global coral reefs using potential travel time from the nearest human settlement or market. We show that 58% of coral reefs are located < 30 min from the nearest human settlement. We use a case study from New Caledonia to demonstrate that travel time from the market is a strong predictor of fish biomass on coral reefs. We also highlight a relative deficit of protection on coral reef areas near people, with disproportional protection on reefs far from people. This suggests that conservation efforts are targeting low-conflict reefs or places that may already be receiving de facto protection due to their isolation. Our global assessment of accessibility in the marine realm is a critical step to better understand the interplay between humans and resources. © 2016 John Wiley & Sons Ltd/CNRS.

  20. Time scales for molecule formation by ion-molecule reactions

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Glassgold, A. E.

    1976-01-01

    Analytical solutions are obtained for nonlinear differential equations governing the time-dependence of molecular abundances in interstellar clouds. Three gas-phase reaction schemes are considered separately for the regions where each dominates. The particular case of CO, and closely related members of the Oh and CH families of molecules, is studied for given values of temperature, density, and the radiation field. Nonlinear effects and couplings with particular ions are found to be important. The time scales for CO formation range from 100,000 to a few million years, depending on the chemistry and regime. The time required for essentially complete conversion of C(+) to CO in the region where the H3(+) chemistry dominates is several million years. Because this time is longer than or comparable to dynamical time scales for dense interstellar clouds, steady-state abundances may not be observed in such clouds.

  1. Real-time access of large volume imagery through low-bandwidth links

    NASA Astrophysics Data System (ADS)

    Phillips, James; Grohs, Karl; Brower, Bernard; Kelly, Lawrence; Carlisle, Lewis; Pellechia, Matthew

    2010-04-01

    Providing current, time-sensitive imagery and geospatial information to deployed tactical military forces or first responders continues to be a challenge. This challenge is compounded through rapid increases in sensor collection volumes, both with larger arrays and higher temporal capture rates. Focusing on the needs of these military forces and first responders, ITT developed a system called AGILE (Advanced Geospatial Imagery Library Enterprise) Access as an innovative approach based on standard off-the-shelf techniques to solving this problem. The AGILE Access system is based on commercial software called Image Access Solutions (IAS) and incorporates standard JPEG 2000 processing. Our solution system is implemented in an accredited, deployable form, incorporating a suite of components, including an image database, a web-based search and discovery tool, and several software tools that act in concert to process, store, and disseminate imagery from airborne systems and commercial satellites. Currently, this solution is operational within the U.S. Government tactical infrastructure and supports disadvantaged imagery users in the field. This paper presents the features and benefits of this system to disadvantaged users as demonstrated in real-world operational environments.

  2. Time tracking and interaction of energy-eddies at different scales

    NASA Astrophysics Data System (ADS)

    Cardesa, Jose I.; Vela-Martin, Alberto; Jimenez, Javier

    2016-11-01

    We study the energy cascade through coherent structures obtained in time-resolved simulations of incompressible, statistically steady isotropic turbulence. The structures are defined as geometrically connected regions of the flow with high kinetic energy. We compute the latter by band-pass filtering the velocity field around a scale r. We analyse the dynamics of structures extracted with different r, which are a proxy for eddies containing energy at those r. We find that the size of these "energy-eddies" scales with r, while their lifetime scales with the local eddy-turnover r 2 / 3ɛ - 1 / 3 , where ɛ is the energy dissipation averaged over all space and time. Furthermore, a statistical analysis over the lives of the eddies shows a slight predominance of the splitting over the merging process. When we isolate the eddies which do not interact with other eddies of the same scale, we observe a parent-child dependence by which, on average, structures are born at scale r during the decaying part of the life of a structure at scale r' > r . The energy-eddy at r' lives in the same region of space as that at r. Finally, we investigate how interactions between eddies at the same scale are echoed across other scales. Funded by the ERC project Coturb.

  3. Microsecond time-scale kinetics of transient biochemical reactions

    PubMed Central

    Mitić, Sandra; Strampraad, Marc J. F.; de Vries, Simon

    2017-01-01

    To afford mechanistic studies in enzyme kinetics and protein folding in the microsecond time domain we have developed a continuous-flow microsecond time-scale mixing instrument with an unprecedented dead-time of 3.8 ± 0.3 μs. The instrument employs a micro-mixer with a mixing time of 2.7 μs integrated with a 30 mm long flow-cell of 109 μm optical path length constructed from two parallel sheets of silver foil; it produces ultraviolet-visible spectra that are linear in absorbance up to 3.5 with a spectral resolution of 0.4 nm. Each spectrum corresponds to a different reaction time determined by the distance from the mixer outlet, and by the fluid flow rate. The reaction progress is monitored in steps of 0.35 μs for a total duration of ~600 μs. As a proof of principle the instrument was used to study spontaneous protein refolding of pH-denatured cytochrome c. Three folding intermediates were determined: after a novel, extremely rapid initial phase with τ = 4.7 μs, presumably reflecting histidine re-binding to the iron, refolding proceeds with time constants of 83 μs and 345 μs to a coordinatively saturated low-spin iron form in quasi steady state. The time-resolution specifications of our spectrometer for the first time open up the general possibility for comparison of real data and molecular dynamics calculations of biomacromolecules on overlapping time scales. PMID:28973014

  4. THEORETICAL REVIEW The Hippocampus, Time, and Memory Across Scales

    PubMed Central

    Howard, Marc W.; Eichenbaum, Howard

    2014-01-01

    A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of “time cells” that encode moments in time, much as the well-known “place cells” map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the “mental time travel” hypothesized to support the experience of episodic memory corresponds to a “jump back in time” in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced—this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems. PMID:23915126

  5. Investigating Access Performance of Long Time Series with Restructured Big Model Data

    NASA Astrophysics Data System (ADS)

    Shen, S.; Ostrenga, D.; Vollmer, B.; Meyer, D. J.

    2017-12-01

    Data sets generated by models are substantially increasing in volume, due to increases in spatial and temporal resolution, and the number of output variables. Many users wish to download subsetted data in preferred data formats and structures, as it is getting increasingly difficult to handle the original full-size data files. For example, application research users, such as those involved with wind or solar energy, or extreme weather events, are likely only interested in daily or hourly model data at a single point or for a small area for a long time period, and prefer to have the data downloaded in a single file. With native model file structures, such as hourly data from NASA Modern-Era Retrospective analysis for Research and Applications Version-2 (MERRA-2), it may take over 10 hours for the extraction of interested parameters at a single point for 30 years. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is exploring methods to address this particular user need. One approach is to create value-added data by reconstructing the data files. Taking MERRA-2 data as an example, we have tested converting hourly data from one-day-per-file into different data cubes, such as one-month, one-year, or whole-mission. Performance are compared for reading local data files and accessing data through interoperable service, such as OPeNDAP. Results show that, compared to the original file structure, the new data cubes offer much better performance for accessing long time series. We have noticed that performance is associated with the cube size and structure, the compression method, and how the data are accessed. An optimized data cube structure will not only improve data access, but also may enable better online analytic services.

  6. Investigating Access Performance of Long Time Series with Restructured Big Model Data

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Ostrenga, Dana M.; Vollmer, Bruce E.; Meyer, Dave

    2017-01-01

    Data sets generated by models are substantially increasing in volume, due to increases in spatial and temporal resolution, and the number of output variables. Many users wish to download subsetted data in preferred data formats and structures, as it is getting increasingly difficult to handle the original full-size data files. For example, application research users such as those involved with wind or solar energy, or extreme weather events are likely only interested in daily or hourly model data at a single point (or for a small area) for a long time period, and prefer to have the data downloaded in a single file. With native model file structures, such as hourly data from NASA Modern-Era Retrospective analysis for Research and Applications Version-2 (MERRA-2), it may take over 10 hours for the extraction of parameters-of-interest at a single point for 30 years. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is exploring methods to address this particular user need. One approach is to create value-added data by reconstructing the data files. Taking MERRA-2 data as an example, we have tested converting hourly data from one-day-per-file into different data cubes, such as one-month, or one-year. Performance is compared for reading local data files and accessing data through interoperable services, such as OPeNDAP. Results show that, compared to the original file structure, the new data cubes offer much better performance for accessing long time series. We have noticed that performance is associated with the cube size and structure, the compression method, and how the data are accessed. An optimized data cube structure will not only improve data access, but also may enable better online analysis services

  7. Energy and time determine scaling in biological and computer designs

    PubMed Central

    Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie

    2016-01-01

    Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy–time minimization principle may govern the design of many complex systems that process energy, materials and information. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431524

  8. Energy and time determine scaling in biological and computer designs.

    PubMed

    Moses, Melanie; Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie

    2016-08-19

    Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).

  9. Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons

    PubMed Central

    Buhusi, Catalin V.; Oprisan, Sorinel A.

    2013-01-01

    In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion (interval timing) based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher-order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively-connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. PMID:23518297

  10. A Retrospective Look at Website Accessibility over Time

    ERIC Educational Resources Information Center

    Hackett, Stephanie; Parmanto, Bambang; Zeng, Xiaoming

    2005-01-01

    Websites were retrospectively analysed to study the effects that technological advances in web design have had on accessibility for persons with disabilities. A random sample of general websites and a convenience sample of US government websites were studied and compared for the years 1997-2002. Web accessibility barrier (WAB) and complexity…

  11. Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz

    USGS Publications Warehouse

    Mercer, Celestine N.; Reed, Mark H.; Mercer, Cameron M.

    2015-01-01

    Porphyry dikes and hydrothermal veins from the porphyry Cu-Mo deposit at Butte, Montana, contain multiple generations of quartz that are distinct in scanning electron microscope-cathodoluminescence (SEM-CL) images and in Ti concentrations. A comparison of microprobe trace element profiles and maps to SEM-CL images shows that the concentration of Ti in quartz correlates positively with CL brightness but Al, K, and Fe do not. After calibrating CL brightness in relation to Ti concentration, we use the brightness gradient between different quartz generations as a proxy for Ti gradients that we model to determine time scales of quartz formation and cooling. Model results indicate that time scales of porphyry magma residence are ~1,000s of years and time scales from porphyry quartz phenocryst rim formation to porphyry dike injection and cooling are ~10s of years. Time scales for the formation and cooling of various generations of hydrothermal vein quartz range from 10s to 10,000s of years. These time scales are considerably shorter than the ~0.6 m.y. overall time frame for each porphyry-style mineralization pulse determined from isotopic studies at Butte, Montana. Simple heat conduction models provide a temporal reference point to compare chemical diffusion time scales, and we find that they support short dike and vein formation time scales. We interpret these relatively short time scales to indicate that the Butte porphyry deposit formed by short-lived episodes of hydrofracturing, dike injection, and vein formation, each with discrete thermal pulses, which repeated over the ~3 m.y. generation of the deposit.

  12. A model for AGN variability on multiple time-scales

    NASA Astrophysics Data System (ADS)

    Sartori, Lia F.; Schawinski, Kevin; Trakhtenbrot, Benny; Caplar, Neven; Treister, Ezequiel; Koss, Michael J.; Urry, C. Megan; Zhang, C. E.

    2018-05-01

    We present a framework to link and describe active galactic nuclei (AGN) variability on a wide range of time-scales, from days to billions of years. In particular, we concentrate on the AGN variability features related to changes in black hole fuelling and accretion rate. In our framework, the variability features observed in different AGN at different time-scales may be explained as realisations of the same underlying statistical properties. In this context, we propose a model to simulate the evolution of AGN light curves with time based on the probability density function (PDF) and power spectral density (PSD) of the Eddington ratio (L/LEdd) distribution. Motivated by general galaxy population properties, we propose that the PDF may be inspired by the L/LEdd distribution function (ERDF), and that a single (or limited number of) ERDF+PSD set may explain all observed variability features. After outlining the framework and the model, we compile a set of variability measurements in terms of structure function (SF) and magnitude difference. We then combine the variability measurements on a SF plot ranging from days to Gyr. The proposed framework enables constraints on the underlying PSD and the ability to link AGN variability on different time-scales, therefore providing new insights into AGN variability and black hole growth phenomena.

  13. Liquidity spillover in international stock markets through distinct time scales.

    PubMed

    Righi, Marcelo Brutti; Vieira, Kelmara Mendes

    2014-01-01

    This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale.

  14. Liquidity Spillover in International Stock Markets through Distinct Time Scales

    PubMed Central

    Righi, Marcelo Brutti; Vieira, Kelmara Mendes

    2014-01-01

    This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale. PMID:24465918

  15. Towards a High-resolution Time Scale for the Early Devonian

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; da Silva, A. C.

    2017-12-01

    High-resolution time scales are crucial to understand Earth's history in detail. The construction of a robust geological time scale, however, inevitably becomes increasingly harder further back in time. Uncertainties associated with anchor radiometric ages increase in size, not speaking of the mere presence of suitable datable strata. However, durations of stages can be tightly constrained by making use of cyclic expressions in sediments, an approach that revolutionized the Cenozoic time scale. When precisely determined durations are stitched together, ultimately, a very precise time scale is the result. For the Mesozoic and Paleozoic an astronomical solution as a tuning target is not available but the dominant periods of eccentricity, obliquity and precession are reasonably well constrained for the entire Phanerozoic which enables their detection by means of spectral analysis. Eccentricity is time-invariant and is used as the prime building block. Here we focus on the Early Devonian, on its lowermost three stages: the Lochkovian, Pragian and Emsian. The uncertainties on the Devonian stage boundaries are currently in the order of several millions of years. The preservation of climatic cycles in diagenetically or even anchimetamorphically affected successions, however, is essential. The fit of spectral peak ratios with those calculated for orbital cycles, is classically used as a strong argument for a preserved climatic signal. Here we use primarily the low field magnetic susceptibility (MS) as proxy parameter, supported by gamma-ray spectrometry to test for consistency. Continuous Wavelet Transform, Evolutive Harmonic Analysis, Multitaper Method, and Average Spectral Misfit are used to reach an optimal astronomical interpretation. We report on classic Early Devonian sections from the Czech Republic: the Pozar-CS (Lochkovian and Pragian), Pod Barrandovem (Pragian and Lower Emsian), and Zlichov (Middle-Upper Emsian). Also a Middle-Upper Emsian section from the US

  16. The unethical focus on access: a study of medical ethics and the waiting-time guarantee.

    PubMed

    Karlberg, H I; Brinkmo, B-M

    2009-03-01

    All civilized societies favour ethical principles of equity. In healthcare, these principles generally focus on needs for medical care. Methods for establishing priorities among such needs are instrumental in this process. In this study, we analysed whether rules on access to healthcare, waiting-time guarantees, conflict with ethical principles of distributive justice. We interviewed directors, managers and other decision-makers of various healthcare providers of hospitals, primary care organizations and purchasing offices. We also conducted focus group interviews with professionals from a number of distinct medical areas. Our informants and their co-workers were reasonably familiar with the ethical platforms for priority-setting established by the Swedish parliament, giving the sickest patients complete priority. However, to satisfy the waiting-time guarantees, the informants often had to make priority decisions contrary to the ethical principles by favouring access before needs to keep waiting times within certain limits. The common opinion was that the waiting-time guarantee leads to crowding-out effects, overruling the ethical principles based on needs. For more than a decade, the interpretation in Sweden of the equitable principle based on medical needs has been distorted through political decisions, leading to healthcare providers giving priority to access rather than needs for care.

  17. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  18. Earth History databases and visualization - the TimeScale Creator system

    NASA Astrophysics Data System (ADS)

    Ogg, James; Lugowski, Adam; Gradstein, Felix

    2010-05-01

    The "TimeScale Creator" team (www.tscreator.org) and the Subcommission on Stratigraphic Information (stratigraphy.science.purdue.edu) of the International Commission on Stratigraphy (www.stratigraphy.org) has worked with numerous geoscientists and geological surveys to prepare reference datasets for global and regional stratigraphy. All events are currently calibrated to Geologic Time Scale 2004 (Gradstein et al., 2004, Cambridge Univ. Press) and Concise Geologic Time Scale (Ogg et al., 2008, Cambridge Univ. Press); but the array of intercalibrations enable dynamic adjustment to future numerical age scales and interpolation methods. The main "global" database contains over 25,000 events/zones from paleontology, geomagnetics, sea-level and sequence stratigraphy, igneous provinces, bolide impacts, plus several stable isotope curves and image sets. Several regional datasets are provided in conjunction with geological surveys, with numerical ages interpolated using a similar flexible inter-calibration procedure. For example, a joint program with Geoscience Australia has compiled an extensive Australian regional biostratigraphy and a full array of basin lithologic columns with each formation linked to public lexicons of all Proterozoic through Phanerozoic basins - nearly 500 columns of over 9,000 data lines plus hot-curser links to oil-gas reference wells. Other datapacks include New Zealand biostratigraphy and basin transects (ca. 200 columns), Russian biostratigraphy, British Isles regional stratigraphy, Gulf of Mexico biostratigraphy and lithostratigraphy, high-resolution Neogene stable isotope curves and ice-core data, human cultural episodes, and Circum-Arctic stratigraphy sets. The growing library of datasets is designed for viewing and chart-making in the free "TimeScale Creator" JAVA package. This visualization system produces a screen display of the user-selected time-span and the selected columns of geologic time scale information. The user can change the

  19. A new time scale based k-epsilon model for near wall turbulence

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Shih, T. H.

    1992-01-01

    A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.

  20. Space and time scales in human-landscape systems.

    PubMed

    Kondolf, G Mathias; Podolak, Kristen

    2014-01-01

    Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.

  1. Study of optoelectronic switch for satellite-switched time-division multiple access

    NASA Technical Reports Server (NTRS)

    Su, Shing-Fong; Jou, Liz; Lenart, Joe

    1987-01-01

    The use of optoelectronic switching for satellite switched time division multiple access will improve the isolation and reduce the crosstalk of an IF switch matrix. The results are presented of a study on optoelectronic switching. Tasks include literature search, system requirements study, candidate switching architecture analysis, and switch model optimization. The results show that the power divided and crossbar switching architectures are good candidates for an IF switch matrix.

  2. Influence of the time scale on the construction of financial networks.

    PubMed

    Emmert-Streib, Frank; Dehmer, Matthias

    2010-09-30

    In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.

  3. Influence of the Time Scale on the Construction of Financial Networks

    PubMed Central

    Emmert-Streib, Frank; Dehmer, Matthias

    2010-01-01

    Background In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. Methodology/Principal Findings For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Conclusions/Significance Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis. PMID:20949124

  4. Accessing doctors at times of need-measuring the distance tolerance of rural residents for health-related travel.

    PubMed

    McGrail, Matthew Richard; Humphreys, John Stirling; Ward, Bernadette

    2015-05-29

    Poor access to doctors at times of need remains a significant impediment to achieving good health for many rural residents. The two-step floating catchment area (2SFCA) method has emerged as a key tool for measuring healthcare access in rural areas. However, the choice of catchment size, a key component of the 2SFCA method, is problematic because little is known about the distance tolerance of rural residents for health-related travel. Our study sought new evidence to test the hypothesis that residents of sparsely settled rural areas are prepared to travel further than residents of closely settled rural areas when accessing primary health care at times of need. A questionnaire survey of residents in five small rural communities of Victoria and New South Wales in Australia was used. The two outcome measures were current travel time to visit their usual doctor and maximum time prepared to travel to visit a doctor, both for non-emergency care. Kaplan-Meier charts were used to compare the association between increased distance and decreased travel propensity for closely-settled and sparsely-settled areas, and ordinal multivariate regression models tested significance after controlling for health-related travel moderating factors and town clustering. A total of 1079 questionnaires were completed with 363 from residents in closely-settled locations and 716 from residents in sparsely-settled areas. Residents of sparsely-settled communities travel, on average, 10 min further than residents of closely-settled communities (26.3 vs 16.9 min, p < 0.001), though this difference was not significant after controlling for town clustering. Differences were more apparent in terms of maximum time prepared to travel (54.1 vs 31.9 min, p < 0.001). Differences of maximum time remained significant after controlling for demographic and other constraints to access, such as transport availability or difficulties getting doctor appointments, as well as after controlling for town

  5. Structure of Student Time Management Scale (STMS)

    ERIC Educational Resources Information Center

    Balamurugan, M.

    2013-01-01

    With the aim of constructing a Student Time Management Scale (STMS), the initial version was administered and data were collected from 523 standard eleventh students. (Mean age = 15.64). The data obtained were subjected to Reliability and Factor analysis using PASW Statistical software version 18. From 42 items 14 were dropped, resulting in the…

  6. Uniform Data Management and Access to Near Real-Time Seismic Data (Invited)

    NASA Astrophysics Data System (ADS)

    Casey, R.; Ahern, T. K.; Benson, R. B.; Karstens, R.; Stromme, S.; Trabant, C. M.; Weertman, B. R.

    2010-12-01

    The IRIS Data Management Center has its ears to the ground, receiving relayed seismic telemetry from all parts of the globe with delay times as little as a few seconds from sensor to data center. This immediacy of always-on geophysical information has spawned a demand for ready access to persistent data streams, quality assurance metrics, and automatic production of data products based on specific triggers. For the last ten years, IRIS DMC has developed an effective near real-time data pipeline that serves the needs of seismic networks needing a central data management system as well as the scientific community that need the ability to monitor and respond to events that occurred only moments before. A number of accessible applications have been developed that provide useful data both through the web and through freely available software. Metrics and products of the raw data are cataloged and managed as a chain of events that occur in near-real time. The technical challenges faced with such a system are general to the data management community. Delayed transmission of packetized data, out of order data transmissions, verification of complete data transmission, and data flow concurrency have all been areas of focus in order to provide the best possible level of service to scientists and educators.

  7. Predicting Regional Drought on Sub-Seasonal to Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Suarez, Max; Koster, Randal

    2011-01-01

    Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. It is driven foremost by an extended period of reduced precipitation, but it is the impacts on such quantities as soil moisture, streamflow and crop yields that are often most important from a users perspective. While recognizing that different users have different needs for drought information, it is nevertheless important to understand that progress in predicting drought and satisfying such user needs, largely hinges on our ability to improve predictions of precipitation. This talk reviews our current understanding of the physical mechanisms that drive precipitation variations on subseasonal to decadal time scales, and the implications for predictability and prediction skill. Examples are given highlighting the phenomena and mechanisms controlling precipitation on monthly (e.g., stationary Rossby waves, soil moisture), seasonal (ENSO) and decadal time scales (PD and AMO).

  8. Compression based entropy estimation of heart rate variability on multiple time scales.

    PubMed

    Baumert, Mathias; Voss, Andreas; Javorka, Michal

    2013-01-01

    Heart rate fluctuates beat by beat in a complex manner. The aim of this study was to develop a framework for entropy assessment of heart rate fluctuations on multiple time scales. We employed the Lempel-Ziv algorithm for lossless data compression to investigate the compressibility of RR interval time series on different time scales, using a coarse-graining procedure. We estimated the entropy of RR interval time series of 20 young and 20 old subjects and also investigated the compressibility of randomly shuffled surrogate RR time series. The original RR time series displayed significantly smaller compression entropy values than randomized RR interval data. The RR interval time series of older subjects showed significantly different entropy characteristics over multiple time scales than those of younger subjects. In conclusion, data compression may be useful approach for multiscale entropy assessment of heart rate variability.

  9. Understanding relationships among ecosystem services across spatial scales and over time

    NASA Astrophysics Data System (ADS)

    Qiu, Jiangxiao; Carpenter, Stephen R.; Booth, Eric G.; Motew, Melissa; Zipper, Samuel C.; Kucharik, Christopher J.; Loheide, Steven P., II; Turner, Monica G.

    2018-05-01

    Sustaining ecosystem services (ES), mitigating their tradeoffs and avoiding unfavorable future trajectories are pressing social-environmental challenges that require enhanced understanding of their relationships across scales. Current knowledge of ES relationships is often constrained to one spatial scale or one snapshot in time. In this research, we integrated biophysical modeling with future scenarios to examine changes in relationships among eight ES indicators from 2001–2070 across three spatial scales—grid cell, subwatershed, and watershed. We focused on the Yahara Watershed (Wisconsin) in the Midwestern United States—an exemplar for many urbanizing agricultural landscapes. Relationships among ES indicators changed over time; some relationships exhibited high interannual variations (e.g. drainage vs. food production, nitrate leaching vs. net ecosystem exchange) and even reversed signs over time (e.g. perennial grass production vs. phosphorus yield). Robust patterns were detected for relationships among some regulating services (e.g. soil retention vs. water quality) across three spatial scales, but other relationships lacked simple scaling rules. This was especially true for relationships of food production vs. water quality, and drainage vs. number of days with runoff >10 mm, which differed substantially across spatial scales. Our results also showed that local tradeoffs between food production and water quality do not necessarily scale up, so reducing local tradeoffs may be insufficient to mitigate such tradeoffs at the watershed scale. We further synthesized these cross-scale patterns into a typology of factors that could drive changes in ES relationships across scales: (1) effects of biophysical connections, (2) effects of dominant drivers, (3) combined effects of biophysical linkages and dominant drivers, and (4) artificial scale effects, and concluded with management implications. Our study highlights the importance of taking a dynamic

  10. The Role of Time-Scales in Socio-hydrology

    NASA Astrophysics Data System (ADS)

    Blöschl, Günter; Sivapalan, Murugesu

    2016-04-01

    Much of the interest in hydrological modeling in the past decades revolved around resolving spatial variability. With the rapid changes brought about by human impacts on the hydrologic cycle, there is now an increasing need to refocus on time dependency. We present a co-evolutionary view of hydrologic systems, in which every part of the system including human systems, co-evolve, albeit at different rates. The resulting coupled human-nature system is framed as a dynamical system, characterized by interactions of fast and slow time scales and feedbacks between environmental and social processes. This gives rise to emergent phenomena such as the levee effect, adaptation to change and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system in a dynamic way. The co-evolutionary approach differs from the traditional view of water resource systems analysis as it allows for path dependence, multiple equilibria, lock-in situations and emergent phenomena. The approach may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesise the observed dynamics of different case studies. Future research opportunities include the study of how changes in human values are connected to human-water interactions, historical analyses of trajectories of system co-evolution in individual places and comparative analyses of contrasting human-water systems in different climate and socio-economic settings. Reference Sivapalan, M. and G. Blöschl (2015) Time scale interactions and the coevolution of humans and water. Water Resour. Res., 51, 6988-7022, doi:10.1002/2015WR017896.

  11. Deviations from uniform power law scaling in nonstationary time series

    NASA Technical Reports Server (NTRS)

    Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.

    1997-01-01

    A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.

  12. DELIVERING TIMELY WATER QUALITY INFORMATION TO YOUR COMMUNITY. THE LAKE ACCESS-MINNEAPOLIS PROJECT

    EPA Science Inventory

    This report is a summary of the near-real-time water quality-monitoring project conducted by a consortium of interested parties in the greater Minneapolis area. It was funded by an EPA program known as EMPACT (Environmental Monitoring, Public Access, and Community Tracking). In 1...

  13. Treating the right patient at the right time: Access to specialist consultation and noninvasive testing

    PubMed Central

    Knudtson, Merril L; Beanlands, Rob; Brophy, James M; Higginson, Lyall; Munt, Brad; Rottger, John

    2006-01-01

    The Council of the Canadian Cardiovascular Society commissioned working groups to examine issues of access to, and wait times for, various aspects of cardiovascular care. The present article summarizes the deliberations on targets for medically acceptable wait times for access to cardiovascular specialist evaluation and on the performance of non-invasive testing needed to complete this evaluation. Three categories of referral indications were identified: those requiring hospitalization due to substantial ongoing risk of mortality and morbidity; those requiring an expedited early review in an ambulatory setting; and, finally, a larger category in which delays of two to six weeks can be justified. The proposed wait time targets will provide guidance on the timeliness of care to busy clinicians charged with the care of patients with cardiovascular disease, help policy makers appreciate the clinical challenges in providing access to high quality care, and highlight the critical need for a thoughtful review of cardiology human resource requirements. Wait time implementation suggestions are also included, such as the innovative use of disease management and special need clinics. The times proposed assume that available clinical practice guidelines are followed for clinical coronary syndrome management and for treatment of associated conditions such as hypertension, diabetes, renal disease, smoking cessation and lipid disorders. Although media attention tends to focus on wait times for higher profile surgical procedures and high technology imaging, it is likely that patients face the greatest wait-related risk at the earlier phases of care, before the disease has been adequately characterized. PMID:16957798

  14. Increasing the quality, comparability and accessibility of phytoplankton species composition time-series data

    NASA Astrophysics Data System (ADS)

    Zingone, Adriana; Harrison, Paul J.; Kraberg, Alexandra; Lehtinen, Sirpa; McQuatters-Gollop, Abigail; O'Brien, Todd; Sun, Jun; Jakobsen, Hans H.

    2015-09-01

    Phytoplankton diversity and its variation over an extended time scale can provide answers to a wide range of questions relevant to societal needs. These include human health, the safe and sustained use of marine resources and the ecological status of the marine environment, including long-term changes under the impact of multiple stressors. The analysis of phytoplankton data collected at the same place over time, as well as the comparison among different sampling sites, provide key information for assessing environmental change, and evaluating new actions that must be made to reduce human induced pressures on the environment. To achieve these aims, phytoplankton data may be used several decades later by users that have not participated in their production, including automatic data retrieval and analysis. The methods used in phytoplankton species analysis vary widely among research and monitoring groups, while quality control procedures have not been implemented in most cases. Here we highlight some of the main differences in the sampling and analytical procedures applied to phytoplankton analysis and identify critical steps that are required to improve the quality and inter-comparability of data obtained at different sites and/or times. Harmonization of methods may not be a realistic goal, considering the wide range of purposes of phytoplankton time-series data collection. However, we propose that more consistent and detailed metadata and complementary information be recorded and made available along with phytoplankton time-series datasets, including description of the procedures and elements allowing for a quality control of the data. To keep up with the progress in taxonomic research, there is a need for continued training of taxonomists, and for supporting and complementing existing web resources, in order to allow a constant upgrade of knowledge in phytoplankton classification and identification. Efforts towards the improvement of metadata recording, data

  15. Time scale of diffusion in molecular and cellular biology

    NASA Astrophysics Data System (ADS)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  16. Time-sliced perturbation theory for large scale structure I: general formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution ofmore » the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.« less

  17. Structure and dating errors in the geologic time scale and periodicity in mass extinctions

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.

  18. 75 FR 20564 - Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-851] Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit for Preliminary Results of Countervailing Duty... access memory semiconductors from the Republic of Korea, covering the period January 1, 2008 through...

  19. Effect of helicity on the correlation time of large scales in turbulent flows

    NASA Astrophysics Data System (ADS)

    Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne

    2017-11-01

    Solutions of the forced Navier-Stokes equation have been conjectured to thermalize at scales larger than the forcing scale, similar to an absolute equilibrium obtained for the spectrally truncated Euler equation. Using direct numeric simulations of Taylor-Green flows and general-periodic helical flows, we present results on the probability density function, energy spectrum, autocorrelation function, and correlation time that compare the two systems. In the case of highly helical flows, we derive an analytic expression describing the correlation time for the absolute equilibrium of helical flows that is different from the E-1 /2k-1 scaling law of weakly helical flows. This model predicts a new helicity-based scaling law for the correlation time as τ (k ) ˜H-1 /2k-1 /2 . This scaling law is verified in simulations of the truncated Euler equation. In simulations of the Navier-Stokes equations the large-scale modes of forced Taylor-Green symmetric flows (with zero total helicity and large separation of scales) follow the same properties as absolute equilibrium including a τ (k ) ˜E-1 /2k-1 scaling for the correlation time. General-periodic helical flows also show similarities between the two systems; however, the largest scales of the forced flows deviate from the absolute equilibrium solutions.

  20. Real-time gray-scale photolithography for fabrication of continuous microstructure

    NASA Astrophysics Data System (ADS)

    Peng, Qinjun; Guo, Yongkang; Liu, Shijie; Cui, Zheng

    2002-10-01

    A novel real-time gray-scale photolithography technique for the fabrication of continuous microstructures that uses a LCD panel as a real-time gray-scale mask is presented. The principle of design of the technique is explained, and computer simulation results based on partially coherent imaging theory are given for the patterning of a microlens array and a zigzag grating. An experiment is set up, and a microlens array and a zigzag grating on panchromatic silver halide sensitized gelatin with trypsinase etching are obtained.

  1. Inference of scale-free networks from gene expression time series.

    PubMed

    Daisuke, Tominaga; Horton, Paul

    2006-04-01

    Quantitative time-series observation of gene expression is becoming possible, for example by cell array technology. However, there are no practical methods with which to infer network structures using only observed time-series data. As most computational models of biological networks for continuous time-series data have a high degree of freedom, it is almost impossible to infer the correct structures. On the other hand, it has been reported that some kinds of biological networks, such as gene networks and metabolic pathways, may have scale-free properties. We hypothesize that the architecture of inferred biological network models can be restricted to scale-free networks. We developed an inference algorithm for biological networks using only time-series data by introducing such a restriction. We adopt the S-system as the network model, and a distributed genetic algorithm to optimize models to fit its simulated results to observed time series data. We have tested our algorithm on a case study (simulated data). We compared optimization under no restriction, which allows for a fully connected network, and under the restriction that the total number of links must equal that expected from a scale free network. The restriction reduced both false positive and false negative estimation of the links and also the differences between model simulation and the given time-series data.

  2. Accessing world knowledge: evidence from N400 and reaction time priming.

    PubMed

    Chwilla, Dorothee J; Kolk, Herman H J

    2005-12-01

    How fast are we in accessing world knowledge? In two experiments, we tested for priming for word triplets that described a conceptual script (e.g., DIRECTOR-BRIBE-DISMISSAL) but were not associatively related and did not share a category relationship. Event-related brain potentials were used to track the time course at which script information becomes available. In Experiment 1, in which participants made lexical decisions, we found a facilitation for script-related relative to unrelated triplets, as indicated by (i) a decrease in both reaction time and errors, and (ii) an N400-like priming effect. In Experiment 2, we further explored the locus of script priming by increasing the contribution of meaning integration processes. The participants' task was to indicate whether the three words presented a plausible scenario. Again, an N400 script priming effect was obtained. Directing attention to script relations was effective in enhancing the N400 effect. The time course of the N400 effect was similar to that of the standard N400 effect to semantic relations. The present results show that script priming can be obtained in the visual modality, and that script information is immediately accessed and integrated with context. This supports the view that script information forms a central aspect of word meaning. The RT and N400 script priming effects reported in this article are problematic for most current semantic priming models, like spreading activation models, expectancy models, and task-specific semantic matching/integration models. They support a view in which there is no clear cutoff point between semantic knowledge and world knowledge.

  3. Observation of Prethermalization in Long-Range Interacting Spin Chains (Open Access, Author’s Manuscript)

    DTIC Science & Technology

    2016-08-03

    instance, quantum systems that are near-integrable usually fail to thermalize in an experimentally realistic time scale and, instead, relax to quasi ...However, it is possible to observe quasi -stationary states, often called prethermal, that emerge within an experimentally accessible time scale. Previous...generalized Gibbs ensemble (GGE) [10–13]. Here we experimentally study the relaxation dynamics of a chain of up to 22 spins evolving under a long-range

  4. Time Scales and Sources of European Temperature Variability

    NASA Astrophysics Data System (ADS)

    Årthun, Marius; Kolstad, Erik W.; Eldevik, Tor; Keenlyside, Noel S.

    2018-04-01

    Skillful predictions of continental climate would be of great practical benefit for society and stakeholders. It nevertheless remains fundamentally unresolved to what extent climate is predictable, for what features, at what time scales, and by which mechanisms. Here we identify the dominant time scales and sources of European surface air temperature (SAT) variability during the cold season using a coupled climate reanalysis, and a statistical method that estimates SAT variability due to atmospheric circulation anomalies. We find that eastern Europe is dominated by subdecadal SAT variability associated with the North Atlantic Oscillation, whereas interdecadal and multidecadal SAT variability over northern and southern Europe are thermodynamically driven by ocean temperature anomalies. Our results provide evidence that temperature anomalies in the North Atlantic Ocean are advected over land by the mean westerly winds and, hence, provide a mechanism through which ocean temperature controls the variability and provides predictability of European SAT.

  5. 9 CFR 355.20 - Inspector to have access to plant at all times.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Inspector to have access to plant at all times. 355.20 Section 355.20 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFIED PRODUCTS FOR DOGS, CATS, AND OTHER CARNIVORA...

