Sample records for acclimated juvenile chinook

  1. Assessment of Barotrauma from Rapid Decompression of Depth-Acclimated Juvenile Chinook Salmon Bearing Radiotelemetry Transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.

    2009-11-01

    This study investigated the mortality of and injury to juvenile Chinook salmon Oncorhynchus tshawytscha exposed to simulated pressure changes associated with passage through a large Kaplan hydropower turbine. Mortality and injury varied depending on whether a fish was carrying a transmitter, the method of transmitter implantation, the depth of acclimation, and the size of the fish. Juvenile Chinook salmon implanted with radio transmitters were more likely than those without to die or sustain injuries during simulated turbine passage. Gastric transmitter implantation resulted in higher rates of injury and mortality than surgical implantation. Mortality and injury increased with increasing pressure ofmore » acclimation. Injuries were more common in subyearling fish than in yearling fish. Gas emboli in the gills and internal hemorrhaging were the major causes of mortality. Rupture of the swim bladder and emphysema in the fins were also common. This research makes clear that the exposure of juvenile Chinook salmon bearing radiotelemetry transmitters to simulated turbine pressures with a nadir of 8-19 kPa can result in barotrauma, leading to immediate or delayed mortality. The study also identified sublethal barotrauma injuries that may increase susceptibility to predation. These findings have significant implications for many studies that use telemetry devices to estimate the survival and behavior of juvenile salmon as they pass through large Kaplan turbines typical of those within the Columbia River hydropower system. Our results indicate that estimates of turbine passage survival for juvenile Chinook salmon obtained with radiotelemetry devices may be negatively biased.« less

  2. Antibody-producing cells correlated to body weight in juvenile chinook salmon (Oncorhynchus tshawytscha) acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, C.B.; Maule, A.G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21?? C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures. ?? 2001 Academic Press.

  3. Antibody-producting cells correlated with body weight in juvenile Chinook salmon Oncorhynchus tshawytscha acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, Carl B.; Maule, Alec G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21° C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures.

  4. Unusual aerobic performance at high temperatures in juvenile Chinook salmon, Oncorhynchus tshawytscha

    PubMed Central

    Poletto, Jamilynn B.; Cocherell, Dennis E.; Baird, Sarah E.; Nguyen, Trinh X.; Cabrera-Stagno, Valentina; Farrell, Anthony P.; Fangue, Nann A.

    2017-01-01

    Understanding how the current warming trends affect fish populations is crucial for effective conservation and management. To help define suitable thermal habitat for juvenile Chinook salmon, the thermal performance of juvenile Chinook salmon acclimated to either 15 or 19°C was tested across a range of environmentally relevant acute temperature changes (from 12 to 26°C). Swim tunnel respirometers were used to measure routine oxygen uptake as a measure of routine metabolic rate (RMR) and oxygen uptake when swimming maximally as a measure of maximal metabolic rate (MMR) at each test temperature. We estimated absolute aerobic scope (AAS = MMR − RMR), the capacity to supply oxygen beyond routine needs, as well as factorial aerobic scope (FAS = MMR/RMR). All fish swam at a test temperature of 23°C regardless of acclimation temperature, but some mortality occurred at 25°C during MMR measurements. Overall, RMR and MMR increased with acute warming, but aerobic capacity was unaffected by test temperatures up to 23°C in both acclimation groups. The mean AAS for fish acclimated and tested at 15°C (7.06 ± 1.76 mg O2 kg−1 h−1) was similar to that measured for fish acclimated and tested at 19°C (8.80 ± 1.42 mg O2 kg−1 h−1). Over the entire acute test temperature range, while MMR and AAS were similar for the two acclimation groups, RMR was significantly lower and FAS consequently higher at the lower test temperatures for the fish acclimated at 19°C. Thus, this stock of juvenile Chinook salmon shows an impressive aerobic capacity when acutely warmed to temperatures close to their upper thermal tolerance limit, regardless of the acclimation temperature. These results are compared with those for other salmonids, and the implications of our findings for informing management actions are discussed. PMID:28078086

  5. Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Carlson, Thomas J.; Gingerich, Andrew J.

    A proportion of juvenile Chinook salmon and other salmonids travel through one or more turbines during seaward migration in the Columbia and Snake River every year. Despite this understanding, limited information exists on how these fish respond to hydraulic pressures found during turbine passage events. In this study we exposed juvenile Chinook salmon to varied acclimation pressures and subsequent exposure pressures (nadir) to mimic the hydraulic pressures of large Kaplan turbines (ratio of pressure change). Additionally, we varied abiotic (total dissolved gas, rate of pressure change) and biotic (condition factor, fish length, fish weight) factors that may contribute to themore » incidence of mortal injury associated with fish passing through hydro-turbines. We determined that the main factor associated with mortal injury of juvenile Chinook salmon during simulated turbine passage was the ratio between acclimation and nadir pressures. Condition factor, total dissolved gas, and the rate of pressure change were found to only slightly increase the predictive power of equations relating probability of mortal injury to conditions of exposure or characteristics of test fish during simulated turbine passage. This research will assist engineers and fisheries managers in operating and improving hydroelectric facility efficiency while minimizing mortality and injury of turbine-passed juvenile Chinook salmon. The results are discussed in the context of turbine development and the necessity of understanding how different species of fish will respond to the hydraulic pressures of turbine passage.« less

  6. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  7. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrallymore » buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.« less

  8. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation

  9. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007

  10. Predation Susceptibility of Juvenile Fall Chinook Salmon Exposed to Sudden Temperature Changes and Slightly Supersaturated Dissolved Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellgraph, Brian J.; Carter, Kathleen M.; Chamness, Michele A.

    High mortality of hatchery-reared juvenile fall Chinook salmon emigrating from the Clearwater River was previously measured at the confluence of the Snake and Clearwater rivers; however, the causative mechanism of mortality is unknown. To elucidate potential mechanisms, the predation susceptibility of juvenile fall Chinook salmon was assessed during simulated passage from the Clearwater River and through the confluence of the Clearwater and Snake rivers, with and without cool water flow augmentation. Emigrant-sized juvenile salmon were acclimated to temperatures typical of the Clearwater River when cool water augmentation is discharged from Dworshak Dam (10°C to 17°C) and during temperatures that wouldmore » be present without augmentation (17°C to 24°C), and were then exposed to smallmouth bass within temperatures typical of the Snake River in summer (17°C to 24°C). Slightly supersaturated total dissolved gas concentrations of 105% were also simulated to more closely approximate gas conditions of both rivers in summer. Predation susceptibility of juvenile salmon acclimated at 10°C or 17°C and exposed to predators at 17°C did not differ. However, for salmon exposed to predators at 24°C, predation susceptibility was arguably higher for juvenile salmon acclimated at 10°C (a 14°C increase) than for salmon acclimated at 17°C or 24°C (7°C and 0°C increases, respectively). These results indicate that predation susceptibility may be higher when a relatively large temperature difference exists between the Clearwater and Snake rivers; that is, when cool water flow augmentation is occurs in summer. However, further research is needed to determine if high confluence mortality measured in previous studies is related to cool water augmentation and, ultimately, whether or not this mortality has a population-level effect on the dynamics of wild Snake River fall Chinook salmon.« less

  11. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006

  12. The Influence of Tag Presence on the Mortality of Juvenile Chinook Salmon Exposed to Simulated Hydroturbine Passage: Implications for Survival Estimates and Management of Hydroelectric Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Thomas J.; Brown, Richard S.; Stephenson, John R.

    Each year, millions of fish have telemetry tags (acoustic, radio, inductive) surgically implanted to assess their passage and survival through hydropower facilities. One route of passage of particular concern is through hydro turbines, in which fish may be exposed to a range of potential injuries, including barotraumas from rapid decompression. The change in pressure from acclimation to exposure (nadir) has been found to be an important factor in predicting the likelihood of mortality and injury for juvenile Chinook salmon undergoing rapid decompression associated with simulated turbine passage. The presence of telemetry tags has also been shown to influence the likelihoodmore » of injury and mortality for juvenile Chinook salmon. This research investigated the likelihood of mortality and injury for juvenile Chinook salmon carrying telemetry tags and exposed to a range of simulated turbine passage. Several factors were examined as predictors of mortal injury for fish undergoing rapid decompression, and the ratio of pressure change and tag burden were determined to be the most predictive factors. As the ratio of pressure change and tag burden increase, the likelihood of mortal injury also increases. The results of this study suggest that previous survival estimates of juvenile Chinook salmon passing through hydro turbines may have been biased due to the presence of telemetry tags, and this has direct implications to the management of hydroelectric facilities. Realistic examples indicate how the bias in turbine passage survival estimates could be 20% or higher, depending on the mass of the implanted tags and the ratio of acclimation to exposure pressures. Bias would increase as the tag burden and pressure ratio increase, and have direct implications on survival estimates. It is recommended that future survival studies use the smallest telemetry tags possible to minimize the potential bias that may be associated with carrying the tag.« less

  13. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Ogburn, Parker N.

    2003-03-01

    This is the second annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2001: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring chinook Supplementation Program (GRESCP). (2) Plan detailed GRESCP Monitoring and Evaluation for future years. (3)more » Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (4) Plan for data collection needs for bull trout. (5) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (6) Collect summer steelhead. (7) Monitor adult endemic spring chinook salmon populations and collect broodstock. (8) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (9) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations. (10) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (11) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program. (12) Monitor water quality at facilities. (13) Document accomplishments and needs to permitters, comanagers, and funding agencies. (14) Communicate Project results to the scientific community.« less

  14. Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin

    USGS Publications Warehouse

    Connor, W.P.; Sneva, J.G.; Tiffan, K.F.; Steinhorst, R.K.; Ross, D.

    2005-01-01

    Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however, that some fall Chinook salmon juveniles in the Snake River basin spent their first winter in a reservoir and resumed seaward movement the following spring at age 1 (hereafter, reservoir-type juveniles). We collected wild and hatchery ocean-type fall Chinook salmon juveniles in 1997 and wild and hatchery reservoir-type juveniles in 1998 to assess the condition of the reservoir-type juveniles at the onset of seaward movement. The ocean-type juveniles averaged 112-139 mm fork length, and the reservoir-type juveniles averaged 222-224 mm fork length. The large size of the reservoir-type juveniles suggested a high potential for survival to salt water and subsequent return to freshwater. Scale pattern analyses of the fall Chinook salmon spawners we collected during 1998-2003 supported this point. Of the spawners sampled, an overall average of 41% of the wild fish and 51% of the hatchery fish had been reservoir-type juveniles. Males that had been reservoir-type juveniles often returned as small "minijacks" (wild, 16% of total; hatchery, 40% of total), but 84% of the wild males, 60% of the hatchery males, and 100% of the wild and hatchery females that had been reservoir-type juveniles returned at ages and fork lengths commonly observed in populations of Chinook salmon. We conclude that fall Chinook salmon in the Snake River basin exhibit two alternative juvenile life histories, namely ocean-type and reservoir-type. ?? Copyright by the American Fisheries Society 2005.

  15. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Lofy, Peter T.

    2003-03-01

    This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherinemore » Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.« less

  16. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Monitoring and Evaluation, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Weldert, Rey F.; Crump, Carrie A.

    2003-03-01

    This is the fifth annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Conventional and captive broodstock supplementation techniques are being used to restore spring chinook salmon fisheries in these streams. Statement of Work Objectives for 2002: (1) Plan for, administer, coordinate and assist comanagers in GRESCP M&E activities. (2) Evaluate performance of supplemented juvenile spring chinook salmon. (3) Evaluate life history differences between wild andmore » hatchery-origin (F{sub 1}) adult spring chinook salmon. (4) Describe life history characteristics and genetics of adult summer steelhead collected at weirs.« less

  17. Water Temperature, Invertebrate Drift, and the Scope for Growth for Juvenile Spring Chinook Salmon.

    NASA Astrophysics Data System (ADS)

    Lovtang, J. C.; Li, H. W.

    2005-05-01

    We present a bioenergetic assessment of habitat quality based on the concept of the scope for growth for juvenile Chinook salmon. Growth of juvenile salmonids during the freshwater phase of their life history depends on a balance between two main factors: energy intake and metabolic costs. The metabolic demands of temperature and the availability of food play integral roles in determining the scope for growth of juvenile salmonids in stream systems. We investigated differences in size of juvenile spring Chinook salmon in relation to water temperature and invertebrate drift density in six unique study reaches in the Metolius River Basin, a tributary of the Deschutes River in Central Oregon. This project was initiated to determine the relative quality and potential productivity of habitat in the Metolius Basin prior to the reintroduction of spring Chinook salmon, which were extirpated from the middle Deschutes basin in the early 1970's due to the construction of a hydroelectric dam. Variations in the growth of juvenile Chinook salmon can be described using a multiple regression model of water temperature and invertebrate drift density. We also discuss the relationships between our bioenergetic model, variations of the ideal free distribution model, and physiological growth models.

  18. Trophic interactions and consumption rates of subyearling Chinook Salmon and nonnative juvenile American Shad in Columbia River reservoirs

    USGS Publications Warehouse

    Haskell, Craig A.; Beauchamp, David A.; Bollins, Stephen M

    2017-01-01

    We used a large lampara seine coupled with nonlethal gastric lavage to examine the diets and estimate consumption rates of subyearling Chinook Salmon Oncorhynchus tshawytscha during July and August 2013. During August we also examined the diet and consumption rates of juvenile American Shad Alosa sapidissima, a potential competitor of subyearling Chinook Salmon. Subyearling Chinook Salmon consumed Daphnia in July but switched to feeding on smaller juvenile American Shad in August. We captured no juvenile American Shad in July, but in August juvenile American Shad consumed cyclopoid and calanoid copepods. Stomach evacuation rates for subyearling Chinook Salmon were high during both sample periods (0.58 h−1 in July, 0.51 h−1 in August), and daily ration estimates were slightly higher than values reported in the literature for other subyearlings. By switching from planktivory to piscivory, subyearling Chinook Salmon gained greater growth opportunity. While past studies have shown that juvenile American Shad reduce zooplankton availability for Chinook Salmon subyearlings, our work indicates that they also become important prey after Daphnia abundance declines. The diet and consumption data here can be used in future bioenergetics modeling to estimate the growth of subyearling Chinook Salmon in lower Columbia River reservoirs.

  19. Foraging and growth potential of juvenile Chinook Salmon after tidal restoration of a large river delta

    USGS Publications Warehouse

    David, Aaron T.; Ellings, Christopher; Woo, Isa; Simenstad, Charles A.; Takekawa, John Y.; Turner, Kelley L.; Smith, Ashley L.; Takekawa, Jean E.

    2014-01-01

    We evaluated whether restoring tidal flow to previously diked estuarine wetlands also restores foraging and growth opportunities for juvenile Chinook Salmon Oncorhynchus tshawytscha. Several studies have assessed the value of restored tidal wetlands for juvenile Pacific salmon Oncorhynchus spp., but few have used integrative measures of salmon performance, such as habitat-specific growth potential, to evaluate restoration. Our study took place in the Nisqually River delta, Washington, where recent dike removals restored tidal flow to 364 ha of marsh—the largest tidal marsh restoration project in the northwestern contiguous United States. We sampled fish assemblages, water temperatures, and juvenile Chinook Salmon diet composition and consumption rates in two restored and two reference tidal channels during a 3-year period after restoration; these data were used as inputs to a bioenergetics model to compare Chinook Salmon foraging performance and growth potential between the restored and reference channels. We found that foraging performance and growth potential of juvenile Chinook Salmon were similar between restored and reference tidal channels. However, Chinook Salmon densities were significantly lower in the restored channels than in the reference channels, and growth potential was more variable in the restored channels due to their more variable and warmer (2°C) water temperatures. These results indicate that some—but not all—ecosystem attributes that are important for juvenile Pacific salmon can recover rapidly after large-scale tidal marsh restoration.

  20. Vulnerability to predation and physiological stress responses of experimentally descaled juvenile Chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Gadomski, Dena M.; Mesa, Matthew G.; Olson, Todd M.

    1994-01-01

    Juvenile salmonids,Oncorhynchus spp., commonly encounter conditions (e.g., during hatchery release and dam passage) that result in damage to the skin, scale, and slime complex. We conducted laboratory experiments to determine if descaling of juvenile chinook salmon,O. tshawytscha, increased their vulnerability to predation, and to assess the physiological stress responses elicited by descaling. Salmon were experimentally descaled on either 10% or 20% of their total body area. When offered equal numbers of control and descaled juvenile chinook salmon, northern squawfish,Ptychocheilus oregonensis, did not consume significantly more of either prey type (48–60% of consumed prey were descaled). Juvenile chinook salmon descaled on 10% of their body area did show significant physiological stress responses, however. Mean concentrations of plasma cortisol peaked 1 h after descaling, and returned to control levels by 12 h. Plasma glucose peaked 3 h post-treatment and remained elevated for 24 h. Plasma lactate increased immediately following treatment and returned to undisturbed control levels by 3 h. The osmoregulatory response of plasma potassium was highly variable, but plasma sodium decreased immediately and remained low for 24 h. The observed physiological responses suggest that descaling of juvenile chinook salmon could result in decreased resistance to disease and other stressors encountered in the field, possibly leading to reduced performance capacity and lowered survival.

  1. Juvenile Chinook Salmon mortality in a Snake River Reservoir: Smallmouth Bass predation revisited

    USGS Publications Warehouse

    Erhardt, John M.; Tiffan, Kenneth F.; Connor, William P.

    2018-01-01

    Predation by nonnative fishes has been identified as a contributing factor in the decline of juvenile salmonids in the Columbia River basin. We examined the diet composition of Smallmouth Bass Micropterus dolomieu and estimated the consumption and predation loss of juvenile Chinook Salmon Oncorhynchus tshawytscha in Lower Granite Reservoir on the Snake River. We examined 4,852 Smallmouth Bass stomachs collected from shoreline habitats during April–September 2013–2015. Chinook Salmon were the second most commonly consumed fish by all size‐classes of Smallmouth Bass (≥150 mm TL) throughout the study. Over the 3 years studied, we estimated that a total of 300,373 Chinook Salmon were consumed by Smallmouth Bass in our 22‐km study area, of which 97% (291,884) were subyearlings (age 0) based on length frequency data. A majority of the loss (61%) occurred during June, which coincided with the timing of hatchery releases of subyearling fall Chinook Salmon. Compared to an earlier study, mean annual predation loss increased more than 15‐fold from 2,670 Chinook Salmon during 1996–1997 to 41,145 Chinook Salmon during 2013–2015 (in reaches that could be compared), despite lower contemporary Smallmouth Bass abundances. This increase can be explained in part by increases in Smallmouth Bass consumption rates, which paralleled increases in subyearling Chinook Salmon densities—an expected functional response by an opportunistic consumer. Smallmouth Bass are currently significant predators of subyearling Chinook Salmon in Lower Granite Reservoir and could potentially be a large source of unexplained mortality.

  2. Behavior and dam passage of juvenile Chinook salmon and juvenile steelhead at Detroit Reservoir and Dam, Oregon, March 2012-February 2013

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hatton, Tyson W.; Kofoot, Eric E.; Sprando, Jamie M.; Smith, Collin D.

    2014-01-01

    The in-reservoir movements and dam passage of individual juvenile Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) were studied at Detroit Reservoir and Dam, near Detroit, Oregon, during 2012 and 2013. The goal of the study was to provide data to inform decisions about future downstream passage alternatives and factors affecting downstream passage rates with the existing dam configuration. In 2012, 468 juvenile Chinook salmon and 200 juvenile steelhead were tagged and released during a 3-month period in the spring, and another 514 juvenile Chinook salmon were tagged and released during a 3-month period in the fall. The fish were surgically implanted with a small acoustic transmitter with an expected life of about 3 months and a passive integrated transponder tag with an indefinite life, and were released into the two main tributaries several kilometers upstream of the reservoir. Juvenile Chinook salmon migrated from the release sites to the reservoir in a greater proportion than juvenile steelhead, but once in the reservoir, juvenile steelhead migrated to the forebay faster and had a higher dam passage rate than juvenile Chinook salmon. The routes available for passing water and fish varied throughout the year, with low reservoir elevations in winter and high reservoir elevations in summer in accordance with the flood-control purpose of the dam. Most dam passage was through the spillway during the spring and summer, when the reservoir elevation was high and the spillway and powerhouse were the most common routes in operation, and via the powerhouse during the fall and winter period, when the reservoir elevation was low and the regulating outlet and powerhouse were the most common routes in operation. Few tagged fish passed when the powerhouse was the only route in operation. Dam passage rates during the spring and summer were greatest at night, increased with dam discharge, and were greater when water was passed freely over the

  3. Evaluation of Infrasound and Strobe Lights for Eliciting Avoidance Behavior in Juvenile Salmon and Char

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Robert P.; Neitzel, Duane A.; Amidan, Brett G.

    2001-12-01

    Laboratory tests were conducted using juvenile chinook salmon Oncorhynchus tshawytscha, brook trout Salvelinus fontinalis, and rainbow trout O. mykiss to determine specific behavior responses to infrasound (< 20 Hz) and flashing strobe lights. The objective of these tests was to determine if juvenile salmonids could be deterred from entrainment at water diversion structures. Caged fish were acclimated in a static test tank and their behavior was recorded using low light cameras. Species-specific behavior was characterized by measuring movements of the fish within the cage and by observing startle and habituation responses. Wild chinook salmon (40-45 mm TL) and hatchery rearedmore » chinook salmon (45-50 mm TL) exhibited avoidance responses when initially exposed to a 10-Hz volume displacement source of infrasound. Rainbow and eastern brook trout (25-100 mm TL) did not respond with avoidance or other behaviors to infrasound. Evidence of habituation to the infrasound source was evident for chinook salmon during repeated exposures. Wild and hatchery chinook displayed a higher proportion of movement during the initial exposures to infrasound when the acclimation period in the test tank was 2-3 h as compared to a 12-15 h acclimation period. A flashing strobe light produced consistent movement in wild chinook salmon (60% of the tests), hatchery reared chinook salmon (50%), and rainbow trout (80%). No measurable responses were observed for brook trout. Results indicate that consistent, repeatable responses can be elicited from some fish using high-intensity strobe lights under a controlled laboratory testing. The species specific behaviors observed in these experiments might be used to predict how fish might react to low-frequency sound and strobe lights in a screening facility.« less

  4. Two Dimensional Movement Patterns of Juvenile Winter Run and Late Fall Run Chinook Salmon at the Fremont Weir, Sacramento River, CA

    DTIC Science & Technology

    2017-07-01

    ER D C/ EL T R- 17 -1 0 Two-Dimensional Movement Patterns of Juvenile Winter- Run and Late-Fall- Run Chinook Salmon at the Fremont Weir...default. ERDC/EL TR-17-10 July 2017 Two-Dimensional Movement Patterns of Juvenile Winter- Run and Late-Fall- Run Chinook Salmon at the Fremont Weir...Sacramento River, smaller winter- run Chinook and larger late-fall- run Chinook salmon were tagged and released into a 2D telemetry array dur- ing the

  5. Chronic oral DDT toxicity in juvenile coho and chinook salmon

    USGS Publications Warehouse

    Buhler, Donald R.; Rasmusson, Mary E.; Shanks, W.E.

    1969-01-01

    Technical and p,p′-DDT was incorporated into test diets and fed to juvenile chinook and coho salmon for periods as long as 95 days. Pure p,p′-DDT was slightly more toxic to young salmon than was the technical DDT mixture. Chinook salmon appeared to be 2–3 times more sensitive to a given concentration of DDT in the diet than were coho salmon. The size of the fish greatly influenced toxicity, smaller younger fish being more susceptible to a given diet than larger older fish. The dose of DDT accumulated within the median survival time ranged from 27–73 mg/kg for chinook salmon and from 56–72 mg/kg for coho salmon. The extrapolated 90-dose LD50 (Hayes, 1967) for young chinook and coho salmon were 0.0275 and 0.064 mg/kg/day, respectively. Liver size decreased on prolonged feeding with DDT, and carcass lipid content was increased. A severe surface ulceration of the nose region appeared in coho salmon fed DDT over long periods. In addition, an interesting localized degeneration of the distal convoluted tubule was observed in the kidney of coho salmon receiving DDT.

  6. Abundance, stock origin, and length of marked and unmarked juvenile Chinook salmon in the surface waters of greater Puget Sound

    USGS Publications Warehouse

    Rice, C.A.; Greene, C.M.; Moran, P.; Teel, D.J.; Kuligowski, D.R.; Reisenbichler, R.R.; Beamer, E.M.; Karr, J.R.; Fresh, K.L.

    2011-01-01

    This study focuses on the use by juvenile Chinook salmon Oncorhynchus tshawytscha of the rarely studied neritic environment (surface waters overlaying the sublittoral zone) in greater Puget Sound. Juvenile Chinook salmon inhabit the sound from their late estuarine residence and early marine transition to their first year at sea. We measured the density, origin, and size of marked (known hatchery) and unmarked (majority naturally spawned) juveniles by means of monthly surface trawls at six river mouth estuaries in Puget Sound and the areas in between. Juvenile Chinook salmon were present in all months sampled (April-November). Unmarked fish in the northern portion of the study area showed broader seasonal distributions of density than did either marked fish in all areas or unmarked fish in the central and southern portions of the sound. Despite these temporal differences, the densities of marked fish appeared to drive most of the total density estimates across space and time. Genetic analysis and coded wire tag data provided us with documented individuals from at least 16 source populations and indicated that movement patterns and apparent residence time were, in part, a function of natal location and time passed since the release of these fish from hatcheries. Unmarked fish tended to be smaller than marked fish and had broader length frequency distributions. The lengths of unmarked fish were negatively related to the density of both marked and unmarked Chinook salmon, but those of marked fish were not. These results indicate more extensive use of estuarine environments by wild than by hatchery juvenile Chinook salmon as well as differential use (e.g., rearing and migration) of various geographic regions of greater Puget Sound by juvenile Chinook salmon in general. In addition, the results for hatchery-generated timing, density, and length differences have implications for the biological interactions between hatchery and wild fish throughout Puget Sound. ?? American

  7. Using a laboratory-based growth model to estimate mass- and temperature-dependent growth parameters across populations of juvenile Chinook Salmon

    USGS Publications Warehouse

    Perry, Russell W.; Plumb, John M.; Huntington, Charles

    2015-01-01

    To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.

  8. Evaluation of Head-of-Reservoir Conditions for Downstream Migration of Juvenile Chinook Salmon and Steelhead at Shasta Lake, California

    NASA Astrophysics Data System (ADS)

    Clancey, K. M.; Saito, L.; Svoboda, C.; Bender, M. D.; Hannon, J.; Hellmann, K. M.

    2015-12-01

    Since completion of Shasta Dam, migration of Chinook salmon and steelhead trout in the Sacramento River has been blocked, causing loss of spawning and rearing habitat. This has been a factor leading to population declines of these fish species over several decades. Winter-run Chinook salmon, spring-run Chinook salmon and steelhead trout are now listed under the Endangered Species Act. A habitat assessment of the tributaries upstream of Shasta Dam showed that the Sacramento and McCloud tributaries have suitable habitat for reintroduction of adult salmon and steelhead for spawning. Such reintroduction would require downstream passage of juvenile Chinook salmon and steelhead past Shasta Dam. To evaluate the possibility of collecting and transporting juvenile Chinook salmon and steelhead past Shasta Dam, a CE-QUAL-W2 model of Shasta Lake and the Sacramento River, McCloud River, Pit River and Squaw Creek tributaries was used to assess where and when conditions were favorable at head-of-reservoir locations upstream of proposed temperature curtains to collect juvenile fish. Head-of-reservoir is the zone of transition between the river and the upstream end of the reservoir. Criteria for evaluating locations suitable to collect these fish included water temperature and velocities in the Sacramento and McCloud tributaries. Model output was analyzed during months of downstream migration under dry, median and wet year conditions. Potential for proposed temperature curtains, anchored and floating, to improve conditions for fish migration was also evaluated with the CE-QUAL-W2 model. Use of temperature curtains to assist fish migration is a novel approach that to our knowledge has not previously been assessed for recovery of Chinook salmon and steelhead populations. Providing safe passage conditions is challenging, however the study findings may assist in formulation of a juvenile fish passage alternative that is suitable for Shasta Lake.

  9. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  10. Physiological status of naturally reared juvenile spring chinook salmon in the Yakima River: Seasonal dynamics and changes associated with smolting

    USGS Publications Warehouse

    Beckman, B.R.; Larsen, D.A.; Sharpe, C.; Lee-Pawlak, B.; Schreck, C.B.; Dickhoff, Walton W.

    2000-01-01

    Two year-classes of juvenile spring chinook salmon Oncorhynchus tshawytscha from the Yakima River, Washington, were sampled from July (3-4 months postemergence) through May (yearling smolt out-migration). Physiological characters measured included liver glycogen, body lipid, gill Na+-K+ ATPase, plasma thyroxine (T4), and plasma insulin-like growth factor-I (IGF-I). Distinct physiological changes were found that corresponded to season. Summer and fall were characterized by relatively high body lipid and condition factor. Winter was characterized by decreases in body lipid, condition factor, and plasma hormones. An increase in condition factor and body lipid was found in February and March. Finally, April and May were characterized by dramatic changes characteristic of smolting, including increased gill Na+-K+ ATPase activity, plasma T4, and IGF-I and decreased condition factor, body lipid, and liver glycogen. These results create a physiological template for juvenile spring chinook salmon in the drainage that provides a baseline for comparison with other years, populations, and life history types. In addition, this baseline provides a standard for controlled laboratory experiments and a target for fish culturists who rear juvenile spring chinook salmon for release from conservation hatcheries. The implications of these results for juvenile chinook salmon ecology and life history are discussed.

  11. Juvenile Chinook Salmon abundance in the northern Bering Sea: Implications for future returns and fisheries in the Yukon River

    NASA Astrophysics Data System (ADS)

    Murphy, James M.; Howard, Kathrine G.; Gann, Jeanette C.; Cieciel, Kristin C.; Templin, William D.; Guthrie, Charles M.

    2017-01-01

    Juvenile Chinook Salmon (Oncorhynchus tshawytscha) abundance in the northern Bering Sea is used to provide insight into future returns and fisheries in the Yukon River. The status of Yukon River Chinook Salmon is of concern due to recent production declines and subsequent closures of commercial, sport, and personal use fisheries, and severe restrictions on subsistence fisheries in the Yukon River. Surface trawl catch data, mixed layer depth adjustments, and genetic stock mixtures are used to estimate juvenile abundance for the Canadian-origin stock group from the Yukon River. Abundance ranged from a low of 0.62 million in 2012 to a high of 2.58 million in 2013 with an overall average of 1.5 million from 2003 to 2015. Although abundance estimates indicate that average survival is relatively low (average of 5.2%), juvenile abundance was significantly correlated (r=0.87, p=0.005) with adult returns, indicating that much of the variability in survival occurs during early life-history stages (freshwater and initial marine). Juvenile abundance in the northern Bering Sea has increased since 2013 due to an increase in early life-history survival (average juveniles-per-spawner increased from 29 to 59). The increase in juvenile abundance is projected to produce larger runs and increased subsistence fishing opportunities for Chinook Salmon in the Yukon River as early as 2016.

  12. Thermal preference, thermal resistance, and metabolic rate of juvenile Chinese pond turtles Mauremys reevesii acclimated to different temperatures.

    PubMed

    Xu, Wei; Dang, Wei; Geng, Jun; Lu, Hong-Liang

    2015-10-01

    The thermal acclimatory capacity of a particular species may determine its resilience to environmental change. Evaluating the physiological acclimatory responses of economically important species is useful for determining their optimal culture conditions. Here, juvenile Chinese three-keeled pond turtles (Mauremys reevesii) were acclimated to one of three different temperatures (17, 25 or 33°C) for four weeks to assess the effects of thermal acclimation on some physiological traits. Thermal acclimation significantly affected thermal resistance, but not thermal preference, of juvenile M. reevesii. Turtles acclimated to 17°C were less resistant to high temperatures than those acclimated to 25°C and 33°C. However, turtles increased resistance to low temperatures with decreasing acclimation temperature. The acclimation response ratio of the critical thermal minimum (CTMin) was lower than that of the critical thermal maximum (CTMax) for acclimation temperatures between 17 and 25°C, but slightly higher between 25 and 33°C. The thermal resistance range (i.e., the difference between CTMax and CTMin) was widest in turtles acclimated to the intermediate temperature (25°C), and narrowest in those acclimated to low temperature (17°C). The standard metabolic rate increased as body temperature and acclimation temperature increased, and the temperature quotient (Q10) between acclimation temperatures 17 and 25°C was higher than the Q10 between 25 and 33°C. Our results suggest that juvenile M. reevesii may have a greater resistance under mild thermal conditions resembling natural environments, and better physiological performance at relatively warm temperatures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean

    PubMed Central

    Rechisky, Erin L.; Welch, David W.; Porter, Aswea D.; Jacobs-Scott, Melinda C.; Winchell, Paul M.

    2013-01-01

    Multiple dam passage during seaward migration is thought to reduce the subsequent survival of Snake River Chinook salmon. This hypothesis developed because juvenile Chinook salmon from the Snake River, the Columbia River’s largest tributary, migrate >700 km through eight hydropower dams and have lower adult return rates than downstream populations that migrate through only 3 or 4 dams. Using a large-scale telemetry array, we tested whether survival of hatchery-reared juvenile Snake River spring Chinook salmon is reduced in the estuary and coastal ocean relative to a downstream, hatchery-reared population from the Yakima River. During the initial 750-km, 1-mo-long migration through the estuary and coastal ocean, we found no evidence of differential survival; therefore, poorer adult returns of Snake River Chinook may develop far from the Columbia River. Thus, hydrosystem mitigation efforts may be ineffective if differential mortality rates develop in the North Pacific Ocean for reasons unrelated to dam passage. PMID:23576733

  14. Branchial ionocyte organization and ion-transport protein expression in juvenile alewives acclimated to freshwater or seawater

    USGS Publications Warehouse

    Christensen, A.K.; Hiroi, J.; Schultz, E.T.; McCormick, S.D.

    2012-01-01

    The alewife (Alosa pseudoharengus) is a clupeid that undergoes larval and juvenile development in freshwater preceding marine habitation. The purpose of this study was to investigate osmoregulatory mechanisms in alewives that permit homeostasis in different salinities. To this end, we measured physiological, branchial biochemical and cellular responses in juvenile alewives acclimated to freshwater (0.5p.p.t.) or seawater (35.0p.p.t.). Plasma chloride concentration was higher in seawater-acclimated than freshwater-acclimated individuals (141mmoll -1 vs 134mmoll -1), but the hematocrit remained unchanged. In seawateracclimated individuals, branchial Na +/K +-ATPase (NKA) activity was higher by 75%. Western blot analysis indicated that the abundance of the NKA subunit and a Na+/K+/2Cl- cotransporter (NKCC1) were greater in seawater-acclimated individuals by 40% and 200%, respectively. NKA and NKCC1 were localized on the basolateral surface and tubular network of ionocytes in both acclimation groups. Immunohistochemical labeling for the cystic fibrosis transmembrane conductance regulator (CFTR) was restricted to the apical crypt of ionocytes in seawater-acclimated individuals, whereas sodium/hydrogen exchanger 3 (NHE3) labeling was present on the apical surface of ionocytes in both acclimation groups. Ionocytes were concentrated on the trailing edge of the gill filament, evenly distributed along the proximal 75% of the filamental axis and reduced distally. Ionocyte size and number on the gill filament were not affected by salinity; however, the number of lamellar ionocytes was significantly lower in seawater-acclimated fish. Confocal z-series reconstructions revealed that mature ionocytes in seawater-acclimated alewives occurred in multicellular complexes. These complexes might reduce paracellular Na + resistance, hence facilitating Na+ extrusion in hypo-osmoregulating juvenile alewives after seaward migration. ?? 2012. Published by The Company of Biologists Ltd.

  15. Monitoring and Evaluation of Supplemented Spring Chinook Salmon and Life Histories of Wild Summer Steelhead in the Grande Ronde Basin, 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Crump, Carrie A.; Weldert, Rey L.

    2009-04-10

    This is the ninth annual report for a multi-year project designed to monitor and evaluate supplementation of endemic spring Chinook salmon in Catherine Creek and the upper Grande Ronde River. These two streams historically supported anadromous fish populations that provided significant tribal and non-tribal fisheries, but in recent years, have experienced severe declines in abundance. Conventional and captive broodstock supplementation methods are being used to restore these spring Chinook salmon populations. Spring Chinook salmon populations in Catherine Creek and the upper Grande Ronde River, and other streams in the Snake River Basin have experienced severe declines in abundance over themore » past two decades (Nehlsen et al. 1991). A supplementation program was initiated in Catherine Creek and the upper Grande Ronde River, incorporating the use of both captive and conventional broodstock methods, in order to prevent extinction in the short term and eventually rebuild populations. The captive broodstock component of the program (BPA Project 199801001) uses natural-origin parr collected by seining and reared to maturity at facilities near Seattle, Washington (Manchester Marine Laboratory) and Hood River, Oregon (Bonneville Hatchery). Spawning occurs at Bonneville Hatchery, and resulting progeny are reared in hatcheries. Shortly before outmigration in the spring, juveniles are transferred to acclimation facilities. After an acclimation period of about 2-4 weeks, volitional release begins. Any juveniles remaining after the volitional release period are forced out. The conventional broodstock component uses returning adults collected at traps near the spawning areas, transported to Lookingglass Hatchery near Elgin, Oregon, held, and later spawned. The resulting progeny are reared, acclimated, and released similar to the captive broodstock component. All progeny released receive one or more marks including a fin (adipose) clip, codedwire tag, PIT tag, or visual

  16. Studies of certain sulfonamide drugs for use in juvenile chinook salmon

    USGS Publications Warehouse

    Amend, D.F.; Fryer, J.L.; Pilcher, K.S.

    1969-01-01

    In the work described in this paper, the efficacies of sulfisoxazole and sulfadimethoxine were compared to the efficacy of sulfamethazine. Experiments were designed to determine the rate of intestinal absorption, the rate of elimination from the blood, the effect on growth, and the toxicity of each drug in juvenile chinook salmon (Oncorhynchus tshawytscha). The comparative bacteriostatic activity against two common fish pathogens was also determined for each drug. 

  17. Comparative Survival Rate Study (CSS) of Hatchery PIT-tagged Chinook; Oregon Department of Fish and Wildlife, Annual Report 2002-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian

    2004-02-01

    We PIT-tagged juvenile spring chinook salmon reared at Lookingglass Hatchery in October 2002 as part of the Comparative Survival Rate Study (CSS) for migratory year (MY) 2003. We tagged 20,950 Imnaha stock spring chinook salmon, and after mortality and tag loss, we allowed the remaining 20,904 fish to leave the acclimation pond at our Imnaha River satellite facility beginning 1 April 2003 to begin their seaward migration. The fish remaining in the pond were forced out on 15 April 2003. We tagged 20,820 Catherine Creek stock captive and conventional brood progeny spring chinook salmon, and after mortality and tag loss,more » we allowed the remaining 20,628 fish to leave the acclimation ponds at our Catherine Creek satellite facility beginning during two acclimation periods. The volitional release for the early acclimation group began 12 March 2003, and all remaining fish were forced out of the ponds on 23 March 2003. The volitional release for the late acclimation group began 31 March 2003, and all remaining fish were forced out of the ponds on 14 April 2003. We estimated survival rates, from release to Lower Granite Dam in MY 2003, for three stocks of hatchery spring chinook salmon tagged at Lookingglass Hatchery to determine their relative migration performance. Survival rates for the Imnaha River, Lostine River, and Catherine Creek stocks were 0.714, 0.557, and 0.350, respectively. We PIT-tagged 20,944 BY 2002 Imnaha River stock and 20,980 BY 2002 Catherine Creek stock captive and conventional brood progeny in October and November 2003 as part of the CSS for MY 2004. From tagging to January 28, 2004, the rates of mortality and tag loss for Imnaha River stock were 0.16% and 0.04%, respectively. Catherine Creek stock, during the same period, had rates of mortality and tag loss of 0.19% and 0.06%, respectively.« less

  18. Smallmouth bass and largemouth bass predation on juvenile Chinook salmon and other salmonids in the Lake Washington basin

    USGS Publications Warehouse

    Tabor, R.A.; Footen, B.A.; Fresh, K.L.; Celedonia, M.T.; Mejia, F.; Low, D.L.; Park, L.

    2007-01-01

    We assessed the impact of predation by smallmouth bass Micropterus dolomieu and largemouth bass M. salmoides on juveniles of federally listed Chinook salmon Oncorhynchus tshawytscha and other anadromous salmonid populations in the Lake Washington system. Bass were collected with boat electrofishing equipment in the south end of Lake Washington (February-June) and the Lake Washington Ship Canal (LWSC; April-July), a narrow waterway that smolts must migrate through to reach the marine environment. Genetic analysis was used to identify ingested salmonids to obtain a more precise species-specific consumption estimate. Overall, we examined the stomachs of 783 smallmouth bass and 310 largemouth bass greater than 100 mm fork length (FL). Rates of predation on salmonids in the south end of Lake Washington were generally low for both black bass species. In the LWSC, juvenile salmonids made up a substantial part of bass diets; consumption of salmonids was lower for largemouth bass than for smallmouth bass. Smallmouth bass predation on juvenile salmonids was greatest in June, when salmonids made up approximately 50% of their diet. In the LWSC, overall black bass consumption of salmonids was approximately 36,000 (bioenergetics model) to 46,000 (meal turnover consumption model) juveniles, of which about one-third was juvenile Chinook salmon, one-third was coho salmon O. kisutch, and one-third was sockeye salmon O. nerka. We estimated that about 2,460,000 juvenile Chinook salmon (hatchery and wild sources combined) were produced in the Lake Washington basin in 1999; thus, the mortality estimates in the LWSC range from 0.5% (bioenergetics) to 0.6% (meal turnover). Black bass prey mostly on subyearlings of each salmonid species. The vulnerability of subyearlings to predation can be attributed to their relatively small size; their tendency to migrate when water temperatures exceed 15??C, coinciding with greater black bass activity; and their use of nearshore areas, where overlap

  19. Analysis of dam-passage survival of yearling and subyearling Chinook salmon and juvenile steelhead at The Dalles Dam, Oregon, 2010

    USGS Publications Warehouse

    Beeman, John W.; Kock, Tobias J.; Perry, Russell W.; Smith, Steven G.

    2011-01-01

    We performed a series of analyses of mark-recapture data from a study at The Dalles Dam during 2010 to determine if model assumptions for estimation of juvenile salmonid dam-passage survival were met and if results were similar to those using the University of Washington's newly developed ATLAS software. The study was conducted by the Pacific Northwest National Laboratory and used acoustic telemetry of yearling Chinook salmon, juvenile steelhead, and subyearling Chinook salmon released at three sites according to the new virtual/paired-release statistical model. This was the first field application of the new model, and the results were used to measure compliance with minimum survival standards set forth in a recent Biological Opinion. Our analyses indicated that most model assumptions were met. The fish groups mixed in time and space, and no euthanized tagged fish were detected. Estimates of reach-specific survival were similar in fish tagged by each of the six taggers during the spring, but not in the summer. Tagger effort was unevenly allocated temporally during tagging of subyearling Chinook salmon in the summer; the difference in survival estimates among taggers was more likely a result of a temporal trend in actual survival than of tagger effects. The reach-specific survival of fish released at the three sites was not equal in the reaches they had in common for juvenile steelhead or subyearling Chinook salmon, violating one model assumption. This violation did not affect the estimate of dam-passage survival, because data from the common reaches were not used in its calculation. Contrary to expectation, precision of survival estimates was not improved by using the most parsimonious model of recapture probabilities instead of the fully parameterized model. Adjusting survival estimates for differences in fish travel times and tag lives increased the dam-passage survival estimate for yearling Chinook salmon by 0.0001 and for juvenile steelhead by 0.0004. The

  20. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocklage, Stephen J.

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota.more » We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for

  1. Wild Steelhead and introduced spring Chinook Salmon in the Wind River, Washington: Overlapping populations and interactions

    USGS Publications Warehouse

    Jezorek, I.G.; Connolly, P.J.

    2010-01-01

    We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or

  2. Passage survival of juvenile steelhead, coho salmon, and Chinook salmon in Lake Scanewa and at Cowlitz Falls Dam, Cowlitz River, Washington, 2010–16

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Hurst, William

    2018-04-03

    A multi-year evaluation was conducted during 2010–16 to evaluate passage survival of juvenile steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) in Lake Scanewa, and at Cowlitz Falls Dam in the upper Cowlitz River Basin, Washington. Reservoir passage survival was evaluated in 2010, 2011, and 2016, and included the tagging and release of 1,127 juvenile salmonids. Tagged fish were released directly into the Cowlitz and Cispus Rivers, 22.3 and 8.9 km, respectively, upstream of the reservoir, and were monitored as they moved downstream into, and through the reservoir. A single release-recapture survival model was used to analyze detection records and estimate reservoir passage survival, which was defined as successful passage from reservoir entry to arrival at Cowlitz Falls Dam. Tagged fish generally moved quickly downstream of the release sites and, on average, arrived in the dam forebay within 2 d of release. Median travel time from release to first detection at the dam ranged from 0.23 to 0.96 d for juvenile steelhead, from 0.15 to 1.11 d for juvenile coho salmon, and from 0.18 to 1.89 d for juvenile Chinook salmon. Minimum reservoir passage survival probabilities were 0.960 for steelhead, 0.855 for coho salmon and 0.900 for Chinook salmon.Dam passage survival was evaluated at the pilot-study level during 2013–16 and included the tagging and release of 2,512 juvenile salmonids. Juvenile Chinook salmon were evaluated during 2013–14, and juvenile steelhead and coho salmon were evaluated during 2015–16. A paired-release study design was used that included release sites located upstream and downstream of Cowlitz Falls Dam. The downstream release site was positioned at the downstream margin of the dam’s tailrace, which allowed dam passage survival to be measured in a manner that included mortality that occurred in the passage route and in the dam tailrace. More than one-half of the tagged Chinook salmon (52 percent

  3. Survival of Juvenile Chinook Salmon during Barge Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Skalski, J. R.; Deters, Katherine A.

    2011-12-01

    To mitigate for fish losses related to passage through the Federal Columbia River Power System, an extensive fish transportation program using barges and trucks to move fish around and downstream of dams and reservoirs was implemented in 1981. Population modeling and other analyses to support Pacific salmon recovery efforts have assumed that the survival of juvenile salmonids during the transportation experience was 98%. To estimate survival during barge transport from Lower Granite Dam on the Snake River to a release area downstream of Bonneville Dam, a distance of 470 km, we used a novel adaptation of a release-recapture model withmore » acoustic-tagged yearling Chinook salmon (Oncorhynchus tshawytscha) smolts. A total of 1,494 yearling Chinook salmon were surgically implanted with Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic transmitters and passive integrated transponders (PIT) and divided into three groups. The three tagged groups consisted of; (1) a group which was released into the raceway with the population of fish which were later loaded into transportation barges (R{sub B}), (2) a group which was held in a net-pen suspended within the general barge population until 5-6 h prior to barge evacuation, at which time they were confirmed to be alive and then released into the general barge population (R{sub A}), and (3) to validate a model assumption, a group which was euthanized and released into the barge population 2-8 h prior to barge evacuation (R{sub D}). Six replicates of these groups were loaded onto fish transport barges that departed Lower Granite Dam on the Snake River between 29 April and 13 May, 2010. Acoustic receiver arrays between 70 and 220 km downstream of the barge evacuation site were used to detect tagged fish and served as the basis for estimation of survival within the barge. Tag-life-corrected estimates of reach survival were calculated for barged and control fish in each of the six replicate trials. The ratio of survival

  4. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (< 6 m deep) in the lower Snake River reservoirs to help inform the long-term plan. Natural fry and parr were present within all four shallow water habitat complexes that we studied from early spring through early summer, and parr ( = 40,345 ± 18,800 [error bound]) were more abundant than fry ( = 24,615 ± 5,701). Water < 2 m deep was highly used for rearing by natural fall Chinook salmon subyearlings (fry and parr combined; hereafter natural subyearlings) based on duration of use and relative group abundances during spring and summer, whereas the 2–6 m depth interval was more highly used by migratory hatchery fall Chinook salmon subyearlings and spring, summer, and fall Chinook salmon yearlings. Overall mean spring-summer apparent density of natural subyearlings was 15.5 times higher within the < 2 m depth interval than within the 2–6 m depth interval. Density of natural subyearlings also decreased as the distance a given shallow water habitat complex was located from the riverine spawning areas increased. Reservoir-type juveniles (or fish likely destined to become reservoir-type juveniles) were present in the lower Snake River reservoirs from fall 2010 through winter 2011; however, use of shallow water habitat by reservoir-type juveniles was limited during our study. We only collected 38 reservoir-type juveniles in shallow water habitat sites in beach and lampara seines during the fall. Radiotelemetry data revealed that though many tagged fish passed shallow water

  5. Light-mediated predation by northern squawfish on juvenile Chinook salmon

    USGS Publications Warehouse

    Petersen, James H.; Gadomski, Dena M.

    1994-01-01

    Northern squawfish Ptychocheilus oregonensis cause significant mortality of juvenile salmon in the lower Columbia River Basin (U.S.A.). The effects of light intensity on this predator-prey interaction were examined with laboratory experiments and modelling studies. In laboratory experiments, the rate of capture of subyearling chinook salmon Oncorhynchus tshawytscha by northern squawfish was inversely related to light intensity. In a large raceway, about five times more salmon were captured during 4 h periods of relative darkness (0–03 Ix) than during periods with high light intensity (160 Ix). The rate of predation could be manipulated by increasing or decreasing light intensity.A simulation model was developed for visual predators that encounter, attack, and capture juvenile salmon, whose schooling behaviour was light-sensitive. The model was fitted to laboratory results using a Monte Carlo filtering procedure. Model-predicted predation rate was especially sensitive to the visual range of predators at low light intensity and to predator search speed at high light. Modelling results also suggested that predation by northern squawfish on juvenile salmon may be highest across a narrow window of fight intensity.

  6. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Lofy, Peter T.

    2002-11-01

    This is the second annual report of a multi-year, multi-agency project to restore spring chinook salmon populations in the Grande Ronde River Basin (Grande Ronde Endemic Chinook Salmon Program--GRESCP). The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operates adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to increase natural production and restore fisheries in these two streams. Statement of Work Objectives formore » 1999: (1) Participate in development and continued implementation of the comprehensive multi year operations plan for the Grande Ronde Endemic Supplementation Program. (2) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (3) Monitor adult endemic spring chinook salmon populations and collect broodstock. (4) Plan detailed Monitoring and Evaluation for future years. (5) Monitor population abundance and characteristics and local environmental factors that may influence abundance and run timing of Grande Ronde River spring chinook populations. (6) Participate in Monitoring and Evaluation of the captive brood component of the Program to assure this component is contributing to the Program. (7) Participate in data collection for incidentally-caught bull trout and summer steelhead and planning for recovery of summer steelhead populations. (8) Document accomplishments and needs to permitters, comanagers, and funding agencies. (9) Communicate project results to the scientific community.« less

  7. Food and growth parameters of juvenile chinook in the central Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, C.D.

    1994-10-01

    Juvenile chinook, salmon (Oncorhynchus tshawytscha) in the Hanford area of the free-flowing central Columbia River, Washington consume almost entirely adult and larval stages of aquatic insects. The diet is dominated by midges (Diptera: Chironomidae). By numbers, adult midges provided 64 and 58% of the diet and larval midges 17 and 18% of the diet, in 1968 and 1969, respectively. The families Hydropsychidae (Trichoptera), Notonectidae (Hemiptera) and Hypogastruridae (Collembola) are of minor numerical importance with a combined utilization of 7% in 1968 and 15% in 1969. Distinctive features of food and feeding activity of juvenile chinook at Hanford are fourfold: (1)more » the fish utilize relatively few insect groups, predominantly Chironomidae; (2) they depend largely upon autochthonous river organisms; (3) they visually select living prey drifting, floating or swimming in the water; and (4) they are apparently habitat opportunists to a large extent. Analyses were made of variations in diet and numbers of insects consumed between six sampling stations distributed along a 38 km section of the river. Data are provided on feeding intensity, fish lengths, length-weight relationships, and coefficients of condition. Seasonal changes in river temperature and discharge, as well as variations in regulated flow levels are environmental features influencing feeding, growth, and emigration of fish in the Hanford environs.« less

  8. Survival and Passage of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead at McNary Dam, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, James S.; Weiland, Mark A.; Woodley, Christa M.

    The study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead at McNary Dam as stipulated by the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. This study supports the USACE’s continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

  9. Migration depths of juvenile Chinook salmon and steelhead relative to total dissolved gas supersaturation in a Columbia River reservoir

    USGS Publications Warehouse

    Beeman, J.W.; Maule, A.G.

    2006-01-01

    The in situ depths of juvenile salmonids Oncorhynchus spp. were studied to determine whether hydrostatic compensation was sufficient to protect them from gas bubble disease (GBD) during exposure to total dissolved gas (TDG) supersaturation from a regional program of spill at dams meant to improve salmonid passage survival. Yearling Chinook salmon O. tshawytscha and juvenile steelhead O. mykiss implanted with pressure-sensing radio transmitters were monitored from boats while they were migrating between the tailrace of Ice Harbor Dam on the Snake River and the forebay of McNary Dam on the Columbia River during 1997-1999. The TDG generally decreased with distance from the tailrace of the dam and was within levels known to cause GBD signs and mortality in laboratory bioassays. Results of repeated-measures analysis of variance indicated that the mean depths of juvenile steelhead were similar throughout the study area, ranging from 2.0 m in the Snake River to 2.3 m near the McNary Dam forebay. The mean depths of yearling Chinook salmon generally increased with distance from Ice Harbor Dam, ranging from 1.5 m in the Snake River to 3.2 m near the forebay. Juvenile steelhead were deeper at night than during the day, and yearling Chinook salmon were deeper during the day than at night. The TDG level was a significant covariate in models of the migration depth and rates of each species, but no effect of fish size was detected. Hydrostatic compensation, along with short exposure times in the area of greatest TDG, reduced the effects of TDG exposure below those generally shown to elicit GBD signs or mortality. Based on these factors, our results indicate that the TDG limits of the regional spill program were safe for these juvenile salmonids.

  10. A comparison of single-suture and double-suture incision closures in seaward-migrating juvenile Chinook salmon implanted with acoustic transmitters: implications for research in river basins containing hydropower structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Deters, Katherine A.; Cook, Katrina V.

    Reductions in the size of acoustic transmitters implanted in migrating juvenile salmonids have resulted in the ability to make shorter incisions that may warrant using only a single suture for closure. However, it is not known if one suture will sufficiently hold the incision closed, particularly when outward pressure is placed on the surgical site such as when migrating fish experience pressure changes associated with passage at hydroelectric dams. The objective of this research was to evaluate the effectiveness of single-suture incision closures on juvenile Chinook salmon (Oncorhynchus tshawytscha). Juvenile Chinook salmon were surgically implanted with a 2012 Juvenile Salmonmore » Acoustic Telemetry System (JSATS) transmitter (0.30 g) and a passive integrated transponder tag (0.10 g) and incisions were closed with either one suture or two sutures. Mortality and tag retention were monitored and fish were examined after 7 and 14 days to evaluate tissue responses. In a separate experiment, surgically implanted fish were exposed to simulated turbine passage and then examined for expulsion of transmitters, expulsion of viscera through the incision, and mortal injury. With incisions closed using a single suture, there was no mortality or tag loss and similar or reduced tissue reaction compared to incisions closed with two sutures. Further, surgery time was significantly reduced when one suture was used, which leads to less handling and reduced stress. No tags were expelled during pressure scenarios and expulsion of viscera only occurred in two non-mortally injured fish (5%) with single sutures that were also exposed to very high pressure changes. No viscera expulsion was present in fish exposed to pressure scenarios likely representative of hydroturbine passage at many Columbia River dams (e.g. <2.7 ratio of pressure change; an acclimation pressure of 146.2 absolute kpa and a lowest exposure pressure of ~ 53.3 absolute kpa). Based on these results, we recommend the

  11. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2004-01-01

    fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in

  12. The effect of rapid and sustained decompression on barotrauma in juvenile brook lamprey and Pacific lamprey: implications for passage at hydroelectric facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colotelo, Alison HA; Pflugrath, Brett D.; Brown, Richard S.

    Fish passing downstream through hydroelectric facilities may pass through hydroturbines where they experience a rapid decrease in barometric pressure as they pass by turbine blades, which can lead to barotraumas including swim bladder rupture, exopthalmia, emboli, and hemorrhaging. In juvenile Chinook salmon, the main mechanism for injury is thought to be expansion of existing gases (particularly those present in the swim bladder) and the rupture of the swim bladder ultimately leading to exopthalmia, emboli and hemorrhaging. In fish that lack a swim bladder, such as lamprey, the rate and severity of barotraumas due to rapid decompression may be reduced however;more » this has yet to be extensively studied. Another mechanism for barotrauma can be gases coming out of solution and the rate of this occurrence may vary among species. In this study, juvenile brook and Pacific lamprey acclimated to 146.2 kPa (equivalent to a depth of 4.6 m) were subjected to rapid (<1 sec; brook lamprey only) or sustained decompression (17 minutes) to a very low pressure (13.8 kPa) using a protocol previously applied to juvenile Chinook salmon. No mortality or evidence of barotraumas, as indicated by the presence of hemorrhages, emboli or exopthalmia, were observed during rapid or sustained decompression, nor following recovery for up to 120 h following sustained decompression. In contrast, mortality or injury would be expected for 97.5% of juvenile Chinook salmon exposed to a similar rapid decompression to these very low pressures. Additionally, juvenile Chinook salmon experiencing sustained decompression died within 7 minutes, accompanied by emboli in the fins and gills and hemorrhaging in the tissues. Thus, juvenile lamprey may not be susceptible to barotraumas associated with hydroturbine passage to the same degree as juvenile salmonids, and management of these species should be tailored to their specific morphological and physiological characteristics.« less

  13. Nonlethal gill biopsy does not affect juvenile chinook salmon implanted with radio transmitters

    USGS Publications Warehouse

    Martinelli-Liedtke, T. L.; Shively, R.S.; Holmberg, G.S.; Sheer, M.B.; Schrock, R.M.

    1999-01-01

    Using gastric and surgical transmitter implantation, we compared radio-tagged juvenile chinook salmon Oncorhynchus tshawytscha (T(O)) with tagged fish also having a gill biopsy (T(B)) to determine biopsy effects on fish implanted with radio transmitters. We found no evidence during the 21-d period to suggest that a gill biopsy reduced survival, growth, or gross condition of the tagged-biopsy group, regardless of transmitter implantation technique. We recorded 100% survival of all treatment groups. Relative growth rates of T(O) and T(B) fish did not differ significantly. Leukocrit and lysozyme levels were not significantly different among groups, suggesting that no signs of infection were present. Our findings suggest that small chinook salmon can tolerate the combination of transmitter implantation and gill biopsy without compromising condition relative to fish receiving only the transmitter. We believe a gill biopsy can be used in field telemetry studies, especially when physiological data are needed in addition to behavioral data.

  14. Acclimation temperature alters the relationship between growth and swimming performance among juvenile common carp (Cyprinus carpio).

    PubMed

    Pang, Xu; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-09-01

    Individual variation in growth, metabolism and swimming performance, their possible interrelationships, and the effects of temperature were investigated in 30 juvenile common carp (Cyprinus carpio) at two acclimation temperatures (15 and 25°C). We measured body mass, critical swimming speed (Ucrit), resting metabolic rate (RMR), active metabolic rate (AMR) and metabolic scope (MS) twice (28days apart) in both temperature groups. Fish acclimated to 25°C showed a 204% higher specific growth rate (SGR) than those acclimated to 15°C due to a 97% higher feeding rate (FR) and a 46% higher feed efficiency (FE). Among individuals, SGR was positively correlated with the FR and FE at both low and high temperatures. All measured variables (Ucrit, RMR and AMR) related to swimming except MS showed a high repeatability after adjusting for body mass (mass-independent). Fish acclimated to 25°C had a 40% higher Ucrit compared with 15°C acclimated fish, which was at least partially due to an improved metabolic capacity. AMR showed a 97% increase, and MS showed a 104% parallel increase with the higher acclimation temperature. Residual (mass-independent) Ucrit was positively correlated with residual RMR, AMR and MS, except for the residual RMR at high temperature. When acclimated to the lower temperature, both the residual and absolute Ucrit were negatively correlated with FR and FE and, hence, with SGR, suggesting a functional trade-off between growth and locomotion in fish acclimated to low temperatures. However, when acclimated to the higher temperature, this trade-off no longer existed; absolute Ucrit was positively correlated with SGR because individuals with rapid growth exhibited greatly increased body mass. The higher metabolic capacity at 25°C showed a positive effect on both swimming performance and growth rate (because of improved digestive efficiency) under the high-temperature condition, which we did not anticipate. Overall, these results indicate that temperature

  15. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1999. This was the fourth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 453,117 yearlings released from the Fall Chinook Acclimationmore » Project facilities not only slightly exceeded the 450,000 fish quota, but a second release of 76,386 yearlings (hereafter called Surplus) were acclimated at the Big Canyon facility and released about two weeks after the primary releases. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 9,941 PIT tagged yearlings from Pittsburg Landing, 9,583 from Big Canyon, 2,511 Big Canyon Surplus and 2,494 from Captain John Rapids. The Washington Department of Fish and Wildlife released 983 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low and did not appear to increase after transport to the acclimation facilities. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Pittsburg Landing and Lyons Ferry Hatchery and relatively high at Big Canyon and Captain John Rapids. Mean fork lengths (95% confidence interval) of the release groups ranged from 147.4 mm (146.7-148.1 mm) at Captain John Rapids to 163.7 mm (163.3-164.1 mm) at Pittsburg Landing. Mean condition factors ranged from 1.04 at

  16. Preliminary examination of oxidative stress in juvenile spring Chinook salmon (Oncorhynchus tshawytscha) of wild origin sampled from transport barges

    USDA-ARS?s Scientific Manuscript database

    Migrating juvenile wild Chinook salmon (Oncorhynchus tshawytscha), collected and loaded onto transport barges at Lower Granite Dam on the Snake River, were sampled from barges at John Day Dam, 348 km downstream, at five-day intervals beginning late April and ending late May. An increase in lipid per...

  17. Stress of formalin treatment in juvenile spring chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri)

    USGS Publications Warehouse

    Wedemeyer, Gary; Yasutake, W.T.

    1973-01-01

    The physiological stress of 200 ppm formalin treatments at 10 C is more severe in the juvenile steelhead trout (Salmo gairdneri) than in the spring chinook salmon (Oncorhynchus tshawytscha). In the steelhead, a marked hypochloremia follows a 1-hr treatment and recovery requires about 24 hr. During longer treatments, hypercholesterolemia together with reduced regulatory precision, hypercortisolemia, alkaline reserve depletion, and hypocapnia unaccompanied by a fall in blood pH occur — suggestive of compensated respiratory alkalosis. In the spring chinook, hypochloremia and reduced plasma cholesterol regulatory precision are the significant treatment side effects but recovery requires only a few hours.Formalin treatments also cause epithelial separation, hypertrophy, and necrosis in the gills of both fishes but again, consistent with the physiological dysfunctions, these are more severe in the steelhead.

  18. Biotic and abiotic influences on abundance and distribution of nonnative Chinook salmon and native ESA-listed steelhead in the Wind River, Washington

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2015-01-01

    Biotic and abiotic factors influence fish populations and distributions. Concerns have been raised about the influence of hatchery fish on wild populations. Carson National Fish Hatchery produces spring Chinook salmon Oncorhynchus tshawytscha in the Wind River, Washington, and some spawn in the river. Managers were concerned that Chinook salmon could negatively affect wild steelhead O. mykiss and that a self-sustaining population of Chinook salmon may develop. Our objectives were to assess: 1) the distribution and populations of juvenile spring Chinook salmon and juvenile steelhead in the upper Wind River; 2) the influence of stream flow and of each population on the other; and 3) if Chinook salmon populations were self-sustaining. We snorkeled to determine distribution and abundance. Flow in the fall influenced upstream distribution and abundance of juvenile Chinook salmon. Juvenile Chinook salmon densities were consistently low (range 0.0 to 5.7 fish 100 m-2) and not influenced by number of spawners, winter flow magnitude, or steelhead abundance. Juvenile steelhead were distributed through the study section each year. Age-0 and age-1 steelhead densities (age-0 range: 0.04 to 37.0 fish 100 m-2; age-1 range: 0.02 to 6.21 fish 100 m-2) were consistently higher than for juvenile Chinook salmon. Steelhead spawner abundance positively influenced juvenile steelhead abundance. During this study, Chinook salmon in the Wind River appear to have had little effect on steelhead. Low juvenile Chinook salmon abundance and a lack of a spawner-to-juvenile relationship suggest Chinook salmon are not self-sustaining and potential for such a population is low under current conditions.

  19. Performance assessment of bi-directional knotless tissue-closure devices in juvenile Chinook salmon surgically implanted with acoustic transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodley, Christa M.; Wagner, Katie A.; Bryson, Amanda J.

    Acoustic transmitters used in survival and telemetry studies are often surgically implanted in fish. While this is a well-established method, it has the potential to affect health, behavior, and survival, thus affecting study results. Much research has been done to try to minimize the harmful effects caused by the transmitter and tagging process. In 2009, we first investigated the use of a bi-directional knotless (barbed) suture material in juvenile Chinook salmon (Oncorhynchus tshawytscha). We found that it resulted in higher tag retention than the simple interrupted suture pattern; however, the occurrence of ulceration and redness increased. The objective of thismore » study was to refine the suturing patterns of the bi-directional knotless suture and retest suture performance in juvenile Chinook salmon. We tested the bi-directional suture using 3 different suture patterns and two needle types: 6-Point (12-mm needle circumference), Wide “N” (12-mm needle circumference), Wide “N” Knot 12 (12-mm needle circumference), and Wide “N” Knot 18 (18-mm needle circumference).« less

  20. Effects of acute thermal stress on the survival, predator avoidance, and physiology of juvenile fall Chinook salmon

    USGS Publications Warehouse

    Mesa, M.G.; Weiland, L.K.; Wagner, P.