  6. Data Services and Transnational Access for European Geosciences Multi-Scale Laboratories

    NASA Astrophysics Data System (ADS)

    Funiciello, Francesca; Rosenau, Matthias; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Trippanera, Daniele; Spires, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst

    2016-04-01

    The EC policy for research in the new millennium supports the development of european-scale research infrastructures. In this perspective, the existing research infrastructures are going to be integrated with the objective to increase their accessibility and to enhance the usability of their multidisciplinary data. Building up integrating Earth Sciences infrastructures in Europe is the mission of the Implementation Phase (IP) of the European Plate Observing System (EPOS) project (2015-2019). The integration of european multiscale laboratories - analytical, experimental petrology and volcanology, magnetic and analogue laboratories - plays a key role in this context and represents a specific task of EPOS IP. In the frame of the WP16 of EPOS IP working package 16, European geosciences multiscale laboratories aims to be linked, merging local infrastructures into a coherent and collaborative network. In particular, the EPOS IP WP16-task 4 "Data services" aims at standardize data and data products, already existing and newly produced by the participating laboratories, and made them available through a new digital platform. The following data and repositories have been selected for the purpose: 1) analytical and properties data a) on volcanic ash from explosive eruptions, of interest to the aviation industry, meteorological and government institutes, b) on magmas in the context of eruption and lava flow hazard evaluation, and c) on rock systems of key importance in mineral exploration and mining operations; 2) experimental data describing: a) rock and fault properties of importance for modelling and forecasting natural and induced subsidence, seismicity and associated hazards, b) rock and fault properties relevant for modelling the containment capacity of rock systems for CO2, energy sources and wastes, c) crustal and upper mantle rheology as needed for modelling sedimentary basin formation and crustal stress distributions, d) the composition, porosity, permeability, and

  7. Inspiring the Next Generation through Real Time Access to Ocean Exploration

    NASA Astrophysics Data System (ADS)

    Bell, K. L.; Ballard, R. D.; Witten, A. B.; O'Neal, A.; Argenta, J.

    2011-12-01

    Using live-access exposure to actual shipboard research activities where exciting discoveries are made can be a key contributor to engaging students and their families in learning about earth science and STEM subjects. The number of bachelor's degrees awarded annually in the Earth sciences peaked at nearly 8000 in 1984, and has since declined more than 50%; for the last several years, the number of bachelor's degrees issued in U.S. schools in the geosciences has hovered around 2500 (AGI, 2009). In 2008, the last year for which the data are published, only 533 Ph.D.s were awarded in Earth, Atmospheric and Ocean sciences (NSF, 2009). By 2030, the supply of geoscientists for the petroleum industry is expected to fall short of the demand by 30,000 scientists (AGI, 2009). The National Science Foundation (NSF) reports that minority students earn approximately 15% of all bachelor's degrees in science and engineering, but only 4.6% of degrees in the geosciences. Both of these percentages are very low in comparison to national and state populations, where Hispanics and African-Americans make up 29% of the U.S. overall. The Ocean Exploration Trust (OET) is a non-profit organization whose mission is to explore the world's ocean, and to capture the excitement of that exploration for audiences of all ages, but primarily to inspire and motivate the next generation of explorers. The flagship of OET's exploratory programs is the Exploration Vessel Nautilus, on which annual expeditions are carried out to support our mission. The ship is equipped with state of the art satellite telecommunications "telepresence" technology that enables 24/7 world-wide real time access to the data being collected by the ships remotely operated vehicles. It is this "live" access that affords OET and its partners the opportunity to engage and inspire audiences across the United States and abroad. OET has formed partnerships with a wide-range of educational organizations that collectively offer life-time

  8. Improved access and cycle time with an "in-house" patient-centered teleglaucoma program versus traditional in-person assessment.

    PubMed

    Arora, Sourabh; Rudnisky, Chris J; Damji, Karim F

    2014-05-01

    To compare access time and cycle time between an "in-house" teleglaucoma program and in-person glaucoma consultation. This was a prospective comparative study of 71 patients seen through the teleglaucoma program (eligible patients were glaucoma suspects or early-stage open-angle glaucoma) and 63 patients seen via a traditional in-person exam with a physician present. Access time was calculated as the time from the patient being referred to the date of a booked visit for either a teleglaucoma or in-person exam. Cycle time was defined as the time from registration until departure during the visit to the hospital; it was calculated for the subset of patients from each study group who completed activity logs on the day of their visit. The mean access time was significantly shorter for patients seen through teleglaucoma compared with in-person exam: 45±22 days (range, 13-121 days) (n=68) versus 88±47 days (range, 27-214 days) (n=63), respectively (p<0.0001). The cycle time was also reduced for patients seen through teleglaucoma, compared with in-person assessment: 78±20 min (range, 40-130 min) (n=39) versus 115±44 min (range, 51-216 min) (n=39), respectively (p<0.001). The mean percentage time spent in the waiting room was also significantly reduced for patients seen through teleglaucoma versus in-person assessments: 19±13% versus 41±24% (n=39), respectively (p<0.01). Teleglaucoma improves access to care and is a more efficient way of managing glaucoma suspects and patients with early-stage glaucoma compared with in-person assessment.

  9. Use of a Walk Through Time to Facilitate Student Understandings of the Geological Time Scale

    NASA Astrophysics Data System (ADS)

    Shipman, H. L.

    2004-12-01

    Students often have difficulties in appreciating just how old the earth and the universe are. While they can simply memorize a number, they really do not understand just how big that number really is, in comparison with other, more familiar student referents like the length of a human lifetime or how long it takes to eat a pizza. (See, e.g., R.D. Trend 2001, J. Research in Science Teaching 38(2): 191-221) Students, and members of the general public, also display such well-known misconceptions as the "Flintstone chronology" of believing that human beings and dinosaurs walked the earth at the same time. (In the classic American cartoon "The Flintstones," human beings used dinosaurs as draft animals. As scientists we know this is fiction, but not all members of the public understand that.) In an interdisciplinary undergraduate college class that dealt with astronomy, cosmology, and biological evolution, I used a familiar activity to try to improve student understanding of the concept of time's vastness. Students walked through a pre-determined 600-step path which provided a spatial analogy to the geological time scale. They stopped at various points and engaged in some pre-determined discussions and debates. This activity is as old as the hills, but reports of its effectiveness or lack thereof are quite scarce. This paper demonstrates that this activity was effective for a general-audience, college student population in the U.S. The growth of student understandings of the geological time scale was significant as a result of this activity. Students did develop an understanding of time's vastness and were able to articulate this understanding in various ways. This growth was monitored through keeping track of several exam questions and through pre- and post- analysis of student writings. In the pre-writings, students often stated that they had "no idea" about how to illustrate the size of the geological time scale to someone else. While some post-time walk responses

  10. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  11. Time scale controversy: Accurate orbital calibration of the early Paleogene

    NASA Astrophysics Data System (ADS)

    Roehl, U.; Westerhold, T.; Laskar, J.

    2012-12-01

    Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to 54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 ± 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 ± 0.05 Ma for the early Eocene ash -17, and 65.250 ± 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radioisotopic geochronology is much more challenging than previously thought.

  12. Time scale controversy: Accurate orbital calibration of the early Paleogene

    NASA Astrophysics Data System (ADS)

    Westerhold, Thomas; RöHl, Ursula; Laskar, Jacques

    2012-06-01

    Timing is crucial to understanding the causes and consequences of events in Earth history. The calibration of geological time relies heavily on the accuracy of radioisotopic and astronomical dating. Uncertainties in the computations of Earth's orbital parameters and in radioisotopic dating have hampered the construction of a reliable astronomically calibrated time scale beyond 40 Ma. Attempts to construct a robust astronomically tuned time scale for the early Paleogene by integrating radioisotopic and astronomical dating are only partially consistent. Here, using the new La2010 and La2011 orbital solutions, we present the first accurate astronomically calibrated time scale for the early Paleogene (47-65 Ma) uniquely based on astronomical tuning and thus independent of the radioisotopic determination of the Fish Canyon standard. Comparison with geological data confirms the stability of the new La2011 solution back to ˜54 Ma. Subsequent anchoring of floating chronologies to the La2011 solution using the very long eccentricity nodes provides an absolute age of 55.530 ± 0.05 Ma for the onset of the Paleocene/Eocene Thermal Maximum (PETM), 54.850 ± 0.05 Ma for the early Eocene ash -17, and 65.250 ± 0.06 Ma for the K/Pg boundary. The new astrochronology presented here indicates that the intercalibration and synchronization of U/Pb and 40Ar/39Ar radioisotopic geochronology is much more challenging than previously thought.

  13. Non-volatile, high density, high speed, Micromagnet-Hall effect Random Access Memory (MHRAM)

    NASA Technical Reports Server (NTRS)

    Wu, Jiin C.; Katti, Romney R.; Stadler, Henry L.

    1991-01-01

    The micromagnetic Hall effect random access memory (MHRAM) has the potential of replacing ROMs, EPROMs, EEPROMs, and SRAMs because of its ability to achieve non-volatility, radiation hardness, high density, and fast access times, simultaneously. Information is stored magnetically in small magnetic elements (micromagnets), allowing unlimited data retention time, unlimited numbers of rewrite cycles, and inherent radiation hardness and SEU immunity, making the MHRAM suitable for ground based as well as spaceflight applications. The MHRAM device design is not affected by areal property fluctuations in the micromagnet, so high operating margins and high yield can be achieved in large scale integrated circuit (IC) fabrication. The MHRAM has short access times (less than 100 nsec). Write access time is short because on-chip transistors are used to gate current quickly, and magnetization reversal in the micromagnet can occur in a matter of a few nanoseconds. Read access time is short because the high electron mobility sensor (InAs or InSb) produces a large signal voltage in response to the fringing magnetic field from the micromagnet. High storage density is achieved since a unit cell consists only of two transistors and one micromagnet Hall effect element. By comparison, a DRAM unit cell has one transistor and one capacitor, and a SRAM unit cell has six transistors.

  14. Continent-scale global change attribution in European birds - combining annual and decadal time scales.

    PubMed

    Jørgensen, Peter Søgaard; Böhning-Gaese, Katrin; Thorup, Kasper; Tøttrup, Anders P; Chylarecki, Przemysław; Jiguet, Frédéric; Lehikoinen, Aleksi; Noble, David G; Reif, Jiri; Schmid, Hans; van Turnhout, Chris; Burfield, Ian J; Foppen, Ruud; Voříšek, Petr; van Strien, Arco; Gregory, Richard D; Rahbek, Carsten

    2016-02-01

    Species attributes are commonly used to infer impacts of environmental change on multiyear species trends, e.g. decadal changes in population size. However, by themselves attributes are of limited value in global change attribution since they do not measure the changing environment. A broader foundation for attributing species responses to global change may be achieved by complementing an attributes-based approach by one estimating the relationship between repeated measures of organismal and environmental changes over short time scales. To assess the benefit of this multiscale perspective, we investigate the recent impact of multiple environmental changes on European farmland birds, here focusing on climate change and land use change. We analyze more than 800 time series from 18 countries spanning the past two decades. Analysis of long-term population growth rates documents simultaneous responses that can be attributed to both climate change and land-use change, including long-term increases in populations of hot-dwelling species and declines in long-distance migrants and farmland specialists. In contrast, analysis of annual growth rates yield novel insights into the potential mechanisms driving long-term climate induced change. In particular, we find that birds are affected by winter, spring, and summer conditions depending on the distinct breeding phenology that corresponds to their migratory strategy. Birds in general benefit from higher temperatures or higher primary productivity early on or in the peak of the breeding season with the largest effect sizes observed in cooler parts of species' climatic ranges. Our results document the potential of combining time scales and integrating both species attributes and environmental variables for global change attribution. We suggest such an approach will be of general use when high-resolution time series are available in large-scale biodiversity surveys. © 2015 John Wiley & Sons Ltd.

  15. In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale

    DOE PAGES

    Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.; ...

    2017-04-07

    Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less

  16. In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.

    Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less

  17. Media Access Time-Rearrangement of Wireless LAN for a Multi-Radio Collocated Platform

    NASA Astrophysics Data System (ADS)

    Shin, Sang-Heon; Kim, Chul; Park, Sang Kyu

    With the advent of new Radio Access Technologies (RATs), it is inevitable that several RATs will co-exist, especially in the license-exempt band. In this letter, we present an in-depth adaptation of the proactive time-rearrangement (PATRA) scheme for IEEE 802.11 WLAN. The PATRA is a time division approach for reducing interference from a multi-radio device. Because IEEE 802.11 is based on carrier sensing and contention mechanism, it is the most suitable candidate to adapt the PATRA.

  18. 50 CFR 501.4 - Requests for access-times, places and requirements for identification of individuals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Requests for access-times, places and... COMMISSION IMPLEMENTATION OF THE PRIVACY ACT OF 1974 § 501.4 Requests for access—times, places and... any records to which that individual is entitled under the Act upon satisfactory proof of identity by...

  19. Scale and Time Effects in Hydraulic Fracturing.

    DTIC Science & Technology

    1984-07-01

    An experimental study was conducted to determine the effects of scale and time on hydraulic fracturing in compacted samples of Teton Dam silt and...occurrence of hydraulic fracturing . Finite element analyses were used to investigate the possible effects of nonlinear soil behavior. Both experimental and...theoretical studies show that hydraulic fracturing can be initiated by seepage-induced forces without the presence of a preexisting flaw in the soil. (Author)

  20. Flexible timing by temporal scaling of cortical responses

    PubMed Central

    Wang, Jing; Narain, Devika; Hosseini, Eghbal A.; Jazayeri, Mehrdad

    2017-01-01

    Musicians can perform at different tempos, speakers can control the cadence of their speech, and children can flexibly vary their temporal expectations of events. To understand the neural basis of such flexibility, we recorded from the medial frontal cortex of nonhuman primates trained to produce different time intervals with different effectors. Neural responses were heterogeneous, nonlinear and complex, and exhibited a remarkable form of temporal invariance: firing rate profiles were temporally scaled to match the produced intervals. Recording from downstream neurons in the caudate and thalamic neurons projecting to the medial frontal cortex indicated that this phenomenon originates within cortical networks. Recurrent neural network models trained to perform the task revealed that temporal scaling emerges from nonlinearities in the network and degree of scaling is controlled by the strength of external input. These findings demonstrate a simple and general mechanism for conferring temporal flexibility upon sensorimotor and cognitive functions. PMID:29203897

  1. Improving equitable access to imaging under universal-access medicine: the ontario wait time information program and its impact on hospital policy and process.

    PubMed

    Kielar, Ania Z; El-Maraghi, Robert H; Schweitzer, Mark E

    2010-08-01

    In Canada, equal access to health care is the goal, but this is associated with wait times. Wait times should be fair rather than uniform, taking into account the urgency of the problem as well as the time an individual has already waited. In November 2004, the Ontario government began addressing this issue. One of the first steps was to institute benchmarks reflecting "acceptable" wait times for CT and MRI. A public Web site was developed indicating wait times at each Local Health Integration Network. Since starting the Wait Time Information Program, there has been a sustained reduction in wait times for Ontarians requiring CT and MRI. The average wait time for a CT scan went from 81 days in September 2005 to 47 days in September 2009. For MRI, the resulting wait time was reduced from 120 to 105 days. Increased patient scans have been achieved by purchasing new CT and MRI scanners, expanding hours of operation, and improving patient throughput using strategies learned from the Lean initiative, based on Toyota's manufacturing philosophy for car production. Institution-specific changes in booking procedures have been implemented. Concurrently, government guidelines have been developed to ensure accountability for monies received. The Ontario Wait Time Information Program is an innovative first step in improving fair and equitable access to publicly funded imaging services. There have been reductions in wait times for both CT and MRI. As various new processes are implemented, further review will be necessary for each step to determine their individual efficacy. Copyright 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  2. Multi-time Scale Coordination of Distributed Energy Resources in Isolated Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony; Xie, Le; Butler-Purry, Karen

    2016-03-31

    In isolated power systems, including microgrids, distributed assets, such as renewable energy resources (e.g. wind, solar) and energy storage, can be actively coordinated to reduce dependency on fossil fuel generation. The key challenge of such coordination arises from significant uncertainty and variability occurring at small time scales associated with increased penetration of renewables. Specifically, the problem is with ensuring economic and efficient utilization of DERs, while also meeting operational objectives such as adequate frequency performance. One possible solution is to reduce the time step at which tertiary controls are implemented and to ensure feedback and look-ahead capability are incorporated tomore » handle variability and uncertainty. However, reducing the time step of tertiary controls necessitates investigating time-scale coupling with primary controls so as not to exacerbate system stability issues. In this paper, an optimal coordination (OC) strategy, which considers multiple time-scales, is proposed for isolated microgrid systems with a mix of DERs. This coordination strategy is based on an online moving horizon optimization approach. The effectiveness of the strategy was evaluated in terms of economics, technical performance, and computation time by varying key parameters that significantly impact performance. The illustrative example with realistic scenarios on a simulated isolated microgrid test system suggests that the proposed approach is generalizable towards designing multi-time scale optimal coordination strategies for isolated power systems.« less

  3. Observation time scale, free-energy landscapes, and molecular symmetry

    PubMed Central

    Wales, David J.; Salamon, Peter

    2014-01-01

    When structures that interconvert on a given time scale are lumped together, the corresponding free-energy surface becomes a function of the observation time. This view is equivalent to grouping structures that are connected by free-energy barriers below a certain threshold. We illustrate this time dependence for some benchmark systems, namely atomic clusters and alanine dipeptide, highlighting the connections to broken ergodicity, local equilibrium, and “feasible” symmetry operations of the molecular Hamiltonian. PMID:24374625

  4. Comparison of Traditional and Open-Access Appointment Scheduling for Exponentially Distributed Service Time.

    PubMed

    Yan, Chongjun; Tang, Jiafu; Jiang, Bowen; Fung, Richard Y K

    2015-01-01

    This paper compares the performance measures of traditional appointment scheduling (AS) with those of an open-access appointment scheduling (OA-AS) system with exponentially distributed service time. A queueing model is formulated for the traditional AS system with no-show probability. The OA-AS models assume that all patients who call before the session begins will show up for the appointment on time. Two types of OA-AS systems are considered: with a same-session policy and with a same-or-next-session policy. Numerical results indicate that the superiority of OA-AS systems is not as obvious as those under deterministic scenarios. The same-session system has a threshold of relative waiting cost, after which the traditional system always has higher total costs, and the same-or-next-session system is always preferable, except when the no-show probability or the weight of patients' waiting is low. It is concluded that open-access policies can be viewed as alternative approaches to mitigate the negative effects of no-show patients.

  5. Time-scale effects on the gain-loss asymmetry in stock indices

    NASA Astrophysics Data System (ADS)

    Sándor, Bulcsú; Simonsen, Ingve; Nagy, Bálint Zsolt; Néda, Zoltán

    2016-08-01

    The gain-loss asymmetry, observed in the inverse statistics of stock indices is present for logarithmic return levels that are over 2 % , and it is the result of the non-Pearson-type autocorrelations in the index. These non-Pearson-type correlations can be viewed also as functionally dependent daily volatilities, extending for a finite time interval. A generalized time-window shuffling method is used to show the existence of such autocorrelations. Their characteristic time scale proves to be smaller (less than 25 trading days) than what was previously believed. It is also found that this characteristic time scale has decreased with the appearance of program trading in the stock market transactions. Connections with the leverage effect are also established.

  6. Cloud-based Web Services for Near-Real-Time Web access to NPP Satellite Imagery and other Data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Valente, E. G.

    2010-12-01

    We are building a scalable, cloud computing-based infrastructure for Web access to near-real-time data products synthesized from the U.S. National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP) and other geospatial and meteorological data. Given recent and ongoing changes in the the NPP and NPOESS programs (now Joint Polar Satellite System), the need for timely delivery of NPP data is urgent. We propose an alternative to a traditional, centralized ground segment, using distributed Direct Broadcast facilities linked to industry-standard Web services by a streamlined processing chain running in a scalable cloud computing environment. Our processing chain, currently implemented on Amazon.com's Elastic Compute Cloud (EC2), retrieves raw data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and synthesizes data products such as Sea-Surface Temperature, Vegetation Indices, etc. The cloud computing approach lets us grow and shrink computing resources to meet large and rapid fluctuations (twice daily) in both end-user demand and data availability from polar-orbiting sensors. Early prototypes have delivered various data products to end-users with latencies between 6 and 32 minutes. We have begun to replicate machine instances in the cloud, so as to reduce latency and maintain near-real time data access regardless of increased data input rates or user demand -- all at quite moderate monthly costs. Our service-based approach (in which users invoke software processes on a Web-accessible server) facilitates access into datasets of arbitrary size and resolution, and allows users to request and receive tailored and composite (e.g., false-color multiband) products on demand. To facilitate broad impact and adoption of our technology, we have emphasized open, industry-standard software interfaces and open source software. Through our work, we envision the widespread establishment of similar, derived, or interoperable systems for

  7. Item response theory analysis of the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised in the Pooled Resource Open-Access ALS Clinical Trials Database.

    PubMed

    Bacci, Elizabeth D; Staniewska, Dorota; Coyne, Karin S; Boyer, Stacey; White, Leigh Ann; Zach, Neta; Cedarbaum, Jesse M

    2016-01-01

    Our objective was to examine dimensionality and item-level performance of the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) across time using classical and modern test theory approaches. Confirmatory factor analysis (CFA) and Item Response Theory (IRT) analyses were conducted using data from patients with amyotrophic lateral sclerosis (ALS) Pooled Resources Open-Access ALS Clinical Trials (PRO-ACT) database with complete ALSFRS-R data (n = 888) at three time-points (Time 0, Time 1 (6-months), Time 2 (1-year)). Results demonstrated that in this population of 888 patients, mean age was 54.6 years, 64.4% were male, and 93.7% were Caucasian. The CFA supported a 4* individual-domain structure (bulbar, gross motor, fine motor, and respiratory domains). IRT analysis within each domain revealed misfitting items and overlapping item response category thresholds at all time-points, particularly in the gross motor and respiratory domain items. Results indicate that many of the items of the ALSFRS-R may sub-optimally distinguish among varying levels of disability assessed by each domain, particularly in patients with less severe disability. Measure performance improved across time as patient disability severity increased. In conclusion, modifications to select ALSFRS-R items may improve the instrument's specificity to disability level and sensitivity to treatment effects.

  8. Temporal variations of cosmic rays over a variety of time scales

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Marti, K.

    1986-01-01

    The variation of the intensity of Galactic cosmic rays in the inner solar system over a wide variety of time scales is discussed, and the generally accepted physical model which can account quantitatively for these modulations is reviewed. The use of direct measurements and of nuclear reactions to study the temporal intensity variations is summarized. It is demonstrated that all of the observed variations could easily be the result of solar variations on long and short time scales.

  9. The length and time scales of water's glass transitions

    NASA Astrophysics Data System (ADS)

    Limmer, David T.

    2014-06-01

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  10. The length and time scales of water's glass transitions.

    PubMed

    Limmer, David T

    2014-06-07

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  11. A Dynamical System Approach Explaining the Process of Development by Introducing Different Time-scales.

    PubMed

    Hashemi Kamangar, Somayeh Sadat; Moradimanesh, Zahra; Mokhtari, Setareh; Bakouie, Fatemeh

    2018-06-11

    A developmental process can be described as changes through time within a complex dynamic system. The self-organized changes and emergent behaviour during development can be described and modeled as a dynamical system. We propose a dynamical system approach to answer the main question in human cognitive development i.e. the changes during development happens continuously or in discontinuous stages. Within this approach there is a concept; the size of time scales, which can be used to address the aforementioned question. We introduce a framework, by considering the concept of time-scale, in which "fast" and "slow" is defined by the size of time-scales. According to our suggested model, the overall pattern of development can be seen as one continuous function, with different time-scales in different time intervals.

  12. Characteristic variations of sea surface temperature with multiple time scales in the North Pacific

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanimoto, Youichi; Hanawa, Kimio; Toba, Yoshiaki

    1993-06-01

    It is unclear whether the recent increases in global temperatures are really due to the increase of greenhouse gases or are a manifestation of natural variability. Temporal evolution and spectral structure of sea surface temperature (SST) anomalies in the North Pacific over the last 37 years are investigated on the three characteristic time scales: shorter than 24 months (HF), 24-60 months (ES), and longer than 60 months (DC). The leading empirical-orthogonal function (EOF) for the DC time scale is characterized by a zonally elongated monopole centered at around 40[degrees]N, 180[degrees]. The leading EOF for the HF time scale is somewhatmore » similar to that for the DC time scale, although there are two centers of action with the same polarity at the mid and western Pacific. The leading EOF for the ES time scale, however, exhibits a different pattern whose center of action at the mid Pacific is located farther southeastward. In the time evolution of the SST anomalies associated with the leading EOF of the DC time scale, several anomaly periods can be identified that last five years or longer. The transition from a persistent period to another with the opposite polarity is generally very brief, except for the one that lasts throughout the late 1960s. The EOF analysis was repeated separately on these persistent anomaly periods and the long transition period. The spatial structure of the leading EOF of the SST variability with the ES time scale is found to be sensitive to the polarity of the decadal anomaly. These results are suggestive of the possible influence of the decadal SST variability upon the spatial structure of the variability with shorter time scales. 31 refs., 8 figs.« less

  13. Accessing Information in Working Memory: Can the Focus of Attention Grasp Two Elements at the Same Time?

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Bialkova, Svetlana

    2009-01-01

    Processing information in working memory requires selective access to a subset of working-memory contents by a focus of attention. Complex cognition often requires joint access to 2 items in working memory. How does the focus select 2 items? Two experiments with an arithmetic task and 1 with a spatial task investigate time demands for successive…

  14. Student access to competitive foods in elementary schools: trends over time and regional differences.

    PubMed

    Turner, Lindsey R; Chaloupka, Frank J

    2012-02-01

    To examine the availability of competitive foods in elementary schools. Nationally representative mail-back survey. United States public and private elementary schools during the 2006-2007, 2007-2008, 2008-2009, and 2009-2010 school years. Survey respondents at 2647 public and 1205 private elementary schools. The availability of foods offered in competitive venues. Elementary school students' access to foods in competitive venues on campus (vending machines, school stores, snack bars, or à la carte lines) remained constant over time. As of the 2009-2010 school year, approximately half of all public and private elementary school students could purchase foods in 1 or more competitive venues on campus. Sugary foods were available to almost all students with access to competitive foods on campus. Public elementary school students in the South had more access to competitive food venues and greater availability of salty and sweet products in those venues compared with students in other parts of the country; however, they also had greater availability of healthier foods, such as fruits and vegetables. Many elementary school students can purchase competitive foods on campus. Most students with access to competitive venues could purchase sweet products, but healthier foods were less widely available.

  15. Accessing the exceptional points of parity-time symmetric acoustics

    PubMed Central

    Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang

    2016-01-01

    Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging. PMID:27025443

  16. Identifying the time scale of synchronous movement: a study on tropical snakes.

    PubMed

    Lindström, Tom; Phillips, Benjamin L; Brown, Gregory P; Shine, Richard

    2015-01-01

    Individual movement is critical to organismal fitness and also influences broader population processes such as demographic stochasticity and gene flow. Climatic change and habitat fragmentation render the drivers of individual movement especially critical to understand. Rates of movement of free-ranging animals through the landscape are influenced both by intrinsic attributes of an organism (e.g., size, body condition, age), and by external forces (e.g., weather, predation risk). Statistical modelling can clarify the relative importance of those processes, because externally-imposed pressures should generate synchronous displacements among individuals within a population, whereas intrinsic factors should generate consistency through time within each individual. External and intrinsic factors may vary in importance at different time scales. In this study we focused on daily displacement of an ambush-foraging snake from tropical Australia (the Northern Death Adder Acanthophis praelongus), based on a radiotelemetric study. We used a mixture of spectral representation and Bayesian inference to study synchrony in snake displacement by phase shift analysis. We further studied autocorrelation in fluctuations of displacement distances as "one over f noise". Displacement distances were positively autocorrelated with all considered noise colour parameters estimated as >0. We show how the methodology can reveal time scales of particular interest for synchrony and found that for the analysed data, synchrony was only present at time scales above approximately three weeks. We conclude that the spectral representation combined with Bayesian inference is a promising approach for analysis of movement data. Applying the framework to telemetry data of A. praelongus, we were able to identify a cut-off time scale above which we found support for synchrony, thus revealing a time scale where global external drivers have a larger impact on the movement behaviour. Our results suggest that

  17. EDITORIAL: Special issue on time scale algorithms

    NASA Astrophysics Data System (ADS)

    Matsakis, Demetrios; Tavella, Patrizia

    2008-12-01

    This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than

  18. A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows

    NASA Astrophysics Data System (ADS)

    Verma, Aman; Mahesh, Krishnan

    2012-08-01

    The dynamic Lagrangian averaging approach for the dynamic Smagorinsky model for large eddy simulation is extended to an unstructured grid framework and applied to complex flows. The Lagrangian time scale is dynamically computed from the solution and does not need any adjustable parameter. The time scale used in the standard Lagrangian model contains an adjustable parameter θ. The dynamic time scale is computed based on a "surrogate-correlation" of the Germano-identity error (GIE). Also, a simple material derivative relation is used to approximate GIE at different events along a pathline instead of Lagrangian tracking or multi-linear interpolation. Previously, the time scale for homogeneous flows was computed by averaging along directions of homogeneity. The present work proposes modifications for inhomogeneous flows. This development allows the Lagrangian averaged dynamic model to be applied to inhomogeneous flows without any adjustable parameter. The proposed model is applied to LES of turbulent channel flow on unstructured zonal grids at various Reynolds numbers. Improvement is observed when compared to other averaging procedures for the dynamic Smagorinsky model, especially at coarse resolutions. The model is also applied to flow over a cylinder at two Reynolds numbers and good agreement with previous computations and experiments is obtained. Noticeable improvement is obtained using the proposed model over the standard Lagrangian model. The improvement is attributed to a physically consistent Lagrangian time scale. The model also shows good performance when applied to flow past a marine propeller in an off-design condition; it regularizes the eddy viscosity and adjusts locally to the dominant flow features.

  19. Changes in dental care access upon health care benefit expansion to include scaling

    PubMed Central

    2016-01-01

    Purpose This study aimed to evaluate the effects of a policy change to expand Korean National Health Insurance (KNHI) benefit coverage to include scaling on access to dental care at the national level. Methods A nationally representative sample of 12,794 adults aged 20 to 64 years from Korea National Health and Nutritional Examination Survey (2010–2014) was analyzed. To examine the effect of the policy on the outcomes of interest (unmet dental care needs and preventive dental care utilization in the past year), an estimates-based probit model was used, incorporating marginal effects with a complex sampling structure. The effect of the policy on individuals depending on their income and education level was also assessed. Results Adjusting for potential covariates, the probability of having unmet needs for dental care decreased by 6.1% and preventative dental care utilization increased by 14% in the post-policy period compared to those in the pre-policy period (2010, 2012). High income and higher education levels were associated with fewer unmet dental care needs and more preventive dental visits. Conclusions The expansion of coverage to include scaling demonstrated to have a significant association with decreasing unmet dental care needs and increasing preventive dental care utilization. However, the policy disproportionately benefited certain groups, in contrast with the objective of the policy to benefit all participants in the KNHI system. PMID:28050318

  20. Changes in dental care access upon health care benefit expansion to include scaling.

    PubMed

    Park, Hee-Jung; Lee, Jun Hyup; Park, Sujin; Kim, Tae-Il

    2016-12-01

    This study aimed to evaluate the effects of a policy change to expand Korean National Health Insurance (KNHI) benefit coverage to include scaling on access to dental care at the national level. A nationally representative sample of 12,794 adults aged 20 to 64 years from Korea National Health and Nutritional Examination Survey (2010-2014) was analyzed. To examine the effect of the policy on the outcomes of interest (unmet dental care needs and preventive dental care utilization in the past year), an estimates-based probit model was used, incorporating marginal effects with a complex sampling structure. The effect of the policy on individuals depending on their income and education level was also assessed. Adjusting for potential covariates, the probability of having unmet needs for dental care decreased by 6.1% and preventative dental care utilization increased by 14% in the post-policy period compared to those in the pre-policy period (2010, 2012). High income and higher education levels were associated with fewer unmet dental care needs and more preventive dental visits. The expansion of coverage to include scaling demonstrated to have a significant association with decreasing unmet dental care needs and increasing preventive dental care utilization. However, the policy disproportionately benefited certain groups, in contrast with the objective of the policy to benefit all participants in the KNHI system.

  1. Least-rattling feedback from strong time-scale separation

    NASA Astrophysics Data System (ADS)

    Chvykov, Pavel; England, Jeremy

    2018-03-01

    In most interacting many-body systems associated with some "emergent phenomena," we can identify subgroups of degrees of freedom that relax on dramatically different time scales. Time-scale separation of this kind is particularly helpful in nonequilibrium systems where only the fast variables are subjected to external driving; in such a case, it may be shown through elimination of fast variables that the slow coordinates effectively experience a thermal bath of spatially varying temperature. In this paper, we investigate how such a temperature landscape arises according to how the slow variables affect the character of the driven quasisteady state reached by the fast variables. Brownian motion in the presence of spatial temperature gradients is known to lead to the accumulation of probability density in low-temperature regions. Here, we focus on the implications of attraction to low effective temperature for the long-term evolution of slow variables. After quantitatively deriving the temperature landscape for a general class of overdamped systems using a path-integral technique, we then illustrate in a simple dynamical system how the attraction to low effective temperature has a fine-tuning effect on the slow variable, selecting configurations that bring about exceptionally low force fluctuation in the fast-variable steady state. We furthermore demonstrate that a particularly strong effect of this kind can take place when the slow variable is tuned to bring about orderly, integrable motion in the fast dynamics that avoids thermalizing energy absorbed from the drive. We thus point to a potentially general feedback mechanism in multi-time-scale active systems, that leads to the exploration of slow variable space, as if in search of fine tuning for a "least-rattling" response in the fast coordinates.

  2. Rotational relaxation time as unifying time scale for polymer and fiber drag reduction

    NASA Astrophysics Data System (ADS)

    Boelens, A. M. P.; Muthukumar, M.

    2016-05-01

    Using hybrid direct numerical simulation plus Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime for both flexible polymers and rigid fibers. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers.

  3. Rotational relaxation time as unifying time scale for polymer and fiber drag reduction.

    PubMed

    Boelens, A M P; Muthukumar, M

    2016-05-01

    Using hybrid direct numerical simulation plus Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime for both flexible polymers and rigid fibers. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers.

  4. Speech Compensation for Time-Scale-Modified Auditory Feedback

    ERIC Educational Resources Information Center

    Ogane, Rintaro; Honda, Masaaki

    2014-01-01

    Purpose: The purpose of this study was to examine speech compensation in response to time-scale-modified auditory feedback during the transition of the semivowel for a target utterance of /ija/. Method: Each utterance session consisted of 10 control trials in the normal feedback condition followed by 20 perturbed trials in the modified auditory…

  5. Relating the large-scale structure of time series and visibility networks.

    PubMed

    Rodríguez, Miguel A

    2017-06-01

    The structure of time series is usually characterized by means of correlations. A new proposal based on visibility networks has been considered recently. Visibility networks are complex networks mapped from surfaces or time series using visibility properties. The structures of time series and visibility networks are closely related, as shown by means of fractional time series in recent works. In these works, a simple relationship between the Hurst exponent H of fractional time series and the exponent of the distribution of edges γ of the corresponding visibility network, which exhibits a power law, is shown. To check and generalize these results, in this paper we delve into this idea of connected structures by defining both structures more properly. In addition to the exponents used before, H and γ, which take into account local properties, we consider two more exponents that, as we will show, characterize global properties. These are the exponent α for time series, which gives the scaling of the variance with the size as var∼T^{2α}, and the exponent κ of their corresponding network, which gives the scaling of the averaged maximum of the number of edges, 〈k_{M}〉∼N^{κ}. With this representation, a more precise connection between the structures of general time series and their associated visibility network is achieved. Similarities and differences are more clearly established, and new scaling forms of complex networks appear in agreement with their respective classes of time series.

  6. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time

    NASA Astrophysics Data System (ADS)

    Martin, Stephanie L.-O.; Carek, Andrew M.; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T.; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-12-01

    Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms - and thus PTT through larger, more elastic arteries - in terms of its ability to improve tracking of BP in individual subjects. We measured “scale PTT”, conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of -0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of -0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP.

  7. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time.

    PubMed

    Martin, Stephanie L-O; Carek, Andrew M; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-12-15

    Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms - and thus PTT through larger, more elastic arteries - in terms of its ability to improve tracking of BP in individual subjects. We measured "scale PTT", conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of -0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of -0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP.

  8. A hierarchy of time-scales and the brain.

    PubMed

    Kiebel, Stefan J; Daunizeau, Jean; Friston, Karl J

    2008-11-01

    In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure-function relationships, which can be tested by manipulating the time-scales of sensory input.

  9. A Systematic Multi-Time Scale Solution for Regional Power Grid Operation

    NASA Astrophysics Data System (ADS)

    Zhu, W. J.; Liu, Z. G.; Cheng, T.; Hu, B. Q.; Liu, X. Z.; Zhou, Y. F.