    2002-01-01

    We subjected juvenile fall chinook salmon from the Hanford Reach of the Columbia River to acute thermal stressors in the laboratory that were derived from field data. We assessed the effects of thermal stress on: (1) the extent of direct mortality; (2) the vulnerability of fish to predation by smallmouth bass; and (3) some general physiological stress responses and synthesis of heat shock protein 70 (hsp70). Thermally-stressed fish showed little direct mortality and no increases in vulnerability to predation. However, these fish showed transient increases in plasma concentrations of cortisol, glucose, and lactate, and a dramatic (25-fold higher than controls) and persistent (lasting 2 wk) increase in levels of liver hsp70. Our results indicate that exposure of Hanford Reach juvenile fall chinook salmon to such stressors did not lead to significant increases in direct mortality or vulnerability to predation, but did alter physiological homeostasis, which should be of concern to those managing this resource. Because our fish received only a single exposure to one of the stressors we examined, we are also concerned about the consequences of exposing fish to multiple, cumulative stressors - a likely scenario for fish in the wild.

  1. Interactive effects of water diversion and climate change for juvenile chinook salmon in the lemhi river basin (USA.).

    PubMed

    Walters, Annika W; Bartz, Krista K; McClure, Michelle M

    2013-12-01

    The combined effects of water diversion and climate change are a major conservation challenge for freshwater ecosystems. In the Lemhi Basin, Idaho (U.S.A.), water diversion causes changes in streamflow, and climate change will further affect streamflow and temperature. Shifts in streamflow and temperature regimes can affect juvenile salmon growth, movement, and survival. We examined the potential effects of water diversion and climate change on juvenile Chinook salmon (Oncorhynchus tshawytscha), a species listed as threatened under the U.S. Endangered Species Act (ESA). To examine the effects for juvenile survival, we created a model relating 19 years of juvenile survival data to streamflow and temperature and found spring streamflow and summer temperature were good predictors of juvenile survival. We used these models to project juvenile survival for 15 diversion and climate-change scenarios. Projected survival was 42-58% lower when streamflows were diverted than when streamflows were undiverted. For diverted streamflows, 2040 climate-change scenarios (ECHO-G and CGCM3.1 T47) resulted in an additional 11-39% decrease in survival. We also created models relating habitat carrying capacity to streamflow and made projections for diversion and climate-change scenarios. Habitat carrying capacity estimated for diverted streamflows was 17-58% lower than for undiverted streamflows. Climate-change scenarios resulted in additional decreases in carrying capacity for the dry (ECHO-G) climate model. Our results indicate climate change will likely pose an additional stressor that should be considered when evaluating the effects of anthropogenic actions on salmon population status. Thus, this type of analysis will be especially important for evaluating effects of specific actions on a particular species. Efectos Interactivos de la Desviación del Agua y el Cambio Climático en Individuos Juveniles de Salmón Chinook en la Cuenca del Río Lemhi (E.U.A.). Conservation Biology

  2. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.

    2006-01-30

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences betweenmore » the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be

  3. Effects of surgically and gastrically implanted radio transmitters on growth and feeding behavior of juvenile chinook salmon

    USGS Publications Warehouse

    Adams, N.S.; Rondorf, D.W.; Evans, S.D.; Kelly, J.E.

    1997-01-01

    We examined the effects of surgically and gastrically implanted radio transmitters (representing 2.3-5.5% of body weight) on the growth and feeding behavior of 192 juvenile chinook salmon Oncorhynchus tshawytscha (114-159 mm in fork length). Throughout the 54-d study, the 48 fish with transmitters in their stomachs (gastric fish) consistently grew more slowly than fish with surgically implanted transmitters (surgery fish), fish with surgery but no implanted transmitter (sham-surgery fish), or fish exposed only to handling (control fish). Growth rates of surgery fish were also slightly impaired at day 21, but by day 54 they were growing at rates comparable with those of control fish. Despite differences in growth, overall health was similar among all test fish. However, movement of the transmitter antenna caused abrasions at the corner of the mouth in all gastric fish, whereas only 22% of the surgery fish had inflammation around the antenna exit wound. Feeding activity was similar among groups, but gastric fish exhibited a coughing behavior and appeared to have difficulty retaining swallowed food. Because growth and feeding behavior were less affected by the presence of surgically implanted transmitters than by gastric implants, we recommend surgically implanting transmitters for biotelemetry studies of juvenile chinook salmon between 114 and 159 mm fork length.

  4. Efficacy of electrofishing to assess plasma cortisol concentration in juvenile chinook salmon passing hydroelectric dams on the Columbia River

    USGS Publications Warehouse

    Mauls, Alec G.; Mesa, Matthew G.

    1994-01-01

    We tested the efficacy of using electrofishing to collect juvenile fall chinook salmon Oncorhynchus tshawytscha to assess their plasma cortisol concentrations. In laboratory experiments, plasma cortisol titers of fish sampled immediately (<4 s) after a 1.5-s, 500-V DC electroshock were not different from controls (mean ± SE, 28.8 ± 5.2 ng/mL), but within 15 min they were significantly higher (148.2 ± 19.0 ng/mL) than controls. Plasma cortisol levels of fish released through turbines and of those released through the juvenile-bypass system at Bonneville Dam, Oregon-Washington, and collected by electrofishing did not differ from each other or from prerelease samples (about 70 ± 7 ng/mL). Our results indicate that electrofishing can be used to collect fish for stress assessment in the wild, provided fish are sacrificed immediately after capture. We are concerned, however, that the small number of fish we captured by electrofishing may not be representative of the majority of fish that pass through turbines or bypass systems. The fish used in this study were not migrating smolts and so were not typical of juvenile chinook salmon passing through hydroelectric dams on the Columbia River. Developmental as well as species- and stock-related factors should be addressed in future studies.

  5. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2000. This was the fifth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 397,339 yearlings released from the Fall Chinook Acclimation Projectmore » facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,477 PIT tagged yearlings from Pittsburg Landing, 7,421 from Big Canyon and 2,488 from Captain John Rapids. The Washington Department of Fish and Wildlife released 980 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 157.7 mm (157.3-158.1 mm) at Big Canyon to 172.9 mm (172.2-173.6 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Captain John Rapids and Lyons Ferry Hatchery to 1.12 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.0% (84.7-89.4%) for Pittsburg Landing to 95.2% (91.5-98.9%) for Captain John Rapids. Estimated survival from

  6. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2001. This was the sixth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 318,932 yearlings released from the Fall Chinook Acclimation Projectmore » facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,503 PIT tagged yearlings from Pittsburg Landing, 7,499 from Big Canyon and 2,518 from Captain John Rapids. The Washington Department of Fish and Wildlife released 991 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 155.4 mm (154.7-156.1 mm) at Captain John Rapids to 171.6 mm (170.7-172.5 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.02 at Lyons Ferry Hatchery to 1.16 at Big Canyon and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.4% (73.2-75.5%) for Big Canyon to 85.2% (83.5-87.0%) for Captain John Rapids. Estimated survival from

  7. Assessing the suitability of a partial water reuse system for rearing juvenile Chinook salmon Oncorhynchus tshawytscha for stocking in Washington State

    USDA-ARS?s Scientific Manuscript database

    Health and welfare of juvenile Chinook salmon Oncorhynchus tshawytsha reared in a pilot circular tank-based partial water reuse system in Washington State were evaluated in comparison to fish from the same spawn reared in a flow-through raceway, in order to assess the suitability of using water reus...

  8. Compliance Monitoring of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam

    The purpose of this compliance study was to estimate dam passage survival of yearling and subyearling Chinook salmon and steelhead smolts at John Day Dam during the spring and summer outmigrations in 2012. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 for spring migrants and greater than or equal to 0.93 for summer migrants, estimated with a standard error (SE) less than or equal to 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailracemore » 3 km downstream of the dam, as well as the forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required in the Columbia Basin Fish Accords (Fish Accords). A virtual/paired-release design was used to estimate dam passage survival at John Day Dam. The approach included releases of smolts, tagged with acoustic micro-transmitters, above John Day Dam that contributed to the formation of a virtual release at the face of John Day Dam. A survival estimate from this release was adjusted by a paired release below John Day Dam. A total of 3376 yearling Chinook salmon, 5726 subyearling Chinook salmon, and 3239 steelhead smolts were used in the virtual releases. Sample sizes for the below-dam paired releases (R2 and R3, respectively) were 997 and 995 for yearling Chinook salmon smolts, 986 and 983 for subyearling Chinook salmon smolts, and 1000 and 1000 for steelhead smolts. The Juvenile Salmon Acoustic Telemetry System (JSATS) tags were manufactured by Advanced Telemetry Systems. Model SS300 tags, weighing 0.304 g in air, were surgically implanted in yearling and subyearling Chinook salmon, and Model SS130 tag, weighing 0.438 g in air, were surgically implanted in juvenile steelhead for this investigation. The intent of the spring study was to estimate dam passage survival during both 30% and 40% spill conditions. The

  9. Infective Juveniles of the Entomopathogenic Nematode, Steinernema feltiae Produce Cryoprotectants in Response to Freezing and Cold Acclimation

    PubMed Central

    Ali, Farman; Wharton, David A.

    2015-01-01

    Steinernema feltiae is a moderately freeze-tolerant entomopathogenic nematode which survives intracellular freezing. We have detected by gas chromatography that infective juveniles of S. feltiae produce cryoprotectants in response to cold acclimation and to freezing. Since the survival of this nematode varies with temperature, we analyzed their cryoprotectant profiles under different acclimation and freezing regimes. The principal cryoprotectants detected were trehalose and glycerol with glucose being the minor component. The amount of cryoprotectants varied with the temperature and duration of exposure. Trehalose was accumulated in higher concentrations when nematodes were acclimated at 5°C for two weeks whereas glycerol level decreased from that of the non-acclimated controls. Nematodes were seeded with a small ice crystal and held at -1°C, a regime that does not produce freezing of the nematodes but their bodies lose water to the surrounding ice (cryoprotective dehydration). This increased the levels of both trehalose and glycerol, with glycerol reaching a higher concentration than trehalose. Nematodes frozen at -3°C, a regime that produces freezing of the nematodes and results in intracellular ice formation, had elevated glycerol levels while trehalose levels did not change. Steinernema feltiae thus has two strategies of cryoprotectant accumulation: one is an acclimation response to low temperature when the body fluids are in a cooled or supercooled state and the infective juveniles produce trehalose before freezing. During this process a portion of the glycerol is converted to trehalose. The second strategy is a rapid response to freezing which induces the production of glycerol but trehalose levels do not change. These low molecular weight compounds are surmised to act as cryoprotectants for this species and to play an important role in its freezing tolerance. PMID:26509788

  10. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, 1998-1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter J.; Blenden, Michael L.; Kucera, Paul A.

    2002-08-01

    This report summarizes the results of the Lower Snake River Compensation Plan Hatchery Evaluation Studies (LSRCP) and the Imnaha Smolt Monitoring Program (SMP) for the 1999 smolt migration from the Imnaha River, Oregon. These studies were designed and closely coordinated to provide information about juvenile natural and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) biological characteristics, behavior and emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam on the Columbia River. Data collected from these studies are shared with the Fish Passage Center (FPC). These data are essential to quantify smoltmore » survival rates under the current passage conditions and to evaluate the future recovery strategies that seek to optimize smolt survival through the hydroelectric system. Information shared with the FPC assists with in-season shaping of flow and spill management requests in the Snake River reservoirs. The Bonneville Power Administration and the United States Fish and Wildlife Service contracted the Nez Perce Tribe (NPT) to monitor emigration timing and tag 21,200 emigrating natural and hatchery chinook salmon and steelhead smolts from the Imnaha River during the spring emigration period (March 1-June 15) with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 1999 marked the eighth year of emigration studies on the Imnaha River and the sixth year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Determine spring emigration timing of chinook salmon and steelhead smolts collected at the Imnaha River trap. (2) Evaluate effects of flow, temperature and other environmental factors on emigration timing. (3) Monitor the daily catch and biological characteristics of juvenile chinook salmon and steelhead smolts collected at the Imnaha River screw trap. (4) Determine emigration timing, travel time

  11. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha in the Willamette River, Oregon, USA

    USGS Publications Warehouse

    Billman, E.J.; Whitman, L.D.; Schroeder, R.K.; Sharpe, C.S.; Noakes, David L. G.; Schreck, Carl B.

    2014-01-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  12. Diel behavior of rearing fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Skalicky, Joseph J.

    2010-01-01

    In fisheries science, habitat use is often inferred when fish are sampled or observed in a particular location. Physical habitat is typically measured where fish are found, and thus deemed important to habitat use. Although less common, a more informative approach is to measure or observe fish behavior within given habitats to more thoroughly assess their use of those locations. While this approach better reflects how fish use habitat, fish behavior can be difficult to quantify, particularly at night. For example, Tiffan and others (2002, 2006) were able to quantify habitat availability and characteristics that were important for rearing juvenile fall Chinook Salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The authors, however, could only speculate as to how juvenile salmon use habitat and respond to changes in water level fluctuations. Conversely, in this study we provide data on the diel activities of rearing juvenile wild fall Chinook Salmon which provides a better understanding of how fish “use” these rearing habitats. Diel behavior patterns are important because fish in the Hanford Reach are often stranded on shorelines when the water level rapidly recedes because of hydroelectric power generation at upriver dams (Nugent and others 2002; Anglin and others 2006). We hypothesize that juvenile salmon are at greater risk of stranding at night because they are less active and occupy habitat differently than during the day. We used underwater videography to collect behavioral information during the day and night to determine if juvenile fall Chinook Salmon are more susceptible to stranding when water level fluctuations occur at night.

  13. FDA Approved Registration of Erythromycin for Treatment of Bacterial Kidney Disease (BKD) in Juvenile and Adult Chinook Salmon : Annual Report, Reporting Period March 10, 1989 to March 9, 1990.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffitt, Christine A.

    1991-04-01

    Erythromycin is a therapeutic substance useful against bacterial kidney disease in salmon. In 1989 we began a multi year project to learn more about erythromycin applied to juvenile and adult salmon, with the goal of achieving registration of erythromycin with the US Food and Drug Administration. To begin the study, we studied the pharmacokinetics of erythromycin administered to both adult and juvenile chinook salmon. We monitored blood plasmas time curves from individual adult fish injected with two forms of injectable erythromycin using one of three routes of administration. In addition, we began experiments to evaluate hatchery applications of erythromycin tomore » individually marked adult salmon, and we recovered blood tissues from these fish at the time of spawning. To determine how to use erythromycin in juvenile salmon, we evaluated the adsorption and elimination of erythromycin applied arterially and orally to individual juvenile fish. In feeding trials we determined the palatability to juvenile chinook salmon of feed made with one of two different carriers for erythromycin thiocyanate. 35 refs., 4 figs. , 3 tabs.« less

  14. Preliminary study of gill NA+,K+-ATPase activity in juvenile spring chinook salmon following electroshock or handling stress

    USGS Publications Warehouse

    VanderKooi, S.P.; Gale, William L.; Maule, A.G.

    2000-01-01

    We compared gill Na+,K+-ATPase in subyearling and yearling spring chinook salmon Oncorhynchus tshawytscha 3 h, 24 h, and 7 d after exposure to either a short pulsed DC electroshock (300 V, 50 Hz, 8-ms pulse duration) or an acute handling stress. Mean gill Na+,K+-ATPase values ranged from 7.5 to 11.8 ??mol inorganic phosphate (Pi) ?? (mg protein)-1 ?? h-1. No significant differences were detected, with the exception of electroshocked subyearlings 7 d after treatment. Increased activity was attributed to the presence of two influential values. No significant differences were detected after removal of these observations, so the increase was not considered biologically significant. Inclusion of the outliers did not alter our interpretation of the results given that the observed increase was slight compared with the magnitude of changes reported under experimental conditions and in migrating juvenile salmonids. The treatment groups underwent a typical stress response and had significantly elevated cortisol and glucose levels 3 h after treatment. Recovery to control levels occurred within 24 h for cortisol and from 24 h to 7 d for glucose. Our results lead to the conclusion that neither acute electroshock nor acute handling stress alters Na+,K+-ATPase activity in juvenile spring chinook salmon.

  15. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    Estimates of juvenile salmon survival are important data for fishery managers in the Yakima River Basin. Radiotelemetry studies during 2012–14 showed that tagged juvenile Chinook salmon (Oncorhynchus tshawytscha) that passed through the fish bypass at Roza Dam had lower survival than fish that passed through other routes at the dam. That study also identified flow-survival relationships in the reaches between the Roza Dam tailrace and Sunnyside Dam. During 2012–14, survival also was estimated through reaches downstream of Sunnyside Dam, but generally, sample sizes were low and the estimates were imprecise. In 2016, we conducted an evaluation using acoustic cameras and acoustic telemetry to build on information collected during the previous study. The goal of the 2016 research was to identify areas where mortality occurs in the fish bypass at Roza Dam, and to estimate reach-specific survival in reaches downstream of the dam. The 2016 study included juvenile Chinook salmon and coho salmon (O. kisutch).Three acoustic cameras were used to observe fish behavior (1) near the entrances to the fish bypass, (2) at a midway point in the fish bypass (convergence vault), and (3) at the bypass outfall. In total, 504 hours of acoustic camera footage was collected at these locations. We determined that smolt-sized fish (95–170 millimeters [mm]) were present in the highest proportions at each location, but predator-sized fish (greater than 250 mm) also were present at each site. Fish presence generally peaked during nighttime hours and crepuscular periods, and was low during daytime hours. In the convergence vault, smolt-sized fish exhibited holding behavior patterns, which may explain why some fish delayed while passing through the bypass.Some of the acoustic-tagged fish were delayed in the fish bypass following release, but there was no evidence to suggest that they experienced higher mortality than fish that were released at the bypass outfall or downstream of the dam

  16. Behavioural response of juvenile Chinook salmon Oncorhynchus tshawytscha during a sudden temperature increase and implications for survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellgraph, Brian J.; McMichael, Geoffrey A.; Mueller, Robert P.

    2010-01-01

    The behaviours of juvenile Chinook salmon Oncorhynchus tshawytscha were evaluated during a temperature increase from 8.8 to 23.2°C, which was designed to simulate unique thermal conditions present in a hydroelectric reservoir. The percent of fish with an active swimming behaviour increased from 26 to 93 % and mean opercular beat rates increased from 76 to 159 beats per minute between basal and maximum temperatures. Fish equilibrium did not change significantly throughout the experiment and relatively little mortality (12 %) occurred. Thermal stress is likely incurred by juvenile salmon experiencing a temperature change of this magnitude; however, stress induced in thismore » study was primarily sublethal. Behavioural changes accompanying thermal stress (e.g., erratic swimming) may increase predation potential in the wild despite being sublethal during laboratory experiments.« less

  17. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival.

    PubMed

    Li, Xinya; Deng, Zhiqun D; Brown, Richard S; Fu, Tao; Martinez, Jayson J; McMichael, Geoffrey A; Skalski, John R; Townsend, Richard L; Trumbo, Bradly A; Ahmann, Martin L; Renholds, Jon F

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival.

  18. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival

    PubMed Central

    Li, Xinya; Deng, Zhiqun D.; Brown, Richard S.; Fu, Tao; Martinez, Jayson J.; McMichael, Geoffrey A.; Skalski, John R.; Townsend, Richard L.; Trumbo, Bradly A.; Ahmann, Martin L.; Renholds, Jon F.

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival. PMID:27293685

  19. Quantifying Temperature Effects on Fall Chinook Salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jager, Yetta

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  20. Downstream movement of fall Chinook salmon juveniles in the lower Snake River reservoirs during winter and early spring

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.; Mullins, Frank; Steinhorst, R. Kirk

    2012-01-01

    We conducted a 3-year radiotelemetry study in the lower Snake River to (1) determine whether juvenile fall Chinook salmon Oncorhynchus tshawytscha pass dams during winter, when bypass systems and structures designed to prevent mortality are not operated; (2) determine whether downstream movement rate varies annually, seasonally, and from reservoir to reservoir; and (3) identify some of the factors that contribute to annual, seasonal, and spatial variation in downstream movement rate. Fall Chinook salmon juveniles moved downstream up to 169 km and at a sufficiently fast rate (7.5 km/d) such that large percentages (up to 93%) of the fish passed one or more dams during the winter. Mean downstream movement rate varied annually (9.2–11.3 km/d), increased from winter (7.5 km/d) to spring (16.4 km/d), and increased (from 6.9 to 16.8 km/d) as fish moved downstream from reservoir to reservoir. Fish condition factor at tagging explained some of the annual variation in downstream movement rate, whereas water particle velocity and temperature explained portions of the seasonal variation. An increase in migrational disposition as fish moved downstream helped to explain the spatial variation. The potential cost of winter movement might be reduced survival due to turbine passage at a time when the bypass systems and spillway passage structures are not operated. Efforts to understand and increase passage survival of winter migrants in large impoundments might help to rehabilitate some imperiled anadromous salmonid populations.

  1. Thermopreference, tolerance and metabolic rate of early stages juvenile Octopus maya acclimated to different temperatures.

    PubMed

    Noyola, Javier; Caamal-Monsreal, Claudia; Díaz, Fernando; Re, Denisse; Sánchez, Adolfo; Rosas, Carlos

    2013-01-01

    Thermopreference, tolerance and oxygen consumption rates of early juveniles Octopus maya (O. maya; weight range 0.38-0.78g) were determined after acclimating the octopuses to temperatures (18, 22, 26, and 30°C) for 20 days. The results indicated a direct relationship between preferred temperature (PT) and acclimated temperature, the PT was 23.4°C. Critical Thermal Maxima, (CTMax; 31.8±1.2, 32.7±0.9, 34.8±1.4 and 36.5±1.0) and Critical Thermal Minima, (CTMin; 11.6±0.2, 12.8±0.6, 13.7±1.0, 19.00±0.9) increased significantly (P<0.05) with increasing acclimation temperatures. The endpoint for CTMax was ink release and for CTMin was tentacles curled, respectively. A thermal tolerance polygon over the range of 18-30°C resulted in a calculated area of 210.0°C(2). The oxygen consumption rate increased significantly α=0.05 with increasing acclimation temperatures between 18 and 30°C. Maximum and minimum temperature quotients (Q10) were observed between 26-30°C and 22-26°C as 3.03 and 1.71, respectively. These results suggest that O. maya has an increased capability for adapting to moderate temperatures, and suggest increased culture potential in subtropical regions southeast of México. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Trophic pathways supporting juvenile Chinook and Coho salmon in the glacial Susitna River, Alaska: patterns of freshwater, marine, and terrestrial resource use across a seasonally dynamic habitat mosaic

    USGS Publications Warehouse

    Rine, Kristin M.; Wipfli, Mark S.; Schoen, Erik R.; Nightengale, Timothy L.; Stricker, Craig A.

    2016-01-01

    Contributions of terrestrial-, freshwater-, and marine-derived prey resources to stream fishes vary over time and space, altering the energy pathways that regulate production. In this study, we determined large-scale use of these resources by juvenile Chinook and coho salmon (Oncorhynchus tshawytscha and Oncorhynchus kisutch, respectively) in the glacial Susitna River, Alaska. We resolved spatial and temporal trophic patterns among multiple macrohabitat types along a 97 km segment of the river corridor via stable isotope and stomach content analyses. Juvenile salmon were supported primarily by freshwater-derived resources and secondarily by marine and terrestrial sources. The relative contribution of marine-derived prey to rearing salmon was greatest in the fall within off-channel macrohabitats, whereas the contributions of terrestrial invertebrate prey were generally greatest during midsummer, across all macrohabitats. No longitudinal (upstream–downstream) diet pattern was discernable. These results highlight large-scale spatial and seasonal patterns of energy flow and the dynamic interplay of pulsed marine and terrestrial prey subsidies to juvenile Chinook and coho salmon in a large, complex, and relatively pristine glacial river.

  3. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.

    2011-02-01

    The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. Themore » approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.« less

  4. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated. 2006 Annual Report

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.

    2007-01-01

    During the winter of 2005-06, we radio and PIT tagged and released 48 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. Fish were released at the upstream end of the Lower Granite Dam forebay in November and December 2005. Fixed radio telemetry detection sites located in forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental and Ice Harbor dams were used to monitor fish movements and dam passage through early-May 2006. Of the 48 fish released during our study, 39 (81 %) passed Lower Granite Dam and were detected at downstream detection sites, 29 (60%) passed Little Goose Dam, 25 (52%) passed Lower Monumental Dam, and 15 (31%) passed Ice Harbor Dam. Thirty-seven (95%), 23 (79%), 16 (64%), and 9 (60%) of the fish that passed Lower Granite, Little Goose, Lower Monumental, and Ice Harbor dams respectively, did so when the fish bypass system was not operated. Passage of tagged fish past lower Snake River dams generally declined during the winter, but increased again after bypass began in April. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 118 d), and varied by reservoir and time of year. We observed no diel passage trends. Only 15 of the 48 fish were subsequently detected at a PIT-tag interrogation site the following spring. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more to chance than directed downstream movement. Since the primary route of passage during the winter is through powerhouse turbines, the potential exists for increased mortality for over-wintering juvenile fall Chinook salmon in the Snake River. Our findings also have implications for transportation studies of subyearling fall Chinook salmon in the Snake River. Specifically, the finding that some fish can pass undetected during the winter may bias smolt-to-adult return rate calculations that are typically used to measure the

  5. Freshwater to seawater acclimation of juvenile bull sharks (Carcharhinus leucas): plasma osmolytes and Na+/K+-ATPase activity in gill, rectal gland, kidney and intestine.

    PubMed

    Pillans, Richard D; Good, Jonathan P; Anderson, W Gary; Hazon, Neil; Franklin, Craig E

    2005-01-01

    This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l(-1) kg(-1)) were acclimated to SW (980-1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities (940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypo-osmotic to the environment. Plasma Na(+), Cl(-), K(+), Mg(2+), Ca(2+), urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na(+)/K(+)-ATPase activity. Na(+)/K(+)-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na(+)/K(+)-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na(+)/K(+)-ATPase activity was 5.6+/-0.8 and 9.2+/-0.6 mmol Pi mg(-1) protein h(-1), respectively. Na(+)/K(+)-ATPase activity in the kidney of FW and SW acclimated animals was 8.4+/-1.1 and 3.3+/-1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.

  6. Toxicity of agricultural subsurface drainwater from the San Joaquin Valley, California to juvenile chinook salmon and striped bass

    USGS Publications Warehouse

    Saiki, Michael K.; Jennings, Mark R.; Wiedmeyer, Raymond H.

    1992-01-01

    Juvenile chinook salmon Oncorhynchus tshawytscha (40-50 mm total length, TL) and striped bass Morone saxatilis (30-40 mm TL) were exposed to serial dilutions (100, 50, 25, and 12.5%) of agricultural subsurface drainwater (WWD), reconstituted drainwater (RWWD), and reconstituted seawater (IO). Agricultural subsurface drainwater contained naturally elevated concentrations of major ions (such as sodium and sulfate) and trace elements (especially boron and selenium), RWWD contained concentrations of major ions that mimicked those in WWD but trace elements were not elevated, and IO contained concentrations of total dissolved salt that were similar to those in WWD and RWWD but chloride replaced sulfate as the dominant anion. After 28 d of static exposure, over 75% of the chinook salmon in 100% WWD had died, whereas none had died in other dilutions and water types. Growth of chinook salmon in WWD and RWWD, but not in IO, exhibited dilution responses. All striped bass died in 100% WWD within 23 d, whereas 19 of 20 striped bass had died in 100% RWWD after 28 d. In contrast, none died in 100% IO. Growth of striped bass was impaired only in WWD. Fish in WWD accumulated as much as 200 μg/g (dry-weight basis) of boron, whereas fish in control water accumulated less than 3.1 μg/g. Although potentially toxic concentrations of selenium occurred in WWD (geometric means, 158-218 μg/L), chinook salmon and striped bass exposed to this water type accumulated 5.7 μg Se/g or less. These findings indicate that WWD was toxic to chinook salmon and striped bass. Judging from available data, the toxicity of WWD was due primarily to high concentrations of major ions present in atypical ratios, to high concentrations of sulfate, or to both. High concentrations of boron and selenium also may have contributed to the toxicity of WWD, but their effects were not clearly delineated.

  7. Gauging resource exploitation by juvenile Chinook salmon (Oncorhynchus tshawytscha) in restoring estuarine habitat

    USGS Publications Warehouse

    Davis, Melanie; Ellings, Christopher S.; Woo, Isa; Hodgson, Sayre; Larsen, Kimberly A.; Nakai, Glynnis

    2018-01-01

    In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out-migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post-restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density-dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.

  8. Nature and time course of acclimation to aluminum in juvenile brook trout (Salvelinus fontinalis): II. Gill histology

    USGS Publications Warehouse

    Mueller, M.E.; Sanchez, D.A.; Bergman, H.L.; McDonald, D.G.; Rhem, R.G.; Wood, C.M.

    1991-01-01

    Gill samples from juvenile brook trout (Salvelinus fontinalis) acclimated to low-level aluminum at pH 5.2 showed severe damage by day 4, with necrosis and fusion of secondary lamellae and hyperplasia and hypertrophy of mucous cells. Over the following 20 d, there was a continual process of repair with proliferation and hypertrophy of mucous cells. Qualitative analysis of gill samples plus physiology and mortality data collected in a companion study indicated progressive development (by day 10 onward) of increasing acclimation to Al. Quantitative analysis of gill samples on day 13 showed that mucous cell volume density had tripled and mucous cell area had doubled in Al-exposed fish compared with control fish. A lamellar fusion index showed evidence of fusion in Al-exposed fish by day 4 with recovery to nearly control levels by day 13. Physiological disturbances appear to be directly related to the histological changes observed in the gill epithelium. At the cellular level, changes in either mucous cell production and secretion or changes in mucus chemistry contribute, in part, to acclimation to Al.

  9. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    USGS Publications Warehouse

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  10. Thermal preference of juvenile Dover sole (Solea solea) in relation to thermal acclimation and optimal growth temperature.

    PubMed

    Schram, Edward; Bierman, Stijn; Teal, Lorna R; Haenen, Olga; van de Vis, Hans; Rijnsdorp, Adriaan D

    2013-01-01

    Dover sole (Solea solea) is an obligate ectotherm with a natural thermal habitat ranging from approximately 5 to 27°C. Thermal optima for growth lie in the range of 20 to 25°C. More precise information on thermal optima for growth is needed for cost-effective Dover sole aquaculture. The main objective of this study was to determine the optimal growth temperature of juvenile Dover sole (Solea solea) and in addition to test the hypothesis that the final preferendum equals the optimal growth temperature. Temperature preference was measured in a circular preference chamber for Dover sole acclimated to 18, 22 and 28°C. Optimal growth temperature was measured by rearing Dover sole at 19, 22, 25 and 28°C. The optimal growth temperature resulting from this growth experiment was 22.7°C for Dover sole with a size between 30 to 50 g. The temperature preferred by juvenile Dover sole increases with acclimation temperature and exceeds the optimal temperature for growth. A final preferendum could not be detected. Although a confounding effect of behavioural fever on temperature preference could not be entirely excluded, thermal preference and thermal optima for physiological processes seem to be unrelated in Dover sole.

  11. Thermal Preference of Juvenile Dover Sole (Solea solea) in Relation to Thermal Acclimation and Optimal Growth Temperature

    PubMed Central

    Schram, Edward; Bierman, Stijn; Teal, Lorna R.; Haenen, Olga; van de Vis, Hans; Rijnsdorp, Adriaan D.

    2013-01-01

    Dover sole (Solea solea) is an obligate ectotherm with a natural thermal habitat ranging from approximately 5 to 27°C. Thermal optima for growth lie in the range of 20 to 25°C. More precise information on thermal optima for growth is needed for cost-effective Dover sole aquaculture. The main objective of this study was to determine the optimal growth temperature of juvenile Dover sole (Solea solea) and in addition to test the hypothesis that the final preferendum equals the optimal growth temperature. Temperature preference was measured in a circular preference chamber for Dover sole acclimated to 18, 22 and 28°C. Optimal growth temperature was measured by rearing Dover sole at 19, 22, 25 and 28°C. The optimal growth temperature resulting from this growth experiment was 22.7°C for Dover sole with a size between 30 to 50 g. The temperature preferred by juvenile Dover sole increases with acclimation temperature and exceeds the optimal temperature for growth. A final preferendum could not be detected. Although a confounding effect of behavioural fever on temperature preference could not be entirely excluded, thermal preference and thermal optima for physiological processes seem to be unrelated in Dover sole. PMID:23613837

  12. The effects of feeding on the swimming performance and metabolic response of juvenile southern catfish, Silurus meridionalis, acclimated at different temperatures.

    PubMed

    Pang, Xu; Cao, Zhen-Dong; Peng, Jiang-Lan; Fu, Shi-Jian

    2010-02-01

    To test whether the effects of feeding on swimming performance vary with acclimation temperature in juvenile southern catfish (Silurus meridionalis), we investigated the specific dynamic action (SDA) and swimming performance of fasting and feeding fish at acclimation temperatures of 15, 21, 27, and 33 degrees C. Feeding had no effect on the critical swimming speeding (U(crit)) of fish acclimated at 15 degrees C (p=0.66), whereas it elicited a 12.04, 18.70, and 20.98% decrease in U(crit) for fish acclimated at 21, 27 and 33 degrees C, respectively (p<0.05). Both the maximal postprandial oxygen consumption rate (VO2peak) and the active metabolic rate (VO2active, maximal aerobic sustainable metabolic rate of fasting fish) increased significantly with temperature (p<0.05). The postprandial maximum oxygen consumption rates during swimming (VO2max) were higher than the VO2active of fasting fish at all temperature groups (p<0.05). The VO2max increased with increasing temperature, but the relative residual metabolic scope (VO2max-VO2peak) during swimming decreased with increasing in temperature. The present study showed that the impairment of postprandial swimming performance increased with increasing temperature due to the unparalleled changes in the catfish's central cardio-respiratory, peripheral digestive and locomotory capacities. The different metabolic strategies of juvenile southern catfish at different temperatures may relate to changes in oxygen demand, imbalances in ion fluxes and dissolved oxygen levels with changes in temperature. 2009 Elsevier Inc. All rights reserved.

  13. Evaluation of fast green FCF dye for non-lethal detection of integumental injuries in juvenile chinook salmon oncorhynchus tshawytscha

    USGS Publications Warehouse

    Elliott, D.G.; Conway, C.M.; Applegate, L.M.J.

    2009-01-01

    A rapid staining procedure for detection of recent skin and fin injuries was tested in juvenile Chinook salmon Oncorhynchus tshawytscha. Immersion of anesthetized fish for 1 min in aerated aqueous solutions of the synthetic food dye fast green FCF (Food Green 3) at concentrations of 0.1 to 0.5% produced consistent and visible staining of integumental injuries. A 0.1% fast green concentration was satisfactory for visual evaluation of injuries, whereas a 0.5% concentration was preferable for digital photography. A rinsing procedure comprised of two 30 s rinses in fresh water was most effective for removal of excess stain after exposure of fish. Survival studies in fresh water and seawater and histopathological analyses indicated that short exposures to aqueous solutions of fast green were non-toxic to juvenile Chinook salmon. In comparisons of the gross and microscopic appearance of fish exposed to fast green at various times after injury, the dye was observed only in areas of the body where epidermal disruption was present as determined by scanning electron microscopy. No dye was observed in areas where epidermal integrity had been restored. Further comparisons showed that fast green exposure produced more consistent and intense staining of skin injury sites than a previously published procedure using trypan blue. Because of its relatively low cost, ease of use and the rapid and specific staining of integumental injuries, fast green may find widespread application in fish health and surface injury evaluations. ?? Inter-Research 2009.

  14. Spring Chinook Salmon Oncorhynchus tshawytscha Supplementation in the Clearwater Subbasin ; Nez Perce Tribal Hatchery Monitoring and Evaluation Project, 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backman, Thomas; Sprague, Sherman; Bretz, Justin

    The Nez Perce Tribal Hatchery (NPTH) program has the following goals (BPA, et al., 1997): (1) Protect, mitigate, and enhance Clearwater Subbasin anadromous fish resources; (2) Develop, reintroduce, and increase natural spawning populations of salmon within the Clearwater Subbasin; (3) Provide long-term harvest opportunities for Tribal and non-Tribal anglers within Nez Perce Treaty lands within four generations (20 years) following project initiation; (4) Sustain long-term fitness and genetic integrity of targeted fish populations; (5) Keep ecological and genetic impacts to non-target populations within acceptable limits; and (6) Promote Nez Perce Tribal management of Nez Perce Tribal Hatchery Facilities and productionmore » areas within Nez Perce Treaty lands. The NPTH program was designed to rear and release 1.4 million fall and 625,000 spring Chinook salmon. Construction of the central incubation and rearing facility NPTH and spring Chinook salmon acclimation facilities were completed in 2003 and the first full term NPTH releases occurred in 2004 (Brood Year 03). Monitoring and evaluation plans (Steward, 1996; Hesse and Cramer, 2000) were established to determine whether the Nez Perce Tribal Hatchery program is achieving its stated goals. The monitoring and evaluation action plan identifies the need for annual data collection and annual reporting. In addition, recurring 5-year program reviews will evaluate emerging trends and aid in the determination of the effectiveness of the NPTH program with recommendations to improve the program's implementation. This report covers the Migratory Year (MY) 2007 period of the NPTH Monitoring & Evaluation (M&E) program. There are three NPTH spring Chinook salmon treatment streams: Lolo Creek, Newsome Creek, and Meadow Creek. In 2007, Lolo Creek received 140,284 Brood Year (BY) 2006 acclimated pre-smolts at an average weight of 34.9 grams per fish, Newsome Creek received 77,317 BY 2006 acclimated pre-smolts at an average of 24

  15. A rapid assessment method to estimate the distribution of juvenile Chinook Salmon in tributary habitats using eDNA and occupancy estimation

    USGS Publications Warehouse

    Matter, A.; Falke, Jeffrey A.; López, J. Andres; Savereide, James W.

    2018-01-01

    Identification and protection of water bodies used by anadromous species are critical in light of increasing threats to fish populations, yet often challenging given budgetary and logistical limitations. Noninvasive, rapid‐assessment, sampling techniques may reduce costs and effort while increasing species detection efficiencies. We used an intrinsic potential (IP) habitat model to identify high‐quality rearing habitats for Chinook Salmon Oncorhynchus tshawytscha and select sites to sample throughout the Chena River basin, Alaska, for juvenile occupancy using an environmental DNA (eDNA) approach. Water samples were collected from 75 tributary sites in 2014 and 2015. The presence of Chinook Salmon DNA in water samples was assessed using a species‐specific quantitative PCR (qPCR) assay. The IP model predicted over 900 stream kilometers in the basin to support high‐quality (IP ≥ 0.75) rearing habitat. Occupancy estimation based on eDNA samples indicated that 80% and 56% of previously unsampled sites classified as high or low IP (IP < 0.75), respectively, were occupied. The probability of detection (p) of Chinook Salmon DNA from three replicate water samples was high (p = 0.76) but varied with drainage area (km2). A power analysis indicated high power to detect proportional changes in occupancy based on parameter values estimated from eDNA occupancy models, although power curves were not symmetrical around zero, indicating greater power to detect positive than negative proportional changes in occupancy. Overall, the combination of IP habitat modeling and occupancy estimation provided a useful, rapid‐assessment method to predict and subsequently quantify the distribution of juvenile salmon in previously unsampled tributary habitats. Additionally, these methods are flexible and can be modified for application to other species and in other locations, which may contribute towards improved population monitoring and management.

  16. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at differentmore » areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.« less

  17. Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Thomas J.; Skalski, John R.

    2010-10-01

    The purpose of this compliance study was to estimate dam passage survival of yearling Chinook salmon and steelhead smolts at The Dalles Dam during spring 2010. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated smolt passage survival from the forebay boat-restricted zone (BRZ) to the tailrace BRZ at The Dalles Dam, as well as the forebay residence time, tailrace egress, and spill passage efficiency (SPE), as required in themore » Columbia Basin Fish Accords. A virtual/paired-release design was used to estimate dam passage survival at The Dalles Dam. The approach included releases of acoustic-tagged smolts above John Day Dam that contributed to the formation of a virtual release at the face of The Dalles Dam. A survival estimate from this release was adjusted by a paired release below The Dalles Dam. A total of 4,298 yearling Chinook salmon and 4,309 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation. The dam passage survival results are summarized as follows: Yearling Chinook Salmon 0.9641 (SE = 0.0096) and Steelhead 0.9535 (SE = 0.0097).« less

  18. Emigration of Natural and Hatchery Naco x (Chinook salmon; Oncorhynchus tshawytscha) and Heeyey (Steelhead; Oncorhynchus mykiss) Smolts from the Imnaha River, Oregon from 5 October 2006 to 21 June 2007, Annual Report 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, Brian; Espinosa, Neal

    2009-02-18

    drainages and past dams on the Snake River and Columbia River. In season indices of migration strength and migration timing are provided for the run-at large at key monitoring sites. Marked smolts are utilized to measure travel time and estimate survival through key index reaches. Fish quality and descaling measures are recorded at each monitoring site and provide indicators of the health of the run. Co-managers in the Imnaha River subbasin (Ecovista 2004) have identified the need to collect information on life history, migration patterns, juvenile emigrant abundance, reach specific smolt survivals, and Smolt-to-Adult Return rates (SAR's) for both Heeyey (steelhead) and Naco x (Chinook salmon) smolts. The current study provides information related to the majority of the high priority data needs. Current funding does not allow for determination of a total (annual) juvenile emigrant abundance and lack of adult passive integrated transponder (PIT) tag detectors at the mouth of the Imnaha River results in the inability to calculate tributary specific SAR's. Information is shared with the Fish Passage Center (FPC) on a real time basis during the spring emigration period. The Bonneville Power Administration (BPA) and the United States Fish and Wildlife Service (USFWS) contracted the NPT to monitor emigration timing and tag up to 19,000 emigrating natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolts from the Imnaha River with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 2007 marked the 16th year of emigration studies on the Imnaha River, and the 14th year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Evaluate effects of flow, temperature and other environmental factors on juvenile migration timing. (2) Determine emigration timing, travel time, and in-river survival of PIT tagged hatchery Naco x (Chinook salmon) smolts released at the Imnaha River acclimation

  19. Costs of living for juvenile Chinook salmon (Oncorhynchus tshawytscha) in an increasingly warming and invaded world

    USGS Publications Warehouse

    Kuehne, Lauren M.; Olden, Julian D.; Duda, Jeffrey J.

    2012-01-01

    Rapid environmental change in freshwater ecosystems has created a need to understand the interactive effects of multiple stressors, with temperature and invasive predators identified as key threats to imperiled fish species. We tested the separate and interactive effects of water temperature and predation by non-native smallmouth bass (Micropterus dolomieu) on the lethal (mortality) and sublethal (behavior, physiology, and growth) effects for juvenile Chinook salmon (Oncorhynchus tshawytscha) in seminatural stream channel experiments. Over 48 h trials, there was no difference in direct predation with warmer temperatures, but significant interactive effects on sublethal responses of juvenile salmon. Warmer temperatures resulted in significantly stronger and more variable antipredator responses (surface shoaling and swimming activity), while physiological indicators (plasma glucose, plasma cortisol) suggested suppression of physiological mechanisms in response to the combined stressors. These patterns corresponded with additive negative growth in predation, temperature, and combined treatments. Our results suggest that chronic increases in temperature may not increase direct predation over short periods, but can result in significant sublethal costs with negative implications for long-term development, disease resistance, and subsequent size-selective mortality of Pacific salmon.

  20. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation

    NASA Astrophysics Data System (ADS)

    Welch, Megan J.; Watson, Sue-Ann; Welsh, Justin Q.; McCormick, Mark I.; Munday, Philip L.

    2014-12-01

    Behaviour and sensory performance of marine fishes are impaired at CO2 levels projected to occur in the ocean in the next 50-100 years, and there is limited potential for within-generation acclimation to elevated CO2 (refs , ). However, whether fish behaviour can acclimate or adapt to elevated CO2 over multiple generations remains unanswered. We tested for transgenerational acclimation of reef fish olfactory preferences and behavioural lateralization at moderate (656 μatm) and high (912 μatm) end-of-century CO2 projections. Juvenile spiny damselfish, Acanthochromis polyacanthus, from control parents (446 μatm) exhibited an innate avoidance to chemical alarm cue (CAC) when reared in control conditions. In contrast, juveniles lost their innate avoidance of CAC and even became strongly attracted to CAC when reared at elevated CO2 levels. Juveniles from parents maintained at mid-CO2 and high-CO2 levels also lost their innate avoidance of CAC when reared in elevated CO2, demonstrating no capacity for transgenerational acclimation of olfactory responses. Behavioural lateralization was also disrupted for juveniles reared under elevated CO2, regardless of parental conditioning. Our results show minimal potential for transgenerational acclimation in this fish, suggesting that genetic adaptation will be necessary to overcome the effects of ocean acidification on behaviour.

  1. Effects of summer flow augmentation on the migratory behavior and survival of juvenile Snake River fall Chinook salmon. Annual report 2005

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2006-01-01

    This report summarizes results of research activities conducted in 2004 and years previous to aid in the management and recovery of fall Chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall Chinook salmon juveniles for the years 1992-2004. Publication is a high priority of our staff. Publication provides our results to a wide audience, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 1991-02900 that were written or published from 1998 to 2005.

  2. An exploratory assessment of thiamine status in western Alaska Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Honeyfield, Dale C.; Murphy, James M.; Howard, Katherine G.; Strasburger, Wesley W.; Matz, A.C.

    2017-01-01

    This study was conducted to investigate the thiamine status of Chinook salmon Oncorhynchus tshawytscha. Egg thiamine levels in Yukon and Kuskokwim River Chinook were examined in 2001 and 2012. Muscle and liver thiamine in Chinook, coho O. kisutch, chum O. keta, and pink O. gorbuscha salmon were measured in northern Bering Sea juveniles and the percentage of the diet containing thiaminase, an enzyme that destroys thiamine, was calculated. Only 23% of the eggs were thiamine replete (> 8.0 nmol·g-1) in 2012. Seventy-four percent of the eggs had thiamine concentrations (1.5–8.0 nmol·g-1) which can lead to mortality from secondary eff ects of thiamine defi ciency. Only 3% of the eggs had < 1.5 nmol·g-1 associated with overt fry mortality. In 2001 egg thiamine in upper Yukon Chinook was 11.7 nmol·g-1 which was higher than that measured in 2012 (6.2 nmol·g-1) and paralleled Chinook productivity. Total thiamine (nmol·g-1) in Bering Sea Chinook muscle (3.8) was similar to coho (4.15), but lower than in chum (8.9) and pink salmon (9.6). Thiaminase-containing prey in Chinook (63%) and coho (36%) stomachs were elevated compared to those of chum (3%) and pink (5%) salmon. These results provide evidence of egg thiamine being less than fully replete. Thiamine deficiency was not observed in juvenile muscle tissue, but differences were present among species reflecting the percentage of diet containing thiaminase. Additional studies are recommended.

  3. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated

    USGS Publications Warehouse

    Kock, Tobias J.; Tiffan, Kenneth F.; Connor, William P.

    2007-01-01

    During the winter of 2006-07, we radio and passive integrated transponder (PIT) tagged, and released 99 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. All fish were released 10 km upstream of Lower Granite Dam at Granite Point in early November, 2006. Fixed radio telemetry detection sites located in the forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental, Ice Harbor, Bonneville dams, and at Lyle, Washington were used to monitor fish movements and dam passage through early-May 2007. Of the 99 fish released during our study, 80 passed Lower Granite Dam and were detected at downstream detection sites, 37 passed Little Goose Dam, 41 passed Lower Monumental Dam, 31 passed Ice Harbor Dam, 18 passed Lyle, WA, and 13 passed Bonneville Dam. Of the fish that passed Lower Granite Dam in the fall, 63 fish did so during the extended bypass period from November 1 through December 16. Of these fish, 53 were also detected by the PIT-tag interrogation system. Fifteen of the fish that passed Lower Granite Dam in the fall continued to pass lower Snake River dams and exit the system by the end of January. The remaining fish either died, their tags failed, or they resided in Little Goose Reservoir until spring when relatively few continued their seaward migration. Passage of tagged fish past lower Snake River dams generally declined during the winter as temperatures decreased, but increased again in the spring as temperatures and flows increased. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 160 d), and varied by reservoir and time of year. We observed no diel trends in fish passage. Very few fish were detected at PIT-tag interrogation sites in the spring compared to detection by radio telemetry detection sites indicating that fish may have passed via spill. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more

  4. Effects of multiple acute stressors on the predator avoidance ability and physiology of juvenile Chinook salmon

    USGS Publications Warehouse

    Mesa, Matthew G.

    1994-01-01

    Northern squaw fish Ptychocheilus oregonensis are the predominant predators of juvenile Pacific salmonids Oncorhynchus spp. in the Columbia River, and their predation rates are greatest just below dams. Because juvenile salmonids are commonly subjected to multiple stressors at dams in the course of their seaward migration, high predation rates below dams may be due in part to an increase in the vulnerability of stressed fish. I conducted laboratory experiments to examine the predator avoidance ability and physiological stress responses of juvenile chinook salmon O. tshawytscha subjected to treatments (stressors) designed to simulate routine hatchery practices (multiple handlings) or dam passage (multiple agitations). Both stressors resulted in lethargic behavior in the fish, and agitation also caused disorieniation and occasional injury. When equal numbers of stressed and unstressed fish were exposed to northern squawfish for up to 1 h, significantly more stressed fish were eaten, but this effect was not evident during longer exposures. The lack of differential predation in trials lasting up to 24 h can be explained by the rapid development of schooling behavior in the prey, but other possibilities exist, such as changing ratios of stressed and unstressed prey over time. Concentrations of plasma cortisol, glucose, and lactate in fish subjected to multiple stressors were similar and sometimes cumulative, returned to prestress levels within 6-24 h, and correlated poorly with predator avoidance ability. My results suggest that juvenile salmonids are capable of avoiding predators within 1 h after being subjected to multiple acute stressors even though physiological homeostasis may be altered for up to 24 h. Therefore, because juvenile salmonids typically reside in lailrace areas for only a short time after dam passage, measures aimed at reducing physical stress or protecting them as they migrate through dam tailraces may help alleviate the relatively intense predation

  5. The effects of summer flow augmentation on the migratory behavior and survival of juvenile Snake River fall Chinook salmon. Annual report 2003

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Haskell, Craig A.; Connor, William P.

    2005-01-01

    This report summarizes results of research activities conducted in 2002 and years previous to aid in the management and recovery of fall chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. The report is divided into self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2002. Peer-review publication remains a high priority of this research project, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers coauthored by personnel of project 199102900 that were written or published from 1998 to 2003.

  6. Genetic characterization of naturally spawned Snake River fall-run Chinook salmon

    USGS Publications Warehouse

    Marshall, A.R.; Blankenship, H.L.; Connor, W.P.

    1999-01-01

    We sampled juvenile Snake River chinook salmon Oncorhynchus tshawytscha to genetically characterize the endangered Snake River fall-run population. Juveniles from fall and spring–summer lineages coexisted in our sampling areas but were differentiated by large allozyme allele frequency differences. We sorted juveniles by multilocus genotypes into putative fall and spring lineage subsamples and determined lineage composition using maximum likelihood estimation methods. Paired sMEP-1* and PGK-2* genotypes—encoding malic enzyme (NADP+) and phosphoglycerate kinase, respectively—were very effective for sorting juveniles by lineage, and subsamples estimated to be 100% fall lineage were obtained in four annual samples. We examined genetic relationships of these fall lineage juveniles with adjacent populations from the Columbia River and from Lyons Ferry Hatchery, which was established to perpetuate the Snake River fall-run population. Our samples of naturally produced Snake River fall lineage juveniles were most closely aligned with Lyons Ferry Hatchery samples. Although fall-run strays of Columbia River hatchery origin found on spawning grounds threaten the genetic integrity of the Snake River population, juvenile samples (a) showed distinctive patterns of allelic diversity, (b) were differentiated from Columbia River populations, and (c) substantiate earlier conclusions that this population is an important genetic resource. This first characterization of naturally produced Snake River fall chinook salmon provides a baseline for monitoring and recovery planning.

  7. Estimating juvenile Chinook salmon (Oncorhynchus tshawytscha) abundance from beach seine data collected in the Sacramento–San Joaquin Delta and San Francisco Bay, California

    USGS Publications Warehouse

    Perry, Russell W.; Kirsch, Joseph E.; Hendrix, A. Noble

    2016-06-17

    Resource managers rely on abundance or density metrics derived from beach seine surveys to make vital decisions that affect fish population dynamics and assemblage structure. However, abundance and density metrics may be biased by imperfect capture and lack of geographic closure during sampling. Currently, there is considerable uncertainty about the capture efficiency of juvenile Chinook salmon (Oncorhynchus tshawytscha) by beach seines. Heterogeneity in capture can occur through unrealistic assumptions of closure and from variation in the probability of capture caused by environmental conditions. We evaluated the assumptions of closure and the influence of environmental conditions on capture efficiency and abundance estimates of Chinook salmon from beach seining within the Sacramento–San Joaquin Delta and the San Francisco Bay. Beach seine capture efficiency was measured using a stratified random sampling design combined with open and closed replicate depletion sampling. A total of 56 samples were collected during the spring of 2014. To assess variability in capture probability and the absolute abundance of juvenile Chinook salmon, beach seine capture efficiency data were fitted to the paired depletion design using modified N-mixture models. These models allowed us to explicitly test the closure assumption and estimate environmental effects on the probability of capture. We determined that our updated method allowing for lack of closure between depletion samples drastically outperformed traditional data analysis that assumes closure among replicate samples. The best-fit model (lowest-valued Akaike Information Criterion model) included the probability of fish being available for capture (relaxed closure assumption), capture probability modeled as a function of water velocity and percent coverage of fine sediment, and abundance modeled as a function of sample area, temperature, and water velocity. Given that beach seining is a ubiquitous sampling technique for

  8. Efficacy of Single-Suture Incision Closures in Tagged Juvenile Chinook Salmon Exposed to Simulated Turbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, James W.; Deters, Katherine A.; Brown, Richard S.

    2011-09-01

    Reductions in the size of acoustic transmitters implanted in migrating juvenile salmonids have resulted in the use of a shorter incision-one that may warrant only a single suture for closure. However, it is not known whether a single suture will sufficiently hold the incision closed when fish are decompressed and when outward pressure is placed on the surgical site during turbine passage through hydroelectric dams. The objective of this study was to evaluate the effectiveness of single-suture incision closures on five response variables in juvenile Chinook salmon Oncorhynchus tshawytscha that were subjected to simulated turbine passage. An acoustic transmitter (0.43more » g in air) and a passive integrated transponder tag (0.10 g in air) were implanted in each fish; the 6-mm incisions were closed with either one suture or two sutures. After exposure to simulated turbine passage, none of the fish exhibited expulsion of transmitters. In addition, the percentage of fish with suture tearing, incision tearing, or mortal injury did not differ between treatments. Expulsion of viscera through the incision was higher among fish that received one suture (12%) than among fish that received two sutures (1%). The higher incidence of visceral expulsion through single-suture incisions warrants concern. Consequently, for cases in which tagged juvenile salmonidsmay be exposed to turbine passage, we do not recommend the use of one suture to close 6-mm incisions associated with acoustic transmitter implantation.« less

  9. Validation of a freshwater Otolith microstructure pattern for Nisqually Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2011-01-01

    The Nisqually Fall Chinook salmon (Oncorhynchus tshawytscha) population is one of 27 stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem has taken place to assist in recovery of the stock since estuary habitat is a critical transition zone for juvenile fall Chinook salmon. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith microstructure analysis was selected as a tool to examine Chinook salmon life history, growth and residence in the Nisqually River estuary. The purpose of the current study is to incorporate microstructural analysis from the otoliths of juvenile Nisqually Chinook salmon collected at the downstream migrant trap within true freshwater (FW) habitat of the Nisqually River. The results from this analysis confirmed the previously documented Nisqually-specific FW microstructure pattern and revealed a Nisqually-specific microstructure pattern early in development (“developmental pattern”). No inter-annual variation in the microstructure pattern was visually observed when compared to samples from previous years. Furthermore, the Nisqually-specific “developmental pattern” and the FW microstructure pattern used in combination during analysis will allow us to recognize and separate with further confidence future unmarked Chinook salmon otolith collections into Nisqually-origin (natural or unmarked hatchery) and non-Nisqually origin categories. Freshwater mean increment width, growth rate and residence time were also calculated.

  10. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program; Satellite Facilities Operation and Maintenance, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2006-01-01

    conditions prompting an early release. The total mortality for the acclimation period was 49 (0.05 %). The total number of fish released from the acclimation facility during the late period was 105,369. Maintenance and repair activities were conducted at the acclimation facilities in 2005. Facility maintenance work consisted of snow removal, installation of drainage lines, removal of gravel from intake area, installation of new gate at the CCAF, and complete overhaul of 2 travel trailers. The Catherine Creek Adult Capture Facility (CCACF) was put into operation on 11 February 2005. The first adult summer steelhead was captured on 4 March. A total of 190 adult summer steelhead were trapped and released from 4 March to 16 May 2005. Peak arrival at the trap was the week of 8 April. The first adult spring Chinook salmon was captured at CCACF on 6 May 2005. A total of 226 spring Chinook salmon were trapped from 6 May to 8 July 2005. There were 56 adults and 4 jacks unmarked and 136 adult and 30 jack marked spring Chinook salmon trapped. Peak arrival at the trap was the week of 10 June for the unmarked and marked fish. None of the captive broodstock returns were collected for broodstock. Broodstock was collected systematically over the entire return from 31 May to 6 July 2005. Ten of the 34 broodstock collected and transported from CCACF to LGH were unmarked fish trapped. About 18% of the naturally produced adult males and females trapped were taken to LGH for broodstock. One jack was collected for every 5 adult males that were taken to LGH. A total of 30 age 4 and 5 and 4 age 3 fish were transported to LGH for broodstock. The hatchery component of the broodstock was 66.7%. Five weekly spawning surveys were conducted below the weir on Catherine Creek beginning 30 June 2005. During these surveys no live or dead fish were observed. The trap was removed from Catherine Creek on 3 August 2005. Temperatures at the CCACF ranged from -0.1 C on 14 February to 23.7 C on 21 July. The hourly

  11. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabe, Craig D.; Nelson, Douglas D.

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket stylemore » weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition

  12. Dietary Exposure to Individual Polybrominated Diphenyl Ether Congeners BDE-47 and BDE-99 Alters Innate Immunity and Disease Susceptibility in Juvenile Chinook Salmon.

    PubMed

    Arkoosh, Mary R; Van Gaest, Ahna L; Strickland, Stacy A; Hutchinson, Greg P; Krupkin, Alex B; Dietrich, Joseph P

    2015-06-02

    Polybrominated diphenyl ethers (PBDEs), used as commercial flame-retardants, are bioaccumulating in threatened Pacific salmon. However, little is known of PBDE effects on critical physiological functions required for optimal health and survival. BDE-47 and BDE-99 are the predominant PBDE congeners found in Chinook salmon collected from the Pacific Northwest. In the present study, both innate immunity (phagocytosis and production of superoxide anion) and pathogen challenge were used to evaluate health and survival in groups of juvenile Chinook salmon exposed orally to either BDE-47 or BDE-99 at environmentally relevant concentrations. Head kidney macrophages from Chinook salmon exposed to BDE-99, but not those exposed to BDE-47, were found to have a reduced ability in vitro to engulf foreign particles. However, both congeners increased the in vitro production of superoxide anion in head kidney macrophages. Salmon exposed to either congener had reduced survival during challenge with the pathogenic marine bacteria Listonella anguillarum. The concentration response curves generated for these end points were nonmonotonic and demonstrated a requirement for using multiple environmentally relevant PBDE concentrations for effect studies. Consequently, predicting risk from toxicity reference values traditionally generated with monotonic concentration responses may underestimate PBDE effect on critical physiological functions required for optimal health and survival in salmon.

  13. Survival and migration behavior of juvenile salmonids at McNary Dam, 2004, Final report of research

    USGS Publications Warehouse

    Perry, Russell W.; Braatz, Amy C.; Fielding, Scott D.; Lucchesi, Joel N.; Plumb, John M.; Adams, Noah S.; Rondorf, Dennis W.

    2005-01-01

    During 2004, the USGS Columbia River Research Laboratory conducted a study at McNary Dam using radio telemetry to estimate passage and survival parameters of juvenile salmonids. Our primary objective was to estimate these parameters under ambient environmental and operational conditions, and thus project-wide treatments were not implemented. The primary dam operation consisted of “biop” spill, where spill occurred at night between 1800 and 0600 hours, and no spill occurred between 0600 and 1800 hours for the majority of our study period. During the spring study period, we radio-tagged and released 1,896 yearling Chinook salmon and 1,888 juvenile steelhead. During the summer study period, we radio-tagged and released 1,919 subyearling Chinook salmon. All fish were tagged using gastric techniques to implant transmitters weighing 1.58 g for yearling Chinook salmon, 1.93 g for juvenile steelhead, and 0.96 g for subyearling Chinook salmon. Minimum fish sizes were based on a 6.5% tag:fish weight ratio, and the size of tagged fish represented about 91%, 100%, and 17% of the population, respectively for yearling Chinook salmon, juvenile steelhead, and subyearling Chinook salmon. About 60% of radio-tagged fish were released 10 km upstream of McNary Dam at Hat Rock State Park, Oregon, with the remainder released as control groups 400 m downstream of the dam.

  14. Juvenile Salmonid survival, passage, and egress at McNary Dam during tests of temporary spillway weirs, 2009

    USGS Publications Warehouse

    Adams, N.S.; Liedtke, T.L.

    2010-01-01

    The TSWs proved to be a relatively effective way to pass juvenile salmonids at McNary Dam (Summary Tables 1.1, 1.2, and 1.3), as was the case in 2007 and 2008. The TSWs passed about 14% of yearling Chinook salmon and 34% of juvenile steelhead with only 5-10% of total project discharge flowing through the TSWs. The TSWs and adjacent spill bays 16-18 passed 27% of subyearling Chinook salmon in the summer with 6-16% of total project discharge flowing through the TSWs. Based on the number of fish passing per the proportion of water flowing through the spillway (i.e., passage effectiveness), the TSWs were the most effective passage route. Passage effectiveness for fish passing through both TSW structures was 2.0 for yearling Chinook salmon, 5.2 for juvenile steelhead, and 2.7 subyearling Chinook salmon for TSW 20 alone. Higher passage of juvenile steelhead through the TSWs could have resulted from juvenile steelhead being more surface-oriented during migration (Plumb et al. 2004; Beeman et al. 2007; Beeman and Maule 2006). Based on passage performance and effectiveness metrics, TSW 4, located on the north end of the spillway, did not perform as well as TSW 20, located on the south end of the spillway. Passage proportions for TSW 4 were at least half that of the levels observed for TSW 20 for both yearling Chinook salmon and juvenile steelhead. This difference may be attributed to TSW location or other variables such as dam operations. Regardless of which TSW was used by fish passing the dam, survival through both TSWs was high (> 0.98 for paired-release dam survival) for yearling Chinook salmon and juvenile steelhead.

  15. Comparison of 180-degree and 90-degree needle rotation to reduce wound size in PIT-injected juvenile Chinook salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, Amanda J.; Woodley, Christa M.; Karls, Rhonda K.

    2013-04-30

    Animal telemetry, which requires the implantation of passive transponders or active transmitters, is used to monitor and assess fish stock and conservation to gain an understanding of fish movement and behavior. As new telemetry technologies become available, studies of their effects on species of interest are imperative as is development of implantation techniques. In this study, we investigated the effects of bevel rotation (0-, 90-, 180-degree axis rotation) on wound extent, tag loss, and wound healing rates in juvenile Chinook salmon injected with an 8-gauge needle, which is required for implantation of the novel injectable Juvenile Salmon Acoustic Telemetry Systemsmore » (JSATS) acoustic transmitter or large passive integrated transponder (PIT) tags. Although the injection sites were not closed after injection (e.g., with sutures or glue), there were no mortalities, dropped tags, or indications of fungus, ulceration, and/or redness around the wound. On Day 0 and post-implantation Day 7, the 90-degree bevel rotation produced smaller wound extent than the 180-degree bevel rotation. No axis rotation (0-degrees) resulted in the PIT tag frequently misleading or falling out upon injection. The results of this study indicated the 90-degree bevel rotation was the more efficient technique, produced less wound extent. Given the wound extent compared to size of fish, we recommend researchers should consider a 90-degree rotation over the 180-degree rotation in telemetry studies. Highlights •Three degrees of needle rotation were examined for effects in Chinook salmon. •Mortality, tag loss, wound extent, healing, and infection indicators were measured. •There were no mortalities, tag loss, or indications of infection. •The 90-degree needle rotation through Day 7 produced the smallest wound extent.« less

  16. Effects of disturbance on contribution of energy sources to growth of juvenile chinook salmon (Oncorhynchus tshawytscha) in boreal streams

    USGS Publications Warehouse

    Perry, R.W.; Bradford, M.J.; Grout, J.A.

    2003-01-01

    We used stable isotopes of carbon in a growth-dependent tissue-turnover model to quantify the relative contribution of autochthonous and terrestrial energy sources to juvenile chinook salmon (Oncorhynchus tshawytscha) in five small boreal streams tributary to the upper Yukon River. We used a tissue-turnover model because fish did not grow enough to come into isotopic equilibrium with their diet. In two streams, autochthonous energy sources contributed 23 and 41% to the growth of juvenile salmon. In the other three, fish growth was largely due to terrestrial (i.e., allochthonous) energy sources. This low contribution of autochthonous energy appeared to be related to stream-specific disturbances: a recent forest fire impacted two of the streams and the third was affected by a large midsummer spate during the study. These disturbances reduced the relative abundance of herbivorous macroinvertebrates, the contribution of autochthonous material to other invertebrates, and ultimately, the energy flow between stream algae and fish. Our findings suggest that disturbances to streams can be an important mechanism affecting transfer of primary energy sources to higher trophic levels.

  17. Buoyancy compensation of juvenile chinook salmon implanted with two different size dummy transmitters

    USGS Publications Warehouse

    Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2001-01-01

    We investigated the effect of two different sizes of surgically implanted transmitters on the buoyancy compensation of juvenile chinook salmon Oncorhynchus tshawytscha. We determined buoyancy by measuring the density of fish with a filled air bladder in graded salinity baths. In addition, we examined the effect of pressure changes on buoyancy by measuring the pressure reduction (PR) at which fish became neutrally buoyant. We found no significant difference between the density of control and tagged groups, indicating that fish were able to compensate for the transmitter by filling their air bladders. However, both groups of tagged fish had significantly lower PR than control fish. Regression analysis of fish density on PR indicated that density of the tagged groups changed at a higher rate than that of the controls. As a result, tagged fish attained neutral buoyancy with less pressure reduction even though the tagged and control groups exhibited similar densities. This relation was confirmed by using Boyle's law to simulate buoyancy changes with change in depth. Although fish compensated for the transmitter, changes in depth affected the buoyancy of tagged fish more than that of untagged fish. Reduced buoyancy at depth may affect the behavior and physiology of tagged juvenile salmonids, and researchers should be aware of this potential bias in telemetry data. In addition, there was little difference in PR or the slope of the density - PR regression lines between tagged groups. This was caused by the small difference in excess mass (i.e., weight in water) of the two transmitters. Thus, although two transmitters may not weigh the same, their effects on buoyancy may be similar depending on the excess mass.

  18. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    We determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout Oncorhynchus mykiss using rotary screw traps on four streams in the Grande Ronde River basin during the 2001 migratory year (MY 2001) from 1 July 2000 through 30 June 2001. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O. mykiss could be distinguished. An 'early' migrant group left upper rearing areas from 1 July 2000 through 29 January 2001 with a peak in the fall. A 'late' migrant group descended from upper rearing areas from 30more » January 2001 through 30 June 2001 with a peak in the spring. The migrant population of juvenile spring chinook salmon in the upper Grande Ronde River in MY 2001 was very low in comparison to previous migratory years. We estimated 51 juvenile spring chinook migrated out of upper rearing areas with approximately 12% of the migrant population leaving as early migrants to overwinter downstream. In the same migratory year, we estimated 16,067 O. mykiss migrants left upper rearing areas with approximately 4% of these fish descending the upper Grande Ronde River as early migrants. At the Catherine Creek trap, we estimated 21,937 juvenile spring chinook migrants in MY 2001. Of these migrants, 87% left upper rearing areas early to overwinter downstream. We also estimated 20,586 O. mykiss migrants in Catherine Creek with 44% leaving upper rearing areas early to overwinter downstream. At the Lostine River trap, we estimated 13,610 juvenile spring chinook migrated out of upper rearing areas with approximately 77% migrating early. We estimated 16,690 O. mykiss migrated out of the Lostine River with approximately 46% descending the river as early migrants. At the Minam River trap, we estimated 28,209 juvenile spring chinook migrated out of the river with 36% migrating early. During the same period, we estimated 28,113 O. mykiss with

  19. Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha) from Diverse Genetic Stocks and a Large Spatial Extent

    PubMed Central

    Scheuerell, Mark D.; Simenstad, Charles A.; Bottom, Daniel L.

    2016-01-01

    Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010–2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity. PMID:27695094

  20. Estimating Common Growth Patterns in Juvenile Chinook Salmon (Oncorhynchus tshawytscha) from Diverse Genetic Stocks and a Large Spatial Extent.

    PubMed

    Goertler, Pascale A L; Scheuerell, Mark D; Simenstad, Charles A; Bottom, Daniel L

    2016-01-01

    Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010-2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity.

  1. Otolith analysis of pre-restoration habitat use by Chinook salmon in the delta-flats and nearshore regions of the Nisqually River Estuary

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2010-01-01

    The Nisqually Fall Chinook population is one of 27 salmon stocks in the Puget Sound (Washington) evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Extensive restoration of the Nisqually River delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent on the estuary. A pre-restoration baseline that includes the characterization of life history strategies, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and to determine restoration success. Otolith analysis was selected as a tool to examine Chinook salmon life history, growth, and residence in the Nisqually River estuary. Previously funded work on samples collected in 2004 (marked and unmarked) and 2005 (unmarked only) partially established a juvenile baseline on growth rates and length of residence associated with various habitats (freshwater, forested riverine tidal, emergent forested transition, estuarine emergent marsh, delta-flats and nearshore). However, residence times and growth rates for the delta-flats (DF) and nearshore (NS) habitats have been minimally documented due to small sample sizes. The purpose of the current study is to incorporate otolith microstructural analysis using otoliths from fish collected within the DF and NS habitats during sampling years 2004-08 to increase sample size and further evaluate between-year variation in otolith microstructure. Our results from this analysis indicated the delta-flats check (DFCK) on unmarked and marked Chinook samples in 2005-08 varied slightly in appearance from that seen on samples previously analyzed only from 2004. A fry migrant life history was observed on otoliths of unmarked Chinook collected in 2005, 2007, and 2008. Generally, freshwater mean increment width of unmarked fish, on average, was smaller compared to marked

  2. Umatilla Hatchery Satellite Facilities Operation and Maintenance; 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowan, Gerald D.

    1997-06-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow satellite facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead and Three Mile Dam is used for holding and spawning adult fall chinookmore » and coho salmon. Bonifer, Minthorn, Imeques and Thornhollow facilities are operated for acclimation and release of juvenile salmon and summer steelhead. The main goal of acclimation is to reduce stress from trucking prior to release and improve imprinting of juvenile salmonids in the Umatilla River Basin. Juveniles are transported to the acclimation facilities primarily from Umatilla and Bonneville Hatcheries. This report details activities associated with operation and maintenance of the Bonifer, Minthorn, Imeques, Thornhollow and Three Mile Dam facilities in 1996.« less

  3. Early life history and survival of natural subyearling fall chinook salmon in the Snake and Clearwater rivers in 1995

    USGS Publications Warehouse

    Connor, William P.; Bjornn, Theodore C.; Burge, Howard L.; Garcia, Aaron P.; Rondorf, Dennis W.

    1997-01-01

    The objectives of this segment of our study were to (1) describe the early life history characteristics of naturally produced subyearling fall chinook salmon in the Snake and Clearwater rivers, and (2) estimate survival for juvenile fall chinook salmon emigrating from the Snake and Clearwater rivers to the tail race of Lower Granite Dam.

  4. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde Riiver Basin : Fish Research Project Oregon : Annual Progress Report 1 September 1995 to 1 August 1996.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian C.; Carmichael, Richard W.; Keefe, MaryLouise

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grandemore » Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek.« less

  5. Endangered winter-run Chinook salmon rely on diverse rearing habitats in a highly altered landscape

    DOE PAGES

    Phillis, Corey C.; Sturrock, Anna M.; Johnson, Rachel C.; ...

    2017-11-24

    Protecting habitats for imperiled species is central to conservation efforts. However, for migratory species, identifying juvenile habitats that confer success requires tracking individuals to reproduction. Here in this paper, we used otolith strontium isotope ratios ( 87Sr/ 86Sr) to reconstruct juvenile habitat use by endangered Sacramento River winter-run Chinook salmon that survived to adulthood. The isotope data revealed that 44–65% of surviving adults reared in non-natal habitats, most of which is not designated as critical habitat under the Endangered Species Act. Juveniles entered these non-natal habitats at small sizes, yet left freshwater at a similar size to those that rearedmore » in the mainstem Sacramento River, suggesting these alternate rearing habitats provide suitable growth conditions. These findings indicate Sacramento River winter-run Chinook salmon rely on rearing habitats across a broader geographic region than previously known, potentially opening up greater restoration and conservation opportunities for species recovery.« less

  6. Endangered winter-run Chinook salmon rely on diverse rearing habitats in a highly altered landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillis, Corey C.; Sturrock, Anna M.; Johnson, Rachel C.

    Protecting habitats for imperiled species is central to conservation efforts. However, for migratory species, identifying juvenile habitats that confer success requires tracking individuals to reproduction. Here in this paper, we used otolith strontium isotope ratios ( 87Sr/ 86Sr) to reconstruct juvenile habitat use by endangered Sacramento River winter-run Chinook salmon that survived to adulthood. The isotope data revealed that 44–65% of surviving adults reared in non-natal habitats, most of which is not designated as critical habitat under the Endangered Species Act. Juveniles entered these non-natal habitats at small sizes, yet left freshwater at a similar size to those that rearedmore » in the mainstem Sacramento River, suggesting these alternate rearing habitats provide suitable growth conditions. These findings indicate Sacramento River winter-run Chinook salmon rely on rearing habitats across a broader geographic region than previously known, potentially opening up greater restoration and conservation opportunities for species recovery.« less

  7. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Gregory W; Dauble, Dennis D; Chamness, Mickie A

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs.

  8. Reconstructing the Migratory Behavior and Long-Term Survivorship of Juvenile Chinook Salmon under Contrasting Hydrologic Regimes

    DOE PAGES

    Sturrock, Anna M.; Wikert, J. D.; Heyne, Timothy; ...

    2015-05-20

    The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith 87Sr/ 86Sr in adult Chinook salmon (Oncorhynchus tshawytcha) returningmore » to the Stanislaus River in the California Central Valley (USA) to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000) and drier (2003) year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts) to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10%) and greater smolt contributions in the drier year (13% vs. 44%). In conclusion, these data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate.« less

  9. Reconstructing the Migratory Behavior and Long-Term Survivorship of Juvenile Chinook Salmon under Contrasting Hydrologic Regimes

    PubMed Central

    Sturrock, Anna M.; Wikert, J. D.; Heyne, Timothy; Mesick, Carl; Hubbard, Alan E.; Hinkelman, Travis M.; Weber, Peter K.; Whitman, George E.; Glessner, Justin J.; Johnson, Rachel C.

    2015-01-01

    The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith 87Sr/86Sr in adult Chinook salmon (Oncorhynchus tshawytcha) returning to the Stanislaus River in the California Central Valley (USA) to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000) and drier (2003) year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts) to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10%) and greater smolt contributions in the drier year (13% vs. 44%). These data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate. PMID:25992556

  10. Reconstructing the Migratory Behavior and Long-Term Survivorship of Juvenile Chinook Salmon under Contrasting Hydrologic Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturrock, Anna M.; Wikert, J. D.; Heyne, Timothy

    The loss of genetic and life history diversity has been documented across many taxonomic groups, and is considered a leading cause of increased extinction risk. Juvenile salmon leave their natal rivers at different sizes, ages and times of the year, and it is thought that this life history variation contributes to their population sustainability, and is thus central to many recovery efforts. However, in order to preserve and restore diversity in life history traits, it is necessary to first understand how environmental factors affect their expression and success. We used otolith 87Sr/ 86Sr in adult Chinook salmon (Oncorhynchus tshawytcha) returningmore » to the Stanislaus River in the California Central Valley (USA) to reconstruct the sizes at which they outmigrated as juveniles in a wetter (2000) and drier (2003) year. We compared rotary screw trap-derived estimates of outmigrant timing, abundance and size with those reconstructed in the adults from the same cohort. This allowed us to estimate the relative survival and contribution of migratory phenotypes (fry, parr, smolts) to the adult spawning population under different flow regimes. Juvenile abundance and outmigration behavior varied with hydroclimatic regime, while downstream survival appeared to be driven by size- and time-selective mortality. Although fry survival is generally assumed to be negligible in this system, >20% of the adult spawners from outmigration year 2000 had outmigrated as fry. In both years, all three phenotypes contributed to the spawning population, however their relative proportions differed, reflecting greater fry contributions in the wetter year (23% vs. 10%) and greater smolt contributions in the drier year (13% vs. 44%). In conclusion, these data demonstrate that the expression and success of migratory phenotypes vary with hydrologic regime, emphasizing the importance of maintaining diversity in a changing climate.« less

  11. The Effects of Neutrally Buoyant, Externally Attached Transmitters on Swimming Performance and Predator Avoidance of Juvenile Chinook Salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janak, Jill M.; Brown, Richard S.; Colotelo, Alison HA

    2012-08-01

    The presence of an externally attached telemetry tag is often associated with the potential for impaired swimming performance (i.e., snags and drag) as well as increased susceptibility to predation, specifically for smaller fish. The effects on swimming performance due to the presence of a neutrally buoyant externally attached acoustic transmitter were examined by comparing critical swimming speeds (Ucrit) for juvenile Chinook salmon tagged with two different neutrally buoyant external transmitters (Type A and B), nontagged individuals, and those surgically implanted with the current JSATS acoustic transmitter. Fish tagged with the Type A and B designs had lower Ucrit when comparedmore » to nontagged individuals. However, there was no difference in Ucrit among fish tagged with Type A or B designs compared to those with surgically implanted tags. Further testing was then conducted to determine if predator avoidance ability was affected due to the presence of Type A tags when compared to nontagged fish. No difference was detected in the number of tagged and nontagged fish consumed by rainbow trout throughout the predation trials. The results of this study support the further testing on the efficacy of a neutrally buoyant externally attached telemetry tag for survival studies involving juvenile salmonids passing through hydro turbines.« less

  12. Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam

    USGS Publications Warehouse

    Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B

    2016-01-01

    Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.

  13. Tradeoffs between homing and habitat quality for spawning site selection by hatchery-origin Chinook salmon

    USGS Publications Warehouse

    Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2013-01-01

    Spawning site selection by female salmon is based on complex and poorly understood tradeoffs between the homing instinct and the availability of appropriate habitat for successful reproduction. Previous studies have shown that hatchery-origin Chinook salmon (Oncorhynchus tshawytscha) released from different acclimation sites return with varying degrees of fidelity to these areas. To investigate the possibility that homing fidelity is associated with aquatic habitat conditions, we quantified physical habitat throughout 165 km in the upper Yakima River basin (Washington, USA) and mapped redd and carcass locations from 2004 to 2008. Principal components analysis identified differences in substrate, cover, stream width, and gradient among reaches surrounding acclimation sites, and canonical correspondence analysis revealed that these differences in habitat characteristics were associated with spatial patterns of spawning (p < 0.01). These analyses indicated that female salmon may forego spawning near their acclimation area if the surrounding habitat is unsuitable. Evaluating the spatial context of acclimation areas in relation to surrounding habitat may provide essential information for effectively managing supplementation programs and prioritizing restoration actions.

  14. Economics of Fishery Failure: The Fall of the King-Analysis of U.S. West Coast Chinook Salmon (Oncorhyncus Tshawytscha)

    DTIC Science & Technology

    2011-09-01

    anadromous fish in the Columbia River System River Basin (From: NPPC, 1992). ........................................................6 Figure 5. Major...needed to travel for stream-type species (Gilbert, 1913). The majority of Chinook spawn in the middle and upper main stems of rivers and in larger...distribution and migration 4 Upon leaving the rivers of Oregon, Washington, and British Columbia, juvenile Chinook move up the coast in a

  15. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.

    This report presents survival, behavioral, and fish passage results for tagged yearling Chinook salmon and juvenile steelhead as part of a survival study conducted at John Day Dam during spring 2011. This study was designed to evaluate the passage and survival of yearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a paired-release survival model.

  16. Diet, feeding patterns, and prey selection of subyearling Atlantic salmon (Salmo salar) and subyearling chinook salmon (Oncorhynchus tshawytscha) in a tributary of Lake Ontario

    USGS Publications Warehouse

    Johnson, J. H.; Nash, K. J.; Chiavelli, R. A.; DiRado, J. A.; Mackey, G. E.; Knight, J. R.; Diaz, A. R.

    2017-01-01

    Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi-national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.

  17. Performance Assessment of Bi-Directional Knotless Tissue-Closure Device in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2010 - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodley, Christa M.; Bryson, Amanda J.; Carpenter, Scott M.

    2012-09-10

    In 2010, researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) conducted a compliance monitoring study—the Lower Columbia River Acoustic Transmitter Investigations of Dam Passage Survival and Associated Metrics 2010 (Carlson et al. in preparation)—for the U.S. Army Corps of Engineers (USACE), Portland District. The purpose of the compliance study was to evaluate juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) passage routes and survival through the lower three Columbia River hydroelectric facilities as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp; NOAA Fisheries 2008) and the Columbia Basin Fishmore » Accords (Fish Accords; 3 Treaty Tribes and Action Agencies 2008).« less

  18. Effects of routine handling and tagging procedures on physiological stress responses in juvenile chinook salmon

    USGS Publications Warehouse

    Sharpe, C.S.; Thompson, D.A.; Blankenship, H.L.; Schreck, C.B.

    1998-01-01

    Juvenile chinook salmon Oncorhynchus tshawytscha were subjected to handling and tagging protocols typical of normal hatchery operations and monitored for their physiological response to stress. Treatments included coded-wire-tagging, counting, ventral fin clipping, adipose fin clipping, and a procedure simulating a pond split. Treatment fish were also subjected to a standardized stress challenge (1 h confinement) to evaluate their ability to deal with disturbances subsequent to a handling or tagging procedure. Circulating levels of cortisol and glucose were used as indicators of stress. Each of the treatments elicited very similar responses among treatment groups. Cortisol increased from resting levels of about 20 ng/mL to about 90 ng/mL by 1 h poststress and returned to near resting levels by 8 h poststress. Glucose levels increased from 50 mg/dL to about 80 mg/dL by 1 h poststress and remained elevated for much of the experiment. The cortisol and glucose responses to the confinement stress did not differ over time or among treatments. However, the confinement stress results do suggest a small but significant cumulative response, indicating small residual effects of the original handling protocols. No deaths were noted among treatment groups.

  19. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon leftmore » the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  20. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Richard W.

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2001.

  1. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Program, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Richard W.

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2000.

  2. Climate variability and the collapse of a Chinook salmon stock (Invited)

    NASA Astrophysics Data System (ADS)

    Lindley, S.; Mohr, M.; Peterson, W. T.; Grimes, C.; Stein, J.; Anderson, J.; Botsford, L. W.; Bottom, D.; Busack, C.; Collier, T.; Ferguson, J.; Garza, C.; Grover, A.; Hankin, D.; Kope, R.; Lawson, P.; Low, A.; Macfarlane, B.; Moore, K.; Palmer-Zwahlen, M.; Schwing, F. B.; Smith, J.; Tracy, C.; Webb, R. S.; Wells, B.; Williams, T.

    2009-12-01

    As recently as 2002, nearly 1.5 million Sacrament River fall Chinook (SRFC) were caught in fisheries or returned to the Sacramento River basin to spawn. Only 66,000 spawners returned to natural areas and hatcheries in 2008. As a result of this dramatic decline, fisheries for Chinook salmon off California and Oregon were closed to protect SRFC in 2008 and 2009. In this paper, we show that the proximate cause of this unprecedented collapse was unusual but perhaps not unprecedented oceanographic conditions in the coastal ocean that created poor feeding conditions for juvenile salmon. The ultimate cause of the collapse may be the declining resilience of the Central Valley chinook complex that has been driven by a century and a half of land and water development. A simple conceptual model illustrates how the dynamics of a salmon population supplemented by hatchery production are influenced by trends in freshwater environmental quality, hatchery production, fitness, and climate. The model predicts that SRFC will recover to higher levels of abundance when ocean conditions improve (which may already be happening), only to decline sharply when ocean conditions again turn poor. Improving the sustainability of the Chinook salmon fishery depends on reversing trends in freshwater and estuarine habitat quality and quantity, which should also benefit runs of Chinook protected by the Endangered Species Act. Ecosystem-based management and ecological risk assessment will be required to make progress on these challenging problems, which are being exacerbated by climate change and human development.

  3. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.

    This report presents survival, behavioral, and fish passage results for yearling and subyearling Chinook salmon smolts and juvenile steelhead tagged with JSATS acoustic micro-transmitters as part of a survival study conducted at John Day Dam during 2010. This study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a single-release survival estimate model.

  4. Characterization of estuary use by Nisqually Hatchery Chinook based on Otolith analysis

    USGS Publications Warehouse

    Lind-Null, Angie M.; Larsen, Kim A.; Reisenbichler, Reg

    2008-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem are planned to assist in recovery of the stock. A pre-restoration baseline including life history types, estuary residence time, growth rates, and habitat use are needed to evaluate the potential response of hatchery and wild Chinook salmon to restoration. Otolith analysis has been selected as a means to examine Chinook salmon life history, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: 1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, 2) compare pre- and post- restoration residence times and growth rates, 3) suggest whether estuary restoration yields substantial benefits for Chinook salmon through (1) and (2), and 4) compare differences in habitat use between hatchery and wild Chinook to further protect ESA listed stock. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile hatchery Chinook salmon are generally released as smolts that move quickly through the delta with much shorter residence times than for many wild fish and are not dependent on the delta as nursery habitat (Myers and Horton 1982; Mace 1983; Levings et al. 1986). The purpose of this study is to use and

  5. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, October 20, 1999 to June 15, 2000 : 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter J.

    2002-12-01

    This report details the smolt performance of natural and hatchery chinook salmon and steelhead from the Imnaha River to the Snake River and Columbia River dams during migration year 2000. Flow conditions in the Imnaha River and Snake River were appreciably lower during May and June in 2000, compared to historic levels at gauging stations, but flow conditions in the Imnaha and Snake River were above average during April. Overall, water conditions for the entire Columbia River were characterized by the Fish Passage Center as below normal levels. Spill occurred continuously at Lower Granite Dam (LGR), Little Goose Dam (LGO),more » and Lower Monumental Dam (LMO) from April 5, April 10, and April 4, respectively, to June 20, and encompassed the periods of migration of Imnaha River juvenile chinook salmon and steelhead, with a few exceptions. Outflow in the tailraces of LGR, LGO, and LMO decreased in May and June while temperatures increased. Chinook salmon and steelhead were captured using rotary screw traps at river kilometer (rkm) 74 and 7 during the fall from October 20 to November 24, 1999, and during the spring period from February 26 to June 15, 2000, at rkm 7. Spring trapping information was reported weekly to the Fish Passage Center's Smolt Monitoring Program. A portion of these fish were tagged weekly with passive integrated transponder (PIT) tags and were detected migrating past interrogation sites at Snake River and Columbia River dams. Survival of PIT tagged fish was estimated with the Survival Using Proportional Hazards model (SURPH model). Estimated survival of fall tagged natural chinook (with {+-} 95% confidence intervals in parenthesis) from the upper Imnaha (rkm 74) to LGR was 29.6% ({+-} 2.8 ). Natural chinook salmon tagged in the fall in the lower Imnaha River at rkm 7, which over wintered in the Snake River, had an estimated survival of 36.8% ({+-} 2.9%) to LGR. Spring tagged natural chinook salmon from the lower site had an estimated survival of

  6. Influence of Incision Location on Transmitter Loss, Healing, Incision Lengths, Suture Retention, and Growth of Juvenile Chinook Salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panther, Jennifer L.; Brown, Richard S.; Gaulke, Greggory L.

    2010-05-11

    In this study, conducted by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District, we measured differences in survival and growth, incision openness, transmitter loss, wound healing, and erythema among abdominal incisions on the linea alba, lateral and parallel to the linea alba (muscle-cutting), and following the underlying muscle fibers (muscle-sparing). A total of 936 juvenile Chinook salmon were implanted with both Juvenile Salmon Acoustic Tracking System transmitters (0.43 g dry) and passive integrated transponder tags. Fish were held at 12°C (n = 468) or 20°C (n = 468) and examined once weekly over 98 days.more » We found survival and growth did not differ among incision groups or between temperature treatment groups. Incisions on the linea alba had less openness than muscle-cutting and muscle-sparing incisions during the first 14 days when fish were held at 12°C or 20°C. Transmitter loss was not different among incision locations by day 28 when fish were held at 12°C or 20°C. However, incisions on the linea alba had greater transmitter loss than muscle-cutting and muscle-sparing incisions by day 98 at 12°C. Results for wound closure and erythema differed among temperature groups. Results from our study will be used to improve fish-tagging procedures for future studies using acoustic or radio transmitters.« less

  7. Influence of Incision Location on Transmitter Loss, Healing, Survival, Growth, and Suture Retention of Juvenile Chinook Salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panther, Jennifer L.; Brown, Richard S.; Gaulke, Greg L.

    2011-11-01

    Fisheries research involving surgical implantation of transmitters necessitates the use of methods that minimize transmitter loss and fish mortality and optimize healing of the incision. We evaluated the effects of three incision locations on transmitter loss, healing, survival, growth, and suture retention in juvenile Chinook salmon Oncorhynchus tshawytscha. The three incision locations were (1) on the linea alba (LA incision), (2) adjacent and parallel to the LA (muscle-cutting [MC] incision), and (3) extending from the LA towards the dorsum at a 45° angle, between the parallel lines of myomeres (muscle-sparing [MS] incision). A Juvenile Salmon Acoustic Telemetry System acoustic transmittermore » (0.44 g in air) and a passive integrated transponder tag (0.10 g in air) were implanted into each fish (total N = 936 fish). The fish were held at 12°C or 20°C and were examined weekly for 98 d. The progression of healing among incision locations and the variability in transmitter loss made it difficult to identify one incision location as the best choice. The LA incisions had a much smaller wound extent (area of visible subepidermal tissue) than MC and MS incisions during the first 28 d of the study. In both temperature treatments, apposition of incisions through day 14 was better for LA incisions than for MC and MS incisions. However, MC and MS incisions were less likely than LA incisions to reopen over time and thus were less likely to allow transmitter loss through the incision.« less

  8. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Richard W.

    2003-03-01

    Permit Number 1011 (formerly Permit No. 973) authorized ODFW to take listed spring chinook salmon juveniles from Catherine Creek and the Lostine and Grande Ronde rivers for scientific research and enhancement purposes. Special condition 2a specified the need for an annual report prior to initiation of next years work.

  9. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Richard W.

    2003-03-01

    Permit Number 1011 (formerly Permit No. 973) authorized ODFW to take listed spring chinook salmon juveniles from Catherine Creek and the Lostine and Grande Ronde rivers for scientific research and enhancement purposes. Special condition 2a specified the need for an annual report prior to initiation of next year's work.

  10. Bactericidal activity of juvenile chinook salmon macrophages against Aeromonas salmonicida after exposure to live or heat-killed Renibacterium salmoninarum or to soluble proteins produced by R. salmoninarum

    USGS Publications Warehouse

    Siegel, D.C.; Congleton, J.L.

    1997-01-01

    Macrophages isolated from the anterior kidney of juvenile chinook salmon Oncorhynchus tshawytscha in 96-well microtiter plates were exposed for 72 h to 0, 105, or 106 live or heat-killed Renibacterium salmoninarum cells per well or to 0, 0.1, 1.0, or 10 ??g/mL of R. salmoninarum soluble proteins. After treatment, the bactericidal activity of the macrophages against Aerornonas salmonicida was determined by a colorimetric assay based on the reduction of the tetrazolium dye MTT to formazan by viable bacteria. The MTT assay was modified to allow estimation of the percentage of bacteria killed by reference to a standard curve relating the number of bacteria added to microtiter wells to absorbance by formazan at 600 nm. The live and heat-killed R. salmoninarum treatments significantly (P < 0.001) increased killing of A. salmonicida by chinook salmon macrophages. In each of the five trials, significantly (P < 0.05) greater increases in killing occurred after exposure to 105 R. salmoninarum cells than to 106 R. salmoninarum cells per well. In contrast, treatment of macrophages with 10 ??g/mL R. salmoninarum soluble proteins significantly (P < 0.001) decreased killing of A. salmonicida, but treatment with lower doses did not. These results show that the bactericidal activity of chinook salmon macrophages is stimulated by exposure to R. salmoninarum cells at lower dose levels but inhibited by exposure to R. salmoninarum cells or soluble proteins at higher dose levels.

  11. A multi-year analysis of spillway survival for juvenile salmonids as a function of spill bay operations at McNary Dam, Washington and Oregon, 2004-09

    USGS Publications Warehouse

    Adams, Noah S.; Hansel, Hal C.; Perry, Russell W.; Evans, Scott D.

    2012-01-01

    We analyzed 6 years (2004-09) of passage and survival data collected at McNary Dam to examine how spill bay operations affect survival of juvenile salmonids passing through the spillway at McNary Dam. We also examined the relations between spill bay operations and survival through the juvenile fish bypass in an attempt to determine if survival through the bypass is influenced by spill bay operations. We used a Cormack-Jolly-Seber release-recapture model (CJS model) to determine how the survival of juvenile salmonids passing through McNary Dam relates to spill bay operations. Results of these analyses, while not designed to yield predictive models, can be used to help develop dam-operation strategies that optimize juvenile salmonid survival. For example, increasing total discharge typically had a positive effect on both spillway and bypass survival for all species except sockeye salmon (Oncorhynchus nerka). Likewise, an increase in spill bay discharge improved spillway survival for yearling Chinook salmon (Oncorhynchus tshawytscha), and an increase in spillway discharge positively affected spillway survival for juvenile steelhead (Oncorhynchus mykiss). The strong linear relation between increased spill and increased survival indicates that increasing the amount of water through the spillway is one strategy that could be used to improve spillway survival for yearling Chinook salmon and juvenile steelhead. However, increased spill did not improve spillway survival for subyearling Chinook salmon and sockeye salmon. Our results indicate that a uniform spill pattern would provide the highest spillway survival and bypass survival for subyearling Chinook salmon. Conversely, a predominantly south spill pattern provided the highest spillway survival for yearling Chinook salmon and juvenile steelhead. Although spill pattern was not a factor for spillway survival of sockeye salmon, spill bay operations that optimize passage through the north and south spill bays maximized

  12. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  13. Comparing the Reproductive Success of Yakima River Hatchery-and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2000-2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroder, S.L.; Knudsen, C.M.; Rau, J.A.

    In the Yakima Spring Chinook supplementation program, wild fish are brought into the Cle Elum Hatchery, artificially crossed, reared, transferred to acclimation sites, and released into the upper Yakima River as smolts. When these fish mature and return to the Yakima River most of them will be allowed to spawn naturally; a few, however, will be brought back to the hatchery and used for research purposes. In order for this supplementation approach to be successful, hatchery-origin fish must be able to spawn and produce offspring under natural conditions. Recent investigations on salmonid fishes have indicated that exposure to hatchery environmentsmore » during juvenile life may cause significant behavioral, physiological, and morphological changes in adult fish. These changes appear to reduce the reproductive competence of hatchery fish. In general, males are more affected than females; species with prolonged freshwater rearing periods are more strongly impacted than those with shorter rearing periods; and stocks that have been exposed to artificial culture for multiple generations are more impaired than those with a relatively short exposure history to hatchery conditions.« less

  14. Alteration of thyroid hormone concentrations in juvenile Chinook salmon (Oncorhynchus tshawytscha) exposed to polybrominated diphenyl ethers, BDE-47 and BDE-99.

    PubMed

    Arkoosh, Mary R; Van Gaest, Ahna L; Strickland, Stacy A; Hutchinson, Greg P; Krupkin, Alex B; Dietrich, Joseph P

    2017-03-01

    Polybrominated diphenyl ethers (PBDEs) have been used as flame-retardants in consumer products and are currently detected in salmon globally. The two most predominant PBDE congeners found in salmon are BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) and BDE-99 (2,2',4,4',5-pentabromodiphenyl ether). In the present study, groups of juvenile Pacific Chinook salmon were fed five environmentally relevant concentrations of either BDE-47 (0.3-552 ng total PBDEs/g food), BDE-99 (0.3-580 ng total PBDEs/g food), or nearly equal mixtures of both congeners (0.7-690 ng total PBDEs/g food) for 39-40 days. The concentrations of circulating total thyroid hormones, thyroxine (T 4 ) and 3,5,3'-triiodothyronine (T 3 ), were measured using a hormone-specific time-resolved fluoroimmunoassay to determine if PBDE exposure disrupts the hypothalamic-pituitary-thyroid endocrine axis. The concentrations of both circulating T 4 and T 3 were altered in juvenile salmon by dietary uptake of BDE-99. Exposure to BDE-47 did not alter either T 3 or T 4 circulating hormone concentrations. However, exposure to a mixture of BDE-47 and BDE-99 reduced T 3 in fish with lower concentrations of total whole body PBDEs than with either congener alone at equivalent PBDE whole body concentrations. Accordingly, the disruption of PBDEs on circulating thyroid hormone concentrations has the potential to impact a number of critical functions in juvenile salmon including growth, parr-smolt transformation, and immunological processes. Published by Elsevier Ltd.

  15. Passage and survival probabilities of juvenile Chinook salmon at Cougar Dam, Oregon, 2012

    USGS Publications Warehouse

    Beeman, John W.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Hansen, Amy C.; Smith, Collin D.; Sprando, Jamie M.

    2014-01-01

    This report describes studies of juvenile-salmon dam passage and apparent survival at Cougar Dam, Oregon, during two operating conditions in 2012. Cougar Dam is a 158-meter tall rock-fill dam used primarily for flood control, and passes water through a temperature control tower to either a powerhouse penstock or to a regulating outlet (RO). The temperature control tower has moveable weir gates to enable water of different elevations and temperatures to be drawn through the dam to control water temperatures downstream. A series of studies of downstream dam passage of juvenile salmonids were begun after the National Oceanic and Atmospheric Administration determined that Cougar Dam was impacting the viability of anadromous fish stocks. The primary objectives of the studies described in this report were to estimate the route-specific fish passage probabilities at the dam and to estimate the survival probabilities of fish passing through the RO. The first set of dam operating conditions, studied in November, consisted of (1) a mean reservoir elevation of 1,589 feet, (2) water entering the temperature control tower through the weir gates, (3) most water routed through the turbines during the day and through the RO during the night, and (4) mean RO gate openings of 1.2 feet during the day and 3.2 feet during the night. The second set of dam operating conditions, studied in December, consisted of (1) a mean reservoir elevation of 1,507 ft, (2) water entering the temperature control tower through the RO bypass, (3) all water passing through the RO, and (4) mean RO gate openings of 7.3 feet during the day and 7.5 feet during the night. The studies were based on juvenile Chinook salmon (Oncorhynchus tshawytscha) surgically implanted with radio transmitters and passive integrated transponder (PIT) tags. Inferences about general dam passage percentage and timing of volitional migrants were based on surface-acclimated fish released in the reservoir. Dam passage and apparent

  16. Behavior, passage, and downstream migration of juvenile Chinook salmon from Detroit Reservoir to Portland, Oregon, 2014–15

    USGS Publications Warehouse

    Kock, Tobias J.; Beeman, John W.; Hansen, Amy C.; Hansel, Hal C.; Hansen, Gabriel S.; Hatton, Tyson W.; Kofoot, Eric E.; Sholtis, Matthew D.; Sprando, Jamie M.

    2015-11-16

    A Cormack-Jolly-Seber mark-recapture model was developed to provide reach-specific survival estimates for juvenile Chinook salmon. A portion of the tagged population overwintered in the Willamette River Basin and outmigrated several months after release. As a result, survival estimates from the model would have been negatively biased by factors such as acoustic tag failure and tag loss. Data from laboratory studies were incorporated into the model to provide survival estimates that accounted for these factors. In the North Santiam River between Minto Dam and the Bennett Dam complex, a distance of 37.2 kilometers, survival was estimated to be 0.844 (95-percent confidence interval 0.795–0.893). The survival estimate for the 203.7 kilometer reach between the Bennett Dam complex and Portland, Oregon, was 0.279 (95-percent confidence interval 0.234–0.324), and included portions of the North Santiam, Santiam, and Willamette Rivers. The cumulative survival estimate in the 240.9 kilometer reach from the Minto Dam tailrace to Portland was 0.236 (95-percent confidence interval 0.197–0.275).

  17. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallinat, Michael P.; Bumgarner, Joseph D.

    2002-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood during 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination withmore » the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program will collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2001 BY fish have been selected. As of Jan 1, 2002, WDFW has 17 BY 1997, 159 BY 1998, 316 BY 1999, 448 BY 2000, and approximately 1,200 BY 2001 fish on hand at LFH. The 2001 eggtake from the 1997 brood year (Age 4) was 233,894 eggs from 125 ripe females. Egg survival was 69%. Mean fecundity based on the 105 fully spawned females was 1,990 eggs/female. The 2001 eggtake from the 1998 brood year (Age 3) was 47,409 eggs from 41 ripe females. Egg survival was 81%. Mean fecundity based on the 39 fully spawned females was 1,160 eggs/female. The total 2001 eggtake from the captive brood program was 281,303 eggs. As of May 1, 2002 we have 171,495 BY 2001 captive brood progeny on hand. A total of 20,592 excess fish were marked as parr (AD/CWT) and will be released during early May, 2002 into the Tucannon River (rkm 40-45). This will allow us to stay within our maximum allowed number (150,000) of smolts released. During April 2002, WDFW

  18. Geochemical signatures in fin rays provide a nonlethal method to distinguish the natal rearing streams of endangered juvenile Chinook Salmon Oncorhynchus tshawytscha in the Wenatchee River, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linley, Timothy J.; Krogstad, Eirik J.; Nims, Megan K.

    Rebuilding fish populations that have undergone a major decline is a challenging task that can be made more complicated when estimates of abundance obtained from physical tags are biased or imprecise. Abundance estimates based on natural tags where each fish in the population is marked can help address these problems, but generally requires that the samples be obtained in a nonlethal manner. We evaluated the potential of using geochemical signatures in fin rays as a nonlethal method to determine the natal tributaries of endangered juvenile spring Chinook Salmon in the Wenatchee River, Washington. Archived samples of anal fin clips collectedmore » from yearling smolt in 2009, 2010 and 2011 were analyzed for Ba/Ca, Mn/Ba, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr by inductively coupled plasma mass spectrometry. Water samples collected from these same streams in 2012 were also quantified for geochemical composition. Fin ray and water Ba/Ca, Sr/Ca, and 87Sr/86Sr were highly correlated despite the samples having been collected in different years. Fin ray Ba/Ca, Mg/Ca, Sr/Ca, Zn/Ca and 87Sr/86Sr ratios differed significantly among the natal streams, but also among years within streams. A linear discriminant model that included Ba/Ca, Mg/Ca, Sr/Ca, and 87Sr/86Sr correctly classified 95% of the salmon to their natal stream. Our results suggest that fin ray geochemistry may provide an effective, nonlethal method to identify mixtures of Wenatchee River spring Chinook Salmon for recovery efforts when these involve the capture of juvenile fish to estimate population abundance.« less

  19. Juvenile anadromous salmonid production in upper Columbia River side channels with different levels of hydrological connection

    USGS Publications Warehouse

    Martens, Kyle D.; Connolly, Patrick J.

    2014-01-01

    We examined the contribution of three types of side channels based on their hydrologic connectivity (seasonally disconnected, partially connected, and connected) to production of juvenile anadromous salmonids. Juvenile steelhead Oncorhynchus mykiss and Chinook Salmon O. tshawytscha were found in all three of these side channel types and in each year of the study. Upon connection with the main stem at high flows, the seasonally disconnected side channels experienced an emptying out of the previous year's fish while filling with young-of-year fish during the 2- to 4-month period of hydrologic connection. There were no differences between the densities of juvenile steelhead and Chinook Salmon and the rate of smolts produced among the three types of side channels. Recently reintroduced Coho Salmon O. kisutch had sporadic presence and abundance in partially and connected side channels, but the smolt production rate was over two times that of steelhead and Chinook Salmon in seasonally disconnected side channels. Within seasonally disconnected side channels, young-of-year salmonids in deep pools (≥100 cm) had greater survival than those in shallow pools (<100 cm). Densities of juvenile steelhead in all side channel types were similar to those in tributaries and were higher than in main-stem lateral margins. Juvenile Chinook Salmon densities were higher in side channels than in both tributary and main-stem lateral margins. Our results suggest that improving quality of pool habitat within seasonally disconnected side channels can result in improved survival for juvenile anadromous salmonids during the period of disconnection. Habitat improvement in these seasonally disconnected side channels should be recognized as a worthy restoration strategy, especially when full connectivity of side channels may not be a feasible target (e.g., through lack of water availability) or when full connectivity may present too high a risk (e.g., flooding, stream capture, bank

  20. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, C.; Dibrani, B.; Richmond, M.

    2006-01-01

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences betweenmore » the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile fall

  1. Surgically Implanted JSATS Micro-Acoustic Transmitters Effects on Juvenile Chinook Salmon and Steelhead Tag Expulsion and Survival, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodley, Christa M.; Carpenter, Scott M.; Carter, Kathleen M.

    2011-09-16

    The purpose of this study was to evaluate survival model assumptions associated with a concurrent study - Acoustic Telemetry Evaluation of Dam Passage Survival and Associated Metrics at John Day, The Dalles, and Bonneville Dams, 2010 by Thomas Carlson and others in 2010 - in which the Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate the survival of yearling and subyearling Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) migrating through the Federal Columbia River Power System (FCRPS). The micro-acoustic transmitter used in these studies is the smallest acoustic transmitter model to date (12 mm long x 5more » mm wide x 4 mm high, and weighing 0.43 g in air). This study and the 2010 study by Carlson and others were conducted by researchers from the Pacific Northwest National Laboratory and the University of Washington for the U.S. Army Corps of Engineers, Portland District, to meet requirements set forth by the 2008 FCRPS Biological Opinion. In 2010, we compared survival, tag burden, and tag expulsion in five spring groups of yearling Chinook salmon (YCH) and steelhead (STH) and five summer groups of subyearling Chinook salmon (SYC) to evaluate survival model assumptions described in the concurrent study. Each tagging group consisted of approximately 120 fish/species, which were collected and implanted on a weekly basis, yielding approximately 600 fish total/species. YCH and STH were collected and implanted from late April to late May (5 weeks) and SYC were collected and implanted from mid-June to mid-July (5 weeks) at the John Day Dam Smolt Monitoring Facility. The fish were collected once a week, separated by species, and assigned to one of three treatment groups: (1) Control (no surgical treatment), (2) Sham (surgical implantation of only a passive integrated transponder [PIT] tag), and (3) Tagged (surgical implantation of JSATS micro-acoustic transmitter [AT] and PIT tags). The test fish were held for 30 days in

  2. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis

    USGS Publications Warehouse

    Lind-Null, Angela; Larsen, Kimberly; Reisenbichler, Reginald

    2007-01-01

    INTRODUCTION The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the federal Endangered Species Act. The preservation of the Nisqually delta ecosystem coupled with extensive restoration of approximately 1,000 acres of diked estuarine habitat is identified as the highest priority action for the recovery of naturally spawning Nisqually River Fall Chinook salmon (Oncorhynchus tshawytscha) in the Nisqually Chinook Recovery Plan. In order to evaluate the response of Chinook salmon to restoration, a pre-restoration baseline of life history diversity and estuary utilization must be established. Otolith analysis has been proposed as a means to measure Chinook salmon life history diversity, growth, and residence in the Nisqually estuary. Over time, the information from the otolith analyses will be used to: (1) determine if estuary restoration actions cause changes to the population structure (i.e. frequency of the different life history trajectories) for Nisqually River Chinook, (2) compare pre and post restoration residence times and growth rates, and (3) suggest whether estuary restoration yields substantial benefits for Chinook salmon. Otoliths are calcium carbonate structures in the inner ear that grow in proportion to the overall growth of the fish. Daily growth increments can be measured so date and fish size at various habitat transitions can be back-calculated. Careful analysis of otolith microstructure can be used to determine the number of days that a fish resided in the estuary as a juvenile (increment counts), size at entrance to the estuary, size at egress, and the amount that the fish grew while in the estuary. Juvenile Chinook salmon can exhibit a variety of life history trajectories ? some enter the sea (or Puget Sound) as fry, some rear in the estuary before entering the sea, and some rear in the river and then move rapidly through the estuary into the sea as smolts. The

  3. Umatilla Hatchery Monitoring and Evaluation, 1999-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chess, Dale W.; Cameron, William A.; Stonecypher, Jr., R. Wes

    2003-12-01

    REPORT A: UMATILLA HATCHERY MONITORING AND EVALUATION--This report summarizes monitoring and evaluation studies of salmonids reared at Umatilla Fish Hatchery (UFH) for 1 November, 1999 to 31 October, 2002. Studies at UFH are designed to evaluate rearing of chinook salmon and steelhead in ''Michigan raceways''. Characteristics of Michigan raceways include high fish densities, rapid water turnover, oxygen supplementation, reuse of water, and baffles designed to reduce cleaning. Fish health at UFH and other facilities associated with the Umatilla program are intensively monitored and evaluated along with the overall research project. Further, under the Integrated Hatchery Operations Team guidelines, specific requirementsmore » for fish health monitoring at UFH are mandatory. An experiment designed to evaluate rearing subyearling fall chinook salmon in Michigan and Oregon raceways has been completed. An evaluation of survival of subyearling fall chinook salmon reared at three densities will be completed with final returns in 2005. Two new evaluations were started during this reporting period. The first is an evaluation of spring chinook survival of groups transferred to Imeques acclimation facility in the fall, overwinter-acclimated and released with the standard acclimated production groups in March. The second is an evaluation of subyearling fall chinook survival and straying of a direct-stream released group in the lower Umatilla River and the standard group acclimated at Thornhollow acclimation facility in the upper Umatilla River. An important aspect of the project is evaluation of the spring chinook and summer steelhead fisheries in the upper and lower Umatilla River. REPORT B: Fish Health Monitoring and Evaluation, 2000 Fiscal Year--The results presented in this report are from the ninth year of Fish Health Monitoring and Evaluation in the Umatilla Hatchery program. Broodstock monitoring for hatchery production was conducted on adult returns to the Umatilla

  4. Passage probabilities of juvenile Chinook salmon through the powerhouse and regulating outlet at Cougar Dam, Oregon, 2011

    USGS Publications Warehouse

    Beeman, John W.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Smith, Collin D.

    2012-01-01

    Cougar Dam near Springfield, Oregon, is one of several federally owned and operated flood-control projects within the Willamette Valley of western Oregon that were determined by the National Oceanic and Atmospheric Administration’s National Marine Fisheries Service in 2008 to impact the long-term viability of several salmonid stocks. In response to this ruling, the U.S. Army Corps of Engineers is looking for means to reduce impacts to salmonids, including improving downstream passage of juvenile salmonids at Cougar Dam. This study of juvenile Chinook salmon (Oncorhynchus tshawytscha) passage at Cougar Dam was conducted to inform decisions about potential improvements for downstream fish passage. The primary objective of the study was to estimate route-specific passage probabilities of yearling Chinook salmon at Cougar Dam. The study was conducted using fish from a nearby hatchery surgically implanted with radio transmitters and passive integrated transponder (PIT) tags and released near the entrance of a temperature control tower through which all water going through the dam must pass. Water passing through the temperature control tower may be routed through a penstock to a powerhouse with two Francis turbines, or to a spillway-like structure called the regulating outlet. Secondary objectives of the study were to estimate the probability that fish enter a bypass at a non-federal facility downstream, and to estimate dam-passage and in-river fish survival. Dam operating conditions during the study included an average forebay elevation of 1,580 feet (National Geodetic Vertical Datum of 1929) and an average of 48.2 percent of the total dam discharge of 1,106 cubic feet per second passing through a regulating outlet opening of 1.25 feet. Dam passage probability was greatest at night (0.8741 standard error [SE] 0.0265) and primarily through the regulating outlet (0.8896 SE 0.0617 day; 0.9417 SE 0.0175 night). The joint probability of entering the bypass at Leaburg Dam

  5. Survival of Seaward-Migrating PIT and Acoustic-Tagged Juvenile Chinook Salmon in the Snake and Columbia Rivers: An Evaluation of Length-Specific Tagging Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Oldenburg, Eric W.; Seaburg, Adam

    Studies examining the survival of juvenile salmon as they emigrate to the ocean provide important information regarding the management of regulated river systems. Acoustic telemetry is a widely used tool for evaluating the behavior and survival of juvenile salmonids in the Columbia River basin. Thus, it is important to understand how the surgical tagging process and the presence of a transmitter affect survival so any biases can be accounted for or eliminated. This study evaluated the effects of fish length and tag type on the survival of yearling and subyearling Chinook salmon during their seaward migrations through the Snake andmore » Columbia rivers during 2006, 2007, and 2008. Fish were collected at Lower Granite Dam on the Snake River (river kilometer 695) and implanted with either only a passive integrated transponder (PIT) tag (PIT fish) or both a PIT tag and an acoustic transmitter (AT fish). Survival was estimated from release at Lower Granite Dam to multiple downstream locations (dams) using the Cormack–Jolly–Seber single release model, and analysis of variance was used to test for differences among length-classes and between tag types. No length-specific tag effect was detected between PIT and AT fish (i.e., length affected the survival of PIT fish in a manner similar to which it affected the survival of AT fish). Survival among the smallest length class (i.e., 80–89 mm) of both PIT and AT subyearling Chinook salmon was markedly low (i.e., 4%). Fish length was positively correlated with the survival of both PIT and AT fish. Significant differences in survival were detected between tag types; the survival of PIT fish was generally greater than that of AT fish. However, confounding variables warrant caution in making strong inferences regarding this factor. Further, results suggest that tag effects may be due to the process of surgically implanting the transmitter rather than the presence of the transmitter.« less

  6. Evidence for developmental thermal acclimation in the damselfish, Pomacentrus moluccensis

    NASA Astrophysics Data System (ADS)

    Grenchik, M. K.; Donelson, J. M.; Munday, P. L.

    2013-03-01

    Tropical species are predicted to have limited capacity for acclimation to global warming. This study investigated the potential for developmental thermal acclimation by the tropical damselfish Pomacentrus moluccensis to ocean temperatures predicted to occur over the next 50-100 years. Newly settled juveniles were reared for 4 months in four temperature treatments, consisting of the current-day summer average (28.5 °C) and up to 3 °C above the average (29.5, 30.5 and 31.5 °C). Resting metabolic rate (RMR) of fish reared at 29.5 and 31.5 °C was significantly higher than the control group reared at 28.5 °C. In contrast, RMR of fish reared at 30.5 °C was not significantly different from the control group, indicating these fish had acclimated to their rearing temperature. Furthermore, fish that developed in 30.5 and 31.5 °C exhibited an enhanced ability to deal with acute temperature increases. These findings illustrate that developmental acclimation may help coral reef fish cope with warming ocean temperatures.

  7. Migration and rearing histories of chinook salmon (Oncorhynchus tshawytscha) determined by ion microprobe Sr isotope and Sr/Ca transects of otoliths

    USGS Publications Warehouse

    Bacon, C.R.; Weber, P.K.; Larsen, K.A.; Reisenbichler, R.; Fitzpatrick, J.A.; Wooden, J.L.

    2004-01-01

    Strontium isotope and Sr/Ca ratios measured in situ by ion microprobe along radial transects of otoliths of juvenile chinook salmon (Oncorhynchus tshawytscha) vary between watersheds with contrasting geology. Otoliths from ocean-type chinook from Skagit River estuary, Washington, had prehatch regions with 87Sr/86Sr ratios of ???0.709, suggesting a maternally inherited marine signature, extensive fresh water growth zones with 87Sr/86Sr ratios similar to those of the Skagit River at ???0.705, and marine-like 87Sr/86Sr ratios near their edges. Otoliths from stream-type chinook from central Idaho had prehatch 87Sr/86Sr ratios ???0.711, indicating that a maternal marine Sr isotopic signature is not preserved after the ???1000- to 1400-km migration from the Pacific Ocean. 87Sr/86Sr ratios in the outer portions of otoliths from these Idaho juveniles were similar to those of their respective streams (???0.708-0.722). For Skagit juveniles, fresh water growth was marked by small decreases in otolith Sr/Ca, with increases in Sr/Ca corresponding to increases in 87Sr/86Sr with migration into salt water. Otoliths of Idaho fish had Sr/Ca radial variation patterns that record seasonal fluctuation in ambient water Sr/Ca ratios. The ion microprobe's ability to measure both 87Sr/86Sr and Sr/Ca ratios of otoliths at high spatial resolution in situ provides a new tool for studies of fish rearing and migration. ?? 2004 NRC Canada.

  8. Influence of infection with Renibacterium salmoninarum on susceptibility of juvenile spring chinook salmon to gas bubble trauma

    USGS Publications Warehouse

    Weiland, L.K.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    During experiments in our laboratory to assess the progression and severity of gas bubble trauma (GBT) in juvenile spring chinook salmon Oncorhynchus tshawytscha, we had the opportunity to assess the influence of Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease, on the susceptibility of salmon to GBT. We exposed fish with an established infection of Rs to 120% total dissolved gas (TDG) for 96 h and monitored severity of GBT signs in the fins and gills, Rs infection level in kidneys by using an enzyme-linked immunosorbent assay (ELISA), and mortality. Mortality occurred rapidly after exposure to 120% TDG, with a LT20 (time necessary to kill 20% of the population) of about 37 h, which is at a minimum about 16% earlier than other bioassays we have conducted using fish that had no apparent signs of disease. Fish that died early (from 31 to 36 h and from 49 to 52 h) had significantly higher infection levels (mean ?? SE ELISA absorbance = 1.532 ?? 0.108) than fish that survived for 96h (mean ?? SE ELISA absorbance = 0.828 ?? 0.137). Fish that died early also had a significantly greater number of gill filaments occluded with bubbles than those that survived 96 h. Conversely, fish that survived for 96 h had a significantly higher median fin severity ranking than those that died early. Our results indicate that fish with moderate to high levels of Rs infection are more vulnerable to the effects of dissolved gas supersaturation (DGS) and die sooner than fish with lower levels of Rs infection. However, there is a substantial amount of individual variation in susceptibility to the apparent cumulative effects of DGS and Rs infection. Collectively, our findings have important implications to programs designed to monitor the prevalence and severity of GBT in juvenile salmonids in areas like the Columbia River basin and perhaps elsewhere.

  9. Predation of juvenile salmonids by smallmouth bass and northern squawfish in the Columbia River near Richland, Washington

    USGS Publications Warehouse

    Tabor, Roger A.; Shively, Rip S.; Poe, Thomas P.

    1993-01-01

    The importance of juvenile salmonids in the diet of smallmouth bass Micropterus dolomieu and northern squawfish Ptychocheilus oregonensis was examined at a 6-km stretch of the Columbia River. Piscivorous fish were sampled with electrofishing gear on 4 d (May 2–3 and June 20–21, 1990) during emigration of juvenile anadromous salmonids. Sixty-two smallmouth bass and 69 northern squawfish were collected for diet analysis. Juvenile salmonids made up 59% of smallmouth bass diet by weight and were present in 65% of the stomachs of smallmouth bass. By a meal turnover method, smallmouth bass were estimated to consume from 1.4 (May 2–3) to 1.0 (June 20–21) salmonids per predator daily. Crayfish were the dominant prey item (41.4% by weight) of northern squawfish, but juvenile salmonids (28.8%) were also important. Northern squawfish consumed from 0.55 (May 2–3) to 0.34 (June 20–21) salmonids per predator daily. Smallmouth bass and northern squawfish consumed mostly subyearling Chinook salmon Oncorhynchus tshawytscha, which may have been wild Chinook salmon that emigrated downstream from the Hanford reach. Predation rates on salmonids by smallmouth bass are apparently high during spring and early summer because subyearling Chinook salmon are abundant and of suitable forage size and their habitat overlaps with that of smallmouth bass.

  10. The effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action and growth performance of juvenile Chinese bream.

    PubMed

    Peng, Jing; Cao, Zhen-Dong; Fu, Shi-Jian

    2014-10-01

    We investigated the effects of constant and diel-fluctuating temperature acclimation on the thermal tolerance, swimming capacity, specific dynamic action (SDA) and growth performance of juvenile Chinese bream (Parabramis pekinensis). The critical thermal maxima (CTmax), critical thermal minima (CTmin), lethal thermal maxima (LTmax), lethal thermal minima (LTmin), critical swimming speed (Ucrit) and fast-start escape response after 30 d acclimation to three constant temperatures (15, 20 and 25 °C) and one diel-fluctuating temperature (20±5 °C) were measured. In addition, feeding rate (FR), feeding efficiency (FE) and specific growth rate (SGR) were measured. The diel-fluctuating temperature group showed lower CTmin than the 20 °C group but a similar CTmax, indicating a wider thermal scope. SDA linearly increased with the temperature. Temperature variation between 20 and 25 °C had little effect on either swimming or growth performance. However, fish in the 15 °C group exhibited much poorer swimming and growth performance than those in the 20 °C group. Ucrit decreased slightly under low acclimation temperature due to the pronounced improvement in swimming efficiency under cold temperature. Fish in the diel-fluctuating temperature group fed more but exhibited similar SGR compared to 20 °C group, possibly due in part to an increase in energy expenditure to cope with the temperature fluctuation. The narrower thermal scope and lower CTmax of Chinese bream together with the conservation of CTmax with temperature acclimation, suggests that local water temperature elevations may have more profound effects on Chinese bream than on other fish species in the Three Gorges Reservoir. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Monitoring and Evaluation of Yearling Fall Chinook Salmon Released from Acclimation Facilities Upstream of Lower Granite Dam; 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocklage, Stephen J.

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery (Snake River stock) yearling fall chinook salmon that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1998. The three fall chinook acclimation facilities are operated by the Nez Perce Tribe and located at Pittsburg Landing and Captain John Rapids on the Snake River and at Big Canyon Creek on the Clearwater River. Yearlingsmore » at the Big Canyon facility consisted of two size classes that are referred to in this report as 9.5 fish per pound (fpp) and 30 fpp. The Big Canyon 9.5 fpp were comparable to the yearlings at Pittsburg Landing, Captain John Rapids and Lyons Ferry Hatchery. A total of 9,942 yearlings were PIT tagged and released at Pittsburg Landing. PIT tagged yearlings had a mean fork length of 159.9 mm and mean condition factor of 1.19. Of the 9,942 PIT tagged fish released, a total of 6,836 unique tags were detected at mainstem Snake and Columbia River dams (Lower Granite, Little Goose, Lower Monumental and McNary). A total of 4,926 9.5 fpp and 2,532 30 fpp yearlings were PIT tagged and released at Big Canyon. PIT tagged 9.5 fpp yearlings had a mean fork length of 156.9 mm and mean condition factor of 1.13. PIT tagged 30 fpp yearlings had a mean fork length of 113.1 mm and mean condition factor of 1.18. Of the 4,926 PIT tagged 9.5 fpp yearlings released, a total of 3,042 unique tags were detected at mainstem Snake and Columbia River dams. Of the 2,532 PIT tagged 30 fpp yearlings released, a total of 1,130 unique tags were detected at mainstem Snake and Columbia River dams. A total of 1,253 yearlings were PIT tagged and released at Captain John Rapids. PIT tagged yearlings had a mean fork length of 147.5 mm and mean condition factor of 1

  12. Effect of commercially available egg cures on the survival of juvenile salmonids

    USGS Publications Warehouse

    Clements, S.; Chitwood, R.; Schreck, C.B.

    2011-01-01

    There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha) and steelhead (O. mykiss) with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.

  13. Prevalence of Rentbacterium salmoninarum in juvenile spring chinook salmon at Columbia and Snake river hatcheries, 1993-1996

    USGS Publications Warehouse

    VanderKooi, S.P.; Maule, A.G.

    1999-01-01

    We monitored the prevalence and severity of Renibacterium salmoninarum (RS) infections in juvenile hatchery spring chinook salmon Oncorhynchus tshawytscha at eight Columbia and Snake river hatcheries from 1993 through 1996. This study followed a prior study that monitored RS in the same hatcheries from 1988 through 1992. In the current study, we found that the prevalence of RS-positive fish declined at two hatcheries relative to the preceding 5 years. Prevalence dropped from near 90% in 1992 to below 50% at both sites by 1993 and was less than 20% at three locations in 1995. In contrast, prevalence increased at four of seven sites in 1993 and six of seven sites in 1994. This indicated that previously reported declines in RS prevalence at these locations might have been temporary. Our results showed that in 1993 the majority of fish at all monitored hatcheries had low RS-antigen levels and remained that way at most locations through 1996. These results suggest that certain hatchery practices may limit the severity of RS infections. Although elevations at two sites in 1994 and 1995 indicate reductions in RS were temporary in the short term, long-term monitoring will undoubtedly be required given the many factors that influence disease processes.

  14. Survival and migration behavior of juvenile salmonids at Lower Granite Dam, 2006

    USGS Publications Warehouse

    Beeman, John W.; Fielding, Scott D.; Braatz, Amy C.; Wilkerson, Tamara S.; Pope, Adam C.; Walker, Christopher E.; Hardiman, Jill M.; Perry, Russell W.; Counihan, Timothy D.

    2008-01-01

    We described behavior and estimated passage and survival parameters of juvenile salmonids during spring and summer migration periods at Lower Granite Dam in 2006. During the spring, the study was designed to examine the effects of the Behavioral Guidance Structure (BGS) by using a randomized-block BGS Stored / BGS Deployed treatment design. The summer study was designed to compare passage and survival through Lower Granite Dam using a randomized-block design during two spill treatments while the BGS was in the stored position. We used the Route Specific Survival Model to estimate survival and passage probabilities of hatchery yearling Chinook salmon, hatchery juvenile steelhead, and hatchery and wild subyearling Chinook salmon. We also estimated fish guidance efficiency (FGE), fish passage efficiency (FPE), Removable Spillway Weir passage effectiveness (RPE), spill passage effectiveness (SPY), and combined spill and RSW passage effectiveness.

  15. The effects of electroshock on immune function and disease progression in juvenile spring chinook salmon

    USGS Publications Warehouse

    VanderKooi, S.P.; Maule, A.G.; Schreck, C.B.

    2001-01-01

    Although much is known about the effects of electroshock on fish physiology, consequences to the immune system and disease progression have not received attention. Our objectives were to determine the effects of electroshock on selected immune function in juvenile spring chinook salmon Oncorhynchus tshawytscha, the mechanism of any observed alteration, and the effects of electroshock on disease progression. We found that the ability of anterior kidney leukocytes to generate antibody-producing cells (APC) was suppressed 3 h after a pulsed-DC electroshock (300 V, 50 Hz, 8 ms pulse width) but recovered within 24 h. This response was similar in timing and magnitude to that of fish subjected to an acute handling stress. The mechanism of suppression is hypothesized to be via an elevation of plasma cortisol concentrations in response to stress. Other monitored immune functions, skin mucous lysozyme levels, and respiratory burst activity were not affected by exposure to electroshock. The progression of a Renibacterium salmoninarum (RS) infection may have been altered after exposure to an electroshock. The electroshock did not affect infection severity or the number of mortalities, but may have accelerated the time to death. The limited duration of APC suppression and lack of effects on lysozyme and respiratory burst, as well as infection severity and mortality levels in RS-infected fish, led us to conclude that electrofishing under the conditions we tested is a safe procedure in regards to immunity and disease.

  16. Physiological Stress Responses to Prolonged Exposure to MS-222 and Surgical Implantation in Juvenile Chinook Salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Katie A.; Woodley, Christa M.; Seaburg, Adam

    While many studies have investigated the effects of transmitters on fish condition, behavior, and survival, to our knowledge, no studies have taken into account anesthetic exposure time in addition to tag and surgery effects. We investigated stress responses to prolonged MS-222 exposure after stage 4 induction in surgically implanted juvenile Chinook salmon (Oncorhynchus tshawytscha). Survival, tag loss, plasma cortisol concentration, and blood Na +, K +, Ca 2+, and pH were measured immediately following anesthetic exposure and surgical implantation and 1, 7, and 14 days post-treatment. Despite the prolonged anesthetic exposure, 3-15 minutes post Stage 4 induction, there were nomore » mortalities or tag loss in any treatment. MS-222 was effective at delaying immediate cortisol release during surgical implantation; however, osmotic disturbances resulted, which were more pronounced in longer anesthetic time exposures. From day 1 to day 14, Na +, Ca 2+, and pH significantly decreased, while cortisol significantly increased. The cortisol increase was exacerbated by surgical implantation. There was a significant interaction between MS-222 time exposure and observation day for Na +, Ca 2+, K +, and pH; variations were seen in the longer time exposures, although not consistently. In conclusion, stress response patterns suggest stress associated with surgical implantation is amplified with increased exposure to MS-222.« less

  17. Nearshore circulation and water-column properties in the Skagit River Delta, northern Puget Sound, Washington: juvenile Chinook Salmon habitat availability in the Swinomish Channel

    USGS Publications Warehouse

    Grossman, Eric E.; Stevens, Andrew W.; Gelfenbaum, Guy; Curran, Christopher

    2007-01-01

    Time-series and spatial measurements of nearshore hydrodynamic processes and water properties were made in the Swinomish Channel to quantify the net direction and rates of surface water transport that influence habitat for juvenile Chinook salmon along their primary migratory corridor between the Skagit River and Padilla Bay in northern Puget Sound, Washington. During the spring outmigration of Skagit River Chinook between March and June 2007, currents measured with fixed acoustic doppler current profilers (ADCP) at the south and north end of the Swinomish Channel and with roving ADCP revealed that the currents are highly asymmetric with a dominant flow to the north (toward Padilla Bay). Maximum surface current velocities reached 1.5 m/s and were generally uniform across the channel near McGlinn Island Causeway. Transport times for surface water to travel the 11 km from the southern end of Swinomish Channel at McGlinn Island to Padilla Bay ranged from 2.1 hours to 5.5 days. The mean travel time was ~1 day, while 17 percent of the time, transport of water and passive particles occurred within 3.75 hours. Surface water in the Swinomish Channel during this time was generally very saline 20-27 psu, except south of the Rainbow Bridge in the town of La Conner where it ranged 0-15 psu depending on tide and Skagit River discharge. This salinity regime restricts suitable low salinity (

  18. Effects of a Novel Acoustic Transmitter on Swimming Performance and Predator Avoidance of Juvenile Chinook Salmon: Determination of a Size Threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Ricardo W.; Ashton, Neil K.; Brown, Richard S.