    2017-10-01

    Many aspects need to be taken into consideration in a regional grid while making schedule plans. In this paper, a systematic multi-time scale solution for regional power grid operation considering large scale renewable energy integration and Ultra High Voltage (UHV) power transmission is proposed. In the time scale aspect, we discuss the problem from month, week, day-ahead, within-day to day-behind, and the system also contains multiple generator types including thermal units, hydro-plants, wind turbines and pumped storage stations. The 9 subsystems of the scheduling system are described, and their functions and relationships are elaborated. The proposed system has been constructed in a provincial power grid in Central China, and the operation results further verified the effectiveness of the system.

  10. Evaluating the uncertainty of predicting future climate time series at the hourly time scale

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2011-12-01

    A stochastic downscaling methodology is developed to generate hourly, point-scale time series for several meteorological variables, such as precipitation, cloud cover, shortwave radiation, air temperature, relative humidity, wind speed, and atmospheric pressure. The methodology uses multi-model General Circulation Model (GCM) realizations and an hourly weather generator, AWE-GEN. Probabilistic descriptions of factors of change (a measure of climate change with respect to historic conditions) are computed for several climate statistics and different aggregation times using a Bayesian approach that weights the individual GCM contributions. The Monte Carlo method is applied to sample the factors of change from their respective distributions thereby permitting the generation of time series in an ensemble fashion, which reflects the uncertainty of climate projections of future as well as the uncertainty of the downscaling procedure. Applications of the methodology and probabilistic expressions of certainty in reproducing future climates for the periods, 2000 - 2009, 2046 - 2065 and 2081 - 2100, using the 1962 - 1992 period as the baseline, are discussed for the location of Firenze (Italy). The climate predictions for the period of 2000 - 2009 are tested against observations permitting to assess the reliability and uncertainties of the methodology in reproducing statistics of meteorological variables at different time scales.

  11. Expanding Access and Usage of NASA Near Real-Time Imagery and Data

    NASA Astrophysics Data System (ADS)

    Cechini, M.; Murphy, K. J.; Boller, R. A.; Schmaltz, J. E.; Thompson, C. K.; Huang, T.; McGann, J. M.; Ilavajhala, S.; Alarcon, C.; Roberts, J. T.

    2013-12-01

    In late 2009, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near real-time data products from a variety of Earth Observing System (EOS) instruments. Since that time, NASA's Earth Observing System Data and Information System (EOSDIS) developed the Global Imagery Browse Services (GIBS) to provide highly responsive, scalable, and expandable imagery services that distribute near real-time imagery in an intuitive and geo-referenced format. The GIBS imagery services provide access through standards-based protocols such as the Open Geospatial Consortium (OGC) Web Map Tile Service (WMTS) and standard mapping file formats such as the Keyhole Markup Language (KML). Leveraging these standard mechanisms opens NASA near real-time imagery to a broad landscape of mapping libraries supporting mobile applications. By easily integrating with mobile application development libraries, GIBS makes it possible for NASA imagery to become a reliable and valuable source for end-user applications. Recently, EOSDIS has taken steps to integrate near real-time metadata products into the EOS ClearingHOuse (ECHO) metadata repository. Registration of near real-time metadata allows for near real-time data discovery through ECHO clients. In kind with the near real-time data processing requirements, the ECHO ingest model allows for low-latency metadata insertion and updates. Combining with the ECHO repository, the fast visual access of GIBS imagery can now be linked directly back to the source data file(s). Through the use of discovery standards such as OpenSearch, desktop and mobile applications can connect users to more than just an image. As data services, such as OGC Web Coverage Service, become more prevalent within the EOSDIS system, applications may even be able to connect users from imagery to data values. In addition, the full resolution GIBS imagery provides visual context to other GIS data and tools. The NASA near real-time imagery

  12. A wavelet based approach to measure and manage contagion at different time scales

    NASA Astrophysics Data System (ADS)

    Berger, Theo

    2015-10-01

    We decompose financial return series of US stocks into different time scales with respect to different market regimes. First, we examine dependence structure of decomposed financial return series and analyze the impact of the current financial crisis on contagion and changing interdependencies as well as upper and lower tail dependence for different time scales. Second, we demonstrate to which extent the information of different time scales can be used in the context of portfolio management. As a result, minimizing the variance of short-run noise outperforms a portfolio that minimizes the variance of the return series.

  13. Improving outpatient access and patient experiences in academic ambulatory care.

    PubMed

    O'Neill, Sarah; Calderon, Sherry; Casella, Joanne; Wood, Elizabeth; Carvelli-Sheehan, Jayne; Zeidel, Mark L

    2012-02-01

    Effective scheduling of and ready access to doctor appointments affect ambulatory patient care quality, but these are often sacrificed by patients seeking care from physicians at academic medical centers. At one center, Beth Israel Deaconess Medical Center, the authors developed interventions to improve the scheduling of appointments and to reduce the access time between telephone call and first offered appointment. Improvements to scheduling included no redirection to voicemail, prompt telephone pickup, courteous service, complete registration, and effective scheduling. Reduced access time meant being offered an appointment with a physician in the appropriate specialty within three working days of the telephone call. Scheduling and access were assessed using monthly "mystery shopper" calls. Mystery shoppers collected data using standardized forms, rated the quality of service, and transcribed their interactions with schedulers. Monthly results were tabulated and discussed with clinical leaders; leaders and frontline staff then developed solutions to detected problems. Eighteen months after the beginning of the intervention (in June 2007), which is ongoing, schedulers had gone from using 60% of their registration skills to over 90%, customer service scores had risen from 2.6 to 4.9 (on a 5-point scale), and average access time had fallen from 12 days to 6 days. The program costs $50,000 per year and has been associated with a 35% increase in ambulatory volume across three years. The authors conclude that academic medical centers can markedly improve the scheduling process and access to care and that these improvements may result in increased ambulatory care volume.

  14. Finite-Time and -Size Scalings in the Evaluation of Large Deviation Functions. Numerical Analysis in Continuous Time

    NASA Astrophysics Data System (ADS)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provide a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to a selection rule that favors the rare trajectories of interest. However, such algorithms are plagued by finite simulation time- and finite population size- effects that can render their use delicate. Using the continuous-time cloning algorithm, we analyze the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of the rare trajectories. We use these scalings in order to propose a numerical approach which allows to extract the infinite-time and infinite-size limit of these estimators.

  15. Ultrafast time scale X-rotation of cold atom storage qubit using Rubidium clock states

    NASA Astrophysics Data System (ADS)

    Song, Yunheung; Lee, Han-Gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2017-04-01

    Ultrafast-time-scale optical interaction is a local operation on the electronic subspace of an atom, thus leaving its nuclear state intact. However, because atomic clock states are maximally entangled states of the electronic and nuclear degrees of freedom, their entire Hilbert space should be accessible only with local operations and classical communications (LOCC). Therefore, it may be possible to achieve hyperfine qubit gates only with electronic transitions. Here we show an experimental implementation of ultrafast X-rotation of atomic hyperfine qubits, in which an optical Rabi oscillation induces a geometric phase between the constituent fine-structure states, thus bringing about the X-rotation between the two ground hyperfine levels. In experiments, cold atoms in a magneto-optical trap were controlled with a femtosecond laser pulse from a Ti:sapphire laser amplifier. Absorption imaging of the as-controlled atoms initially in the ground hyperfine state manifested polarization dependence, strongly agreeing with the theory. The result indicates that single laser pulse implementations of THz clock speed qubit controls are feasible for atomic storage qubits. Samsung Science and Technology Foundation [SSTF-BA1301-12].

  16. HIV-1 genetic diversity and primary drug resistance mutations before large-scale access to antiretroviral therapy, Republic of Congo.

    PubMed

    Niama, Fabien Roch; Vidal, Nicole; Diop-Ndiaye, Halimatou; Nguimbi, Etienne; Ahombo, Gabriel; Diakabana, Philippe; Bayonne Kombo, Édith Sophie; Mayengue, Pembe Issamou; Kobawila, Simon-Charles; Parra, Henri Joseph; Toure-Kane, Coumba

    2017-07-05

    In this work, we investigated the genetic diversity of HIV-1 and the presence of mutations conferring antiretroviral drug resistance in 50 drug-naïve infected persons in the Republic of Congo (RoC). Samples were obtained before large-scale access to HAART in 2002 and 2004. To assess the HIV-1 genetic recombination, the sequencing of the pol gene encoding a protease and partial reverse transcriptase was performed and analyzed with updated references, including newly characterized CRFs. The assessment of drug resistance was conducted according to the WHO protocol. Among the 50 samples analyzed for the pol gene, 50% were classified as intersubtype recombinants, charring complex structures inside the pol fragment. Five samples could not be classified (noted U). The most prevalent subtypes were G with 10 isolates and D with 11 isolates. One isolate of A, J, H, CRF05, CRF18 and CRF37 were also found. Two samples (4%) harboring the mutations M230L and Y181C associated with the TAMs M41L and T215Y, respectively, were found. This first study in the RoC, based on WHO classification, shows that the threshold of transmitted drug resistance before large-scale access to antiretroviral therapy is 4%.

  17. Evaluation of the psychometric properties of the phlebitis and infiltration scales for the assessment of complications of peripheral vascular access devices.

    PubMed

    Groll, Dianne; Davies, Barbara; Mac Donald, Joan; Nelson, Susanne; Virani, Tazim

    2010-01-01

    To prevent complications from peripheral vascular access device (PVAD) therapy, the Infusion Nurses Society (INS) developed 2 scales to measure the extent and severity of phlebitis and infiltration in PVADs. This study evaluated the psychometric properties of these scales to validate them with respect to their interrater reliability, concurrent validity, feasibility, and acceptability. A total of 182 patients at 2 sites were enrolled, and 416 observations of PVAD sites were made. Two nurses independently rated each PVAD site for the presence or absence of phlebitis and/or infiltration by using the INS scales. The interrater reliability was calculated, as was the agreement of the observed versus charted incidence of phlebitis and infiltration (concurrent validity) and the ease of use of the scales (feasibility, acceptability). Interrater reliability for both the Phlebitis and Infiltration scales and concurrent validity were found to be statistically significant (P < .05). The study nurses reported the scales to be easy to use, taking an average of 1.3 minutes to complete both. The importance of valid measures for use in research cannot be underestimated. The INS Phlebitis and Infiltration scales have been shown to be easy to use, valid, and reliable scales.

  18. Doubly stochastic Poisson process models for precipitation at fine time-scales

    NASA Astrophysics Data System (ADS)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  19. Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu

    2018-01-01

    Multi-time scales modeling of hydro-turbine governing system is crucial in precise modeling of hydropower plant and provides support for the stability analysis of the system. Considering the inertia and response time of the hydraulic servo system, the hydro-turbine governing system is transformed into the fast-slow hydro-turbine governing system. The effects of the time-scale on the dynamical behavior of the system are analyzed and the fast-slow dynamical behaviors of the system are investigated with different time-scale. Furthermore, the theoretical analysis of the stable regions is presented. The influences of the time-scale on the stable region are analyzed by simulation. The simulation results prove the correctness of the theoretical analysis. More importantly, the methods and results of this paper provide a perspective to multi-time scales modeling of hydro-turbine governing system and contribute to the optimization analysis and control of the system.

  20. Scaling relation for high-temperature biodiesel surrogate ignition delay times

    DOE PAGES

    Campbell, Matthew F.; Davidson, David F.; Hanson, Ronald K.

    2015-10-11

    High-temperature Arrhenius ignition delay time correlations are useful for revealing the underlying parameter dependencies of combustion models, for simplifying and optimizing combustion mechanisms for use in engine simulations, for scaling experimental data to new conditions for comparison purposes, and for guiding in experimental design. Here, we have developed a scaling relationship for Fatty Acid Methyl Ester (FAME) ignition time data taken at high temperatures in 4%O 2/Ar mixtures behind reflected shocks using an aerosol shock tube: τ ign [ms] = 2.24 x 10 -6 [ms] (P [atm]) -.41 (more » $$\\phi$$) 0.30(C n) -.61 x exp $$ \\left(\\frac{37.1 [kcal/mol]}{\\hat{R}_u [kcal / mol K] T [K]}\\right) $$ In addition, we have combined our ignition delay time data for methyl decanoate, methyl palmitate, methyl oleate, and methyl linoleate with other experimental results in the literature in order to derive fuel-specific oxygen-mole-fraction scaling parameters for these surrogates. In conclusion, in this article, we discuss the significance of the parameter values, compare our correlation to others found in the literature for different classes of fuels, and contrast the above expression’s performance with correlations obtained using leading FAME kinetic models in 4%O 2/Ar mixtures.« less

  1. Global review of open access risk assessment software packages valid for global or continental scale analysis

    NASA Astrophysics Data System (ADS)

    Daniell, James; Simpson, Alanna; Gunasekara, Rashmin; Baca, Abigail; Schaefer, Andreas; Ishizawa, Oscar; Murnane, Rick; Tijssen, Annegien; Deparday, Vivien; Forni, Marc; Himmelfarb, Anne; Leder, Jan

    2015-04-01

    -defined exposure and vulnerability. Without this function, many tools can only be used regionally and not at global or continental scale. It is becoming increasingly easy to use multiple packages for a single region and/or hazard to characterize the uncertainty in the risk, or use as checks for the sensitivities in the analysis. There is a potential for valuable synergy between existing software. A number of open source software packages could be combined to generate a multi-risk model with multiple views of a hazard. This extensive review has simply attempted to provide a platform for dialogue between all open source and open access software packages and to hopefully inspire collaboration between developers, given the great work done by all open access and open source developers.

  2. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time

    PubMed Central

    Martin, Stephanie L.-O.; Carek, Andrew M.; Kim, Chang-Sei; Ashouri, Hazar; Inan, Omer T.; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-01-01

    Pulse transit time (PTT) is being widely pursued for cuff-less blood pressure (BP) monitoring. Most efforts have employed the time delay between ECG and finger photoplethysmography (PPG) waveforms as a convenient surrogate of PTT. However, these conventional pulse arrival time (PAT) measurements include the pre-ejection period (PEP) and the time delay through small, muscular arteries and may thus be an unreliable marker of BP. We assessed a bathroom weighing scale-like system for convenient measurement of ballistocardiography and foot PPG waveforms – and thus PTT through larger, more elastic arteries – in terms of its ability to improve tracking of BP in individual subjects. We measured “scale PTT”, conventional PAT, and cuff BP in humans during interventions that increased BP but changed PEP and smooth muscle contraction differently. Scale PTT tracked the diastolic BP changes well, with correlation coefficient of −0.80 ± 0.02 (mean ± SE) and root-mean-squared-error of 7.6 ± 0.5 mmHg after a best-case calibration. Conventional PAT was significantly inferior in tracking these changes, with correlation coefficient of −0.60 ± 0.04 and root-mean-squared-error of 14.6 ± 1.5 mmHg (p < 0.05). Scale PTT also tracked the systolic BP changes better than conventional PAT but not to an acceptable level. With further development, scale PTT may permit reliable, convenient measurement of BP. PMID:27976741

  3. Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales

    NASA Astrophysics Data System (ADS)

    Baggett, Cory F.; Barnes, Elizabeth A.; Maloney, Eric D.; Mundhenk, Bryan D.

    2017-07-01

    Atmospheric rivers are elongated plumes of intense moisture transport that are capable of producing extreme and impactful weather. Along the West Coast of North America, they occasionally cause considerable mayhem—delivering flooding rains during periods of heightened activity and desiccating droughts during periods of reduced activity. The intrinsic chaos of the atmosphere makes the prediction of atmospheric rivers at subseasonal-to-seasonal time scales (3 to 5 weeks) an inherently difficult task. We demonstrate here that the potential exists to advance forecast lead times of atmospheric rivers into subseasonal-to-seasonal time scales through knowledge of two of the atmosphere's most prominent oscillations, the Madden-Julian oscillation (MJO) and the quasi-biennial oscillation (QBO). Strong MJO and QBO activity modulates the frequency at which atmospheric rivers strike—offering an opportunity to improve subseasonal-to-seasonal forecast models and thereby skillfully predict atmospheric river activity up to 5 weeks in advance.

  4. Synchrony between reanalysis-driven RCM simulations and observations: variation with time scale

    NASA Astrophysics Data System (ADS)

    de Elía, Ramón; Laprise, René; Biner, Sébastien; Merleau, James

    2017-04-01

    Unlike coupled global climate models (CGCMs) that run in a stand-alone mode, nested regional climate models (RCMs) are driven by either a CGCM or a reanalysis dataset. This feature makes high correlations between the RCM simulation and its driver possible. When the driving dataset is a reanalysis, time correlations between RCM output and observations are also common and to be expected. In certain situations time correlation between driver and driven RCM is of particular interest and techniques have been developed to increase it (e.g. large-scale spectral nudging). For such cases, a question that remains open is whether aggregating in time increases the correlation between RCM output and observations. That is, although the RCM may be unable to reproduce a given daily event, whether it will still be able to satisfactorily simulate an anomaly on a monthly or annual basis. This is a preconception that the authors of this work and others in the community have held, perhaps as a natural extension of the properties of upscaling or aggregating other statistics such as the mean squared error. Here we explore analytically four particular cases that help us partially answer this question. In addition, we use observations datasets and RCM-simulated data to illustrate our findings. Results indicate that time upscaling does not necessarily increase time correlations, and that those interested in achieving high monthly or annual time correlations between RCM output and observations may have to do so by increasing correlation as much as possible at the shortest time scale. This may indicate that even when only concerned with time correlations at large temporal scale, large-scale spectral nudging acting at the time-step level may have to be used.

  5. Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network

    NASA Astrophysics Data System (ADS)

    Yang, Bin

    2017-07-01

    Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately

  6. Scaling of coupled dilatancy-diffusion processes in space and time

    NASA Astrophysics Data System (ADS)

    Main, I. G.; Bell, A. F.; Meredith, P. G.; Brantut, N.; Heap, M.

    2012-04-01

    Coupled dilatancy-diffusion processes resulting from microscopically brittle damage due to precursory cracking have been observed in the laboratory and suggested as a mechanism for earthquake precursors. One reason precursors have proven elusive may be the scaling in space: recent geodetic and seismic data placing strong limits on the spatial extent of the nucleation zone for recent earthquakes. Another may be the scaling in time: recent laboratory results on axi-symmetric samples show both a systematic decrease in circumferential extensional strain at failure and a delayed and a sharper acceleration of acoustic emission event rate as strain rate is decreased. Here we examine the scaling of such processes in time from laboratory to field conditions using brittle creep (constant stress loading) to failure tests, in an attempt to bridge part of the strain rate gap to natural conditions, and discuss the implications for forecasting the failure time. Dilatancy rate is strongly correlated to strain rate, and decreases to zero in the steady-rate creep phase at strain rates around 10-9 s-1 for a basalt from Mount Etna. The data are well described by a creep model based on the linear superposition of transient (decelerating) and accelerating micro-crack growth due to stress corrosion. The model produces good fits to the failure time in retrospect using the accelerating acoustic emission event rate, but in prospective tests on synthetic data with the same properties we find failure-time forecasting is subject to systematic epistemic and aleatory uncertainties that degrade predictability. The next stage is to use the technology developed to attempt failure forecasting in real time, using live streamed data and a public web-based portal to quantify the prospective forecast quality under such controlled laboratory conditions.

  7. The Challenge to States: Preserving College Access and Affordability in a Time of Crisis

    ERIC Educational Resources Information Center

    National Center for Public Policy and Higher Education, 2009

    2009-01-01

    The American Recovery and Reinvestment Act of 2009 represents both an opportunity and a challenge for states to set priorities. A substantial portion of these one-time federal funds can be used to reposition higher education strategically to protect access and quality and to stimulate the increased cost effectiveness and degree productivity…

  8. A Methadology for Near-Real-Time Access to Environmental Data through Federation

    NASA Astrophysics Data System (ADS)

    Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.

    2015-12-01

    The availability of near-real-time data can be critical for response to rapid changes including violent storms, tsunamis and earthquakes. While climate changes relatively slowly, compared to a tsunami, the increasing variance in weather over time and warming must also be considered in terms of civil impacts. A simple example is the decreasing resilience of coastal communities to severe weather as sea level increases. The integration of these data for modeling and response activities in near-real-time must be pursued to make data collection practical. We present an approach to data and metadata integration that has occurred over the past 10-20 years in Earth and Ocean sciences that provide a model for the future. The NSF Data Federation Consortium (DFC) is working to integrate data and metadata from a number of fields using iRODS (Integrated Rule-Oriented Data System). iRODS is open source software for building distributed data collections. In particular, the SCION (SCIence Observatory Network) funded by the NSF provides Python-based software for data and metadata access from a variety of near-real-time data sets relevant to climate studies including weather and hazards from other observational systems. As an example, we are working on the integration of data on shore and offshore in southern California using resources from the High Performance Wireless Research and Education Network (HPWREN) and the Southern California Coastal Ocean Observing System (SCCOOS). National and International integration of near-real-time earthquake data through the Incorporated Research Institutions for Seismology (IRIS) and the International Federation of Digital Seismic Networks (FDSN) provide a well-integrated data and metadata system for both research and civil uses. ObsPy, written in Python, has proved to be a highly successful methodology for accessing global data from thousands of stations with well-developed metadata. The persistence of the data and metadata, in turn, provides

  9. Reusable single-port access device shortens operative time and reduces operative costs.

    PubMed

    Shussman, Noam; Kedar, Asaf; Elazary, Ram; Abu Gazala, Mahmoud; Rivkind, Avraham I; Mintz, Yoav

    2014-06-01

    In recent years, single-port laparoscopy (SPL) has become an attractive approach for performing surgical procedures. The pitfalls of this approach are technical and financial. Financial concerns are due to the increased cost of dedicated devices and prolonged operating room time. Our aim was to calculate the cost of SPL using a reusable port and instruments in order to evaluate the cost difference between this approach to SPL using the available disposable ports and standard laparoscopy. We performed 22 laparoscopic procedures via the SPL approach using a reusable single-port access system and reusable laparoscopic instruments. These included 17 cholecystectomies and five other procedures. Operative time, postoperative length of stay (LOS) and complications were prospectively recorded and were compared with similar data from our SPL database. Student's t test was used for statistical analysis. SPL was successfully performed in all cases. Mean operative time for cholecystectomy was 72 min (range 40-116). Postoperative LOS was not changed from our standard protocols and was 1.1 days for cholecystectomy. The postoperative course was within normal limits for all patients and perioperative morbidity was recorded. Both operative time and length of hospital stay were shorter for the 17 patients who underwent cholecystectomy using a reusable port than for the matched previous 17 SPL cholecystectomies we performed (p < 0.001). Prices of disposable SPL instruments and multiport access devices as well as extraction bags from different manufacturers were used to calculate the cost difference. Operating with a reusable port ended up with an average cost savings of US$388 compared with using disposable ports, and US$240 compared with standard laparoscopy. Single-port laparoscopic surgery is a technically challenging and expensive surgical approach. Financial concerns among others have been advocated against this approach; however, we demonstrate herein that using a reusable port

  10. Managing Large Scale Project Analysis Teams through a Web Accessible Database

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel A.

    2008-01-01

    Large scale space programs analyze thousands of requirements while mitigating safety, performance, schedule, and cost risks. These efforts involve a variety of roles with interdependent use cases and goals. For example, study managers and facilitators identify ground-rules and assumptions for a collection of studies required for a program or project milestone. Task leaders derive product requirements from the ground rules and assumptions and describe activities to produce needed analytical products. Disciplined specialists produce the specified products and load results into a file management system. Organizational and project managers provide the personnel and funds to conduct the tasks. Each role has responsibilities to establish information linkages and provide status reports to management. Projects conduct design and analysis cycles to refine designs to meet the requirements and implement risk mitigation plans. At the program level, integrated design and analysis cycles studies are conducted to eliminate every 'to-be-determined' and develop plans to mitigate every risk. At the agency level, strategic studies analyze different approaches to exploration architectures and campaigns. This paper describes a web-accessible database developed by NASA to coordinate and manage tasks at three organizational levels. Other topics in this paper cover integration technologies and techniques for process modeling and enterprise architectures.

  11. Estimation of Time Scales in Unsteady Flows in a Turbomachinery Rig

    NASA Technical Reports Server (NTRS)

    Lewalle, Jacques; Ashpis, David E.

    2004-01-01

    Time scales in turbulent and transitional flow provide a link between experimental data and modeling, both in terms of physical content and for quantitative assessment. The problem of interest here is the definition of time scales in an unsteady flow. Using representative samples of data from GEAE low pressure turbine experiment in low speed research turbine facility with wake-induced transition, we document several methods to extract dominant frequencies, and compare the results. We show that conventional methods of time scale evaluation (based on autocorrelation functions and on Fourier spectra) and wavelet-based methods provide similar information when applied to stationary signals. We also show the greater flexibility of the wavelet-based methods when dealing with intermittent or strongly modulated data, as are encountered in transitioning boundary layers and in flows with unsteady forcing associated with wake passing. We define phase-averaged dominant frequencies that characterize the turbulence associated with freestream conditions and with the passing wakes downstream of a rotor. The relevance of these results for modeling is discussed in the paper.

  12. On Time/Space Aggregation of Fine-Scale Error Estimates (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, G. J.

    2013-12-01

    Estimating errors inherent in fine time/space-scale satellite precipitation data sets is still an on-going problem and a key area of active research. Complicating features of these data sets include the intrinsic intermittency of the precipitation in space and time and the resulting highly skewed distribution of precipitation rates. Additional issues arise from the subsampling errors that satellites introduce, the errors due to retrieval algorithms, and the correlated error that retrieval and merger algorithms sometimes introduce. Several interesting approaches have been developed recently that appear to make progress on these long-standing issues. At the same time, the monthly averages over 2.5°x2.5° grid boxes in the Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) precipitation data set follow a very simple sampling-based error model (Huffman 1997) with coefficients that are set using coincident surface and GPCP SG data. This presentation outlines the unsolved problem of how to aggregate the fine-scale errors (discussed above) to an arbitrary time/space averaging volume for practical use in applications, reducing in the limit to simple Gaussian expressions at the monthly 2.5°x2.5° scale. Scatter diagrams with different time/space averaging show that the relationship between the satellite and validation data improves due to the reduction in random error. One of the key, and highly non-linear, issues is that fine-scale estimates tend to have large numbers of cases with points near the axes on the scatter diagram (one of the values is exactly or nearly zero, while the other value is higher). Averaging 'pulls' the points away from the axes and towards the 1:1 line, which usually happens for higher precipitation rates before lower rates. Given this qualitative observation of how aggregation affects error, we observe that existing aggregation rules, such as the Steiner et al. (2003) power law, only depend on the aggregated precipitation rate

  13. Right time, right place: improving access to health service through effective retention and distribution of health workers

    PubMed Central

    2013-01-01

    This editorial introduces the 'Right time, Right place: improving access to health service through effective retention and distribution of health workers’ thematic series. This series draws from studies in a range of countries and provides new insights into what can be done to improve access to health through more effective human resources policies, planning and management. The primary focus is on health workforce distribution and retention. PMID:24274820

  14. HMC algorithm with multiple time scale integration and mass preconditioning

    NASA Astrophysics Data System (ADS)

    Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.

    2006-01-01

    We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.

  15. Grasping time scales from galactic life cycles to personal life projects at a linear scale of 1 mm per 100 years

    NASA Astrophysics Data System (ADS)

    Holm Jacobsen, Bo

    2010-05-01

    The ambition is to make the citizen (i.e. pupil/student/scholar/voter/journalist/politician) comprehend better and more scientifically all time scales from the lifespan of the universe to the personal life project by a consistent geographical mapping of time at a scale of 1 mm per 100 years. The processes which change earth systems like life, climate, topography and plate tectonics operate at very different timescales. The understanding of these systems is essential not only for students and scholars of earth science but also for pupils, voters and politicians who make decisions of possibly significant consequence to climate and biodiversity not only for our generation but for thousands or even millions of years ahead. With a consistent linear mapping of time to a scale of 1 millimetre per 100 years, historical time (

  16. Space-Time Dynamics of Soil Moisture and Temperature: Scale issues

    NASA Technical Reports Server (NTRS)

    Mohanty, Binayak P.; Miller, Douglas A.; Th.vanGenuchten, M.

    2003-01-01

    The goal of this project is to gain further understanding of soil moisture/temperature dynamics at different spatio-temporal scales and physical controls/parameters.We created a comprehensive GIS database, which has been accessed extensively by NASA Land Surface Hydrology investigators (and others), is located at the following URL: http://www.essc.psu.edu/nasalsh. For soil moisture field experiments such as SGP97, SGP99, SMEX02, and SMEX03, cartographic products were designed for multiple applications, both pre- and post-mission. Premission applications included flight line planning and field operations logistics, as well as general insight into the extent and distribution of soil, vegetation, and topographic properties for the study areas. The cartographic products were created from original spatial information resources that were imported into Adobe Illustrator, where the maps were created and PDF versions were made for distribution and download.

  17. Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype

    NASA Astrophysics Data System (ADS)

    Sageman, Bradley B.; Meyers, Stephen R.; Arthur, Michael A.

    2006-02-01

    Previous time scales for the Cenomanian-Turonian boundary (CTB) interval containing Oceanic Anoxic Event II (OAE II) vary by a factor of three. In this paper we present a new orbital time scale for the CTB stratotype established independently of radiometric, biostratigraphic, or geochemical data sets, update revisions of CTB biostratigraphic zonation, and provide a new detailed carbon isotopic record for the CTB study interval. The orbital time scale allows an independent assessment of basal biozone ages relative to the new CTB date of 93.55 Ma (GTS04). The δ13Corg data document the abrupt onset of OAE II, significant variability in δ13Corg values, and values enriched to almost -22‰. These new data underscore the difficulty in defining OAE II termination. Using the new isotope curve and time scale, estimates of OAE II duration can be determined and exported to other sites based on integration of well-established chemostratigraphic and biostratigraphic datums. The new data will allow more accurate calculations of biogeochemical and paleobiologic rates across the CTB.

  18. Comparing Methodologies for Evaluating Emergency Medical Services Ground Transport Access to Time-critical Emergency Services: A Case Study Using Trauma Center Care.

    PubMed

    Doumouras, Aristithes G; Gomez, David; Haas, Barbara; Boyes, Donald M; Nathens, Avery B

    2012-09-01

    The regionalization of medical services has resulted in improved outcomes and greater compliance with existing guidelines. For certain "time-critical" conditions intimately associated with emergency medicine, early intervention has demonstrated mortality benefits. For these conditions, then, appropriate triage within a regionalized system at first diagnosis is paramount, ideally occurring in the field by emergency medical services (EMS) personnel. Therefore, EMS ground transport access is an important metric in the ongoing evaluation of a regionalized care system for time-critical emergency services. To our knowledge, no studies have demonstrated how methodologies for calculating EMS ground transport access differ in their estimates of access over the same study area for the same resource. This study uses two methodologies to calculate EMS ground transport access to trauma center care in a single study area to explore their manifestations and critically evaluate the differences between the methodologies. Two methodologies were compared in their estimations of EMS ground transport access to trauma center care: a routing methodology (RM) and an as-the-crow-flies methodology (ACFM). These methodologies were adaptations of the only two methodologies that had been previously used in the literature to calculate EMS ground transport access to time-critical emergency services across the United States. The RM and ACFM were applied to the nine Level I and Level II trauma centers within the province of Ontario by creating trauma center catchment areas at 30, 45, 60, and 120 minutes and calculating the population and area encompassed by the catchments. Because the methodologies were identical for measuring air access, this study looks specifically at EMS ground transport access. Catchments for the province were created for each methodology at each time interval, and their populations and areas were significantly different at all time periods. Specifically, the RM calculated

  19. On the time-scales of magmatism at island-arc volcanoes.

    PubMed

    Turner, S P

    2002-12-15

    Precise information on time-scales and rates of change is fundamental to an understanding of natural processes and the development of quantitative physical models in the Earth sciences. U-series isotope studies are revolutionizing this field by providing time information in the range 10(2)-10(4) years, which is similar to that of many modern Earth processes. I review how the application of U-series isotopes has been used to constrain the time-scales of magma formation, ascent and storage beneath island-arc volcanoes. Different elements are distilled-off the subducting plate at different times and in different places. Contributions from subducted sediments to island-arc lava sources appear to occur some 350 kyr to 4 Myr prior to eruption. Fluid release from the subducting oceanic crust into the mantle wedge may be a multi-stage process and occurs over a period ranging from a few hundred kyr to less than one kyr prior to eruption. This implies that dehydration commences prior to the initiation of partial melting within the mantle wedge, which is consistent with recent evidence that the onset of melting is controlled by an isotherm and thus the thermal structure within the wedge. U-Pa disequilibria appear to require a component of decompression melting, possibly due to the development of gravitational instabilities. The preservation of large (226)Ra disequilibria permits only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. The evolution from basalt to basaltic andesite probably occurs rapidly during ascent or in magma reservoirs inferred from some geophysical data to lie within the lithospheric mantle. The flux across the Moho is broadly andesitic, and some magmas subsequently stall in more shallow crustal-level magma chambers, where they evolve to more differentiated compositions on time-scales of a few thousand years or less.

  20. Time scales in the context of general relativity.

    PubMed

    Guinot, Bernard

    2011-10-28

    Towards 1967, the accuracy of caesium frequency standards reached such a level that the relativistic effect could not be ignored anymore. Corrections began to be applied for the gravitational frequency shift and for distant time comparisons. However, these corrections were not applied to an explicit theoretical framework. Only in 1991 did the International Astronomical Union provide metrics (then improved in 2000) for a definition of space-time coordinates in reference systems centred at the barycentre of the Solar System and at the centre of mass of the Earth. In these systems, the temporal coordinates (coordinate times) can be realized on the basis of one of them, the International Atomic Time (TAI), which is itself a realized time scale. The definition and the role of TAI in this context will be recalled. There remain controversies regarding the name to be given to the unit of coordinate times and to other quantities appearing in the theory. However, the idea that astrometry and celestial mechanics should adopt the usual metrological rules is progressing, together with the use of the International System of Units, among astronomers.

  1. Technical Report on the 6th Time Scale Algorithm Symposium and Tutorials

    DTIC Science & Technology

    2016-03-29

    Mesures (BIPM) REPORT NUMBER 12 Bis Grande Rue F-92310 Sevres ( France ) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...Authors: F. Arias and G. Panfilo The 6th Time Scale Algorithm Symposium and Tutorials taken place at the Pavilion de Breteuil, BIPM (Sevres, France ) on... France ) 14:30 14:50 Rapid evaluation of time scale using an optical clock (Tetsuya Ida, NICT, Japan) 14:50 15:10 UTC(IT) steering algorithm

  2. Development of the Free Time Motivation Scale for Adolescents.

    ERIC Educational Resources Information Center

    Baldwin, Cheryl K.; Caldwell, Linda L.

    2003-01-01

    Developed a self-report measure of adolescent free time motivation based in self-determination theory, using data from 634 seventh graders. The scale measured five forms of motivation (amotivation, external, introjected, identified, and intrinsic motivation). Examination of each of the subscales indicated minimally acceptable levels of fit. The…

  3. Magnesite Dissolution Rates Across Scales: Role of Spatial Heterogeneity, Equilibrium Lengths, and Reactive Time Scales

    NASA Astrophysics Data System (ADS)

    Wen, H.; Li, L.

    2017-12-01

    This work develops a general rate law for magnesite dissolution in heterogeneous media under variable flow and length conditions, expanding the previous work under one particular flow and length conditions (Wen and Li, 2017). We aim to answer: 1) How does spatial heterogeneity influence the time and length scales to reach equilibrium? 2) How do relative timescales of advection, diffusion/dispersion, and reactions influence dissolution rates under variable flow and length conditions? We carried out 640 Monte-Carlo numerical experiments of magnesite dissolution within quartz matrix with heterogeneity characterized by permeability variance and correlation length under a range of length and flow velocity. A rate law Rhete = kAT(1-exp(τeq,m/τa))(1-exp(- Lβ))^α was developed. The former part is rates in equivalent homogeneous media kAT(1-exp(τeq,m/τa)), depending on rate constant k, magnesite surface area AT, and relative timescales of reactions τeq,m and advection τa. The latter term (1-exp(- Lβ))^α is the heterogeneity factor χ that quantifies the deviation of heterogeneous media from its homogeneous counterpart. The term has a scaling factor, called reactive transport number β=τa/(τad,r+τeq,m), for domain length L, and the geostatistical characteristics of heterogeneity α. The β quantifies the relative timescales of advection at the domain scale τa versus the advective-diffusive-dispersive transport time out of reactive zones τad,r and reaction time τeq,m. The χ is close to 1 and is insignificant under long residence time conditions (low flow velocity and / or long length) where the residence time is longer than the time needed for Mg to dissolve and transport out of reactive zones (τad,r+τeq,m) so that equilibrium is reached and homogenization occurs. In contrast, χ deviates from 1 and is significant only when β is small, which occurs at short length or fast flow where timescales of reactive transport in reactive zones are much longer than

  4. Modelling financial markets with agents competing on different time scales and with different amount of information

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Johannes; Andersen, Jørgen Vitting

    2006-05-01

    We use agent-based models to study the competition among investors who use trading strategies with different amount of information and with different time scales. We find that mixing agents that trade on the same time scale but with different amount of information has a stabilizing impact on the large and extreme fluctuations of the market. Traders with the most information are found to be more likely to arbitrage traders who use less information in the decision making. On the other hand, introducing investors who act on two different time scales has a destabilizing effect on the large and extreme price movements, increasing the volatility of the market. Closeness in time scale used in the decision making is found to facilitate the creation of local trends. The larger the overlap in commonly shared information the more the traders in a mixed system with different time scales are found to profit from the presence of traders acting at another time scale than themselves.