    Abstract Telemetry studies are used worldwide to investigate the behavior and migration of fishes. The miniaturization of acoustic transmitters enables researchers to tag smaller fish, such as the juvenile life stages of salmon, thus representing a greater proportion of the population of interest. The development of an injectable acoustic transmitter has led to research determining the least invasive and quickest method of tag implantation. Swimming performance and predator avoidance were examined. To quantify critical swimming speed (Ucrit; an index of prolonged swimming performance) and predator avoidance for juvenile Chinook salmon (Oncorhynchus tshawytscha), fish were split into three groups: (1) fishmore » implanted with a dummy injectable acoustic transmitter (IAT treatment), (2) fish implanted with a dummy injectable acoustic transmitter and passive integrated transponder (PIT) tag (IAT+PIT treatment), and (3) an untagged control group. The Ucrits and predator avoidance capability of tagged fish were compared with untagged fish to determine if carrying an IAT adversely affected swimming performance or predator avoidance. Fish implanted with only an IAT had lower Ucrit values than untagged fish and a size threshold at 79 mm fork length was found. Conversely, Ucrit values for fish implanted with an IAT+PIT were not significantly different from untagged controls and no size threshold was found. Predator avoidance testing showed no significant difference for fish implanted with an IAT compared to untagged individuals, nor was there a significant difference for IAT+PIT fish compared to untagged fish.« less

  19. Chinook wind barosinusitis: an anatomic evaluation.

    PubMed

    Rudmik, Luke; Muzychuk, Adam; Oddone Paolucci, Elizabeth; Mechor, Brad

    2009-01-01

    Chinook, or föhn, is a weather phenomenon characterized by a rapid influx of warm, high-pressured winds into a specific location. Pressure changes associated with chinook winds induce facial pain similar to acute sinusitis. The purpose of this study was to determine the relationship between sinonasal anatomy and chinook headaches. Retrospective computed tomography (CT) sinonasal anatomy analysis of 38 patients with chinook headaches and 27 controls (no chinook headaches). The chinook headache status was blinded from the CT reviewer. Forty-one sinonasal anatomy variants, Lund-Mackay status, and sinus size (cm(3)) were recorded. There were three statistically significant sinonasal anatomy differences between patients with and without chinook headaches. The presence of a concha bullosa and sphenoethmoidal cell (Onodi cell) appeared to predispose to chinook headaches (p = 0.004). Chinook headache patients had larger maxillary sinus size (right, p = 0.015, and left, p = 0.002). The Lund-Mackay score was higher in the control patients (p = 0.003) indicating that chronic sinusitis does not play a role in chinook headaches. Chinook winds are a common source of facial pain and pressure. This is the first study to show that sinonasal anatomic variations may be a predisposing factor. Anatomic variants may induce facial pain by blocking the natural sinus ostia, thus preventing adequate pressure equilibrium.

  20. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in themore » Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.« less

  1. Snake River Fall Chinook Salmon life history investigations

    USGS Publications Warehouse

    Erhardt, John M.; Bickford, Brad; Hemingway, Rulon J.; Rhodes, Tobyn N.; Tiffan, Kenneth F.

    2017-01-01

    Predation by nonnative fishes is one factor that has been implicated in the decline of juvenile salmonids in the Pacific Northwest. Impoundment of much of the Snake and Columbia rivers has altered food webs and created habitat favorable for species such as Smallmouth Bass Micropterus dolomieu. Smallmouth Bass are common throughout the Columbia River basin and have become the most abundant predator in lower Snake River reservoirs (Zimmerman and Parker 1995). This is a concern for Snake River Fall Chinook Salmon Oncorhynchus tshawytscha (hereafter, subyearlings) that may be particularly vulnerable due to their relatively small size and because their main-stem rearing habitats often overlap or are in close proximity to habitats used by Smallmouth Bass (Curet 1993; Tabor et al. 1993). Concern over juvenile salmon predation spawned a number of large-scale studies to quantify its effect in the late 1980s, 1990s, and early 2000s (Poe et al. 1991; Rieman et al. 1991; Vigg et al. 1991; Fritts and Pearsons 2004; Naughton et al. 2004). Smallmouth Bass predation represented 9% of total salmon consumption by predatory fishes in John Day Reservoir, Columbia River, from 1983 through 1986 (Rieman et al. 1991). In transitional habitat between the Hanford Reach of the Columbia River and McNary Reservoir, juvenile salmon (presumably subyearlings) were found in 65% of Smallmouth Bass (>200 mm) stomachs and comprised 59% of the diet by weight (Tabor et al. 1993). Within Lower Granite Reservoir on the Snake River, Naughton et al. (2004) showed that monthly consumption (based on weight) ranged from 5% in the upper reaches of the reservoir to 11% in the forebay. However, studies in the Snake River were conducted soon after Endangered Species Act (ESA) listing of Snake River Fall Chinook Salmon (NMFS 1992). During this time, Fall Chinook Salmon abundance was at an historic low, which may explain why consumption rates were relatively low compared to those from studies conducted in the

  2. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinookmore » captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging

  3. Management of bacterial kidney disease in Chinook Salmon hatcheries based on broodstock testing by enzyme-linked immunosorbent assay: A multiyear study

    USGS Publications Warehouse

    Munson, A. Douglas; Elliott, Diane G.; Johnson, Keith

    2010-01-01

    From the mid-1980s through the early 1990s, outbreaks of bacterial kidney disease (BKD) caused by Renibacterium salmoninarum continued in Chinook salmon Oncorhynchus tshawytscha in Idaho Department of Fish and Game (IDFG) hatcheries despite the use of three control methods: (1) injection of returning adult fish with erythromycin to reduce prespawning BKD mortality and limit vertical transmission of R. salmoninarum, (2) topical disinfection of green eggs with iodophor, and (3) prophylactic treatments of juvenile fish with erythromycin-medicated feed. In addition, programs to manage BKD through measurement of R. salmoninarum antigen levels in kidney tissues from spawning female Chinook salmon by an enzyme-linked immunosorbent assay (ELISA) were tested over 13–15 brood years at three IDFG hatcheries. The ELISA results were used for either (1) segregated rearing of progeny from females with high ELISA optical density (OD) values (usually ≥0.25), which are indicative of high R. salmoninarum antigen levels, or (2) culling of eggs from females with high ELISA OD values. The ELISA-based culling program had the most profound positive effects on the study populations. Mortality of juvenile fish during rearing was significantly lower at each hatchery for brood years derived from culling compared with brood years for which culling was not practiced. The prevalence of R. salmoninarum in juvenile fish, as evidenced by detection of the bacterium in kidney smears by the direct fluorescent antibody test, also decreased significantly at each hatchery. In addition, the proportions of returning adult females with kidney ELISA OD values of 0.25 or more decreased 56–85% for fish reared in brood years during which culling was practiced, whereas the proportions of ELISA-negative adults increased 55–58%. This management strategy may allow IDFG Chinook salmon hatcheries to reduce or eliminate prophylactic erythromycin-medicated feed treatments. We recommend using ELISA

  4. Observational data on the effects of infection by the copepod Salmincola californiensis on the short- and long-term viability of juvenile Chinook salmon (Oncorhynchus tshawytscha) implanted with telemetry tags

    USGS Publications Warehouse

    Beeman, John W.; Hansen, Amy C.; Sprando, Jamie M.

    2015-01-01

    Infection with Salmincola californiensis is common in juvenile Chinook salmon in western USA reservoirs and may affect the viability of fish used in studies of telemetered animals. Our limited assessment suggests infection by Salmincola californiensis affects the short-term morality of tagged fish and may affect long-term viability of tagged fish after release; however, the intensity of infection in the sample population did not represent the source population due to the observational nature of the data. We suggest these results warrant further study into the effects of infection bySalmincola californiensis on the results obtained through active telemetry and perhaps other methods requiring handling of infected fish.

  5. Effects of rearing density and raceway conformation on growth, food conversion, and survival of juvenile spring chinook salmon

    USGS Publications Warehouse

    Ewing, R.D.; Sheahan, J.E.; Lewis, M.A.; Palmisano, Aldo N.

    2000-01-01

    Four brood years of juvenile spring chinook salmon Oncorhynchus tshawytscha were reared in conventional and baffled raceways at various rearing densities and loads at Willamette Hatchery, Oregon. A period of rapid linear growth occurred from August to November, but there was little or no growth from November to March when the fish were released. Both fall and winter growth rates were inversely related to rearing density. Final weight and length were also inversely related to rearing density. No significant relationship between load and any growth variable was observed. Fish reared at lower densities in conventional raceways tended to develop bimodal length distributions in winter and early spring. Fish reared in conventional raceways showed significantly larger growth rates and final lengths and weights than those reared in baffled raceways. Food conversions and average delivery times for feed were significantly greater in baffled than in conventional raceways. No significant relationships were observed between either rearing density or load and condition factor, food conversion, or mortality. Mortality was not significantly different between the two raceway types. When fish were transported to seawater for further rearing, there were no significant relationships between mortality in seawater and rearing density or load, but fish reared in baffled raceways had significantly higher mortality than those reared in conventional raceways.

  6. Vulnerability to predation and physiological stress responses in juvenile chinook salmon (Oncorhynchus tshawytscha) experimentally infected with Renibacterium salmoninarum

    USGS Publications Warehouse

    Mesa, M.G.; Poe, T.P.; Maule, A.G.; Schreck, C.B.

    1998-01-01

    We experimentally infected juvenile chinook salmon (Oncorhynchus tshawytscha) with Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease (BKD), to examine the vulnerability to predation of fish with differing levels of Rs infection and assess physiological change during progression of the disease. Immersion challenges conducted during 1992 and 1994 produced fish with either a low to moderate (1992) or high (1994) infection level of Rs during the 14-week postchallenge rearing period. When equal numbers of treatment and unchallenged control fish were subjected to predation by either northern squaw fish (Ptychocheilus oregonensis) or smallmouth bass (Micropterus dolomieui), Rs-challenged fish were eaten in significantly greater numbers than controls by nearly two to one. In 1994, we also sampled fish every 2 weeks after the challenge to determine some stressful effects of Rs infection. During disease progression in fish, plasma cortisol and lactate increased significantly whereas glucose decreased significantly. Our results indicate the role that BKD may play in predator-prey interactions, thus ascribing some ecological significance to this disease beyond that of direct pathogen-related mortality. In addition, the physiological changes observed in our fish during the chronic progression of BKD indicate that this disease is stressful, particularly during the later stages.

  7. Comparison of migration rate and survival between radio-tagged and PIT-tagged migrant yearling chinook salmon in the Snake and Columbia rivers

    USGS Publications Warehouse

    Hockersmith, E.E.; Muir, W.D.; Smith, S.G.; Sandford, B.P.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2003-01-01

    A study was conducted to compare the travel times, detection probabilities, and survival of migrant hatchery-reared yearling chinook salmon Oncorhynchus tshawytscha tagged with either gastrically or surgically implanted sham radio tags (with an imbedded passive integrated transponder [PIT] tag) with those of their cohorts tagged only with PIT tags in the Snake and Columbia rivers. Juvenile chinook salmon with gastrically implanted radio tags migrated significantly faster than either surgically radio-tagged or PIT-tagged fish, while migration rates were similar among surgically radio-tagged and PIT-tagged fish. The probabilities of PIT tag detection at downstream dams varied by less than 5% and were not significantly different among the three groups. Survival was similar among treatments for median travel times of less than approximately 6 d (migration distance of 106 km). However, for both gastrically and surgically radio-tagged fish, survival was significantly less than for PIT-tagged fish, for which median travel times exceeded approximately 10 d (migration distance of 225 km). The results of this study support the use of radio tags to estimate the survival of juvenile chinook salmon having a median fork length of approximately 150 mm (range, 127-285 mm) and a median travel time of migration of less than approximately 6 d.

  8. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Richard W.

    2003-07-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2002.more » The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, they are spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, the Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation.« less

  9. Smolt Monitoring Program Comparative Survival Rate Study (CSS); Oregon Department of Fish and Wildlife, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian; Carmichael, Richard

    2003-05-01

    We PIT-tagged juvenile spring chinook salmon reared at Lookingglass Hatchery in October 2001 as part of the Comparative Survival Rate Study (CSS) for migratory year (MY) 2002. We tagged 20,998 Imnaha stock spring chinook salmon, and after mortality and tag loss, we allowed the remaining 20,920 fish to leave the acclimation pond at our Imnaha River satellite facility beginning 21 March 2002 to begin their seaward migration. The fish remaining in the pond were forced out on 17 April 2002. We tagged 20,973 Catherine Creek stock captive brood progeny spring chinook salmon, and after mortality and tag loss, we allowedmore » the remaining 20,796 fish to leave the acclimation ponds at our Catherine Creek satellite facility beginning 1 April 2001 to begin their seaward migration. The fish remaining in the ponds were forced out on 15 April 2001. We estimated survival rates, from release to Lower Granite Dam in MY 2002, for three stocks of hatchery spring chinook salmon tagged at Lookingglass Hatchery to determine their relative migration performance. Imnaha River stock and Lostine River stock survival rates were similar and were higher than the survival rate of Catherine Creek stock. We PIT-tagged 20,950 BY 2001 Imnaha River stock and 20,820 BY 2001 Catherine Creek stock captive brood progeny in October 2002 as part of the CSS for MY 2003. At the time the fish were transferred from Lookingglass Hatchery to the acclimation site, the rates of mortality and tag loss for Imnaha River stock were 0.14% and 0.06%, respectively. Catherine Creek stock, during the same period, had rates of mortality and tag loss of 0.57% and 0.31%, respectively. There was slightly elevated mortality, primarily from BKD, in one raceway of Catherine Creek stock at Lookingglass Hatchery for BY 2001.« less

  10. Using a non-physical behavioural barrier to alter migration routing of juvenile Chinook salmon in the Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Perry, R.W.; Romine, J.G.; Adams, N.S.; Blake, A.R.; Burau, J.R.; Johnston, S.V.; Liedtke, T.L.

    2012-01-01

    Anthropogenic alterations to river systems, such as irrigation and hydroelectric development, can negatively affect fish populations by reducing survival when fish are routed through potentially dangerous locations. Non-physical barriers using behavioural stimuli are one means of guiding fish away from such locations without obstructing water flow. In the Sacramento–San Joaquin River Delta, we evaluated a bio-acoustic fish fence (BAFF) composed of strobe lights, sound and a bubble curtain, which was intended to divert juvenile Chinook salmon (Oncorhynchus tshawytscha) away from Georgiana Slough, a low-survival migration route that branches off the Sacramento River. To quantify fish response to the BAFF, we estimated individual entrainment probabilities from two-dimensional movement paths of juvenile salmon implanted with acoustic transmitters. Overall, 7.7% of the fish were entrained into Georgiana Slough when the BAFF was on, and 22.3% were entrained when the BAFF was off, but a number of other factors influenced the performance of the BAFF. The effectiveness of the BAFF declined with increasing river discharge, likely because increased water velocities reduced the ability of fish to avoid being swept across the BAFF into Georgiana Slough. The BAFF reduced entrainment probability by up to 40 percentage points near the critical streakline, which defined the streamwise division of flow vectors entering each channel. However, the effect of the BAFF declined moving in either direction away from the critical streakline. Our study shows how fish behaviour and the environment interacted to influence the performance of a non-physical behavioural barrier in an applied setting.

  11. Effects of hydropower operations on spawning habitat, rearing habitat, and standing/entrapment mortality of fall Chinook salmon in the Hanford Reach of the Columbia River

    USGS Publications Warehouse

    Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard; Tiffan, Kenneth F.; Hatten, James R.; Hoffarth, Paul; Nugent, John; Benner, David; Yoshinaka, Marv

    2006-01-01

    This report describes research conducted primarily in 2003 and 2004 to evaluate the effects of upstream dam operations on spawning and rearing conditions for fall Chinook salmon, Oncorhynchus tshawytscha, in the Hanford Reach of the Columbia River. Results from habitat modeling tasks which continued in 2005 and 2006 are also included in this report. This study is focused on the effects of streamflows and streamflow fluctuations on 1) entrapment and entrapment mortality of juveniles, 2) adult spawning habitat, and 3) juvenile rearing habitat. An independent peer review was conducted on the draft version of this report utilizing three reviewers, each with different areas of expertise and different levels of knowledge regarding hydrodynamic modeling, fall Chinook biology, life history, and habitat requirements, and fishery issues relating to hydropower development and operations. Peer review comments have been incorporated into this final version.

  12. Pen rearing and imprinting of fall Chinook salmon

    USGS Publications Warehouse

    Beeman, J.W.; Novotny, J.F.

    1994-01-01

    Results of rearing upriver bright fall chinook salmon juveniles in net pens and a barrier net enclosure in two backwater areas and a pond along the Columbia River were compared with traditional hatchery methods. Growth, smoltification, and general condition of pen-reared fish receiving supplemental feeding were better than those of fish reared using traditional methods. Juvenile fish receiving no supplemental feeding were generally in poor condition resulting in a net loss of production. Rearing costs using pens were generally lower than in the hatchery. However, low adult returns resulted in greater cost per adult recovery than fish reared and released using traditional methods. Much of the differences in recovery rates may have been due to differences in rearing locations, as study sites were as much as 128 mi upstream from the hatcheries and study fish may have incurred higher mortality associated with downstream migration than control fish. Fish reared using these methods could be a cost-effective method of enhancing salmon production in the Columbia River Basin.

  13. Boreal and temperate trees show strong acclimation of respiration to warming.

    PubMed

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  14. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2014 - 12/31/2014

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2015-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  15. Investigations into the Early History of Naturally Produced Spring Chinook Salmon in the Grand Ronde Basin : Fish Research Project Oregon : Annual Progress Report Project Period September 1, 1996 to August 31, 1997.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johasson, Brian C.; Tranquilli, J. Vincent; Keefe, MaryLouise

    1998-10-28

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving uppermore » rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in

  16. Snake River fall Chinook salmon life history investigations: Annual report 2011 (April 2011 - March 2012)

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.; Bellgraph, Brian J.; Kock, Tobias J.; Mullins, Frank; Steinhorst, R. Kirk; Christiansen, Helena E.; McCormick, Stephen D.; Ortega, Lori A.; Carter, Kathleen M.; Arntzen, Evan V.; Klett, Katherine J.C.; Deng, Z. Daniel; Abel, Tylor K.; Linley, Timothy J.; Cullinan, Valerie I.; St John, Scott J.; Erhardt, John M.; Bickford, Brad; Schmidt, Amanda; Rhodes, Tobyn N.

    2013-01-01

    Chapter Four – We conducted monthly beam trawling in Lower Granite and Little Goose reservoirs to describe the seasonal abundance of benthic epifauna that are potentially important as prey to juvenile fall Chinook salmon. The predominant taxa collected were Siberian prawns, the opossum shrimp Neomysis mercedis, and the amphipod Corophium sp. Prawns were relatively abundant at shallow sites in both reservoirs in June, but were more abundant at deep sites in lower and middle reservoir reaches in autumn. Prawn densities were commonly <0.2/m2. Prawn length-frequency data indicated that there were at least two size classes. Juvenile prawns present in shallow water more often than adult prawns, which were generally only found in deep water by autumn. Ovigerous prawns had an average of 171 eggs, which represented about 11.5% of their body weight. Limited diet analyses suggested that prawns consumed Corophium, Neomysis, and aquatic insects. Neomysis dominated all catches both in terms of abundance and biomass, and they were more abundant in Lower Granite compared to Little Goose reservoir. Neomysis were more abundant at shallow sites than at deep sites. Corophium were present in our collections but were never abundant, probably because our trawl was not effective at capturing them. The caloric content of prawns (4,782 Kcal), Neomysis (4,962 Kcal), and Corophium (4,926 Kcal) indicates that these prey would be energetically profitable for juvenile salmon. Subyearling fall Chinook salmon prey heavily on Neomysis and Corophium at times, but the importance of prawns as prey is uncertain.

  17. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 6,716 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1997 to June 1998; approximately 6% of the migrants left in summer, 29% in fall, 2% in winter, and 63% in spring. We estimated 8,763 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1997 to June 1998; approximately 12% of the migrants left in summer, 37% in fall, 21% in winter, and 29% in spring. We estimated 8,859 juvenilemore » chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1997 to June 1998; approximately 99% of the migrants left in spring. We estimated 15,738 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1997 to April 1998; approximately 3% of the migrants left in summer, 61% in fall, 2% in winter, and 34% in spring. We estimated 22,754 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from September 1997 to April 1998; approximately 55% of the migrants left in fall, 5% in winter, and 40% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 April to 26 June 1998, with a median passage date of 1 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 3 April to 26 June 1998, with a median passage date of 8 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 26 May 1998, with a median passage date of 28 April. Juveniles tagged as they left the upper rearing areas of the Grande Ronde and Lostine rivers in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher

  18. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  19. Snake River fall Chinook salmon life history investigations, 1/1/2012 - 12/31/2012: Annual report 2002-032-00

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, Willam P.; Bellgraph, Brian J.; Chittaro, Paul M.

    2014-01-01

    Finally, we examined the role of different invasive invertebrates in lower Snake River reservoir food webs that are food, or competitors for food, for juvenile fall Chinook salmon. The Siberian prawn, a relatively new invader, is relatively abundant but its role on the food web is largely unexplored. Prawns are successfully reproducing and their diet is 81% Neomysis (an invasive opossum shrimp) which is heavily used at times by juvenile salmon for food. Neomysis has become very abundant in lower Snake River reservoirs in recent years and may be a profitable food item for many fish species.

  20. Comparative Survival Study (CSS) of PIT-Tagged Spring/Summer Chinook and Summer Steelhead : 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comparative Survival Study Oversight Committee and Fish Passage Center

    2008-12-02

    The Comparative Survival Study (CSS; BPA Project 199602000) began in 1996 with the objective of establishing a long term dataset of the survival rate of annual generations of salmon from their outmigration as smolts to their return to freshwater as adults to spawn (smolt-to-adult return rate; SAR). The study was implemented with the express need to address the question whether collecting juvenile fish at dams and transporting them downstream in barges and trucks and releasing them downstream of Bonneville Dam was compensating for the effect of the Federal Columbia River Power System (FCRPS) on survival of Snake Basin spring/summer Chinookmore » salmon migrating through the hydrosystem. The Completion of this annual report for the CSS signifies the 12th outmigration year of hatchery spring/summer Chinook salmon marked with Passive Integrated Transponder (PIT) tags as part of the CSS and the 9th complete brood year return as adults of those PIT-tagged fish (report covers adult returns from 1997-2006 hatchery Chinook juvenile migrations). In addition, the CSS has provided PIT-tags to on-going tagging operations for wild Chinook since 2002 (report covers adult returns from 1994-2006 wild Chinook juvenile migrations). The CSS tags wild steelhead on the lower Clearwater River and utilized wild and hatchery steelhead from other tagging operations in evaluations of transportation (report covers adult returns from 1997-2005 wild and hatchery steelhead migrations). The primary purpose of this report is to update the time series of smolt-to-adult survival rate data and related parameters with additional years of data since the completion of the CSS 10-yr retrospective analysis report (Schaller et al 2007). The 10-yr report provided a synthesis of the results from this ongoing study, the analytical approaches employed, and the evolving improvements incorporated into the study as reported in CSS annual progress reports. This current report specifically addresses the

  1. Juvenile salmon usage of the Skeena River estuary.

    PubMed

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  2. Retrospective analysis of AYK Chinook salmon growth

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Nielsen, Jennifer L.; Agler, B.A.

    2007-01-01

    Harvests of Yukon and Kuskokwim Chinook salmon declined significantly during 1998- 2002 in response to fewer returning salmon. Factors affecting the decline in Chinook salmon abundance are largely unknown. Growth of salmon in freshwater and the ocean is generally thought to influence salmon survival, therefore we examined historical Chinook salmon catch trends and developed growth indices of age-1.3 and age-1.4 Yukon and Kuskokwim Chinook salmon during each year and life stage in freshwater and the ocean, 1964-2004, using measurements of salmon scale growth. Availability of Yukon scales was greater than that of Kuskokwim scales during 1964-2004.Harvests of Yukon and Kuskokwim Chinook salmon rapidly increased in the mid-1970s, then rapidly declined in the late 1990s, apparently in response to the 1976/77 ocean regime shift and the 1997/98 El Nino event. Runs of Nushagak District Chinook salmon (Bristol Bay) also appeared to have been affected by these events in addition to the 1989 regime shift. The rapid responses of Chinook salmon abundance to climate change suggest late life stages were primarily affected, at least initially. Therefore, we searched for Chinook salmon growth patterns that might be related to changes in climate.

  3. Escapement and Productivity of Spring Chinook Salmon and Summer Steelhead in the John Day River Basin, 2005-2006 Annual Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Terra Lang; Wilson, Wayne H.; Ruzycki, James R.

    goals include an estimate of smolt abundance and SAR rates, and an updated measure of the freshwater distribution of critical life stages. Because Columbia Basin managers have identified the John Day subbasin spring Chinook population as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin (Schaller et al. 1999) we continue our ongoing studies. This project is high priority based on the high level of emphasis the NWPPC Fish and Wildlife Program, Subbasin Summaries, NMFS, and the Oregon Plan for Salmon and Watersheds have placed on monitoring and evaluation to provide the real-time data to guide restoration and adaptive management in the region. By implementing the proposed program we have been able to address many of the goals for population status monitoring, such as defining areas currently used by spring Chinook for holding and spawning habitats and determining range expansion or contraction of summer rearing and spawning populations. The BiOp describes these goals as defining population growth rates (adult monitoring), detecting changes in those growth rates or relative abundance in a reasonable time (adult/juvenile monitoring), estimating juvenile abundance and survival rates (juvenile/smolt monitoring), and identifying stage-specific survival (adult-to-smolt, smolt-to-adult).« less

  4. Compliance Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Carlson, Thomas J.; Skalski, John R.

    2010-12-21

    The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon smolts at The Dalles Dam during summer 2010. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 2 km below the dam The forebay-to-tailrace survival estimate satisfies the “BRZ-to-BRZ” survival estimate called for in the Fish Accords. , asmore » well as the forebay residence time, tailrace egress time, and spill passage efficiency, as required in the Columbia Basin Fish Accords. The estimate of dam survival for subyearling Chinook salmon at The Dalles in 2010 was 0.9404 with an associated standard error of 0.0091.« less

  5. Significance of Selective Predation and Development of Prey Protection Measures for Juvenile Salmonids in the Columbia and Snake River Reservoirs: Annual Progress Report, February 1993-February 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poe, Thomas P.

    1994-08-01

    This report addresses the problem of predator-prey interactions of juvenile salmonids in the Columbia and Snake River. Six papers are included on selective predation and prey protection. Attention is focused on monitoring the movements, the distribution, and the behavior of juvenile chinook salmon and northern squawfish.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinstry, Craig A.; Carlson, Thomas J.; Brown, Richard S.

    In 2005 the U.S. Army Corps of Engineers (USACE) began a study to investigate the response of hatchery and run-of-the-river (ROR) juvenile Chinook salmon to the effects of rapid decompression during passage through mainstem Federal Columbia River Power System (FCRPS) Kaplan turbines. In laboratory studies conducted by Pacific Northwest National Laboratory (PNNL) for USACE since 2005, juvenile fish have been exposed to rapid decompression in a barometric pressure chamber. An initial study considered the response of juvenile Chinook salmon bearing radio transmitters to rapid decompression resulting from exposure to a pressure time history simulating the worst case condition that mightmore » be experienced during passage through an operating turbine. The study in 2005 found that acclimation depth was a very important treatment factor that greatly influenced the significantly higher incidence of injury and mortality of rapidly decompressed Chinook salmon bearing radio telemetry devices. In 2006 we initiated a statistical investigation using data in hand into derivation of a new end-point measure for assessment of the physiological response of juvenile Chinook salmon to rapid decompression. Our goal was a measure that would more fully utilize both mortality and injury data while providing a better assessment of the most likely survival outcome for juvenile physostomous fish exposed to rapid decompression. The conclusion of the analysis process was to classify fish as mortally injured when any of the 8 injuries are present, regardless of whether the fish was last observed alive or not. The mortally injured classification has replaced mortality as the end point metric for our rapid decompression studies. The process described in this report is an example of how a data set may be analyzed to identify decision criterion for objective classification of test fish to a specific end-point. The resulting list of 8 mortal injuries is applicable to assess injuries from rapid

  7. Feeding bionomics of juvenile chinook salmon relative to thermal discharges in the central Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, C.D.

    1994-10-01

    Juvenile chinook salmon (Oncorhynchus tshawytscha) in the Hanford environs of the central Columbia River, Washington consumed almost entirely adult and larval stages of aquatic insects. The food organisms were dominated by midges (Diptera: Tendipedidae); by numbers, adult midges provided 64 and 58% of the diet and larval midges 17 and 18% of the diet, in 1968 and 1969, respectively. The families Hydropsychidae (Trichoptera), Notonectidae (Hemiptera) and Hypogastruridae (Collembola) were of secondary importance. Small fry fed almost exclusively on the small tendipedids. Over 95% of all food organisms originated within the river ecosystem. The distinctive features of food and feeding activitymore » were fourfold: first, relatively few insect groups were utilized; second, the fish depended on drifting, floating, or swimming organisms; third, they visually selected living prey moving in or on the water; and fourth, they were habitat opportunists to a high degree. The 1969 data, were studied to reveal possible thermal effects of heated discharges from plutonium production reactors at Hanford on food and growth parameters. All data were characterized by considerable variation between and within stations. No discernable effects between coldwater and warmwater stations were revealed by analyses of: (1) groups of food organisms utilized, (2) food and feeding activity, (3) numbers of insects consumed, (4) seasonal increases in fish length, (5) fish length-weight relationships, (6) fish coefficients of condition, and (7) stomach biomass. The lack of detectable thermal effects was apparently due to the fact that the main effluent plumes discharge in midstream and the effluents are well mixed before reaching inshore feeding areas. The transient nature of fish groups at each station, influenced by changes in regulated river flows, and the availability of food organisms in the river drift were ecological factors affecting critical thermal evaluation in situ.« less

  8. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    2009-07-09

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008more » are: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007

  9. Migratory Behavior and Survival of Juvenile Salmonids in the Lower Columbia River, Estuary, and Plume in 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Harnish, Ryan A.; Skalski, John R.

    Uncertainty regarding the migratory behavior and survival of juvenile salmonids passing through the lower Columbia River and estuary after negotiating dams on the Federal Columbia River Power System (FCRPS) prompted the development and application of the Juvenile Salmon Acoustic Telemetry System (JSATS). The JSATS has been used to investigate the survival of juvenile salmonid smolts between Bonneville Dam (river kilometer (rkm) 236) and the mouth of the Columbia River annually since 2004. In 2010, a total of 12,214 juvenile salmonids were implanted with both a passive integrated transponder (PIT) and a JSATS acoustic transmitter. Using detection information from JSATS receivermore » arrays deployed on dams and in the river, estuary, and plume, the survival probability of yearling Chinook salmon and steelhead smolts tagged at John Day Dam was estimated form multiple reaches between rkm 153 and 8.3 during the spring. During summer, the survival probability of subyearling Chinook salmon was estimated for the same reaches. In addition, the influence of routes of passage (e.g., surface spill, deep spill, turbine, juvenile bypass system) through the lower three dams on the Columbia River (John Day, The Dalles, and Bonneville) on juvenile salmonid smolt survival probability from the dams to rkm 153 and then between rkm 153 and 8.3 was examined to increase understanding of the immediate and latent effects of dam passage on juvenile salmon survival. Similar to previous findings, survival probability was relatively high (>0.95) for most groups of juvenile salmonids from the Bonneville Dam tailrace to about rkm 50. Downstream of rkm 50 the survival probability of all species and run types we examined decreased markedly. Steelhead smolts suffered the highest mortality in this lower portion of the Columbia River estuary, with only an estimated 60% of the tagged fish surviving to the mouth of the river. In contrast, yearling and subyearling Chinook salmon smolts survived to

  10. Recovery of coded wire tags at a caspian tern colony in San Francisco Bay: A technique to evaluate impacts of avian predation on juvenile salmonids

    USGS Publications Warehouse

    Evans, A.F.; Roby, D.D.; Collis, K.; Cramer, B.M.; Sheggeby, J.A.; Adrean, L.J.; Battaglia, D.S.; Lyons, Donald E.

    2011-01-01

    We recovered coded wire tags (CWTs) from a colony of Caspian terns Hydroprogne caspia on Brooks Island in San Francisco Bay, California, to evaluate predation on juvenile salmonids originating from the Sacramento and San Joaquin rivers. Subsamples of colony substrate representing 11.7% of the nesting habitat used by the terns yielded 2,079 salmonid CWTs from fish released and subsequently consumed by terns in 2008. The estimated number of CWTs deposited on the entire tern colony was 40,143 (ranging from 26,763 to 80,288), once adjustments were made to account for tag loss and the total amount of nesting habitat used by terns. Tags ingested by terns and then egested on the colony were undamaged, and the tags' complete numeric codes were still identifiable. The CWTs found on the tern colony indicated that hatchery Chinook salmon Oncorhynchus tshawytscha trucked to and released in San Pablo Bay were significantly more likely to be consumed by Caspian terns than Chinook salmon that migrated in-river to the bay; 99.7% of all tags recovered were from bay-released Chinook salmon. Of the CWTs recovered on the tern colony, 98.0% were from fall-run Chinook salmon, indicating a higher susceptibility to tern predation than for the spring run type. None of the approximately 518,000 wild Chinook salmon that were coded-wire-tagged and released in the basin were recovered on the tern colony, suggesting that the impacts on wild, U.S. Endangered Species Act-listed Chinook salmon populations were minimal in 2008. Overall, we estimate that 0.3% of the approximately 12.3 million coded-wire-tagged Chinook salmon released in the basin in 2008 were subsequently consumed by Caspian terns from the Brooks Island colony. These results indicate that CWTs implanted in juvenile salmon can be recovered from a piscivorous waterbird colony and used to evaluate smolt losses for runs that are tagged. Abstract We recovered coded wire tags (CWTs) from a colony of Caspian terns Hydroprogne caspia on

  11. Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Chernyak, Sergei M.; Rediske, Richard R.; O'Keefe, James P.

    2004-01-01

    We evaluated the Wisconsin bioenergetics model for chinook salmon (Oncorhynchus tshawytscha) in both the laboratory and the field. Chinook salmon in laboratory tanks were fed alewife (Alosa pseudoharengus), the predominant food of chinook salmon in Lake Michigan. Food consumption and growth by chinook salmon during the experiment were measured. To estimate the efficiency with which chinook salmon retain polychlorinated biphenyls (PCBs) from their food in the laboratory, PCB concentrations of the alewife and of the chinook salmon at both the beginning and end of the experiment were determined. Based on our laboratory evaluation, the bioenergetics model was furnishing unbiased estimates of food consumption by chinook salmon. Additionally, from the laboratory experiment, we calculated that chinook salmon retained 75% of the PCBs contained within their food. In an earlier study, assimilation rate of PCBs to chinook salmon from their food in Lake Michigan was estimated at 53%, thereby suggesting that the model was substantially overestimating food consumption by chinook salmon in Lake Michigan. However, we concluded that field performance of the model could not be accurately assessed because PCB assimilation efficiency is dependent on feeding rate, and feeding rate of chinook salmon was likely much lower in our laboratory tanks than in Lake Michigan.

  12. Interaction of infection with Renibacterium salmoninarum and physical stress in juvenile chinook salmon: Physiological responses, disease progression, and mortality

    USGS Publications Warehouse

    Mesa, M.G.; Maule, A.G.; Schreck, C.B.

    2000-01-01

    We experimentally infected juvenile spring chinook salmon Oncorhynchus tshawytscha with Renibacterium salmoninarum (Rs), the causative agent of bacterial kidney disease (BKD), in order to compare the physiological responses of Rs-infected and Rs-noninfected fish to a series of multiple, acute stressors and to determine whether exposure to these stressors worsens the infection and leads to increased mortality. After subjecting groups of fish to a waterborne challenge of Rs, we sampled them biweekly to monitor infection levels, mortality, and some stress-related physiological changes. As infections worsened, fish developed decreased hematocrits and blood glucose levels and increased levels of cortisol and lactate, indicating that BKD is stressful, particularly during the later stages. Eight weeks after the challenge, when fish had moderate to high infection levels, we subjected them, along with unchallenged control fish, to three 60-s bouts of hypoxia, struggling, and mild agitation that were separated by 48-72 h. Our results indicate that the imposition of these stressors on Rs-infected fish did not lead to higher infection levels or increased mortality when compared with diseased fish that did not receive the stressors. Furthermore, the kinetics of plasma cortisol, glucose, and lactate over a 24-h period following each application of the stressor were similar between fish with moderate to high Rs infections and those that had low or no detectable infection. Some differences in the stress responses of these two groups did exist, however. Most notably, fish with moderate to high Rs infections had higher titers of cortisol and lactate prior to each application of the stressor and also were unable to consistently elicit a significant hyperglycemia in response to the stressors. Collectively, our results should be important in understanding the impact that BKD has on the survival of juvenile salmonids, but we caution that our results represent the combined effects of one

  13. Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of Sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities.

    PubMed

    Vargas-Chacoff, L; Saavedra, E; Oyarzún, R; Martínez-Montaño, E; Pontigo, J P; Yáñez, A; Ruiz-Jarabo, I; Mancera, J M; Ortiz, E; Bertrán, C

    2015-12-01

    In this study we assessed the influence of three different environmental salinities (5, 15 and 31 psu during 90 days) on growth, osmoregulation, energy metabolism and digestive capacity in juveniles of the Notothenioid fish Eleginops maclovinus. At the end of experimental time samples of plasma, liver, gill, intestine, kidney, skeletal muscle, stomach and pyloric caeca were obtained. Growth, weight gain, hepatosomatic index and specific growth rate increased at 15 and 31 psu and were lower at 5 psu salinity. Gill Na(+), K(+)-ATPase (NKA) activity presented a "U-shaped" relationship respect to salinity, with its minimum rates at 15 psu, while this activity correlated negatively with salinity at both anterior and posterior intestinal portions. No significant changes in NKA activity were observed in kidney or mid intestine. Large changes in plasma, metabolite levels and enzymatic activities related to energy metabolism in liver, gill, intestine, kidney and muscle were generally found in the groups exposed to 5 and 31 psu compared to the 15 psu group. Only the pepsin activity (digestive enzymes) assessed enhanced with environmental salinity, while pyloric caeca trypsin/chymotrypsin ratio decreased. This study suggests that juvenile of E. maclovinus presents greater growth near its iso-osmotic point (15 psu) and hyperosmotic environment (31 psu). Acclimation to low salinity increased the osmoregulatory expenditure as seen by the gill and anterior intestine results, while at high salinity, branchial osmoregulatory activity was also enhanced. This requires the mobilization of lipid stores and amino acids, thereby holding the growth of fish back. The subsequent reallocation of energy sources was not sufficient to maintain the growth rate of fish exposed to 5 psu. Thus, E. maclovinus juveniles present better growth efficiencies in salinities above the iso-osmotic point and hyperosmotic environment of this species, showing their best performance at 15 psu as seen by the main

  14. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    USGS Publications Warehouse

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-01-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastesspp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  15. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    NASA Astrophysics Data System (ADS)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-10-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  16. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2012 – 12/31/2013: Annual report, 1991-029-00

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St. John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2014-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  17. Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2012 - February 2013

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Evans, Scott D.; Haner, Philip V.; Hatton, Tyson; Kofoot, Eric E.; Sprando, Jamie M.; Smith, Collin

    2014-01-01

    The movements and dam passage of individual juvenile Chinook salmon (Oncorhynchus tshawytscha) were studied at Cougar Reservoir and Dam, near Springfield, Oregon, during 2012 and 2013. Cougar Dam is a high-head flood-control reservoir with a temperature control tower as its outlet enabling selective withdrawals of water at various depths to control the temperature of water passed downstream. This report describes the second year of a 2-year study with the goal of providing information to inform decisions about future downstream passage alternatives. Inferences were based on the behavior of yearling-size juvenile Chinook salmon implanted with acoustic transmitters. The fish were released near the head of the reservoir during the spring (March, April, and May) and fall (September, October, and November) of 2012. Most tagged fish were of hatchery origin (468 spring, 449 fall) because of the low number of wild fish captured from within the reservoir (0 spring, 65 fall). Detections at hydrophones placed in several lines across the reservoir and within a collective system used to estimate three-dimensional positions near the temperature control tower were used to determine fish behavior and factors affecting dam passage rates. Most tagged fish made repeated non-random migrations from one end of the reservoir to the other and took a median of 3.7–11.7 days to travel about 7 kilometers from the release site to within about 100 meters of the temperature control tower, depending on season and origin. Reservoir passage efficiency (percentage of tagged fish detected at the head of the forebay) was 97.8 percent for hatchery fish and 74.2 percent for wild fish. Tagged fish commonly were within about 100 meters of the temperature control tower, and often spent considerable time near the entrance to the tower; however, the dam passage efficiency (percentage of dam passage of fish detected at the head of the forebay) was low for fish released during the spring (11.1 percent) and

  18. Vertical self-sorting behavior in juvenile Chinook salmon (Oncorhynchus tshawytscha): evidence for family differences and variation in growth and morphology

    USGS Publications Warehouse

    Unrein, Julia R.; Billman, E.J.; Cogliati, Karen M.; Chitwood, Rob S.; Noakes, David L. G.; Schreck, Carl B.

    2018-01-01

    Life history variation is fundamental to the evolution of Pacific salmon and their persistence under variable conditions. We discovered that Chinook salmon sort themselves into surface- and bottom-oriented groups in tanks within days after exogenous feeding. We hypothesised that this behaviour is correlated with subsequent differences in body morphology and growth (as measured by final length and mass) observed later in life. We found consistent morphological differences between surface and bottom phenotypes. Furthermore, we found that surface and bottom orientation within each group is maintained for at least one year after the phenotypes were separated. These surface and bottom phenotypes are expressed across genetic stocks, brood years, and laboratories and we show that the proportion of surface- and bottom-oriented offspring also differed among families. Importantly, feed delivery location did not affect morphology or growth, and the surface fish were longer than bottom fish at the end of the rearing experiment. The body shape of the former correlates with wild individuals that rear in mainstem habitats and migrate in the fall as subyearlings and the latter resemble those that remain in the upper tributaries and migrate as yearling spring migrants. Our findings suggest that early self-sorting behaviour may have a genetic basis and be correlated with other phenotypic traits that are important indicators for juvenile migration timing.

  19. Early migration and estuary stopover of introduced chinook salmon population in the Lapataia River Basin, southern Tierra del Fuego Island

    NASA Astrophysics Data System (ADS)

    Chalde, T.; Fernández, D. A.

    2017-12-01

    Established populations of chinook salmon (Oncorhynchus tshawytscha) have recently been reported in South America, at both Atlantic and Pacific basins. Several studies have evaluated different aspects of their life histories; however, little is known about the use of the estuaries by the juveniles of these populations. We examined spawning time, seaward migration timing, growth rate, scale patterns, diet, and geometric morphometric, contrasting the early life history during freshwater and estuary residence of a chinook population established in Lapataia Basin. Fall run spawning took place in March-April and the parr emerged in September. Two distinct seaward migration patterns were identified from sein net fishing records: one population segment migrating earlier to the estuary in October and a second group migrating later in February. The growth rate of fish captured at the estuary was significantly higher than the fish captured in freshwater. In addition, higher scale intercirculi distances were observed in estuary fish showing differences in growth rate. The feeding habitat in fish captured in both environments changed through time from bottom feeding to surface feeding and from significant diet overlap to no overlap. The morphology of the fish captured at the estuary was associated with the elongation of the caudal peduncle and a decrease in the condition factor index, both changes related to smolt transformation. The earlier migration and the higher growth rate of juveniles in the estuary together with fish of 1 + yo captured in this environment reveal that the estuary of Lapataia Basin is not only a stopover for the chinook salmon, but also a key habitat to reside and feed previous to the final seaward migration.

  20. Comparing effects of transmitters within and among populations: application to swimming performance of juvenile Chinook salmon

    USGS Publications Warehouse

    Perry, Russell W.; Plumb, John M.; Fielding, Scott D.; Adams, Noah S.; Rondorf, Dennis W.

    2013-01-01

    The sensitivity of fish to a transmitter depends on factors such as environmental conditions, fish morphology, life stage, rearing history, and tag design. However, synthesizing general trends across studies is difficult because each study focuses on a particular performance measure, species, life stage, and transmitter model. These differences motivated us to develop simple metrics that allow effects of transmitters to be compared among different species, populations, or studies. First, we describe how multiple regression analysis can be used to quantify the effect of tag burden (transmitter mass relative to fish mass) on measures of physiological performance. Next, we illustrate how the slope and intercept parameters can be used to calculate two summary statistics: θ, which estimates the tag burden threshold above which the performance of tagged fish begins to decline relative to untagged fish; and k, which measures the percentage change in performance per percentage point increase in tag burden. When θ = 0, k provides a single measure of the tag's effect that can be compared among species, populations, or studies. We apply this analysis to two different experiments that measure the critical swimming speed (U crit) of tagged juvenile Chinook Salmon Oncorhynchus tshawytscha. In both experiments, U crit declined as tag burden increased, but we found no significant threshold in swimming performance. Estimates of θ ranged from −0.6% to 2.1% among six unique treatment groups, indicating that swimming performance began to decline at a relatively low tag burden. Estimates of k revealed that U crit of tagged fish declined by −2.68% to −4.86% for each 1% increase in tag burden. Both θ and k varied with the tag's antenna configuration, tag implantation method, and posttagging recovery time. Our analytical approach can be used to gain insights across populations to better understand factors affecting the ability of fish to carry a transmitter.

  1. Physiological development and migratory behavior of subyearling fall chinook salmon in the Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Wagner, P.G.

    2000-01-01

    We describe the migratory behavior and physiological development of subyearling fall chinook salmon Oncorhynchus tshawytscha migrating through John Day Reservoir on the Columbia River, Washington and Oregon. Fish were freeze-branded and coded-wire-tagged at McNary Dam, Oregon, from 1991 to 1994, to determine travel time to John Day Dam and subsequent adult contribution. Stepwise multiple regression showed that 47% of the variation in subyearling fall chinook salmon travel time was explained by the reciprocal of minimum flow and fish size. Smoltification, as measured by gill Na+-K+ adenosine triphosphatase (ATPase) activity, was not important in explaining variability in travel time of subyearling chinook salmon. Fish marked early in the out-migration generally traveled faster than middle and late migrants. Seawater challenges were used to describe physiological development and showed that osmoregulatory competence of premigrants in the Hanford Reach of the Columbia River increased with fish size and gill ATPase activity. Once active migrants began passing McNary Dam, fish generally had survival exceeding 90% and were able to regulate their blood plasma Na+ in seawater. Gill ATPase activity increased as premigrants, reared in nearshore areas of the Hanford Reach, reached a peak among active migrants in late June and early July then decreased through the remainder of the out-migration. Salinity preference also peaked in subyearling fall chinook salmon during late June to mid July in 1995. Return of adults from marked groups showed no consistent patterns that would suggest a survival advantage for any portion of the juvenile out-migration. Presumed wild migrants from the middle and late portions of the out-migration were primary contributors to all fisheries, except the Priest Rapids Hatchery. As such, fishery managers should take action to ensure the survival of these fish, especially because they migrate under more unfavorable environmental conditions than early

  2. A comparison of implantation methods for large PIT tags or injectable acoustic transmitters in juvenile Chinook salmon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Katrina V.; Brown, Richard S.; Deng, Zhiqun

    The miniaturization of acoustic transmitters may allow greater flexibility in terms of the size and species of fish available to tag. New downsized injectable acoustic tags similar in shape to passive integrated transponder tags can be rapidly injected rather than surgically implanted through a sutured incision, as is current practice. Before wide-scale field use of these injectable transmitters, standard protocols to ensure the most effective and least damaging methods of implantation must be developed. Three implantation methods were tested in various sizes of juvenile Chinook salmon Oncorhynchus tschawytscha. Methods included a needle bevel-down injection, a needle bevel-up injection with amore » 90-degree rotation, and tag implantation through an unsutured incision. Tagged fish were compared to untagged control groups. Weight and wound area were measured at tagging and every week for 3 weeks; holding tanks were checked daily for mortalities and tag losses. No differences among treatments were found in growth, tag loss, or survival, but wound area was significantly reduced among incision-treated fish. The bevel-up injection had the worst results in terms of tag loss and wound area and also had high mortality. Implantation through an incision resulted in the lowest tag loss but the highest mortality. Fish from the bevel-down treatment group had the least mortality; wound areas also were smaller than the bevel-up treatment group. Cumulatively, the data suggest that the unsutured incision and bevel-down injection methods were the most effective; the drawbacks of both methods are described in detail. However, we further recommend larger and longer studies to find more robust thresholds for tagging size that include more sensitive measures.« less

  3. Juvenile Salmon Usage of the Skeena River Estuary

    PubMed Central

    Carr-Harris, Charmaine; Gottesfeld, Allen S.; Moore, Jonathan W.

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations

  4. Food habits of Juvenile American Shad and dynamics of zooplankton in the lower Columbia River

    USGS Publications Warehouse

    Haskell, C.A.; Tiffan, K.F.; Rondorf, D.W.

    2006-01-01

    As many as 2.4 million adult American shad annually pass John Day Dam, Columbia River to spawn upriver, yet food web interactions of juvenile shad rearing in John Day Reservoir are unexplored. We collected zooplankton and conducted mid-water trawls in McNary (June-July) and John Day reservoirs (August-November) from 1994 through 1996 during the outmigration of subyearling American shad and Chinook salmon. Juvenile American shad were abundant and represented over 98% of the trawl catch in late summer. The five major taxa collected in zooplankton tows were Bosmina longirostris, Daphnia, cyclopoid cope-pods, rotifers, and calanoid copepods. We evaluated total crustacean zooplankton abundance and Daphnia biomass in relation to water temperature, flow, depth, diel period, and cross-sectional location using multiple regression. Differences in zooplankton abundance were largely due to differences in water temperature and flow. Spatial variation in total zooplankton abundance was observed in McNary Reservoir, but not in John Day Reservoir. Juvenile American shad generally fed on numerically abundant prey, despite being less preferred than larger bodied zooplankton. A decrease in cladoceran abundance and size in August coupled with large percentages of Daphnia in juvenile American shad stomachs indicated heavy planktivory. Smaller juvenile American shad primarily fed on Daphnia in August, but switched to more evasive copepods as the mean size of fish increased and Daphnia abundance declined. Because Daphnia are particularly important prey items for subyearling Chinook salmon in mainstem reservoirs in mid to late summer, alterations in the cladoceran food base is of concern for the management of outmigrating salmonids and other Columbia River fishes. ?? 2006 by the Northwest Scientific Association. All rights reserved.

  5. The relationship between chinook conditions and women's illness-related behaviours

    NASA Astrophysics Data System (ADS)

    Rose, M. Sarah; Verhoef, Marja J.; Ramcharan, Savitri

    1995-09-01

    The objective of this study was to (1) to describe the relationship between chinook conditions and illness related behaviour in women, aged 20 49 years, and (2) to examine the possibility of the existence of subgroups of chinook-sensitive women. At present no empirical evidence is available regarding a relationship between chinook conditions and illness related behaviours. This study comprises the secondary analysis of a large survery of various health and health-related factors of urban women aged 20 49 years, carried out in 1985 1986 in Calgary. The interview date was used to link behaviours to chinook conditions. We found no evidence of a significant relationship between the behaviours investigated and chinook conditions in the general population. However, the data strongly supported the concept of chinook sensitivity. Women with a history of chronic health problems were more likely to visit a health care professional on chinook days than healthy women and women in the subgroup aged less than 35 years cut down their usual daily activities during chinook conditions. Women with a history of recurring migraine headaches were less likely to take prescription medication on chinook days, and women with a history of emotional disorders were more likely to have higher scores on the accident scale and to report bursts of energy or excitement during chinook days. More research is needed to identify subgroups of susceptible persons, as well as to determine whether chinook sensitive persons are equally susceptible to weather changer of other types.

  6. Variables influencing the presence of subyearling fall Chinook salmon in shoreline habitats of the Hanford Reach, Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Clark, L.O.; Garland, R.D.; Rondorf, D.W.

    2006-01-01

    Little information currently exists on habitat use by subyearling fall Chinook salmon Oncorhynchus tshawytscha rearing in large, main-stem habitats. We collected habitat use information on subyearlings in the Hanford Reach of the Columbia River during May 1994 and April-May 1995 using point abundance electrofishing. We analyzed measures of physical habitat using logistic regression to predict fish presence and absence in shoreline habitats. The difference between water temperature at the point of sampling and in the main river channel was the most important variable for predicting the presence and absence of subyearlings. Mean water velocities of 45 cm/s or less and habitats with low lateral bank slopes were also associated with a greater likelihood of subyearling presence. Intermediate-sized gravel and cobble substrates were significant predictors of fish presence, but small (<32-mm) and boulder-sized (>256-mm) substrates were not. Our rearing model was accurate at predicting fish presence and absence using jackknifing (80% correct) and classification of observations from an independent data set (76% correct). The habitat requirements of fall Chinook salmon in the Hanford Reach are similar to those reported for juvenile Chinook salmon in smaller systems but are met in functionally different ways in a large river.

  7. The relationship between chinook conditions and women's physical and mental well-being

    NASA Astrophysics Data System (ADS)

    Verhoef, Marja J.; Rose, M. Sarah; Ramcharan, Savitri

    1995-09-01

    The objective of this study was (1) to determine the relationship between chinook conditions and physical and psychological symptoms in women aged 20 49 years, and (2) to examine the possibility of subgroups of chinook-sensitive women. The evidence for this relationship is at present merely anecdotal. The study carried out in 1985 1986 in Calgary comprises the secondary analysis of a large survey of various health and health-related factors, including different symptoms, of urban women aged 20 49 years. The interview date was used to link these data to days on which pre-chinook, chinook, post-chinook and non-chinook conditions occurred. Between November 1, 1985 and February 28, 1986, 182 women were interviewed on pre-chinook days, 74 on chinook days, 229 on post-chinook days and 886 on non-chinook days. Autonomic reactions and skin disorders were found to be significantly related to chinook conditions. None of the psychological symptoms was related to chinook conditions. However, a significant relationship was found between symptoms and chinook conditions in women with a history of emotional disorders. This type of information is important to educate chinook-sensitive women and health professionals as well as for hospital emergency departments in order to be able to prepare for potential increases in workload.

  8. Exploring life history characteristics of naturalized versus stocked chinook

    USGS Publications Warehouse

    Rogers, Mark W.; Kerns, Janice A; Bunnell, David B.; Claramunt, Randall M.; Collingsworth, Paris D.

    2011-01-01

    Naturalization of stocked populations can result in divergence of life-history traits from domestic stocks. Lake Michigan supports popular Chinook (Oncorhynchus tshawytscha) Salmon fisheries that have been sustained by stocking since the late 1960s. Natural recruitment of Chinook Salmon in Lake Michigan has increased in the last few decades and currently contributes over 50% of Chinook Salmon recruits. Samples collected as part of a lakewide mass-marking of Lake Michigan Chinook Salmon, starting with the 2006 year class, indicated hatchery fish average 30-mm longer and 130 grams heavier than naturalized fish at age-1. We hypothesized that selective forces differ for naturalized and hatchery populations resulting in divergent life-history characteristics with implications for Chinook Salmon population production and the Lake Michigan fishery. Specific life-history metrics of interest include: age- and size- at maturity, spawning run timing, fecundity, and sex ratio. Objectives: We evaluated life history characteristics between naturally recruited and stocked Chinook Salmon in Lake Michigan to help discern potential changes resulting from naturalization and implications for fisheries. A. Conduct an analysis of historical data to determine if life-history parameters changed through time as the Chinook Salmon population became increasingly naturalized. B. Conduct a two-year field study of naturalized and hatchery stocked Chinook Salmon spawning populations to quantify differences in life-history metrics of adults. C. Determine if reproductive potential differs between naturalized and hatchery stocked Chinook salmon by measuring egg thiamine levels.

  9. Juvenile salmon and steelhead occupancy of stream pools treated and not treated with restoration structures, Entiat River, Washington

    Treesearch

    Karl M. Polivka; E. Ashley Steel; Jenni L. Novak; Bror Jonsson

    2015-01-01

    We observed habitat occupancy by juvenile Chinook salmon (Oncorhynchus tschawytscha) and steelhead trout (Oncorhynchus mykiss) at in-stream habitat restoration structures constructed in the Entiat River, Washington, USA. In 2009–2013, fish abundance measurements during rearing (July–October) showed high temporal variability in...

  10. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing through Bonneville Dam, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Batten, G.; Cushing, Aaron W.

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2011. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a virtual/paired-release model. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon usingmore » a virtual release, paired reference release survival model. This study supports the U.S. Army Corps of Engineers’ continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  11. Ichthyophoniasis: An emerging disease of Chinook salmon in the Yukon River

    USGS Publications Warehouse

    Kocan, R.; Hershberger, P.; Winton, J.

    2004-01-01

    Before 1985, Ichthyophonus was unreported among Pacific salmon Oncorhynchus spp. from the Yukon River; now it infects more than 40% of returning adult Chinook salmon O. tshawytscha. Overall infection prevalence reached about 45% in the Yukon River and about 30% in the Tanana River between 1999 and 2003. Mean infection prevalence was greater in females than males in the main-stem Yukon River during each of the 5 years of the study, but the infection prevalence in males increased each year until the difference was no longer significant. Clinical signs of ichthyophoniasis (presence of visible punctate white lesions in internal organs) were least at the mouth of the Yukon River (∼10%) but increased to 29% when fish reached the middle Yukon River and was 22% at the upper Tanana River. However, clinical signs increased each year from 7% in 1999 to 27% in 2003 at the mouth of the river. As fish approached the upper reaches of the Yukon River (Canada) and the spawning areas of the Chena and Salcha rivers (Alaska), infection prevalence dropped significantly to less than 15% in females on the Yukon River and less than 10% for both sexes in the Chena and Salcha rivers, presumably because of mortality among infected prespawn fish. Age was not a factor in infection prevalence, nor was the position of fish within the run. The source of infection was not determined, but Ichthyophonus was not found in 400 Pacific herring Clupea pallasi from the Bering Sea or in 120 outmigrating juvenile Chinook salmon from two drainages in Alaska and Canada. Freshwater burbot Lota lota from the middle Yukon River were subclinically infected with Ichthyophonus, but the origin and relationship of this agent to the Chinook salmon isolate is unknown.

  12. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis)

    USGS Publications Warehouse

    Zak, Megan A.; Regish, Amy M.; McCormick, Stephen; Manzon, Richard G.

    2017-01-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.

  13. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis).

    PubMed

    Zak, Megan A; Regish, Amy M; McCormick, Stephen D; Manzon, Richard G

    2017-06-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19°C) or below (8°C) the thermal optimum (13°C) and exposure to exogenous thyroid hormone (60µg T 4 /g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Performance Assessment of Suture Type, Water Temperature, and Surgeon Skill in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.

    2010-05-01

    This study assessed performance of seven suture types in subyearling Chinook salmon Oncorhynchus tshawytscha implanted with acoustic microtransmitters. Nonabsorbable (Ethilon) and absorbable (Monocryl) monofilament and nonabsorbable (Nurolon, silk) and absorbable (Vicryl, Vicryl Plus, Vicryl Rapide) braided sutures were used to close incisions in Chinook salmon. Monocryl exhibited greater suture retention than all other suture types 7 d after surgery. Both monofilament suture types were retained better than all braided suture types at 14 d. Incision openness and tag retention did not differ among suture types. Wound inflammation was similar for Ethilon, Monocryl, and Nurolon at 7 d. Wound ulceration wasmore » lower for Ethilon, Monocryl, and Nurolon than for all other suture types at 14 d post-surgery. Fish held in 12°C water had more desirable post-surgery healing characteristics (i.e., higher suture and tag retention and lower incision openness, wound inflammation, and ulceration) at 7 and 14 d after surgery than those held in 17°C water. The effect of surgeon was a significant predictor for all response variables at 7 d. This result emphasizes the importance of including surgeon as a variable in telemetry study analyses when multiple surgeons are used. Monocryl performed better with regard to post-surgery healing characteristics in the study fish. The overall results support the conclusion that Monocryl is the best suture material to close incisions created during surgical implantation of acoustic microtransmitters in subyearling Chinook salmon.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.

    A multifactor study was conducted by Battelle for the US Army Corps of Engineers to assess the significance of the presence of a radio telemetry transmitter on the effects of rapid decompression from simulated hydro turbine passage on depth acclimated juvenile run-of-the-river Chinook salmon. Study factors were: (1) juvenile chinook salmon age;, subyearling or yearling, (2) radio transmitter present or absent, (3) three transmitter implantation factors: gastric, surgical, and no transmitter, and (4) four acclimation depth factors: 1, 10, 20, and 40 foot submergence equivalent absolute pressure, for a total of 48 unique treatments. Exposed fish were examined for changesmore » in behavior, presence or absence of barotrauma injuries, and immediate or delayed mortality. Logistic models were used to test hypotheses that addressed study objectives. The presence of a radio transmitter was found to significantly increase the risk of barotrauma injury and mortality at exposure to rapid decompression. Gastric implantation was found to present a higher risk than surgical implantation. Fish were exposed within 48 hours of transmitter implantation so surgical incisions were not completely healed. The difference in results obtained for gastric and surgical implantation methods may be the result of study design and the results may have been different if tested fish had completely healed surgical wounds. However, the test did simulate the typical surgical-release time frame for in-river telemetry studies of fish survival so the results are probably representative for fish passing through a turbine shortly following release into the river. The finding of a significant difference in response to rapid decompression between fish bearing radio transmitters and those not implies a bias may exist in estimates of turbine passage survival obtained using radio telemetry. However, the rapid decompression (simulated turbine passage) conditions used for the study represented near worst case

  16. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System taggedmore » smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  17. 50 CFR 679.65 - Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Bering Sea Chinook Salmon Bycatch Management Program Economic Data Report (Chinook salmon EDR program). 679.65 Section 679.65 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE...

  18. Water velocity, turbulence, and migration rate of subyearling fall Chinook salmon in the free-flowing and impounded Snake River

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Haskell, Craig A.; Connor, William P.; Steinhorst, R. Kirk

    2009-01-01

    We studied the migratory behavior of subyearling fall Chinook salmon Oncorhynchus tshawytscha in free-flowing and impounded reaches of the Snake River to evaluate the hypothesis that velocity and turbulence are the primary causal mechanisms of downstream migration. The hypothesis states that impoundment reduces velocity and turbulence and alters the migratory behavior of juvenile Chinook salmon as a result of their reduced perception of these cues. At a constant flow (m3 /s), both velocity (km/d) and turbulence (the SD of velocity) decreased from riverine to impounded habitat as cross-sectional areas increased. We found evidence for the hypothesis that subyearling Chinook salmon perceive velocity and turbulence cues and respond to these cues by varying their behavior. The percentage of the subyearlings that moved faster than the average current speed decreased as fish made the transition from riverine reaches with high velocities and turbulence to upper reservoir reaches with low velocities and turbulence but increased to riverine levels again as the fish moved further down in the reservoir, where velocity and turbulence remained low. The migration rate (km/d) decreased in accordance with longitudinal reductions in velocity and turbulence, as predicted by the hypothesis. The variation in migration rate was better explained by a repeatedmeasures regression model containing velocity (Akaike’s information criterion ¼ 1,769.0) than a model containing flow (2,232.6). We conclude that subyearling fall Chinook salmon respond to changes in water velocity and turbulence, which work together to affect the migration rate.

  19. Temperature has a reduced effect on routine metabolic rates of juvenile shortnose sturgeon (Acipenser brevirostrum).

    PubMed

    Kieffer, James D; Penny, Faith M; Papadopoulos, Vasoula

    2014-04-01

    This study examined the effects of acclimation temperature (10, 15, 20, or 25 °C) and an acute exposure to various temperatures on the routine metabolism of juvenile (~11 g) shortnose sturgeon (Acipenser brevirostrum). For the acclimation experiment, the minimum, mean, and maximum routine metabolic rates were established for sturgeon at each temperature. Mean routine metabolic rates for 10, 15, 20, and 25 °C were 134, 277, 313, and 309 mg O2 kg(-1) h(-1), respectively, with significant differences occurring between 10 and 15, 10 and 20, and 10 and 25 °C. For the acute exposure, similar patterns and significant differences were observed. Temperature quotient (Q 10) values indicate that the greatest effect of temperature occurred between 10 and 15 °C for both the acclimation and acute temperature experiments. In addition, the effect of temperature on the metabolic rate of sturgeon was nearly negligible between 15 and 25 °C. These results suggest that juvenile shortnose sturgeon are sensitive to temperature changes at the lower end of the range, and less sensitive in the mid-to-upper temperature range.