  5. Ultrasound Vein and Artery Mapping by General Surgery Residents During Initial Consult Can Decrease Time to Dialysis Access Creation.

    PubMed

    Gray, Kelsey; Korn, Abraham; Zane, Joshua; Gonzalez, Gabriel; Kaji, Amy; Bowens, Nina; de Virgilio, Christian

    2018-05-01

    Formal preoperative ultrasound (US) mapping of vascular anatomy by radiology is recommended before hemodialysis access surgery. We hypothesized that US performed by general surgery residents in place of formal US would decrease the time from initial consult to creation of dialysis access without affecting patient outcomes. This is a retrospective review of all patients who underwent dialysis access surgery from November 2014 to July 2016 and received preoperative upper extremity US vein and artery evaluation by either radiology or general surgery residents. The primary endpoints were days from initial consult to dialysis access creation, rate of arteriovenous fistula (AVF) creation, fistula maturation, and 1-year primary assisted patency. Of 242 patients, 167 (69%) had formal US, and 75 (31%) had only a resident US. The resident US group had 100% AVF creation compared with the formal US group with 92.2% AVF creation (P = 0.01). There was no difference between the groups in rate of fistula maturation (P = 0.1) and 1-year assisted patency (P = 0.9). Of the resident US 90.7% occurred in the outpatient setting. On multivariable analysis controlling for outpatient consult, the average time to the operating room was 13.7 days longer for the formal US group in the outpatient setting (P = 0.0006). Ultrasound vein and artery evaluation at the time of the initial consult by general surgery residents can decrease the time to dialysis access creation by bypassing the need for formal US with a higher rate of AVF creation and no difference in fistula maturation or 1-year primary assisted patency. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Spatial and Temporal scales of time-averaged 700 MB height anomalies

    NASA Technical Reports Server (NTRS)

    Gutzler, D.

    1981-01-01

    The monthly and seasonal forecasting technique is based to a large extent on the extrapolation of trends in the positions of the centers of time averaged geopotential height anomalies. The complete forecasted height pattern is subsequently drawn around the forecasted anomaly centers. The efficacy of this technique was tested and time series of observed monthly mean and 5 day mean 700 mb geopotential heights were examined. Autocorrelation statistics are generated to document the tendency for persistence of anomalies. These statistics are compared to a red noise hypothesis to check for evidence of possible preferred time scales of persistence. Space-time spectral analyses at middle latitudes are checked for evidence of periodicities which could be associated with predictable month-to-month trends. A local measure of the average spatial scale of anomalies is devised for guidance in the completion of the anomaly pattern around the forecasted centers.

  7. Real-time evolution of a large-scale relativistic jet

    NASA Astrophysics Data System (ADS)

    Martí, Josep; Luque-Escamilla, Pedro L.; Romero, Gustavo E.; Sánchez-Sutil, Juan R.; Muñoz-Arjonilla, Álvaro J.

    2015-06-01

    Context. Astrophysical jets are ubiquitous in the Universe on all scales, but their large-scale dynamics and evolution in time are hard to observe since they usually develop at a very slow pace. Aims: We aim to obtain the first observational proof of the expected large-scale evolution and interaction with the environment in an astrophysical jet. Only jets from microquasars offer a chance to witness the real-time, full-jet evolution within a human lifetime, since they combine a "short", few parsec length with relativistic velocities. Methods: The methodology of this work is based on a systematic recalibraton of interferometric radio observations of microquasars available in public archives. In particular, radio observations of the microquasar GRS 1758-258 over less than two decades have provided the most striking results. Results: Significant morphological variations in the extended jet structure of GRS 1758-258 are reported here that were previously missed. Its northern radio lobe underwent a major morphological variation that rendered the hotspot undetectable in 2001 and reappeared again in the following years. The reported changes confirm the Galactic nature of the source. We tentatively interpret them in terms of the growth of instabilities in the jet flow. There is also evidence of surrounding cocoon. These results can provide a testbed for models accounting for the evolution of jets and their interaction with the environment.

  8. A propagating freshwater mode in the Arctic Ocean with multidecadal time scale

    NASA Astrophysics Data System (ADS)

    Schmith, Torben; Malskær Olsen, Steffen; Margrethe Ringgaard, Ida

    2017-04-01

    We apply Principal Oscillatory Pattern analysis to the Arctic Ocean fresh water content as simulated in a 500 year long control run with constant preindustrial forcing with the EC-Earth global climate model. Two modes emerge from this analysis. One mode is a standing mode with decadal time scale describing accumulation and release of fresh water in the Beaufort Gyre, known in the literature as the Beaufort Gyre flywheel. In addition, we identify a propagating mode with a time scale around 80 years, propagating along the rim of the Canadian Basin. This mode has maximum variability of the fresh water content in the Transpolar Drift and represents the bulk of the total variability of the fresh water content in the Arctic Ocean and also projects on the fresh water through the Fram Strait. Therefore, potentially, it can introduce a multidecadal variability to the Atlantic meridional overturning circulation. We will discuss the physical origin of this propagating mode. This include planetary-scale internal Rossby waves with multidecadal time scale, due to the slow variation of the Coriolis parameter at these high latitudes, as well as topographic steering of these Rossby waves.

  9. OceanNOMADS: Real-time and retrospective access to operational U.S. ocean prediction products

    NASA Astrophysics Data System (ADS)

    Harding, J. M.; Cross, S. L.; Bub, F.; Ji, M.

    2011-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Operational Model Archive and Distribution System (NOMADS) provides both real-time and archived atmospheric model output from servers at the National Centers for Environmental Prediction (NCEP) and National Climatic Data Center (NCDC) respectively (http://nomads.ncep.noaa.gov/txt_descriptions/marRutledge-1.pdf). The NOAA National Ocean Data Center (NODC) with NCEP is developing a complementary capability called OceanNOMADS for operational ocean prediction models. An NCEP ftp server currently provides real-time ocean forecast output (http://www.opc.ncep.noaa.gov/newNCOM/NCOM_currents.shtml) with retrospective access through NODC. A joint effort between the Northern Gulf Institute (NGI; a NOAA Cooperative Institute) and the NOAA National Coastal Data Development Center (NCDDC; a division of NODC) created the developmental version of the retrospective OceanNOMADS capability (http://www.northerngulfinstitute.org/edac/ocean_nomads.php) under the NGI Ecosystem Data Assembly Center (EDAC) project (http://www.northerngulfinstitute.org/edac/). Complementary funding support for the developmental OceanNOMADS from U.S. Integrated Ocean Observing System (IOOS) through the Southeastern University Research Association (SURA) Model Testbed (http://testbed.sura.org/) this past year provided NODC the analogue that facilitated the creation of an NCDDC production version of OceanNOMADS (http://www.ncddc.noaa.gov/ocean-nomads/). Access tool development and storage of initial archival data sets occur on the NGI/NCDDC developmental servers with transition to NODC/NCCDC production servers as the model archives mature and operational space and distribution capability grow. Navy operational global ocean forecast subsets for U.S waters comprise the initial ocean prediction fields resident on the NCDDC production server. The NGI/NCDDC developmental server currently includes the Naval Research Laboratory Inter-America Seas

  10. Long time scale hard X-ray variability in Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and

  11. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  12. Exploring possible relations between optical variability time scales and broad emission line shapes in AGN

    NASA Astrophysics Data System (ADS)

    Bon, Edi; Jovanović, Predrag; Marziani, Paola; Bon, Nataša; Otašević, Aleksandar

    2018-06-01

    Here we investigate the connection of broad emission line shapes and continuum light curve variability time scales of type-1 Active Galactic Nuclei (AGN). We developed a new model to describe optical broad emission lines as an accretion disk model of a line profile with additional ring emission. We connect ring radii with orbital time scales derived from optical light curves, and using Kepler's third law, we calculate mass of central supermassive black hole (SMBH). The obtained results for central black hole masses are in a good agreement with other methods. This indicates that the variability time scales of AGN may not be stochastic, but rather connected to the orbital time scales which depend on the central SMBH mass.

  13. Comparing Time-Dependent Geomagnetic and Atmospheric Effects on Cosmogenic Nuclide Production Rate Scaling

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.

    2014-12-01

    A recently published cosmogenic nuclide production rate scaling model based on analytical fits to Monte Carlo simulations of atmospheric cosmic ray flux spectra (both of which agree well with measured spectra) (Lifton et al., 2014, Earth Planet. Sci. Lett. 386, 149-160: termed the LSD model) provides two main advantages over previous scaling models: identification and quantification of potential sources of bias in the earlier models, and the ability to generate nuclide-specific scaling factors easily for a wide range of input parameters. The new model also provides a flexible framework for exploring the implications of advances in model inputs. In this work, the scaling implications of two recent time-dependent spherical harmonic geomagnetic models spanning the Holocene will be explored. Korte and Constable (2011, Phys. Earth Planet. Int. 188, 247-259) and Korte et al. (2011, Earth Planet. Sci. Lett. 312, 497-505) recently updated earlier spherical harmonic paleomagnetic models used by Lifton et al. (2014) with paleomagnetic measurements from sediment cores in addition to archeomagnetic and volcanic data. These updated models offer improved accuracy over the previous versions, in part to due to increased temporal and spatial data coverage. With the new models as input, trajectory-traced estimates of effective vertical cutoff rigidity (RC- the standard method for ordering cosmic ray data) yield significantly different time-integrated scaling predictions when compared to the earlier models. These results will be compared to scaling predictions using another recent time-dependent spherical harmonic model of the Holocene geomagnetic field by Pavón-Carrasco et al. (2014, Earth Planet. Sci. Lett. 388, 98-109), based solely on archeomagnetic and volcanic paleomagnetic data, but extending to 14 ka. In addition, the potential effects of time-dependent atmospheric models on LSD scaling predictions will be presented. Given the typical dominance of altitudinal over

  14. 10 CFR 2.307 - Extension and reduction of time limits; delegated authority to order use of procedures for access...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... authority to order use of procedures for access by potential parties to certain sensitive unclassified... authority to order use of procedures for access by potential parties to certain sensitive unclassified... Commission or the presiding officer. (b) If this part does not prescribe a time limit for an action to be...

  15. Flow characteristics of a pilot-scale high temperature, short time pasteurizer.

    PubMed

    Tomasula, P M; Kozempel, M F

    2004-09-01

    In this study, we present a method for determining the fastest moving particle (FMP) and residence time distribution (RTD) in a pilot-scale high temperature, short time (HTST) pasteurizer to ensure that laboratory or pilot-scale HTST apparatus meets the Pasteurized Milk Ordinance standards for pasteurization of milk and can be used for obtaining thermal inactivation data. The overall dimensions of the plate in the pasteurizer were 75 x 115 mm, with a thickness of 0.5 mm and effective diameter of 3.0 mm. The pasteurizer was equipped with nominal 21.5- and 52.2-s hold tubes, and flow capacity was variable from 0 to 20 L/h. Tracer studies were used to determine FMP times and RTD data to establish flow characteristics. Using brine milk as tracer, the FMP time for the short holding section was 18.6 s and for the long holding section was 36 s at 72 degrees C, compared with the nominal times of 21.5 and 52.2 s, respectively. The RTD study indicates that the short hold section was 45% back mixed and 55% plug flow for whole milk at 72 degrees C. The long hold section was 91% plug and 9% back mixed for whole milk at 72 degrees C. This study demonstrates that continuous laboratory and pilot-scale pasteurizers may be used to study inactivation of microorganisms only if the flow conditions in the holding tube are established for comparison with commercial HTST systems.

  16. Theoretical restrictions on longest implicit time scales in Markov state models of biomolecular dynamics

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Pande, Vijay S.

    2018-01-01

    Markov state models (MSMs) have been widely used to analyze computer simulations of various biomolecular systems. They can capture conformational transitions much slower than an average or maximal length of a single molecular dynamics (MD) trajectory from the set of trajectories used to build the MSM. A rule of thumb claiming that the slowest implicit time scale captured by an MSM should be comparable by the order of magnitude to the aggregate duration of all MD trajectories used to build this MSM has been known in the field. However, this rule has never been formally proved. In this work, we present analytical results for the slowest time scale in several types of MSMs, supporting the above rule. We conclude that the slowest implicit time scale equals the product of the aggregate sampling and four factors that quantify: (1) how much statistics on the conformational transitions corresponding to the longest implicit time scale is available, (2) how good the sampling of the destination Markov state is, (3) the gain in statistics from using a sliding window for counting transitions between Markov states, and (4) a bias in the estimate of the implicit time scale arising from finite sampling of the conformational transitions. We demonstrate that in many practically important cases all these four factors are on the order of unity, and we analyze possible scenarios that could lead to their significant deviation from unity. Overall, we provide for the first time analytical results on the slowest time scales captured by MSMs. These results can guide further practical applications of MSMs to biomolecular dynamics and allow for higher computational efficiency of simulations.

  17. Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Velten, Andreas

    2017-05-01

    Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.

  18. Using Open and Interoperable Ways to Publish and Access LANCE AIRS Near-Real Time Data

    NASA Technical Reports Server (NTRS)

    Zhao, Peisheng; Lynnes, Christopher; Vollmer, Bruce; Savtchenko, Andrey; Theobald, Michael; Yang, Wenli

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) Near-Real Time (NRT) data from the Land Atmosphere Near real-time Capability for EOS (LANCE) element at the Goddard Earth Sciences Data and Information Services Center (GES DISC) provides information on the global and regional atmospheric state, with very low temporal latency, to support climate research and improve weather forecasting. An open and interoperable platform is useful to facilitate access to, and integration of, LANCE AIRS NRT data. As Web services technology has matured in recent years, a new scalable Service-Oriented Architecture (SOA) is emerging as the basic platform for distributed computing and large networks of interoperable applications. Following the provide-register-discover-consume SOA paradigm, this presentation discusses how to use open-source geospatial software components to build Web services for publishing and accessing AIRS NRT data, explore the metadata relevant to registering and discovering data and services in the catalogue systems, and implement a Web portal to facilitate users' consumption of the data and services.

  19. Prediction and Real-Time Compensation of Qubit Decoherence Via Machine Learning (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2017-01-16

    ARTICLE Received 24 Sep 2016 | Accepted 29 Nov 2016 | Published 16 Jan 2017 Prediction and real- time compensation of qubit decoherence via machine...information to suppress stochastic, semiclassical decoherence, even when access to measurements is limited. First, we implement a time -division...quantum information experiments. Second, we employ predictive feedback during sequential but time delayed measurements to reduce the Dick effect as

  20. Relative Time-scale for Channeling Events Within Chaotic Terrains, Margaritifer Sinus, Mars

    NASA Technical Reports Server (NTRS)

    Janke, D.

    1985-01-01

    A relative time scale for ordering channel and chaos forming events was constructed for areas within the Margaritifer Sinus region of Mars. Transection and superposition relationships of channels, chaotic terrain, and the surfaces surrounding them were used to create the relative time scale; crater density studies were not used. Channels and chaos in contact with one another were treated as systems. These systems were in turn treated both separately (in order to understand internal relationships) and as members of the suite of Martian erosional forms (in order to produce a combined, master time scale). Channeling events associated with chaotic terrain development occurred over an extended geomorphic period. The channels can be divided into three convenient groups: those that pre-date intercrater plains development post-plains, pre-chasma systems; and those associated with the development of the Vallis Marineris chasmata. No correlations with cyclic climatic changes, major geologic events in other regions on Mars, or triggering phenomena (for example, specific impact events) were found.

  1. Accessibility of antiretroviral therapy in Ghana: convenience of access.

    PubMed

    Addo-Atuah, Joyce; Gourley, Dick; Gourley, Greta; White-Means, Shelley I; Womeodu, Robin J; Faris, Richard J; Addo, Nii Akwei

    2012-01-01

    The convenience of accessing antiretroviral therapy (ART) is important for initial access to care and subsequent adherence to ART. We conducted a qualitative study of people living with HIV/AIDS (PLWHA) and ART healthcare providers in Ghana in 2005. The objective of this study was to explore the participants' perceived convenience of accessing ART by PLWHA in Ghana. The convenience of accessing ART was evaluated from the reported travel and waiting times to receive care, the availability, or otherwise, of special considerations, with respect to the waiting time to receive care, for those PLWHA who were in active employment in the formal sector, the frequency of clinic visits before and after initiating ART, and whether the PLWHA saw the same or different providers at each clinic visit (continuity of care). This qualitative study used in-depth interviews based on Yin's case-study research design to collect data from 20 PLWHA and 24 ART healthcare providers as study participants. • Reported travel time to receive ART services ranged from 2 to 12 h for 30% of the PLWHA. • Waiting time to receive care was from 4 to 9 h. • While known government workers, such as teachers, were attended to earlier in some of the centres, this was not a consistent practice in all the four ART centres studied. • The PLWHA corroborated the providers' description of the procedure for initiating and monitoring ART in Ghana. • PLWHA did not see the same provider every time, but they were assured that this did not compromise the continuity of their care. Our study suggests that convenience of accessing ART is important to both PLWHA and ART healthcare providers, but the participants alluded to other factors, including open provider-patient communication, which might explain the PLWHA's understanding of the constraints under which they were receiving care. The current nation-wide coverage of the ART programme in Ghana, however, calls for the replication of this study to identify

  2. Association of State Access Standards With Accessibility to Specialists for Medicaid Managed Care Enrollees.

    PubMed

    Ndumele, Chima D; Cohen, Michael S; Cleary, Paul D

    2017-10-01

    Medicaid recipients have consistently reported less timely access to specialists than patients with other types of coverage. By 2018, state Medicaid agencies will be required by the Center for Medicare and Medicaid Services (CMS) to enact time and distance standards for managed care organizations to ensure an adequate supply of specialist physicians for enrollees; however, there have been no published studies of whether these policies have significant effects on access to specialty care. To compare ratings of access to specialists for adult Medicaid and commercial enrollees before and after the implementation of specialty access standards. We used Consumer Assessment of Healthcare Providers and Systems survey data to conduct a quasiexperimental difference-in-differences (DID) analysis of 20 163 nonelderly adult Medicaid managed care (MMC) enrollees and 54 465 commercially insured enrollees in 5 states adopting access standards, and 37 290 MMC enrollees in 5 matched states that previously adopted access standards. Reported access to specialty care in the previous 6 months. Seven thousand six hundred ninety-eight (69%) Medicaid enrollees and 28 423 (75%) commercial enrollees reported that it was always or usually easy to get an appointment with a specialist before the policy implementation (or at baseline) compared with 11 889 (67%) of Medicaid enrollees in states that had previously implemented access standards. Overall, there was no significant improvement in timely access to specialty services for MMC enrollees in the period following implementation of standard(s) (adjusted difference-in-differences, -1.2 percentage points; 95% CI, -2.7 to 0.1), nor was there any impact of access standards on insurance-based disparities in access (0.6 percentage points; 95% CI, -4.3 to 5.4). There was heterogeneity across states, with 1 state that implemented both time and distance standards demonstrating significant improvements in access and reductions in disparities

  3. Scaling-Up Access to Antiretroviral Therapy for Children: A Cohort Study Evaluating Care and Treatment at Mobile and Hospital-Affiliated HIV Clinics in Rural Zambia

    PubMed Central

    van Dijk, Janneke H.; Moss, William J.; Hamangaba, Francis; Munsanje, Bornface; Sutcliffe, Catherine G.

    2014-01-01

    Background Travel time and distance are barriers to care for HIV-infected children in rural sub-Saharan Africa. Decentralization of care is one strategy to scale-up access to antiretroviral therapy (ART), but few programs have been evaluated. We compared outcomes for children receiving care in mobile and hospital-affiliated HIV clinics in rural Zambia. Methods Outcomes were measured within an ongoing cohort study of HIV-infected children seeking care at Macha Hospital, Zambia from 2007 to 2012. Children in the outreach clinic group received care from the Macha HIV clinic and transferred to one of three outreach clinics. Children in the hospital-affiliated clinic group received care at Macha HIV clinic and reported Macha Hospital as the nearest healthcare facility. Results Seventy-seven children transferred to the outreach clinics and were included in the analysis. Travel time to the outreach clinics was significantly shorter and fewer caretakers used public transportation, resulting in lower transportation costs and fewer obstacles accessing the clinic. Some caretakers and health care providers reported inferior quality of service provision at the outreach clinics. Sixty-eight children received ART at the outreach clinics and were compared to 41 children in the hospital-affiliated clinic group. At ART initiation, median age, weight-for-age z-scores (WAZ) and CD4+ T-cell percentages were similar for children in the hospital-affiliated and outreach clinic groups. Children in both groups experienced similar increases in WAZ and CD4+ T-cell percentages. Conclusions HIV care and treatment can be effectively delivered to HIV-infected children at rural health centers through mobile ART teams, removing potential barriers to uptake and retention. Outreach teams should be supported to increase access to HIV care and treatment in rural areas. PMID:25122213

  4. The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.

    PubMed

    Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter

    2011-10-13

    A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.

  5. Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model

    NASA Astrophysics Data System (ADS)

    Lvov, Yuri V.; Onorato, Miguel

    2018-04-01

    We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.

  6. On Which Microphysical Time Scales to Use in Studies of Entrainment-Mixing Mechanisms in Clouds

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Zhu, Bin; ...

    2018-03-23

    The commonly used time scales in entrainment-mixing studies are examined in this paper to seek the most appropriate one, based on aircraft observations of cumulus clouds from the RACORO campaign and numerical simulations with the Explicit Mixing Parcel Model. The time scales include: τ evap, the time for droplet complete evaporation; τ phase, the time for saturation ratio deficit (S) to reach 1/e of its initial value; τ satu, the time for S to reach -0.5%; τ react, the time for complete droplet evaporation or S to reach -0.5%. It is found that the proper time scale to use dependsmore » on the specific objectives of entrainment-mixing studies. First, if the focus is on the variations of liquid water content (LWC) and S, then τ react for saturation, τ satu and τ phase are almost equivalently appropriate, because they all represent the rate of dry air reaching saturation or of LWC decrease. Second, if one focuses on the variations of droplet size and number concentration, τ react for complete evaporation and τ evap are proper because they characterize how fast droplets evaporate and whether number concentration decreases. Moreover, τ react for complete evaporation and τ evap are always positively correlated with homogeneous mixing degree (ψ), thus the two time scales, especially τ evap, are recommended for developing parameterizations. However, ψ and the other time scales can be negatively, positively, or not correlated, depending on the dominant factors of the entrained air (i.e., relative humidity or aerosols). Third and finally, all time scales are proportional to each other under certain microphysical and thermodynamic conditions.« less

  7. On Which Microphysical Time Scales to Use in Studies of Entrainment-Mixing Mechanisms in Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chunsong; Liu, Yangang; Zhu, Bin

    The commonly used time scales in entrainment-mixing studies are examined in this paper to seek the most appropriate one, based on aircraft observations of cumulus clouds from the RACORO campaign and numerical simulations with the Explicit Mixing Parcel Model. The time scales include: τ evap, the time for droplet complete evaporation; τ phase, the time for saturation ratio deficit (S) to reach 1/e of its initial value; τ satu, the time for S to reach -0.5%; τ react, the time for complete droplet evaporation or S to reach -0.5%. It is found that the proper time scale to use dependsmore » on the specific objectives of entrainment-mixing studies. First, if the focus is on the variations of liquid water content (LWC) and S, then τ react for saturation, τ satu and τ phase are almost equivalently appropriate, because they all represent the rate of dry air reaching saturation or of LWC decrease. Second, if one focuses on the variations of droplet size and number concentration, τ react for complete evaporation and τ evap are proper because they characterize how fast droplets evaporate and whether number concentration decreases. Moreover, τ react for complete evaporation and τ evap are always positively correlated with homogeneous mixing degree (ψ), thus the two time scales, especially τ evap, are recommended for developing parameterizations. However, ψ and the other time scales can be negatively, positively, or not correlated, depending on the dominant factors of the entrained air (i.e., relative humidity or aerosols). Third and finally, all time scales are proportional to each other under certain microphysical and thermodynamic conditions.« less

  8. A contextual role-based access control authorization model for electronic patient record.

    PubMed

    Motta, Gustavo H M B; Furuie, Sergio S

    2003-09-01

    The design of proper models for authorization and access control for electronic patient record (EPR) is essential to a wide scale use of EPR in large health organizations. In this paper, we propose a contextual role-based access control authorization model aiming to increase the patient privacy and the confidentiality of patient data, whereas being flexible enough to consider specific cases. This model regulates user's access to EPR based on organizational roles. It supports a role-tree hierarchy with authorization inheritance; positive and negative authorizations; static and dynamic separation of duties based on weak and strong role conflicts. Contextual authorizations use environmental information available at access time, like user/patient relationship, in order to decide whether a user is allowed to access an EPR resource. This enables the specification of a more flexible and precise authorization policy, where permission is granted or denied according to the right and the need of the user to carry out a particular job function.

  9. Time Horizon and Social Scale in Communication

    NASA Astrophysics Data System (ADS)

    Krantz, D. H.

    2010-12-01

    In 2009 our center (CRED) published a first version of The Psychology of Climate Change Communication. In it, we attempted to summarize facts and concepts from psychological research that could help guide communication. While this work focused on climate change, most of the ideas are at least partly applicable for communication about a variety of natural hazards. Of the many examples in this guide, I mention three. Single-action bias is the human tendency to stop considering further actions that might be needed to deal with a given hazard, once a single action has been taken. Another example is the importance of group affiliation in motivating voluntary contributions to joint action. A third concerns the finding that group participation enhances understanding of probabilistic concepts and promotes action in the face of uncertainty. One current research direction, which goes beyond those included in the above publication, focuses on how time horizons arise in the thinking of individuals and groups, and how these time horizons might influence hazard preparedness. On the one hand, individuals sometimes appear impatient, organizations look for immediate results, and officials fail to look beyond the next election cycle. Yet under some laboratory conditions and in some subcultures, a longer time horizon is adopted. We are interested in how time horizon is influenced by group identity and by the very architecture of planning and decision making. Institutional changes, involving long-term contractual relationships among communities, developers, insurers, and governments, could greatly increase resilience in the face of natural hazards. Communication about hazards, in the context of such long-term contractual relationships might look very different from communication that is first initiated by immediate threat. Another new direction concerns the social scale of institutions and of communication about hazards. Traditionally, insurance contracts share risk among a large

  10. A Java program for LRE-based real-time qPCR that enables large-scale absolute quantification.

    PubMed

    Rutledge, Robert G

    2011-03-02

    Linear regression of efficiency (LRE) introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples.

  11. Factor Structure and Scale Reliabilities of the Adjective Check List Across Time

    ERIC Educational Resources Information Center

    Miller, Stephen H.; And Others

    1978-01-01

    Investigated factor structure and scale reliabilities of Gough's Adjective Check List (ACL) and their stability over time. Employees in a community mental health center completed the ACL twice, separated by a one-year interval. After each administration, separate factor analyses were computed. All scales had highly significant test-retest…

  12. Standardized Access and Processing of Multi-Source Earth Observation Time-Series Data within a Regional Data Middleware

    NASA Astrophysics Data System (ADS)

    Eberle, J.; Schmullius, C.

    2017-12-01

    Increasing archives of global satellite data present a new challenge to handle multi-source satellite data in a user-friendly way. Any user is confronted with different data formats and data access services. In addition the handling of time-series data is complex as an automated processing and execution of data processing steps is needed to supply the user with the desired product for a specific area of interest. In order to simplify the access to data archives of various satellite missions and to facilitate the subsequent processing, a regional data and processing middleware has been developed. The aim of this system is to provide standardized and web-based interfaces to multi-source time-series data for individual regions on Earth. For further use and analysis uniform data formats and data access services are provided. Interfaces to data archives of the sensor MODIS (NASA) as well as the satellites Landsat (USGS) and Sentinel (ESA) have been integrated in the middleware. Various scientific algorithms, such as the calculation of trends and breakpoints of time-series data, can be carried out on the preprocessed data on the basis of uniform data management. Jupyter Notebooks are linked to the data and further processing can be conducted directly on the server using Python and the statistical language R. In addition to accessing EO data, the middleware is also used as an intermediary between the user and external databases (e.g., Flickr, YouTube). Standardized web services as specified by OGC are provided for all tools of the middleware. Currently, the use of cloud services is being researched to bring algorithms to the data. As a thematic example, an operational monitoring of vegetation phenology is being implemented on the basis of various optical satellite data and validation data from the German Weather Service. Other examples demonstrate the monitoring of wetlands focusing on automated discovery and access of Landsat and Sentinel data for local areas.

  13. Adaptation and learning: characteristic time scales of performance dynamics.

    PubMed

    Newell, Karl M; Mayer-Kress, Gottfried; Hong, S Lee; Liu, Yeou-Teh

    2009-12-01

    A multiple time scales landscape model is presented that reveals structures of performance dynamics that were not resolved in the traditional power law analysis of motor learning. It shows the co-existence of separate processes during and between practice sessions that evolve in two independent dimensions characterized by time scales that differ by about an order of magnitude. Performance along the slow persistent dimension of learning improves often as much and sometimes more during rest (memory consolidation and/or insight generation processes) than during a practice session itself. In contrast, the process characterized by the fast, transient dimension of adaptation reverses direction between practice sessions, thereby significantly degrading performance at the beginning of the next practice session (warm-up decrement). The theoretical model fits qualitatively and quantitatively the data from Snoddy's [Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1-36] classic learning study of mirror tracing and other averaged and individual data sets, and provides a new account of the processes of change in adaptation and learning. 2009 Elsevier B.V. All rights reserved.

  14. Cratering time scales for the Galilean satellites

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Wolfe, R. F.

    1982-01-01

    An attempt is made to estimate the present cratering rate for each Galilean satellite within the correct order of magnitude and to extend the cratering rates back into the geologic past on the basis of evidence from the earth-moon system. For collisions with long and short period comets, the magnitudes and size distributions of the comet nuclei, the distribution of their perihelion distances, and the completeness of discovery are addressed. The diameters and masses of cometary nuclei are assessed, as are crater diameters and cratering rates. The dynamical relations between long period and short period comets are discussed, and the population of Jupiter-crossing asteroids is assessed. Estimated present cratering rates on the Galilean satellites are compared and variations of cratering rate with time are considered. Finally, the consistency of derived cratering time scales with the cratering record of the icy Galilean satellites is discussed.

  15. Factors Associated with Waiting Time for Access to Mental Health Services for Children and Adolescents in Norway

    ERIC Educational Resources Information Center

    Andersson, Helle Wessel

    2004-01-01

    The present study addresses the question of equality of access, as it relates to waiting time for specialised mental health treatment for children and adolescents. The aim was to investigate whether demographic, clinical factors and service-related factors were associated with waiting time. Data was based on a documentation system in which all…

  16. Orphan drugs for rare diseases: is it time to revisit their special market access status?

    PubMed

    Simoens, Steven; Cassiman, David; Dooms, Marc; Picavet, Eline

    2012-07-30

    Orphan drugs are intended for diseases with a very low prevalence, and many countries have implemented legislation to support market access of orphan drugs. We argue that it is time to revisit the special market access status of orphan drugs. Indeed, evidence suggests that there is no societal preference for treating rare diseases. Although society appears to assign a greater value to severity of disease, this criterion is equally relevant to many common diseases. Furthermore, the criterion of equity in access to treatment, which underpins orphan drug legislation, puts more value on health improvement in rare diseases than in common diseases and implies that population health is not maximized. Finally, incentives for the development, pricing and reimbursement of orphan drugs have created market failures, including monopolistic prices and the artificial creation of rare diseases. We argue that, instead of awarding special market access status to orphan drugs, there is scope to optimize research and development (R&D) of orphan drugs and to control prices of orphan drugs by means of, for example, patent auctions, advance purchase commitments, pay-as-you-go schemes and dose-modification studies. Governments should consider carefully the right incentive strategy for R&D of orphan drugs in rare diseases.

  17. Accessibility Measures: Formulation Considerations and Current Applications

    DOT National Transportation Integrated Search

    2000-09-01

    This report examines micro-scale and macro-scale factors for inclusion in an ideal accessibility measure. Their potential influence on the evaluation of mode choice and destination choice is discussed. Availability in Texas' major cities is presented...

  18. Expanding access to high-cost medicines through the E2 access program in Thailand: effects on utilisation, health outcomes and cost using an interrupted time-series analysis.

    PubMed

    Sruamsiri, Rosarin; Wagner, Anita K; Ross-Degnan, Dennis; Lu, Christine Y; Dhippayom, Teerapon; Ngorsuraches, Surachat; Chaiyakunapruk, Nathorn

    2016-03-17

    In 2008, the Thai government introduced the 'high-cost medicines E2 access program' as a part of the National List of Essential Medicines to increase patient access to medicines, improve clinical outcomes and make medicines more affordable. Our objective was to examine whether the 'high-cost medicines E2 access program' achieved its goals. Interrupted time-series design study. 3 tertiary hospitals in different regions of Thailand, January 2006 to December 2012. Patients with target acute and chronic disease diagnoses who newly met E2 program criteria for selected study medicines. High-cost medicines E2 access program. Level and trend changes over time in the proportions of eligible patients who received the indicated E2 medicines and who improved clinically, as well as in costs of treatment. A total of 2024 patients were included in utilisation analyses and 1375 patients with selected acute diseases contributed to analyses of clinical outcome. After 1 year of the E2 program implementation, the percentage of eligible patients receiving the indicated E2 program medicines increased significantly (relative change 12.7% (95% CI 4.4% to 21.0%), especially among those insured by the government's universal coverage scheme (relative change 19.9% (95% CI 9.5% to 30.5%)). The increase in the proportion of clinically improved patients with acute conditions was not significant (relative change 6.2% (95% CI -1.9% to 15.1%)). Quarterly healthcare costs per patient dropped significantly (relative change -13.5% (95% CI -26.9% to -1.7%)). In the study hospitals, the E2 access program seems to have facilitated patient access to specialty medicines, may have contributed to improved health outcomes, and decreased treatment costs. Routine monitoring is needed to assess effects of expanding the programme, including effects on quality of care and financial sustainability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  19. Digital signal processing techniques for pitch shifting and time scaling of audio signals

    NASA Astrophysics Data System (ADS)

    Buś, Szymon; Jedrzejewski, Konrad

    2016-09-01

    In this paper, we present the techniques used for modifying the spectral content (pitch shifting) and for changing the time duration (time scaling) of an audio signal. A short introduction gives a necessary background for understanding the discussed issues and contains explanations of the terms used in the paper. In subsequent sections we present three different techniques appropriate both for pitch shifting and for time scaling. These techniques use three different time-frequency representations of a signal, namely short-time Fourier transform (STFT), continuous wavelet transform (CWT) and constant-Q transform (CQT). The results of simulation studies devoted to comparison of the properties of these methods are presented and discussed in the paper.

  20. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  1. Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing.

    PubMed

    Lacroix, Benjamin; Letort, Gaëlle; Pitayu, Laras; Sallé, Jérémy; Stefanutti, Marine; Maton, Gilliane; Ladouceur, Anne-Marie; Canman, Julie C; Maddox, Paul S; Maddox, Amy S; Minc, Nicolas; Nédélec, François; Dumont, Julien

    2018-05-21

    Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Introducing English and German versions of the Adolescent Time Attitude Scale.

    PubMed

    Worrell, Frank C; Mello, Zena R; Buhl, Monika

    2013-08-01

    In this study, the authors report on the development of English and German versions of the Adolescent Time Attitude Scale (ATAS). The ATAS consists of six subscales assessing Past Positive, Past Negative, Present Positive, Present Negative, Future Positive, and Future Negative time attitudes. The authors describe the development of the scales and present data on the reliability and structural validity of ATAS scores in samples of American (N = 300) and German (N = 316) adolescents. Internal consistency estimates for scores on the English and German versions of the ATAS were in the .70 to .80 range. Confirmatory factor analyses indicated that a six-factor structure yielded the best fit for scores and that the scores were invariant across samples.