  20. Plasma insulin-like growth factor-I concentrations in yearling chinook salmon (Oncorhynchus tshawytscha) migrating from the Snake River Basin, USA

    USGS Publications Warehouse

    Congleton, J.L.; Biga, P.R.; Peterson, B.C.

    2003-01-01

    During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week spring migration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility, yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses of migrating fish either did not increase during the migration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations in migrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability of migrating smolts to maintain relatively elevated IGF-I levels despite restricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance. ?? 2004 Kluwer Academic Publishers.

  1. Chinook salmon foraging patterns in a changing Lake Michigan

    USGS Publications Warehouse

    Jacobs, Gregory R.; Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Claramunt, Randall M.

    2013-01-01

    Since Pacific salmon stocking began in Lake Michigan, managers have attempted to maintain salmon abundance at high levels within what can be sustained by available prey fishes, primarily Alewife Alosa pseudoharengus. Chinook Salmon Oncorhynchus tshawytscha are the primary apex predators in pelagic Lake Michigan and patterns in their prey selection (by species and size) may strongly influence pelagic prey fish communities in any given year. In 1994–1996, there were larger Alewives, relatively more abundant alternative prey species, fewer Chinook Salmon, and fewer invasive species in Lake Michigan than in 2009–2010. The years 2009–2010 were instead characterized by smaller, leaner Alewives, fewer alternative prey species, higher abundance of Chinook Salmon, a firmly established nonnative benthic community, and reduced abundance of Diporeia, an important food of Lake Michigan prey fish. We characterized Chinook Salmon diets, prey species selectivity, and prey size selectivity between 1994–1996 and 2009–2010 time periods. In 1994–1996, Alewife as prey represented a smaller percentage of Chinook Salmon diets than in 2009–2010, when alewife comprised over 90% of Chinook Salmon diets, possibly due to declines in alternative prey fish populations. The size of Alewives eaten by Chinook Salmon also decreased between these two time periods. For the largest Chinook Salmon in 2009–2010, the average size of Alewife prey was nearly 50 mm total length shorter than in 1994–1996. We suggest that changes in the Lake Michigan food web, such as the decline in Diporeia, may have contributed to the relatively low abundance of large Alewives during the late 2000s by heightening the effect of predation from top predators like Chinook Salmon, which have retained a preference for Alewife and now forage with greater frequency on smaller Alewives.

  2. Floodplain farm fields provide novel rearing habitat for Chinook salmon

    PubMed Central

    Jeffres, Carson; Conrad, J. Louise; Sommer, Ted R.; Martinez, Joshua; Brumbaugh, Steve; Corline, Nicholas; Moyle, Peter B.

    2017-01-01

    When inundated by floodwaters, river floodplains provide critical habitat for many species of fish and wildlife, but many river valleys have been extensively leveed and floodplain wetlands drained for flood control and agriculture. In the Central Valley of California, USA, where less than 5% of floodplain wetland habitats remain, a critical conservation question is how can farmland occupying the historical floodplains be better managed to improve benefits for native fish and wildlife. In this study fields on the Sacramento River floodplain were intentionally flooded after the autumn rice harvest to determine if they could provide shallow-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus tshawytscha). Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g) were reared on two hectares for six weeks (Feb-March) between the fall harvest and spring planting. A subsample of the fish were uniquely tagged to allow tracking of individual growth rates (average 0.76 mm/day) which were among the highest recorded in fresh water in California. Zooplankton sampled from the water column of the fields were compared to fish stomach contents. The primary prey was zooplankton in the order Cladocera, commonly called water fleas. The compatibility, on the same farm fields, of summer crop production and native fish habitat during winter demonstrates that land management combining agriculture with conservation ecology may benefit recovery of native fish species, such as endangered Chinook salmon. PMID:28591141

  3. The effect of in vitro exposure to tributyltin on the immune competence of Chinook salmon (Oncorhynchus tshawytscha) leukocytes.

    PubMed

    Misumi, Ichiro; Yada, Takashi; Leong, Jo-Ann C; Schreck, Carl B

    2009-02-01

    We evaluated the direct effects of in vitro exposures to tributyltin (TBT), a widely used biocide, on the cell-mediated immune system of Chinook salmon (Oncorhynchus tshawytscha). Splenic and pronephric leukocytes isolated from juvenile Chinook salmon were exposed to TBT (0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 mg/l) in cell cultures for 24 h. Effects of TBT on cell viability, induction of apoptosis, and mitogenic responses were measured by flow cytometry. Splenic and pronephric leukocytes in the presence of TBT experienced a concentration-dependent decrease in viability in cell cultures. Apoptosis was detected as one of the mechanisms of cell death after TBT exposure. In addition, pronephric lymphocytes exhibited a greater sensitivity to TBT exposure than pronephric granulocytes. The functional ability of splenic B-cells to undergo blastogenesis upon lipopolysaccharide stimulation was also significantly inhibited in the presence of 0.05, 0.07, or 0.10 mg/l of TBT in the cell cultures. Flow cytometric assay using a fluorescent conjugated monoclonal antibody against salmon surface immunoglobulin was employed for the conclusive identification of B-cells in the Chinook salmon leukocytes. Our findings suggest that adverse effects of TBT on the function or development of fish immune systems could lead to an increase in disease susceptibility and its subsequent ecological implications.

  4. Estuarine Ecology of Juvenile Salmon in Western Alaska: a Review

    USGS Publications Warehouse

    Zimmerman, Christian E.; Hillgruber, Nicola

    2009-01-01

    In the late 1990s and early 2000s, large declines in numbers of chum salmon Oncorhynchus keta and Chinook salmon O. tshawytscha returning to the Arctic-YukonKuskokwim (AYK) region (Alaska, USA) illuminated the need for an improved understanding of the variables controlling salmon abundance at all life stages. In addressing questions about salmon abundance, large gaps in our knowledge of basic salmon life history and the critical early marine life stage were revealed. In this paper, results from studies conducted on the estuarine ecology of juvenile salmon in western Alaska are summarized and compared, emphasizing timing and distribution during outmigration, environmental conditions, age and growth, feeding, and energy content of salmon smolts. In western Alaska, water temperature dramatically changes with season, ranging from 0°C after ice melt in late spring/early summer to 19°C in July. Juvenile salmon were found in AYK estuaries from early May until August or September, but to date no information is available on their residence duration or survival probability. Chum salmon were the most abundant juvenile salmon reported, ranging in percent catch from <0.1% to 4.7% and most research effort has focused on this species. Abundances of Chinook salmon, sockeye salmon O. nerka, and pink salmon O. gorbuscha varied among estuaries, while coho salmon O. kisutch juveniles were consistently rare, never amounting to more than 0.8% of the catch. Dietary composition of juvenile salmon was highly variable and a shift was commonly reported from epibenthic and neustonic prey in lower salinity water to pelagic prey in higher salinity water. Gaps in the knowledge of AYK salmon estuarine ecology are still evident. For example, data on outmigration patterns and residence timing and duration, rearing conditions and their effect on diet, growth, and survival are often completely lacking or available only for few selected years and sites. Filling gaps in knowledge concerning salmon

  5. Leaf Respiratory Acclimation: Magnitude of Acclimation to the Long-term Warming in Tallgrass Prairie

    NASA Astrophysics Data System (ADS)

    Jung, C. G.; Peng, F.; Luo, Y.

    2016-12-01

    Plant respiration has a positive response with temperature; hence, the plant under warmer climate makes plant releases more CO2. However, plant leaf can acclimate to the warmer climate so that plant leaf respiratory acclimation contributes less positive feedback between climate warming and ecosystem CO2 release. In order to examine the feedback between ecosystem and evolution of carbon dioxide due to global warming, we conducted the experiment of warming and clipping as mimicking grazing effect in a tall grass prairie in central Oklahoma, US since November 1999. The warming plot's air and soil temperature show 1.1 °C and 2.3 °C higher than ambient, respectively. Since our experiment has been over 16 years, the plot's species compositions and plant richness have changed so far. Most species composition events occurred at the clipping plot; therefore, we selected the plants within unclipped plots to see whether plants that exposed long-term warming, play a role of thermal acclimation and how those major plant species across experimental site possess difference magnitude of acclimation. We have investigated five species, one legume, one forb, and three of C4 grass: Illinois bundle (Desmanthus illinoensis, C3), stiff goldenrod (Solidago rigida, C3), King Ranch bluestem (Bothriochloa ischaemum, C4), Indian grass (Sorghastrum nutans, C4), and Little bluestem (Schizachyrium scoparium, C4). Data has collected from May as the first month of growing season in our field site in 2016. In our results, measurements in +2 °C warming show strong acclimation across the species (185% ±41% s.e.m. among species). The strongest acclimation occurred by stiff goldenrod (309%). The lowest acclimation rate is 51% in Illinois bundle, as well as the partial acclimation. The other three C4 grass species have 188% acclimation rate (±37% s.e.m. among species). Whether different plant species have a different capability of acclimation or respond through different way as shown various

  6. Pre-Restoration Habitat Use by Chinook Salmon in the Nisqually Estuary Using Otolith Analysis: An Additional Year

    USGS Publications Warehouse

    Lind-Null, Angie; Larsen, Kim

    2009-01-01

    The Nisqually Fall Chinook population is one of 27 stocks in the Puget Sound evolutionarily significant unit listed as threatened under the Federal Endangered Species Act (ESA). Preservation and extensive restoration of the Nisqually delta ecosystem is currently taking place to assist in recovery of the stock as juvenile Fall Chinook salmon are dependent upon the estuary. A pre-restoration baseline that includes characterization of life history types, estuary residence times, growth rates, and habitat use is needed to evaluate the potential response of hatchery and natural origin Chinook salmon to restoration efforts and determine restoration success. Otolith analysis was selected to examine Chinook salmon life history, growth, and residence in the Nisqually Estuary. Previously funded work on wild samples collected in 2004 established the growth rate and length of residence associated with various habitats. The purpose of the current study is to build on the previous work by incorporating otolith microstructure analysis from 2005 (second sampling year), to verify findings from 2004, and to evaluate between-year variation in otolith microstructure. Our results from this second year of analysis indicated no inter-annual variation in the appearance of the tidal delta check (TDCK) and delta-flats check (DFCK). However, a new life history type (fry migrant) was observed on samples collected in 2005. Fish caught in the tidal delta regardless of capture date spent an average of 17 days in the tidal delta. There was a corresponding increase in growth rate as the fish migrated from freshwater (FW) to tidal delta to nearshore (NS) habitats. Fish grew 33 percent faster in the tidal delta than in FW habitat and slightly faster (14 percent) in the delta flats (DF) habitat compared to the tidal delta.

  7. Yakima River Spring Chinook Enhancement Study, 1991 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, David E.

    1991-05-01

    The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indianmore » Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.« less

  8. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008 Report of Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    2009-05-26

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008more » are listed below: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big

  9. Summary of juvenile salmonid passage and survival at McNary Dam-Acoustic survival studies, 2006-09

    USGS Publications Warehouse

    Adams, Noah S.; Evans, Scott D.

    2011-01-01

    treatments tested. During the summer, spill treatments were characterized by a high (60 percent) and low (40 percent) percent flow of the total discharge going through the spillway. Flow through the TSWs represented about 7-8 percent of total project discharge in spring and about 10-11 percent of total project discharge in summer. Overall, the TSWs passed 24 percent of yearling Chinook salmon and 27 percent of subyearling Chinook salmon, but passed about 65 percent of juvenile steelhead. In spring, there was little evidence for an effect of spill treatment on either fish passage or survival, however, this was not surprising given there was a relatively small difference between spill treatments. For subyearling Chinook salmon during the summer study, high spill discharge resulted in higher fish passage through the spillway and lower fish passage through the powerhouse. Season wide survival (paired-release) for yearling and subyearling Chinook salmon was 0.98 and 0.92 (SE<0.04) through TSW 20, and 0.96 and 0.97 (SE<0.04) through TSW 22, respectively. Season-wide survival (single-release) for juvenile steelhead was 0.98 (SE=0.024) through TSW 20, and 0.90 (SE=0.02) through TSW 22. The extent to which location and structural design contributed to the differences observed between the two TSWs was uncertain. Nonetheless, the TSWs performed similarly to surface-oriented fish passage structures at other locations and appear to be a useful fish passage alternative at McNary Dam. The 2008 and 2009 studies confirmed previous results showing high survival for fish passing through the TSWs, especially juvenile steelhead. Although the number of all fish species passing through the TSWs was lower in 2008 and 2009 compared to 2007, fish passage efficiency for juvenile steelhead and subyearling Chinook salmon was higher in years with the TSWs, compared to 2006, before the TSWs were in place.

  10. Adult chinook salmon passage at Little Goose Dam in relation to spill operations

    USGS Publications Warehouse

    Jepson, M.A.; Caudill , C.C.; Clabough, T.S.; Peery, C.A.; Beeman, J.W.; Fielding, S.

    2009-01-01

    Spill patterns at Little Goose Dam in 2007 were modified in anticipation of a spillway weir installation intended to improve downstream passage of juvenile salmonids. However, in spill pattern was associated with reduced daily counts of adult salmon passing the dam. Consequently, the behaviors and upstream passage times of radio-tagged adult spring–summer Chinook salmon were evaluated in response to three spillway discharge patterns at Little Goose Dam during 2008. Simultaneously, tailrace conditions were characterized by monitoring the downstream paths of GPS-equipped drogues. Two of the spill treatments (i.e., Bulk and Alternate) were variations of patterns thought to mimic those produced if a spillway weir was installed. The third treatment (Uniform) was characterized by spilling similar volumes of water through most spillbays.

  11. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonidmore » Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7

  12. Sea lice, Lepeophtheirus salmonis, transfer between wild sympatric adult and juvenile salmon on the north coast of British Columbia, Canada.

    PubMed

    Gottesfeld, A S; Proctor, B; Rolston, L D; Carr-Harris, C

    2009-01-01

    We examine sea lice, Lepeophtheirus salmonis, on juvenile and adult salmon from the north coast of British Columbia between 2004 and 2006 in an area that does not at present contain salmon farms. There is a pronounced zonation in the abundance of L. salmonis on juvenile pink salmon, Oncorhynchus gorbuscha, in the Skeena and Nass estuaries. Abundances in the proximal and distal zones of these estuaries are 0.01 and 0.05 respectively. The outer zones serve as feeding and staging areas for the pink salmon smolts. Returning Chinook, Oncorhynchus tshawytscha, and coho salmon, Oncorhynchus kisutch, concentrate in these areas. We collected data in 2006 to examine whether L. salmonis on returning adult salmon are an important source of the sea lice that appear on juvenile pink salmon. Nearly all (99%) of the sea lice on returning Chinook and over 80% on coho salmon were L. salmonis. Most of the L. salmonis were motile stages including many ovigerous females. There was a sharp increase in the abundance of sea lice on juvenile pink salmon smolts between May and July 2006 near the sites of adult captures. As there are no salmon farms on the north coast, few sticklebacks, Gasterosteus aculeatus, and very few resident salmonids until later in the summer, it seems that the most important reservoir of L. salmonis under natural conditions is returning adult salmon. This natural source of sea lice results in levels of abundance that are one or two orders of magnitude lower than those observed on juvenile pink salmon in areas with salmon farms such as the Broughton Archipelago.

  13. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Subbasin, Annual Report 2008 : Project Period 1 February 2008 to 31 January 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanke, Jeffrey A.; Alfonse, Brian M.; Bratcher, Kyle W.

    2009-07-31

    This study was designed to document and describe the status and life history strategies of spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin. We determined migration timing, abundance, and life-stage survival rates for juvenile spring Chinook salmon Oncorhynchus tshawytscha and summer steelhead O. mykiss in four streams during migratory year 2008 from 1 July 2007 through 30 June 2008. As observed in previous years of this study, spring Chinook salmon and steelhead exhibited fall and spring movements out of natal rearing areas, but did not begin their smolt migration through the Snake and lower Columbia Rivermore » hydrosystem until spring. In this report we provide estimates of migrant abundance and migration timing for each study stream, and their survival and timing to Lower Granite Dam. We also document aquatic habitat conditions using water temperature and stream flow in four study streams in the subbasin.« less

  14. Mechanisms of drift-feeding behavior in juvenile Chinook salmon and the role of inedible debris in a clear water Alaskan stream

    USGS Publications Warehouse

    Neuswanger, Jason R.; Wipfli, Mark S.; Rosenberger, Amanda E.; Hughes, Nicholas F.

    2014-01-01

    Drift-feeding fish are challenged to discriminate between prey and similar-sized particles of debris, which are ubiquitous even in clear-water streams. Spending time and energy pursuing debris mistaken as prey could affect fish growth and the fitness potential of different foraging strategies. Our goal was to determine the extent to which debris influences drift-feeding fish in clear water under low-flow conditions when the distracting effect of debris should be at a minimum. We used high-definition video to measure the reactions of drift-feeding juvenile Chinook salmon (Oncorhynchus tshawytscha) to natural debris and prey in situ in the Chena River, Alaska. Among all potential food items fish pursued, 52 % were captured and quickly expelled from the mouth, 39 % were visually inspected but not captured, and only 9 % were ingested. Foraging attempt rate was only moderately correlated with ingestion rate (Kendall’s τ = 0.55), raising concerns about the common use of foraging attempts as a presumed index of foraging success. The total time fish spent handling debris increased linearly with foraging attempt rate and ranged between 4 and 25 % of total foraging time among observed groups. Our results help motivate a revised theoretical view of drift feeding that emphasizes prey detection and discrimination, incorporating ideas from signal detection theory and the study of visual attention in cognitive ecology. We discuss how these ideas could lead to better explanations and predictions of the spatial behavior, prey selection, and energy intake of drift-feeding fish.

  15. Effect of daily oscillation in temperature and increased suspended sediment on growth and smolting in juvenile chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Shrimpton, J.M.; Zydlewski, Joseph D.; Heath, J.W.

    2007-01-01

    We examined the effect of temperature oscillation and increased suspended sediment concentration on growth and smolting in juvenile ocean-type chinook salmon (Oncorhynchus tshawytscha). Fish were ponded on February 26; each treatment group had three replicates of 250 fish. Mean temperatures for the entire experiment were 12.3????C for all tanks with a total of 1348 and 1341 degree days for the constant temperature and oscillating temperature tanks, respectively. Daily fluctuation in temperature averaged 7.5????C in the variable temperature groups and less than 1????C for the constant temperature group. Starting on April 5, bentonite clay was added each day to tanks as a pulse event to achieve a suspended sediment concentration of 200??mg l- 1; clay cleared from the tanks within approximately 8??h. Fish were sampled at approximately two??week intervals from ponding until mid-June. On the last sample date, June 12, a single gill arch was removed and fixed for histological examination of gill morphology. By early May, significant differences were seen in size between the groups; control > temperature = sediment > (temperature ?? sediment). This relationship was consistent throughout the experiment except for the last sample date when the temperature group had a mean weight significantly greater than the sediment group. Gill Na+,K+-ATPase activity was not affected by daily temperature oscillations, but groups subjected to increased suspended sediment had significantly lower enzyme activities compared to controls. Mean cell size for gill chloride cells did not differ between groups. Plasma cortisol increased significantly during the spring, but there were no significant differences between groups. ?? 2007 Elsevier B.V. All rights reserved.

  16. Acute exposure to gas-supersaturated water does not affect reproductive success of female adult chinook salmon late in maturation

    USGS Publications Warehouse

    Gale, William L.; Maule, A.G.; Postera, A.; Peters, M.H.

    2004-01-01

    At times, total dissolved gas concentrations in the Columbia and Snake rivers have been elevated due to involuntary spill from high spring runoff and voluntary spill used as a method to pass juvenile salmonids over dams. The goal of this project was to determine if acute exposure to total dissolved gas supersaturation (TDGS) affects the reproductive performance of female chinook salmon late in their maturation. During this study, adult female spring chinook salmon were exposed to mean TDGS levels of 114.1 % to 125.5%. We ended exposures at first mortality, or at the appearance of impending death. Based on this criterion, exposures lasted from 10 to 68 h and were inversely related to TDGS. There was no effect of TDGS on pre-spawning mortality or fecundity when comparing treatment fish to experimental controls or the general hatchery population four to six weeks after exposures. Egg quality, based on egg weight and egg diameter, did not differ between treatment and control fish. Fertilization rate and survival to eyed-stage was high (>94%) for all groups. With the exception of Renibacterium salmoninarum (the causative agent of bacterial kidney disease; BKD), no viral or bacterial fish pathogens were isolated from experimental fish. The prevalence (about 45%) and severity of R. salmoninarum did not differ among the groups or the general hatchery population. We conclude that these acute exposures to moderate levels of gas-supersaturated water-perhaps similar to that experienced by immigrating adult salmon as they approach and pass a hydropower dam on the Columbia River-did not affect reproductive success of female chinook salmon late in their maturation. These results are most applicable to summer and fall chinook salmon, which migrate in the summer/fall and spawn shortly after reaching their natal streams. Published in 2004 by John Wiley and Sons, Ltd.

  17. Physiological tolerances of juvenile robust redhorse, Moxostoma robustum: Conservation implications for an imperiled species

    USGS Publications Warehouse

    Walsh, S.J.; Haney, D.C.; Timmerman, C.M.; Dorazio, R.M.

    1998-01-01

    The robust redhorse, Moxostoma robustum (Teleostei: Catostomidae), is an imperiled sucker native to large rivers of the Atlantic slope of the southeastern United States. Juvenile M. robustum were tested for tolerances to temperature, salinity, pH, and hypoxia in order to evaluate basic early life-history requirements. Static (acute) tests resulted in estimates of mean lower temperature tolerances (5.3-19.4 ??C) that varied with prior thermal acclimation and indicated no apparent difference in tolerance among fish 30, 60, and 90 days old. Fish acclimated to 20 ??C and 30 ??C had significantly different mean critical thermal maxima (34.9 ??C and 37.2 ??C, respectively) and exhibited pronounced increased opercular ventilation rates with elevated temperatures. Fish exposed to acute and chronic increases in salinity showed unusual patterns of mortality above the isosmotic point (9 ppt) that reflected possible differences in body mass and prior acclimation conditions (i.e., water ionic composition); small fish and those held in soft water were the least tolerant of increased salinity. Abrupt exposure to extreme pH values resulted in greater than 50% mortality at pH values below 4.3 and above 9.5 within a 96-hour period. Fish exposed to progressive hypoxia utilized aquatic surface respiration at a mean oxygen concentration of 0.72-0.80 mg O2 l-1 (20 ??C and 30 ??C acclimated fish, respectively), and lost equilibrium at 0.54-.57 mg O2 l-1. Juvenile M. robustum are moderately tolerant of a wide range of ambient physicochemical parameters, but further research is needed to determine how both abiotic and biotic factors have contributed to population decline and extirpation of this species.

  18. Genetic diversity of infectious hematopoietic necrosis virus from Feather River and Lake Oroville, California, and virulence of selected isolates for Chinook salmon and rainbow trout

    USGS Publications Warehouse

    Bendorf, C.M.; Kelley, G.O.; Yun, S.C.; Kurath, G.; Andree, K.B.; Hedrick, R.P.

    2007-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a significant pathogen of young salmonid fishes worldwide but particularly within the historical range of the Pacific Northwest and California. In the Sacramento and San Joaquin River drainages of California, IHNV outbreaks in juvenile Chinook salmon Oncorhynchus tshawytscha have been observed regularly at large production hatcheries, including Coleman National Fish Hatchery (established in 1941) and Feather River State Fish Hatchery (FRH; established in 1967), since facility operations began. Recent severe epidemics at the FRH in 1998 and 2000-2002 prompted investigations into the characteristics and potential sources of virus at this facility. Both phylogenetic analyses of a variable portion of the glycoprotein gene and serologic comparisons based on neutralization with three polyclonal rabbit sera were used to characterize 82 IHNV isolates from the Feather River watershed between 1969 and 2004. All isolates examined were in the L genogroup and belonged to one of three serologic groups typical of IHNV from California. The IHNV isolates from the Feather River area demonstrated a maximum nucleotide sequence divergence of 4.0%, and new isolates appeared to emerge from previous isolates rather than by the introduction of more diverse subgroups from exogenous sources. The earliest isolates examined from the watershed formed the subgroup LI, which disappeared coincidently with a temporal shift to new genetic and serologic types of the larger subgroup LII. Experimental challenges demonstrated no significant differences in the virulence for juvenile Chinook salmon and rainbow trout O. mykiss from selected isolates representing the principal types of IHNV found historically and from recent epidemics at FRH. While most isolates were equally virulent for both host species, one isolate was found to be more virulent for Chinook salmon than for rainbow trout. ?? Copyright by the American Fisheries Society 2007.

  19. Analyses of potential factors affecting survival of juvenile salmonids volitionally passing through turbines at McNary and John Day Dams, Columbia River

    USGS Publications Warehouse

    Beeman, John; Hansel, Hal; Perry, Russell; Hockersmith, Eric; Sandford, Ben

    2011-01-01

    This report describes analyses of data from radio- or acoustic-tagged juvenile salmonids passing through hydro-dam turbines to determine factors affecting fish survival. The data were collected during a series of studies designed to estimate passage and survival probabilities at McNary (2002-09) and John Day (2002-03) Dams on the Columbia River during controlled experiments of structures or operations at spillways. Relatively few tagged fish passed turbines in any single study, but sample sizes generally were adequate for our analyses when data were combined from studies using common methods over a series of years. We used information-theoretic methods to evaluate biological, operational, and group covariates by creating models fitting linear (all covariates) or curvilinear (operational covariates only) functions to the data. Biological covariates included tag burden, weight, and water temperature; operational covariates included spill percentage, total discharge, hydraulic head, and turbine unit discharge; and group covariates included year, treatment, and photoperiod. Several interactions between the variables also were considered. Support of covariates by the data was assessed by comparing the Akaike Information Criterion of competing models. The analyses were conducted because there was a lack of information about factors affecting survival of fish passing turbines volitionally and the data were available from past studies. The depth of acclimation, tag size relative to fish size (tag burden), turbine unit discharge, and area of entry into the turbine intake have been shown to affect turbine passage survival of juvenile salmonids in other studies. This study indicates that turbine passage survival of the study fish was primarily affected by biological covariates rather than operational covariates. A negative effect of tag burden was strongly supported in data from yearling Chinook salmon at John Day and McNary dams, but not for subyearling Chinook salmon or

  20. Yakima River Spring Chinook Enhancement Study Appendices, 1991 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, David E.

    1991-05-01

    This document consists of the appendices for annual report DOE/BP/39461--9 which is summarized as follows. The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 tomore » 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system.« less

  1. Brood stock segregation for the control of bacterial kidney disease can affect mortality of progeny chinook salmon (Oncorhynchus tshawytscha) in seawater

    USGS Publications Warehouse

    Elliott, Diane G.; Pascho, Ronald J.; Palmisano, Aldo N.

    1995-01-01

    Segregation of spring chinook salmon (Oncorhynchus tshawytscha) brood stock based on the measurement of maternal Renibacterium salmoninarum infection levels by the enzyme-linked immunosorbent assay (ELISA) and the fluorescent antibody technique (FAT) was previously shown to affect the prevalence and levels of bacterial kidney disease (BKD) in progeny fish during hatchery rearing. Smolts from that study were subjected to standardized fish health and condition evaluation procedures 2 weeks before the conclusion of hatchery rearing and release of the fish for migration to the Pacific Ocean. The results suggested that the general health of the smolts in the progeny group from parents that had low R. salmoninarum infection levels or tested negative for R. salmoninarum (low-BKD group) was better than that of the smolts in the progeny group from female parents with high R. salmoninarum infection levels (high-BKD group). Testing by the ELISA showed that the overall severity of R. salmoninarum infection also was lower in the smolts from the low-BKD group. Subgroups of smolts from the study were acclimated to tanks of seawater for extended holding. After a 22-day acclimation period and 98 days in full-strength (29 ppt salinity) seawater, total mortality was 12% in the low-BKD group and 44% in the high-BKD group. All of the mortality in the low-BKD group and 85% of the mortality in the high-BKD group occurred after the fish were transferred to full-strength seawater. Testing of kidney tissues from all dead fish by the FAT revealed that 85% of the fish that died in the high-BKD group had high R. salmoninarum numbers, indicating that BKD was the cause of death. In contrast, none of the fish that died in the low-BKD group had detectable numbers of R. salmoninarum. We concluded that brood stock segregation by use of the ELISA and the FAT can affect mortality and the R. salmoninarum status of progeny chinook salmon for as long as 21 months after hatching, even after the fish have

  2. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River Fall Chinook Salmon ESU, 1/1/2016 - 12/31/2016

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Plumb, John M.; Perry, Russell W.; Erhardt, John M.; Hemingway, Rulon J.; Bickford, Brad; Rhodes, Tobyn N.

    2017-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2016 in association with U.S. Endangered Species Act recovery efforts and other federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2016, we described estimated the consumption rate and loss of subyearlings by Smallmouth Bass before, during, and after four hatchery releases. Before releases, Smallmouth Bass consumption rates of subyearling was low (0–0.36 fish/bass/d), but the day after the releases consumption rates reached as high as 1.6 fish/bass/d. Bass consumption in the upper portion of Hells Canyon was high for about 1–2 d before returning to pre-release levels, but in the lower river consumption rates were reduced but took longer to return to pre-release levels. We estimated that most of the subyearlings consumed by bass were of hatchery origin. Smallmouth Bass predation on subyearlings is intense following a hatchery release, but the

  3. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

    The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in thismore » series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon release

  4. Isolation and characterization of the fall Chinook aquareovirus

    USGS Publications Warehouse

    Makhsous, Negar; Jensen, Nicole L.; Haman, Katherine H.; Batts, William N.; Jerome, Keith R.; Winton, James; Greninger, Alexander L.

    2017-01-01

    BackgroundSalmon are paramount to the economy, ecology, and history of the Pacific Northwest. Viruses constitute one of the major threats to salmon health and well-being, with more than twenty known virus species that infect salmon. Here, we describe the isolation and characterization of the fall Chinook aquareovirus, a divergent member of the species Aquareovirus B within the family Reoviridae.MethodsThe virus was first found in 2014 as part of a routine adult broodstock screening program in which kidney and spleen tissue samples from healthy-appearing, adult fall Chinook salmon (Oncorhynchus tshawytscha) returning to a hatchery in Washington State produced cytopathic effects when inoculated onto a Chinook salmon embryo cell line (CHSE-214). The virus was not able to be confirmed by an RT-PCR assay using existing aquareovirus pan-species primers, and instead was identified by metagenomic next-generation sequencing. Metagenomic next-generation sequencing was used to recover the full genome and completed using 3′ RACE.ResultsThe genome of the fall Chinook aquareovirus contains 11 segments of double-stranded RNA totaling 23.3 kb, with each segment flanked by the canonical sequence termini found in the aquareoviruses. Sequence comparisons and a phylogenetic analysis revealed a nucleotide identity of 63.2% in the VP7 gene with the Green River Chinook virus, placing the new isolate in the species Aquareovirus B. A qRT-PCR assay was developed targeting the VP2, which showed rapid growth of the isolate during the initial 5 days in culture using CHSE-214 cells.ConclusionsThis sequence represents the first complete genome of an Aquareovirus B species. Future studies will be required to understand the potential pathogenicity and epidemiology of the fall Chinook aquareovirus.

  5. Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at John Day Dam, Summer 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.

    The purpose of this study was to evaluate dam passage survival of subyearling Chinook salmon (Oncorhynchus tshawytscha; CH0) at John Day Dam (JDA) during summer 2010. This study was conducted by researchers from the Pacific Northwest National Laboratory (PNNL) in collaboration with the Pacific States Marine Fisheries Commission (PSMFC) and the University of Washington (UW). The study was designed to estimate the effects of 30% and 40% spill treatment levels on single release survival rates of CH0 passing through two reaches: (1) the dam, and 40 km of tailwater, (2) the forebay, dam, and 40 km of tailwater. The studymore » also estimated additional passage performance measures which are stipulated in the Columbia Basin Fish Accords.« less

  6. Characterization and application of a quantitative DNA marker that discriminates sex in chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clifton, D.R.; Rodriguez, R.J.

    1997-01-01

    A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.

  7. Characterization and application of a quantitative DNA marker that discriminates sex in Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clifton, D.R.; Rodriguez, R.J.

    1997-01-01

    A qualitative male-specific DNA marker (OT-24) was amplified by spPCR (single-primer polymerase chain reaction) from chinook salmon (Oncorhynchus tshawytscha) DNA along with several non-sex-linked products. The termini of the male-specific product were sequenced, and a pair of PeR primers were constructed for marker-specific PCR amplification. Dual primer PCR (dpPCR), with the marker-specific primers, amplified a product from both nudes and females. The amount of dpPCR product amplified from males was at least 100-fold greater than that from females. The quantitative difference between males and females was consistent among geographically distinct populations from western U.S. rivers. In addition, DNA sequence analysis indicated that OT-24 was highly conserved among geographically distinct salmon populations. The qualitative spPCR product segregated through several genetic crosses indicating equal sex ratios among progeny. Identification of the male and female juveniles by dpPCR was consistent with the spPCR analysis. There was no tissue specificity observed by spPCR or dpPCR analysis of this marker. A rapid DNA extraction method and dpPCR analysis were used to nonlethally determine sex ratios in wild spring chinook salmon adults, withheld for genetic and behavioral studies, prior to their development of gross sexual differences in their external morphology.

  8. Approach, passage, and survival of juvenile salmonids at Little Goose Dam, Washington: Post-construction evaluation of a temporary spillway weir, 2009

    USGS Publications Warehouse

    Beeman, J.W.; Braatz, A.C.; Hansel, H.C.; Fielding, S.D.; Haner, P.V.; Hansen, G.S.; Shurtleff, D.J.; Sprando, J.M.; Rondorf, D.W.

    2010-01-01

    This report describes a study of dam passage and survival of radio-tagged juvenile salmonids after installation of a temporary spillway weir (TSW) at Little Goose Dam, Washington, in 2009. The purpose of the study was to document fish passage and survival when the dam was operated with the TSW in place. Spillway weirs are one of several methods used to improve downstream passage of juvenile salmonids. Each spillway weir design is based on the concept of providing an overflow weir with a depth more similar to the natural migration depth of juvenile salmonids than conventional spill bays. Little Goose Dam was the last of the four lower Snake River dams to have a spillway weir installed. This was the first year that some form of surface passage device was operating at all Snake River and Columbia River dams between Lewiston, Idaho, and the Columbia River estuary. The study design stipulated that a total of 30 percent of the river discharge would continuously be passed over the TSW and the conventional spill bays, and this percentage was achieved. The TSW also was to be operated at the 'low crest' elevation during the spring and the 'high crest' elevation during the summer, but the TSW was only operated at the low crest elevation during this study. Behavior, passage, and survival of spring and summer juvenile salmonid migrants passing through Little Goose Dam were examined using radio telemetry. Survival was estimated using the Route Specific Survival Model (RSSM) by releasing tagged fish near Central Ferry State Park 21 kilometers upstream of the dam and in the tailrace approximately 0.5 kilometer downstream of the dam. From April 18 to May 21, 2009, 1,520 yearling Chinook salmon (Oncorhynchus tshawytscha) and 1,517 juvenile steelhead (O. mykiss) were radio tagged and released. From June 6 to July 5, 2009, 4,251 subyearling Chinook salmon (O. tshawytscha) were radio tagged and released. Release dates of subyearling Chinook salmon were selected to avoid 'reservoir

  9. Threshold for Onset of Injury in Chinook Salmon from Exposure to Impulsive Pile Driving Sounds

    PubMed Central

    Halvorsen, Michele B.; Casper, Brandon M.; Woodley, Christa M.; Carlson, Thomas J.; Popper, Arthur N.

    2012-01-01

    The risk of effects to fishes and other aquatic life from impulsive sound produced by activities such as pile driving and seismic exploration is increasing throughout the world, particularly with the increased exploitation of oceans for energy production. At the same time, there are few data that provide insight into the effects of these sounds on fishes. The goal of this study was to provide quantitative data to define the levels of impulsive sound that could result in the onset of barotrauma to fish. A High Intensity Controlled Impedance Fluid filled wave Tube was developed that enabled laboratory simulation of high-energy impulsive sound that were characteristic of aquatic far-field, plane-wave acoustic conditions. The sounds used were based upon the impulsive sounds generated by an impact hammer striking a steel shell pile. Neutrally buoyant juvenile Chinook salmon (Oncorhynchus tshawytscha) were exposed to impulsive sounds and subsequently evaluated for barotrauma injuries. Observed injuries ranged from mild hematomas at the lowest sound exposure levels to organ hemorrhage at the highest sound exposure levels. Frequency of observed injuries were used to compute a biological response weighted index (RWI) to evaluate the physiological impact of injuries at the different exposure levels. As single strike and cumulative sound exposure levels (SELss, SELcum respectively) increased, RWI values increased. Based on the results, tissue damage associated with adverse physiological costs occurred when the RWI was greater than 2. In terms of sound exposure levels a RWI of 2 was achieved for 1920 strikes by 177 dB re 1 µPa2⋅s SELss yielding a SELcum of 210 dB re 1 µPa2⋅s, and for 960 strikes by 180 dB re 1 µPa2⋅s SELss yielding a SELcum of 210 dB re 1 µPa2⋅s. These metrics define thresholds for onset of injury in juvenile Chinook salmon. PMID:22745695

  10. Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds.

    PubMed

    Halvorsen, Michele B; Casper, Brandon M; Woodley, Christa M; Carlson, Thomas J; Popper, Arthur N

    2012-01-01

    The risk of effects to fishes and other aquatic life from impulsive sound produced by activities such as pile driving and seismic exploration is increasing throughout the world, particularly with the increased exploitation of oceans for energy production. At the same time, there are few data that provide insight into the effects of these sounds on fishes. The goal of this study was to provide quantitative data to define the levels of impulsive sound that could result in the onset of barotrauma to fish. A High Intensity Controlled Impedance Fluid filled wave Tube was developed that enabled laboratory simulation of high-energy impulsive sound that were characteristic of aquatic far-field, plane-wave acoustic conditions. The sounds used were based upon the impulsive sounds generated by an impact hammer striking a steel shell pile. Neutrally buoyant juvenile Chinook salmon (Oncorhynchus tshawytscha) were exposed to impulsive sounds and subsequently evaluated for barotrauma injuries. Observed injuries ranged from mild hematomas at the lowest sound exposure levels to organ hemorrhage at the highest sound exposure levels. Frequency of observed injuries were used to compute a biological response weighted index (RWI) to evaluate the physiological impact of injuries at the different exposure levels. As single strike and cumulative sound exposure levels (SEL(ss), SEL(cum) respectively) increased, RWI values increased. Based on the results, tissue damage associated with adverse physiological costs occurred when the RWI was greater than 2. In terms of sound exposure levels a RWI of 2 was achieved for 1920 strikes by 177 dB re 1 µPa(2)⋅s SEL(ss) yielding a SEL(cum) of 210 dB re 1 µPa(2)⋅s, and for 960 strikes by 180 dB re 1 µPa(2)⋅s SEL(ss) yielding a SEL(cum) of 210 dB re 1 µPa(2)⋅s. These metrics define thresholds for onset of injury in juvenile Chinook salmon.

  11. Escapement and Productivity of Spring Chinook and Summer Steelhead in the John Day River Basin, Technical Report 2004-2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Wayne

    ,138 juvenile Chinook and 4,913 steelhead during the spring of 2005. We estimated that 130,144 (95% CL's 97,133-168,409) Chinook emigrated from the upper John Day subbasin past our seining area in the Mainstem John Day River (river kilometers 274-296) between February 4 and June 16, 2005. We also estimated that 32,601 (95% CL's 29,651 and 36,264) Chinook and 47,921 (95% CL's 35,025 and 67,366) steelhead migrated past our Mainstem rotary screw trap at river kilometer (rkm) 326 between October 4, 2004 and July 6, 2005. We estimated that 20,193 (95% CL's 17,699 and 22,983) Chinook and 28,980 (95% CL's 19,914 and 43,705) steelhead migrated past our Middle Fork trap (rkm 24) between October 6, 2004 and June 17, 2005. Seventy three percent of PIT tagged steelhead migrants were age-2 fish, 13.8% were age-3, 12.7% were age-2, and 0.3% were age 4. Spring Chinook SAR for the 2002 brood year was estimated at 2.5% (100 returns of 4,000 PIT tagged smolts). Preliminary steelhead SAR (excluding 2-ocean fish) for the 2004 tagging year was estimated at 1.61% (60 returns of 3,732 PIT-tagged migrants).« less

  12. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix C: Anadromous Fish and Juvenile Fish Transportation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Columbia River System Operation Review

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.

  13. Comparing life history characteristics of Lake Michigan’s naturalized and stocked Chinook Salmon

    USGS Publications Warehouse

    Kerns, Janice A; Rogers, Mark W.; Bunnell, David B.; Claramunt, Randall M.; Collingsworth, Paris D.

    2016-01-01

    Lake Michigan supports popular fisheries for Chinook Salmon Oncorhynchus tshawytscha that have been sustained by stocking since the late 1960s. Natural recruitment of Chinook Salmon in Lake Michigan has increased in the past few decades and currently contributes more than 50% of Chinook Salmon recruits. We hypothesized that selective forces differ for naturalized populations born in the wild and hatchery populations, resulting in divergent life history characteristics with implications for Chinook Salmon population production and the Lake Michigan fishery. First, we conducted a historical analysis to determine if life history characteristics changed through time as the Chinook Salmon population became increasingly naturalized. Next, we conducted a 2-year field study of naturalized and hatchery stocked Chinook Salmon spawning populations to quantify differences in fecundity, egg size, timing of spawning, and size at maturity. In general, our results did not indicate significant life history divergence between naturalized and hatchery-stocked Chinook Salmon populations in Lake Michigan. Although historical changes in adult sex ratio were correlated with the proportion of naturalized individuals, changes in weight at maturity were better explained by density-dependent factors. The field study revealed no divergence in fecundity, timing of spawning, or size at maturity, and only small differences in egg size (hatchery > naturalized). For the near future, our results suggest that the limited life history differences observed between Chinook Salmon of naturalized and hatchery origin will not lead to large differences in characteristics important to the dynamics of the population or fishery.

  14. Effects of acclimation on the toxicity of stream water contaminated with zinc and cadmium to juvenile cutthroat trout

    USGS Publications Warehouse

    Harper, D.D.; Farag, A.M.; Brumbaugh, W.G.

    2008-01-01

    We investigated the influence of acclimation on results of in situ bioassays with cutthroat trout in metal-contaminated streams. Cutthroat trout (Oncorhynchus clarki) were held for 21 days (1) in live containers at a reference or "clean" site having dissolved metals near detection limits (0.01 ??g/L cadmium [Cd] and 2.8 ??g/L zinc [Zn]; hardness 32 mg/L as CaCO3) and (2) at a site in a mining-impacted watershed having moderately increased metals (0.07 ??g/L Cd and 38 to 40 ??g/L Zn; hardness 50 mg/L as CaCO3). The 96-hour survival of each treatment group was then tested in situ at five sites from September 5 to 9, 2002, and each group exhibited a range of metal concentrations (0.44 to 39 ??g/L arsenic [As], 0.01 to 2.2 ??g/L Cd, and 0.49 to 856 ??g/L Zn). Survival was 100% at three sites for both treatments. However, a higher percentage of metal-acclimated fish survived at the site with the second highest concentrations of Cd and Zn (0.90 and 238 ??g/L, respectively) compared with fish acclimated at the reference site (100% vs. 55%, respectively). Survival was 65% for acclimated fish and 0% for metal-nai??ve fish at the site with the largest metal concentrations (2.2 ??g/L Cd and 856 ??g/L Zn). Water collected from the site with the largest concentrations of dissolved metals (on October 30, 2002) was used in a laboratory serial dilution to determine 96-hour LC50 values. The 96-hour LC50 estimates of nai??ve fish during the in situ and laboratory experiments were similar (0.60 ??g Cd/L and 226 ??g Zn/L for in situ and 0.64 ??g Cd/L and 201 ??g Zn/L for laboratory serial dilutions). However, mortality of nai??ve cutthroat trout tested under laboratory conditions was more rapid in dilutions of 100%, 75%, and 38% site water than in situ experiments. ?? 2007 Springer Science+Business Media, LLC.

  15. Scour of chinook salmon redds on suction dredge tailings

    Treesearch

    Bret C. Harvey; Thomas E. Lisle

    1999-01-01

    Abstract - We measured scour of the redds of chinook salmon Oncorhynchus tshawytscha on dredge tailings and natural substrates in three tributaries of the Klamath River, California. We measured maximum scour with scour chains and net scour by surveying before and after high winter flows. Scour of chinook salmon redds located on dredge tailings exceeded scour of redds...

  16. Using the shuttlebox experimental design to determine temperature preference for juvenile Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi)

    PubMed Central

    Kovachik, Colin; Charles, Colin; Enders, Eva C

    2018-01-01

    Abstract Temperature preference for various fishes has often been used as a proxy of optimal temperature for growth and metabolism due to the ease of obtaining preferred temperature zones in laboratory experiments. Several laboratory designs and methods have been proposed to examine preferred temperature zones, however, differences between them (i.e. thermal gradients vs. static temperatures in chambers and duration of acclimation/experimental periods) have led to varying measurements, precluding comparisons between experiments, species and/or life-stages. Juvenile Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi), a species listed as threatened in Alberta and of special concern in British Columbia, were tested in an automated shuttlebox experimental design (Loligo® Systems) to determine average and ranges of temperature preference (Tpref) and occupied temperatures. Previous lab studies suggested that Westslope Cutthroat Trout (WCT) prefer temperatures around 15°C, however, we found that average daytime Tpref for lab-reared juvenile WCT was substantially higher at 18.6°C, with occupied temperatures ranging between 11.9°C and 26.0°C throughout the duration of trials. This seems to indicate that despite constant lab-rearing conditions of 12°C, juvenile WCT may tolerate and even prefer warmer water temperatures. The duration of the acclimation period (1h, 12 h and 24 h) did not have an effect on Tpref, however, Tpref differed significantly for variable trial durations (12 h, 24 h and 36 h). A closer look at thermal trends throughout trials revealed that photoperiod significantly influenced Tpref, as nighttime temperature preference reached consistently 26°C. Collectively, these results suggest that shuttlebox experiments on WCT need to take into account the photoperiod, as behaviour may drive Tpref more so than the duration of acclimation periods. PMID:29692899

  17. Quantifying flow-dependent changes in subyearling fall chinook salmon rearing habitat using two-dimensional spatially explicit modeling

    USGS Publications Warehouse

    Tiffan, K.F.; Garland, R.D.; Rondorf, D.W.

    2002-01-01

    We used an analysis based on a geographic information system (GIS) to determine the amount of rearing habitat and stranding area for subyearling fall chinook salmon Oncorhynchus tshawytscha in the Hanford Reach of the Columbia River at steady-state flows ranging from 1,416 to 11,328 m3/s. High-resolution river channel bathymetry was used in conjunction with a two-dimensional hydrodynamic model to estimate water velocities, depths, and lateral slopes throughout our 33-km study area. To relate the probability of fish presence in nearshore habitats to measures of physical habitat, we developed a logistic regression model from point electrofishing data. We only considered variables that were compatible with a GIS and therefore excluded other variables known to be important to juvenile salmonids. Water velocity and lateral slope were the only two variables included in our final model. The amount of available rearing habitat generally decreased as flow increased, with the greatest decreases occurring between 1,416 and 4,814 m3/s. When river discharges were between 3,682 and 7,080 m3/s, flow fluctuations of 566 m3/s produced the smallest change in available rearing area (from -6.3% to +6.8% of the total). Stranding pool area was greatly reduced at steady-state flows exceeding 4,531 m3/s, but the highest net gain in stranding area was produced by 850 m3/s decreases in flow when river discharges were between 5,381 and 5,664 m3/s. Current measures to protect rearing fall chinook salmon include limiting flow fluctuations at Priest Rapids Dam to 850 m3/s when the dam is spilling water and when the weekly flows average less than 4,814 m3/s. We believe that limiting flow fluctuations at all discharges would further protect subyearling fall chinook salmon.

  18. Diet composition and feeding periodicity of wild and hatchery subyearling Chinook salmon in Lake Ontario

    USGS Publications Warehouse

    Johnson, J. H.

    2008-01-01

    Diel feeding periodicity, daily ration, and diet composition of wild and hatchery subyearling Chinook salmon Oncorhynchus tshawytscha were examined in Lake Ontario and the Salmon River, New York. The diet of wild riverine salmon was composed mainly of aquatic invertebrates (63.4%), mostly ephemeropterans (25.8%), chiromomids (15.8%), and trichopterans (8.3%). The diet of riverine Chinook was more closely associated with the composition of drift samples rather than bottom samples, suggesting mid-water feeding. In Lake Ontario terrestrial invertebrates were more important in the diet of hatchery Chinook (49.0%) than wild salmon (30.5%) and diet overlap between hatchery and wild salmon was low (0.46%). The diet of both hatchery and wild Chinook salmon was more closely associated with the composition of mid-water invertebrate samples rather than benthic core samples, indicating mid-water and surface feeding. Hatchery Chinook salmon consumed significantly less food (P < 0.05) than wild Chinook salmon in the lake and in the river, and wild salmon from Lake Ontario consumed more food than wild salmon in the Salmon River. Peak feeding of wild Chinook salmon occurred between 1200-1600 hours in Lake Ontario and between 1600-2000 hours in the Salmon River; there was no discernable feeding peak for the hatchery Chinook in Lake Ontario. Hatchery Chinook salmon also had the least diverse diet over the 24-hour sample period. These results suggest that at 7 days post-stocking hatchery Chinook salmon had not yet fully adapted to their new environment.

  19. Effect of dietary α-tocopherol + ascorbic acid, selenium, and iron on oxidative stress in sub-yearling Chinook salmon (Oncorhynchus tshawytscha Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2009-01-01

    A three-variable central composite design coupled with surface-response analysis was used to examine the effects of dietary ??-tocopherol + ascorbic acid (TOCAA), selenium (Se), and iron (Fe) on indices of oxidative stress in juvenile spring Chinook salmon. Each dietary factor was tested at five levels for a total of fifteen dietary combinations (diets). Oxidative damage in liver and kidney (lipid peroxidation, protein carbonyls) and erythrocytes (erythrocyte resistance to peroxidative lysis, ERPL) was determined after feeding experimental diets for 16 (early December) and 28 (early March) weeks. Only TOCAA influenced oxidative stress in this study, with most measures of oxidative damage decreasing (liver lipid peroxidation in December and March; ERPL in December; liver protein carbonyl in March) with increasing levels of TOCAA. We also observed a TOCAA-stimulated increase in susceptibility of erythrocytes to peroxidative lysis in March at the highest levels of TOCAA. The data suggest that under most circumstances a progressive decrease in oxidative stress occurs as dietary TOCAA increases, but higher TOCAA concentrations can stimulate oxidative damage in some situations. Higher levels of TOCAA in the diet were required in March than in December to achieve comparable levels of protection against oxidative damage, which may have been due to physiological changes associated with the parr-smolt transformation. Erythrocytes appeared to be more sensitive to variation in dietary levels of TOCAA than liver and kidney tissues. Using the March ERPL assay results as a baseline, a TOCAA level of approximately 350-600 mg/kg diet would provide adequate protection against lipid peroxidation under most circumstances in juvenile Chinook salmon. ?? 2008 The Authors.

  20. Mucous lysozyme levels in hatchery coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) early in the parr-smolt transformation

    USGS Publications Warehouse

    Schrock, R.M.; Smith, S.D.; Maule, A.G.; Doulos, S.K.; Rockowski, J.J.

    2001-01-01

    Mucous lysozyme concentrations were determined in juvenile coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) to establish reference levels during the time associated with the parr-smolt transformation. The first reported naris and vent mucous lysozyme levels are provided for spring chinook salmon and coho salmon. Naris mucous lysozyme levels ranged between 300 and 700 ??g ml-1, vent mucous lysozyme from 100 to 300 ??g ml-1, and skin mucous lysozyme levels were below 130 ??g ml-1. Lysozyme levels in the two species showed the same relationship with the highest levels in naris mucous, and the lowest in skin mucous. A seasonal decrease occurred in both species with a significant decrease in naris mucous lysozyme between February and March. Gill ATPase levels used to monitor smolt development during the same period did not reach ranges reported for smolts for either species during emigration. Identification of seasonal levels of lysozyme activity in mucous provides an alternative determination of developmental status prior to release of fish from the hatchery when salmonids are still undergoing the parr-smolt transformation. ?? 2001 Elsevier Science B.V.

  1. Effectiveness of an integrated hatchery program: Can genetic-based performance differences between hatchery and wild Chinook salmon be avoided?

    USGS Publications Warehouse

    Hayes, Michael C.; Reisenbichler, Reginald R.; Rubin, Stephen P.; Drake, Deanne C.; Stenberg, Karl D.; Young, Sewall F.

    2013-01-01

    Performance of wild (W) and hatchery (H) spring Chinook salmon (Oncorhynchus tshawytscha) was evaluated for a sixth generation hatchery program. Management techniques to minimize genetic divergence from the wild stock included regular use of wild broodstock and volitional releases of juveniles. Performance of HH, WW, and HW (hatchery female spawned with wild male) crosses was compared in hatchery and stream environments. The WW juveniles emigrated from the hatchery at two to three times the rate of HH fish in the fall (HW intermediate) and 35% more HH than WW adults returned (27% more HW than WW adults). Performance in the stream did not differ statistically between HH and WW fish, but outmigrants (38% WW, 30% HW, and 32% HH fish) during the first 39 days of the 16-month sampling period composed 74% of total outmigrants. Differences among hatchery-reared crosses were partially due to additive genetic effects, were consistent with domestication (increased fitness for the hatchery population in the hatchery program), and suggested that selection against fall emigration from the hatchery was a possible mechanism of domestication.

  2. Bacterial Acclimation Inside an Aqueous Battery.

    PubMed

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  3. Bacterial Acclimation Inside an Aqueous Battery

    PubMed Central

    Dong, Dexian; Chen, Baoling; Chen, P.

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm-2 and 1.4-2.1 V. Bacterial addition within 1.0×1010 cells mL-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms. PMID:26070088

  4. Distribution and Joint Fish-Tag Survival of Juvenile Chinook Salmon Migrating through the Sacramento-San Joaquin River Delta, California, 2008

    USGS Publications Warehouse

    Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.

    2009-01-01

    Acoustic telemetry was used to obtain the movement histories of 915 juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) through the lower San Joaquin River and Sacramento-San Joaquin Delta, California, in 2008. Data were analyzed within a release-recapture framework to estimate survival, route distribution, and detection probabilities among three migration pathways through the Delta. The pathways included the primary route through the San Joaquin River and two less direct routes (Old River and Turner Cut). Strong inferences about survival were limited by premature tag failure, but estimates of fish distribution among migration routes should be unaffected by tag failure. Based on tag failure tests (N = 66 tags), we estimated that only 55-78 percent of the tags used in this study were still functioning when the last fish was detected exiting the study area 15 days after release. Due to premature tag failure, our 'survival' estimates represent the joint probability that both the tag and fish survived, not just survival of fish. Low estimates of fish-tag survival could have been caused by fish mortality or fish travel times that exceeded the life of the tag, but we were unable to differentiate between the two. Fish-tag survival through the Delta (from Durham Ferry to Chipps Island by all routes) ranged from 0.05 +or- 0.01 (SE) to 0.06 +or- 0.01 between the two weekly release groups. Among the three migration routes, fish that remained in the San Joaquin River exhibited the highest joint fish-tag survival (0.09 +or- 0.02) in both weeks, but only 22-33 percent of tagged fish used this route, depending on the week of release. Only 4-10 percent (depending on week) of tagged fish traveled through Turner Cut, but no tagged fish that used this route were detected exiting the Delta. Most fish (63-68 percent, depending on week of release) migrated through Old River, but fish-tag survival through this route (0.05 +or- 0.01) was only about one-half that of fish that

  5. Cold acclimation and cognitive performance: A review.

    PubMed

    Jones, Douglas M; Bailey, Stephen P; Roelands, Bart; Buono, Michael J; Meeusen, Romain

    2017-12-01

    Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Differential survival among sSOD-1* genotypes in Chinook Salmon

    USGS Publications Warehouse

    Hayes, Michael C.; Reisenbichler, Reginald R.; Rubin, Stephen P.; Wetzel, Lisa A.; Marshall , Anne R.

    2011-01-01

    Differential survival and growth were tested in Chinook salmon Oncorhynchus tshawytscha expressing two common alleles, *–100 and *–260, at the superoxide dismutase locus (sSOD-1*). These tests were necessary to support separate studies in which the two alleles were used as genetic marks under the assumption of mark neutrality. Heterozygous adults were used to produce progeny with –100/–100, –100/–260, and –260/–260 genotypes that were reared in two natural streams and two hatcheries in the states of Washington and Oregon. The latter also were evaluated as returning adults. In general, the genotype ratios of juveniles reared at hatcheries were consistent with high survival and little or no differential survival in the hatchery. Adult returns at one hatchery were significantly different from the expected proportions, and the survival of the –260/–260 genotype was 0.56–0.89 times that of the –100/–100 genotype over four year-classes. Adult returns at a second hatchery (one year-class) were similar but not statistically significant: survival of the –260/–260genotype relative to the –100/–100 genotype was 0.76. The performance of the heterozygote group was intermediate at both hatcheries. Significant differences in growth were rarely observed among hatchery fish (one year-class of juveniles and one age-class of adult males) but were consistent with greater performance for the –100/–100 genotype. Results from two groups of juveniles reared in streams (one year-class from each stream) suggested few differences in growth, but the observed genotype ratios were significantly different from the expected ratios in one stream. Those differences were consistent with the adult data; survival for the –260/–260 genotype was 76% of that of the –100/–100 genotype. These results, which indicate nonneutrality among sSOD-1* genotypes, caused us to modify our related studies and suggest caution in the interpretation of results and analyses in

  7. Distinct seasonal infectious agent profiles in life-history variants of juvenile Fraser River Chinook salmon: An application of high-throughput genomic screening.

    PubMed

    Tucker, Strahan; Li, Shaorong; Kaukinen, Karia H; Patterson, David A; Miller, Kristina M

    2018-01-01

    Disease-causing infectious agents are natural components of ecosystems and considered a major selective force driving the evolution of host species. However, knowledge of the presence and abundance of suites of infectious agents in wild populations has been constrained by our ability to easily screen for them. Using salmon as a model, we contrasted seasonal pathogenic infectious agents in life history variants of juvenile Chinook salmon from the Fraser River system (N = 655), British Columbia (BC), through the application of a novel high-throughput quantitative PCR monitoring platform. This included freshwater hatchery origin fish and samples taken at sea between ocean entry in spring and over-winter residence in coastal waters. These variants currently display opposite trends in productivity, with yearling stocks generally in decline and sub-yearling stocks doing comparatively well. We detected the presence of 32 agents, 21 of which were at >1% prevalence. Variants carried a different infectious agent profile in terms of (1) diversity, (2) origin or transmission environment of infectious agents, and (3) prevalence and abundance of individual agents. Differences in profiles tended to reflect differential timing and residence patterns through freshwater, estuarine and marine habitats. Over all seasons, individual salmon carried an average of 3.7 agents. Diversity changed significantly, increasing upon saltwater entrance, increasing through the fall and decreasing slightly in winter. Diversity varied between life history types with yearling individuals carrying 1.3-times more agents on average. Shifts in prevalence and load over time were examined to identify agents with the greatest potential for impact at the stock level; those displaying concurrent decrease in prevalence and load truncation with time. Of those six that had similar patterns in both variants, five reached higher prevalence in yearling fish while only one reached higher prevalence in sub

  8. Distinct seasonal infectious agent profiles in life-history variants of juvenile Fraser River Chinook salmon: An application of high-throughput genomic screening

    PubMed Central

    Li, Shaorong; Kaukinen, Karia H.; Patterson, David A.; Miller, Kristina M.

    2018-01-01

    Disease-causing infectious agents are natural components of ecosystems and considered a major selective force driving the evolution of host species. However, knowledge of the presence and abundance of suites of infectious agents in wild populations has been constrained by our ability to easily screen for them. Using salmon as a model, we contrasted seasonal pathogenic infectious agents in life history variants of juvenile Chinook salmon from the Fraser River system (N = 655), British Columbia (BC), through the application of a novel high-throughput quantitative PCR monitoring platform. This included freshwater hatchery origin fish and samples taken at sea between ocean entry in spring and over-winter residence in coastal waters. These variants currently display opposite trends in productivity, with yearling stocks generally in decline and sub-yearling stocks doing comparatively well. We detected the presence of 32 agents, 21 of which were at >1% prevalence. Variants carried a different infectious agent profile in terms of (1) diversity, (2) origin or transmission environment of infectious agents, and (3) prevalence and abundance of individual agents. Differences in profiles tended to reflect differential timing and residence patterns through freshwater, estuarine and marine habitats. Over all seasons, individual salmon carried an average of 3.7 agents. Diversity changed significantly, increasing upon saltwater entrance, increasing through the fall and decreasing slightly in winter. Diversity varied between life history types with yearling individuals carrying 1.3-times more agents on average. Shifts in prevalence and load over time were examined to identify agents with the greatest potential for impact at the stock level; those displaying concurrent decrease in prevalence and load truncation with time. Of those six that had similar patterns in both variants, five reached higher prevalence in yearling fish while only one reached higher prevalence in sub

  9. Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.

    2016-01-01

    Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the Salmon River during May and June prior to out-migration. Over the 4 years examined (2009–2012), annual consumption of Chinook Salmon parr by hatchery-released yearling steelhead O. mykiss and Coho Salmon O. kisutch ranged from 1.5 to 3.3 million and from 0.4 to 2.1 million, respectively. In 2009, Fallfish Semotilus corporalis were estimated to consume 2.9 million Chinook Salmon parr. Predation was higher in May, when the average TL of Chinook Salmon parr was 44.5 mm, than in June. Fallfish were also important predators of naturally reproduced steelhead subyearlings, consuming an estimated 800,000 steelhead in 2009. Hatchery-released yearling salmonids consumed 13.8–15.3% of the Chinook Salmon parr that were estimated to be present in the Salmon River during 2010–2012. Earlier releases of hatchery salmonid yearlings could reduce the riverine consumption of Chinook Salmon parr by facilitating the out-migration of yearlings prior to Chinook Salmon emergence.

  10. Feeding of predaceous fishes on out-migrating juvenile-salmonids in John Day Reservoir, Columbia River

    USGS Publications Warehouse

    Poe, Thomas P.; Hansel, Hal C.; Vigg, S.; Palmer, D.E.; Prendergast, L.A.

    1991-01-01

    Diets of northern squawfish Ptychocheilus oregonensis, smallmouth bass Micropterus dolomieu, walleye Stizostedion vitreum, and channel catfish Ictalurus punctatus from John Day Reservoir were examined to determine the extent of predation on juvenile salmonids during seaward migrations of the salmonids during April–August 1983–1986. Juvenile Pacific salmon Oncorhynchus spp. and steelhead O. mykiss were the most important food group (by weight) of northern squawfish – about 67% – but made up smaller proportions of the food of the other predators: channel catfish, 33%; walleyes, 14%; smallmouth bass, 4%. Seasonal changes in diets indicated that northern squawfish preferred juvenile salmonids in May and August (generally the peak period of salmonid out-migration), and switched to prickly sculpin Cottus asper when numbers of juvenile salmonids declined; walleyes and smallmouth bass showed a preference only for prickly sculpin among the prey fishes analyzed. As judged by dietary composition and prey selectivity, the northern squawfish was the major fish predator on juvenile salmonids in the reservoir; channel catfish also were important predators in the upper reservoir in spring. Walleyes and smallmouth bass were much less important predators on salmonids, and appeared to select subyearling chinook salmon only in August when the distribution of this prey overlapped with that of the predators. Size-selective predation by northern squawfish may also play an important role in reducing survival of the smaller individuals within each run of out-migrating juvenile salmonids.

  11. Bypass system modification at Bonneville Dam on the Columbia River improved the survival of juvenile salmon

    USGS Publications Warehouse

    Ferguson, J.W.; Sandford, B.P.; Reagan, R.E.; Gilbreath, L.G.; Meyer, E.B.; Ledgerwood, R.D.; Adams, N.S.

    2007-01-01

    From 1987 to 1992, we evaluated a fish bypass system at Bonneville Dam Powerhouse 2 on the Columbia River. The survival of subyearling Chinook salmon Oncorhynchus tshawytscha released into the system ranged from 0.774 to 0.911 and was significantly lower than the survival of test fish released into turbines and the area immediately below the powerhouse where bypass system flow reentered the river. Yearling and subyearling Chinook salmon and yearling coho salmon O. kisutch released into the bypass system were injured or descaled. Also, levels of blood plasma cortisol and lactate were significantly higher in yearling and subyearling Chinook salmon that passed through the bypass system than in fish released directly into a net located over the bypass exit. This original system was then extensively modified using updated design criteria, and the site where juvenile fish reentered the river was relocated 2.8 km further downstream to reduce predation on bypassed fish by northern pikeminnow Ptychocheilus oregonensis. Based on studies conducted from 1999 to 2001, the new bypass system resulted in high fish survival, virtually no injuries to fish, fish passage times that were generally similar to water travel times, and mild stress responses from which fish recovered quickly. The mean estimated survival of subyearling Chinook salmon passing through the new bypass system was 0.946 in 2001, which was an usually low-flow year. Survival, physical condition, passage timing, and blood physiological indicators of stress were all useful metrics for assessing the performance of both bypass systems and are discussed. The engineering and hydraulic criteria used to design the new bypass system that resulted in improved fish passage conditions are described.