  3. A Scale-Invariant ``Discrete-Time'' Balitsky--Kovchegov Equation

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    2005-06-01

    We consider a version of QCD dipole cascading corresponding to a finite number n of discrete Δ Y steps of branching in rapidity. Using the discretization scheme preserving the holomorphic factorizability and scale-invariance in position space of the dipole splitting function, we derive an exact recurrence formula from step to step which plays the rôle of a ``discrete-time'' Balitsky--Kovchegov equation. The BK solutions are recovered in the limit n=∞ and Δ Y=0.

  4. Space and time scales of shoreline change at Cape Cod National Seashore, MA, USA

    USGS Publications Warehouse

    Allen, J.R.; LaBash, C.L.; List, J.H.; Kraus, Nicholas C.; McDougal, William G.

    1999-01-01

    Different processes cause patterns of shoreline change which are exhibited at different magnitudes and nested into different spatial and time scale hierarchies. The 77-km outer beach at Cape Cod National Seashore offers one of the few U.S. federally owned portions of beach to study shoreline change within the full range of sediment source and sink relationships, and barely affected by human intervention. 'Mean trends' of shoreline changes are best observed at long time scales but contain much spatial variation thus many sites are not equal in response. Long-term, earlier-noted trends are confirmed but the added quantification and resolution improves greatly the understanding of appropriate spatial and time scales of those processes driving bluff retreat and barrier island changes in both north and south depocenters. Shorter timescales allow for comparison of trends and uncertainty in shoreline change at local scales but are dependent upon some measure of storm intensity and seasonal frequency. Single-event shoreline survey results for one storm at daily intervals after the erosional phase suggest a recovery time for the system of six days, identifies three sites with abnormally large change, and that responses at these sites are spatially coherent for now unknown reasons. Areas near inlets are the most variable at all time scales. Hierarchies in both process and form are suggested.

  5. Cycles, scaling and crossover phenomenon in length of the day (LOD) time series

    NASA Astrophysics Data System (ADS)

    Telesca, Luciano

    2007-06-01

    The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.

  6. Development of an instrument to measure Faculty's information and communication technology access (FICTA).

    PubMed

    Soomro, Kamal Ahmed; Kale, Ugur; Curtis, Reagan; Akcaoglu, Mete; Bernstein, Malayna

    2018-01-01

    The phenomenon of "digital divide" is complex and multidimensional, extending beyond issues of physical access. The purpose of this study was to develop a scale to measure a range of factors related to digital divide among higher education faculty and to evaluate its reliability and validity. Faculty's Information and Communication Technology Access (FICTA) scale was tested and validated with 322 faculty teaching in public and private sector universities. Principal components analysis with varimax rotation confirmed an 8-factor solution corresponding to various dimensions of ICT access. The 57-item FICTA scale demonstrated good psychometric properties and offers researchers a tool to examine faculty's access to ICT at four levels - motivational, physical, skills, and usage access.

  7. Dynamic and Thermal Turbulent Time Scale Modelling for Homogeneous Shear Flows

    NASA Technical Reports Server (NTRS)

    Schwab, John R.; Lakshminarayana, Budugur

    1994-01-01

    A new turbulence model, based upon dynamic and thermal turbulent time scale transport equations, is developed and applied to homogeneous shear flows with constant velocity and temperature gradients. The new model comprises transport equations for k, the turbulent kinetic energy; tau, the dynamic time scale; k(sub theta), the fluctuating temperature variance; and tau(sub theta), the thermal time scale. It offers conceptually parallel modeling of the dynamic and thermal turbulence at the two equation level, and eliminates the customary prescription of an empirical turbulent Prandtl number, Pr(sub t), thus permitting a more generalized prediction capability for turbulent heat transfer in complex flows and geometries. The new model also incorporates constitutive relations, based upon invariant theory, that allow the effects of nonequilibrium to modify the primary coefficients for the turbulent shear stress and heat flux. Predictions of the new model, along with those from two other similar models, are compared with experimental data for decaying homogeneous dynamic and thermal turbulence, homogeneous turbulence with constant temperature gradient, and homogeneous turbulence with constant temperature gradient and constant velocity gradient. The new model offers improvement in agreement with the data for most cases considered in this work, although it was no better than the other models for several cases where all the models performed poorly.

  8. Evaluating Commercial and Private Cloud Services for Facility-Scale Geodetic Data Access, Analysis, and Services

    NASA Astrophysics Data System (ADS)

    Meertens, C. M.; Boler, F. M.; Ertz, D. J.; Mencin, D.; Phillips, D.; Baker, S.

    2017-12-01

    UNAVCO, in its role as a NSF facility for geodetic infrastructure and data, has succeeded for over two decades using on-premises infrastructure, and while the promise of cloud-based infrastructure is well-established, significant questions about suitability of such infrastructure for facility-scale services remain. Primarily through the GeoSciCloud award from NSF EarthCube, UNAVCO is investigating the costs, advantages, and disadvantages of providing its geodetic data and services in the cloud versus using UNAVCO's on-premises infrastructure. (IRIS is a collaborator on the project and is performing its own suite of investigations). In contrast to the 2-3 year time scale for the research cycle, the time scale of operation and planning for NSF facilities is for a minimum of five years and for some services extends to a decade or more. Planning for on-premises infrastructure is deliberate, and migrations typically take months to years to fully implement. Migrations to a cloud environment can only go forward with similar deliberate planning and understanding of all costs and benefits. The EarthCube GeoSciCloud project is intended to address the uncertainties of facility-level operations in the cloud. Investigations are being performed in a commercial cloud environment (Amazon AWS) during the first year of the project and in a private cloud environment (NSF XSEDE resource at the Texas Advanced Computing Center) during the second year. These investigations are expected to illuminate the potential as well as the limitations of running facility scale production services in the cloud. The work includes running parallel equivalent cloud-based services to on premises services and includes: data serving via ftp from a large data store, operation of a metadata database, production scale processing of multiple months of geodetic data, web services delivery of quality checked data and products, large-scale compute services for event post-processing, and serving real time data

  9. Unravelling relationships: Hospital occupancy levels, discharge timing and emergency department access block.

    PubMed

    Khanna, Sankalp; Boyle, Justin; Good, Norm; Lind, James

    2012-10-01

    To investigate the effect of hospital occupancy levels on inpatient and ED patient flow parameters, and to simulate the impact of shifting discharge timing on occupancy levels. Retrospective analysis of hospital inpatient data and ED data from 23 reporting public hospitals in Queensland, Australia, across 30 months. Relationships between outcome measures were explored through the aggregation of the historic data into 21 912 hourly intervals. Main outcome measures included admission and discharge rates, occupancy levels, length of stay for admitted and emergency patients, and the occurrence of access block. The impact of shifting discharge timing on occupancy levels was quantified using observed and simulated data. The study identified three stages of system performance decline, or choke points, as hospital occupancy increased. These choke points were found to be dependent on hospital size, and reflect a system change from 'business-as-usual' to 'crisis'. Effecting early discharge of patients was also found to significantly (P < 0.001) impact overcrowding levels and improve patient flow. Modern hospital systems have the ability to operate efficiently above an often-prescribed 85% occupancy level, with optimal levels varying across hospitals of different size. Operating over these optimal levels leads to performance deterioration defined around occupancy choke points. Understanding these choke points and designing strategies around alleviating these flow bottlenecks would improve capacity management, reduce access block and improve patient outcomes. Effecting early discharge also helps alleviate overcrowding and related stress on the system. © 2012 CSIRO. EMA © 2012 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  10. Using Open and Interoperable Ways to Publish and Access LANCE AIRS Near-Real Time Data

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Lynnes, C.; Vollmer, B.; Savtchenko, A. K.; Yang, W.

    2011-12-01

    Atmospheric Infrared Sounder (AIRS) Near-Real Time (NRT) data from the Land Atmosphere Near real time Capability for EOS (LANCE) provide the information on the global and regional atmospheric state with very low latency. An open and interoperable platform is useful to facilitate access to and integration of LANCE AIRS NRT data. This paper discusses the use of open-source software components to build Web services for publishing and accessing AIRS NRT data in the context of Service Oriented Architecture (SOA). The AIRS NRT data have also been made available through an OPeNDAP server. OPeNDAP allows several open-source netCDF-based tools such as Integrated Data Viewer, Ferret and Panoply to directly display the Level 2 data over the network. To enable users to locate swath data files in the OPeNDAP server that lie within a certain geographical area, graphical "granule maps" are being added to show the outline of each file on a map of the Earth. The metadata of AIRS NRT data and services is then explored to implement information advertisement and discovery in catalogue systems. Datacasting, an RSS-based technology for accessing Earth Science data and information to facilitate the subscriptions to AIRS NRT data availability, filtering, downloading and viewing data, is also discussed. To provide an easy entry point to AIRS NRT data and services, a Web portal designed for customized data downloading and visualization is introduced.

  11. Equity in access to health care provision under the medicare security for small scale entrepreneurs in Dar es Salaam.

    PubMed

    Urassa, J A E

    2012-03-01

    The main objective of this study was to assess equity in access to health care provision under the Medicare Security for Small Scale Entrepreneurs (SSE). Methodological triangulation was used to an exploratory and randomized cross- sectional study in order to supplement information on the topic under investigation. Questionnaires were administered to 281 respondents and 6 Focus Group Discussions (FGDs) were held with males and females. Documentary review was also used. For quantitative aspect of the study, significant associations were measured using confidence intervals (95% CI) testing. Qualitative data were analyzed with assistance of Open code software. The results show that inequalities in access to health care services were found in respect to affordability of medical care costs, distance from home to health facilities, availability of drugs as well as medical equipments and supplies. As the result of existing inequalities some of clients were not satisfied with the provided health services. The study concludes by drawing policy and research implications of the findings.

  12. Testing, Testing...Managing Electronic Access in Disparate Times.

    ERIC Educational Resources Information Center

    Carrington, Bessie M.

    1996-01-01

    Duke University's Perkins Library (North Carolina) tests electronic resources and services for remote accessibility by examining capabilities on various platforms, operating systems, communications software, and World Wide Web browsers. Problems occur in establishing connections, screen display, navigation or retrieval, keyboard variations, and in…

  13. Terrestrial Waters and Sea Level Variations on Interannual Time Scale

    NASA Technical Reports Server (NTRS)

    Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.

    2011-01-01

    On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.

  14. Patient-reported access to primary care in Ontario: effect of organizational characteristics.

    PubMed

    Muggah, Elizabeth; Hogg, William; Dahrouge, Simone; Russell, Grant; Kristjansson, Elizabeth; Muldoon, Laura; Devlin, Rose Anne

    2014-01-01

    To describe patient-reported access to primary health care across 4 organizational models of primary care in Ontario, and to explore how access is associated with patient, provider, and practice characteristics. Cross-sectional survey. One hundred thirty-seven randomly selected primary care practices in Ontario using 1 of 4 delivery models (fee for service, established capitation, reformed capitation, and community health centres). Patients included were at least 18 years of age, were not severely ill or cognitively impaired, were not known to the survey administrator, had consenting providers at 1 of the participating primary care practices, and were able to communicate in English or French either directly or through a translator. Patient-reported access was measured by a 4-item scale derived from the previously validated adult version of the Primary Care Assessment Tool. Questions were asked about physician availability during and outside of regular office hours and access to health information via telephone. Responses to the scale were normalized, with higher scores reflecting greater patient-reported access. Linear regressions were used to identify characteristics independently associated with access to care. Established capitation model practices had the highest patient-reported access, although the difference in scores between models was small. Our multilevel regression model identified several patient factors that were significantly (P = .05) associated with higher patient-reported access, including older age, female sex, good-to-excellent self-reported health, less mental health disability, and not working. Provider experience (measured as years since graduation) was the only provider or practice characteristic independently associated with improved patient-reported access. This study adds to what is known about access to primary care. The study found that established capitation models outperformed all the other organizational models, including reformed

  15. Controls on the time-scales of mantle mixing

    NASA Astrophysics Data System (ADS)

    Crameri, F.; Cagney, N.; Lithgow-Bertelloni, C. R.; Whitehead, J. A.

    2016-12-01

    Understanding the processes controlling the mantle mixing is crucial to our geochemical interpretation of basalts, and our understanding of the mantle heterogeneity. We investigate the influence of various mantle conditions on the time scales of mixing using numerical simulations. We examine the effects of Rayleigh number (Ra), depth- and temperature-dependent rheology and internal heating, as well as the role of Prandtl number (Pr), in order to assess how mixing in the early magma ocean and experiments (where Pr tends to be 103) differs from that in the present-day mantle (Pr 1025). We use the "coarse grained density" method to quantify the mixing state and determine the mixing time. The mixing time is found to be strongly affected by the Rayleigh number, scaling with Ra-0.65, in agreement with previous studies. In contrast, when Ra is held constant, the temperature-dependent rheology has a weak effect. The depth-dependent rheology also has a negligible effect on the mixing time, as material that is initially viscous is transported to the low viscosity near the surface where it undergoes fast mixing. The internal heating rate does not affect the mixing time, provided that it does not increase the fluid temperature above that of the boundary condition. In this case, the decrease in mixing time is shown to be a result of an increase in the effective Ra. Finally, we show that for moderate and low Pr, the mixing time increases with Pr0.45. However, for all Pr greater than about 100, the mixing time is the same at the infinite-Pr value. Our results have several implications for the mantle: (1) Ra is the controlling factor on mantle mixing. (2) The non-Newtonian rheology of the mantle has a very weak effect on mantle mixing and can be neglected. (3) A dramatic increase in viscosity in the deep mantle has been proposed at a cause of regions of unmixed `primitive' mantle. Our results show that this hypothesis is unlikely, as depth dependent rheology does not increase in

  16. Classification of time series patterns from complex dynamic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.C.; Rao, N.

    1998-07-01

    An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately,more » the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.« less

  17. Multiple time-scales and the developmental dynamics of social systems.

    PubMed

    Flack, Jessica C

    2012-07-05

    To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the 'coarseness' of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems.

  18. Impact of the time scale of model sensitivity response on coupled model parameter estimation

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhang, Shaoqing; Li, Shan; Liu, Zhengyu

    2017-11-01

    That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter estimation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal. Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being estimated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency determined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation model for improving climate analysis and prediction initialization.

  19. A 16K-bit static IIL RAM with 25-ns access time

    NASA Astrophysics Data System (ADS)

    Inabe, Y.; Hayashi, T.; Kawarada, K.; Miwa, H.; Ogiue, K.

    1982-04-01

    A 16,384 x 1-bit RAM with 25-ns access time, 600-mW power dissipation, and 33 sq mm chip size has been developed. Excellent speed-power performance with high packing density has been achieved by an oxide isolation technology in conjunction with novel ECL circuit techniques and IIL flip-flop memory cells, 980 sq microns (35 x 28 microns) in cell size. Development results have shown that IIL flip-flop memory cell is a trump card for assuring achievement of a high-performance large-capacity bipolar RAM, in the above 16K-bit/chip area.

  20. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.

    PubMed

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-01

    Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 - 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 - 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Time scales of foam stability in shallow conduits: Insights from analogue experiments

    NASA Astrophysics Data System (ADS)

    Spina, L.; Scheu, B.; Cimarelli, C.; Arciniega-Ceballos, A.; Dingwell, D. B.

    2016-10-01

    Volcanic systems can exhibit periodical trends in degassing activity, characterized by a wide range of time scales. Understanding the dynamics that control such periodic behavior can provide a picture of the processes occurring in the feeding system. Toward this end, we analyzed the periodicity of outgassing in a series of decompression experiments performed on analogue material (argon-saturated silicone oil plus glass beads/fibers) scaled to serve as models of basaltic magma. To define the effects of liquid viscosity and crystal content on the time scale of outgassing, we investigated both: (1) pure liquid systems, at differing viscosities (100 and 1000 Pa s), and (2) particle-bearing suspensions (diluted and semidiluted). The results indicate that under dynamic conditions (e.g., decompressive bubble growth and fluid ascent within the conduit), the periodicity of foam disruption may be up to several orders of magnitude less than estimates based on the analysis of static conditions. This difference in foam disruption time scale is inferred to result from the contribution of bubble shear and bubble growth to inter-bubble film thinning. The presence of particles in the semidiluted regime is further linked to shorter bubble bursting times, likely resulting from contributions of the presence of a solid network and coalescence processes to the relative increase in bubble breakup rates. Finally, it is argued that these experiments represent a good analogue of gas-piston activity (i.e., the periodical rise-and-fall of a basaltic lava lake surface), implying a dominant role for shallow foam accumulation as a source process for these phenomena.

  2. An Eulerian time filtering technique to study large-scale transient flow phenomena

    NASA Astrophysics Data System (ADS)

    Vanierschot, Maarten; Persoons, Tim; van den Bulck, Eric

    2009-10-01

    Unsteady fluctuating velocity fields can contain large-scale periodic motions with frequencies well separated from those of turbulence. Examples are the wake behind a cylinder or the processing vortex core in a swirling jet. These turbulent flow fields contain large-scale, low-frequency oscillations, which are obscured by turbulence, making it impossible to identify them. In this paper, we present an Eulerian time filtering (ETF) technique to extract the large-scale motions from unsteady statistical non-stationary velocity fields or flow fields with multiple phenomena that have sufficiently separated spectral content. The ETF method is based on non-causal time filtering of the velocity records in each point of the flow field. It is shown that the ETF technique gives good results, similar to the ones obtained by the phase-averaging method. In this paper, not only the influence of the temporal filter is checked, but also parameters such as the cut-off frequency and sampling frequency of the data are investigated. The technique is validated on a selected set of time-resolved stereoscopic particle image velocimetry measurements such as the initial region of an annular jet and the transition between flow patterns in an annular jet. The major advantage of the ETF method in the extraction of large scales is that it is computationally less expensive and it requires less measurement time compared to other extraction methods. Therefore, the technique is suitable in the startup phase of an experiment or in a measurement campaign where several experiments are needed such as parametric studies.

  3. Coevolution of strategy-selection time scale and cooperation in spatial prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Rong, Zhihai; Wu, Zhi-Xi; Chen, Guanrong

    2013-06-01

    In this paper, we investigate a networked prisoner's dilemma game where individuals' strategy-selection time scale evolves based on their historical learning information. We show that the more times the current strategy of an individual is learnt by his neighbors, the longer time he will stick on the successful behavior by adaptively adjusting the lifetime of the adopted strategy. Through characterizing the extent of success of the individuals with normalized payoffs, we show that properly using the learned information can form a positive feedback mechanism between cooperative behavior and its lifetime, which can boost cooperation on square lattices and scale-free networks.

  4. A real-time multi-scale 2D Gaussian filter based on FPGA

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin

    2014-11-01

    Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.

  5. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  6. An Assessment of Five (PANSS, SAPS, SANS, NSA-16, CGI-SCH) commonly used Symptoms Rating Scales in Schizophrenia and Comparison to Newer Scales (CAINS, BNSS).

    PubMed

    Kumari, Suneeta; Malik, Mansoor; Florival, Christina; Manalai, Partam; Sonje, Snezana

    2017-01-01

    Scales measuring positive and negative symptoms in schizophrenia remain the primary mo Scales measuring positive and negative symptoms in schizophrenia remain the primary mode of assessing and diagnosing schizophrenia by clinicians and researchers. The scales are mainly used to monitor the severity of positive and negative symptoms and track treatment response in schizophrenics. Although these scales are widely used, quality as well as general utility of each scale varies. The quality is determined by the validity and reliability of the scales. The utility of the scale is determined by the time of administration and the settings for which the scales can be administered in research or clinical settings. There are relatively fewer articles on the utility of newer scales like CAINS (Clinical Assessment Interview for Negative Symptoms) and the BNSS (Brief Negative Symptom Scale) that compare them to the older scales PANSS (Positive and Negative Symptoms Scale), SAPS (Scale for the Assessment of Positive Symptoms) SANS (the Scale for the Assessment of Negative Symptoms), NSA-16 (Negative Symptom Assessment-16) and CGI-SCH (Clinical Global Impression Schizophrenia. The older scales were developed more than 30 years ago. Since then, our understanding of negative symptoms has evolved and currently there are newer rating scales evaluating the validity of negative symptoms. The older scales do not incorporate the latest research on negative symptoms. CAINS and BNSS are attractive for both their reliability and their concise accessible format, however, a scale that is simpler, accessible, user-friendly, that incorporates a multidimensional model of schizophrenia, addresses the psychosocial and cognitive component has yet to be developed.

  7. Optimal Control Modification for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  8. Time scale of dynamic heterogeneity in model ionic liquids and its relation to static length scale and charge distribution.

    PubMed

    Park, Sang-Won; Kim, Soree; Jung, YounJoon

    2015-11-21

    We study how dynamic heterogeneity in ionic liquids is affected by the length scale of structural relaxation and the ionic charge distribution by the molecular dynamics simulations performed on two differently charged models of ionic liquid and their uncharged counterpart. In one model of ionic liquid, the charge distribution in the cation is asymmetric, and in the other it is symmetric, while their neutral counterpart has no charge with the ions. It is found that all the models display heterogeneous dynamics, exhibiting subdiffusive dynamics and a nonexponential decay of structural relaxation. We investigate the lifetime of dynamic heterogeneity, τ(dh), in these systems by calculating the three-time correlation functions to find that τ(dh) has in general a power-law behavior with respect to the structural relaxation time, τ(α), i.e., τ(dh) ∝ τ(α)(ζ(dh)). Although the dynamics of the asymmetric-charge model is seemingly more heterogeneous than that of the symmetric-charge model, the exponent is found to be similar, ζ(dh) ≈ 1.2, for all the models studied in this work. The same scaling relation is found regardless of interactions, i.e., with or without Coulomb interaction, and it holds even when the length scale of structural relaxation is long enough to become the Fickian diffusion. This fact indicates that τ(dh) is a distinctive time scale from τ(α), and the dynamic heterogeneity is mainly affected by the short-range interaction and the molecular structure.

  9. Two-time scale subordination in physical processes with long-term memory

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander; Weron, Karina

    2008-03-01

    We describe dynamical processes in continuous media with a long-term memory. Our consideration is based on a stochastic subordination idea and concerns two physical examples in detail. First we study a temporal evolution of the species concentration in a trapping reaction in which a diffusing reactant is surrounded by a sea of randomly moving traps. The analysis uses the random-variable formalism of anomalous diffusive processes. We find that the empirical trapping-reaction law, according to which the reactant concentration decreases in time as a product of an exponential and a stretched exponential function, can be explained by a two-time scale subordination of random processes. Another example is connected with a state equation for continuous media with memory. If the pressure and the density of a medium are subordinated in two different random processes, then the ordinary state equation becomes fractional with two-time scales. This allows one to arrive at the Bagley-Torvik type of state equation.

  10. Effective pore-scale dispersion upscaling with a correlated continuous time random walk approach

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Bolster, D.; Dentz, M.; de Anna, P.; Tartakovsky, A.

    2011-12-01

    We investigate the upscaling of dispersion from a pore-scale analysis of Lagrangian velocities. A key challenge in the upscaling procedure is to relate the temporal evolution of spreading to the pore-scale velocity field properties. We test the hypothesis that one can represent Lagrangian velocities at the pore scale as a Markov process in space. The resulting effective transport model is a continuous time random walk (CTRW) characterized by a correlated random time increment, here denoted as correlated CTRW. We consider a simplified sinusoidal wavy channel model as well as a more complex heterogeneous pore space. For both systems, the predictions of the correlated CTRW model, with parameters defined from the velocity field properties (both distribution and correlation), are found to be in good agreement with results from direct pore-scale simulations over preasymptotic and asymptotic times. In this framework, the nontrivial dependence of dispersion on the pore boundary fluctuations is shown to be related to the competition between distribution and correlation effects. In particular, explicit inclusion of spatial velocity correlation in the effective CTRW model is found to be important to represent incomplete mixing in the pore throats.

  11. Heterogeneity and scale of sustainable development in cities.

    PubMed

    Brelsford, Christa; Lobo, José; Hand, Joe; Bettencourt, Luís M A

    2017-08-22

    Rapid worldwide urbanization is at once the main cause and, potentially, the main solution to global sustainable development challenges. The growth of cities is typically associated with increases in socioeconomic productivity, but it also creates strong inequalities. Despite a growing body of evidence characterizing these heterogeneities in developed urban areas, not much is known systematically about their most extreme forms in developing cities and their consequences for sustainability. Here, we characterize the general patterns of income and access to services in a large number of developing cities, with an emphasis on an extensive, high-resolution analysis of the urban areas of Brazil and South Africa. We use detailed census data to construct sustainable development indices in hundreds of thousands of neighborhoods and show that their statistics are scale-dependent and point to the critical role of large cities in creating higher average incomes and greater access to services within their national context. We then quantify the general statistical trajectory toward universal basic service provision at different scales to show that it is characterized by varying levels of inequality, with initial increases in access being typically accompanied by growing disparities over characteristic spatial scales. These results demonstrate how extensions of these methods to other goals and data can be used over time and space to produce a simple but general quantitative assessment of progress toward internationally agreed sustainable development goals.

  12. Heterogeneity and scale of sustainable development in cities

    PubMed Central

    Brelsford, Christa; Lobo, José; Hand, Joe

    2017-01-01

    Rapid worldwide urbanization is at once the main cause and, potentially, the main solution to global sustainable development challenges. The growth of cities is typically associated with increases in socioeconomic productivity, but it also creates strong inequalities. Despite a growing body of evidence characterizing these heterogeneities in developed urban areas, not much is known systematically about their most extreme forms in developing cities and their consequences for sustainability. Here, we characterize the general patterns of income and access to services in a large number of developing cities, with an emphasis on an extensive, high-resolution analysis of the urban areas of Brazil and South Africa. We use detailed census data to construct sustainable development indices in hundreds of thousands of neighborhoods and show that their statistics are scale-dependent and point to the critical role of large cities in creating higher average incomes and greater access to services within their national context. We then quantify the general statistical trajectory toward universal basic service provision at different scales to show that it is characterized by varying levels of inequality, with initial increases in access being typically accompanied by growing disparities over characteristic spatial scales. These results demonstrate how extensions of these methods to other goals and data can be used over time and space to produce a simple but general quantitative assessment of progress toward internationally agreed sustainable development goals. PMID:28461489

  13. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations

    NASA Astrophysics Data System (ADS)

    Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele

    2016-12-01

    Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.

  14. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations.

    PubMed

    Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele

    2016-12-07

    Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.

  15. Oscillation criteria for half-linear dynamic equations on time scales

    NASA Astrophysics Data System (ADS)

    Hassan, Taher S.

    2008-09-01

    This paper is concerned with oscillation of the second-order half-linear dynamic equation(r(t)(x[Delta])[gamma])[Delta]+p(t)x[gamma](t)=0, on a time scale where [gamma] is the quotient of odd positive integers, r(t) and p(t) are positive rd-continuous functions on . Our results solve a problem posed by [R.P. Agarwal, D. O'Regan, S.H. Saker, Philos-type oscillation criteria for second-order half linear dynamic equations, Rocky Mountain J. Math. 37 (2007) 1085-1104; S.H. Saker, Oscillation criteria of second order half-linear dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005) 375-387] and our results in the special cases when and involve and improve some oscillation results for second-order differential and difference equations; and when , and , etc., our oscillation results are essentially newE Some examples illustrating the importance of our results are also included.

  16. Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri

    1999-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.

  17. Identifying time scales for violation/preservation of Stokes-Einstein relation in supercooled water

    PubMed Central

    Kawasaki, Takeshi; Kim, Kang

    2017-01-01

    The violation of the Stokes-Einstein (SE) relation D ~ (η/T)−1 between the shear viscosity η and the translational diffusion constant D at temperature T is of great importance for characterizing anomalous dynamics of supercooled water. Determining which time scales play key roles in the SE violation remains elusive without the measurement of η. We provide comprehensive simulation results of the dynamic properties involving η and D in the TIP4P/2005 supercooled water. This enabled the thorough identification of the appropriate time scales for the SE relation Dη/T. In particular, it is demonstrated that the temperature dependence of various time scales associated with structural relaxation, hydrogen bond breakage, stress relaxation, and dynamic heterogeneities can be definitely classified into only two classes. That is, we propose the generalized SE relations that exhibit “violation” or “preservation.” The classification depends on the examined time scales that are coupled or decoupled with the diffusion. On the basis of the classification, we explain the physical origins of the violation in terms of the increase in the plateau modulus and the nonexponentiality of stress relaxation. This implies that the mechanism of SE violation is attributed to the attained solidity upon supercooling, which is in accord with the growth of non-Gaussianity and spatially heterogeneous dynamics. PMID:28835918

  18. Quantum-shutter approach to tunneling time scales with wave packets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Norifumi; Garcia-Calderon, Gaston; Villavicencio, Jorge

    2005-07-15

    The quantum-shutter approach to tunneling time scales [G. Garcia-Calderon and A. Rubio, Phys. Rev. A 55, 3361 (1997)], which uses a cutoff plane wave as the initial condition, is extended to consider certain type of wave packet initial conditions. An analytical expression for the time-evolved wave function is derived. The time-domain resonance, the peaked structure of the probability density (as the function of time) at the exit of the barrier, originally found with the cutoff plane wave initial condition, is studied with the wave packet initial conditions. It is found that the time-domain resonance is not very sensitive to themore » width of the packet when the transmission process occurs in the tunneling regime.« less

  19. A Dynamically Computed Convective Time Scale for the Kain–Fritsch Convective Parameterization Scheme

    EPA Science Inventory

    Many convective parameterization schemes define a convective adjustment time scale τ as the time allowed for dissipation of convective available potential energy (CAPE). The Kain–Fritsch scheme defines τ based on an estimate of the advective time period for deep con...

  20. The Hydroclimatic Response of the Whitewater River Basin: Influence of Groundwater Time Scales

    NASA Astrophysics Data System (ADS)

    Beeson, P. C.; Springer, E. P.; Duffy, C. J.

    2003-12-01

    A near-surface groundwater model was developed to assess the impact of land use and climate variability on the overall water budget of the Whitewater River Basin. The watershed is located in southeastern Kansas within the ARM-SGP as part of the DOE Water Cycle Pilot Study. The Whitewater River Basin has an area of 1,100 square-kilometers, an elevation range of 380 - 470m (amsl), and an average annual precipitation of 858 millimeters. The approach presented here attempts to examine the importance of groundwater in the water budget and hydroclimatic response at the river basin scale. In order to identify the time scales of groundwater in this system, time series and geospatial analyses were used to identify significant spatial structure and dominant temporal modes in the climate, runoff and groundwater response. In this research, we show that the time scales of groundwater baseflow to the river network are proportional to drainage density and position in the hydrologic landscape. The concept of a hydrologic landscape (Winter, JAWRA, April 2001) defines three zones: recharge (upland), translation (intervening steep slopes), and discharge (lowland), and the hydrologic landscape is useful for standardizing the evaluation of physical properties within any watershed. Singular spectrum analysis was used for a 50-year simulation to determine dominant modes and time scales for the hydrologic landscape units in the Whitewater River Basin. We found that the time scale of groundwater baseflow response increases with increasing drainage density. The sensitivity of this response is important to understand and close the water budget for a river basin through observation network design. The effects of climate forcing, both precipitation and evapotranspiration, can be seen through the hydrologic landscapes and channel networks by changes in the baseflow response time. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of

  1. A Java Program for LRE-Based Real-Time qPCR that Enables Large-Scale Absolute Quantification

    PubMed Central

    Rutledge, Robert G.

    2011-01-01

    Background Linear regression of efficiency (LRE) introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. Findings Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. Conclusions The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples. PMID:21407812

  2. Determining long time-scale hyporheic zone flow paths in Antarctic streams

    USGS Publications Warehouse

    Gooseff, M.N.; McKnight, Diane M.; Runkel, R.L.; Vaughn, B.H.

    2003-01-01

    In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross-section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near-stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time-scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream-water exchange between the streams and extended hyporheic zones over long time-scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11??? D and 2.2??? 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occured owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time-scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates (??) generally an order magnitude lower (10-5 s-1) than those determined using stream-tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near-stream zones of rapid stream-water exchange, where 'fast' biogeochemical reactions may influence water chemistry, and extended

  3. Galactic outflows, star formation histories, and time-scales in starburst dwarf galaxies from STARBIRDS

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Heilman, Taryn N.; Mitchell, Noah P.; Kelley, Tyler

    2018-07-01

    Winds are predicted to be ubiquitous in low-mass, actively star-forming galaxies. Observationally, winds have been detected in relatively few local dwarf galaxies, with even fewer constraints placed on their time-scales. Here, we compare galactic outflows traced by diffuse, soft X-ray emission from Chandra Space Telescope archival observations to the star formation histories derived from Hubble Space Telescope imaging of the resolved stellar populations in six starburst dwarfs. We constrain the longevity of a wind to have an upper limit of 25 Myr based on galaxies whose starburst activity has already declined, although a larger sample is needed to confirm this result. We find an average 16 per cent efficiency for converting the mechanical energy of stellar feedback to thermal, soft X-ray emission on the 25 Myr time-scale, somewhat higher than simulations predict. The outflows have likely been sustained for time-scales comparable to the duration of the starbursts (i.e. 100s Myr), after taking into account the time for the development and cessation of the wind. The wind time-scales imply that material is driven to larger distances in the circumgalactic medium than estimated by assuming short, 5-10 Myr starburst durations, and that less material is recycled back to the host galaxy on short time-scales. In the detected outflows, the expelled hot gas shows various morphologies that are not consistent with a simple biconical outflow structure. The sample and analysis are part of a larger program, the STARBurst IRregular Dwarf Survey (STARBIRDS), aimed at understanding the life cycle and impact of starburst activity in low-mass systems.

  4. Space-Time Controls on Carbon Sequestration Over Large-Scale Amazon Basin

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Cooper, Harry J.; Gu, Jiujing; Grose, Andrew; Norman, John; daRocha, Humberto R.; Starr, David O. (Technical Monitor)

    2002-01-01

    A major research focus of the LBA Ecology Program is an assessment of the carbon budget and the carbon sequestering capacity of the large scale forest-pasture system that dominates the Amazonia landscape, and its time-space heterogeneity manifest in carbon fluxes across the large scale Amazon basin ecosystem. Quantification of these processes requires a combination of in situ measurements, remotely sensed measurements from space, and a realistically forced hydrometeorological model coupled to a carbon assimilation model, capable of simulating details within the surface energy and water budgets along with the principle modes of photosynthesis and respiration. Here we describe the results of an investigation concerning the space-time controls of carbon sources and sinks distributed over the large scale Amazon basin. The results are derived from a carbon-water-energy budget retrieval system for the large scale Amazon basin, which uses a coupled carbon assimilation-hydrometeorological model as an integrating system, forced by both in situ meteorological measurements and remotely sensed radiation fluxes and precipitation retrieval retrieved from a combination of GOES, SSM/I, TOMS, and TRMM satellite measurements. Brief discussion concerning validation of (a) retrieved surface radiation fluxes and precipitation based on 30-min averaged surface measurements taken at Ji-Parana in Rondonia and Manaus in Amazonas, and (b) modeled carbon fluxes based on tower CO2 flux measurements taken at Reserva Jaru, Manaus and Fazenda Nossa Senhora. The space-time controls on carbon sequestration are partitioned into sets of factors classified by: (1) above canopy meteorology, (2) incoming surface radiation, (3) precipitation interception, and (4) indigenous stomatal processes varied over the different land covers of pristine rainforest, partially, and fully logged rainforests, and pasture lands. These are the principle meteorological, thermodynamical, hydrological, and biophysical

  5. Multi-time Scale Joint Scheduling Method Considering the Grid of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Zhijun, E.; Wang, Weichen; Cao, Jin; Wang, Xin; Kong, Xiangyu; Quan, Shuping

    2018-01-01

    Renewable new energy power generation prediction error like wind and light, brings difficulties to dispatch the power system. In this paper, a multi-time scale robust scheduling method is set to solve this problem. It reduces the impact of clean energy prediction bias to the power grid by using multi-time scale (day-ahead, intraday, real time) and coordinating the dispatching power output of various power supplies such as hydropower, thermal power, wind power, gas power and. The method adopts the robust scheduling method to ensure the robustness of the scheduling scheme. By calculating the cost of the abandon wind and the load, it transforms the robustness into the risk cost and optimizes the optimal uncertainty set for the smallest integrative costs. The validity of the method is verified by simulation.