  12. 75 FR 52309 - Pacific Fishery Management Council; Tule Chinook Workgroup Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... management approach for Columbia River natural tule chinook . This meeting of the TCW is open to the public... distributed to State and Federal recovery planning processes. In the event a usable approach emerges from this...: The Pacific Fishery Management Council's (Pacific Council) Tule Chinook Workgroup (TCW) will hold a...

  13. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming

    PubMed Central

    Xiao, Xi; de Bettignies, Thibaut; Olsen, Ylva S.; Agusti, Susana; Duarte, Carlos M.; Wernberg, Thomas

    2015-01-01

    Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia–Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16–30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius’ model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change. PMID:26630025

  14. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming.

    PubMed

    Xiao, Xi; de Bettignies, Thibaut; Olsen, Ylva S; Agusti, Susana; Duarte, Carlos M; Wernberg, Thomas

    2015-01-01

    Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia-Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16-30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius' model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change.

  15. Umatilla River Fish Passage Operations Program, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.; Duke, Bill B.

    2005-08-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from August 19, 2003 to July 8, 2004. A total of 3,388 summer steelhead (Oncorhynchus mykiss); 1,482 adult, 638 jack, and 2,150 subjack fall chinook (O. tshawytscha); 8,319 adult and 667 jack coho (O. kisutch); and 2,965 adult and 270 jack spring chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 34 summer steelhead and 31more » adult and 9 jack spring chinook were hauled upstream from Threemile Dam. There were 3,166 summer steelhead; 1,076 adult, 554 jack and 2,026 subjack fall chinook; 8,213 adult and 647 jack coho; and 2,152 adult and 174 jack spring chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 121 summer steelhead; 388 adult and 19 jack fall chinook; and 561 adult and 29 jack spring chinook were collected for brood. In addition, 239 spring chinook were collected for the outplanting efforts in the Walla Walla Basin. There were also 25 pair hatchery steelhead adults collected for the progeny maker study. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The canal was open for 184 days between January 12 and July 6, 2004. During that period, fish were bypassed back to the river 173 days and were trapped 10 days. An estimated 44 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5). Approximately 84% of the juveniles transported were salmonids. No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was opened on February 10, 2004 for outmigration sampling and continued until July 7, 2004 when sampling was

  16. Yakima River Radio-Telemetry Study: Spring Chinook Salmon, 1991-1992 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric

    1994-09-01

    As part of the presupplementation planning, baseline data on the productivity of spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River have been collected. However, for adult salmonids, data on habitat use, delays in passage at irrigation diversions, migration rates, and substock separation had not been previously collected. In 1991, the National Marine Fisheries Service began a 2-year radio-telemetry study of adult spring chinook salmon in the Yakima River Basin. Specific objectives addressed in this study were: to determine spawning populations` run timing, passage patterns at irrigation diversion dams, and morphometric characteristics to determine where and when substocks become separated;more » to evaluate fish passage at Yakima River Basin diversion dams including Prosser, Sunnyside, Wapato, Roza, Town Diversion, Easton, Cowiche, and Wapatox Dams; to determine spring chinook salmon migration rates between Yakima River Basin dams, prespawning behavior, temporal distribution, and habitat utilization; to identify spawning distribution and timing of spring chinook salmon; to determine the amount and cause of prespawning mortality of spring chinook salmon; and to evaluate adult fish-handling procedures for the right-bank, adult-trapping facility at Prosser Dam.« less

  17. Fall and winter microhabitat use and suitability for spring chinook salmon parr in a U.S. Pacific Northwest River

    USGS Publications Warehouse

    Favrot, Scott D.; Jonasson, Brian C.; Peterson, James T.

    2018-01-01

    Habitat degradation has been implicated as a primary threat to Pacific salmon Oncorhynchus spp. Habitat restoration and conservation are key toward stemming population declines; however, winter microhabitat use and suitability knowledge are lacking for small juvenile salmonids. Our objective was to characterize microhabitat use and suitability for spring Chinook Salmon Oncorhynchus tshawytscha parr during fall and winter. Using radiotelemetry techniques during October–February (2009–2011), we identified fall and winter microhabitat use by spring Chinook Salmon parr in Catherine Creek, northeastern Oregon. Tagged fish occupied two distinct gradient reaches (moderate and low). Using a mixed‐effects logistic regression resource selection function (RSF) model, we found evidence that microhabitat use was similar between free‐flowing and surface ice conditions. However, habitat use shifted between seasons; most notably, there was greater use of silt substrate and areas farther from the bank during winter. Between gradients, microhabitat use differed with greater use of large wood (LW) and submerged aquatic vegetation in the low‐gradient reach. Using a Bayesian RSF approach, we developed gradient‐specific habitat suitability criteria. Throughout the study area, deep depths and slow currents were most suitable, with the exception of the low‐gradient reach where moderate depths were optimal. Near‐cover coarse and fine substrates were most suitable in the moderate‐ and low‐gradient reaches, respectively. Near‐bank LW was most suitable throughout the study area. Multivariate principal component analyses (PCA) indicated co‐occurring deep depths supporting slow currents near cover were intensively occupied in the moderate‐gradient reach. In the low‐gradient reach, PCA indicated co‐occurring moderate depths, slow currents, and near‐bank cover were most frequently occupied. Our study identified suitable and interrelated microhabitat

  18. Performance of a prototype surface collector for juvenile salmonids at Bonneville dam's first powerhouse on the Columbia River, Oregon

    USGS Publications Warehouse

    Evans, S.D.; Adams, N.S.; Rondorf, D.W.; Plumb, J.M.; Ebberts, B.D.

    2008-01-01

    During April-July 2000, we radio-tagged and released juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) to evaluate a prototype surface flow bypass at Bonneville Dam on the Columbia River. The mock bypass, called a prototype surface collector (PSC), had six vertical slot entrances that were each 6 m wide and 12 m deep. The PSC was retrofitted to the upstream face of Bonneville Dam's First Powerhouse. Our objectives were to: (1) assess species-specific differences in movement patterns and behaviour of fish within 6 m of the face of the PSC, (2) estimate the efficiency and effectiveness of the PSC and (3) evaluate factors affecting the performance of the PSC. We found that 60-72% of the fish, depending on species, detected within 6 m of the PSC entered it. Of the fish that passed the First Powerhouse at turbines 1-6, 79-83% entered the PSC. Diel period was a significant contributor to PSC performance for all species, and day of year was a significant contributor to PSC performance for subyearling Chinook salmon. The PSC was twice as effective (%fish/%flow) as the spillway, passing 2.5:1 steelhead and subyearling Chinook salmon and 2.4:1 yearling Chinook salmon per unit of water. If fully implemented, the PSC would increase the percentage of fish that pass the First Powerhouse through non-turbine routes from 65-77% (without the PSC) to 76-85% (with the PSC), depending on species. Published in 2008 by John Wiley & Sons, Ltd.

  19. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters

    DOE PAGES

    Deng, Zhiqun D.; Martinez, J. J.; Li, H.; ...

    2017-02-21

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitters is still the key limiting factor despite that considerable effort has been expended to understand the biological effects of implantation of acoustic transmitters in yearling and subyearling Chinook salmon. The newly developed injectable transmitter is the first active acoustic tag that can be implanted via injection instead of surgery. It also lasts more than four times longer than the commercially-available transmitters. A two-part field study was conducted to evaluate the performance of the injectablemore » transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the other commercially-available transmitters tested. Snake River subyearling Chinook salmon smolts implanted with the injectable tag had a higher survival probability from release to each of 11 downstream detection arrays than concurrent releases of fish surgically implanted with commercially-available tags. In addition, reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The differences in survival may have been caused by warm water temperatures and higher rates of infection experienced by the surgically implanted group due to the presence of sutures acting as an attachment site for pathogens. The reduction in size and ability to implant the new transmitter via injection has further reduced the tag or tagging effect bias associated with studying small fishes. As a result, the information gathered with this new technology is helping minimize the impact of dams on fish, leading to more environmentally sustainable energy systems.« less

  20. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun D.; Martinez, J. J.; Li, H.

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitters is still the key limiting factor despite that considerable effort has been expended to understand the biological effects of implantation of acoustic transmitters in yearling and subyearling Chinook salmon. The newly developed injectable transmitter is the first active acoustic tag that can be implanted via injection instead of surgery. It also lasts more than four times longer than the commercially-available transmitters. A two-part field study was conducted to evaluate the performance of the injectablemore » transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the other commercially-available transmitters tested. Snake River subyearling Chinook salmon smolts implanted with the injectable tag had a higher survival probability from release to each of 11 downstream detection arrays than concurrent releases of fish surgically implanted with commercially-available tags. In addition, reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The differences in survival may have been caused by warm water temperatures and higher rates of infection experienced by the surgically implanted group due to the presence of sutures acting as an attachment site for pathogens. The reduction in size and ability to implant the new transmitter via injection has further reduced the tag or tagging effect bias associated with studying small fishes. As a result, the information gathered with this new technology is helping minimize the impact of dams on fish, leading to more environmentally sustainable energy systems.« less

  1. 75 FR 32378 - Fisheries of the Exclusive Economic Zone off Alaska; Chinook Salmon Bycatch Data Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... the Exclusive Economic Zone off Alaska; Chinook Salmon Bycatch Data Collection; Workshop for Industry... Chinook salmon bycatch management program that will be implemented under Amendment 91 to the Fishery... trawl fishery who are knowledgeable about industry plans and operations for avoiding Chinook salmon...

  2. Sweating responses during heat acclimation and moderate conditioning

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Van Beaumont, W.

    1979-01-01

    Experiments were conducted on ten young male subjects to determine sweating onset, distribution, and patterns as well as the relationships of these responses to body temperature during heat acclimation and moderate conditioning performed in temperate (24 C) conditions. The subjects are randomly assigned to two groups of five subjects each. The experimental period consisted of eight successive days of either graded exercise to exhaustion on a bicycle ergometer in heat (acclimation group) or in a temperate environment (control group). Major conclusions are that (1) acclimation and conditioning result in relatively more sweat rate on the limbs than on the torso, but that these changes are less related to body temperature than torso sweat rate; and (2) sweating sensitivity increases during acclimation and conditioning, but its contribution to heat acclimation is minor.

  3. Multiscale thermal refugia and stream habitat associations of chinook salmon in northwestern Oregon

    USGS Publications Warehouse

    Torgersen, Christian E.; Price, David M.; Li, Hiram W.; McIntosh, B.A.

    1999-01-01

    We quantified distribution and behavior of adult spring chinook salmon (Oncorhynchus tshawytscha) related to patterns of stream temperature and physical habitat at channel-unit, reach-, and section-level spatial scales in a wilderness stream and a disturbed stream in the John Day River basin in northeastern Oregon. We investigated the effectiveness of thermal remote sensing for analyzing spatial patterns of stream temperature and assessed habitat selection by spring chinook salmon, evaluating whether thermal refugia might be responsible for the persistence of these stocks in rivers where water temperatures frequently exceed their upper tolerance levels (25A?C) during spawning migration. By presenting stream temperature and the ecology of chinook salmon in a historical context, we could evaluate how changes in riverine habitat and thermal spatial structure, which can be caused by land-use practices, may influence distributional patterns of chinook salmon. Thermal remote sensing provided spatially continuous maps of stream temperature for reaches used by chinook salmon in the upper subbasins of the Middle Fork and North Fork John Day River. Electivity analysis and logistic regression were used to test for associations between the longitudinal distribution of salmon and cool-water areas and stream habitat characteristics. Chinook salmon were distributed nonuniformly in reaches throughout each stream. Salmon distribution and cool water temperature patterns were most strongly related at reach-level spatial scales in the warm stream, the Middle Fork (maximum likelihood ratio: P 0.30). Pools were preferred by adult chinook salmon in both subbasins (Bonferroni confidence interval: P a?? 0.05); however, riffles were used proportionately more frequently in the North Fork than in the Middle Fork. Our observations of thermal refugia and their use by chinook salmon at multiple spatial scales reveal that, although heterogeneity in the longitudinal stream temperature profile may

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Harnish, Ryan A.; Bellgraph, Brian J.

    The study reported herein was funded as part of the Anadromous Fish Evaluation Program, which is managed by the U.S. Army Corps of Engineers (USACE). The Anadromous Fish Evaluation Program study code is EST P 02 01: A Study of Salmonid Survival and Behavior through the Columbia River Estuary Using Acoustic Tags. The study was conducted by the Pacific Northwest National Laboratory (PNNL) and National Oceanic and Atmospheric Administration (NOAA) Fisheries for the USACE Portland District. Estimated survival of acoustic-tagged juvenile Chinook salmon and steelhead through the lower Columbia River and estuary in 2009 was lowest in the final 50more » km of the estuary. Probability of survival was relatively high (>0.90) for yearling and subyearling Chinook salmon from the Bonneville Dam forebay (rkm 236) to Three-tree Point (rkm 49.6). Survival of juvenile Chinook salmon declined sharply through the lower 50 km of the estuary. Acoustic-tagged steelhead smolts did not survive as well as juvenile Chinook salmon between Bonneville Dam and the mouth of the Columbia River. Steelhead survival began to decline farther upstream (at rkm 86) relative to that of the Chinook salmon stocks. Subyearling Chinook salmon survival decreased markedly as the season progressed. It remains to be determined whether later migrating subyearling Chinook salmon are suffering increasing mortality as the season progresses or whether some portion of the apparent loss is due to fish extending their freshwater residence. This study provided the first glimpse into what promises to be a very informative way to learn more about how juvenile salmonid passage experiences through the FCRPS may influence their subsequent survival after passing Bonneville Dam. New information regarding the influence of migration pathway through the lower 50 km of the Columbia River estuary on probability of survival of juvenile salmonids, combined with increased understanding regarding the foraging distances and time

  5. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  6. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  7. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  8. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways...

  9. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... HABITAT § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways...

  10. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  11. Diel activity patterns of juvenile late fall-run Chinook salmon with implications for operation of a gated water diversion in the Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Plumb, John M.; Adams, Noah S.; Perry, Russell W.; Holbrook, Christopher; Romine, Jason G.; Blake, Aaron R.; Burau, Jon R.

    2016-01-01

    In the Sacramento-San Joaquin River Delta, California, tidal forces that reverse river flows increase the proportion of water and juvenile late fall-run Chinook salmon diverted into a network of channels that were constructed to support agriculture and human consumption. This area is known as the interior delta, and it has been associated with poor fish survival. Under the rationale that the fish will be diverted in proportion to the amount of water that is diverted, the Delta Cross Channel (DCC) has been prescriptively closed during the winter out-migration to reduce fish entrainment and mortality into the interior delta. The fish are thought to migrate mostly at night, and so daytime operation of the DCC may allow for water diversion that minimizes fish entrainment and mortality. To assess this, the DCC gate was experimentally opened and closed while we released 2983 of the fish with acoustic transmitters upstream of the DCC to monitor their arrival and entrainment into the DCC. We used logistic regression to model night-time arrival and entrainment probabilities with covariates that included the proportion of each diel period with upstream flow, flow, rate of change in flow and water temperature. The proportion of time with upstream flow was the most important driver of night-time arrival probability, yet river flow had the largest effect on fish entrainment into the DCC. Modelling results suggest opening the DCC during daytime while keeping the DCC closed during night-time may allow for water diversion that minimizes fish entrainment into the interior delta.

  12. An immune-complex glomerulonephritis of Chinook salmon, Oncorhynchus tshawytscha (Walbaum).

    PubMed

    Lumsden, J S; Russell, S; Huber, P; Wybourne, B A; Ostland, V E; Minamikawa, M; Ferguson, H W

    2008-12-01

    Chinook salmon from New Zealand were shown to have a generalized membranous glomerulonephritis that was most severe in large fish. Marked thickening of the glomerular basement membrane was the most consistent lesion, with the presence of an electron-dense deposit beneath the capillary endothelium.Severely affected glomeruli also had expansion of the mesangium and loss of capillaries,synechiae of the visceral and parietal epithelium and mild fibrosis of Bowmans capsule. Chinook salmon from British Columbia, Canada with bacterial kidney disease caused by Renibacterium salmoninarum had similar histological lesions. They also had thickened glomerular basement membranes that were recognized by rabbit antiserum to rainbow trout immunoglobulin. This was true only when frozen sections of kidney were used and not formalin-fixed tissue. An attempt to experimentally produce a glomerulopathy in rainbow trout by repeated immunization with killed R. salmoninarum was not successful. Case records from the Fish Pathology Laboratory at the University of Guelph over a 10-year period revealed that a range of species were diagnosed with glomerulopathies similar to those seen in Chinook salmon. The majority of these cases were determined to have chronic inflammatory disease. This report has identified the presence of immunoglobulin within thickened basement membranes of Chinook salmon with glomerulonephritis and supports the existence of type III hypersensitivity in fish.

  13. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha

    PubMed Central

    Kemp, Brian M.; Thorgaard, Gary H.

    2018-01-01

    The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha). Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed “the four H’s”: habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins may have

  14. Extensive Acclimation in Ectotherms Conceals Interspecific Variation in Thermal Tolerance Limits

    PubMed Central

    Pintor, Anna F. V.; Schwarzkopf, Lin; Krockenberger, Andrew K.

    2016-01-01

    Species’ tolerance limits determine their capacity to tolerate climatic extremes and limit their potential distributions. Interspecific variation in thermal tolerances is often proposed to indicate climatic vulnerability and is, therefore, the subject of many recent meta-studies on differential capacities of species from climatically different habitats to deal with climate change. Most studies on thermal tolerances do not acclimate animals or use inconsistent, and insufficient, acclimation times, limiting our knowledge of the shape, duration and extent of acclimation responses. Consequently patterns in thermal tolerances observed in meta-analyses, based on data from the literature are based on inconsistent, partial acclimation and true trends may be obscured. In this study we describe time-course of complete acclimation of critical thermal minima in the tropical ectotherm Carlia longipes and compare it to the average acclimation response of other reptiles, estimated from published data, to assess how much acclimation time may contribute to observed differences in thermal limits. Carlia longipes decreased their lower critical thermal limits by 2.4°C and completed 95% of acclimation in 17 weeks. Wild populations did not mirror this acclimation process over the winter. Other reptiles appear to decrease cold tolerance more quickly (95% in 7 weeks) and to a greater extent, with an estimated average acclimation response of 6.1°C. However, without data on tolerances after longer acclimation times available, our capacity to estimate final acclimation state is very limited. Based on the subset of data available for meta-analysis, much of the variation in cold tolerance observed in the literature can be attributed to acclimation time. Our results indicate that (i) acclimation responses can be slow and substantial, even in tropical species, and (ii) interspecific differences in acclimation speed and extent may obscure trends assessed in some meta-studies. Cold tolerances

  15. Extensive Acclimation in Ectotherms Conceals Interspecific Variation in Thermal Tolerance Limits.

    PubMed

    Pintor, Anna F V; Schwarzkopf, Lin; Krockenberger, Andrew K

    2016-01-01

    Species' tolerance limits determine their capacity to tolerate climatic extremes and limit their potential distributions. Interspecific variation in thermal tolerances is often proposed to indicate climatic vulnerability and is, therefore, the subject of many recent meta-studies on differential capacities of species from climatically different habitats to deal with climate change. Most studies on thermal tolerances do not acclimate animals or use inconsistent, and insufficient, acclimation times, limiting our knowledge of the shape, duration and extent of acclimation responses. Consequently patterns in thermal tolerances observed in meta-analyses, based on data from the literature are based on inconsistent, partial acclimation and true trends may be obscured. In this study we describe time-course of complete acclimation of critical thermal minima in the tropical ectotherm Carlia longipes and compare it to the average acclimation response of other reptiles, estimated from published data, to assess how much acclimation time may contribute to observed differences in thermal limits. Carlia longipes decreased their lower critical thermal limits by 2.4°C and completed 95% of acclimation in 17 weeks. Wild populations did not mirror this acclimation process over the winter. Other reptiles appear to decrease cold tolerance more quickly (95% in 7 weeks) and to a greater extent, with an estimated average acclimation response of 6.1°C. However, without data on tolerances after longer acclimation times available, our capacity to estimate final acclimation state is very limited. Based on the subset of data available for meta-analysis, much of the variation in cold tolerance observed in the literature can be attributed to acclimation time. Our results indicate that (i) acclimation responses can be slow and substantial, even in tropical species, and (ii) interspecific differences in acclimation speed and extent may obscure trends assessed in some meta-studies. Cold tolerances of

  16. Deconditioning-induced exercise responses as influenced by heat acclimation

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1979-01-01

    A study to determine the effect of heat acclimation and physical training in temperate conditions on changes in exercise tolerance following water-immersion deconditioning is presented. Five young men were tested on a bicycle ergometer before and after heat acclimation and after water immersion. The subjects and the experimental procedure, heat acclimation and exercise training, water immersion, and exercise tolerance are discussed. Heat acclimation resulted in the usual decreases in exercise heart rate and rectal temperature and an increase in sweat rate. Water immersion resulted in substantial diuresis despite water consumed. The results show that heat acclimation provides an effective method of preventing the adverse effects of water-immersion deconditioning on exercise tolerance.

  17. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom and...

  18. 50 CFR 226.204 - Critical habitat for Sacramento winter-run chinook salmon.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Sacramento winter-run chinook salmon. 226.204 Section 226.204 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... § 226.204 Critical habitat for Sacramento winter-run chinook salmon. The following waterways, bottom and...

  19. Behavior and dam passage of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March 2011 - February 2012

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Haner, Philip V.; Sprando, Jamie M.; Smith, Collin D.; Evans, Scott D.; Hatton, Tyson W.

    2013-01-01

    The movements and dam passage of juvenile Chinook salmon implanted with acoustic transmitters and passive integrated transponder tags were studied at Cougar Reservoir and Dam, near Springfield, Oregon. The purpose of the study was to provide information to aid with decisions about potential alternatives for improving downstream passage conditions for juvenile salmonids in this flood-control reservoir. In 2011, a total of 411 hatchery fish and 26 wild fish were tagged and released during a 3-month period in the spring, and another 356 hatchery fish and 117 wild fish were released during a 3-month period in the fall. A series of 16 autonomous hydrophones throughout the reservoir and 12 hydrophones in a collective system near the dam outlet were used to determine general movements and dam passage of the fish over the life of the acoustic transmitter, which was expected to be about 3 months. Movements within the reservoir were directional, and it was common for fish to migrate repeatedly from the head of the reservoir downstream to the dam outlet and back to the head of the reservoir. Most fish were detected near the temperature control tower at least once. The median time from release near the head of the reservoir to detection within about 100 meters of the dam outlet at the temperature control tower was between 5.7 and 10.8 days, depending on season and fish origin. Dam passage events occurred over a wider range of dates in the spring and summer than in the fall and winter, but dam passage numbers were greatest during the fall and winter. A total of 10.5 percent (43 of 411) of the hatchery fish and 15.4 percent (4 of 26) of the wild fish released in the spring are assumed to have passed the dam, whereas a total of 25.3 percent (90 of 356) of the hatchery fish and 16.9 percent (30 of 117) of the wild fish released in the fall are assumed to have passed the dam. A small number of fish passed the dam after their transmitters had stopped working and were detected at

  20. Humpback whales feed on hatchery-released juvenile salmon

    PubMed Central

    Straley, Janice M.; McPhee, Megan V.; Atkinson, Shannon; Reifenstuhl, Steve

    2017-01-01

    Humpback whales are remarkable for the behavioural plasticity of their feeding tactics and the diversity of their diets. Within the last decade at hatchery release sites in Southeast Alaska, humpback whales have begun exploiting juvenile salmon, a previously undocumented prey. The anthropogenic source of these salmon and their important contribution to local fisheries makes the emergence of humpback whale predation a concern for the Southeast Alaska economy. Here, we describe the frequency of observing humpback whales, examine the role of temporal and spatial variables affecting the probability of sighting humpback whales and describe prey capture behaviours at five hatchery release sites. We coordinated twice-daily 15 min observations during the spring release seasons 2010–2015. Using logistic regression, we determined that the probability of occurrence of humpback whales increased after releases began and decreased after releases concluded. The probability of whale occurrence varied among release sites but did not increase significantly over the 6 year study period. Whales were reported to be feeding on juvenile chum, Chinook and coho salmon, with photographic and video records of whales feeding on coho salmon. The ability to adapt to new prey sources may be key to sustaining their population in a changing ocean. PMID:28791145

  1. Humpback whales feed on hatchery-released juvenile salmon.

    PubMed

    Chenoweth, Ellen M; Straley, Janice M; McPhee, Megan V; Atkinson, Shannon; Reifenstuhl, Steve

    2017-07-01

    Humpback whales are remarkable for the behavioural plasticity of their feeding tactics and the diversity of their diets. Within the last decade at hatchery release sites in Southeast Alaska, humpback whales have begun exploiting juvenile salmon, a previously undocumented prey. The anthropogenic source of these salmon and their important contribution to local fisheries makes the emergence of humpback whale predation a concern for the Southeast Alaska economy. Here, we describe the frequency of observing humpback whales, examine the role of temporal and spatial variables affecting the probability of sighting humpback whales and describe prey capture behaviours at five hatchery release sites. We coordinated twice-daily 15 min observations during the spring release seasons 2010-2015. Using logistic regression, we determined that the probability of occurrence of humpback whales increased after releases began and decreased after releases concluded. The probability of whale occurrence varied among release sites but did not increase significantly over the 6 year study period. Whales were reported to be feeding on juvenile chum, Chinook and coho salmon, with photographic and video records of whales feeding on coho salmon. The ability to adapt to new prey sources may be key to sustaining their population in a changing ocean.

  2. Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration.

    PubMed

    Way, Danielle A; Yamori, Wataru

    2014-02-01

    While interest in photosynthetic thermal acclimation has been stimulated by climate warming, comparing results across studies requires consistent terminology. We identify five types of photosynthetic adjustments in warming experiments: photosynthesis as measured at the high growth temperature, the growth temperature, and the thermal optimum; the photosynthetic thermal optimum; and leaf-level photosynthetic capacity. Adjustments of any one of these variables need not mean a concurrent adjustment in others, which may resolve apparently contradictory results in papers using different indicators of photosynthetic acclimation. We argue that photosynthetic thermal acclimation (i.e., that benefits a plant in its new growth environment) should include adjustments of both the photosynthetic thermal optimum (T opt) and photosynthetic rates at the growth temperature (A growth), a combination termed constructive adjustment. However, many species show reduced photosynthesis when grown at elevated temperatures, despite adjustment of some photosynthetic variables, a phenomenon we term detractive adjustment. An analysis of 70 studies on 103 species shows that adjustment of T opt and A growth are more common than adjustment of other photosynthetic variables, but only half of the data demonstrate constructive adjustment. No systematic differences in these patterns were found between different plant functional groups. We also discuss the importance of thermal acclimation of respiration for net photosynthesis measurements, as respiratory temperature acclimation can generate apparent acclimation of photosynthetic processes, even if photosynthesis is unaltered. We show that while dark respiration is often used to estimate light respiration, the ratio of light to dark respiration shifts in a non-predictable manner with a change in leaf temperature.

  3. Rapid Acclimation Ability Mediated by Transcriptome Changes in Reef-Building Corals

    PubMed Central

    Bay, Rachael A.; Palumbi, Stephen R.

    2015-01-01

    Population response to environmental variation involves adaptation, acclimation, or both. For long-lived organisms, acclimation likely generates a faster response but is only effective if the rates and limits of acclimation match the dynamics of local environmental variation. In coral reef habitats, heat stress from extreme ocean warming can occur over several weeks, resulting in symbiont expulsion and widespread coral death. However, transcriptome regulation during short-term acclimation is not well understood. We examined acclimation during a 11-day experiment in the coral Acropora nana. We acclimated colonies to three regimes: ambient temperature (29 °C), increased stable temperature (31 °C), and variable temperature (29–33 °C), mimicking local heat stress conditions. Within 7–11 days, individuals acclimated to increased temperatures had higher tolerance to acute heat stress. Despite physiological changes, no gene expression changes occurred during acclimation before acute heat stress. However, we found strikingly different transcriptional responses to heat stress between acclimation treatments across 893 contigs. Across these contigs, corals acclimated to higher temperatures (31 °C or 29–33 °C) exhibited a muted stress response—the magnitude of expression change before and after heat stress was less than in 29 °C acclimated corals. Our results show that corals have a rapid phase of acclimation that substantially increases their heat resilience within 7 days and that alters their transcriptional response to heat stress. This is in addition to a previously observed longer term response, distinguishable by its shift in baseline expression, under nonstressful conditions. Such rapid acclimation may provide some protection for this species of coral against slow onset of warming ocean temperatures. PMID:25979751

  4. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, James R.; Smith, Steven G.; Muir, William D.

    2009-06-23

    In 2008, the National Marine Fisheries Service completed the sixteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder (PIT) tags. We PIT tagged and released a total of 18,565 hatchery steelhead O. mykiss, 15,991 wild steelhead, and 9,714 wild yearling Chinook salmon O. tshawytscha at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from themore » hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. These included 122,061 yearling Chinook salmon tagged at Lower Granite Dam for evaluation of latent mortality related to passage through Snake River dams. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2008 were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon and steelhead, (2) evaluate relationships between survival estimates and migration conditions, and (3) evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2008 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here

  5. The effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis).

    PubMed

    Pang, Xu; Yuan, Xing-Zhong; Cao, Zhen-Dong; Fu, Shi-Jian

    2013-01-01

    To investigate the effects of temperature and exercise training on swimming performance in juvenile qingbo (Spinibarbus sinensis), we measured the following: (1) the resting oxygen consumption rate (MO(2rest)), critical swimming speed (U(crit)) and active oxygen consumption rate (MO(2active)) of fish at acclimation temperatures of 10, 15, 20, 25 and 30 °C and (2) the MO(2rest), U(crit) and MO(2active) of both exercise-trained (exhaustive chasing training for 14 days) and control fish at both low and high acclimation temperatures (15 and 25 °C). The relationship between U(crit) and temperature (T) approximately followed a bell-shaped curve as temperature increased: U(crit) = 8.21/{1 + [(T - 27.2)/17.0]²} (R² = 0.915, P < 0.001, N = 40). The optimal temperature for maximal U(crit) (8.21 BL s(-1)) in juvenile qingbo was 27.2 °C. Both the MO(2active) and the metabolic scope (MS, MO(2active) - MO(2rest)) of qingbo increased with temperature from 10 to 25 °C (P < 0.05), but there were no significant differences between fish acclimated to 25 and 30 °C. The relationships between MO(2active) or MS and temperature were described as MO(2active) = 1,214.29 /{1 + [(T - 28.8)/10.6]²} (R² = 0.911, P < 0.001, N = 40) and MS = 972.67/{1 + [(T - 28.0)/9.34]²} (R² = 0.878, P < 0.001, N = 40). The optimal temperatures for MO(2active) and MS in juvenile qingbo were 28.8 and 28.0 °C, respectively. Exercise training resulted in significant increases in both U(crit) and MO(2active) at a low temperature (P < 0.05), but training exhibited no significant effect on either U(crit) or MO(2active) at a high temperature. These results suggest that exercise training had different effects on swimming performance at different temperatures. These differences may be related to changes in aerobic metabolic capability, arterial oxygen delivery, available dissolved oxygen, imbalances in ion fluxes and stimuli to remodel tissues with changes in temperature.

  6. The influence of alewife year-class strength on prey selection and abundance of age-1 Chinook salmon in Lake Michigan

    USGS Publications Warehouse

    Warner, D.M.; Kiley, C.S.; Claramunt, R.M.; Clapp, D.F.

    2008-01-01

    We used growth and diet data from a fishery-independent survey of Chinook salmon Oncorhynchus tshawytscha, acoustic estimates of prey density and biomass, and statistical catch-at-age modeling to study the influence of the year-class strength of alewife Alosa pseudoharengus on the prey selection and abundance of age-1 Chinook salmon in Lake Michigan during the years 1992-1996 and 2001-2005. Alewives age 2 or younger were a large part of age-1 Chinook salmon diets but were not selectively fed upon by age-1 Chinook salmon in most years. Feeding by age-1 Chinook salmon on alewives age 2 or younger became selective as the biomass of alewives in that young age bracket increased, and age-1 Chinook salmon also fed selectively on young bloaters Coregonus hoyi when bloater density was high. Selection of older alewives decreased at high densities of alewives age 2 or younger and, in some cases, high densities of bloater. The weight and condition of age-1 Chinook salmon were not related to age-1 Chinook salmon abundance or prey abundance, but the abundance of age-1 Chinook salmon in year t was positively related to the density of age-0 alewives in year t - 1. Our results suggest that alewife year-class strength exerts a positive bottom-up influence on age-1 Chinook salmon abundance, prey switching behavior by young Chinook salmon contributing to the stability of the predator-prey relationship between Chinook salmon and alewives. ?? Copyright by the American Fisheries Society 2008.

  7. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  8. Rapid Acclimation Ability Mediated by Transcriptome Changes in Reef-Building Corals.

    PubMed

    Bay, Rachael A; Palumbi, Stephen R

    2015-05-15

    Population response to environmental variation involves adaptation, acclimation, or both. For long-lived organisms, acclimation likely generates a faster response but is only effective if the rates and limits of acclimation match the dynamics of local environmental variation. In coral reef habitats, heat stress from extreme ocean warming can occur over several weeks, resulting in symbiont expulsion and widespread coral death. However, transcriptome regulation during short-term acclimation is not well understood. We examined acclimation during a 11-day experiment in the coral Acropora nana. We acclimated colonies to three regimes: ambient temperature (29 °C), increased stable temperature (31 °C), and variable temperature (29-33 °C), mimicking local heat stress conditions. Within 7-11 days, individuals acclimated to increased temperatures had higher tolerance to acute heat stress. Despite physiological changes, no gene expression changes occurred during acclimation before acute heat stress. However, we found strikingly different transcriptional responses to heat stress between acclimation treatments across 893 contigs. Across these contigs, corals acclimated to higher temperatures (31 °C or 29-33 °C) exhibited a muted stress response--the magnitude of expression change before and after heat stress was less than in 29 °C acclimated corals. Our results show that corals have a rapid phase of acclimation that substantially increases their heat resilience within 7 days and that alters their transcriptional response to heat stress. This is in addition to a previously observed longer term response, distinguishable by its shift in baseline expression, under nonstressful conditions. Such rapid acclimation may provide some protection for this species of coral against slow onset of warming ocean temperatures. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Comparative evaluation of molecular diagnostic tests for Nucleospora salmonis and prevalence in migrating juvenile salmonids from the Snake River, USA

    USGS Publications Warehouse

    Badil, Samantha; Elliott, Diane G.; Kurobe, Tomofumi; Hedrick, Ronald P.; Clemens, Kathy; Blair, Marilyn; Purcell, Maureen K.

    2011-01-01

    Nucleospora salmonis is an intranuclear microsporidian that primarily infects lymphoblast cells and contributes to chronic lymphoblastosis and a leukemia-like condition in a range of salmonid species. The primary goal of this study was to evaluate the prevalence of N. salmonis in out-migrating juvenile hatchery and wild Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss from the Snake River in the U.S. Pacific Northwest. To achieve this goal, we first addressed the following concerns about current molecular diagnostic tests for N. salmonis: (1) nonspecific amplification patterns by the published nested polymerase chain reaction (nPCR) test, (2) incomplete validation of the published quantitative PCR (qPCR) test, and (3) whether N. salmonis can be detected reliably from nonlethal samples. Here, we present an optimized nPCR protocol that eliminates nonspecific amplification. During validation of the published qPCR test, our laboratory developed a second qPCR test that targeted a different gene sequence and used different probe chemistry for comparison purposes. We simultaneously evaluated the two different qPCR tests for N. salmonis and found that both assays were highly specific, sensitive, and repeatable. The nPCR and qPCR tests had good overall concordance when DNA samples derived from both apparently healthy and clinically diseased hatchery rainbow trout were tested. Finally, we demonstrated that gill snips were a suitable tissue for nonlethal detection of N. salmonis DNA in juvenile salmonids. Monitoring of juvenile salmonid fish in the Snake River over a 3-year period revealed low prevalence of N. salmonis in hatchery and wild Chinook salmon and wild steelhead but significantly higher prevalence in hatchery-derived steelhead. Routine monitoring of N. salmonis is not performed for all hatchery steelhead populations. At present, the possible contribution of this pathogen to delayed mortality of steelhead has not been determined.

  10. Automated Non-invasive Video-Microscopy of Oyster Spat Heart Rate during Acute Temperature Change: Impact of Acclimation Temperature

    PubMed Central

    Domnik, Nicolle J.; Polymeropoulos, Elias T.; Elliott, Nicholas G.; Frappell, Peter B.; Fisher, John T.

    2016-01-01

    We developed an automated, non-invasive method to detect real-time cardiac contraction in post-larval (1.1–1.7 mm length), juvenile oysters (i.e., oyster spat) via a fiber-optic trans-illumination system. The system is housed within a temperature-controlled chamber and video microscopy imaging of the heart was coupled with video edge-detection to measure cardiac contraction, inter-beat interval, and heart rate (HR). We used the method to address the hypothesis that cool acclimation (10°C vs. 22°C—Ta10 or Ta22, respectively; each n = 8) would preserve cardiac phenotype (assessed via HR variability, HRV analysis and maintained cardiac activity) during acute temperature changes. The temperature ramp (TR) protocol comprised 2°C steps (10 min/experimental temperature, Texp) from 22°C to 10°C to 22°C. HR was related to Texp in both acclimation groups. Spat became asystolic at low temperatures, particularly Ta22 spat (Ta22: 8/8 vs. Ta10: 3/8 asystolic at Texp = 10°C). The rate of HR decrease during cooling was less in Ta10 vs. Ta22 spat when asystole was included in analysis (P = 0.026). Time-domain HRV was inversely related to temperature and elevated in Ta10 vs. Ta22 spat (P < 0.001), whereas a lack of defined peaks in spectral density precluded frequency-domain analysis. Application of the method during an acute cooling challenge revealed that cool temperature acclimation preserved active cardiac contraction in oyster spat and increased time-domain HRV responses, whereas warm acclimation enhanced asystole. These physiologic changes highlight the need for studies of mechanisms, and have translational potential for oyster aquaculture practices. PMID:27445833

  11. Genetic variation in chinook, Oncorhynchus tshawytscha, and coho, O. Kisutch

    USGS Publications Warehouse

    Reisenbichler, R.R.; Phelps, S.R.

    1987-01-01

    We used starch-gel electrophoresis to genetically characterize the populations of chinook salmon, Oncorhynchus tshawytscha, and coho salmon, O. kisutch, in the major drainages of the north coast of Washington (the Quillayute, Uoh, Queets, and Quinault Rivers). Of 55 loci examined for electrophoretically detectable variation. 6 were polymorphic (frequency of the common allele was less than 0.95) in chinook salmon and 3 in coho salmon. Statistical tests of interdrainage and intradrainage variation for coho salmon were tenuous because most of the fish examined were from a single year class so that we could not account for variation among year classes. Nevertheless, these tests suggested that distinct stocks ofcoho salmon exist within drainages. and that variation was not significantly greater among drainages than within drainages. Interdrainage variation for wild chinook salmon was not significant. The data suggested that summer chinook salmon were electrophoretically different from fall chinook salmon, and the hatchery populations of chinook salmon were distinct from wild fish. A hatchery population developed primarily from north coast fish was electrophoretically more similar to wild chinook salmon than were the others.

  12. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, Progress Report 2000-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter; Kucera, Paul; Blenden, Michael

    This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenilemore » chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303

  13. Exercise-heat acclimation in young and older trained cyclists.

    PubMed

    Best, Stuart; Thompson, Martin; Caillaud, Corinne; Holvik, Liv; Fatseas, George; Tammam, Amr

    2014-11-01

    The purpose of this study was to investigate the effect of age on the capacity to acclimatise to exercise-heat stress. This study hypothesised that age would not affect body temperature and heat loss effector responses to short-term exercise-heat acclimation in trained subjects. Seven young subjects (19-32 years) were matched with 7 older subjects (50-63 years). Subjects were highly trained but not specifically heat acclimated when they exercised for 60 min at 70%VO2max in hot-dry (35 °C, 40%RH) and thermoneutral (20 °C, 40%RH) conditions, pre and post 6 days of exercise-heat acclimation (70%VO2max, 35 °C, 40%RH). Rectal temperature (Tr), skin temperature (Tsk), heart rate (HR), cutaneous vascular conductance (CVC) and whole body sweat loss (Msw) were measured during each testing session and Tr and HR were measured during each acclimation session. Tr, Tsk, %HRmax, CVC and Msw were similar across age groups both pre and post heat acclimation. Following heat acclimation relative decreases and increases in Tr and Msw, respectively, were similar in both subject groups. There was a significant reduction in heart rate (%HRmax) and increase in final CVC following the acclimation programme in the young group (all p < 0.05) but not the older group. When comparing young and older well trained adults we found age affected the cardiovascular adaptation but not body temperature or whole body sweat loss to exercise-heat acclimation. These data suggest age does not affect the capacity to acclimatise to exercise-heat stress in highly trained adults undergoing short-term heat acclimation. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bottom, Daniel L.; Anderson, Greer; Baptisa, Antonio

    From 2002 through 2006 we investigated historical and contemporary variations in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat associations, and food webs in the lower Columbia River estuary (mouth to rkm 101). At near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months of the year, increasing in abundance from January through late spring or early summer and declining rapidly after July. Recently emerged fry dispersed throughout the estuary in early spring, and fry migrants were abundant in the estuary until April or May each year. Each spring, mean salmon size increased from the tidal freshwater zonemore » to the estuary mouth; this trend may reflect estuarine growth and continued entry of smaller individuals from upriver. Most juvenile Chinook salmon in the mainstem estuary fed actively on adult insects and epibenthic amphipods Americorophium spp. Estimated growth rates of juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm d-1, comparable to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries. Estuarine salmon collections were composed of representatives from a diversity of evolutionarily significant units (ESUs) from the lower and upper Columbia Basin. Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, followed by a peak in the Western Cascades Fall Chinook group in July. The structure of acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal freshwater zone exhibited a consistent transition in June. This may have reflected changes in stock composition and associated habitat use and feeding histories. From March through July, subyearling Chinook salmon were among the most abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) surveyed in the lower 100 km of the estuary. Salmon

  15. Short Duration Heat Acclimation in Australian Football Players

    PubMed Central

    Kelly, Monica; Gastin, Paul B.; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J.

    2016-01-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg-1·min-1) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac-]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac-] (all p < 0.05) during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007) after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key points Some minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat. The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season. Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat

  16. Short Duration Heat Acclimation in Australian Football Players.

    PubMed

    Kelly, Monica; Gastin, Paul B; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J

    2016-03-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg(-1)·min(-1)) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac(-)]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac(-)] (all p < 0.05) during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007) after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key pointsSome minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat.The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season.Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat

  17. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at John Day Dam, Spring 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.

    The purpose of this study was to compare dam passage survival, at two spill treatment levels, of yearling Chinook salmon and steelhead smolts at John Day Dam during spring 2010. The two treatments were 30% and 40% spill out of total project discharge. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated forebay residence time, tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fishmore » Accords. However, by agreement among the stakeholders, this study was not an official BiOp compliance test because the long-term passage measures at John Day Dam have yet to be finalized and another year of spill-treatment testing was desired.« less

  18. Field estimate of net trophic transfer efficiency of PCBs to Lake Michigan chinook salmon from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; O'Connor, Daniel V.; Stewart, Donald J.; Miller, Michael A.; Masnado, Robert G.

    2002-01-01

    Chinook salmon (Oncorhynchus tshawytscha) has been the predominant piscivore in Lakes Michigan, Huron, and Ontario since the 1970s, and therefore accurate quantification of its energy budget is needed for effective management of Great Lakes fisheries. A new approach of evaluating a fish bioenergetics model in the field involves field estimation of the efficiency with which the fish retains PCBs from its food. We used diet information, PCB determinations in both chinook salmon and their prey, and bioenergetics modeling to generate a field estimate of the efficiency with which Lake Michigan chinook salmon retain PCBs from their food. Our field estimate is the most reliable field estimate to date because (a) the estimate was based on a relatively high number (N = 142) of PCB determinations for chinook salmon from Wisconsin waters of Lake Michigan in 1985, (b) a relatively long time series (1978−1988) of detailed observations on chinook salmon diet in Lake Michigan was available, and (c) the estimate incorporated new information from analyses of chinook salmon age and growth during the 1980s and 1990s in Lake Michigan. We estimated that chinook salmon from Lake Michigan retain 53% of the PCBs that are contained within their food.

  19. Spring Outmigration of Wild and Hatchery Chinook Salmonid Steelhead Trout Smolts from the Imnaha River, Oregon; 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blenden, Michael L.; Kucera, Paul A.; Osborne, Randall S.

    1996-04-01

    For the second consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 6 to June 20, 1995. We PIT tagged and released 421 wild chinook salmon smolts, 747 hatchery chinook salmon smolts (445 HxW and 302 HxH), 227 wild steelhead trout smolts and 1,296 hatchery steelhead trout smolts. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 78.4% for wildmore » chinook salmon, 58.9% for hatchery chinook salmon (HxW), 56.6% for hatchery chinook salmon (HxH), 76.2% for wild steelhead trout, and 69.2% for hatchery steelhead trout. Peak outmigration of NPT tagged wild Imnaha River chinook salmon smolts occurred from early to mid-May at Lower Granite, Little Goose, and Lower Monumental Dams. Median and 90% passage dates for wild chinook salmon smolts at Lower Granite Dam were May 1 and May 11, respectively. Continuous spill at Lower Granite Dam was initiated on May 3 and lasted for 51 days. The 90% passage date of wild chinook salmon smolts at Lower Granite Dam (May 11) preceded peak Snake River and Lower Granite (June 6) flows by 26 days. Although hatchery chinook salmon exhibited a shorter outmigration period through the Snake River than their wild counterparts, peak arrival for both groups occurred at approximately the same time. Median and 90% passage dates at Lower Granite Dam for other PIT tagged groups were: hatchery chinook salmon (NPT-HxW) - May 2 and May 13; hatchery chinook salmon (FPC-HxH) - May 8 and May 15; wild steelhead trout - May 2 and May 9; and hatchery steelhead trout (NPT and FPC) - May 31 and June 16. Hatchery steelhead trout displayed small peaks in arrival timing at Lower Granite and Little Goose Dams in mid-May to mid-June.« less

  20. Immune and endocrine responses of adult spring Chinook salmon during freshwater migration and sexual maturation

    USGS Publications Warehouse

    Maule, A.G.; Schrock, R.M.; Slater, C.; Fitzpatrick, M.S.; Schreck, C. B.

    1996-01-01

    The immune –endocrine responses in spring chinook salmon (Oncorhynchus tshawytscha) were examined during their freshwater migration and final maturation. In 1990, migrating fish had high plasma cortisol titres (means 200 ng ml−1) and generated relatively few antibody-producing cells (APC) from peripheral blood leukocytes (PBL) (100 –200 per culture). After three weeks acclimation in constant environmental conditions, plasma cortisol was reduced and APC increased. There were no changes in number or affinity of glucocorticoid receptors. Concentrations of several sex steroids correlated with APC in females, but there were no such correlations in males. In 1993, fish in a hatchery had significantly greater cortisol concentrations in primary circulation than in secondary circulation, but sex steroid concentrations did not differ between circulations. Mean lysozyme activity in the primary and secondary circulation did not differ in June. In August, activity in the primary circulation was significantly less than that of the secondary, perhaps the result of acute stress associated with sampling. While some sex steroids correlated with lysozyme activity, the fact that in both years all endocrine and immune variables that correlated with each other also correlated with the date of sample, raises the question as to whether or not these are cause-and-effect relations.

  1. Evidence for a carrier state of infectious hematopoietic necrosis virus in chinook salmon Oncorhynchus tshawytscha.

    PubMed

    St Hilaire, S; Ribble, C; Traxler, G; Davies, T; Kent, M L

    2001-10-08

    In British Columbia, Canada, infectious hematopoietic necrosis virus (IHNV) is prevalent in wild sockeye salmon Oncorhynchus nerka and has caused disease in seawater net-pen reared Atlantic salmon Salmo salar. In this study, chinook salmon Oncorhynchus tshawytscha experimentally exposed to an isolate of IHNV found in British Columbia became carriers of the virus. When Atlantic salmon were cohabited with these virus-exposed chinook salmon, IHNV was isolated from the Atlantic salmon. Identification of chinook salmon populations that have been exposed to IHNV may be difficult, as virus isolation was successful only in fish that were concurrently infected with either Renibacterium salmoninarum or Piscirickettisia salmonis. Also, IHNV-specific antibodies were detected in only 2 of the 70 fish experimentally exposed to the virus. Two samples collected from chinook salmon exposed to IHNV while at a salt water net-pen site had a seroprevalence of 19 and 22%; however, the inconsistencies between our laboratory and field data suggest that further research is required before we can rely on serological analysis for identifying potential carrier populations. Because of the difficulty in determining the exposure status of populations of chinook salmon, especially if there is no concurrent disease, it may be prudent not to cohabit Atlantic salmon with chinook salmon on a farm if there is any possibility that the latter have been exposed to the virus.

  2. Preliminary acclimation strategies for successful startup in conventional biofilters.

    PubMed

    Elías, Ana; Barona, Astrid; Gallastegi, Gorka; Rojo, Naiara; Gurtubay, Luis; Ibarra-Berastegi, Gabriel

    2010-08-01

    The question of how to obtain the best inocula for conventional biofilters arises when an acclimation/adaptation procedure is to be applied. Bearing in mind that no standardized procedure for acclimating inocula exists, certain preliminary strategies for obtaining an active inoculum from wastewater treatment sludge are proposed in this work. Toluene was the contaminant to be degraded. Concerning the prior separation of sludge phases, no obvious advantage was found in separating the supernatant phase of the sludge before acclimation. As far as a continuous or discontinuous acclimation mode is concerned, the latter is recommended for rapidly obtaining acclimated sludge samples by operating the system for no longer than 1 month. The continuous mode rendered similar degradation rates, although it required longer operating time. Nevertheless, the great advantage of the continuous system lay in the absence of daily maintenance and the ready availability of the activated sample.

  3. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physicalmore » characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River

  4. Changes in movements of Chinook Salmon between lakes Huron and Michigan after Alewife population collapse

    USGS Publications Warehouse

    Clark, Richard D.; Bence, James R.; Claramunt, Randall M.; Clevenger, John A.; Kornis, Matthew S.; Bronte, Charles R.; Madenjian, Charles P.; Roseman, Edward

    2017-01-01

    Alewives Alosa pseudoharengus are the preferred food of Chinook Salmon Oncorhynchus tshawytscha in the Laurentian Great Lakes. Alewife populations collapsed in Lake Huron in 2003 but remained comparatively abundant in Lake Michigan. We analyzed capture locations of coded-wire-tagged Chinook Salmon before, during, and after Alewife collapse (1993–2014). We contrasted the pattern of tag recoveries for Chinook Salmon released at the Swan River in northern Lake Huron and Medusa Creek in northern Lake Michigan. We examined patterns during April–July, when Chinook Salmon were primarily occupied by feeding, and August–October, when the salmon were primarily occupied by spawning. We found evidence that Swan River fish shifted their feeding location from Lake Huron to Lake Michigan after the collapse. Over years, proportions of Swan River Chinook Salmon captured in Lake Michigan increased in correspondence with the Alewife decline in Lake Huron. Mean proportions of Swan River fish captured in Lake Michigan were 0.13 (SD = 0.14) before collapse (1993–1997) and 0.82 (SD = 0.22) after collapse (2008–2014) and were significantly different. In contrast, proportions of Medusa Creek fish captured in Lake Michigan did not change; means were 0.98 (SD = 0.05) before collapse and 0.99 (SD = 0.01) after collapse. The mean distance to the center of the coastal distribution of Swan River fish during April–July shifted 357 km (SD = 169) from central Lake Huron before collapse to central Lake Michigan after collapse. The coastal distributions during August–October were centered on the respective sites of origin, suggesting that Chinook Salmon returned to release sites to spawn regardless of their feeding locations. Regarding the impact on Alewife populations, this shift in interlake movement would be equivalent to increasing the Chinook Salmon stocking rate within Lake Michigan by 30%. The primary management implication is that interlake coordination of Chinook Salmon

  5. Habitat use by juvenile salmonids in Lake Ontario tributaries-species, age, diel and seasonal effects

    USGS Publications Warehouse

    Johnson, James H.; McKenna, James E.

    2017-01-01

    Understanding the habitat needs of fish and how these requirements may change seasonally over a 24-h period is important, especially for highly managed sport species. Consequently, we examined the diel and seasonal habitat use of four juvenile salmonid species in streams in the Lake Ontario watershed. For juvenile Atlantic salmon Salmo salarand juvenile rainbow trout Oncorhynchus mykiss, differences in day versus night habitat use were more profound than seasonal differences. Observed differences in day versus night habitat for all species and age classes were mainly due to the use of less object oriented cover at night and to a lesser extent to the use of slower velocities and smaller substrate at night. Seasonal differences in habitat use were also observed, likely due to increased fish size, and included movement to deeper and faster water and the use of larger substrate and more cover from summer to winter. Different habitat variables were important to individual species. Juvenile Atlantic salmon were associated with higher water velocities, juvenile rainbow trout with larger substrate and more cover, and subyearling Chinook salmon O. tshawytscha and subyearling coho salmon O. kisutch with small substrate and less cover. Our observations demonstrate that habitat partitioning occurs and likely reduces intraspecific and interspecific competition which may increase the potential production of all four species in sympatry. Consequently, these findings provide important information for resource managers charged with managing, protecting, and enhancing Great Lakes tributaries where all or some of these species occur.

  6. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings Area...

  7. 50 CFR Figure 8 to Part 679 - Aleutian Islands Chinook Salmon Savings Area

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Aleutian Islands Chinook Salmon Savings Area 8 Figure 8 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... ECONOMIC ZONE OFF ALASKA Pt. 679, Fig. 8 Figure 8 to Part 679—Aleutian Islands Chinook Salmon Savings Area...

  8. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Farag, A.M.; May, T.; Marty, G.D.; Easton, M.; Harper, D.D.; Little, E.E.; Cleveland, L.

    2006-01-01

    This study was designed to determine fish health impairment of Chinook salmon (Oncorhynchus tshawytscha) exposed to chromium. Juvenile Chinook salmon were exposed to aqueous chromium concentrations (0–266 μg l−1) that have been documented in porewater from bottom sediments and in well waters near salmon spawning areas in the Columbia River in the northwestern United States. After Chinook salmon parr were exposed to 24 and 54 μg Cr l−1 for 105 days, neither growth nor survival of parr was affected. On day 105, concentrations were increased from 24 to 120 μg Cr l−1and from 54 to 266 μg Cr l−1 until the end of the experiment on day 134. Weight of parr was decreased in the 24/120 μg Cr l−1 treatment, and survival was decreased in the 54/266 μg Cr l−1 treatment. Fish health was significantly impaired in both the 24/120 and 54/266 μg Cr l−1 treatments. The kidney is the target organ during chromium exposures through the water column. The kidneys of fish exposed to the greatest concentrations of chromium had gross and microscopic lesions (e.g. necrosis of cells lining kidney tububules) and products of lipid peroxidation were elevated. These changes were associated with elevated concentrations of chromium in the kidney, and reduced growth and survival. Also, variations in DNA in the blood were associated with pathological changes in the kidney and spleen. These changes suggest that chromium accumulates and enters the lipid peroxidation pathway where fatty acid damage and DNA damage (expressed as chromosome changes) occur to cause cell death and tissue damage. While most of the physiological malfunctions occurred following parr exposures to concentrations ≥120 μg Cr l−1, nuclear DNA damage followed exposures to 24 μg Cr l−1, which was the smallest concentration tested. The abnormalities measured during this study are particularly important because they are associated with impaired growth and reduced survival at

  9. Partial migration in introduced wild chinook salmon (Oncorhynchus tshawytscha) of southern Chile

    NASA Astrophysics Data System (ADS)

    Araya, Miguel; Niklitschek, Edwin J.; Secor, Dave H.; Piccoli, Philip M.

    2014-08-01

    Partial migration, the incidence of opposing migration behaviors within the same population, has been a key factor in the invasive ecology of Pacific salmon within South America. Here, we examined such life-cycle variation in of an introduced chinook salmon population in the Aysén watershed, one of the largest fjord systems in NW Patagonia. The chinook salmon is the most successful invasive salmonid species in Patagonia and has recently colonized numerous Patagonian watersheds of the Pacific and Atlantic Oceans. Using analyses of fish scales and otolith strontium:calcium ratios, our results suggest the presence of two distinct ecotypes in the chinook population, an ocean type and a stream type, in a 3:2 ratio. The distribution of back-calculated length at the time of emigration from river to marine habitats showed a mode of 14 cm for the ocean ecotype and 30 cm for the stream ecotype. River residence time for the ocean ecotype ranged from 1 to 10 months, while that of the stream ecotype varied between 14 and 20 months. Returning adults reproduced in riverine habitats between August and March, but reproduction by the stream ecotype was limited to the period between October and February. Our results show that exotic chinook salmon populations established in NW Patagonia present a diversity of life-history strategies, which seems to be as large as the ones exhibited by the species in its native distribution range and in other invaded ecosystems. Chinook salmon have successfully invaded most major rivers in Patagonia, placing priority on science and conservation related to their ecological impact.

  10. Effects of heat acclimation on time perception.

    PubMed

    Tamm, Maria; Jakobson, Ainika; Havik, Merle; Timpmann, Saima; Burk, Andres; Ööpik, Vahur; Allik, Jüri; Kreegipuu, Kairi

    2015-03-01

    Cognitive performance is impaired during prolonged exercise in hot environment compared to temperate conditions. These effects are related to both peripheral markers of heats stress and alterations in CNS functioning. Repeated-exposure to heat stress results in physiological adaptations, and therefore improvement in exercise capacity and cognitive functioning are observed. The objective of the current study was to clarify the factors contributing to time perception under heat stress and examine the effect of heat acclimation. 20 young healthy male subjects completed three exercise tests on a treadmill: H1 (at 60% VO(2)peak until exhaustion at 42°C), N (at 22°C; duration equal to H1) and H2 (walk until exhaustion at 42°C) following a 10-day heat acclimation program. Core temperature (T(C)) and heart rate (HR), ratings of perceived fatigue and exertion were obtained continuously during the exercise, and blood samples of hormones were taken before, during and after the exercise test for estimating the prolactin, growth hormone and cortisol response to acute exercise-heat stress. Interval production task was performed before, during and after the exercise test. Lower rate of rise in core temperature, heart rate, hormone response and subjective ratings indicated that the subjects had successfully acclimated. Before heat acclimation, significant distortions in produced intervals occurred after 60 minutes of exercise relative to pre-trial coefficients, indicating speeded temporal processing. However, this effect was absent after in acclimated subjects. Blood prolactin concentration predicted temporal performance in both conditions. Heat acclimation slows down the increase in physiological measures, and improvement in temporal processing is also evident. The results are explained within the internal clock model in terms of the pacemaker-accumulator functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Interim results from a study of the behavior of juvenile Chinook salmon at Cougar Reservoir and Dam, Oregon, March--August 2011

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal C.; Hansen, Amy C.; Haner, Philip V.; Sprando, Jamie M.; Smith, Collin D.; Evans, Scott D.

    2012-01-01

    The movements and dam passage of yearling juvenile Chinook salmon implanted with acoustic transmitters and passive integrated transponder tags were studied at Cougar Reservoir and Dam, near Springfield, Oregon. A total of 411 hatchery fish and 26 wild fish were tagged and released between March 7 and May 21, 2011. A series of 16 autonomous hydrophones placed throughout the reservoir were used to determine general fish movements over the life of the acoustic transmitter, which was expected to be 91 days. Movements within the reservoir were directional, and it was common for fish to migrate repeatedly from the head of the reservoir downstream to the dam outlet and back. The dam passage rate was 11.2 percent (95-percent confidence interval 7.8–14.6 percent) for hatchery fish and 15.4 percent (95-percent confidence interval -1.0–31.8 percent) for wild fish within 91 days from release. Most fish passage occurred at night. The median time from release to dam passage was 34.5 days for hatchery fish and 34.2 days for wild fish. A system of hydrophones near the dam outlet, a temperature control tower, was used to estimate positions of fish in three dimensions to enable detailed analyses of fish behavior near the tower. Analyses of these data indicate that hourly averaged depths of fish within a distance of 74 m from the upstream face of the tower ranged from 0.6 to 9.6 meters, with a median depth of 3.6 meters for hatchery fish and 3.4 meters for wild fish. Dam discharge rates and the diurnal period affected the rates of dam passage. Rates of dam passage were similar when the dam discharge rate was less than 1,200 cubic feet per second, but increased sharply at higher discharges. The rate of dam passage at night was 4.4–7.8 times greater than during the day, depending on the distance of fish from the dam. This report is an interim summary of data collected as of August 3, 2011, for planning purposes.

  12. Nez Perce Tribal Hatchery Program : Draft Environmental Impact Statement.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration; Nez Perce Tribal Hatchery

    1996-06-01

    Bonneville Power Administration, the Bureau of Indian Affairs, the Nez Perce Tribe propose a supplementation program to restore chinook salmon to the Clearwater River Subbasin in Idaho. The Clearwater River is a tributary to the Snake River, which empties into the Columbia River. The Nez Perce Tribe would build and operate two central incubation and rearing hatcheries and six satellite facilities. Spring, summer and fall chinook salmon would be reared and acclimated to different areas in the Subbasin and released at the hatchery and satellite sites or in other watercourses throughout the Subbasin. The supplementation program differs from other hatcherymore » programs because the fish would be released at different sizes and would return to reproduce naturally in the areas where they are released. Several environmental issues were identified during scoping: the possibility that the project would fail if mainstem Columbia River juvenile and adult passage problems are not solved; genetic risks to fish listed as endangered or threatened; potential impacts to wild and resident fish stocks because of increase competition for food and space; and water quality. The Proposed Action would affect several important aspects of Nez Perce tribal life, primarily salmon harvest, employment, and fisheries management.« less

  13. Dynamics of chinook salmon populations within Idaho's Frank Church Wilderness: implications for persistence

    Treesearch

    Russell F. Thurow

    2000-01-01

    Research was begun in 1995 to describe factors influencing the spatial dynamics and persistence of federally listed chinook salmon within the Frank Church River of No Return Wilderness. Results addressed two objectives: 1) description of chinook salmon redd distributions, and 2) comparison of index and total redd counts. Annual redd counts ranged from 20 to 661, and 99...

  14. HEAD INJURY ASSESSMENT IN JUVENILE CHINOOK USING THE ALPHA II-SPECTRIN BIOMARKER: EFFECTS OF PRESSURE CHANGES AND PASSAGE THROUGH A REMOVABLE SPILLWAY WEIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonason, C.; Miracle, A.

    2009-01-01

    The cytoskeletal protein alpha II-spectrin has specifi c neurodegenerative mechanisms that allow the necrotic (injury-induced) and apoptotic (non-injury-induced) pathways of proteolysis to be differentiated in an immunoblot. Consequently, αII-spectrin breakdown products (SBDPs) are potential biomarkers for diagnosing traumatic brain injury (TBI). The purpose of the following investigation, consisting of two studies, was to evaluate the utility of the spectrin biomarker in diagnosing TBI in fi sh that travel through hydroelectric dams in the Columbia and Snake Rivers. The fi rst study used hyperbaric pressure chambers to simulate the pressure changes that affect fi sh during passage through a Federal Columbiamore » River Power System (FCRPS) Kaplan turbine. The second study tested the effect of a removable spillway weir (RSW) on the passage of juvenile chinook (Oncorhynchus tshawytscha). This study was conducted in tandem with a balloon-tag study by the U.S. Army Corps of Engineers. Brain samples from fi sh were collected and analyzed using an immunoblot for SBDPs, and imaging software was used to quantify the protein band density and determine the ratio of cleaved protein to total protein. The biomarker analyses found higher SBDP expression levels in fi sh that were exposed to lower pressure nadirs and fi sh that passed through the RSW at a deep orientation. In general, the incidence of injuries observed after treatment positively correlated with expression levels, suggesting that the biomarker method of analysis is comparable to traditional methods of injury assessment. It was also found that, for some treatments, the 110 kDa spectrin fragment (SBDP 110) correlated more strongly with necrotic head injury incidence and mortality rates than did the total cleaved protein or the 120 kDa fragment. These studies will be informative in future decisions regarding the design of turbines and fi sh passage structures in hydroelectric dams and will hopefully contribute to

  15. Feeding response by northern squawfish to a hatchery release of juvenile salmonids in the Clearwater River, Idaho

    USGS Publications Warehouse

    Shively, R.S.; Poe, T.P.; Sauter, S.T.

    1996-01-01

    We collected gut contents from northern squawfish Ptychocheilus oregonensis captured in the Clearwater River, Idaho, 0–6 km from its confluence with the Snake River, following the release of 1.1 million yearling chinook salmon Oncorhynchus tshawytscha from the Dworshak National Fish Hatchery. Before the hatchery release, northern squawfish gut contents (by weight) in the study area were 38% crayfish Pacifastacus spp., 26% insects, 19% nonsalmonid fish, and 16% wheat kernels Triticum spp. Juvenile salmonids constituted 54% of gut contents about 24 h after the hatchery release, 78% after 5 d, and 86% after 7 d. The mean number of salmonids per gut (1.2) after release was higher than typically seen in guts from northern squawfish collected in mid-reservoir areas away from hydroelectric dams on the Snake and Columbia rivers. Length-frequency distributions of juvenile salmonids eaten and those captured in a scoop trap 4 km upstream of the study area indicated that northern squawfish were selectively feeding on the smaller individuals. We attribute the high rates of predation in the study area to the artificially high density of juvenile salmonids resulting from the hatchery release and to the physical characteristics of the study area in which the river changed from free flowing to impounded. Our results suggest that northern squawfish can quickly exploit hatchery releases of juvenile salmonids away from release sites in the Columbia River basin.