  6. Optimal dynamic voltage scaling for wireless sensor nodes with real-time constraints

    NASA Astrophysics Data System (ADS)

    Cassandras, Christos G.; Zhuang, Shixin

    2005-11-01

    Sensors are increasingly embedded in manufacturing systems and wirelessly networked to monitor and manage operations ranging from process and inventory control to tracking equipment and even post-manufacturing product monitoring. In building such sensor networks, a critical issue is the limited and hard to replenish energy in the devices involved. Dynamic voltage scaling is a technique that controls the operating voltage of a processor to provide desired performance while conserving energy and prolonging the overall network's lifetime. We consider such power-limited devices processing time-critical tasks which are non-preemptive, aperiodic and have uncertain arrival times. We treat voltage scaling as a dynamic optimization problem whose objective is to minimize energy consumption subject to hard or soft real-time execution constraints. In the case of hard constraints, we build on prior work (which engages a voltage scaling controller at task completion times) by developing an intra-task controller that acts at all arrival times of incoming tasks. We show that this optimization problem can be decomposed into two simpler ones whose solution leads to an algorithm that does not actually require solving any nonlinear programming problems. In the case of soft constraints, this decomposition must be partly relaxed, but it still leads to a scalable (linear in the number of tasks) algorithm. Simulation results are provided to illustrate performance improvements in systems with intra-task controllers compared to uncontrolled systems or those using inter-task control.

  7. I need to know! Timely accessing of perioperative user manuals.

    PubMed

    Landreneau, Raphael

    2010-12-01

    Ready access to equipment or product information is essential for the safe operation of the many items that a perioperative nurse is asked to use, troubleshoot, or maintain. One institution's solution for making manufacturer information available in the practice setting was to create a facility intranet site dedicated to OR equipment manuals. This site provides information access to perioperative nurses and support staff members and, ultimately, helps improve patient care. Published by Elsevier Inc. All rights reserved.

  8. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure.

    PubMed

    Schulte, Patricia M; Healy, Timothy M; Fangue, Nann A

    2011-11-01

    Thermal performance curves (TPCs) describe the effects of temperature on biological rate processes. Here, we use examples from our work on common killifish (Fundulus heteroclitus) to illustrate some important conceptual issues relating to TPCs in the context of using these curves to predict the responses of organisms to climate change. Phenotypic plasticity has the capacity to alter the shape and position of the TPCs for acute exposures, but these changes can be obscured when rate processes are measured only following chronic exposures. For example, the acute TPC for mitochondrial respiration in killifish is exponential in shape, but this shape changes with acclimation. If respiration rate is measured only at the acclimation temperature, the TPC is linear, concealing the underlying mechanistic complexity at an acute time scale. These issues are particularly problematic when attempting to use TPCs to predict the responses of organisms to temperature change in natural environments. Many TPCs are generated using laboratory exposures to constant temperatures, but temperature fluctuates in the natural environment, and the mechanisms influencing performance at acute and chronic time scales, and the responses of the performance traits at these time scales may be quite different. Unfortunately, our current understanding of the mechanisms underlying the responses of organisms to temperature change is incomplete, particularly with respect to integrating from processes occurring at the level of single proteins up to whole-organism functions across different time scales, which is a challenge for the development of strongly grounded mechanistic models of responses to global climate change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  9. Timing of Formal Phase Safety Reviews for Large-Scale Integrated Hazard Analysis

    NASA Technical Reports Server (NTRS)

    Massie, Michael J.; Morris, A. Terry

    2010-01-01

    Integrated hazard analysis (IHA) is a process used to identify and control unacceptable risk. As such, it does not occur in a vacuum. IHA approaches must be tailored to fit the system being analyzed. Physical, resource, organizational and temporal constraints on large-scale integrated systems impose additional direct or derived requirements on the IHA. The timing and interaction between engineering and safety organizations can provide either benefits or hindrances to the overall end product. The traditional approach for formal phase safety review timing and content, which generally works well for small- to moderate-scale systems, does not work well for very large-scale integrated systems. This paper proposes a modified approach to timing and content of formal phase safety reviews for IHA. Details of the tailoring process for IHA will describe how to avoid temporary disconnects in major milestone reviews and how to maintain a cohesive end-to-end integration story particularly for systems where the integrator inherently has little to no insight into lower level systems. The proposal has the advantage of allowing the hazard analysis development process to occur as technical data normally matures.

  10. Multiple time-scales and the developmental dynamics of social systems

    PubMed Central

    Flack, Jessica C.

    2012-01-01

    To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the ‘coarseness’ of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems. PMID:22641819

  11. EON: software for long time simulations of atomic scale systems

    NASA Astrophysics Data System (ADS)

    Chill, Samuel T.; Welborn, Matthew; Terrell, Rye; Zhang, Liang; Berthet, Jean-Claude; Pedersen, Andreas; Jónsson, Hannes; Henkelman, Graeme

    2014-07-01

    The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles.

  12. Characteristic time scales in the American dollar-Mexican peso exchange currency market

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, Jose

    2002-06-01

    Daily fluctuations of the American dollar-Mexican peso exchange currency market are studied using multifractal analysis methods. It is found evidence of multiaffinity of daily fluctuations in the sense that the qth-order (roughness) Hurst exponent Hq varies with changes in q. It is also found that there exist several characteristic time scales ranging from week to year. Accordingly, the market exhibits persistence in the sense that instabilities introduced by market events acting around the characteristic time scales (mainly, quarter and year) would propagate through the future market activity. Some implications of our results on the regulation of the dollar-mexpeso market activity are discussed.

  13. Time scales of the stick–slip dynamics of the peeling of an adhesive tape

    PubMed Central

    Mishra, Nachiketa; Parida, Nigam Chandra; Raha, Soumyendu

    2015-01-01

    The stick–slip dynamics of the peeling of an adhesive tape is characterized by bifurcations that have been experimentally well studied. In this work, we investigate the time scale in which the the stick–slips happen leading to the bifurcations. This is fundamental to understanding the triboluminescence and acoustic emissions associated with the bifurcations. We establish a relationship between the time scale of the bifurcations and the inherent mathematical structure of the peeling dynamics by studying a characteristic time quantity associated with the dynamics. PMID:25663802

  14. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-02-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  15. Resources and Capabilities of the Department of Veterans Affairs to Provide Timely and Accessible Care to Veterans

    PubMed Central

    Hussey, Peter S.; Ringel, Jeanne S.; Ahluwalia, Sangeeta; Price, Rebecca Anhang; Buttorff, Christine; Concannon, Thomas W.; Lovejoy, Susan L.; Martsolf, Grant R.; Rudin, Robert S.; Schultz, Dana; Sloss, Elizabeth M.; Watkins, Katherine E.; Waxman, Daniel; Bauman, Melissa; Briscombe, Brian; Broyles, James R.; Burns, Rachel M.; Chen, Emily K.; DeSantis, Amy Soo Jin; Ecola, Liisa; Fischer, Shira H.; Friedberg, Mark W.; Gidengil, Courtney A.; Ginsburg, Paul B.; Gulden, Timothy; Gutierrez, Carlos Ignacio; Hirshman, Samuel; Huang, Christina Y.; Kandrack, Ryan; Kress, Amii; Leuschner, Kristin J.; MacCarthy, Sarah; Maksabedian, Ervant J.; Mann, Sean; Matthews, Luke Joseph; May, Linnea Warren; Mishra, Nishtha; Miyashiro, Lisa; Muchow, Ashley N.; Nelson, Jason; Naranjo, Diana; O'Hanlon, Claire E.; Pillemer, Francesca; Predmore, Zachary; Ross, Rachel; Ruder, Teague; Rutter, Carolyn M.; Uscher-Pines, Lori; Vaiana, Mary E.; Vesely, Joseph V.; Hosek, Susan D.; Farmer, Carrie M.

    2016-01-01

    Abstract The Veterans Access, Choice, and Accountability Act of 2014 addressed the need for access to timely, high-quality health care for veterans. Section 201 of the legislation called for an independent assessment of various aspects of veterans' health care. The RAND Corporation was tasked with an assessment of the Department of Veterans Affairs (VA) current and projected health care capabilities and resources. An examination of data from a variety of sources, along with a survey of VA medical facility leaders, revealed the breadth and depth of VA resources and capabilities: fiscal resources, workforce and human resources, physical infrastructure, interorganizational relationships, and information resources. The assessment identified barriers to the effective use of these resources and capabilities. Analysis of data on access to VA care and the quality of that care showed that almost all veterans live within 40 miles of a VA health facility, but fewer have access to VA specialty care. Veterans usually receive care within 14 days of their desired appointment date, but wait times vary considerably across VA facilities. VA has long played a national leadership role in measuring the quality of health care. The assessment showed that VA health care quality was as good or better on most measures compared with other health systems, but quality performance lagged at some VA facilities. VA will require more resources and capabilities to meet a projected increase in veterans' demand for VA care over the next five years. Options for increasing capacity include accelerated hiring, full nurse practice authority, and expanded use of telehealth. PMID:28083424

  16. Large-Scale 1:1 Computing Initiatives: An Open Access Database

    ERIC Educational Resources Information Center

    Richardson, Jayson W.; McLeod, Scott; Flora, Kevin; Sauers, Nick J.; Kannan, Sathiamoorthy; Sincar, Mehmet

    2013-01-01

    This article details the spread and scope of large-scale 1:1 computing initiatives around the world. What follows is a review of the existing literature around 1:1 programs followed by a description of the large-scale 1:1 database. Main findings include: 1) the XO and the Classmate PC dominate large-scale 1:1 initiatives; 2) if professional…

  17. The burden of rheumatoid arthritis and access to treatment: determinants of access.

    PubMed

    Lundqvist, J; Kastäng, F; Kobelt, G; Jönsson, B

    2008-01-01

    As part of the study "The Burden of Rheumatoid Arthritis (RA) and Patient Access to Treatment", this paper reviews the impact on access to RA drugs of the approval processes, pricing and funding decisions and times to market (access) in different countries. In addition, an overview of health technology assessments (HTA) and the economic literature related to RA treatments is provided. The time from approval to market access ranged from immediate to over 500 days in the countries included in the study. A total of 55 HTA reports were identified, 40 of them in the period between 2002 and 2006; 29 were performed by European HTA agencies, 14 in Canada and 7 in the United States. A total of 239 economic evaluations related to RA were identified in a specialized health economic database (HEED).

  18. Scaling properties and universality of first-passage-time probabilities in financial markets

    NASA Astrophysics Data System (ADS)

    Perelló, Josep; Gutiérrez-Roig, Mario; Masoliver, Jaume

    2011-12-01

    Financial markets provide an ideal frame for the study of crossing or first-passage time events of non-Gaussian correlated dynamics, mainly because large data sets are available. Tick-by-tick data of six futures markets are herein considered, resulting in fat-tailed first-passage time probabilities. The scaling of the return with its standard deviation collapses the probabilities of all markets examined—and also for different time horizons—into single curves, suggesting that first-passage statistics is market independent (at least for high-frequency data). On the other hand, a very closely related quantity, the survival probability, shows, away from the center and tails of the distribution, a hyperbolic t-1/2 decay typical of a Markovian dynamics, albeit the existence of memory in markets. Modifications of the Weibull and Student distributions are good candidates for the phenomenological description of first-passage time properties under certain regimes. The scaling strategies shown may be useful for risk control and algorithmic trading.

  19. Universal access to electricity in Burkina Faso: scaling-up renewable energy technologies

    NASA Astrophysics Data System (ADS)

    Moner-Girona, M.; Bódis, K.; Huld, T.; Kougias, I.; Szabó, S.

    2016-08-01

    This paper describes the status quo of the power sector in Burkina Faso, its limitations, and develops a new methodology that through spatial analysis processes with the aim to provide a possible pathway for universal electricity access. Following the SE4All initiative approach, it recommends the more extensive use of distributed renewable energy systems to increase access to electricity on an accelerated timeline. Less than 5% of the rural population in Burkina Faso have currently access to electricity and supply is lacking at many social structures such as schools and hospitals. Energy access achievements in Burkina Faso are still very modest. According to the latest SE4All Global Tracking Framework (2015), the access to electricity annual growth rate in Burkina Faso from 2010 to 2012 is 0%. The rural electrification strategy for Burkina Faso is scattered in several electricity sector development policies: there is a need of defining a concrete action plan. Planning and coordination between grid extension and the off-grid electrification programme is essential to reach a long-term sustainable energy model and prevent high avoidable infrastructure investments. This paper goes into details on the methodology and findings of the developed Geographic Information Systems tool. The aim of the dynamic planning tool is to provide support to the national government and development partners to define an alternative electrification plan. Burkina Faso proves to be paradigm case for the methodology as its national policy for electrification is still dominated by grid extension and the government subsidising fossil fuel electricity production. However, the results of our analysis suggest that the current grid extension is becoming inefficient and unsustainable in order to reach the national energy access targets. The results also suggest that Burkina Faso’s rural electrification strategy should be driven local renewable resources to power distributed mini-grids. We find that

  20. The state of OA: a large-scale analysis of the prevalence and impact of Open Access articles.

    PubMed

    Piwowar, Heather; Priem, Jason; Larivière, Vincent; Alperin, Juan Pablo; Matthias, Lisa; Norlander, Bree; Farley, Ashley; West, Jevin; Haustein, Stefanie

    2018-01-01

    Despite growing interest in Open Access (OA) to scholarly literature, there is an unmet need for large-scale, up-to-date, and reproducible studies assessing the prevalence and characteristics of OA. We address this need using oaDOI, an open online service that determines OA status for 67 million articles. We use three samples, each of 100,000 articles, to investigate OA in three populations: (1) all journal articles assigned a Crossref DOI, (2) recent journal articles indexed in Web of Science, and (3) articles viewed by users of Unpaywall, an open-source browser extension that lets users find OA articles using oaDOI. We estimate that at least 28% of the scholarly literature is OA (19M in total) and that this proportion is growing, driven particularly by growth in Gold and Hybrid. The most recent year analyzed (2015) also has the highest percentage of OA (45%). Because of this growth, and the fact that readers disproportionately access newer articles, we find that Unpaywall users encounter OA quite frequently: 47% of articles they view are OA. Notably, the most common mechanism for OA is not Gold, Green, or Hybrid OA, but rather an under-discussed category we dub Bronze: articles made free-to-read on the publisher website, without an explicit Open license. We also examine the citation impact of OA articles, corroborating the so-called open-access citation advantage: accounting for age and discipline, OA articles receive 18% more citations than average, an effect driven primarily by Green and Hybrid OA. We encourage further research using the free oaDOI service, as a way to inform OA policy and practice.

  1. The state of OA: a large-scale analysis of the prevalence and impact of Open Access articles

    PubMed Central

    Larivière, Vincent; Alperin, Juan Pablo; Matthias, Lisa; Norlander, Bree; Farley, Ashley; West, Jevin; Haustein, Stefanie

    2018-01-01

    Despite growing interest in Open Access (OA) to scholarly literature, there is an unmet need for large-scale, up-to-date, and reproducible studies assessing the prevalence and characteristics of OA. We address this need using oaDOI, an open online service that determines OA status for 67 million articles. We use three samples, each of 100,000 articles, to investigate OA in three populations: (1) all journal articles assigned a Crossref DOI, (2) recent journal articles indexed in Web of Science, and (3) articles viewed by users of Unpaywall, an open-source browser extension that lets users find OA articles using oaDOI. We estimate that at least 28% of the scholarly literature is OA (19M in total) and that this proportion is growing, driven particularly by growth in Gold and Hybrid. The most recent year analyzed (2015) also has the highest percentage of OA (45%). Because of this growth, and the fact that readers disproportionately access newer articles, we find that Unpaywall users encounter OA quite frequently: 47% of articles they view are OA. Notably, the most common mechanism for OA is not Gold, Green, or Hybrid OA, but rather an under-discussed category we dub Bronze: articles made free-to-read on the publisher website, without an explicit Open license. We also examine the citation impact of OA articles, corroborating the so-called open-access citation advantage: accounting for age and discipline, OA articles receive 18% more citations than average, an effect driven primarily by Green and Hybrid OA. We encourage further research using the free oaDOI service, as a way to inform OA policy and practice. PMID:29456894

  2. Entangled time in flocking: Multi-time-scale interaction reveals emergence of inherent noise

    PubMed Central

    Murakami, Hisashi

    2018-01-01

    Collective behaviors that seem highly ordered and result in collective alignment, such as schooling by fish and flocking by birds, arise from seamless shuffling (such as super-diffusion) and bustling inside groups (such as Lévy walks). However, such noisy behavior inside groups appears to preclude the collective behavior: intuitively, we expect that noisy behavior would lead to the group being destabilized and broken into small sub groups, and high alignment seems to preclude shuffling of neighbors. Although statistical modeling approaches with extrinsic noise, such as the maximum entropy approach, have provided some reasonable descriptions, they ignore the cognitive perspective of the individuals. In this paper, we try to explain how the group tendency, that is, high alignment, and highly noisy individual behavior can coexist in a single framework. The key aspect of our approach is multi-time-scale interaction emerging from the existence of an interaction radius that reflects short-term and long-term predictions. This multi-time-scale interaction is a natural extension of the attraction and alignment concept in many flocking models. When we apply this method in a two-dimensional model, various flocking behaviors, such as swarming, milling, and schooling, emerge. The approach also explains the appearance of super-diffusion, the Lévy walk in groups, and local equilibria. At the end of this paper, we discuss future developments, including extending our model to three dimensions. PMID:29689074

  3. FOREWORD: IV International Time-Scale Algorithms Symposium, BIPM, Sèvres, 18-19 March 2002

    NASA Astrophysics Data System (ADS)

    Leschiutta, Sigfrido

    2003-06-01

    Time-scale formation, along with atomic time/frequency standards and time comparison techniques, is one of the three basic ingredients of Time Metrology. Before summarizing this Symposium and the relevant outcomes, let me make a couple of very general remarks. Clocks and comparison methods have today reached a very high level of accuracy: the nanosecond level. Some applications in the real word are now challenging the capacity of the National Metrological Laboratories. It is therefore essential that the algorithms dealing with clocks and comparison techniques should be such as to make the most of existing technologies. The comfortable margin of accuracy we were used to, between Laboratories and the Field, is gone forever. While clock makers and time-comparison experts meet regularly (FCS, PTTI, EFTF, CPEM, URSI, UIT, etc), the somewhat secluded community of experts in time-scale formation lacks a similar point of contact, with the exception of the CCTF meeting. This venue must consequently be welcomed. Let me recall some highlights from this Symposium: there were about 60 attendees from 15 nations, plus international institutions, such as the host BIPM, and a supranational one, ESA. About 30 papers, prepared in some 20 laboratories, were received: among these papers, four tutorials were offered; descriptions of local time scales including the local algorithms were presented; four papers considered the algorithms applied to the results of time-comparison methods; and six papers covered the special requirements of some specialized time-scale 'users'. The four basic ingredients of time-scale formation: models, noise, filtering and steering, received attention and were also discussed, not just during the sessions. The most demanding applications for time scales now come from Global Navigation Satellite systems; in six papers the progress of some programmes was described and the present and future needs were presented and documented. The lively discussion on future

  4. Implementation of hospital-wide reform at improving access and flow: Impact on time to antibiotics in the emergency department.

    PubMed

    Roman, Cristina P; Poole, Susan G; Dooley, Michael J; Smit, De Villiers; Mitra, Biswadev

    2016-04-01

    ED overcrowding has been associated with increased mortality, morbidity and delays to essential treatment. It was hypothesised that hospital-wide reforms designed to improve patient access and flow, in addition to improving ED overcrowding, would impact on clinically important processes within the ED, such as timely delivery of antibiotics. A single pre-implementation and post-implementation prospective cohort study was conducted prior to and after a hospital-wide reform (Timely Quality Care (TQC)). Among patients who had intravenous antibiotics prescribed in the ED, data were prospectively collected on times of presentation, prescription and administration of antibiotics. Demographics and discharge diagnoses were retrospectively extracted. There were 380 cases included with 179 cases prior to introduction of the TQC model and 201 cases after its introduction. Time from presentation to administration of antibiotics improved significantly from 192 (99-320) min to 142 (81-209) min (P < 0.01). The time from presentation to prescription pre-TQC and post-TQC was 120 (51-230) min and 92 (49-153) min, respectively (P < 0.01). The times from prescription to administration pre-TQC and post-TQC were 43 (20-83) min and 34 (15-66) min, respectively (P = 0.03). Following implementation of hospital-wide reform directed at mitigating ED overcrowding through improved access and flow, times to administration of antibiotics were significantly reduced. These findings suggest that improved quality of care in this area may be achieved with processes aimed at improved hospital access and flow. Ongoing evaluation and vigilance is necessary to ensure sustainability and drive further improvements. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  5. Bypassing the energy-time uncertainty in time-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Randi, Francesco; Fausti, Daniele; Eckstein, Martin

    2017-03-01

    The energy-time uncertainty is an intrinsic limit for time-resolved experiments imposing a tradeoff between the duration of the light pulses used in experiments and their frequency content. In standard time-resolved photoemission, this limitation maps directly onto a tradeoff between the time resolution of the experiment and the energy resolution that can be achieved on the electronic spectral function. Here we propose a protocol to disentangle the energy and time resolutions in photoemission. We demonstrate that dynamical information on all time scales can be retrieved from time-resolved photoemission experiments using suitably shaped light pulses of quantum or classical nature. As a paradigmatic example, we study the dynamical buildup of the Kondo peak, a narrow feature in the electronic response function arising from the screening of a magnetic impurity by the conduction electrons. After a quench, the electronic screening builds up on timescales shorter than the inverse width of the Kondo peak and we demonstrate that the proposed experimental scheme could be used to measure the intrinsic time scales of such electronic screening. The proposed approach provides an experimental framework to access the nonequilibrium response of collective electronic properties beyond the spectral uncertainty limit and will enable the direct measurement of phenomena such as excited Higgs modes and, possibly, the retarded interactions in superconducting systems.

  6. Universal Linear Scaling of Permeability and Time for Heterogeneous Fracture Dissolution

    NASA Astrophysics Data System (ADS)

    Wang, L.; Cardenas, M. B.

    2017-12-01

    Fractures are dynamically changing over geological time scale due to mechanical deformation and chemical reactions. However, the latter mechanism remains poorly understood with respect to the expanding fracture, which leads to a positively coupled flow and reactive transport processes, i.e., as a fracture expands, so does its permeability (k) and thus flow and reactive transport processes. To unravel this coupling, we consider a self-enhancing process that leads to fracture expansion caused by acidic fluid, i.e., CO2-saturated brine dissolving calcite fracture. We rigorously derive a theory, for the first time, showing that fracture permeability increases linearly with time [Wang and Cardenas, 2017]. To validate this theory, we resort to the direct simulation that solves the Navier-Stokes and Advection-Diffusion equations with a moving mesh according to the dynamic dissolution process in two-dimensional (2D) fractures. We find that k slowly increases first until the dissolution front breakthrough the outbound when we observe a rapid k increase, i.e., the linear time-dependence of k occurs. The theory agrees well with numerical observations across a broad range of Peclet and Damkohler numbers through homogeneous and heterogeneous 2D fractures. Moreover, the theory of linear scaling relationship between k and time matches well with experimental observations of three-dimensional (3D) fractures' dissolution. To further attest to our theory's universality for 3D heterogeneous fractures across a broad range of roughness and correlation length of aperture field, we develop a depth-averaged model that simulates the process-based reactive transport. The simulation results show that, regardless of a wide variety of dissolution patterns such as the presence of dissolution fingers and preferential dissolution paths, the linear scaling relationship between k and time holds. Our theory sheds light on predicting permeability evolution in many geological settings when the self

  7. Multiscale Modeling of Human-Water Interactions: The Role of Time-Scales

    NASA Astrophysics Data System (ADS)

    Bloeschl, G.; Sivapalan, M.

    2015-12-01

    Much of the interest in hydrological modeling in the past decades revolved around resolving spatial variability. With the rapid changes brought about by human impacts on the hydrologic cycle, there is now an increasing need to refocus on time dependency. We present a co-evolutionary view of hydrologic systems, in which every part of the system including human systems, co-evolve, albeit at different rates. The resulting coupled human-nature system is framed as a dynamical system, characterized by interactions of fast and slow time scales and feedbacks between environmental and social processes. This gives rise to emergent phenomena such as the levee effect, adaptation to change and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system in a dynamic way. The co-evolutionary approach differs from the traditional view of water resource systems analysis as it allows for path dependence, multiple equilibria, lock-in situations and emergent phenomena. The approach may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesise the observed dynamics of different case studies. Future research opportunities include the study of how changes in human values are connected to human-water interactions, historical analyses of trajectories of system co-evolution in individual places and comparative analyses of contrasting human-water systems in different climate and socio-economic settings. Reference Sivapalan, M. and G. Blöschl (2015) Time Scale Interactions and the Co-evolution of Humans and Water. Water Resour. Res., 51, in press.

  8. An Assessment of Five (PANSS, SAPS, SANS, NSA-16, CGI-SCH) commonly used Symptoms Rating Scales in Schizophrenia and Comparison to Newer Scales (CAINS, BNSS)

    PubMed Central

    Kumari, Suneeta; Malik, Mansoor; Florival, Christina; Manalai, Partam; Sonje, Snezana

    2017-01-01

    Scales measuring positive and negative symptoms in schizophrenia remain the primary mo Scales measuring positive and negative symptoms in schizophrenia remain the primary mode of assessing and diagnosing schizophrenia by clinicians and researchers. The scales are mainly used to monitor the severity of positive and negative symptoms and track treatment response in schizophrenics. Although these scales are widely used, quality as well as general utility of each scale varies. The quality is determined by the validity and reliability of the scales. The utility of the scale is determined by the time of administration and the settings for which the scales can be administered in research or clinical settings. There are relatively fewer articles on the utility of newer scales like CAINS (Clinical Assessment Interview for Negative Symptoms) and the BNSS (Brief Negative Symptom Scale) that compare them to the older scales PANSS (Positive and Negative Symptoms Scale), SAPS (Scale for the Assessment of Positive Symptoms) SANS (the Scale for the Assessment of Negative Symptoms), NSA-16 (Negative Symptom Assessment-16) and CGI-SCH (Clinical Global Impression Schizophrenia. The older scales were developed more than 30 years ago. Since then, our understanding of negative symptoms has evolved and currently there are newer rating scales evaluating the validity of negative symptoms. The older scales do not incorporate the latest research on negative symptoms. CAINS and BNSS are attractive for both their reliability and their concise accessible format, however, a scale that is simpler, accessible, user-friendly, that incorporates a multidimensional model of schizophrenia, addresses the psychosocial and cognitive component has yet to be developed. PMID:29430333

  9. Relationship between human resource ability and market access capacity on business performance. (case study of wood craft micro- and small-scale industries in Gianyar Regency, Bali)

    NASA Astrophysics Data System (ADS)

    Sukartini, N. W.; Sudarmini, N. M.; Lasmini, N. K.

    2018-01-01

    The aims of this research are to: (1) analyze the influence of Human Resource Ability on market access capacity in Wood Craft Micro and Small Industry; (2) to analyze the effect of market access capacity on business performance; (3) analyze the influence of Human Resources ability on business performance. Data were collected using questionnaires, interviews, observations, and literature studies. The resulting data were analyzed using Struture Equation Modeling (SEM). The results of the analysis show that (1) there is a positive and significant influence of the ability of Human Resources on market access capacity in Wood Craft Micro-and Small-Scale Industries in Gianyar; (2) there is a positive and significant influence of market access capacity on business performance; and (3) there is a positive and significant influence of Human Resource ability on business performance. To improve the ability to access the market and business performance, it is recommended that human resource ability need to be improved through training; government and higher education institutions are expected to play a role in improving the ability of human resources (craftsmen) through provision of training programs

  10. Choice of time-scale in Cox's model analysis of epidemiologic cohort data: a simulation study.

    PubMed

    Thiébaut, Anne C M; Bénichou, Jacques

    2004-12-30

    Cox's regression model is widely used for assessing associations between potential risk factors and disease occurrence in epidemiologic cohort studies. Although age is often a strong determinant of disease risk, authors have frequently used time-on-study instead of age as the time-scale, as for clinical trials. Unless the baseline hazard is an exponential function of age, this approach can yield different estimates of relative hazards than using age as the time-scale, even when age is adjusted for. We performed a simulation study in order to investigate the existence and magnitude of bias for different degrees of association between age and the covariate of interest. Age to disease onset was generated from exponential, Weibull or piecewise Weibull distributions, and both fixed and time-dependent dichotomous covariates were considered. We observed no bias upon using age as the time-scale. Upon using time-on-study, we verified the absence of bias for exponentially distributed age to disease onset. For non-exponential distributions, we found that bias could occur even when the covariate of interest was independent from age. It could be severe in case of substantial association with age, especially with time-dependent covariates. These findings were illustrated on data from a cohort of 84,329 French women followed prospectively for breast cancer occurrence. In view of our results, we strongly recommend not using time-on-study as the time-scale for analysing epidemiologic cohort data. 2004 John Wiley & Sons, Ltd.

  11. Complex Processes from Dynamical Architectures with Time-Scale Hierarchy

    PubMed Central

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor

    2011-01-01

    The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes. PMID:21347363

  12. Multiple-time-scale motion in molecularly linked nanoparticle arrays.

    PubMed

    George, Christopher; Szleifer, Igal; Ratner, Mark

    2013-01-22

    We explore the transport of electrons between electrodes that encase a two-dimensional array of metallic quantum dots linked by molecular bridges (such as α,ω alkaline dithiols). Because the molecules can move at finite temperatures, the entire transport structure comprising the quantum dots and the molecules is in dynamical motion while the charge is being transported. There are then several physical processes (physical excursions of molecules and quantum dots, electronic migration, ordinary vibrations), all of which influence electronic transport. Each can occur on a different time scale. It is therefore not appropriate to use standard approaches to this sort of electron transfer problem. Instead, we present a treatment in which three different theoretical approaches-kinetic Monte Carlo, classical molecular dynamics, and quantum transport-are all employed. In certain limits, some of the dynamical effects are unimportant. But in general, the transport seems to follow a sort of dynamic bond percolation picture, an approach originally introduced as formal models and later applied to polymer electrolytes. Different rate-determining steps occur in different limits. This approach offers a powerful scheme for dealing with multiple time scale transport problems, as will exist in many situations with several pathways through molecular arrays or even individual molecules that are dynamically disordered.

  13. Accessing Valuable Ligand Supports for Transition Metals: A Modified, Intermediate Scale Preparation of 1,2,3,4,5-Pentamethylcyclopentadiene.

    PubMed

    Call, Zachary; Suchewski, Meagan; Bradley, Christopher A

    2017-03-20

    A reliable, intermediate scale preparation of 1,2,3,4,5-pentamethylcyclopentadiene (Cp*H) is presented, based on modifications of existing protocols that derive from initial 2-bromo-2-butene lithiation followed by acid mediated dienol cyclization. The revised synthesis and purification of the ligand avoids the use of mechanical stirring while still permitting access to significant quantities (39 g) of Cp*H in good yield (58%). The procedure offers other additional benefits, including a more controlled quench of excess lithium during the production of the intermediate heptadienols and a simplified isolation of Cp*H of sufficient purity for metallation with transition metals. The ligand was subsequently used to synthesize [Cp*MCl2]2 complexes of both iridium and ruthenium to demonstrate the utility of the Cp*H prepared and purified by our method. The procedure outlined herein affords substantial quantities of a ubiquitous ancillary ligand support used in organometallic chemistry while minimizing the need for specialized laboratory equipment, thus providing a simpler and more accessible entry point into the chemistry of 1,2,3,4,5-pentamethylcyclopentadiene.

  14. Hilbert-Huang spectral analysis for characterizing the intrinsic time-scales of variability in decennial time-series of surface solar radiation

    NASA Astrophysics Data System (ADS)

    Bengulescu, Marc; Blanc, Philippe; Wald, Lucien

    2016-04-01

    An analysis of the variability of the surface solar irradiance (SSI) at different local time-scales is presented in this study. Since geophysical signals, such as long-term measurements of the SSI, are often produced by the non-linear interaction of deterministic physical processes that may also be under the influence of non-stationary external forcings, the Hilbert-Huang transform (HHT), an adaptive, noise-assisted, data-driven technique, is employed to extract locally - in time and in space - the embedded intrinsic scales at which a signal oscillates. The transform consists of two distinct steps. First, by means of the Empirical Mode Decomposition (EMD), the time-series is "de-constructed" into a finite number - often small - of zero-mean components that have distinct temporal scales of variability, termed hereinafter the Intrinsic Mode Functions (IMFs). The signal model of the components is an amplitude modulation - frequency modulation (AM - FM) one, and can also be thought of as an extension of a Fourier series having both time varying amplitude and frequency. Following the decomposition, Hilbert spectral analysis is then employed on the IMFs, yielding a time-frequency-energy representation that portrays changes in the spectral contents of the original data, with respect to time. As measurements of surface solar irradiance may possibly be contaminated by the manifestation of different type of stochastic processes (i.e. noise), the identification of real, physical processes from this background of random fluctuations is of interest. To this end, an adaptive background noise null hypothesis is assumed, based on the robust statistical properties of the EMD when applied to time-series of different classes of noise (e.g. white, red or fractional Gaussian). Since the algorithm acts as an efficient constant-Q dyadic, "wavelet-like", filter bank, the different noise inputs are decomposed into components having the same spectral shape, but that are translated to the

  15. Transitions in effective scaling behavior of accelerometric time series across sleep and wake

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Patrick; Kantelhardt, Jan W.; Zinkhan, Melanie; Schumann, Aicko Y.; Penzel, Thomas; Fietze, Ingo; Pillmann, Frank; Stang, Andreas

    2013-09-01

    We study the effective scaling behavior of high-resolution accelerometric time series recorded at the wrists and hips of 100 subjects during sleep and wake. Using spectral analysis and detrended fluctuation analysis we find long-term correlated fluctuations with a spectral exponent \\beta \\approx 1.0 (1/f noise). On short time scales, β is larger during wake (\\approx 1.4 ) and smaller during sleep (\\approx 0.6 ). In addition, characteristic peaks at 0.2-0.3 Hz (due to respiration) and 4-10 Hz (probably due to physiological tremor) are observed in periods of weak activity. Because of these peaks, spectral analysis is superior in characterizing effective scaling during sleep, while detrending analysis performs well during wake. Our findings can be exploited to detect sleep-wake transitions.

  16. Time Scale Hierarchies in the Functional Organization of Complex Behaviors

    PubMed Central

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor K.

    2011-01-01

    Traditional approaches to cognitive modelling generally portray cognitive events in terms of ‘discrete’ states (point attractor dynamics) rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional architectures. Our approach is grounded in the notion that arbitrary complex (human) behaviour is decomposable into functional modes (elementary units), which we conceptualize as low-dimensional dynamical objects (structured flows on manifolds). The ensemble of modes at an agent’s disposal constitutes his/her functional repertoire. The modes may be subjected to additional dynamics (termed operational signals), in particular, instantaneous inputs, and a mechanism that sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the contributions of functional modes and operational signals from the output, which appears to be possible only when examining the output phase flow (i.e., not from trajectories in phase space or time). PMID:21980278

  17. When are food deserts? Integrating time into research on food accessibility.

    PubMed

    Widener, Michael J; Shannon, Jerry

    2014-11-01

    The food desert concept is used as a means for defining regions as having inadequate spatial and socioeconomic access to vendors selling nutritious foods. This primarily aggregate-level and static method for understanding the food environment is commonly used by researchers and policy makers seeking to improve health outcomes of those affected by reduced access. However, recent research findings have brought the association between living in a food desert and adverse health outcomes into question. In this viewpoint, we put forward the idea that the food desert concept, and food accessibility research more generally, should be expanded to include a temporal component, and note potential avenues for future research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Characterizing parallel file-access patterns on a large-scale multiprocessor

    NASA Technical Reports Server (NTRS)

    Purakayastha, Apratim; Ellis, Carla Schlatter; Kotz, David; Nieuwejaar, Nils; Best, Michael

    1994-01-01

    Rapid increases in the computational speeds of multiprocessors have not been matched by corresponding performance enhancements in the I/O subsystem. To satisfy the large and growing I/O requirements of some parallel scientific applications, we need parallel file systems that can provide high-bandwidth and high-volume data transfer between the I/O subsystem and thousands of processors. Design of such high-performance parallel file systems depends on a thorough grasp of the expected workload. So far there have been no comprehensive usage studies of multiprocessor file systems. Our CHARISMA project intends to fill this void. The first results from our study involve an iPSC/860 at NASA Ames. This paper presents results from a different platform, the CM-5 at the National Center for Supercomputing Applications. The CHARISMA studies are unique because we collect information about every individual read and write request and about the entire mix of applications running on the machines. The results of our trace analysis lead to recommendations for parallel file system design. First the file system should support efficient concurrent access to many files, and I/O requests from many jobs under varying load conditions. Second, it must efficiently manage large files kept open for long periods. Third, it should expect to see small requests predominantly sequential access patterns, application-wide synchronous access, no concurrent file-sharing between jobs appreciable byte and block sharing between processes within jobs, and strong interprocess locality. Finally, the trace data suggest that node-level write caches and collective I/O request interfaces may be useful in certain environments.

  19. Analysis of Access Control Policies in Operating Systems

    ERIC Educational Resources Information Center

    Chen, Hong

    2009-01-01

    Operating systems rely heavily on access control mechanisms to achieve security goals and defend against remote and local attacks. The complexities of modern access control mechanisms and the scale of policy configurations are often overwhelming to system administrators and software developers. Therefore, mis-configurations are common, and the…

  20. Scale invariance in chaotic time series: Classical and quantum examples

    NASA Astrophysics Data System (ADS)

    Landa, Emmanuel; Morales, Irving O.; Stránský, Pavel; Fossion, Rubén; Velázquez, Victor; López Vieyra, J. C.; Frank, Alejandro

    Important aspects of chaotic behavior appear in systems of low dimension, as illustrated by the Map Module 1. It is indeed a remarkable fact that all systems tha make a transition from order to disorder display common properties, irrespective of their exacta functional form. We discuss evidence for 1/f power spectra in the chaotic time series associated in classical and quantum examples, the one-dimensional map module 1 and the spectrum of 48Ca. A Detrended Fluctuation Analysis (DFA) method is applied to investigate the scaling properties of the energy fluctuations in the spectrum of 48Ca obtained with a large realistic shell model calculation (ANTOINE code) and with a random shell model (TBRE) calculation also in the time series obtained with the map mod 1. We compare the scale invariant properties of the 48Ca nuclear spectrum sith similar analyses applied to the RMT ensambles GOE and GDE. A comparison with the corresponding power spectra is made in both cases. The possible consequences of the results are discussed.

  1. IAU resolutions on reference systems and time scales in practice

    NASA Astrophysics Data System (ADS)

    Brumberg, V. A.; Groten, E.

    2001-03-01

    To be consistent with IAU/IUGG (1991) resolutions ICRS and ITRS should be treated as four-dimensional reference systems with TCB and TCG time scales, respectively, interrelated by a four-dimensional general relativistic transformation. This two-way transformation is given in the form adapted for actual application. The use of TB and TT instead of TCB and TCG, respectively, involves scaling factors complicating the use of this transformation in practice. New IAU B1 (2000) resolution is commented taking in mind some points of possible confusion in its practical application. The problem of the relationship of the theory of reference systems with the parameters of common relevance to astronomy, geodesy and geodynamics is briefly outlined.

  2. A fragmentation model of earthquake-like behavior in internet access activity

    NASA Astrophysics Data System (ADS)

    Paguirigan, Antonino A.; Angco, Marc Jordan G.; Bantang, Johnrob Y.

    We present a fragmentation model that generates almost any inverse power-law size distribution, including dual-scaled versions, consistent with the underlying dynamics of systems with earthquake-like behavior. We apply the model to explain the dual-scaled power-law statistics observed in an Internet access dataset that covers more than 32 million requests. The non-Poissonian statistics of the requested data sizes m and the amount of time τ needed for complete processing are consistent with the Gutenberg-Richter-law. Inter-event times δt between subsequent requests are also shown to exhibit power-law distributions consistent with the generalized Omori law. Thus, the dataset is similar to the earthquake data except that two power-law regimes are observed. Using the proposed model, we are able to identify underlying dynamics responsible in generating the observed dual power-law distributions. The model is universal enough for its applicability to any physical and human dynamics that is limited by finite resources such as space, energy, time or opportunity.

  3. Guaranteeing synchronous message deadlines with the timed token medium access control protocol

    NASA Technical Reports Server (NTRS)

    Agrawal, Gopal; Chen, Baio; Zhao, Wei; Davari, Sadegh

    1992-01-01

    We study the problem of guaranteeing synchronous message deadlines in token ring networks where the timed token medium access control protocol is employed. Synchronous capacity, defined as the maximum time for which a node can transmit its synchronous messages every time it receives the token, is a key parameter in the control of synchronous message transmission. To ensure the transmission of synchronous messages before their deadlines, synchronous capacities must be properly allocated to individual nodes. We address the issue of appropriate allocation of the synchronous capacities. Several synchronous capacity allocation schemes are analyzed in terms of their ability to satisfy deadline constraints of synchronous messages. We show that an inappropriate allocation of the synchronous capacities could cause message deadlines to be missed even if the synchronous traffic is extremely low. We propose a scheme called the normalized proportional allocation scheme which can guarantee the synchronous message deadlines for synchronous traffic of up to 33 percent of available utilization. To date, no other synchronous capacity allocation scheme has been reported to achieve such substantial performance. Another major contribution of this paper is an extension to the previous work on the bounded token rotation time. We prove that the time elapsed between any consecutive visits to a particular node is bounded by upsilon TTRT, where TTRT is the target token rotation time set up at system initialization time. The previous result by Johnson and Sevcik is a special case where upsilon = 2. We use this result in the analysis of various synchronous allocation schemes. It can also be applied in other similar studies.

  4. A comparison of Frequency Domain Multiple Access (FDMA) and Time Domain Multiple Access (TDMA) approaches to satellite service for low data rate Earth stations

    NASA Technical Reports Server (NTRS)

    Stevens, G.

    1983-01-01

    A technological and economic assessment is made of providing low data rate service to small earth stations by satellite at Ka-band. Various Frequency Domain Multiple Access (FDMA) and Time Domain Multiple Access (TDMA) scenarios are examined and compared on the basis of cost to the end user. Very small stations (1 to 2 meters in diameter) are found not to be viable alternatives to available terrestrial services. However, medium size (3 to 5 meters) earth stations appear to be very competitive if a minimum throughput of about 1.5 Mbs is maintained. This constrains the use of such terminals to large users and shared use by smaller users. No advantage was found to the use of FDMA. TDMA had a slight advantage from a total system viewpoint and a very significant advantage in the space segment (about 1/3 the required payload weight for an equivalent capacity).

  5. Multi-static networked 3D ladar for surveillance and access control

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ogirala, S. S. R.; Hu, B.; Le, Han Q.

    2007-04-01

    A theoretical design and simulation of a 3D ladar system concept for surveillance, intrusion detection, and access control is described. It is a non-conventional system architecture that consists of: i) multi-static configuration with an arbitrarily scalable number of transmitters (Tx's) and receivers (Rx's) that form an optical wireless code-division-multiple-access (CDMA) network, and ii) flexible system architecture with modular plug-and-play components that can be deployed for any facility with arbitrary topology. Affordability is a driving consideration; and a key feature for low cost is an asymmetric use of many inexpensive Rx's in conjunction with fewer Tx's, which are generally more expensive. The Rx's are spatially distributed close to the surveyed area for large coverage, and capable of receiving signals from multiple Tx's with moderate laser power. The system produces sensing information that scales as NxM, where N, M are the number of Tx's and Rx's, as opposed to linear scaling ~N in non-network system. Also, for target positioning, besides laser pointing direction and time-of-flight, the algorithm includes multiple point-of-view image fusion and triangulation for enhanced accuracy, which is not applicable to non-networked monostatic ladars. Simulation and scaled model experiments on some aspects of this concept are discussed.

  6. A diary after dinner: How the time of event recording influences later accessibility of diary events.

    PubMed

    Szőllősi, Ágnes; Keresztes, Attila; Conway, Martin A; Racsmány, Mihály

    2015-01-01

    Recording the events of a day in a diary may help improve their later accessibility. An interesting question is whether improvements in long-term accessibility will be greater if the diary is completed at the end of the day, or after a period of sleep, the following morning. We investigated this question using an internet-based diary method. On each of five days, participants (n = 109) recorded autobiographical memories for that day or for the previous day. Recording took place either in the morning or in the evening. Following a 30-day retention interval, the diary events were free recalled. We found that participants who recorded their memories in the evening before sleep had best memory performance. These results suggest that the time of reactivation and recording of recent autobiographical events has a significant effect on the later accessibility of those diary events. We discuss our results in the light of related findings that show a beneficial effect of reduced interference during sleep on memory consolidation and reconsolidation.

  7. Large-scale machine learning and evaluation platform for real-time traffic surveillance

    NASA Astrophysics Data System (ADS)

    Eichel, Justin A.; Mishra, Akshaya; Miller, Nicholas; Jankovic, Nicholas; Thomas, Mohan A.; Abbott, Tyler; Swanson, Douglas; Keller, Joel

    2016-09-01

    In traffic engineering, vehicle detectors are trained on limited datasets, resulting in poor accuracy when deployed in real-world surveillance applications. Annotating large-scale high-quality datasets is challenging. Typically, these datasets have limited diversity; they do not reflect the real-world operating environment. There is a need for a large-scale, cloud-based positive and negative mining process and a large-scale learning and evaluation system for the application of automatic traffic measurements and classification. The proposed positive and negative mining process addresses the quality of crowd sourced ground truth data through machine learning review and human feedback mechanisms. The proposed learning and evaluation system uses a distributed cloud computing framework to handle data-scaling issues associated with large numbers of samples and a high-dimensional feature space. The system is trained using AdaBoost on 1,000,000 Haar-like features extracted from 70,000 annotated video frames. The trained real-time vehicle detector achieves an accuracy of at least 95% for 1/2 and about 78% for 19/20 of the time when tested on ˜7,500,000 video frames. At the end of 2016, the dataset is expected to have over 1 billion annotated video frames.

  8. Gott Time Machines, BTZ Black Hole Formation, and Choptuik Scaling

    NASA Astrophysics Data System (ADS)

    Birmingham, Danny; Sen, Siddhartha

    2000-02-01

    We study the formation of Bañados-Teitelboim-Zanelli black holes by the collision of point particles. It is shown that the Gott time machine, originally constructed for the case of vanishing cosmological constant, provides a precise mechanism for black hole formation. As a result, one obtains an exact analytic understanding of the Choptuik scaling.

  9. Accessible Earth: An accessible study abroad capstone for the geoscience curriculum

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Lamb, D. A.

    2017-12-01

    International capstone field courses offer geoscience-students opportunities to reflect upon their knowledge, develop intercultural competence, appreciate diversity, and recognize themselves as geoscientists on a global scale. Such experiences are often described as pivotal to a geoscientist's education, a right of passage. However, field-based experiences present insurmountable barriers to many students, undermining the goal of inclusive excellence. Nevertheless, there remains a widespread belief that successful geoscientists are those able to traverse inaccessible terrain. One path forward from this apparent dilemma is emerging as we take steps to address a parallel challenge: as we move into the 21st century the geoscience workforce will require an ever increasing range of skills, including analysis, modeling, communication, and computational proficiency. Computer programing, laboratory experimentation, numerical simulation, etc, are inherently more accessible than fieldwork, yet equally valuable. Students interested in pursuing such avenues may be better served by capstone experiences that align more closely with their career goals. Moreover, many of the desirable learning outcomes attributed to field-based education are not unique to immersion in remote inaccessible locations. Affective and cognitive gains may also result from social bonding through extended time with peers and mentors, creative synthesis of knowledge, project-based learning, and intercultural experience. Developing an inclusive course for the geoscience curriculum requires considering all learners, including different genders, ages, physical abilities, familial dynamics, and a multitude of other attributes. The Accessible Earth Study Abroad Program endeavors to provide geoscience students an inclusive capstone experience focusing on modern geophysical observation systems (satellite based observations and permanent networks of ground-based instruments), computational thinking and methods of

  10. Transport on intermediate time scales in flows with cat's eye patterns

    NASA Astrophysics Data System (ADS)

    Pöschke, Patrick; Sokolov, Igor M.; Zaks, Michael A.; Nepomnyashchy, Alexander A.

    2017-12-01

    We consider the advection-diffusion transport of tracers in a one-parameter family of plane periodic flows where the patterns of streamlines feature regions of confined circulation in the shape of "cat's eyes," separated by meandering jets with ballistic motion inside them. By varying the parameter, we proceed from the regular two-dimensional lattice of eddies without jets to the sinusoidally modulated shear flow without eddies. When a weak thermal noise is added, i.e., at large Péclet numbers, several intermediate time scales arise, with qualitatively and quantitatively different transport properties: depending on the parameter of the flow, the initial position of a tracer, and the aging time, motion of the tracers ranges from subdiffusive to superballistic. We report on results of extensive numerical simulations of the mean-squared displacement for different initial conditions in ordinary and aged situations. These results are compared with a theory based on a Lévy walk that describes the intermediate-time ballistic regime and gives a reasonable description of the behavior for a certain class of initial conditions. The interplay of the walk process with internal circulation dynamics in the trapped state results at intermediate time scales in nonmonotonic characteristics of aging not captured by the Lévy walk model.

  11. Mapping Disparities in Access to Safe, Timely, and Essential Surgical Care in Zambia.

    PubMed

    Esquivel, Micaela M; Uribe-Leitz, Tarsicio; Makasa, Emmanuel; Lishimpi, Kennedy; Mwaba, Peter; Bowman, Kendra; Weiser, Thomas G

    2016-11-01

    Surgical care is widely unavailable in developing countries; advocates recommend that countries evaluate and report on access to surgical care to improve availability and aid health planners in decision making. To analyze the infrastructure, capacity, and availability of surgical care in Zambia to inform health policy priorities. In this observational study, all hospitals providing surgical care were identified in cooperation with the Zambian Ministry of Health. On-site data collection was conducted from February 1 through August 30, 2011, with an adapted World Health Organization Global Initiative for Emergency and Essential Surgical Care survey. Data collection at each facility included interviews with hospital personnel and assessment of material resources. Data were geocoded and analyzed in a data visualization platform from March 1 to December 1, 2015. We analyzed time and distance to surgical services, as well as the proportion of the population living within 2 hours from a facility providing surgical care. Surgical capacity, supplies, human resources, and infrastructure at each surgical facility, as well as the population living within 2 hours from a hospital providing surgical care. Data were collected from all 103 surgical facilities identified as providing surgical care. When including all surgical facilities (regardless of human resources and supplies), 14.9% of the population (2 166 460 of 14 500 000 people) lived more than 2 hours from surgical care. However, only 17 hospitals (16.5%) met the World Health Organization minimum standards of surgical safety; when limiting the analysis to these hospitals, 65.9% of the population (9 552 780 people) lived in an area that was more than 2 hours from a surgical facility. Geographic analysis of emergency and essential surgical care, defined as access to trauma care, obstetric care, and care of common abdominal emergencies, found that 80.7% of the population (11 704 700 people) lived in an area

  12. Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods

    NASA Astrophysics Data System (ADS)

    He, Jiayi; Shang, Pengjian; Xiong, Hui

    2018-06-01

    Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.

  13. Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild

    PubMed Central

    Broell, Franziska; Taggart, Christopher T.

    2015-01-01

    This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777

  14. Approaches to optimization of SS/TDMA time slot assignment. [satellite switched time division multiple access

    NASA Technical Reports Server (NTRS)

    Wade, T. O.

    1984-01-01

    Reduction techniques for traffic matrices are explored in some detail. These matrices arise in satellite switched time-division multiple access (SS/TDMA) techniques whereby switching of uplink and downlink beams is required to facilitate interconnectivity of beam zones. A traffic matrix is given to represent that traffic to be transmitted from n uplink beams to n downlink beams within a TDMA frame typically of 1 ms duration. The frame is divided into segments of time and during each segment a portion of the traffic is represented by a switching mode. This time slot assignment is characterized by a mode matrix in which there is not more than a single non-zero entry on each line (row or column) of the matrix. Investigation is confined to decomposition of an n x n traffic matrix by mode matrices with a requirement that the decomposition be 100 percent efficient or, equivalently, that the line(s) in the original traffic matrix whose sum is maximal (called critical line(s)) remain maximal as mode matrices are subtracted throughout the decomposition process. A method of decomposition of an n x n traffic matrix by mode matrices results in a number of steps that is bounded by n(2) - 2n + 2. It is shown that this upper bound exists for an n x n matrix wherein all the lines are maximal (called a quasi doubly stochastic (QDS) matrix) or for an n x n matrix that is completely arbitrary. That is, the fact that no method can exist with a lower upper bound is shown for both QDS and arbitrary matrices, in an elementary and straightforward manner.

  15. The Smallest R/V: A Small-scale Ocean Exploration Demonstration of Real-time Bathymetric Measurements

    NASA Astrophysics Data System (ADS)

    Howell, S. M.; Boston, B.; Maher, S. M.; Sleeper, J. D.; Togia, H.; Tree, J. P.

    2014-12-01

    In October 2013, graduate student members of the University of Hawaii Geophysical Society designed a small-scale model research vessel (R/V) that uses sonar to create 3D maps of a model seafloor in real-time. This pilot project was presented to the public at the School of Ocean and Earth Science and Technology's (SOEST) Biennial Open House weekend. An estimated 7,600 people attended the two-day event, including children and teachers from Hawaii's schools, home school students, community groups, families, and science enthusiasts. Our exhibit demonstrated real-time sonar mapping of a cardboard volcano using a toy size research vessel on a fixed 2D model ship track suspended above a model seafloor. Sound wave travel times were recorded using an unltrasonic emitter/receiver attached to an Arduino microcontroller platform, while the same system measured displacement along the ship track. This data was streamed through a USB connection to a PC running MatLab, where a 3D model was updated as the ship collected data. Our exhibit demonstrates the practical use of complicated concepts, like wave physics and data processing, in a way that even the youngest elementary students are able to understand. It provides an accessible avenue to learn about sonar mapping, and could easily be adapted to talk about bat and marine mammal echolocation by replacing the model ship and volcano. The exhibit received an overwhelmingly positive response from attendees, and has inspired the group to develop a more interactive model for future exhibitions, using multiple objects to be mapped that participants could arrange, and a more robust ship movement system that participants could operate.

  16. System access control study

    DOT National Transportation Integrated Search

    1974-06-01

    The report presents a summary of a study conducted for the Transportation Systems Center of promising access control techniques which are applicable to an aeronautical satellite system. Several frequency division multiple access (FDMA) and time divis...

  17. US stock market efficiency over weekly, monthly, quarterly and yearly time scales

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    In financial markets, the weak form of the efficient market hypothesis implies that price returns are serially uncorrelated sequences. In other words, prices should follow a random walk behavior. Recent developments in evolutionary economic theory (Lo, 2004) have tailored the concept of adaptive market hypothesis (AMH) by proposing that market efficiency is not an all-or-none concept, but rather market efficiency is a characteristic that varies continuously over time and across markets. Within the AMH framework, this work considers the Dow Jones Index Average (DJIA) for studying the deviations from the random walk behavior over time. It is found that the market efficiency also varies over different time scales, from weeks to years. The well-known detrended fluctuation analysis was used for the characterization of the serial correlations of the return sequences. The results from the empirical showed that interday and intraday returns are more serially correlated than overnight returns. Also, some insights in the presence of business cycles (e.g., Juglar and Kuznets) are provided in terms of time variations of the scaling exponent.

  18. Nonlinearities of heart rate variability in animal models of impaired cardiac control: contribution of different time scales.

    PubMed

    Silva, Luiz Eduardo Virgilio; Lataro, Renata Maria; Castania, Jaci Airton; Silva, Carlos Alberto Aguiar; Salgado, Helio Cesar; Fazan, Rubens; Porta, Alberto

    2017-08-01

    Heart rate variability (HRV) has been extensively explored by traditional linear approaches (e.g., spectral analysis); however, several studies have pointed to the presence of nonlinear features in HRV, suggesting that linear tools might fail to account for the complexity of the HRV dynamics. Even though the prevalent notion is that HRV is nonlinear, the actual presence of nonlinear features is rarely verified. In this study, the presence of nonlinear dynamics was checked as a function of time scales in three experimental models of rats with different impairment of the cardiac control: namely, rats with heart failure (HF), spontaneously hypertensive rats (SHRs), and sinoaortic denervated (SAD) rats. Multiscale entropy (MSE) and refined MSE (RMSE) were chosen as the discriminating statistic for the surrogate test utilized to detect nonlinearity. Nonlinear dynamics is less present in HF animals at both short and long time scales compared with controls. A similar finding was found in SHR only at short time scales. SAD increased the presence of nonlinear dynamics exclusively at short time scales. Those findings suggest that a working baroreflex contributes to linearize HRV and to reduce the likelihood to observe nonlinear components of the cardiac control at short time scales. In addition, an increased sympathetic modulation seems to be a source of nonlinear dynamics at long time scales. Testing nonlinear dynamics as a function of the time scales can provide a characterization of the cardiac control complementary to more traditional markers in time, frequency, and information domains. NEW & NOTEWORTHY Although heart rate variability (HRV) dynamics is widely assumed to be nonlinear, nonlinearity tests are rarely used to check this hypothesis. By adopting multiscale entropy (MSE) and refined MSE (RMSE) as the discriminating statistic for the nonlinearity test, we show that nonlinear dynamics varies with time scale and the type of cardiac dysfunction. Moreover, as

  19. ACStor: Optimizing Access Performance of Virtual Disk Images in Clouds

    DOE PAGES

    Wu, Song; Wang, Yihong; Luo, Wei; ...

    2017-03-02

    In virtualized data centers, virtual disk images (VDIs) serve as the containers in virtual environment, so their access performance is critical for the overall system performance. Some distributed VDI chunk storage systems have been proposed in order to alleviate the I/O bottleneck for VM management. As the system scales up to a large number of running VMs, however, the overall network traffic would become unbalanced with hot spots on some VMs inevitably, leading to I/O performance degradation when accessing the VMs. Here, we propose an adaptive and collaborative VDI storage system (ACStor) to resolve the above performance issue. In comparisonmore » with the existing research, our solution is able to dynamically balance the traffic workloads in accessing VDI chunks, based on the run-time network state. Specifically, compute nodes with lightly loaded traffic will be adaptively assigned more chunk access requests from remote VMs and vice versa, which can effectively eliminate the above problem and thus improves the I/O performance of VMs. We also implement a prototype based on our ACStor design, and evaluate it by various benchmarks on a real cluster with 32 nodes and a simulated platform with 256 nodes. Experiments show that under different network traffic patterns of data centers, our solution achieves up to 2-8 performance gain on VM booting time and VM’s I/O throughput, in comparison with the other state-of-the-art approaches.« less

  20. Self-Reported Barriers to Healthcare Access for Rheumatoid Arthritis Patients in Rural and Northern Saskatchewan: A Mixed Methods Study.

    PubMed

    Nair, B V; Schuler, R; Stewart, S; Taylor-Gjevre, R M

    2016-12-01

    The aim of the present study was to identify potential barriers for access to medical and allied health services from the perspective of rural and Northern Saskatchewan rheumatoid arthritis (RA) patients. A total of 100 adults with established RA, residing in rural and Northern Saskatchewan, were recruited from two rheumatology practices. Structured interviews with standardized scripts solicited patient perspectives on appointment waiting times, travel required to access medical services and satisfaction with healthcare provision. Thematic analysis was employed for qualitative data. Patients-reported concerns regarding waiting time for their first rheumatology appointment. There was reduced access to allied health professionals, with only 53% of the participants having seen a physiotherapist (PT), and only 26% an occupational therapist (OT). Patients had similar driving distances to their family physician, PT, pharmacy and laboratory services but commuted significantly further for rheumatologist and OT services. There were high levels of satisfaction with their rheumatologist and family physician appointments (8.96 and 8.04 on a ten-point scale). Patients with longer travel times had higher satisfaction with their health care appointments: Patients who travelled one, two and more than two hours had satisfaction scores of 0.93, 0.88 and 1.32 points higher on a ten-point scale (p < 0.03). Access to medical services is a concern for this population. Patients were dissatisfied with the waiting time for their first specialist appointment and with decreased access to allied health professionals. Patients travelling longer distances were more satisfied with their health care provider's care, suggesting that good patient-care giver relationships helped to ameliorate the difficulties of travelling to their appointments. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa, B., E-mail: bogdan.rosa@imgw.pl; Parishani, H.; Department of Earth System Science, University of California, Irvine, California 92697-3100

    2015-01-15

    In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynoldsmore » number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate.« less

  2. Scaling of water vapor in the meso-gamma (2-20km) and lower meso-beta (20-50km) scales from tall tower time series

    NASA Astrophysics Data System (ADS)

    Pressel, K. G.; Collins, W.; Desai, A. R.

    2011-12-01

    Deficiencies in the parameterization of boundary layer clouds in global climate models (GCMs) remains one of the greatest sources of uncertainty in climate change predictions. Many GCM cloud parameterizations, which seek to include some representation of subgrid-scale cloud variability, do so by making assumptions regarding the subgrid-scale spatial probability density function (PDF) of total water content. Properly specifying the form and parameters of the total water PDF is an essential step in the formulation of PDF based cloud parameterizations. In the cloud free boundary layer, the PDF of total water mixing ratio is equivalent to the PDF of water vapor mixing ratio. Understanding the PDF of water vapor mixing ratio in the cloud free atmosphere is a necessary step towards understanding the PDF of water vapor in the cloudy atmosphere. A primary challenge in empirically constraining the PDF of water vapor mixing ratio is a distinct lack of a spatially distributed observational dataset at or near cloud scale. However, at meso-beta (20-50km) and larger scales, there is a wealth of information on the spatial distribution of water vapor contained in the physically retrieved water vapor profiles from the Atmospheric Infrared Sounder onboard NASA`s Aqua satellite. The scaling (scale-invariance) of the observed water vapor field has been suggested as means of using observations at satellite observed (meso-beta) scales to derive information about cloud scale PDFs. However, doing so requires the derivation of a robust climatology of water vapor scaling from in-situ observations across the meso- gamma (2-20km) and meso-beta scales. In this work, we present the results of the scaling of high frequency (10Hz) time series of water vapor mixing ratio as observed from the 447m WLEF tower located near Park Falls, Wisconsin. Observations from a tall tower offer an ideal set of observations with which to investigate scaling at meso-gamma and meso-beta scales requiring only the

  3. Utilization of Preventive Dental Services Before and After Health Insurance Covered Dental Scaling in Korea.

    PubMed

    Jang, Young-Eun; Kim, Chun-Bae; Kim, Nam-Hee

    2017-01-01

    Health insurance reduces the economic burden of diseases and enhances access to medical services. This study compared, among social classes, the utilization of preventive dental service before and after health insurance covered dental scaling. We analyzed time-series secondary data for 3  175  584 participants from 253 survey areas nationwide in the Community Health Survey (2009-2014) in Korea. The weighted proportion of participants who underwent dental scaling was defined as the scaling rate. Data regarding demographic and socioeconomic characteristics were collected. Scaling rates continuously increased over the 6-year period, particularly in 2014. College graduates had significantly higher scaling rates. Monthly income and scaling rate were positively related. Differences by education decreased over time. Differences by income were particularly high between 2012 and 2014. For women, the temporal rate was 2 times higher for professionals than for the unemployed. Despite increased dental scaling rates since the health coverage change in 2013, socioeconomic differences persist.

  4. ARCAS (ACACIA Regional Climate-data Access System) -- a Web Access System for Climate Model Data Access, Visualization and Comparison

    NASA Astrophysics Data System (ADS)

    Hakkarinen, C.; Brown, D.; Callahan, J.; hankin, S.; de Koningh, M.; Middleton-Link, D.; Wigley, T.

    2001-05-01

    A Web-based access system to climate model output data sets for intercomparison and analysis has been produced, using the NOAA-PMEL developed Live Access Server software as host server and Ferret as the data serving and visualization engine. Called ARCAS ("ACACIA Regional Climate-data Access System"), and publicly accessible at http://dataserver.ucar.edu/arcas, the site currently serves climate model outputs from runs of the NCAR Climate System Model for the 21st century, for Business as Usual and Stabilization of Greenhouse Gas Emission scenarios. Users can select, download, and graphically display single variables or comparisons of two variables from either or both of the CSM model runs, averaged for monthly, seasonal, or annual time resolutions. The time length of the averaging period, and the geographical domain for download and display, are fully selectable by the user. A variety of arithmetic operations on the data variables can be computed "on-the-fly", as defined by the user. Expansions of the user-selectable options for defining analysis options, and for accessing other DOD-compatible ("Distributed Ocean Data System-compatible") data sets, residing at locations other than the NCAR hardware server on which ARCAS operates, are planned for this year. These expansions are designed to allow users quick and easy-to-operate web-based access to the largest possible selection of climate model output data sets available throughout the world.

  5. Data access and decision tools for coastal water resources ...

    EPA Pesticide Factsheets

    US EPA has supported the development of numerous models and tools to support implementation of environmental regulations. However, transfer of knowledge and methods from detailed technical models to support practical problem solving by local communities and watershed or coastal management organizations remains a challenge. We have developed the Estuary Data Mapper (EDM) to facilitate data discovery, visualization and access to support environmental problem solving for coastal watersheds and estuaries. EDM is a stand-alone application based on open-source software which requires only internet access for operation. Initially, development of EDM focused on delivery of raw data streams from distributed web services, ranging from atmospheric deposition to hydrologic, tidal, and water quality time series, estuarine habitat characteristics, and remote sensing products. We have transitioned to include access to value-added products which provide end-users with results of future scenario analysis, facilitate extension of models across geographic regions, and/or promote model interoperability. Here we present three examples: 1) the delivery of input data for the development of seagrass models across estuaries, 2) scenarios illustrating the implications of riparian buffer management (loss or restoration) for stream thermal regimes and fish communities, and 3) access to hydrology model outputs to foster connections across models at different scales, ultimately feeding

  6. Nonoscillatory solutions for system of neutral dynamic equations on time scales.

    PubMed

    Chen, Zhanhe; Sun, Taixiang; Wang, Qi; Xi, Hongjian

    2014-01-01

    We will discuss nonoscillatory solutions to the n-dimensional functional system of neutral type dynamic equations on time scales. We will establish some sufficient conditions for nonoscillatory solutions with the property lim(t → ∞) x(i) (t) = 0, i = 1, 2,…, n.

  7. Nonoscillatory Solutions for System of Neutral Dynamic Equations on Time Scales

    PubMed Central

    Chen, Zhanhe; Wang, Qi; Xi, Hongjian

    2014-01-01

    We will discuss nonoscillatory solutions to the n-dimensional functional system of neutral type dynamic equations on time scales. We will establish some sufficient conditions for nonoscillatory solutions with the property limt→∞ ⁡x i(t) = 0, i = 1, 2,…, n. PMID:24757436

  8. Scaling in non-stationary time series. (II). Teen birth phenomenon

    NASA Astrophysics Data System (ADS)

    Ignaccolo, M.; Allegrini, P.; Grigolini, P.; Hamilton, P.; West, B. J.

    2004-05-01

    This paper is devoted to the problem of statistical mechanics raised by the analysis of an issue of sociological interest: the teen birth phenomenon. It is expected that these data are characterized by correlated fluctuations, reflecting the cooperative properties of the process. However, the assessment of the anomalous scaling generated by these correlations is made difficult, and ambiguous as well, by the non-stationary nature of the data that shows a clear dependence on seasonal periodicity (periodic component) and an average changing slowly in time (slow component) as well. We use the detrending techniques described in the companion paper [The earlier companion paper], to safely remove all the biases and to derive the genuine scaling of the teen birth phenomenon.

  9. Access to specialist gastroenterology care in Canada: Comparison of wait times and consensus targets

    PubMed Central

    Leddin, Desmond; Armstrong, David; Barkun, Alan NG; Chen, Ying; Daniels, Sandra; Hollingworth, Roger; Hunt, Richard H; Paterson, William G

    2008-01-01

    BACKGROUND: Monitoring wait times and defining targets for care have been advocated to improve health care delivery related to cancer, heart, diagnostic imaging, joint replacements and sight restoration. There are few data on access to care for digestive diseases, although they pose a greater economic burden than cancer or heart disease in Canada. The present study compared wait times for specialist gastroenterology care with recent, evidence-based, consensus-defined benchmark wait times for a range of digestive diseases. METHODS: Total wait times from primary care referral to investigation were measured for seven digestive disease indications by using the Practice Audit in Gastroenterology program, and were benchmarked against consensus recommendations. RESULTS: Total wait times for 1903 patients who were undergoing investigation exceeded targets for those with probable cancer (median 26 days [25th to 75th percentiles eight to 56 days] versus target of two weeks); probable inflammatory bowel disease (101 days [35 to 209 days] versus two weeks); documented iron deficiency anemia (71 days [19 to 142 days] versus two months); positive fecal occult blood test (73 days [36 to 148 days] versus two months); dyspepsia with alarm symptoms (60 days [23 to 140 days] versus two months); refractory dyspepsia without alarm symptoms (126 days [42 to 225 days] versus two months); and chronic constipation and diarrhea (141 days [68 to 264 days] versus two months). A minority of patients were seen within target times: probable cancer (33% [95% CI 20% to 47%]); probable inflammatory bowel disease (12% [95% CI 1% to 23%]); iron deficiency anemia (46% [95% CI 37% to 55%]); positive occult blood test (41% [95% CI 28% to 54%]); dyspepsia with alarm symptoms (51% [95% CI 41% to 60%]); refractory dyspepsia without alarm symptoms (33% [95% CI 19% to 47%]); and chronic constipation and diarrhea (21% [95% CI 14% to 29%]). DISCUSSION: Total wait times for the seven indications exceeded the

  10. Separation of time scales in the HCA model for sand

    NASA Astrophysics Data System (ADS)

    Niemunis, Andrzej; Wichtmann, Torsten

    2014-10-01

    Separation of time scales is used in a high cycle accumulation (HCA) model for sand. An important difficulty of the model is the limited applicability of the Miner's rule to multiaxial cyclic loadings applied simultaneously or in a combination with monotonic loading. Another problem is the lack of simplified objective HCA formulas for geotechnical settlement problems. Possible solutions of these problems are discussed.

  11. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-03-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  12. Spatiotemporal patterns of drought at various time scales in Shandong Province of Eastern China

    NASA Astrophysics Data System (ADS)

    Zuo, Depeng; Cai, Siyang; Xu, Zongxue; Li, Fulin; Sun, Wenchao; Yang, Xiaojing; Kan, Guangyuan; Liu, Pin

    2018-01-01

    The temporal variations and spatial patterns of drought in Shandong Province of Eastern China were investigated by calculating the standardized precipitation evapotranspiration index (SPEI) at 1-, 3-, 6-, 12-, and 24-month time scales. Monthly precipitation and air temperature time series during the period 1960-2012 were collected at 23 meteorological stations uniformly distributed over the region. The non-parametric Mann-Kendall test was used to explore the temporal trends of precipitation, air temperature, and the SPEI drought index. S-mode principal component analysis (PCA) was applied to identify the spatial patterns of drought. The results showed that an insignificant decreasing trend in annual total precipitation was detected at most stations, a significant increase of annual average air temperature occurred at all the 23 stations, and a significant decreasing trend in the SPEI was mainly detected at the coastal stations for all the time scales. The frequency of occurrence of extreme and severe drought at different time scales generally increased with decades; higher frequency and larger affected area of extreme and severe droughts occurred as the time scale increased, especially for the northwest of Shandong Province and Jiaodong peninsular. The spatial pattern of drought for SPEI-1 contains three regions: eastern Jiaodong Peninsular and northwestern and southern Shandong. As the time scale increased to 3, 6, and 12 months, the order of the three regions was transformed into another as northwestern Shandong, eastern Jiaodong Peninsular, and southern Shandong. For SPEI-24, the location identified by REOF1 was slightly shifted from northwestern Shandong to western Shandong, and REOF2 and REOF3 identified another two weak patterns in the south edge and north edge of Jiaodong Peninsular, respectively. The potential causes of drought and the impact of drought on agriculture in the study area have also been discussed. The temporal variations and spatial patterns

  13. National Scale Marine Geophysical Data Portal for the Israel EEZ with Public Access Web-GIS Platform

    NASA Astrophysics Data System (ADS)

    Ketter, T.; Kanari, M.; Tibor, G.

    2017-12-01

    Recent offshore discoveries and regulation in the Israel Exclusive Economic Zone (EEZ) are the driving forces behind increasing marine research and development initiatives such as infrastructure development, environmental protection and decision making among many others. All marine operations rely on existing seabed information, while some also generate new data. We aim to create a single platform knowledge-base to enable access to existing information, in a comprehensive, publicly accessible web-based interface. The Israel EEZ covers approx. 26,000 sqkm and has been surveyed continuously with various geophysical instruments over the past decades, including 10,000 km of multibeam survey lines, 8,000 km of sub-bottom seismic lines, and hundreds of sediment sampling stations. Our database consists of vector and raster datasets from multiple sources compiled into a repository of geophysical data and metadata, acquired nation-wide by several research institutes and universities. The repository will enable public access via a web portal based on a GIS platform, including datasets from multibeam, sub-bottom profiling, single- and multi-channel seismic surveys and sediment sampling analysis. Respective data products will also be available e.g. bathymetry, substrate type, granulometry, geological structure etc. Operating a web-GIS based repository allows retrieval of pre-existing data for potential users to facilitate planning of future activities e.g. conducting marine surveys, construction of marine infrastructure and other private or public projects. User interface is based on map oriented spatial selection, which will reveal any relevant data for designated areas of interest. Querying the database will allow the user to obtain information about the data owner and to address them for data retrieval as required. Wide and free public access to existing data and metadata can save time and funds for academia, government and commercial sectors, while aiding in cooperation

  14. [THE FAILURE MODES AND EFFECTS ANALYSIS FACILITATES A SAFE, TIME AND MONEY SAVING OPEN ACCESS COLONOSCOPY SERVICE].