  16. Changes in ABA and gene expression in cold-acclimated sugar maple.

    PubMed

    Bertrand, A; Robitaille, G; Castonguay, Y; Nadeau, P; Boutin, R

    1997-01-01

    To determine if cold acclimation of sugar maple (Acer saccharum Marsh.) is associated with specific changes in gene expression under natural hardening conditions, we compared bud and root translatable mRNAs of potted maple seedlings after cold acclimation under natural conditions and following spring dehardening. Cold-hardened roots and buds were sampled in January when tissues reached their maximum hardiness. Freezing tolerance, expressed as the lethal temperature for 50% of the tissues (LT(50)), was estimated at -17 degrees C for roots, and at lower than -36 degrees C for buds. Approximately ten transcripts were specifically synthesized in cold-acclimated buds, or were more abundant in cold-acclimated buds than in unhardened buds. Cold hardening was also associated with changes in translation. At least five translation products were more abundant in cold-acclimated buds and roots compared with unhardened tissues. Abscisic acid (ABA) concentration increased approximately tenfold in the xylem sap following winter acclimation, and the maximum concentration was reached just before maximal acclimation. We discuss the potential involvement of ABA in the observed modification of gene expression during cold hardening.

  17. Effects of fasting on maximum thermogenesis in temperature-acclimated rats

    NASA Astrophysics Data System (ADS)

    Wang, L. C. H.

    1981-09-01

    To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.

  18. Mechanisms of thermal acclimation to exercise and heat

    NASA Technical Reports Server (NTRS)

    Nadel, E. R.; Pandolf, K. B.; Roberts, M. F.; Stolwijk, J. A. J.

    1974-01-01

    By plotting local sweating rate from a given area against the central sweating drive (which is analogous to esophageal temperature, when mean skin temperature is constant), it is possible to determine the characteristic gain constant of that area as well as its point of zero central drive. An increase in the gain constant as a result of acclimation would indicate an increased sensitivity of the sweating mechanism per unit of central sweating drive, i.e., enhanced peripheral sensitivity. A displacement of the point of zero central drive as a result of acclimation would indicate that central mechanisms are responsible for the heightened sweating response. The study was undertaken to provide information about whether central or peripheral physiological mechanisms provide for increased sweating capabilities during acclimation, and about whether the increased sweating capabilities in heat acclimation and physical training are provided for by the same mechanisms.

  19. Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation.

    PubMed

    Le, Mai Q; Pagter, Majken; Hincha, Dirk K

    2015-01-01

    During cold acclimation plants increase in freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, plants of many species, including Arabidopsis thaliana, become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures after cold acclimation. There is hardly any information available about the molecular basis of this adaptation. Here, we have used microarrays and a qRT-PCR primer platform covering 1,880 genes encoding transcription factors (TFs) to monitor changes in gene expression in the Arabidopsis accessions Columbia-0, Rschew and Tenela during the first 3 days of sub-zero acclimation at -3 °C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY TFs may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes are down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription are up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation.

  20. Pilot study to access the role of Ceratomyxa shasta infection in mortality of fall-run Chinook smolts migrating through the lower Klamath River in 2008

    USGS Publications Warehouse

    Foott, Scott; Stutzer, Greg; Fogerty, R.; Hansel, Hal; Juhnke, Steven; Beeman, John W.

    2009-01-01

    Apparent survival and migration rate of radio-tagged hatchery subyearling Chinook salmon released at Iron Gate Hatchery was monitored in the Klamath River to see if the timing of mortality coincided with observations of ceratomyxosis in re-captured coded wire tag cohorts. Despite rapid emigration, these relatively large (mean fork length 92 mm) smolts had a cumulative apparent survival to the estuary of 0.074 (SE 0.024) and standardized rates of survival per 100 km tended to decrease linearly with distance from the hatchery. The last fish detection occurred 26 days after release but median travel time between Iron Gate Hatchery (rkm 309) and the last receiver near the Klamath estuary (Blake’s Riffle rkm 13) was about 10 days. The majority of apparent mortality (8-10 d post-release) occurred before disease from Ceratomyxa shasta infection is expected after exposure to infectious waters. Despite numerous observations of ceratomyxosis in the Klamath R. during June, an obvious link between disease and apparent survival was not present in this study. Future studies should examine the acute (e.g., predator types and densities) and chronic (e.g., swimming performance impairment due to disease) mortality factors for juvenile Chinook salmon smolts in the Klamath River.

  1. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Rebecca A.; Skalski, John R.

    2007-12-07

    In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite tomore » Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from

  2. Heat and cold acclimation in helium-cold hypothermia in the hamster.

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1972-01-01

    A study was made of the effects of acclimation of hamsters to high (34-35 C) and low (4-5 C) temperatures for periods up to 6 weeks on the induction of hypothermia in hamsters. Hypothermia was achieved by exposing hamsters to a helox mixture of 80% helium and 20% oxygen at 0 C. Hypothermic induction was most rapid (2-3 hr) in heat-acclimated hamsters and slowest (6-12 hr) in cold-acclimated hamsters. The induction period was intermediate (5-8 hr) in room temperature nonacclimated animals (controls). Survival time in hypothermia was relatable to previous temperature acclimations. The hypothesis that thermogenesis in cold-acclimated hamsters would accentuate resistance to induction of hypothermia was substantiated.

  3. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon

    PubMed Central

    Daly, Elizabeth A.; Brodeur, Richard D.

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes. PMID:26675673

  4. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon.

    PubMed

    Daly, Elizabeth A; Brodeur, Richard D

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981-1985; 1998-2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes.

  5. Post-mortem sporulation of Ceratomyxa shasta (Myxozoa) after death in adult Chinook salmon

    USGS Publications Warehouse

    Kent, Michael L.; Soderlund, K.; Thomann, E.; Schreck, Carl B.; Sharpton, T.J.

    2014-01-01

    Ceratomyxa shasta (Myxozoa) is a common gastrointestinal pathogen of salmonid fishes in the Pacific Northwest of the United States. We have been investigating this parasite in adult Chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. In prior work, we observed differences in the pattern of development of C. shasta in adult salmon compared to juvenile salmon. Adult salmon consistently had large numbers of prespore stages in many of the fish that survived to spawn in the fall. However, myxospores were rarely observed, even though they were exposed and presumably infected for months before spawning. We evaluated the ability of C. shasta to sporulate following fish death because it is reported that myxosores are common in carcasses of Chinook salmon. We collected the intestine from 30 adult salmon immediately after artificial spawning and death (T0). A total of 23 fish were infected with C. shasta based on histology, but only a few myxospores were observed in 1 fish by histology. Intestines of these fish were examined at T0 and T7 (latter held at 17 C for 7 days) using quantified wet mount preparations. An increase in myxospore concentrations was seen in 39% of these fish, ranging between a 1.5- to a 14.5-fold increase. The most heavily infected fish exhibited a 4.6-fold increase from 27,841 to 129,352 myxospores/cm. This indicates, supported by various statistical analyses, that under certain conditions presporogonic forms are viable and continue to sporulate after death in adult salmon. Considering the life cycle of C. shasta and anadromous salmon, the parasite may have evolved 2, non-mutually exclusive developmental strategies. In young fish (parr and smolts), the parasite sporulates shortly after infection and is released into freshwater from either live or dead fish before their migration to seawater, where the alternate host is absent. The second strategy occurs in adult salmon, particularly spring Chinook salmon, which become infected upon

  6. Acute toxicity of fire-retardant and foam-suppressant chemicals to early life stages of chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Buhl, Kevin J.; Hamilton, Steven J.

    1998-01-01

    Laboratorys studies were conducted to determine the acute toxicity of three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F), and two fire-suppressant foams (Phos-Chek WD-881 and Ansul Silv-Ex) to early life stages of chinook salmon, Oncorhynchus tshawytscha, in hard and soft water. Regardless of water type, swim-up fry and juveniles (60 and 90 d posthatch) exhibited similar sensitivities to each chemical and these life stages were more sensitive than eyed eggs. Foam suppressants were more toxic to each life stage than the fire retardants in both water types. The descending rank order of toxicity for these chemicals tested with swim-up fry and juveniles (range of 96-h median lethal concentrations [LC50s]) was Phos-Chek WD-881 (7–13 mg/L) > Ansul Silv-Ex (11–22 mg/L) > Phos-Chek D75-F (218–305 mg/L) > Fire-Trol GTS-R (218–412 mg/L) > Fire-Trol LCG-R (685–1,195 mg/L). Water type had a minor effect on the toxicity of these chemicals. Comparison of acute toxicity values with recommended application concentrations indicates that accidental inputs of these chemicals into stream environments would require substantial dilution (237- to 1,429-fold) to reach concentrations equivalent to their 96-h LC50s.

  7. Skin reflectance as a non-lethal measure of smoltification for juvenile salmonids

    USGS Publications Warehouse

    Haner, Philip V.; Faler, Joyce C.; Schrock, Robin M.; Rondorf, Dennis W.; Maule, Alec G.

    1995-01-01

    Our efforts to find nonlethal methods of assessing the parr-smoll transformation of juvenile steelhead Oncorhynchus mykiss and spring and fall chinook salmon O. tshawytscha led to the development of a video system for quantitatively measuring skin silvering using skin reflectance. Gill Na'.K'-ATPase activity, skin guanine concentration, and skin reflectance were recorded from groups of fish marked with freeze brands at hatcheries and downstream sample sites in the Columbia River basin. Skin reflectance of migrants was significantly higher than that of fish before release; nonmigrants (released fish that did not migrate) had significantly lower skin reflectance than migrants from the same groups. Skin reflectance was significantly correlated with gill ATPasc activity and skin guanine concentration. Skin reflectance increased during the parrsmolt transformation and could be used as a nonlethal indicator of smoltification.

  8. Elevated Na+/K+-ATPase responses and its potential role in triggering ion reabsorption in kidneys for homeostasis of marine euryhaline milkfish (Chanos chanos) when acclimated to hypotonic fresh water.

    PubMed

    Tang, Cheng-Hao; Wu, Wen-Yi; Tsai, Shu-Chuan; Yoshinaga, Tatsuki; Lee, Tsung-Han

    2010-08-01

    The milkfish (Chanos chanos) is an economic species in Southeast Asia. In Taiwan, the milkfish are commercially cultured in environments of various salinities. Na(+)/K(+)-ATPase (NKA) is a key enzyme for fish iono- and osmoregulation. When compared with gills, NKA and its potential role were less examined by different approaches in the other osmoregulatory organs (e.g., kidney) of euryhaline teleosts. The objective of this study was to investigate the correlation between osmoregulatory plasticity and renal NKA in this euryhaline species. Muscle water contents (MWC), plasma, and urine osmolality, kidney histology, as well as distribution, expression (mRNA and protein), and specific activity of renal NKA were examined in juvenile milkfish acclimated to fresh water (FW), seawater (SW 35 per thousand), and hypersaline water (HSW 60 per thousand) for at least two weeks before experiments. MWC showed no significant difference among all groups. Plasma osmolality was maintained within the range of physiological homeostasis in milkfish acclimated to different salinities, while, urine osmolality of FW-acclimated fish was evidently lower than SW- and HSW-acclimated individuals. The renal tubules were identified by staining with periodic acid Schiff's reagent and hematoxylin. Moreover, immunohistochemical staining showed that NKA was distributed in the epithelial cells of proximal tubules, distal tubules, and collecting tubules, but not in glomeruli, of milkfish exposed to different ambient salinities. The highest abundance of relative NKA alpha subunit mRNA was found in FW-acclimated milkfish rather than SW- and HSW-acclimated individuals. Furthermore, relative protein amounts of renal NKA alpha and beta subunits as well as NKA-specific activity were also found to be higher in the FW group than SW and the HSW groups. This study integrated diverse levels (i.e., histological distribution, gene, protein, and specific activity) of renal NKA expression and illustrated the

  9. Synchronous cycling of Ichthyophoniasis with Chinook salmon density revealed during the annual Yukon River spawning migration

    USGS Publications Warehouse

    Zuray, Stanley; Kocan, Richard; Hershberger, Paul

    2012-01-01

    Populations of Chinook salmon Oncorhynchus tshawytscha in the Yukon River declined by more than 57% between 2003 and 2010, probably the result of a combination of anthropogenic and environmental factors. One possible contributor to this decline is Ichthyophonus, a mesomycetozoan parasite that has previously been implicated in significant losses of fish, including Chinook salmon. A multiyear epidemiological study of ichthyophoniasis in the Yukon River revealed that disease prevalence and Chinook salmon population abundance increased and decreased simultaneously (i.e., were concordant) from 1999 to 2010. The two values rose and fell synchronously 91% of the time for female Chinook salmon and 82% of the time for males; however, there was no significant correlation between Ichthyophonus prevalence and population abundance. This synchronicity might be explained by a single factor, such as a prey item that is critical to Chinook salmon survival as well as a source of Ichthyophonus infection. The host–parasite relationship between Ichthyophonus and migrating Chinook salmon from 2004 to 2010 was similar to that reported for the previous 5 years. During 2004–2010, overall disease prevalence was significantly higher among females (21%) than among males (8%), increased linearly with fish length for both males and females, and increased in both sexes as the fish progressed upriver. These regularly occurring features of host–parasite dynamics confirm a stable base of transmission for Ichthyophonus. However, from 2003 to 2010, disease prevalence decreased from 30% to just 8% in males and from 45% to 9% in females, paralleling a similar decline in Chinook salmon abundance during the same period. These findings may help clarify questions regarding the complex host–parasite dynamics that occur in marine species such as herrings Clupea spp., which have less well-defined population structures.

  10. Laboratory-derived temperature preference and effect on the feeding rate and survival of juvenile Hemimysis anomala

    USGS Publications Warehouse

    Sun, Jennifer; Rudstam, Lars S.; Boscarino, Brent T.; Walsh, Maureen G.; Lantry, Brian F.

    2013-01-01

    Hemimysis anomala is a warm-water mysid that invaded the Great Lakes region in 2006 and has since rapidly spread throughout the basin. We conducted three laboratory experiments to better define the temperature preference, tolerance limits, and temperature effects on feeding rates of juvenile Hemimysis, using individuals acclimated to mid (16 °C) and upper (22 °C) preferred temperature values previously reported for the species. For temperature preference, we fit a two-parameter Gaussian (μ, σ) function to the experimental data, and found that the peak values (μ, interpreted as the preference temperature) were 22.0 °C (SE 0.25) when acclimated to 16 and 21.9 °C (SE 0.38) when acclimated to 22 °C, with the σ-values of the curves at 2.6 and 2.5 °C, respectively. No mysids were observed in temperatures below 10 or above 28 °C in these preference experiments. In short-term tolerance experiments for temperatures between 4 and 32 °C, all mysids died within 8 h at 30.2 °C for 16 °C acclimated mysids, and at 31.8 °C for 22 °C acclimated mysids. No lower lethal limit was found. Feeding rates increased with temperature from an average of 4 Bosmina eaten per hour at 5 °C to 19 Bosmina eaten per hour at 27 °C. The results of our experiments indicate an optimal temperature for Hemimysis between 21 and 27 °C, which corresponds with temperatures during periods of high population growth in the field. These results contribute a better understanding of this species' biological response to temperature that will help guide field studies and inform bioenergetics modeling.

  11. Salinity effects on plasma ion levels, cortisol, and osmolality in Chinook salmon following lethal sampling

    USGS Publications Warehouse

    Stewart, Heather; Noakes, David L. G.; Cogliati, Karen M.; Peterson, James T.; Iversen, Martin H.; Schreck, Carl B.

    2016-01-01

    Studies on hydromineral balance in fishes frequently employ measurements of electrolytes following euthanasia. We tested the effects of fresh- or salt-water euthanasia baths of tricaine mesylate (MS-222) on plasma magnesium (Mg2+) and sodium (Na+) ions, cortisoland osmolality in fish exposed to saltwater challenges, and the ion and steroid hormone fluctuations over time following euthanasia in juvenile spring Chinook salmon (Oncorhynchus tshawytscha). Salinity of the euthanasia bath affected plasma Mg2+ and Na+concentrations as well as osmolality, with higher concentrations in fish euthanized in saltwater. Time spent in the bath positively affected plasma Mg2+ and osmolality, negatively affected cortisol, and had no effect on Na+ concentrations. The difference of temporal trends in plasma Mg2+ and Na+ suggests that Mg2+ may be more sensitive to physiological changes and responds more rapidly than Na+. When electrolytes and cortisol are measured as endpoints after euthanasia, care needs to be taken relative to time after death and the salinity of the euthanasia bath.

  12. Salinity effects on plasma ion levels, cortisol, and osmolality in Chinook salmon following lethal sampling.

    PubMed

    Stewart, Heather A; Noakes, David L G; Cogliati, Karen M; Peterson, James T; Iversen, Martin H; Schreck, Carl B

    2016-02-01

    Studies on hydromineral balance in fishes frequently employ measurements of electrolytes following euthanasia. We tested the effects of fresh- or salt-water euthanasia baths of tricaine mesylate (MS-222) on plasma magnesium (Mg(2+)) and sodium (Na(+)) ions, cortisol and osmolality in fish exposed to saltwater challenges, and the ion and steroid hormone fluctuations over time following euthanasia in juvenile spring Chinook salmon (Oncorhynchus tshawytscha). Salinity of the euthanasia bath affected plasma Mg(2+) and Na(+) concentrations as well as osmolality, with higher concentrations in fish euthanized in saltwater. Time spent in the bath positively affected plasma Mg(2+) and osmolality, negatively affected cortisol, and had no effect on Na(+) concentrations. The difference of temporal trends in plasma Mg(2+) and Na(+) suggests that Mg(2+) may be more sensitive to physiological changes and responds more rapidly than Na(+). When electrolytes and cortisol are measured as endpoints after euthanasia, care needs to be taken relative to time after death and the salinity of the euthanasia bath. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. 77 FR 14304 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    .... 110207103-2041-02] RIN 0648-BA80 Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch... pertaining to Fisheries of the Exclusive Economic Zone Off Alaska; Chinook [[Page 14305

  14. Thyroid function and cold acclimation in the hamster, Mesocricetus auratus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, T.E.; Horwitz, B.A.

    1987-02-01

    Basal metabolic rate (BMR), thyroxine utilization rate (T4U), and triiodothyronine utilization rate (T3U) were measured in cold-acclimated (CA) and room temperature-acclimated (RA) male golden hamsters, Mesocricetus auratus. Hormone utilization rates were calculated via the plasma disappearance technique using SVI-labeled hormones and measuring serum hormone levels via radioimmunoassay. BMR showed a significant 28% increase with cold acclimation. The same cold exposure also produced a 32% increase in T4U, and a 204% increase in T3U. The much greater increase in T3U implies that previous assessments of the relationship between cold acclimation and thyroid function may have been underestimated and that cold exposuremore » induces both quantitative and qualitative changes in thyroid function. It is concluded that in the cold-acclimated state, T3U more accurately reflects thyroid function than does T4U. A mechanism for the cold-induced change in BMR is proposed.« less

  15. Transgenerational acclimation of fishes to climate change and ocean acidification.

    PubMed

    Munday, Philip L

    2014-01-01

    There is growing concern about the impacts of climate change and ocean acidification on marine organisms and ecosystems, yet the potential for acclimation and adaptation to these threats is poorly understood. Whereas many short-term experiments report negative biological effects of ocean warming and acidification, new studies show that some marine species have the capacity to acclimate to warmer and more acidic environments across generations. Consequently, transgenerational plasticity may be a powerful mechanism by which populations of some species will be able to adjust to projected climate change. Here, I review recent advances in understanding transgenerational acclimation in fishes. Research over the past 2 to 3 years shows that transgenerational acclimation can partially or fully ameliorate negative effects of warming, acidification, and hypoxia in a range of different species. The molecular and cellular pathways underpinning transgenerational acclimation are currently unknown, but modern genetic methods provide the tools to explore these mechanisms. Despite the potential benefits of transgenerational acclimation, there could be limitations to the phenotypic traits that respond transgenerationally, and trade-offs between life stages, that need to be investigated. Future studies should also test the potential interactions between transgenerational plasticity and genetic evolution to determine how these two processes will shape adaptive responses to environmental change over coming decades.

  16. Estimated loss of juvenile salmonids to predation by northern squawfish, walleyes, and smallmouth bass in John Day Reservoir, Columbia River

    USGS Publications Warehouse

    Rieman, Bruce E.; Beamesderfer, Raymond C.; Vigg, Steven; Poe, Thomas P.

    1991-01-01

    We estimated the loss of juvenile salmonids Oncorhynchus spp. to predation by northern squawfish Ptychocheilus oregonensis, walleyes Stizostedion vitreum, and smallmouth bass Micropterus dolomieu in John Day Reservoir during 1983–1986. Our estimates were based on measures of daily prey consumption, predator numbers, and numbers of juvenile salmonids entering the reservoir during the April–August period of migration. We estimated the mean annual loss was 2.7 million juvenile salmonids (95% confidence interval, 1.9–3.3 million). Northern squawfish were responsible for 78% of the total loss; walleyes accounted for 13% and smallmouth bass for 9%. Twenty-one percent of the loss occurred in a small area immediately below McNary Dam at the head of John Day Reservoir. We estimated that the three predator species consumed 14% (95% confidence interval, 9–19%) of all juvenile salmonids that entered the reservoir. Mortality changed by month and increased late in the migration season. Monthly mortality estimates ranged from 7% in June to 61% in August. Mortality from predation was highest for chinook salmon O. tshawytscha, which migrated in July and August. Despite uncertainties in the estimates, it is clear that predation by resident fish predators can easily account for previously unexplained mortality of out-migrating juvenile salmonids. Alteration of the Columbia River by dams and a decline in the number of salmonids could have increased the fraction of mortality caused by predation over what it was in the past.

  17. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven G.; Muir, William D.; Zabel, Richard W.

    2004-01-01

    For juvenile chinook salmon Oncorhynchus tshawytscha, sockeye salmon O. nerka, and steelhead O. mykiss that migrate through reservoirs, hydroelectric projects, and free-flowing sections of the Snake and Columbia Rivers, survival estimates are essential to develop effective strategies for recovering depressed stocks. Many management strategies were based on estimates of system survival (Raymond 1979; Sims and Ossiander 1981) derived in a river system considerably different from today's (Williams and Matthews 1995; Williams et al. 2001). Knowledge of the magnitude, locations, and causes of smolt mortality under present passage conditions, and under conditions projected for the future, are necessary to develop strategiesmore » that will optimize smolt survival during migration. From 1993 through 2002, the National Marine Fisheries Service (NMFS) and the University of Washington (UW) demonstrated the feasibility of using three statistical models to estimate survival of PIT-tagged (Prentice et al. 1990a) juvenile salmonids passing through Snake River dams and reservoirs (Iwamoto et al. 1994; Muir et al. 1995, 1996, 2001a, 2003; Smith et al. 1998, 2000a,b; Hockersmith et al. 1999; Zabel et al. 2001, 2002). Evaluation of assumptions for these models indicated that all were generally satisfied, and accurate and precise survival estimates were obtained. In 2003, NMFS and UW completed the eleventh year of the study. Flow levels during the early portion of the 2003 spring migration were similar to 2002, and only slightly higher than in the drought conditions during 2001. However, flow levels were much greater during the later part of the migration in 2003. Spill levels were similar to 2002, much higher than in 2001. Research objectives were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3

  18. A comparison of the effects of two methods of acclimation of aerobic biodegradability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, H.M.

    1993-11-01

    The acclimation or adaptation of microorganisms to organic chemicals is an important factor influencing both the rate and the extent of biodegradation. In this study two acclimation procedures were evaluated in terms of their effectiveness in enhancing biodegradation, their relative ease of use in the laboratory, and the implications for biodegradability testing. In the single-flask procedure, microorganisms were acclimated for 2 to 7 d in a single acclimation flask at constant or increasing concentrations of the test chemical without transfer of microorganisms. In the second procedure, the enrichment procedure, microorganisms were acclimated in a series of flasks over a 21-dmore » period by making adaptive transfers to increasing concentrations of the test chemical. Acclimated microorganisms from each procedure were used as the source of inoculum for subsequent biodegradation tests in which carbon dioxide evolution was measured. Six chemicals were tested: quinoline, p-nitrophenol, N-methylaniline, N,N-dimethylaniline, acrylonitrile, and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate. Microorganisms acclimated in the single-flask procedure were much more effective than those acclimated in the enrichment procedure in degrading the test chemicals. The single-flask procedure is more convenient to use, and it permits monitoring of the time needed for acclimation. The results from these studies have implications for the methodology used in biodegradation test systems and suggest caution before adopting a multiple-flask, enrichment acclimation procedure before the performance of standardized tests for aerobic biodegradability.« less

  19. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    PubMed Central

    Pade, Nadin; Hagemann, Martin

    2014-01-01

    The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants. PMID:25551682

  20. Spring Outmigration of Wild and Hatchery Chinook Salmon and Steelhead Trout Smolts from the Imnaha River, Oregon; 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blenden, Michael L.; Rocklage, Stephen J.; Kucera, Paul A.

    1997-04-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wildmore » chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts.« less

  1. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallinat, Michael; Varney, Michelle

    2003-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River Spring Chinook Captive Broodstock Program during 2002. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combinationmore » with the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program collected fish from five (1997-2001) brood years (BY). As of January 1, 2003, WDFW has approximately 11 BY 1998, 194 BY 1999, 314 BY 2000, 447 BY 2001, and 300 BY 2002 (for extra males) fish on hand at LFH. The 2002 eggtake from the 1997 brood year (Age 5) was 13,176 eggs from 10 ripe females. Egg survival was 22%. Mean fecundity based on the 5 fully spawned females was 1,803 eggs/female. The 2002 eggtake from the 1998 brood year (Age 4) was 143,709 eggs from 93 ripe females. Egg survival was 29%. Mean fecundity based on the 81 fully spawned females was 1,650 eggs/female. The 2002 eggtake from the 1999 brood year (Age 3) was 19,659 eggs from 18 ripe females. Egg survival was 55%. Mean fecundity based on the 18 fully spawned fish was 1,092 eggs/female. The total 2002 eggtake from the captive brood program was 176,544 eggs. A total of 120,833 dead eggs (68%) were removed with 55,711 live eggs remaining for the program. As of May 1, 2003 we had 46,417 BY 2002 captive brood progeny on hand A total of 20,592 excess BY 01 fish were marked as parr (AD/CWT) and

  2. UV-B Perception and Acclimation in Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Chappuis, Richard; Allorent, Guillaume

    2016-01-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection. PMID:27020958

  3. Growth characteristics and Otolith analysis on Age-0 American Shad

    USGS Publications Warehouse

    Sauter, Sally T.; Wetzel, Lisa A.

    2011-01-01

    Otolith microstructure analysis provides useful information on the growth history of fish (Campana and Jones 1992, Bang and Gronkjaer 2005). Microstructure analysis can be used to construct the size-at-age growth trajectory of fish, determine daily growth rates, and estimate hatch date and other ecologically important life history events (Campana and Jones 1992, Tonkin et al. 2008). This kind of information can be incorporated into bioenergetics modeling, providing necessary data for estimating prey consumption, and guiding the development of empirically-based modeling scenarios for hypothesis testing. For example, age-0 American shad co-occur with emigrating juvenile fall Chinook salmon originating from Hanford Reach and the Snake River in the lower Columbia River reservoirs during the summer and early fall. The diet of age-0 American shad appears to overlap with that of juvenile fall Chinook salmon (Chapter 1, this report), but juvenile fall Chinook salmon are also known to feed on age-0 American shad in the reservoirs (USGS unpublished data). Abundant, energy-dense age-0 American shad may provide juvenile fall Chinook salmon opportunities for rapid growth during the time period when large numbers of age-0 American shad are available. Otolith analysis of hatch dates and the growth curve of age-0 American shad could be used to identify when eggs, larvae, and juveniles of specific size classes are temporally available as food for fall Chinook salmon in the lower Columbia River reservoirs. This kind of temporally and spatially explicit life history information is important to include in bioenergetics modeling scenarios. Quantitative estimates of prey consumption could be used with spatially-explicit estimates of prey abundance to construct a quantitative assessment of the age-0 American shad impact on a reservoir food web.

  4. Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation.

    PubMed

    Martz, Françoise; Sutinen, Marja-Liisa; Kiviniemi, Sari; Palta, Jiwan P

    2006-06-01

    It has previously been suggested that plasma membrane ATPase (PM H+-ATPase, EC 3.6.1.3.) is a site of incipient freezing injury because activity increases following cold acclimation and there are published data indicating that activity of PM H+-ATPase is modulated by changes in lipids associated with the enzyme. To test and extend these findings in a tree species, we analyzed PM H+-ATPase activity and the fatty acid (FA) composition of glycerolipids in purified plasma membranes (PMs) prepared by the two-phase partition method from current-year needles of adult red pine (Pinus resinosa Ait.) trees. Freezing tolerance of the needles decreased from -56 degrees C in March to -9 degrees C in May, and increased from -15 degrees C in September to -148 degrees C in January. Specific activity of vanadate-sensitive PM H+-ATPase increased more than two-fold following cold acclimation, despite a concurrent increase in protein concentration. During de-acclimation, decreases in PM H+-ATPase activity and freezing tolerance were accompanied by decreases in the proportions of oleic (18:1) and linoleic (18:2) acids and increases in the proportions of palmitic (16:0) and linolenic (18:3) acids in total glycerolipids extracted from the plasma membrane fraction. This pattern of changes in PM H+-ATPase activity and the 18:1, 18:2 and 18:3 fatty acids was reversed during cold acclimation. In the PM fractions, changes in FA unsaturation, expressed as the double bond index (1 x 18:1 + 2 x 18:2 + 3 x 18:3), were closely correlated with changes in H+-ATPase specific activity (r2 = 0.995). Changes in freezing tolerance were well correlated with DBI (r2 = 0.877) and ATPase specific activity (r2 = 0.833) in the PM fraction. Total ATPase activity in microsomal fractions also closely followed changes in freezing tolerance (r2 = 0.969). We conclude that, as in herbaceous plants, simultaneous seasonal changes in PM H+-ATPase activity and fatty acid composition occur during cold acclimation and de-acclimation

  5. Effect of temperature on excess post-exercise oxygen consumption in juvenile southern catfish (Silurus meridionalis Chen) following exhaustive exercise.

    PubMed

    Zeng, Ling-Qing; Zhang, Yao-Guang; Cao, Zhen-Dong; Fu, Shi-Jian

    2010-12-01

    The effects of temperature on resting oxygen consumption rate (MO2rest) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise (chasing) were measured in juvenile southern catfish (Silurus meridionalis) (8.40±0.30 g, n=40) to test whether temperature has a significant influence on MO2rest, maximum post-exercise oxygen consumption rate (MO2peak) and EPOC and to investigate how metabolic scope (MS: MO2peak - MO2rest) varies with acclimation temperature. The MO2rest increased from 64.7 (10°C) to 160.3 mg O2 h(-1) kg(-1) (25°C) (P<0.05) and reached a plateau between 25 and 30°C. The post-exercise MO2 in all temperature groups increased immediately to the peak values and then decreased slowly to a steady state that was higher than the pre-exercise MO2. The MO2peak did not significantly differ among the 20, 25 and 30°C groups, though these values were much higher than those of the lower temperature groups (10 and 15°C) (P<0.05). The duration of EPOC varied from 32.9 min at 10°C to 345 min at 20°C, depending on the acclimation temperatures. The MS values of the lower temperature groups (10 and 15°C) were significantly smaller than those of the higher temperature groups (20, 25 and 30°C) (P<0.05). The magnitude of EPOC varied ninefold among all of the temperature groups and was the largest for the 20°C temperature group (about 422.4 mg O2 kg(-1)). These results suggested that (1) the acclimation temperature had a significant effect on maintenance metabolism (as indicated by MO2rest) and the post-exercise metabolic recovery process (as indicated by MO2peak, duration and magnitude of EPOC), and (2) the change of the MS as a function of acclimation temperature in juvenile southern catfish might be related to their high degree of physiological flexibility, which allows them to adapt to changes in environmental conditions in their habitat in the Yangtze River and the Jialing River.

  6. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change.

    PubMed

    Markle, Tricia M; Kozak, Kenneth H

    2018-05-01

    Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further

  7. Hypoxic acclimation leads to metabolic compensation after reoxygenation in Atlantic salmon yolk-sac alevins.

    PubMed

    Polymeropoulos, Elias T; Elliott, Nicholas G; Frappell, Peter B

    2017-11-01

    Hypoxia is common in aquatic environments and has substantial effects on development, metabolism and survival of aquatic organisms. To understand the physiological effects of hypoxia and its dependence on temperature, metabolic rate ( [Formula: see text] ) and cardiorespiratory function were studied in response to acute hypoxia (21→5kPa) at different measurement temperatures (T a ; 4, 8 and 12°C) in Salmo salar alevins that were incubated under normoxic conditions (P O 2 =21kPa) or following hypoxic acclimation (P O 2 =10kPa) as well as two different temperatures (4°C or 8°C). Hypoxic acclimation lead to a developmental delay manifested through slower yolk absorption. The general response to acute hypoxia was metabolic depression (~60%). Hypoxia acclimated alevins had higher [Formula: see text] s when measured in normoxia than alevins acclimated to normoxia. [Formula: see text] s were elevated to the same degree (~30% per 4°C change) irrespective of T a . Under severe, acute hypoxia (~5kPa) and irrespective of T a or acclimation, [Formula: see text] s were similar between most groups. This suggests that despite different acclimation regimes, O 2 transport was limited to the same degree. While cardiorespiratory function (heart-, ventilation rate) was unchanged in response to acute hypoxia after normoxic acclimation, hypoxic acclimation led to cardiorespiratory changes predominantly in severe hypoxia, indicating earlier onset and plasticity of cardiorespiratory control mechanisms. Although [Formula: see text] in normoxia was higher after hypoxic acclimation, at the respective acclimation P O 2 , [Formula: see text] was similar in normoxia and hypoxia acclimated alevins. This is indicative of metabolic compensation to an intrinsic [Formula: see text] at the acclimation condition in hypoxia-acclimated alevins after re-exposure to normoxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawningmore » of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.« less

  9. Plasmacytoid leukemia of chinook salmon.

    PubMed

    Kent, M L; Eaton, W D; Casey, J W

    1997-04-01

    Plasmacytoid leukemia is a common disease of seawater pen-reared chinook salmon (Oncorhynchus tshawytscha) in British Columbia, Canada, but has also been detected in wild salmon, in freshwater-reared salmon in United States, and in salmon from netpens in Chile. The disease can be transmitted under laboratory conditions, and is associated with a retrovirus, the salmon leukemia virus. However, the proliferating plasmablasts are often infected with the microsporean Enterocytozoon salmonis, which may be an important co-factor in the disease.

  10. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, John G.; Bjornn

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on themore » Clearwater River to collect data on survival detection probabilities, and travel time.« less

  11. Sustained and generalized extracellular fluid expansion following heat acclimation

    PubMed Central

    Patterson, Mark J; Stocks, Jodie M; Taylor, Nigel A S

    2004-01-01

    We measured intra- and extravascular body-fluid compartments in 12 resting males before (day 1; control), during (day 8) and after (day 22) a 3-week, exercise–heat acclimation protocol to investigate plasma volume (PV) changes. Our specific focus was upon the selective nature of the acclimation-induced PV expansion, and the possibility that this expansion could be sustained during prolonged acclimation. Acclimation was induced by cycling in the heat, and involved 16 treatment days (controlled hyperthermia (90 min); core temperature = 38.5°C) and three experimental exposures (40 min rest, 96.9 min (s.d. 9.5 min) cycling), each preceded by a rest day. The environmental conditions were a temperature of 39.8°C (s.d. 0.5°C) and relative humidity of 59.2% (s.d. 0.8%). On days 8 and 22, PV was expanded and maintained relative to control values (day 1: 44.0 ± 1.8; day 8: 48.8 ± 1.7; day 22: 48.8 ± 2.0 ml kg−1; P < 0.05). The extracellular fluid compartment (ECF) was equivalently expanded from control values on days 8 (279.6 ± 14.2versus 318.6 ± 14.3 ml kg−1; n = 8; P < 0.05) and 22 (287.5 ± 10.6 versus 308.4 ± 14.8 ml kg−1; n = 12; P < 0.05). Plasma electrolyte, total protein and albumin concentrations were unaltered following heat acclimation (P > 0.05), although the total plasma content of these constituents was elevated (P < 0.05). The PV and interstitial fluid (ISF) compartments exhibited similar relative expansions on days 8 (15.0 ± 2.2% versus 14.7 ± 4.1%; P > 0.05) and 22 (14.4 ± 3.6%versus 6.4 ± 2.2%; P = 0.10). It is concluded that the acclimation-induced PV expansion can be maintained following prolonged heat acclimation. In addition, this PV expansion was not selective, but represented a ubiquitous expansion of the extracellular compartment. PMID:15218070

  12. 75 FR 7228 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management Measures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-18

    ... that combines a limit on the amount of Chinook salmon that may be caught incidentally with an incentive... limit on the amount of Chinook salmon that may be caught incidentally with an incentive plan agreement... arrangement, called an incentive plan agreement (IPA), that establishes an incentive program to minimize...

  13. Cold resistance depends on acclimation and behavioral caste in a temperate ant

    NASA Astrophysics Data System (ADS)

    Modlmeier, Andreas P.; Pamminger, Tobias; Foitzik, Susanne; Scharf, Inon

    2012-10-01

    Adjusting to low temperatures is important for animals living in cold environments. We studied the chill-coma recovery time in temperate ant workers ( Temnothorax nylanderi) from colonies collected in autumn and spring in Germany. We experimentally acclimated these ant colonies to cold temperatures followed by warm temperatures. As expected, cold-acclimated workers recovered faster from freezing temperatures, but subsequent heat acclimation did not change the short recovery times observed after cold acclimation. Hence, either heat acclimation improves cold tolerance, possibly as a general response to stress, or at least it does not negate enhanced cold tolerance following cold acclimation. Colonies collected in spring showed similar cold tolerance levels to cold-acclimated colonies in the laboratory. Next, we compared the chill-coma recovery time of different worker castes and found that exterior workers recovered faster than interior workers. This difference may be related to their more frequent exposure to cold, higher activity level, or distinct physiology. Interior workers were also heavier and showed a higher gaster-to-head ratio and thorax ratio compared to exterior workers. An obvious difference between exterior and interior workers is activity level, but we found no link between activity and cold tolerance. This suggests that physiology rather than behavioral differences could cause the increased cold tolerance of exterior workers. Our study reveals the importance of acclimation for cold tolerance under natural and standardized conditions and demonstrates differences in cold tolerance and body dimensions in monomorphic behavioral castes of an ant.

  14. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    USGS Publications Warehouse

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  15. Acclimation improves salt stress tolerance in Zea mays plants.

    PubMed

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Mortality and kidney histopathology of chinook salmon Oncorhynchus tshawytscha exposed to virulent and attenuated Renibacterium salmoninarum strains

    USGS Publications Warehouse

    O'Farrell, C. L.; Elliott, D.G.; Landolt, M.L.

    2000-01-01

    An isolate of Renibacterium salmoninarum (strain MT 239) exhibiting reduced virulence in rainbow trout Oncorhynchus mykiss was tested for its ability to cause bacterial kidney disease (BKD) in chinook salmon Oncorhynchus tshawytscha, a salmonid species more susceptible to BKD. Juvenile chinook salmon were exposed to either 33209, the American Type Culture Collection type strain of R. salmoninarum, or to MT 239, by an intraperitoneal injection of 1 ?? 103 or 1 ?? 106 bacteria fish-1, or by a 24 h immersion in 1 ?? 105 or 1 ?? 107 bacteria ml-1. For 22 wk fish were held in 12??C water and monitored for mortality. Fish were sampled periodically for histological examination of kidney tissues. In contrast to fish exposed to the high dose of strain 33209 by either injection or immersion, none of the fish exposed to strain MT 239 by either route exhibited gross clinical signs or histopathological changes indicative of BKD. However, the MT 239 strain was detected by the direct fluorescent antibody technique in 4 fish that died up to 11 wk after the injection challenge and in 5 fish that died up to 20 wk after the immersion challenge. Viable MT 239 was isolated in culture from 3 fish that died up to 13 wk after the immersion challenge. Total mortality in groups injected with the high dose of strain MT 239 (12%) was also significantly lower (p < 0.05) than mortality in groups injected with strain 33209 (73%). These data indicate that the attenuated virulence observed with MT 239 in rainbow trout also occurs in a salmonid species highly susceptible to BKD. The reasons for the attenuated virulence of MT 239 were not determined but may be related to the reduced levels of the putative virulence protein p57 associated with this strain.

  17. Mortality and kidney histopathology of Chinook salmon Oncorhynchus tshawytscha exposed to virulent and attenuated Renibacterium salmoninarum strains

    USGS Publications Warehouse

    O'Farrell, Caroline L.; Elliott, Diane G.; Landolt, Marsha L.

    2001-01-01

    An isolate of Renibacterium salmoninarum (strain MT 239) exhibiting reduced virulence in rainbow trout Oncorhynchus mykiss was tested for its ability to cause bacterial kidney disease (BKD) in chinook salmon Oncorhynchus tshawytscha, a salmonid species more susceptible to BKD. Juvenile chinook salmon were exposed to either 33209, the American Type Culture Collection type strain of R. salmoninarum, or to MT 239, by an intraperitoneal injection of 1 x 10(3) or 1 x 10(6) bacteria fish(-1), or by a 24 h immersion in 1 x 10(5) or 1 x 10(7) bacteria ml(-1). For 22 wk fish were held in 12 degrees C water and monitored for mortality. Fish were sampled periodically for histological examination of kidney tissues. In contrast to fish exposed to the high dose of strain 33209 by either injection or immersion, none of the fish exposed to strain MT 239 by either route exhibited gross clinical signs or histopathological changes indicative of BKD. However, the MT 239 strain was detected by the direct fluorescent antibody technique in 4 fish that died up to 11 wk after the injection challenge and in 5 fish that died up to 20 wk after the immersion challenge. Viable MT 239 was isolated in culture from 3 fish that died up to 13 wk after the immersion challenge. Total mortality in groups injected with the high dose of strain MT 239 (12%) was also significantly lower (p < 0.05) than mortality in groups injected with strain 33209 (73 %). These data indicate that the attenuated virulence observed with MT 239 in rainbow trout also occurs in a salmonid species highly susceptible to BKD. The reasons for the attenuated virulence of MT 239 were not determined but may be related to the reduced levels of the putative virulence protein p57 associated with this strain.

  18. Sugar-mediated acclimation: the importance of sucrose metabolism in meristems.

    PubMed

    Carpentier, Sebastien Christian; Vertommen, Annelies; Swennen, Rony; Witters, Erwin; Fortes, Claudia; Souza, Manoel T; Panis, Bart

    2010-10-01

    We have designed an in vitro experimental setup to study the role of sucrose in sugar-mediated acclimation of banana meristems using established highly proliferating meristem cultures. It is a first step toward the systems biology of a meristem and the understanding of how it can survive severe abiotic stress. Using the 2D-DIGE proteomic approach and a meristem-specific EST library, we describe the long-term acclimation response of banana meristems (after 2, 4, 8, and 14 days) and analyze the role of sucrose in this acclimation by setting up a control, a sorbitol, and a sucrose acclimation treatment over time. Sucrose synthase is the dominant enzyme for sucrose breakdown in meristem tissue, which is most likely related to its lower energy consumption. Metabolizing sucrose is of paramount importance to survive, but the uptake of sugar and its metabolism also drive respiration, which may result in limited oxygen levels. According to our data, a successful acclimation is correlated to an initial efficient uptake of sucrose and subsequently a reduced breakdown of sucrose and an induction of fermentation likely by a lack of oxygen.

  19. Injury and mortality of juvenile salmon entrained in a submerged jet entering still water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

    Juvenile salmon can be injured and killed when they pass through hydroelectric turbines and other downstream passage alternatives. The hydraulic conditions in these complex environments that pose a risk to the health of fish include turbulent shear flows, collisions with hydraulic structures, cavitation, and rapid change of pressure. Improvements in the understating of the biological responses of juvenile salmon in turbulent shear flows can reduce salmon injury and mortality. In a series of studies, juvenile fall Chinook salmon (Oncorhynchus tshawythscha) were exposed to turbulent shear flows in two mechanisms: 1) the slow-fish-to-fast-water mechanism, where test fish were introduced into amore » turbulent jet from slow-moving water through an introduction tube placed just outside the edge of the jet; 2) the fast-fish-to-slow-water mechanism, where test fish were carried by the fast-moving water of a submerged turbulent jet into the slow-moving water of a flume. All fish exposures to the water jet were recorded by two high-speed, high-resolution cameras. Motion-tracking analysis was then performed on the digital videos to quantify associated kinematic and dynamic parameters. The main results for the slow-fish-to-fast-water mechanism were described in Deng et al (2005). This chapter will discuss the test results of the fast-fish-to-slow-water mechanism and compare the results of the two mechanisms.« less

  20. Cold acclimation induces distinctive changes in the chromatin state and transcript levels of COR genes in Cannabis sativa varieties with contrasting cold acclimation capacities.

    PubMed

    Mayer, Boris F; Ali-Benali, Mohamed Ali; Demone, Jordan; Bertrand, Annick; Charron, Jean-Benoit

    2015-11-01

    Little is known about the capacity of Cannabis sativa to cold-acclimate and develop freezing tolerance. This study investigates the cold acclimation (CA) capacity of nine C. sativa varieties and the underlying genetic and epigenetic responses. The varieties were divided into three groups based on their contrasting CA capacities by comparing the survival of non-acclimated and cold-acclimated plants in whole-plant freeze tests. In response to the CA treatment, all varieties accumulated soluble sugars but only the varieties with superior capacity for CA could maintain higher levels throughout the treatment. In addition, the varieties that acclimated most efficiently accumulated higher transcript levels of cold-regulated (COR) genes and genes involved in de novo DNA methylation while displaying locus- and variety-specific changes in the levels of H3K9ac, H3K27me3 and methylcytosine (MeC) during CA. Furthermore, these hardy C. sativa varieties displayed significant increases in MeC levels at COR gene loci when deacclimated, suggesting a role for locus-specific DNA methylation in deacclimation. This study uncovers the molecular mechanisms underlying CA in C. sativa and reveals higher levels of complexity regarding how genetic, epigenetic and environmental factors intertwine. © 2014 Scandinavian Plant Physiology Society.

  1. The effect of cold acclimation on active ion transport in cricket ionoregulatory tissues.

    PubMed

    Des Marteaux, Lauren E; Khazraeenia, Soheila; Yerushalmi, Gil Y; Donini, Andrew; Li, Natalia G; Sinclair, Brent J

    2018-02-01

    Cold-acclimated insects defend ion and water transport function during cold exposure. We hypothesized that this is achieved via enhanced active transport. The Malpighian tubules and rectum are likely targets for such transport modifications, and recent transcriptomic studies indicate shifts in Na + -K + ATPase (NKA) and V-ATPase expression in these tissues following cold acclimation. Here we quantify the effect of cold acclimation (one week at 12°C) on active transport in the ionoregulatory organs of adult Gryllus pennsylvanicus field crickets. We compared primary urine production of warm- and cold-acclimated crickets in excised Malpighian tubules via Ramsay assay at a range of temperatures between 4 and 25°C. We then compared NKA and V-ATPase activities in Malpighian tubule and rectal homogenates from warm- and cold-acclimated crickets via NADH-linked photometric assays. Malpighian tubules of cold-acclimated crickets excreted fluid at lower rates at all temperatures compared to warm-acclimated crickets. This reduction in Malpighian tubule excretion rates may be attributed to increased NKA activity that we observed for cold-acclimated crickets, but V-ATPase activity was unchanged. Cold acclimation had no effect on rectal NKA activity at either 21°C or 6°C, and did not modify rectal V-ATPase activity. Our results suggest that an overall reduction, rather than enhancement of active transport in the Malpighian tubules allows crickets to maintain hemolymph water balance during cold exposure, and increased Malpighian tubule NKA activity may help to defend and/or re-establish ion homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. 75 FR 39207 - Notice of Intent To Prepare an Environmental Assessment and Conduct San Joaquin River Chinook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... Intent To Prepare an Environmental Assessment and Conduct San Joaquin River Chinook Salmon Scoping... Chinook salmon to the mainstem of the San Joaquin River. The document contained incorrect contact... second column, correct the e-mail address that was listed as SJRSpringSalmon@noaa.gov to read SJRSpring...

  3. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review ofmore » the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood

  4. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearingmore » and seaward migration through Columbia River basin reservoirs.« less

  5. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Kirby, C. R.; Convertino, V. A.

    1986-01-01

    The relationship between plasma aldosterone levels and sweat sodium excretion after chronic exercise and heat acclimation was investigated, using subjects exercised, at 40 C and 45 percent humidity, for 2 h/day on ten consecutive days at 45 percent of their maximal oxygen uptake. The data indicate that, following heat acclimation, plasma aldosterone concentrations decrease, and that the eccrine gland responsiveness to aldosterone, as represented by sweat sodium reabsorption, may be augmented through exercise and heat acclimation.

  6. Acclimation of CO2 Assimilation in Cotton Leaves to Water Stress and Salinity 1

    PubMed Central

    Plaut, Zvi; Federman, Evelyn

    1991-01-01

    Cotton (Gossypium hirsutum L. cv Acala SJ2) plants were exposed to three levels of osmotic or matric potentials. The first was obtained by salt and the latter by withholding irrigation water. Plants were acclimated to the two stress types by reducing the rate of stress development by a factor of 4 to 7. CO2 assimilation was then determined on acclimated and nonacclimated plants. The decrease of CO2 assimilation in salinity-exposed plants was significantly less in acclimated as compared with nonacclimated plants. Such a difference was not found under water stress at ambient CO2 partial pressure. The slopes of net CO2 assimilation versus intercellular CO2 partial pressure, for the initial linear portion of this relationship, were increased in plants acclimated to salinity of −0.3 and −0.6 megapascal but not in nonacclimated plants. In plants acclimated to water stress, this change in slopes was not significant. Leaf osmotic potential was reduced much more in acclimated than in nonacclimated plants, resulting in turgor maintenance even at −0.9 megapascal. In nonacclimated plants, turgor pressure reached zero at approximately −0.5 megapascal. The accumulation of Cl− and Na+ in the salinity-acclimated plants fully accounted for the decrease in leaf osmotic potential. The rise in concentration of organic solutes comprised only 5% of the total increase in solutes in salinity-acclimated and 10 to 20% in water-stress-acclimated plants. This acclimation was interpreted in light of the higher protein content per unit leaf area and the enhanced ribulose bisphosphate carboxylase activity. At saturating CO2 partial pressure, the declined inhibition in CO2 assimilation of stress-acclimated plants was found for both salinity and water stress. ImagesFigure 2 PMID:16668429

  7. Physiological effects of environmentally relevant, multi-day thermal stress on wild juvenile Atlantic salmon (Salmo salar).

    PubMed

    Corey, Emily; Linnansaari, Tommi; Cunjak, Richard A; Currie, Suzanne

    2017-01-01

    The frequency of extreme thermal events in temperate freshwater systems is expected to increase alongside global surface temperature. The Miramichi River, located in eastern Canada, is a prominent Atlantic salmon ( Salmo salar ) river where water temperatures can exceed the proposed upper thermal limit for the species (~27°C). Current legislation closes the river to recreational angling when water temperatures exceed 20°C for two consecutive nights. We aimed to examine how natural thermal variation, representative of extreme high thermal events, affected the thermal tolerance and physiology of wild, juvenile Atlantic salmon. We acclimated fish to four thermal cycles, characteristic of real-world thermal conditions while varying daily thermal minima (16°C, 18°C, 20°C or 22°C) and diel thermal fluctuation (e.g. Δ5°C-Δ9°C). In each cycling condition, we assessed the role that thermal minima played on the acute thermal tolerance (critical thermal maximum, (CTMax)), physiological (e.g. heat shock protein 70 (HSP70), ubiquitin) and energetic (e.g. hepatic glycogen, blood glucose and lactate) status of juvenile Atlantic salmon throughout repeated thermal cycles. Exposure to 16-21°C significantly increased CTMax (+0.9°C) compared to a stable acclimation temperature (16°C), as did exposure to diel thermal fluctuations of 18-27°C, 20-27°C and 22-27°C, yet repeated exposure provided no further increases in acute thermal tolerance. In comparison to the reference condition (16-21°C), consecutive days of high temperature cycling with different thermal minima resulted in significant increases in HSP70 and ubiquitin, a significant decrease in liver glycogen, and no significant cumulative effect on either blood glucose or lactate. However, comparison between thermally taxed treatments suggested the diel thermal minima had little influence on the physiological or energetic response of juvenile salmon, despite the variable thermal cycling condition. Our results

  8. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; ,; Gillikin, Daniel; ,

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  9. Spatial consistency of chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    USGS Publications Warehouse

    Klett, Katherine J.C.; Torgersen, Christian E.; Henning, Julie A.; Murray, Christopher J.

    2013-01-01

    We investigated the spawning patterns of Chinook Salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington, using a unique set of fine- and coarse-scale temporal and spatial data collected during biweekly aerial surveys conducted in 1991–2009 (500 m to 28 km resolution) and 2008–2009 (100–500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held GPS synchronized with in-flight audio recordings. We examined spatial patterns of Chinook Salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook Salmon spawned in the same sections each year with little variation among years. On a coarse scale, 5 years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years. Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations. On a finer temporal scale, we observed that Chinook Salmon spawned in the same sections during the first and last week. Redds were clustered in both 2008 and 2009. Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook Salmon spawning surveys.

  10. Heat acclimation: Gold mines and genes

    PubMed Central

    Schneider, Suzanne M.

    2016-01-01

    ABSTRACT The underground gold mines of South Africa offer a unique historical setting to study heat acclimation. The early heat stress research was conducted and described by a young medical officer, Dr. Aldo Dreosti. He developed practical and specific protocols to first assess the heat tolerance of thousands of new mining recruits, and then used the screening results as the basis for assigning a heat acclimation protocol. The mines provide an interesting paradigm where the prevention of heat stroke evolved from genetic selection, where only Black natives were recruited due to a false assumption of their intrinsic tolerance to heat, to our current appreciation of the epigenetic and other molecular adaptations that occur with exposure to heat. PMID:28090556

  11. 50 CFR Table 47d to Part 679 - Percent of the CDQ Program's Pollock Allocation, Numbers of Chinook Salmon Used To Calculate the...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount... Allocation, Numbers of Chinook Salmon Used To Calculate the Opt-Out Allocation and Annual Threshold Amount...Chinook salmon deducted from the annual threshold amount of 3,883 Column F Percent used to calculate...

  12. 76 FR 42099 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... gear, which consists of large nets towed through the water by the vessel. At times, Chinook salmon and... vessel does its best to avoid Chinook salmon at all times while fishing for pollock and that collectively... provide a qualitative evaluation and some quantitative information on the effectiveness of the IPAs. Each...

  13. 75 FR 58337 - Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    .... 090511911-0307-02] RIN 0648-AX89 Fisheries of the Exclusive Economic Zone Off Alaska; Chinook Salmon Bycatch... Economic Zone Off Alaska; Chinook Salmon Bycatch Management in the Bering Sea Pollock Fishery published on... salmon bycatch in the Bering Sea subarea of the Bering Sea and Aleutian Islands Management Area (BSAI...

  14. Thyroid hormone regulates muscle function during cold acclimation in zebrafish (Danio rerio).

    PubMed

    Little, Alexander G; Seebacher, Frank

    2013-09-15

    Thyroid hormone (TH) is a universal regulator of growth, development and metabolism during cold exposure in mammals. In zebrafish (Danio rerio), TH regulates locomotor performance and metabolism during cold acclimation. The influence of TH on locomotor performance may be via its effect on metabolism or, as has been shown in mammals, by modulating muscle phenotypes. Our aim was to determine whether TH influences muscle phenotypes in zebrafish, and whether this could explain changes in swimming capacity in response to thermal acclimation. We used propylthiouracil and iopanoic acid to induce hypothyroidism in zebrafish over a 3-week acclimation period to either 18 or 28°C. To verify that physiological changes following hypothyroid treatment were in fact due to the action of TH, we supplemented hypothyroid fish with 3,5-diiodothryronine (T2) or 3,5,3'-triiodothyronine (T3). Cold-acclimated fish had significantly greater sustained swimming performance (Ucrit) but not burst speed. Greater Ucrit was accompanied by increased tail beat frequency, but there was no change in tail beat amplitude. Hypothyroidism significantly decreased Ucrit and burst performance, as well as tail beat frequency and SERCA activity in cold-acclimated fish. However, myofibrillar ATPase activity increased in cold-acclimated hypothyroid fish. Hypothyroid treatment also decreased mRNA concentrations of myosin heavy chain fast isoforms and SERCA 1 isoform in cold-acclimated fish. SERCA 1 mRNA increased in warm-acclimated hypothyroid fish, and SERCA 3 mRNA decreased in both cold- and warm-acclimated hypothyroid fish. Supplementation with either T2 or T3 restored Ucrit, burst speed, tail beat frequency, SERCA activity and myosin heavy chain and SERCA 1 and 3 mRNA levels of hypothyroid fish back to control levels. We show that in addition to regulating development and metabolism in vertebrates, TH also regulates muscle physiology in ways that affect locomotor performance in fish. We suggest that the

  15. Linkages between life history type and migration pathways in freshwater and marine environments for Chinook salmon, Oncorhynchus tshawytscha

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi; Quinn, Thomas P.

    2012-05-01

    Chinook salmon, Oncorhynchus tshawytscha, are commonly categorized as ocean-type (migrating to the ocean in their first year of life) or stream-type (migrating after a full year in freshwater). These two forms have been hypothesized to display different ocean migration pathways; the former are hypothesized to migrate primarily on the continental shelf whereas the latter are hypothesized to migrate off the shelf to the open ocean. These differences in migration patterns have important implications for management, as fishing mortality rates are strongly influenced by ocean migration. Ocean-type Chinook salmon predominate in coastal rivers in the southern part of the species' range, whereas stream-type predominate in the interior and northerly rivers. This latitudinal gradient has confounded previous efforts to test the hypothesis regarding ocean migration pathways. To address this problem, we used a pair-wise design based on coded wire tagging data to compare the marine distributions of stream- and ocean-type Chinook salmon from a suite of rivers producing both forms. Both forms of Chinook salmon from the lower Columbia River, Oregon coast, lower Fraser River, and northern British Columbia rivers followed similar migration paths, contradicting the hypothesis. In contrast, recoveries of tagged Chinook salmon from the upper Columbia River, Snake River, and the upper Fraser River revealed migration patterns consistent with the hypothesis. These findings have important implications for our understanding of these life history types, and also for the conservation and management of declining, threatened, or endangered stream-type Chinook salmon populations in the US and Canada.

  16. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    PubMed

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  17. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    PubMed Central

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  18. Benefits of thermal acclimation in a tropical aquatic ectotherm, the Arafura filesnake, Acrochordus arafurae.

    PubMed

    Bruton, Melissa J; Cramp, Rebecca L; Franklin, Craig E

    2012-05-01

    The presumption that organisms benefit from thermal acclimation has been widely debated in the literature. The ability to thermally acclimate to offset temperature effects on physiological function is prevalent in ectotherms that are unable to thermoregulate year-round to maintain performance. In this study we examined the physiological and behavioural consequences of long-term exposure to different water temperatures in the aquatic snake Acrochordus arafurae. We hypothesised that long dives would benefit this species by reducing the likelihood of avian predation. To achieve longer dives at high temperatures, we predicted that thermal acclimation of A. arafurae would reduce metabolic rate and increase use of aquatic respiration. Acrochordus arafurae were held at 24 or 32°C for 3 months before dive duration and physiological factors were assessed (at both 24 and 32°C). Although filesnakes demonstrated thermal acclimation of metabolic rate, use of aquatic respiration was thermally independent and did not acclimate. Mean dive duration did not differ between the acclimation groups at either temperature; however, warm-acclimated animals increased maximum and modal dive duration, demonstrating a longer dive duration capacity. Our study established that A. arafurae is capable of thermal acclimation and this confers a benefit to the diving abilities of this snake.

  19. Susceptibility of ocean- and stream-type Chinook salmon to isolates of the L, U, and M genogroups of infectious hematopoietic necrosis virus (IHNV)

    USGS Publications Warehouse

    Hernandez, Daniel; Purcell, Maureen K.; Friedman, Carolyn S.; Kurath, Gael

    2016-01-01

    This study examined the susceptibility of Chinook salmon Oncorhynchus tshawytscha to viral strains from the L, U, and M genogroups of infectious hematopoietic necrosis virus (IHNV) present in western North America. The goal of this investigation was to establish a baseline understanding of the susceptibility of ocean- and stream-type Chinook salmon to infection and mortality caused by exposure to commonly detected strains of L, U, and M IHNV. The L IHNV strain tested here was highly infectious and virulent in both Chinook salmon populations, following patterns previously reported for Chinook salmon. Furthermore, ocean- and stream-type Chinook salmon fry at 1 g can also become subclinically infected with U and M strains of IHNV without experiencing significant mortality. The stream-type life history phenotype was generally more susceptible to infection and suffered greater mortality than the ocean-type phenotype. Between the U and M genogroup strains tested, the U group strains were generally more infectious than the M group strains in both Chinook salmon types. Substantial viral clearance occurred by 30 d post exposure, but persistent viral infection was observed with L, U, and M strains in both host populations. While mortality decreased with increased host size in stream-type Chinook salmon, infection prevalence was not lower for all strains at a greater size. These results suggest that Chinook salmon may serve as reservoirs and/or vectors of U and M genogroup IHNV.

  20. Susceptibility of ocean- and stream-type Chinook salmon to isolates of the L, U, and M genogroups of infectious hematopoietic necrosis virus (IHNV).

    PubMed

    Hernandez, Daniel G; Purcell, Maureen K; Friedman, Carolyn S; Kurath, Gael

    2016-08-31

    This study examined the susceptibility of Chinook salmon Oncorhynchus tshawytscha to viral strains from the L, U, and M genogroups of infectious hematopoietic necrosis virus (IHNV) present in western North America. The goal of this investigation was to establish a baseline understanding of the susceptibility of ocean- and stream-type Chinook salmon to infection and mortality caused by exposure to commonly detected strains of L, U, and M IHNV. The L IHNV strain tested here was highly infectious and virulent in both Chinook salmon populations, following patterns previously reported for Chinook salmon. Furthermore, ocean- and stream-type Chinook salmon fry at 1 g can also become subclinically infected with U and M strains of IHNV without experiencing significant mortality. The stream-type life history phenotype was generally more susceptible to infection and suffered greater mortality than the ocean-type phenotype. Between the U and M genogroup strains tested, the U group strains were generally more infectious than the M group strains in both Chinook salmon types. Substantial viral clearance occurred by 30 d post exposure, but persistent viral infection was observed with L, U, and M strains in both host populations. While mortality decreased with increased host size in stream-type Chinook salmon, infection prevalence was not lower for all strains at a greater size. These results suggest that Chinook salmon may serve as reservoirs and/or vectors of U and M genogroup IHNV.

  1. Molecular processes of transgenerational acclimation to a warming ocean

    NASA Astrophysics Data System (ADS)

    Veilleux, Heather D.; Ryu, Taewoo; Donelson, Jennifer M.; van Herwerden, Lynne; Seridi, Loqmane; Ghosheh, Yanal; Berumen, Michael L.; Leggat, William; Ravasi, Timothy; Munday, Philip L.

    2015-12-01

    Some animals have the remarkable capacity to acclimate across generations to projected future climate change; however, the underlying molecular processes are unknown. We sequenced and assembled de novo transcriptomes of adult tropical reef fish exposed developmentally or transgenerationally to projected future ocean temperatures and correlated the resulting expression profiles with acclimated metabolic traits from the same fish. We identified 69 contigs representing 53 key genes involved in thermal acclimation of aerobic capacity. Metabolic genes were among the most upregulated transgenerationally, suggesting shifts in energy production for maintaining performance at elevated temperatures. Furthermore, immune- and stress-responsive genes were upregulated transgenerationally, indicating a new complement of genes allowing the second generation of fish to better cope with elevated temperatures. Other differentially expressed genes were involved with tissue development and transcriptional regulation. Overall, we found a similar suite of differentially expressed genes among developmental and transgenerational treatments. Heat-shock protein genes were surprisingly unresponsive, indicating that short-term heat-stress responses may not be a good indicator of long-term acclimation capacity. Our results are the first to reveal the molecular processes that may enable marine fishes to adjust to a future warmer environment over multiple generations.

  2. Effects of the proposed California WaterFix North Delta Diversion on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Delta, northern California

    USGS Publications Warehouse

    Perry, Russell W.; Pope, Adam C.

    2018-05-11

    The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3 /s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta. In this report, we conduct four analyses to investigate the effect of the NDD and its proposed operation on survival of juvenile Chinook salmon (Oncorhynchus tshawytscha). All analyses used the results of a Bayesian survival model that allowed us to simulate travel time, migration routing, and survival of juvenile Chinook salmon migrating through the Delta in response to NDD operations, which affected both inflows to the Delta and operation of the Delta Cross Channel (DCC). For the first analysis, we evaluated the effect of the NDD bypass rules on salmon survival. The NDD bypass rules are a set of operational rule curves designed to provide adaptive levels of fish protection by defining allowable diversion rates as a function of (1) Sacramento River discharge as measured at Freeport, and (2) time of year when endangered runs requiring the most protection are present. We determined that all bypass rule curves except constant low-level pumping (maximum diversion of 900 ft3 /s) could cause a sizeable decrease in survival by as

  3. Development and validation of a quantitative PCR to detect Parvicapsula minibicornis and comparison to histologically ranked infection of juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), from the Klamath River, USA

    USGS Publications Warehouse

    True, K.; Purcell, M.K.; Foott, J.S.