    PubMed

    Gingold-Belfer, Rachel; Niv, Yaron; Horev, Nehama; Gross, Shuli; Sahar, Nadav; Dickman, Ram

    2017-04-01

    Failure modes and effects analysis (FMEA) is used for the identification of potential risks in health care processes. We used a specific FMEA - based form for direct referral for colonoscopy and assessed it for procedurerelated perforations. Ten experts in endoscopy evaluated and computed the entire referral process, modes of preparation for the endoscopic procedure, the endoscopic procedure itself and the discharge process. We used FMEA assessing for likelihood of occurrence, detection and severity and calculated the risk profile number (RPN) for each of the above points. According to the highest RPN results we designed a specific open access referral form and then compared the occurrence of colonic perforations (between 2010 and 2013) in patients who were referred through the open access arm (Group 1) to those who had a prior clinical consultation (non-open access, Group 2). Our experts in endoscopy (5 physicians and 5 nurses) identified 3 categories of failure modes that, on average, reached the highest RPNs. We identified 9,558 colonoscopies in group 1, and 12,567 in group 2. Perforations were identified in three patients from the open access group (1:3186, 0.03%) and in 10 from group 2 (1:1256, 0.07%) (p = 0.024). Direct referral for colonoscopy saved 9,558 pre-procedure consultations and the sum of $850,000. The FMEA tool-based specific referral form facilitates a safe, time and money saving open access colonoscopy service. Our form may be adopted by other gastroenterological clinics in Israel.

  15. Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA

    USGS Publications Warehouse

    Schoellhamer, D.H.

    2002-01-01

    Singular spectrum analysis for time series with missing data (SSAM) was used to reconstruct components of a 6-yr time series of suspended-sediment concentration (SSC) from San Francisco Bay. Data were collected every 15 min and the time series contained missing values that primarily were due to sensor fouling. SSAM was applied in a sequential manner to calculate reconstructed components with time scales of variability that ranged from tidal to annual. Physical processes that controlled SSC and their contribution to the total variance of SSC were (1) diurnal, semidiurnal, and other higher frequency tidal constituents (24%), (2) semimonthly tidal cycles (21%), (3) monthly tidal cycles (19%), (4) semiannual tidal cycles (12%), and (5) annual pulses of sediment caused by freshwater inflow, deposition, and subsequent wind-wave resuspension (13%). Of the total variance 89% was explained and subtidal variability (65%) was greater than tidal variability (24%). Processes at subtidal time scales accounted for more variance of SSC than processes at tidal time scales because sediment accumulated in the water column and the supply of easily erodible bed sediment increased during periods of increased subtidal energy. This large range of time scales that each contained significant variability of SSC and associated contaminants can confound design of sampling programs and interpretation of resulting data.

  16. Applicability of Hydrologic Landscapes for Model Calibration at the Watershed Scale in the Pacific Northwest

    EPA Science Inventory

    The Pacific Northwest Hydrologic Landscapes (PNW HL) at the assessment unit scale has provided a solid conceptual classification framework to relate and transfer hydrologically meaningful information between watersheds without access to streamflow time series. A collection of tec...

  17. Time scale defined by the fractal structure of the price fluctuations in foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Kumagai, Yoshiaki

    2010-04-01

    In this contribution, a new time scale named C-fluctuation time is defined by price fluctuations observed at a given resolution. The intraday fractal structures and the relations of the three time scales: real time (physical time), tick time and C-fluctuation time, in foreign exchange markets are analyzed. The data set used is trading prices of foreign exchange rates; US dollar (USD)/Japanese yen (JPY), USD/Euro (EUR), and EUR/JPY. The accuracy of the data is one minute and data within a minute are recorded in order of transaction. The series of instantaneous velocity of C-fluctuation time flowing are exponentially distributed for small C when they are measured by real time and for tiny C when they are measured by tick time. When the market is volatile, for larger C, the series of instantaneous velocity are exponentially distributed.

  18. Three essays on access pricing

    NASA Astrophysics Data System (ADS)

    Sydee, Ahmed Nasim

    In the first essay, a theoretical model is developed to determine the time path of optimal access price in the telecommunications industry. Determining the optimal access price is an important issue in the economics of telecommunications. Setting a high access price discourages potential entrants; a low access price, on the other hand, amounts to confiscation of private property because the infrastructure already built by the incumbent is sunk. Furthermore, a low access price does not give the incumbent incentives to maintain the current network and to invest in new infrastructures. Much of the existing literature on access pricing suffers either from the limitations of a static framework or from the assumption that all costs are avoidable. The telecommunications industry is subject to high stranded costs and, therefore, to address this issue a dynamic model is imperative. This essay presents a dynamic model of one-way access pricing in which the compensation involved in deregulatory taking is formalized and then analyzed. The short run adjustment after deregulatory taking has occurred is carried out and discussed. The long run equilibrium is also analyzed. A time path for the Ramsey price is shown as the correct dynamic price of access. In the second essay, a theoretical model is developed to determine the time path of optimal access price for an infrastructure that is characterized by congestion and lumpy investment. Much of the theoretical literature on access pricing of infrastructure prescribes that the access price be set at the marginal cost of the infrastructure. In proposing this rule of access pricing, the conventional analysis assumes that infrastructure investments are infinitely divisible so that it makes sense to talk about the marginal cost of investment. Often it is the case that investments in infrastructure are lumpy and can only be made in large chunks, and this renders the marginal cost concept meaningless. In this essay, we formalize a model of

  19. A new time-space accounting scheme to predict stream water residence time and hydrograph source components at the watershed scale

    Treesearch

    Takahiro Sayama; Jeffrey J. McDonnell

    2009-01-01

    Hydrograph source components and stream water residence time are fundamental behavioral descriptors of watersheds but, as yet, are poorly represented in most rainfall-runoff models. We present a new time-space accounting scheme (T-SAS) to simulate the pre-event and event water fractions, mean residence time, and spatial source of streamflow at the watershed scale. We...

  20. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-06-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  1. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan; Jersey Inst Ansari, New; Jersey Inst, New

    2005-04-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  2. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-05-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  3. Improving efficiency and access to mental health care: combining integrated care and advanced access.

    PubMed

    Pomerantz, Andrew; Cole, Brady H; Watts, Bradley V; Weeks, William B

    2008-01-01

    To provide an example of implementation of a new program that enhances access to mental health care in primary care. A general and specialized mental health service was redesigned to introduce open access to comprehensive mental health care in a primary care clinic. Key variables measured before and after implementation of the clinic included numbers of completed referrals, waiting time for appointments and clinic productivity. Workload and pre/post-implementation waiting time data were gathered through a computerized electronic monitoring system. Waiting time for new appointments was shortened from a mean of 33 days to 19 min. Clinician productivity and evaluations of new referrals more than doubled. These improvements have been sustained for 4 years. Moving mental health services into primary care, initiating open access and increasing use of technological aids led to dramatic improvements in access to mental health care and efficient use of resources. Implementation and sustainability of the program were enhanced by using a quality improvement approach.

  4. Multi-time-scale X-ray reverberation mapping of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel

    2018-04-01

    Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.

  5. Regional Disparities in Online Map User Access Volume and Determining Factors

    NASA Astrophysics Data System (ADS)

    Li, R.; Yang, N.; Li, R.; Huang, W.; Wu, H.

    2017-09-01

    The regional disparities of online map user access volume (use `user access volume' in this paper to indicate briefly) is a topic of growing interest with the increment of popularity in public users, which helps to target the construction of geographic information services for different areas. At first place we statistically analysed the online map user access logs and quantified these regional access disparities on different scales. The results show that the volume of user access is decreasing from east to the west in China as a whole, while East China produces the most access volume; these cities are also the crucial economic and transport centres. Then Principal Component Regression (PCR) is applied to explore the regional disparities of user access volume. A determining model for Online Map access volume is proposed afterwards, which indicates that area scale is the primary determining factor for regional disparities, followed by public transport development level and public service development level. Other factors like user quality index and financial index have very limited influence on the user access volume. According to the study of regional disparities in user access volume, map providers can reasonably dispatch and allocate the data resources and service resources in each area and improve the operational efficiency of the Online Map server cluster.

  6. Time-variable stress transfer across a megathrust from seismic to Wilson cycle scale

    NASA Astrophysics Data System (ADS)

    Rosenau, Matthias; Angiboust, Samuel; Moreno, Marcos; Schurr, Bernd; Oncken, Onno

    2013-04-01

    During the lifetime of a convergent plate margin stress transfer across the plate interface (a megathrust) can be expected to vary at multiple timescales. At short time scales (years to decades), a subduction megathrust interface appears coupled (accumulating shear stress) at shallow depth (seismogenic zone <350°C) in a laterally heterogeneous fashion. Highly coupled areas are prerequisite to areas of large slip (asperities) during future earthquakes but the correlation is rarely unequivocal suggesting that the coupling pattern is transient during the interseismic period. As temperature, structure and material properties are unlike to change at short time scales as well as at short distance along strike, fluid pressure change is invoked as the prime agent of lateral and time-variable stress transfer at short time (seismic cycle) scale and beyond. On longer time scales (up to Wilson cycles), additional agents of time-variable stress change are discussed. Shear tests using velocity weakening rock analogue material suggest that in a conditionally stable regime the effective normal load controls both the geodetic and the seismic coupling (fraction of convergence velocity accommodated by interseismic backslip/seismic slip). Accordingly seismic coupling decreases from 80% to 20% as the pore fluid pressure increases from hydrostatic to near-lithostatic. Moreover, the experiments demonstrate that at sub-seismic cycle scale the geodetic coupling (locking) is not only proportional to effective normal load but also to relative shear stress. For areas of near complete stress drop locking might systematically decrease over the interseismic period from >80-95 % shortly after an earthquake to backslip at significant fractions of plate convergence rate (<5-45 % locking) later in the seismic cycle. If we allow pore fluid pressures to change at sub-seismic cycle scale a single location along a megathrust may thus appear fully locked after an earthquake while fully unlocked before

  7. Towards a Millennial Time-scale Vertical Deformation Field in Taiwan

    NASA Astrophysics Data System (ADS)

    Bordovaos, P. A.; Johnson, K. M.

    2015-12-01

    Pete Bordovalos and Kaj M. Johnson To better understand the feedbacks between erosion and deformation in Taiwan, we need constraints on the millennial time-scale vertical field. Dense GPS and leveling data sets in Taiwan provide measurements of the present-day vertical deformation field over the entire Taiwan island. However, it is unclear how much of this vertical field is transient (varies over earthquake cycle) or steady (over millennial time scale). A deformation model is required to decouple transient from steady deformation. This study takes a look at how the 82 mm/yr of convergence motion between the Eurasian plate and the Philippine Sea plate is distributed across the faults on Taiwan. We build a plate flexure model that consists of all known active faults and subduction zones cutting through an elastic plate supported by buoyancy. We use horizontal and vertical GPS data, leveling data, and geologic surface uplift rates with a Monte Carlo probabilistic inversion method to infer fault slip rates and locking depths on all faults. Using our model we examine how different fault geometries influence the estimates of distribution of slip along faults and deformation patterns.

  8. Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Hall, Charles; Jackson, Mark

    2000-01-01

    A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.

  9. The Virtual Watershed Observatory: Cyberinfrastructure for Model-Data Integration and Access

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Leonard, L. N.; Giles, L.; Bhatt, G.; Yu, X.

    2011-12-01

    The Virtual Watershed Observatory (VWO) is a concept where scientists, water managers, educators and the general public can create a virtual observatory from integrated hydrologic model results, national databases and historical or real-time observations via web services. In this paper, we propose a prototype for automated and virtualized web services software using national data products for climate reanalysis, soils, geology, terrain and land cover. The VWO has the broad purpose of making accessible water resource simulations, real-time data assimilation, calibration and archival at the scale of HUC 12 watersheds (Hydrologic Unit Code) anywhere in the continental US. Our prototype for model-data integration focuses on creating tools for fast data storage from selected national databases, as well as the computational resources necessary for a dynamic, distributed watershed simulation. The paper will describe cyberinfrastructure tools and workflow that attempts to resolve the problem of model-data accessibility and scalability such that individuals, research teams, managers and educators can create a WVO in a desired context. Examples are given for the NSF-funded Shale Hills Critical Zone Observatory and the European Critical Zone Observatories within the SoilTrEC project. In the future implementation of WVO services will benefit from the development of a cloud cyber infrastructure as the prototype evolves to data and model intensive computation for continental scale water resource predictions.

  10. Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra

    NASA Astrophysics Data System (ADS)

    Rezakhah, Saeid; Maleki, Yasaman

    2016-07-01

    Imposing some flexible sampling scheme we provide some discretization of continuous time discrete scale invariant (DSI) processes which is a subsidiary discrete time DSI process. Then by introducing some simple random measure we provide a second continuous time DSI process which provides a proper approximation of the first one. This enables us to provide a bilateral relation between covariance functions of the subsidiary process and the new continuous time processes. The time varying spectral representation of such continuous time DSI process is characterized, and its spectrum is estimated. Also, a new method for estimation time dependent Hurst parameter of such processes is provided which gives a more accurate estimation. The performance of this estimation method is studied via simulation. Finally this method is applied to the real data of S & P500 and Dow Jones indices for some special periods.

  11. Sediment dynamics over multiple time scales in Dyke Marsh Preserve (Potomac River, VA)

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.; Walters, D.

    2010-12-01

    Tidal freshwater marshes are critical components of fluvial and estuarine ecosystems, yet sediment dynamics within them have not received as much attention as their saltwater counterparts. This study examines sedimentation in Dyke Marsh Preserve, located on the Potomac River (VA), focusing on understanding the spatial variability present over multiple time scales. Bimonthly sediment data were collected using ceramic tiles, and seasonal- and decadal-scale sedimentation was determined via 7Be (half-life 53.3 days) and 210Pb (half-life 22.3 years), respectively. Results were also compared to SET data collected by the National Park Service since 2006. Preliminary data indicate that sites at lower elevations have higher sedimentation rates, likely related to their close proximity to the sediment source. Mass accumulation rates generally decreased with increasing time scale, such that the seasonal rates were greater than the SET-derived accretion rates, which were in turn greater than the decadal-scale rates. However, the bimonthly rates were the lowest observed, probably because the sampling period (May-October 2010) did not include the main depositional period of the year, which would be integrated by the other techniques.

  12. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    NASA Technical Reports Server (NTRS)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  13. Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation.

    PubMed

    Yuan, Haidong; Fung, Chi-Hang Fred

    2015-09-11

    Time is a valuable resource and it is expected that a longer time period should lead to better precision in Hamiltonian parameter estimation. However, recent studies in quantum metrology have shown that in certain cases more time may even lead to worse estimations, which puts this intuition into question. In this Letter we show that by including feedback controls this intuition can be restored. By deriving asymptotically optimal feedback controls we quantify the maximal improvement feedback controls can provide in Hamiltonian parameter estimation and show a universal time scaling for the precision limit under the optimal feedback scheme. Our study reveals an intriguing connection between noncommutativity in the dynamics and the gain of feedback controls in Hamiltonian parameter estimation.

  14. Dynamics in entangled polyethylene melts [Multi time scale dynamics in entangled polyethylene melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salerno, K. Michael; Agrawal, Anupriya; Peters, Brandon L.

    Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion at the atomic length scale and motion of the entire macromolecule. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using linear polyethylene as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion with λ methylene groups per CG bead (denoted CGλ) with λ = 2,3,4 and 6 from a fully-atomistic polyethylene melt simulation. By rescaling time in the CG models by a factormore » α, the chain mobility for the atomistic and CG models match. We show that independent of the degree of coarse graining, all measured static and dynamic properties are essentially the same once the dynamic scaling factor α and a non-crossing constraint for the CG6 model are included. The speedup of the CG4 model is about 3 times that of the CG3 model and is comparable to that of the CG6 model. Furthermore, using these CG models we were able to reach times of over 500 μs, allowing us to measure a number of quantities, including the stress relaxation function, plateau modulus and shear viscosity, and compare directly to experiment.« less

  15. Dynamics in entangled polyethylene melts [Multi time scale dynamics in entangled polyethylene melts

    DOE PAGES

    Salerno, K. Michael; Agrawal, Anupriya; Peters, Brandon L.; ...

    2016-10-10

    Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion at the atomic length scale and motion of the entire macromolecule. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using linear polyethylene as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion with λ methylene groups per CG bead (denoted CGλ) with λ = 2,3,4 and 6 from a fully-atomistic polyethylene melt simulation. By rescaling time in the CG models by a factormore » α, the chain mobility for the atomistic and CG models match. We show that independent of the degree of coarse graining, all measured static and dynamic properties are essentially the same once the dynamic scaling factor α and a non-crossing constraint for the CG6 model are included. The speedup of the CG4 model is about 3 times that of the CG3 model and is comparable to that of the CG6 model. Furthermore, using these CG models we were able to reach times of over 500 μs, allowing us to measure a number of quantities, including the stress relaxation function, plateau modulus and shear viscosity, and compare directly to experiment.« less

  16. Consensus for linear multi-agent system with intermittent information transmissions using the time-scale theory

    NASA Astrophysics Data System (ADS)

    Taousser, Fatima; Defoort, Michael; Djemai, Mohamed

    2016-01-01

    This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.

  17. Modelling Time and Length Scales of Scour Around a Pipeline

    NASA Astrophysics Data System (ADS)

    Smith, H. D.; Foster, D. L.

    2002-12-01

    The scour and burial of submarine objects is an area of interest for engineers, oceanographers and military personnel. Given the limited availability of field observations, there exists a need to accurately describe the hydrodynamics and sediment response around an obstacle using numerical models. In this presentation, we will compare observations of submarine pipeline scour with model predictions. The research presented here uses the computational fluid dynamics (CFD) model FLOW-3D. FLOW-3D, developed by Flow Science in Santa Fe, NM, is a 3-dimensional finite-difference model that solves the Navier-Stokes and continuity equations. Using the Volume of Fluid (VOF) technique, FLOW-3D is able to resolve fluid-fluid and fluid-air interfaces. The FAVOR technique allows for complex geometry to be resolved with rectangular grids. FLOW-3D uses a bulk transport method to describe sediment transport and feedback to the hydrodynamic solver is accomplished by morphology evolution and fluid viscosity due to sediment suspension. Previous investigations by the authors have shown FLOW-3D to well-predict the hydrodynamics around five static scoured bed profiles and a stationary pipeline (``Modelling of Flow Around a Cylinder Over a Scoured Bed,'' submit to Journal of Waterway, Port, Coastal, and Ocean Engineering). Following experiments performed by Mao (1986, Dissertation, Technical University of Denmark), we will be performing model-data comparisons of length and time scales for scour around a pipeline. Preliminary investigations with LES and k-ɛ closure schemes have shown that the model predicts shorter time scales in scour hole development than that observed by Mao. Predicted time and length scales of scour hole development are shown to be a function of turbulence closure scheme, grain size, and hydrodynamic forcing. Subsequent investigations consider variable wave-current flow regimes and object burial. This investigation will allow us to identify different regimes for the

  18. Many roads to synchrony: natural time scales and their algorithms.

    PubMed

    James, Ryan G; Mahoney, John R; Ellison, Christopher J; Crutchfield, James P

    2014-04-01

    We consider two important time scales-the Markov and cryptic orders-that monitor how an observer synchronizes to a finitary stochastic process. We show how to compute these orders exactly and that they are most efficiently calculated from the ε-machine, a process's minimal unifilar model. Surprisingly, though the Markov order is a basic concept from stochastic process theory, it is not a probabilistic property of a process. Rather, it is a topological property and, moreover, it is not computable from any finite-state model other than the ε-machine. Via an exhaustive survey, we close by demonstrating that infinite Markov and infinite cryptic orders are a dominant feature in the space of finite-memory processes. We draw out the roles played in statistical mechanical spin systems by these two complementary length scales.

  19. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling.

    PubMed

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-07-14

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath.

  20. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling

    PubMed Central

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-01-01

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974

  1. Sensitivity of the breastfeeding motivational measurement scale: a known group analysis of first time mothers.

    PubMed

    Stockdale, Janine; Sinclair, Marlene; Kernohan, George; McCrum-Gardner, Evie; Keller, John

    2013-01-01

    Breastfeeding has immense public health value for mothers, babies, and society. But there is an undesirably large gap between the number of new mothers who undertake and persist in breastfeeding compared to what would be a preferred level of accomplishment. This gap is a reflection of the many obstacles, both physical and psychological, that confront new mothers. Previous research has illuminated many of these concerns, but research on this problem is limited in part by the unavailability of a research instrument that can measure the key differences between first-time mothers and experienced mothers, with regard to the challenges they face when breastfeeding and the instructional advice they require. An instrument was designed to measure motivational complexity associated with sustained breast feeding behaviour; the Breastfeeding Motivational Measurement Scale. It contains 51 self-report items (7 point Likert scale) that cluster into four categories related to perceived value of breast-feeding, confidence to succeed, factors that influence success or failure, and strength of intentions, or goal. However, this scale has not been validated in terms of its sensitivity to profile the motivation of new mothers and experienced mothers. This issue was investigated by having 202 breastfeeding mothers (100 first time mothers) fill out the scale. The analysis reported in this paper is a three factor solution consisting of value, midwife support, and expectancies for success that explained the characteristics of first time mothers as a known group. These results support the validity of the BMM scale as a diagnostic tool for research on first time mothers who are learning to breastfeed. Further research studies are required to further test the validity of the scale in additional subgroups.

  2. Citizen journalism in a time of crisis: lessons from a large-scale California wildfire

    Treesearch

    S. Gillette; J. Taylor; D.J. Chavez; R. Hodgson; J. Downing

    2007-01-01

    The accessibility of news production tools through consumer communication technology has made it possible for media consumers to become media producers. The evolution of media consumer to media producer has important implications for the shape of public discourse during a time of crisis. Citizen journalists cover crisis events using camera cell phones and digital...

  3. Multi-scale simulations of droplets in generic time-dependent flows

    NASA Astrophysics Data System (ADS)

    Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico

    2017-11-01

    We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.

  4. A Time Tree Medium Access Control for Energy Efficiency and Collision Avoidance in Wireless Sensor Networks

    PubMed Central

    Lee, Kilhung

    2010-01-01

    This paper presents a medium access control and scheduling scheme for wireless sensor networks. It uses time trees for sending data from the sensor node to the base station. For an energy efficient operation of the sensor networks in a distributed manner, time trees are built in order to reduce the collision probability and to minimize the total energy required to send data to the base station. A time tree is a data gathering tree where the base station is the root and each sensor node is either a relaying or a leaf node of the tree. Each tree operates in a different time schedule with possibly different activation rates. Through the simulation, the proposed scheme that uses time trees shows better characteristics toward burst traffic than the previous energy and data arrival rate scheme. PMID:22319270

  5. A High Speed Mobile Courier Data Access System That Processes Database Queries in Real-Time

    NASA Astrophysics Data System (ADS)

    Gatsheni, Barnabas Ndlovu; Mabizela, Zwelakhe

    A secure high-speed query processing mobile courier data access (MCDA) system for a Courier Company has been developed. This system uses the wireless networks in combination with wired networks for updating a live database at the courier centre in real-time by an offsite worker (the Courier). The system is protected by VPN based on IPsec. There is no system that we know of to date that performs the task for the courier as proposed in this paper.

  6. Arteriovenous Vascular Access Selection and Evaluation

    PubMed Central

    MacRae, Jennifer M.; Oliver, Matthew; Clark, Edward; Dipchand, Christine; Hiremath, Swapnil; Kappel, Joanne; Kiaii, Mercedeh; Lok, Charmaine; Luscombe, Rick; Miller, Lisa M.; Moist, Louise

    2016-01-01

    When making decisions regarding vascular access creation, the clinician and vascular access team must evaluate each patient individually with consideration of life expectancy, timelines for dialysis start, risks and benefits of access creation, referral wait times, as well as the risk for access complications. The role of the multidisciplinary team in facilitating access choice is reviewed, as well as the clinical evaluation of the patient. PMID:28270917

  7. Accessing timely rehabilitation services for a global aging society? Exploring the realities within Canada's universal health care system.

    PubMed

    Landry, Michel D; Raman, Sudha; Al-Hamdan, Elham

    2010-07-01

    The proportion of older persons is increasing in developed and developing countries: this aging trend can be viewed as a two-edged sword. On the one hand, it represents remarkable successes regarding advances in health care; and on the other hand, it represents a considerable challenge for health systems to meet growing demand. A growing disequilibrium between supply and demand may be particularly challenging within publicly funding health systems that 'guarantee' services to eligible populations. Rehabilitation, including physical therapy, is a service that if provided in a timely manner, can maximize function and mobility for older persons, which may in turn optimize efficiency and effectiveness of overall health care systems. However, physical therapy services are not considered an insured service under the legislative framework of the Canadian health system, and as such, a complex public/private mix of funding and delivery has emerged. In this article, we explore the consequences of a public/private mix of physical therapy on timely access to services, and use the World Health Organization (WHO) health system performance framework to assess the extent to which the emerging system influences the goal of aggregated and equitable health. Overall, we argue that a shift to a public/private mix may not have positive influences at the population level, and that innovative approaches to deliver services would be desirable to strengthening rather than weaken the publicly funded system. We signal that strategies aimed at scaling up rehabilitation interventions are required in order to improve health outcomes in an evolving global aging society.

  8. Tracking and visualization of space-time activities for a micro-scale flu transmission study.

    PubMed

    Qi, Feng; Du, Fei

    2013-02-07

    Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting patterns. This study

  9. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.

    PubMed

    Maslennikov, Oleg V; Nekorkin, Vladimir I

    2016-07-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  10. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basicmore » properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.« less

  11. Analysis of passive scalar advection in parallel shear flows: Sorting of modes at intermediate time scales

    NASA Astrophysics Data System (ADS)

    Camassa, Roberto; McLaughlin, Richard M.; Viotti, Claudio

    2010-11-01

    The time evolution of a passive scalar advected by parallel shear flows is studied for a class of rapidly varying initial data. Such situations are of practical importance in a wide range of applications from microfluidics to geophysics. In these contexts, it is well-known that the long-time evolution of the tracer concentration is governed by Taylor's asymptotic theory of dispersion. In contrast, we focus here on the evolution of the tracer at intermediate time scales. We show how intermediate regimes can be identified before Taylor's, and in particular, how the Taylor regime can be delayed indefinitely by properly manufactured initial data. A complete characterization of the sorting of these time scales and their associated spatial structures is presented. These analytical predictions are compared with highly resolved numerical simulations. Specifically, this comparison is carried out for the case of periodic variations in the streamwise direction on the short scale with envelope modulations on the long scales, and show how this structure can lead to "anomalously" diffusive transients in the evolution of the scalar onto the ultimate regime governed by Taylor dispersion. Mathematically, the occurrence of these transients can be viewed as a competition in the asymptotic dominance between large Péclet (Pe) numbers and the long/short scale aspect ratios (LVel/LTracer≡k), two independent nondimensional parameters of the problem. We provide analytical predictions of the associated time scales by a modal analysis of the eigenvalue problem arising in the separation of variables of the governing advection-diffusion equation. The anomalous time scale in the asymptotic limit of large k Pe is derived for the short scale periodic structure of the scalar's initial data, for both exactly solvable cases and in general with WKBJ analysis. In particular, the exactly solvable sawtooth flow is especially important in that it provides a short cut to the exact solution to the

  12. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    PubMed Central

    Moreno-Garcia, Isabel M.; Palacios-Garcia, Emilio J.; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J.; Varo-Martinez, Marta; Real-Calvo, Rafael J.

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  13. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    PubMed

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-05-26

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  14. Development and Preliminary Validation of the Time Management for Exercise Scale

    ERIC Educational Resources Information Center

    Hellsten, Laurie-ann M.; Rogers, W. Todd

    2009-01-01

    The purpose of this study was to collect preliminary validity evidence for a time management scale for exercise. An initial pool of 91 items was developed from existing literature. Ten exercise/health psychologists evaluated each of the items in terms of relevance and representativeness. Forty-nine items met all criteria. Exploratory factor…

  15. Determination of the Time-Space Magnetic Correlation Functions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Weygand, J. M.; Matthaeus, W. H.; Kivelson, M.; Dasso, S.

    2013-12-01

    Magnetic field data from many different intervals and 7 different solar wind spacecraft are employed to estimate the scale-dependent time decorrelation function in the interplanetary magnetic field in both the slow and fast solar wind. This estimation requires correlations varying with both space and time lags. The two point correlation function with no time lag is determined by correlating time series data from multiple spacecraft separated in space and for complete coverage of length scales relies on many intervals with different spacecraft spatial separations. In addition we employ single spacecraft time-lagged correlations, and two spacecraft time lagged correlations to access different spatial and temporal correlation data. Combining these data sets gives estimates of the scale-dependent time decorrelation function, which in principle tells us how rapidly time decorrelation occurs at a given wavelength. For static fields the scale-dependent time decorrelation function is trivially unity, but in turbulence the nonlinear cascade process induces time-decorrelation at a given length scale that occurs more rapidly with decreasing scale. The scale-dependent time decorrelation function is valuable input to theories as well as various applications such as scattering, transport, and study of predictability. It is also a fundamental element of formal turbulence theory. Our results are extension of the Eulerian correlation functions estimated in Matthaeus et al. [2010], Weygand et al [2012; 2013].

  16. 5nsec Dead time multichannel scaling system for Mössbauer spectrometer

    NASA Astrophysics Data System (ADS)

    Verrastro, C.; Trombetta, G.; Pita, A.; Saragovi, C.; Duhalde, S.

    1991-11-01

    A PC programmable and fast multichannel scaling module has been designed to use a commercial Mössbauer spectrometer. This module is based on a 10 single chip 8 bits microcomputer (MC6805) and on a 35 fast ALU, which allows a high performance and low cost system. The module can operate in a stand-alone mode. Data analysis are performed in real time display, on XT/AT IBM PC or compatibles. The channels are ranged between 256 and 4096, the maximum number of counts is 232-1 per channel, the dwell time is 3 μsec and the dead time between channels is 5 nsec. A friendly software display the real time spectrum and offers menues with different options at each state.

  17. Linking Time and Space Scales in Distributed Hydrological Modelling - a case study for the VIC model

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko

    2015-04-01

    One of the famous paradoxes of the Greek philosopher Zeno of Elea (~450 BC) is the one with the arrow: If one shoots an arrow, and cuts its motion into such small time steps that at every step the arrow is standing still, the arrow is motionless, because a concatenation of non-moving parts does not create motion. Nowadays, this reasoning can be refuted easily, because we know that motion is a change in space over time, which thus by definition depends on both time and space. If one disregards time by cutting it into infinite small steps, motion is also excluded. This example shows that time and space are linked and therefore hard to evaluate separately. As hydrologists we want to understand and predict the motion of water, which means we have to look both in space and in time. In hydrological models we can account for space by using spatially explicit models. With increasing computational power and increased data availability from e.g. satellites, it has become easier to apply models at a higher spatial resolution. Increasing the resolution of hydrological models is also labelled as one of the 'Grand Challenges' in hydrology by Wood et al. (2011) and Bierkens et al. (2014), who call for global modelling at hyperresolution (~1 km and smaller). A literature survey on 242 peer-viewed articles in which the Variable Infiltration Capacity (VIC) model was used, showed that the spatial resolution at which the model is applied has decreased over the past 17 years: From 0.5 to 2 degrees when the model was just developed, to 1/8 and even 1/32 degree nowadays. On the other hand the literature survey showed that the time step at which the model is calibrated and/or validated remained the same over the last 17 years; mainly daily or monthly. Klemeš (1983) stresses the fact that space and time scales are connected, and therefore downscaling the spatial scale would also imply downscaling of the temporal scale. Is it worth the effort of downscaling your model from 1 degree to 1

  18. A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures

    NASA Astrophysics Data System (ADS)

    Kossieris, Panagiotis; Makropoulos, Christos; Onof, Christian; Koutsoyiannis, Demetris

    2018-01-01

    Many hydrological applications, such as flood studies, require the use of long rainfall data at fine time scales varying from daily down to 1 min time step. However, in the real world there is limited availability of data at sub-hourly scales. To cope with this issue, stochastic disaggregation techniques are typically employed to produce possible, statistically consistent, rainfall events that aggregate up to the field data collected at coarser scales. A methodology for the stochastic disaggregation of rainfall at fine time scales was recently introduced, combining the Bartlett-Lewis process to generate rainfall events along with adjusting procedures to modify the lower-level variables (i.e., hourly) so as to be consistent with the higher-level one (i.e., daily). In the present paper, we extend the aforementioned scheme, initially designed and tested for the disaggregation of daily rainfall into hourly depths, for any sub-hourly time scale. In addition, we take advantage of the recent developments in Poisson-cluster processes incorporating in the methodology a Bartlett-Lewis model variant that introduces dependence between cell intensity and duration in order to capture the variability of rainfall at sub-hourly time scales. The disaggregation scheme is implemented in an R package, named HyetosMinute, to support disaggregation from daily down to 1-min time scale. The applicability of the methodology was assessed on a 5-min rainfall records collected in Bochum, Germany, comparing the performance of the above mentioned model variant against the original Bartlett-Lewis process (non-random with 5 parameters). The analysis shows that the disaggregation process reproduces adequately the most important statistical characteristics of rainfall at wide range of time scales, while the introduction of the model with dependent intensity-duration results in a better performance in terms of skewness, rainfall extremes and dry proportions.

  19. Remote access laboratories in Australia and Europe

    NASA Astrophysics Data System (ADS)

    Ku, H.; Ahfock, T.; Yusaf, T.

    2011-06-01

    Remote access laboratories (RALs) were first developed in 1994 in Australia and Switzerland. The main purposes of developing them are to enable students to do their experiments at their own pace, time and locations and to enable students and teaching staff to get access to facilities beyond their institutions. Currently, most of the experiments carried out through RALs in Australia are heavily biased towards electrical, electronic and computer engineering disciplines. However, the experiments carried out through RALs in Europe had more variety, in addition to the traditional electrical, electronic and computer engineering disciplines, there were experiments in mechanical and mechatronic disciplines. It was found that RALs are now being developed aggressively in Australia and Europe and it can be argued that RALs will develop further and faster in the future with improving Internet technology. The rising costs of real experimental equipment will also speed up their development because by making the equipment remotely accessible, the cost can be shared by more universities or institutions and this will improve their cost-effectiveness. Their development would be particularly rapid in large countries with small populations such as Australia, Canada and Russia, because of the scale of economy. Reusability of software, interoperability in software implementation, computer supported collaborative learning and convergence with learning management systems are the required development of future RALs.

  20. Increasing access to specialty care: patient discharges from a gastroenterology clinic.

    PubMed

    Tuot, Delphine S; Sewell, Justin L; Day, Lukejohn; Leeds, Kiren; Chen, Alice Hm

    2014-10-01

    Access to specialty care among safety net patients in the United States is inadequate. Discharging appropriate patients to routine primary care follow-up may improve specialty care access. We sought to identify, by consensus, patients who could safely be discharged from a gastroenterology (GI) clinic, and to evaluate the impact of the discharges on GI clinic work flow. Pre- and post intervention. We developed and implemented a modified Delphi process. Gastroenterologists and primary care providers (PCPs) rated their comfort (using 5-point Likert scales) with discharging patients immediately post endoscopy for 24 clinical scenarios, assuming formal recommendations were communicated to the PCP. We examined the impact of implementing these criteria on clinic wait times and on the ratio of new to follow-up visits. All gastroenterologists (100%; 7 of 7) and 71.0% of PCPs (130 of 183) participated. Consensus was achieved for 13 of the 24 clinical scenarios for which discharge criteria were developed. Post intervention, 403 patients were discharged from the GI clinic, compared with 0 patients in the same 4 calendar months pre-intervention. The ratio of new to follow-up appointments increased from 0.9:1 to 1:1 (P = .05). Median wait time for the third next available appointment at GI clinics decreased from 158 days to 74 days (P = .0001). Discharging patients from specialty care back to primary care with consensus standards is one method to improve access to specialty care. Understanding the concerns of all stakeholders is necessary to refine and disseminate this process to other specialties and healthcare systems to ensure timely access to specialty services for all patients.