    2009-01-01

    Parvicapsula minibicornis is a myxosporean parasite that is associated with disease in Pacific salmon during their freshwater life history phase. This study reports the development of a quantitative (real-time) polymerase chain reaction (QPCR) to detect P. minibicornis DNA. The QPCR assay targets the 18S ribosomal subunit gene. A plasmid DNA control was developed to calibrate cycle threshold (CT) score to plasmid molecular equivalent (PME) units, a measure of gene copy number. Assay validation revealed that the QPCR was sensitive and able to detect 50 ag of plasmid DNA, which was equivalent to 12.5 PME. The QPCR assay could detect single P. minibicornis actinospores well above assay sensitivity, indicating a single spore contains at least 100 times the 18S DNA copies required for detection. The QPCR assay was repeatable and highly specific; no detectable amplification was observed using DNA from related myxozoan parasites. The method was validated using kidney tissues from 218 juvenile Chinook salmon sampled during the emigration period of March to July 2005 from the Klamath River. The QPCR assay was compared with histological examination. The QPCR assay detected P. minibicornis infection in 88.1% of the fish sampled, while histological examination detected infection in 71.1% of the fish sampled. Good concordance was found between the methods as 80% of the samples were in agreement. The majority of the disconcordant fish were positive by QPCR, with low levels of P. minibicornis DNA, but negative by histology. The majority of the fish rated histologically as having subclinical or clinical infections had high QPCR levels. The results of this study demonstrate that QPCR is a sensitive quantitative tool for evaluating P. minibicornis infection in fish health monitoring studies. ?? 2008 Blackwell Publishing Ltd.

  4. Juvenile salmonid migratory behavior at the mouth of the Columbia River and within the plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; O'Toole, Amanda C.; Harnish, Ryan A.

    A total of 8,159 acoustic-tagged salmonid smolts were detected at the mouth of the Columbia River. Of the fish detected at the mouth, 14% of yearling Chinook salmon, 9% of steelhead, and 22% of subyearling Chinook salmon were detected on a sparse array deployed in the Columbia River plume. Chinook salmon smolts decreased travel rate as they left the river and entered the plume, while steelhead increased travel rate. Chinook salmon also spent more time in the transitional area between the river mouth and plume as compared to steelhead. In early spring, yearling Chinook salmon and steelhead predominately migrated pastmore » the plume array towards the edge of the shelf and to the south. Later in the season, yearling Chinook salmon and steelhead smolts tended to migrate out of the river mouth in a northerly direction. Subyearling Chinook salmon migrated predominately past the portion of the plume array to the north of the river mouth.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, John

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the third year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1999 field season.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, John; Nugent, Michael; Brock, Wendy

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the fourth year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fishes, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 2000 field season.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, John; Newsome, Todd; Nugent, Michael

    The Washington Department of Fish and Wildlife (WDFW) has been contracted through the Bonneville Power Administration (BPA) and the Grant County Public Utility District (GCPUD) to perform an evaluation of juvenile fall chinook salmon (Oncorhynchus tshawytscha) stranding on the Hanford Reach. The evaluation, in the second year of a multi-year study, has been developed to assess the impacts of water fluctuations from Priest Rapids Dam on rearing juvenile fall chinook salmon, other fish species, and benthic macroinvertebrates of the Hanford Reach. This document provides the results of the 1998 field season.

  8. 76 FR 20302 - Listing Endangered and Threatened Species; 90-Day Finding on a Petition To List Chinook Salmon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... a Petition To List Chinook Salmon AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... salmon (Oncorhynchus tshawytscha) in the Upper Klamath and Trinity Rivers Basin as threatened or... conduct a status review of the Chinook salmon in the Upper Klamath and Trinity Rivers Basin to determine...

  9. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming.

    PubMed

    Dworjanyn, Symon A; Byrne, Maria

    2018-04-11

    Understanding how growth trajectories of calcifying invertebrates are affected by changing climate requires acclimation experiments that follow development across life-history transitions. In a long-term acclimation study, the effects of increased acidification and temperature on survival and growth of the tropical sea urchin Tripneustes gratilla from the early juvenile (5 mm test diameter-TD) through the developmental transition to the mature adult (60 mm TD) were investigated. Juveniles were reared in a combination of three temperature and three pH/ p CO 2 treatments, including treatments commensurate with global change projections. Elevated temperature and p CO 2 /pH both affected growth, but there was no interaction between these factors. The urchins grew more slowly at pH 7.6, but not at pH 7.8. Slow growth may be influenced by the inability to compensate coelomic fluid acid-base balance at pH 7.6. Growth was faster at +3 and +6°C compared to that in ambient temperature. Acidification and warming had strong and interactive effects on reproductive potential. Warming increased the gonad index, but acidification decreased it. At pH 7.6 there were virtually no gonads in any urchins regardless of temperature. The T. gratilla were larger at maturity under combined near-future warming and acidification scenarios (+3°C/pH 7.8). Although the juveniles grew and survived in near-future warming and acidification conditions, chronic exposure to these stressors from an early stage altered allocation to somatic and gonad growth. In the absence of phenotypic adjustment, the interactive effects of warming and acidification on the benthic life phases of sea urchins may compromise reproductive fitness and population maintenance as global climatic change unfolds. © 2018 The Author(s).

  10. Passive heat acclimation improves skeletal muscle contractility in humans.

    PubMed

    Racinais, S; Wilson, M G; Périard, J D

    2017-01-01

    The aim of this study was to investigate the effect of repeated passive heat exposure (i.e., acclimation) on muscle contractility in humans. Fourteen nonheat-acclimated males completed two trials including electrically evoked twitches and voluntary contractions in thermoneutral conditions [Cool: 24°C, 40% relative humidity (RH)] and hot ambient conditions in the hyperthermic state (Hot: 44-50°C, 50% RH) on consecutive days in a counterbalanced order. Rectal temperature was ~36.5°C in Cool and was maintained at ~39°C throughout Hot. Both trials were repeated after 11 days of passive heat acclimation (1 h per day, 48-50°C, 50% RH). Heat acclimation decreased core temperature in Cool (-0.2°C, P < 0.05), increased the time required to reach 39°C in Hot (+9 min, P < 0.05) and increased sweat rate in Hot (+0.7 liter/h, P < 0.05). Moreover, passive heat acclimation improved skeletal muscle contractility as evidenced by an increase in evoked peak twitch amplitude both in Cool (20.5 ± 3.6 vs. 22.0 ± 4.0 N·m) and Hot (20.5 ± 4.7 vs. 22.0 ± 4.0 N·m) (+9%, P < 0.05). Maximal voluntary torque production was also increased both in Cool (145 ± 42 vs. 161 ± 36 N·m) and Hot (125 ± 36 vs. 145 ± 30 N·m) (+17%, P < 0.05), despite voluntary activation remaining unchanged. Furthermore, the slope of the relative torque/electromyographic linear relationship was improved postacclimation (P < 0.05). These adjustments demonstrate that passive heat acclimation improves skeletal muscle contractile function during electrically evoked and voluntary muscle contractions of different intensities both in Cool and Hot. These results suggest that repeated heat exposure may have important implications to passively maintain or even improve muscle function in a variety of performance and clinical settings. Copyright © 2017 the American Physiological Society.

  11. Sublethal toxicity of chlorpyrifos to salmonid olfaction after hypersaline acclimation.

    PubMed

    Maryoung, Lindley A; Blunt, Brian; Tierney, Keith B; Schlenk, Daniel

    2015-04-01

    Salmonid habitats can be impacted by several environmental factors, such as salinization, which can also affect salmonid tolerance to anthropogenic stressors, such as pesticides. Previous studies have shown that hypersaline acclimation enhances the acute toxicity of certain organophosphate and carbamate pesticides to euryhaline fish; however, sublethal impacts have been far less studied. The current study aims to determine how hypersaline acclimation and exposure to the organophosphate chlorpyrifos (CPF) impact salmonid olfaction. Combined acclimation and exposure to CPF was shown to impact rainbow trout olfaction at the molecular, physiological, and behavioral levels. Concurrent exposure to hypersalinity and 0.5μg/L CPF upregulated four genes (chloride intracellular channel 4, G protein zgc:101761, calcium calmodulin dependent protein kinase II delta, and adrenergic alpha 2C receptor) that inhibit olfactory signal transduction. At the physiological level, hypersalinity and chlorpyrifos caused a decrease in sensory response to the amino acid l-serine and the bile salt taurocholic acid. Combined acclimation and exposure also negatively impacted behavior and reduced the avoidance of a predator cue (l-serine). Thus, acclimation to hypersaline conditions and exposure to environmentally relevant concentrations of chlorpyrifos caused an inhibition of olfactory signal transduction leading to a decreased response to odorants and impairment of olfactory mediated behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Predation by Resident Fish on Juvenile Salmonids in John Day Reservoir: Final Report, 1983-1986: Volume 1, Final Report of Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poe, Thomas P.; Rieman, Bruce E.

    1988-07-01

    In 1982 the NPPC included in its Fish and Wildlife Program a measure that called for studies ''... to investigate juvenile salmon and steelhead losses to predators while these fish are migrating through Columbia and Snake River reservoirs.'' In the same year the Bonneville Power Administration (BPA) funded ODFW and FWS to conduct collaborative studies to estimate the number of juvenile salmonids lost to predators in John Day Reservoir. Also included as study objectives were: (1) a description of the importance of predation losses relative to mortality at the dam and total reservoir mortality; (2) a description of how predationmore » losses might vary (spatially and temporally); and (3) recommendations of measures to control predation on smolts. We studied four species of predator: northern squawfish, walleye, smallmouth bass, and channel catfish. We selected John Day Reservoir as the study site because the following factors led us to believe if predation was a problem in any reservoir, it would be most obvious there because: (1) the reservoir is an important subyearling chinook rearing area; (2) passage and residualism of juvenile salmonids were considered a problem there; and (3) substantial populations of predators were known to reside in the reservoir. Individual reports were processed separately for the data base.« less

  13. 78 FR 79674 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... and eggs from the Feather River Fish Hatchery (FRFH) and their release into the San Joaquin River or... eggs produced or reared at either the interim facility or the permanent SCARF (from broodstock...,400 CV spring-run Chinook salmon juveniles or 80,000 CV spring-run Chinook salmon eggs originating...

  14. Cryopreservation of Adult Male Spring and Summer Chinook Salmon Gametes in the Snake River Basin, 1997 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faurot, Dave; Kucera, Paul A.; Armstrong, Robyn D.

    1998-06-01

    Chinook salmon populations in the Northwest are decreasing in number. The Nez Perce Tribe was funded in 1997 by the Bonneville Power Administration to coordinate and initiate gene banking of adult male gametes from Endangered Species Act (ESA) listed spring and summer chinook salmon in the Snake River basin.

  15. 75 FR 20815 - Notice of Intent To Prepare an Environmental Assessment and to Conduct San Joaquin River Chinook...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... Intent To Prepare an Environmental Assessment and to Conduct San Joaquin River Chinook Salmon Scoping... of spring-run Chinook salmon to the mainstem of the San Joaquin River. DATES: NMFS will conduct a..., Sacramento, CA 95814. Comments may also be submitted electronically to SJRSpringSalmon@nooa.gov . Comments...

  16. Differential predation by northern squawfish Ptychocheilus oregonensis on live and dead juvenile salmonids in the Bonneville Dam tailrace (Columbia River)

    USGS Publications Warehouse

    Petersen, James H.; Gadomski, Dena M.; Poe, Thomas P.

    1994-01-01

    Juvenile salmonids (Oncorhynchus spp.) that have been killed or injured during dam passage may be highly vulnerable or preferred prey of predators that aggregate below dams. Salmonid loss due to predation will be overestimated using gut content analysis if some prey were dead or moribund when consumed. To examine this issue, field experiments were conducted in the Bonneville Dam tailrace (Columbia River) to compare rates of capture of live and dead juvenile salmonids by northern squawfish (Ptychocheilus oregonensis). Known numbers of coded-wire-tagged live and dead chinook salmon (O. tshawytscha) were released into the tailrace on six nights. Northern squawfish were collected after each release and their gut contents were examined for tags. When 50% of salmon released were dead, northern squawfish consumed 62% dead salmon. When 10% of salmon released were dead, comparable with dam passage mortality, 22% of the tags found in northern squawfish digestive tracts were from dead salmon. These results indicate that predator feeding behavior and prey condition are important considerations when estimating the impact of predation on a prey population.

  17. Response of ecosystem metabolism to low densities of spawning Chinook salmon

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan; Watson, Grace A.

    2016-01-01

    Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to <10% of their historical abundance, with subsequent declines of marine derived nutrients once provided by large salmon runs. We explored whether low densities (<0.001 spawners/m2) of naturally spawning Chinook Salmon (Oncorhynchus tshawytscha) can affect ecosystem metabolism. We measured gross primary production (GPP) and ecosystem respiration (ER) continuously before, during, and after salmon spawning. We compared downstream reaches with low densities of spawning salmon to upstream reaches with fewer or no spawners in 3 mid-sized (4th-order) rivers in northern Washington. In addition, we measured chemical, physical, and biological factors that may be important in controlling rates of GPP and ER. We observed that low densities of spawning salmon can increase GPP by 46% during spawning, but values quickly return to those observed before spawning. No difference in ER was observed between up- and downstream reaches. Based on our results, salmon density, temperature, and the proximity to salmon redds were the most important factors controlling rates of GPP, whereas temperature was most important for ER. These results suggest that even at low spawning densities, salmon can stimulate basal resources that may propagate up the food web. Understanding how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.

  18. Consequences of thermal acclimation for the mating behaviour and swimming performance of female mosquito fish.

    PubMed

    Wilson, Robbie S; Condon, Catriona H L; Johnston, Ian A

    2007-11-29

    The mating system of eastern mosquito fish (Gambusia holbrooki) is dominated by male sexual coercion, where all matings are forced and females never appear to cooperate and actively avoid all attempts. Previous research has shown that male G. holbrooki offer a model system for examining the benefits of reversible thermal acclimation for reproductive success, but examining the benefits to female avoidance behaviour has been difficult. In this study, we examined the ability of non-male-deprived female G. holbrooki to avoid forced-coercive matings following acclimation to either 18 or 30 degrees C for six weeks (12h light:12h dark photoperiod). Thermal acclimation of burst and sustained swimming performance was also assessed, as these traits are likely to underlie their ability to avoid forced matings. There was no influence of thermal acclimation on the burst swimming performance of female G. holbrooki over the range 18-30 degrees C; however, sustained swimming performance was significantly lower in the warm- than the cool-acclimation group. For mating behaviour, we tested the hypothesis that acclimation would enhance the ability of female G. holbrooki to avoid forced matings at their host acclimation temperature relative to females acclimated to another environment. However, our hypothesis was not supported. The rate of copulations was almost three times greater for females acclimated to 30 degrees C than 18 degrees C when tested at 30 degrees C, indicating that they possess the ability to alter their avoidance behaviour to 'allow' more copulations in some environments. Coupled with previous studies, female G. holbrooki appear to have greater control on the outcome of coercive mating attempts than previously considered and can alter their propensity to receive forced matings following thermal acclimation. The significance of this change in female mating-avoidance behaviours with thermal acclimation remains to be explored.

  19. Influence of ozone on cold acclimation in sugar maple seedlings.

    PubMed

    Bertrand, Annick; Robitaille, Gilles; Nadeau, Paul; Castonguay, Yves

    1999-07-01

    During summer 1994, sugar maple (Acer saccharum Marsh.) seedlings were grown in open-top chambers supplied with air containing near ambient ozone concentration (control, low O(3)) or three times the ambient ozone concentration (high O(3)). The rate of CO(2) assimilation was significantly reduced by chronic exposure to a high concentration of ozone during the summer. During fall, seedlings were removed from the open-top chambers and acclimated to cold under natural conditions. In both species during cold acclimation, the starch concentration decreased, whereas the sucrose concentration increased. There was no treatment effect on the freezing tolerance of roots, even though roots in the high-O(3) treatment accumulated higher concentrations of the cryoprotective oligosaccharides raffinose and stachyose than control roots. Cold acclimation occurred earlier and stachyose concentration of stems was higher in high-O(3)-treated seedlings than in low-O(3)-treated seedlings. Cold acclimation was associated with an earlier accumulation of ABA in the xylem sap of high-O(3)-treated seedlings compared with low-O(3)-treated seedlings.

  20. Acclimation of brackish water pearl spot (Etroplus suratensis) to various salinities: relative changes in abundance of branchial Na(+)/K (+)-ATPase and Na (+)/K (+)/2Cl (-) co-transporter in relation to osmoregulatory parameters.

    PubMed

    Chandrasekar, S; Nich, T; Tripathi, G; Sahu, N P; Pal, A K; Dasgupta, S

    2014-06-01

    The present study was conducted to elucidate the osmoregulatory ability of the fish pearl spot (Etroplus suratensis) to know the scope of this species for aquaculture under various salinities. Juvenile pearl spot were divided into three groups and acclimated to freshwater (FW), brackish water (BW) or seawater (SW) for 15 days. The fish exhibited effective salinity tolerance under osmotic challenges. Although the plasma osmolality and Na(+), K(+) and Cl(-) levels increased with the increasing salinities, the parameters remained within the physiological range. The muscle water contents were constant among FW-, BW- and SW-acclimated fish. Two Na+/K+-ATPase α-isoforms (NKA α) were expressed in gills during acclimation in FW, BW and SW. Abundance of one isoform was up-regulated in response to seawater acclimation, suggesting its role in ion secretion similar to NKA α1b, while expression of another isoform was simultaneously up-regulated in response to both FW and SW acclimation, suggesting the presence of isoforms switching phenomenon during acclimation to different salinities. Nevertheless, NKA enzyme activities in the gills of the SW and FW individuals were higher (p < 0.05) than in BW counterparts. Immunohistochemistry revealed that Na(+)/K(+)-ATPase immunoreactive (NKA-IR) cells were mainly distributed in the interlamellar region of the gill filaments in FW groups and in the apical portion of the filaments in BW and SW groups. The number of NKA-IR cells in the gills of the FW-acclimated fish was almost similar to that of SW individuals, which exceeded that of the BW individuals. The NKA-IR cells of BW and SW were bigger in size than their FW counterparts. Besides, the relative abundance of branchial Na(+)/K(+)/2Cl(-) co-transporter showed stronger evidence in favor of involvement of this protein in hypo-osmoregulation, requiring ion secretion by the chloride cells. To the best of our knowledge, this is the first study reporting the wide salinity tolerance of E

  1. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    PubMed

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  2. [Effects of 2-chlorophenol-acclimation on microbial community structure in anaerobic granular sludge].

    PubMed

    Huang, Ai-Qun; Dai, Ya-Lei; Chen, Ling; Chen, Hao; Zhang, Wen

    2008-03-01

    The microbial community structure in 2-chlorophenol-acclimated anaerobic granular sludge and inoculating sludge were analyzed by 16S rDNA-based approach. Total DNA was extracted directly from the inoculating sludge and 2-CP-acclimated anaerobic sludge, and then amplified by polymerase chain reaction (PCR) technique with the specific primer pair ARC21F/ARC958R for Archaea and 31F/907R for Acidobacteria respectively. The positive PCR products were cloned and sequenced. The sequences analysis shows that there exist common Archaea in both sludge, including Methanothrix soehngenii, Methanosaeta concilii and uncultured euryarchaeote etc. Some special Archaea appear in the 2-CP-acclimated sludge, such as Methanobacterium aarhusense, Methanobacterium curvum and Methanobacterium beijingense etc. Others originally existed in the inoculating sludge disappear after acclimation. Common Acidobacteria are found in both sludge, including uncultured bacterium, uncultured Acidobacterium and unknown Actinomycete (MC 9). Some special microbes originally existed in the inoculating sludge, such as Desulfotomaculum sp. 176, uncultured Deltaproteobacterium n8d and uncultured hydrocarbon seep bacterium etc. disappear after acclimation, and uncultured Holophaga/Acidobacterium, uncultured Acidobacteria bacterium and unidentified Acidobacterium are found after 2-CP-acclimation.

  3. Development of a new method for the determination of residues of the neonictinoid insecticide imidacloprid in juvenile Chinook (Oncorhynchus tyshawytscha) using ELISA detection

    USGS Publications Warehouse

    Frew, John A.; Grue, Christian E.

    2012-01-01

    The neonicotinoid insecticide imidacloprid (IMI) has been proposed as an alternative to carbaryl for controlling indigenous burrowing shrimp on commercial oyster beds in Willapa Bay and Grays Harbor, Washington. A focus of concern over the use of this insecticide in an aquatic environment is the potential for adverse effects from exposure to non-target species residing in the Bay, such as juvenile Chinook (Oncorhynchus tshawytscha) and cutthroat trout (O. clarki). Federal registration and State permiting approval for the use of IMI will require confirmation that the compound does not adversely impact these salmonids following field applications. This will necessitate an environmental monitoring program for evaluating exposure in salmonids following the treatment of beds. Quantification of IMI residues in tissue can be used for determining salmonid exposure to the insecticide. Refinement of an existing protocol using liquid-chromatography mass spectrometry (LC-MS) detection would provide the low limits of quantification, given the relatively small tissue sample sizes, necessary for determining exposure in individual fish. Such an approach would not be viable for the environmental monitoring effort in Willapa Bay and Grays Harbor due to the high costs associated with running multiple analyses, however. A new sample preparation protocol was developed for use with a commercially available enzyme-linked immunosorbent assay (ELISA) for the quantification of IMI, thereby providing a low-cost alternative to LC-MS for environmental monitoring in Willapa Bay and Grays Harbor. Extraction of the analyte from the salmonid brain tissue was achieved by Dounce homogenization in 4.0 mL of 20.0 mM Triton X-100, followed by a 6 h incubation at 50–55 °C. Centrifugal ultrafiltration and reversed phase solid phase extraction were used for sample cleanup. The limit of quantification for an average 77.0 mg whole brain sample was calculated at 18.2 μg kg-1 (ppb) with an average

  4. Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.).

    PubMed

    Barrios, Abel; Caminero, Constantino; García, Pedro; Krezdorn, Nicolas; Hoffmeier, Klaus; Winter, Peter; Pérez de la Vega, Marcelino

    2017-06-30

    Frost is one of the main abiotic stresses limiting plant distribution and crop production. To cope with the stress, plants evolved adaptations known as cold acclimation or chilling tolerance to maximize frost tolerance. Cold acclimation is a progressive acquisition of freezing tolerance by plants subjected to low non-freezing temperatures which subsequently allows them to survive exposure to frost. Lentil is a cool season grain legume that is challenged by winter frost in some areas of its cultivation. To better understand the genetic base of frost tolerance differential gene expression in response to cold acclimation was investigated. Recombinant inbred lines (RILs) from the cross Precoz x WA8649041 were first classified as cold tolerant or cold susceptible according to their response to temperatures between -3 to -15 °C. Then, RILs from both extremes of the response curve were cold acclimated and the leaf transcriptomes of two bulks each of eight frost tolerant and seven cold susceptible RILs were investigated by Deep Super-SAGE transcriptome profiling. Thus, four RNA bulks were analysed: the acclimated susceptible, the acclimated tolerant and the respective controls (non-acclimated susceptible and non-acclimated tolerant). Approximately 16.5 million 26 nucleotide long Super-SAGE tags were sequenced in the four sets (between ~3 and 5.4 millions). In total, 133,077 different unitags, each representing a particular transcript isoform, were identified in these four sets. Tags which showed a significantly different abundance in any of the bulks (fold change ≥4.0 and a significant p-value <0.001) were selected and used to identify the corresponding lentil gene sequence. Three hundred of such lentil sequences were identified. Most of their known homologs coded for glycine-rich, cold and drought-regulated proteins, dormancy-associated proteins, proline-rich proteins (PRPs) and other membrane proteins. These were generally but not exclusively over-expressed in the

  5. A simulation method for combining hydrodynamic data and acoustic tag tracks to predict the entrainment of juvenile salmonids onto the Yolo Bypass under future engineering scenarios

    USGS Publications Warehouse

    Blake, Aaron R.; Stumpner, Paul; Burau, Jon R.

    2017-01-01

    During water year 2016 the U.S. Geological Survey California Water Science Center (USGS) collaborated with the California Department of Water Resources (DWR) to conduct a joint hydrodynamic and fisheries study to acquire data that could be used to evaluate the effects of proposed modifications to the Fremont Weir on outmigrating juvenile Chinook salmon. During this study the USGS surgically implanted acoustic tags in juvenile late fall run Chinook salmon from the Coleman National Fish Hatchery, released the acoustically tagged juvenile salmon into the Sacramento River upstream of the Fremont Weir, and tracked their movements as they emigrated past the western end of the Fremont Weir.The USGS analyzed tracking data from the acoustically tagged juvenile salmon along with detailed hydrodynamic data collected in the Sacramento River during the winter/spring of water year 2016 in the vicinity of the western end of the Fremont Weir to assess the potential for enhancing the entrainment of Sacramento River Chinook salmon onto the Yolo Bypass under six different Fremont Weir modification scenarios. Each modification scenario consists of a notch or multiple notches in the Fremont Weir which are designed to divert a portion of the Sacramento River onto the Yolo Bypass when the Sacramento River is below the crest of the Fremont Weir. The primary goal of this entrainment analysis was to investigate how the location of the notch or notches in each scenario affected the entrainment of juvenile Chinook salmon onto the Yolo Bypass, and to predict the notch location or locations that would result in maximum entrainment under each modification scenario. Stumpner et al.’s (in review) analysis of hydraulic data collected during the 2016 study period showed that backwater effects in the Sacramento River created significant variability in the relationship between Sacramento River stage and the proportion of the Sacramento River flow that we expect to be diverted onto the Yolo Bypass

  6. Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies.

    PubMed

    Templin, William D; Seeb, James E; Jasper, James R; Barclay, Andrew W; Seeb, Lisa W

    2011-03-01

    Most information about Chinook salmon genetic diversity and life history originates from studies from the West Coast USA, western Canada and southeast Alaska; less is known about Chinook salmon from western and southcentral Alaska drainages. Populations in this large area are genetically distinct from populations to the south and represent an evolutionary legacy of unique genetic, phenotypic and life history diversity. More genetic information is necessary to advance mixed stock analysis applications for studies involving these populations. We assembled a comprehensive, open-access baseline of 45 single nucleotide polymorphisms (SNPs) from 172 populations ranging from Russia to California. We compare SNP data from representative populations throughout the range with particular emphasis on western and southcentral Alaska. We grouped populations into major lineages based upon genetic and geographic characteristics, evaluated the resolution for identifying the composition of admixtures and performed mixed stock analysis on Chinook salmon caught incidentally in the walleye pollock fishery in the Bering Sea. SNP data reveal complex genetic structure within Alaska and can be used in applications to address not only regional issues, but also migration pathways, bycatch studies on the high seas, and potential changes in the range of the species in response to climate change. © 2011 Blackwell Publishing Ltd.

  7. Diving in a warming world: the thermal sensitivity and plasticity of diving performance in juvenile estuarine crocodiles (Crocodylus porosus)

    PubMed Central

    Rodgers, Essie M.; Schwartz, Jonathon J.; Franklin, Craig E.

    2015-01-01

    Air-breathing, diving ectotherms are a crucial component of the biodiversity and functioning of aquatic ecosystems, but these organisms may be particularly vulnerable to the effects of climate change on submergence times. Ectothermic dive capacity is thermally sensitive, with dive durations significantly reduced by acute increases in water temperature; it is unclear whether diving performance can acclimate/acclimatize in response to long-term exposure to elevated water temperatures. We assessed the thermal sensitivity and plasticity of ‘fright-dive’ capacity in juvenile estuarine crocodiles (Crocodylus porosus; n = 11). Crocodiles were exposed to one of three long-term thermal treatments, designed to emulate water temperatures under differing climate change scenarios (i.e. current summer, 28°C; ‘moderate’ climate warming, 31.5°C; ‘high’ climate warming, 35°C). Dive trials were conducted in a temperature-controlled tank across a range of water temperatures. Dive durations were independent of thermal acclimation treatment, indicating a lack of thermal acclimation response. Acute increases in water temperature resulted in significantly shorter dive durations, with mean submergence times effectively halving with every 3.5°C increase in water temperature (Q10 0.17, P < 0.001). Maximal dive performances, however, were found to be thermally insensitive across the temperature range of 28–35°C. These results suggest that C. porosus have a limited or non-existent capacity to thermally acclimate sustained ‘fright-dive’ performance. If the findings here are applicable to other air-breathing, diving ectotherms, the functional capacity of these organisms will probably be compromised under climate warming. PMID:27293738

  8. 77 FR 19597 - Listing Endangered and Threatened Species; 12-Month Finding on a Petition To List Chinook Salmon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ...We, NMFS, announce a 12-month finding on a petition to list the Chinook salmon (Oncorhynchus tshawytscha) in the Upper Klamath and Trinity Rivers Basin (UKTR) as threatened or endangered and designate critical habitat under the Endangered Species Act (ESA). We have reviewed the status of the UKTR Chinook salmon Evolutionarily Significant Unit (ESU) and considered the best scientific and commercial data available, and conclude that the petitioned action is not warranted. In reaching this conclusion, we conclude that spring-run and fall-run Chinook salmon in the UKTR Basin constitute a single ESU. Based on a comprehensive review of the best scientific and commercial data currently available, and consistent with the 1998 status review and listing determination for the UKTR Chinook salmon ESU, the overall extinction risk of the ESU is considered to be low over the next 100 years. Based on these considerations and others described in this notice, we conclude this ESU is not in danger of extinction throughout all or a significant portion of its range, nor is it likely to become so in the foreseeable future.

  9. Decreased mortality of Lake Michigan Chinook salmon after bacterial kidney disease challenge: evidence for pathogen-driven selection?

    PubMed

    Purcell, Maureen K; Murray, Anthony L; Elz, Anna; Park, Linda K; Marcquenski, Susan V; Winton, James R; Alcorn, Stewart W; Pascho, Ronald J; Elliott, Diane G

    2008-12-01

    In the late 1960s, Chinook salmon Oncorhynchus tshawytscha from the Green River, Washington, were successfully introduced into Lake Michigan. During spring from 1988 to 1992, large fish die-offs affecting Chinook salmon occurred in the lake. Multiple ecological factors probably contributed to the severity of the fish kills, but the only disease agent found regularly was Renibacterium salmoninarum, the causative agent of bacterial kidney disease. In this study, survival after challenge by R. salmoninarum was compared between two Chinook salmon stocks: a Lake Michigan stock from Wisconsin (WI) and the progenitor stock from the Green River. We found that the WI stock had significantly greater survival than the Green River stock. Next, the WI and Green River stocks were exposed to the marine pathogen Listonella anguillarum (formerly Vibrio anguillarum), one of the causative agents of vibriosis; survival after this challenge was significantly poorer for the WI stock than for the Green River stock. A close genetic relationship between the Green River and WI stocks was confirmed by analyzing 13 microsatellite loci. These results collectively suggest that disease susceptibility of Lake Michigan Chinook salmon has diverged from that of the source population, possibly in response to pathogen-driven selection.

  10. The Rate of Seasonal Changes in Temperature Alters Acclimation of Performance under Climate Change.

    PubMed

    Nilsson-Örtman, Viktor; Johansson, Frank

    2017-12-01

    How the ability to acclimate will impact individual performance and ecological interactions under climate change remains poorly understood. Theory predicts that the benefit an organism can gain from acclimating depends on the rate at which temperatures change relative to the time it takes to induce beneficial acclimation. Here, we present a conceptual model showing how slower seasonal changes under climate change can alter species' relative performance when they differ in acclimation rate and magnitude. To test predictions from theory, we performed a microcosm experiment where we reared a mid- and a high-latitude damselfly species alone or together under the rapid seasonality currently experienced at 62°N and the slower seasonality predicted for this latitude under climate change and measured larval growth and survival. To separate acclimation effects from fixed thermal responses, we simulated growth trajectories based on species' growth rates at constant temperatures and quantified how much and how fast species needed to acclimate to match the observed growth trajectories. Consistent with our predictions, the results showed that the midlatitude species had a greater capacity for acclimation than the high-latitude species. Furthermore, since acclimation occurred at a slower rate than seasonal temperature changes, the midlatitude species had a small growth advantage over the high-latitude species under the current seasonality but a greater growth advantage under the slower seasonality predicted for this latitude under climate change. In addition, the two species did not differ in survival under the current seasonality, but the midlatitude species had higher survival under the predicted climate change scenario, possibly because rates of cannibalism were lower when smaller heterospecifics were present. These findings highlight the need to incorporate acclimation rates in ecological models.

  11. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii.

    PubMed

    Wakao, Setsuko; Chin, Brian L; Ledford, Heidi K; Dent, Rachel M; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S; Niyogi, Krishna K

    2014-05-23

    Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.DOI: http://dx.doi.org/10.7554/eLife.02286.001. Copyright © 2014, Wakao et al.

  12. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.

    PubMed

    Li, Xiaohu; Zhang, Ruizhe; Qian, Yawei; Angelidaki, Irini; Zhang, Yifeng

    2017-07-01

    The impact of different anode acclimation methods for enhancing hydrogen production in microbial electrolysis cell (MEC) was investigated in this study. The anodes were first acclimated in microbial fuel cells using acetate, butyrate and corn stalk fermentation effluent (CSFE) as substrate before moving into MECs, respectively. Subsequently, CSFE was used as feedstock in all the three MECs. The maximum hydrogen yield with the anode pre-acclimated with butyrate (5.21±0.24L H 2 /L CSFE) was higher than that pre-acclimated with acetate (4.22±0.19L H 2 /L CSFE) and CSFE (4.55±0.14L H 2 /L CSFE). The current density (480±11A/m 3 ) and hydrogen production rate (4.52±0.13m 3 /m 3 /d) with the anode pre-acclimated with butyrate were also higher that another two reactors. These results demonstrated that the anode biofilm pre-acclimated with butyrate has significant advantages in CSFE treatment and could improve the performance of hydrogen production in MEC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    USGS Publications Warehouse

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  14. Drinking and water balance during exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Brock, P. J.; Keil, L. C.; Morse, J. T.

    1983-01-01

    The interactions between fluid intake and balance, and plasma ion, osmotic, and endocrine responses during dehydration produced by exercise in cool and warm environments during acclimation are explored. Two groups of five male subjects performed 8 days of ergometer exercise in hot and thermoneutral conditions, respectively. The exercise trials lasted 2 hr each. Monitoring was carried out on the PV, osmotic, sodium, and endocrine concentrations, voluntary fluid intake, fluid balances, and fluid deficits. A negative correlation was observed between the plasma sodium and osmolality during acclimation. The presence of hypervolemia during acclimation is suggested as a cause of drinking, while the vasopressin concentration was not found to be a significant factor stimulating drinking. Finally, the predominant mechanism in fluid intake during exercise and heat exposure is concluded to be the renin-angiotensin II system in the presence of reductions in total body water and extracellular plasma volumes.

  15. Comparison of blood chemistry values for samples collected from juvenile chinook salmon by three methods

    USGS Publications Warehouse

    Congleton, J.L.; LaVoie, W.J.

    2001-01-01

    Thirteen blood chemistry indices were compared for samples collected by three commonly used methods: caudal transection, heart puncture, and caudal vessel puncture. Apparent biases in blood chemistry values for samples obtained by caudal transection were consistent with dilution with tissue fluids: alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK), triglyceride, and K+ were increased and Na+ and Cl- were decreased relative to values for samples obtained by caudal vessel puncture. Some enzyme activities (ALT, AST, LDH) and K+ concentrations were also greater in samples taken by heart puncture than in samples taken by caudal vessel puncture. Of the methods tested, caudal vessel puncture had the least effect on blood chemistry values and should be preferred for blood chemistry studies on juvenile salmonids.

  16. Dynamic changes in cardiac mitochondrial metabolism during warm acclimation in rainbow trout.

    PubMed

    Pichaud, Nicolas; Ekström, Andreas; Hellgren, Kim; Sandblom, Erik

    2017-05-01

    Although the mitochondrial metabolism responses to warm acclimation have been widely studied in fish, the time course of this process is less understood. Here, we characterized the changes of rainbow trout ( Oncorhynchus mykiss ) cardiac mitochondrial metabolism during acute warming from 10 to 16°C, and during the subsequent warm acclimation for 39 days. We repeatedly measured mitochondrial oxygen consumption in cardiac permeabilized fibers and the functional integrity of mitochondria (i.e. mitochondrial coupling and cytochrome c effect) at two assay temperatures (10 and 16°C), as well as the activities of citrate synthase (CS) and lactate dehydrogenase (LDH) at room temperature. LDH and CS activities significantly increased between day 0 (10°C acclimated fish) and day 1 (acute warming to 16°C) while mitochondrial oxygen consumption measured at respective in vivo temperatures did not change. Enzymatic activities and mitochondrial oxygen consumption rates significantly decreased by day 2, and remained stable during warm acclimation (days 2-39). The decrease in rates of oxygen between day 0 and day 1 coincided with an increased cytochrome c effect and a decreased mitochondrial coupling, suggesting a structural/functional impairment of mitochondria during acute warming. We suggest that after 2 days of warm acclimation, a new homeostasis is reached, which may involve the removal of dysfunctional mitochondria. Interestingly, from day 2 onwards, there was a lack of differences in mitochondrial oxygen consumption rates between the assay temperatures, suggesting that warm acclimation reduces the acute thermal sensitivity of mitochondria. This study provides significant knowledge on the thermal sensitivity of cardiac mitochondria that is essential to delineate the contribution of cellular processes to warm acclimation. © 2017. Published by The Company of Biologists Ltd.

  17. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters

    PubMed Central

    Deng, Z. D.; Martinez, J. J.; Li, H.; Harnish, R. A.; Woodley, C. M.; Hughes, J. A.; Li, X.; Fu, T.; Lu, J.; McMichael, G. A.; Weiland, M. A.; Eppard, M. B.; Skalski, J. R.; Townsend, R. L.

    2017-01-01

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitter are key limiting factors. The newly developed injectable transmitter is the first acoustic transmitter that can be implanted via injection instead of surgery. A two-part field study was conducted to evaluate the performance of the injectable transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the proceeding generation of commercially-available JSATS transmitters tested concurrently. Snake River subyearling Chinook salmon smolts implanted with the injectable transmitter had a higher survival probability from release to each of eleven downstream detection arrays, because reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The reduction in size and ability to implant the new transmitter via injection has reduced the tag or tagging effect bias associated with studying small fishes. The information gathered with this new technology is helping to evaluate the impacts of dams on fishes. PMID:28220850

  18. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters.

    PubMed

    Deng, Z D; Martinez, J J; Li, H; Harnish, R A; Woodley, C M; Hughes, J A; Li, X; Fu, T; Lu, J; McMichael, G A; Weiland, M A; Eppard, M B; Skalski, J R; Townsend, R L

    2017-02-21

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitter are key limiting factors. The newly developed injectable transmitter is the first acoustic transmitter that can be implanted via injection instead of surgery. A two-part field study was conducted to evaluate the performance of the injectable transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the proceeding generation of commercially-available JSATS transmitters tested concurrently. Snake River subyearling Chinook salmon smolts implanted with the injectable transmitter had a higher survival probability from release to each of eleven downstream detection arrays, because reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The reduction in size and ability to implant the new transmitter via injection has reduced the tag or tagging effect bias associated with studying small fishes. The information gathered with this new technology is helping to evaluate the impacts of dams on fishes.

  19. Comparing the survival rate of juvenile Chinook salmon migrating through hydropower systems using injectable and surgical acoustic transmitters

    NASA Astrophysics Data System (ADS)

    Deng, Z. D.; Martinez, J. J.; Li, H.; Harnish, R. A.; Woodley, C. M.; Hughes, J. A.; Li, X.; Fu, T.; Lu, J.; McMichael, G. A.; Weiland, M. A.; Eppard, M. B.; Skalski, J. R.; Townsend, R. L.

    2017-02-01

    Acoustic telemetry is one of the primary technologies for studying the behavior and survival of fishes throughout the world. The size and performance of the transmitter are key limiting factors. The newly developed injectable transmitter is the first acoustic transmitter that can be implanted via injection instead of surgery. A two-part field study was conducted to evaluate the performance of the injectable transmitter and its effect on the survival of implanted fish. The injectable transmitter performed well and similarly to the proceeding generation of commercially-available JSATS transmitters tested concurrently. Snake River subyearling Chinook salmon smolts implanted with the injectable transmitter had a higher survival probability from release to each of eleven downstream detection arrays, because reach-specific survival estimates were significantly higher for the injectable group in three of the eleven reaches examined. Overall, the injectable group had a 0.263 (SE = 0.017) survival probability over the entire 500 km study area compared to 0.199 (0.012) for the surgically implanted group. The reduction in size and ability to implant the new transmitter via injection has reduced the tag or tagging effect bias associated with studying small fishes. The information gathered with this new technology is helping to evaluate the impacts of dams on fishes.

  20. Fever: exchange of shivering by nonshivering pyrogenesis in cold-acclimated guinea pigs.

    PubMed

    Blatteis, C M

    1976-01-01

    The pyrogenic response of adult, unanesthetized guinea pigs to 2 mug/kg iv of Salmonella enteritidis endotoxin was measured at 27 and 7 degrees C ambient temperatures, both before and after an 8-wk exposure to 7 degrees C. There were no significant differences between the onset, maximum height, and total duration of the fevers produced before and after cold acclimation in both thermal environments. However, in 27 degrees C, before cold acclimation, fever production was associated with vigorous shivering activity; two temperature maxima typically developed. After cold acclimation, visible shivering was not detectable during pyrogenesis; moreover, only a single maximum occurred, culminating during the interval between the two rises previously. In 7 degrees C, shivering occurred in both the non-cold- and cold-acclimated endotoxin-treated guinea pigs, but the increase in oxygen consumption was significantly greater in the latter. These results indicated, therefore, that nonshivering (NST) replaces shivering thermogenesis (ST) in a thermoneutral, while ST is added onto NST in a cold, environment in cold-acclimated guinea pigs in supplying the necessary heat for fever production, and that these effects involve alterations in the character of the febrile course.

  1. Chlorophyll Fluorescence Analysis of Cyanobacterial Photosynthesis and Acclimation

    PubMed Central

    Campbell, Douglas; Hurry, Vaughan; Clarke, Adrian K.; Gustafsson, Petter; Öquist, Gunnar

    1998-01-01

    Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters FV/FM, FV′/FM′,qp,qN, NPQ, and φPS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters can be used to estimate the electron transport rate at the acclimated growth light intensity. PMID:9729605

  2. Improving Models of Photosynthetic Thermal Acclimation: Which Parameters are Most Important and How Many Should Be Modified?

    NASA Astrophysics Data System (ADS)

    Stinziano, J. R.; Way, D.; Bauerle, W.

    2017-12-01

    Photosynthetic temperature acclimation could strongly affect coupled vegetation-atmosphere feedbacks in the global carbon cycle, especially as the climate warms. Thermal acclimation of photosynthesis can be modelled as changes in the parameters describing the direct effect of temperature on photosynthetic capacity (activation energy, Ea; deactivation energy, Hd; entropy parameter, ΔS) or the basal value of photosynthetic capacity (i.e. photosynthetic capacity measured at 25 °C), however the impact of acclimating these parameters (individually or in combination) on vegetative carbon gain is relatively unexplored. Here we compare the ability of 66 photosynthetic temperature acclimation scenarios to improve predictions of a spatially explicit canopy carbon flux model, MAESTRA, for eddy covariance data from a loblolly pine forest. We show that: 1) incorporating seasonal temperature acclimation of basal photosynthetic capacity improves the model's ability to capture seasonal changes in carbon fluxes; 2) multifactor scenarios of photosynthetic temperature acclimation provide minimal (if any) improvement in model performance over single factor acclimation scenarios; 3) acclimation of enzyme activation energies should be restricted to the temperature ranges of the data from which the equations are derived; and 4) model performance is strongly affected by the choice of deactivation energy. We suggest that a renewed effort be made into understanding the thermal acclimation of enzyme activation and deactivation energies across broad temperature ranges to better understand the mechanisms underlying thermal photosynthetic acclimation.

  3. Global convergence in leaf respiration from estimates of thermal acclimation across time and space.

    PubMed

    Vanderwel, Mark C; Slot, Martijn; Lichstein, Jeremy W; Reich, Peter B; Kattge, Jens; Atkin, Owen K; Bloomfield, Keith J; Tjoelker, Mark G; Kitajima, Kaoru

    2015-09-01

    Recent compilations of experimental and observational data have documented global temperature-dependent patterns of variation in leaf dark respiration (R), but it remains unclear whether local adjustments in respiration over time (through thermal acclimation) are consistent with the patterns in R found across geographical temperature gradients. We integrated results from two global empirical syntheses into a simple temperature-dependent respiration framework to compare the measured effects of respiration acclimation-over-time and variation-across-space to one another, and to a null model in which acclimation is ignored. Using these models, we projected the influence of thermal acclimation on: seasonal variation in R; spatial variation in mean annual R across a global temperature gradient; and future increases in R under climate change. The measured strength of acclimation-over-time produces differences in annual R across spatial temperature gradients that agree well with global variation-across-space. Our models further project that acclimation effects could potentially halve increases in R (compared with the null model) as the climate warms over the 21st Century. Convergence in global temperature-dependent patterns of R indicates that physiological adjustments arising from thermal acclimation are capable of explaining observed variation in leaf respiration at ambient growth temperatures across the globe. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon: The Importance of Geomorphic Features in Large Rivers

    PubMed

    Geist; Dauble

    1998-09-01

    / Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. We present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of our conceptual model. We suggest that traditional habitat models and our conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.KEY WORDS: Hyporheic zone; Geomorphology; Spawning habitat; Large rivers; Fall chinook salmon; Habitat management

  5. Understanding and quantifying foliar temperature acclimation for Earth System Models

    NASA Astrophysics Data System (ADS)

    Smith, N. G.; Dukes, J.

    2015-12-01

    Photosynthesis and respiration on land are the two largest carbon fluxes between the atmosphere and Earth's surface. The parameterization of these processes represent major uncertainties in the terrestrial component of the Earth System Models used to project future climate change. Research has shown that much of this uncertainty is due to the parameterization of the temperature responses of leaf photosynthesis and autotrophic respiration, which are typically based on short-term empirical responses. Here, we show that including longer-term responses to temperature, such as temperature acclimation, can help to reduce this uncertainty and improve model performance, leading to drastic changes in future land-atmosphere carbon feedbacks across multiple models. However, these acclimation formulations have many flaws, including an underrepresentation of many important global flora. In addition, these parameterizations were done using multiple studies that employed differing methodology. As such, we used a consistent methodology to quantify the short- and long-term temperature responses of maximum Rubisco carboxylation (Vcmax), maximum rate of Ribulos-1,5-bisphosphate regeneration (Jmax), and dark respiration (Rd) in multiple species representing each of the plant functional types used in global-scale land surface models. Short-term temperature responses of each process were measured in individuals acclimated for 7 days at one of 5 temperatures (15-35°C). The comparison of short-term curves in plants acclimated to different temperatures were used to evaluate long-term responses. Our analyses indicated that the instantaneous response of each parameter was highly sensitive to the temperature at which they were acclimated. However, we found that this sensitivity was larger in species whose leaves typically experience a greater range of temperatures over the course of their lifespan. These data indicate that models using previous acclimation formulations are likely incorrectly

  6. Science advancements key to increasing management value of life stage monitoring networks for endangered Sacramento River winter-run Chinook salmon in California

    USGS Publications Warehouse

    Johnson, Rachel C.; Windell, Sean; Brandes, Patricia L.; Conrad, J. Louise; Ferguson, John; Goertler, Pascale A. L.; Harvey, Brett N.; Heublein, Joseph; Isreal, Joshua A.; Kratville, Daniel W.; Kirsch, Joseph E.; Perry, Russell W.; Pisciotto, Joseph; Poytress, William R.; Reece, Kevin; Swart, Brycen G.

    2017-01-01

    A robust monitoring network that provides quantitative information about the status of imperiled species at key life stages and geographic locations over time is fundamental for sustainable management of fisheries resources. For anadromous species, management actions in one geographic domain can substantially affect abundance of subsequent life stages that span broad geographic regions. Quantitative metrics (e.g., abundance, movement, survival, life history diversity, and condition) at multiple life stages are needed to inform how management actions (e.g., hatcheries, harvest, hydrology, and habitat restoration) influence salmon population dynamics. The existing monitoring network for endangered Sacramento River winterrun Chinook Salmon (SRWRC, Oncorhynchus tshawytscha) in California’s Central Valley was compared to conceptual models developed for each life stage and geographic region of the life cycle to identify relevant SRWRC metrics. We concluded that the current monitoring network was insufficient to diagnose when (life stage) and where (geographic domain) chronic or episodic reductions in SRWRC cohorts occur, precluding within- and among-year comparisons. The strongest quantitative data exist in the Upper Sacramento River, where abundance estimates are generated for adult spawners and emigrating juveniles. However, once SRWRC leave the upper river, our knowledge of their identity, abundance, and condition diminishes, despite the juvenile monitoring enterprise. We identified six system-wide recommended actions to strengthen the value of data generated from the existing monitoring network to assess resource management actions: (1) incorporate genetic run identification; (2) develop juvenile abundance estimates; (3) collect data for life history diversity metrics at multiple life stages; (4) expand and enhance real-time fish survival and movement monitoring; (5) collect fish condition data; and (6) provide timely public access to monitoring data in open data

  7. Size, growth, and size‐selective mortality of subyearling Chinook Salmon during early marine residence in Puget Sound

    USGS Publications Warehouse

    Gamble, Madilyn M.; Connelly, Kristin A.; Gardner, Jennifer R.; Chamberlin, Joshua W.; Warheit, Kenneth I.; Beauchamp, David A.

    2018-01-01

    In marine ecosystems, survival can be heavily influenced by size‐selective mortality during juvenile life stages. Understanding how and when size‐selective mortality operates on a population can reveal underlying growth dynamics and size‐selective ecological processes affecting the population and thus can be used to guide conservation efforts. For subyearling Chinook Salmon Oncorhynchus tshawytscha in Puget Sound, previous research reported a strong positive relationship between marine survival and body mass during midsummer in epipelagic habitats within Puget Sound, suggesting that early marine growth drives survival. However, a fine‐scale analysis of size‐selective mortality is needed to identify specific critical growth periods and habitats. The objectives of this study were to (1) describe occupancy patterns across estuarine delta, nearshore marine, and offshore epipelagic habitats in Puget Sound; (2) describe changes in FL and weight observed across habitats and time; (3) evaluate evidence for size‐selective mortality; and (4) illustrate how marine survival of the stocks studied may be affected by variation in July weight. In 2014 and 2015, we sampled FLs, weights, and scales from seven hatchery‐origin and two natural‐origin stocks of subyearling Chinook Salmon captured every 2 weeks during out‐migration and rearing in estuary, nearshore, and offshore habitats within Puget Sound. Natural‐origin stocks had more protracted habitat occupancy patterns than hatchery‐origin stocks and were smaller than hatchery‐origin stocks in both years. Regardless of origin, subyearlings were longer and heavier and grew faster in offshore habitats compared to estuary and nearshore habitats. For all stocks, we found little evidence of size‐selective mortality among habitats in Puget Sound. These patterns were consistent in both years. Finally, the weights of subyearlings sampled during July in the offshore habitat predicted Puget Sound‐wide marine

  8. Preliminary evaluation of the behavior and movements of adult spring Chinook salmon in the Chehalis River, southwestern Washington, 2014

    USGS Publications Warehouse

    Liedtke, Theresa L.; Hurst, William R.; Tomka, Ryan G.; Kock, Tobias J.; Zimmerman, Mara S.

    2017-01-30

    Recent interest in flood control and restoration strategies in the Chehalis River Basin has increased the need to understand the current status and ecology of spring Chinook salmon (Oncorhynchus tshawytscha). Spring Chinook salmon have the longest exposure of all adult Chinook salmon life histories to the low-flow and high water temperature conditions that typically occur during summer. About 100 adult spring Chinook salmon were found dead in the Chehalis River in July and August 2009. Adult Chinook salmon are known to hold in cool-water refugia during warm summer months, but the extent to which spring Chinook salmon might use thermal refugia in the Chehalis River is unknown. A preliminary evaluation of the movements and temperature exposures of adult spring Chinook salmon following their return to the Chehalis River was conducted using radiotelemetry and transmitters equipped with temperature sensors. A total of 12 spring Chinook salmon were captured, radio-tagged, and released in the main-stem Chehalis River between May and late June 2014. Tagged fish were monitored from freshwater entry through the spawning period using a combination of fixedsite monitoring locations and mobile tracking.Water temperature and flow conditions in the main-stem Chehalis River during 2014 were atypical compared to historical averages. Mean monthly water temperatures between March and August 2014 were higher than any decade since 1960 and mean monthly discharge was 90–206 percent of the discharge in previous years. Overall, 92 percent of the tagged fish were detected, with a mean of 102 d in the detection history of tagged fish. Seven tagged fish (58 percent) moved upstream, either shortly after release (5–8 d, 57 percent), or within about a month (34–35 d, 29 percent). One fish (14 percent) remained near the release location for 98 d before moving upstream. The final fates for the seven fish that moved upstream following release included six fish that were assigned a fate of

  9. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest). Chinook Salmon.

    DTIC Science & Technology

    1983-10-01

    river and tidal currents during Islands. Certain races of chinook ebb tide. Miller et al. (1967) ob- salmon, such as the Puget Sound black- served...65.6-ft) depth level, to five-year-old chinook salmon com- between mid-May and September in Puget prised the bulk of the troll catch in Sound . the...in Puget Sound and concluded that (Leitritz and Lewis 1980). Whitmore the bulk of this interaction occurred et al. (1960) described a marked avoid

  10. Migratory behavior of Chinook salmon microjacks reared in artificial and natural environments

    USGS Publications Warehouse

    Hayes, Michael C.; Rubin, Steve P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.

    2015-01-01

    Emigration was evaluated for hatchery Chinook salmon (Oncorhynchus tshawytscha) microjacks (age-1 mature males) and immature parr (age-1 juveniles, both sexes) released from both a hatchery and a natural stream (fish released as fry). In the hatchery, volitional releases (∼14 to 15 months post-fertilization) to an adjacent river occurred during October–November. The hatchery release was monitored by using an experimental volitional release that diverted fish to a neighboring raceway. Fish captured during the experimental release (range 361–4,321 volitional migrants) were made up of microjacks and immature parr. Microjacks were found only in the migrant samples, averaged 18% (range 0–52%) of all migrants, and were rarely found in non-migrant samples. In comparison, immature parr were common in both the migrant and non-migrant samples. Microjacks were significantly longer (9%), heavier (36%), and had a greater condition factor (16%) than migrant immature parr (P<0.01). In addition, they differed significantly (P<0.01) from non-migrant immature parr; 10% longer, 44% heavier and 14% greater condition factor. In natural streams, microjacks were captured significantly earlier (P<0.01) than immature parr during the late-summer/fall migration and comprised 9–89% of all fish captured. Microjacks have the potential to contribute to natural spawning populations but can also represent a loss of productivity to hatchery programs or create negative effects by introducing non-native genes to wild populations and should be monitored by fishery managers.

  11. Population viability of the Snake River chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Emlen, John M.

    1995-01-01

    In the presence of historical data, population viability models of intermediate complexity can be parameterized and utilized to project the consequences of various management actions for endangered species. A general stochastic population dynamics model with density feedback, age structure, and autocorrelated environmental fluctuations was constructed and parameterized for best fit over 36 years of spring chinook salmon (Oncorhynchus tshawytscha) redd count data in five Idaho index streams. Simulations indicate that persistence of the Snake River spring chinook salmon population depends primarily on density-independent mortality. Improvement of rearing habitat, predator control, reduced fishing pressure, and improved dam passage all would alleviate density-independent mortality. The current value of the Ricker α should provide for a continuation of the status quo. A recovery of the population to 1957–1961 levels within 100 years would require an approximately 75% increase in survival and (or) fecundity. Manipulations of the Ricker β are likely to have little or no effect on persistence versus extinction, but considerable influence on population size.

  12. The effect of temperature and thermal acclimation on the sustainable performance of swimming scup.

    PubMed

    Rome, Lawrence C

    2007-11-29

    There is a significant reduction in overall maximum power output of muscle at low temperatures due to reduced steady-state (i.e. maximum activation) power-generating capabilities of muscle. However, during cyclical locomotion, a further reduction in power is due to the interplay between non-steady-state contractile properties of muscle (i.e. rates of activation and relaxation) and the stimulation and the length-change pattern muscle undergoes in vivo. In particular, even though the relaxation rate of scup red muscle is slowed greatly at cold temperatures (10 degrees C), warm-acclimated scup swim with the same stimulus duty cycles at cold as they do at warm temperature, not affording slow-relaxing muscle any additional time to relax. Hence, at 10 degrees C, red muscle generates extremely low or negative work in most parts of the body, at all but the slowest swimming speeds. Do scup shorten their stimulation duration and increase muscle relaxation rate during cold acclimation? At 10 degrees C, electromyography (EMG) duty cycles were 18% shorter in cold-acclimated scup than in warm-acclimated scup. But contrary to the expectations, the red muscle did not have a faster relaxation rate, rather, cold-acclimated muscle had an approximately 50% faster activation rate. By driving cold- and warm-acclimated muscle through cold- and warm-acclimated conditions, we found a very large increase in red muscle power during swimming at 10 degrees C. As expected, reducing stimulation duration markedly increased power output. However, the increased rate of activation alone produced an even greater effect. Hence, to fully understand thermal acclimation, it is necessary to examine the whole system under realistic physiological conditions.

  13. Effects of acclimation on poststocking dispersal and physiological condition of age-1 pallid sturgeon

    USGS Publications Warehouse

    Oldenburg, E.W.; Guy, C.S.; Cureton, E.S.; Webb, M.A.H.; Gardner, W.M.

    2011-01-01

    The objective of this study was to evaluate the effects of acclimation to flow and site-specific physicochemical water conditions on poststocking dispersal and physiological condition of age-1 hatchery-reared pallid sturgeon. Fish from three acclimation treatments were radio-tagged, released at two locations (Missouri River and Marias River), and monitored using passive telemetry stations. Marias treatment was acclimated to flow and site-specific physicochemical conditions, Bozeman treatment was acclimated to flow only, and controls had no acclimation (reared under traditional conservation propagation protocol). During both years, fish released in the Missouri River dispersed less than fish released in the Marias River. In 2005, Marias treatment dispersed less and nearly twice as many fish remained in the Missouri River reach as compared to control fish. In 2006, pallid sturgeon dispersed similarly among treatments and the number of fish remaining in the Missouri River reach was similar among all treatments. Differences in poststocking dispersal between years were related to fin curl which was present in all fish in 2005 and only 26% in 2006. Pallid sturgeon from all treatments in both years had a greater affinity for the lower reaches of the Missouri River than the upper reaches. Thus, release site influenced poststocking dispersal more than acclimation treatment. No difference was observed in relative growth rate among treatments. However, acclimation to flow (i.e., exercise conditioning) prevented fat accumulation from rupturing hepatocytes. Acclimation conditions used in this study did not benefit pallid sturgeon unless physiological maladies were present. Overriding all treatment effects was stocking location; thus, natural resource agencies need to consider stocking location carefully to reduce poststocking dispersal. ?? 2011 Blackwell Verlag, Berlin.

  14. Thermotolerance and heat acclimation may share a common mechanism in humans

    PubMed Central

    Gillum, Trevor; Dokladny, Karol; Bedrick, Edward; Schneider, Suzanne; Moseley, Pope

    2011-01-01

    Thermotolerance and heat acclimation are key adaptation processes that have been hitherto viewed as separate phenomena. Here, we provide evidence that these processes may share a common basis, as both may potentially be governed by the heat shock response. We evaluated the effects of a heat shock response-inhibitor (quercetin; 2,000 mg/day) on established markers of thermotolerance [gastrointestinal barrier permeability, plasma TNF-α, IL-6, and IL-10 concentrations, and leukocyte heat shock protein 70 (HSP70) content]. Heat acclimation reduced body temperatures, heart rate, and physiological strain during exercise/heat stress) in male subjects (n = 8) completing a 7-day heat acclimation protocol. These same subjects completed an identical protocol under placebo supplementation (placebo). Gastrointestinal barrier permeability and TNF-α were increased on the 1st day of exercise/heat stress in quercetin; no differences in these variables were reported in placebo. Exercise HSP70 responses were increased, and plasma cytokines (IL-6, IL-10) were decreased on the 7th day of heat acclimation in placebo; with concomitant reductions in exercise body temperatures, heart rate, and physiological strain. In contrast, gastrointestinal barrier permeability remained elevated, HSP70 was not increased, and IL-6, IL-10, and exercise body temperatures were not reduced on the 7th day of heat acclimation in quercetin. While exercise heart rate and physiological strain were reduced in quercetin, this occurred later in exercise than with placebo. Consistent with the concept that thermotolerance and heat acclimation are related through the heat shock response, repeated exercise/heat stress increases cytoprotective HSP70 and reduces circulating cytokines, contributing to reductions in cellular and systemic markers of heat strain. Exercising under a heat shock response-inhibitor prevents both cellular and systemic heat adaptations. PMID:21613575

  15. The effects of fasting on swimming performance in juvenile qingbo (Spinibarbus sinensis) at two temperatures.

    PubMed

    Pang, Xu; Yuan, Xing-Zhong; Cao, Zhen-Dong; Fu, Shi-Jian

    2014-05-01

    We measured the following variables to investigate the effects of fasting and temperature on swimming performance in juvenile qingbo (Spinibarbus sinensis): the critical swimming speed (Ucrit), resting metabolic rate (ṀO2rest) and active metabolic rate (ṀO2active) of fish fasting for 0 (control), 1, 2 and 4 weeks at low and high acclimation temperatures (15 and 25°C). Both fasting treatment and temperature acclimation had significant effects on all parameters measured (P<0.05). Fasting at the higher temperature had a negative effect on all measured parameters after 1 week (P<0.05). However, when acclimated to the lower temperature, fasting had a negative effect on Ucrit until week 2 and on (ṀO2rest), (ṀO2active) and metabolic scope (MS, (ṀO2active)-(ṀO2rest)) until week 4 (P<0.05). The values of all parameters at the lower temperature were significantly lower than those at the higher temperature in the identical fasting period groups except for (ṀO2rest) of the fish that fasted for 2 weeks. The relationship between fasting time (T) and Ucrit was described as Ucrit(15)=-0.302T(2)-0.800T+35.877 (r=0.781, n=32, P<0.001) and Ucrit(25)=0.471T(2)-3.781T+50.097 (r=0.766, n=32, P<0.001) at 15 and 25°C, respectively. The swimming performance showed less decrease in the early stage of fasting but more decrease in the later stage at the low temperature compared to the high temperature, which might be related to thermal acclimation time, resting metabolism, respiratory capacity, energy stores, enzyme activity in muscle tissue and energy substrate utilization changes with fasting between low and high temperatures. The divergent response of the swimming performance to fasting in qingbo at different temperatures might be an adaptive strategy to seasonal temperature and food resource variation in their habitat. Copyright © 2014. Published by Elsevier Ltd.

  16. No effects of acclimation to heat on immune and hormonal responses to passive heating in healthy volunteers

    NASA Astrophysics Data System (ADS)

    Kanikowska, Dominika; Sato, Maki; Sugenoya, Junichi; Iwase, Satoshi; Shimizu, Yuuki; Nishimura, Naoki; Inukai, Yoko

    2012-01-01

    Heat acclimation results in whole body-adaptations that increase heat tolerance, and might also result in changed immune responses. We hypothesized that, after heat acclimation, tumor necrosis factor alpha, interleukin 6 and the lymphocyte count would be altered. Heat acclimation was induced in 6 healthy men by 100 min of heat exposure for 9 days. Heat exposure consisted of (1) 10 min of immersion up to chest-level in water at 42°C and (2) 90 min of passive heating by a warm blanket to maintain tympanic temperature at 37.5°C. The climatic chamber was maintained at 40°C and a relative humidity of 50%. Blood samples were analyzed before and after heat acclimation for natural killer (NK) cell activity, counts of lymphocytes B and T, before and after heat acclimation for peripheral blood morphology, interleukin 6, tumor necrosis factor alpha, and cortisol. A Japanese version of the profile of mood states questionnaire was also administered before and after acclimation. The concentrations of white blood cells, lymphocytes B and T, cortisol, interleukin 6, tumor necrosis factor alpha and NK cell activity showed no significant differences between pre- and post-acclimation, but there was a significantly lower platelet count after acclimation and, with the profile of mood states questionnaire, there was a significant rise in anger after acclimation. It is concluded that heat acclimation by passive heating does not induce alterations in immune or endocrine responses.

  17. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, John G.; Bjomn

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearlingmore » chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).« less

  18. Decreased mortality of lake michigan chinook salmon after bacterial kidney disease challenge: Evidence for pathogen-driven selection?

    USGS Publications Warehouse

    Purcell, M.K.; Murray, A.L.; Elz, A.; Park, L.K.; Marcquenski, S.V.; Winton, J.R.; Alcorn, S.W.; Pascho, R.J.; Elliott, D.G.

    2008-01-01

    In the late 1960s, Chinook salmon Oncorhynchus tshawytscha from the Green River, Washington, were successfully introduced into Lake Michigan. During spring from1988 to 1992, large fish die-offs affecting Chinook salmon occurred in the lake. Multiple ecological factors probably contributed to the severity of the fish kills, but the only disease agent found regularly was Renibacterium salmoninarum, the causative agent of bacterial kidney disease. in this study, survival after challenge by R. salmoninarum was compared between two Chinook salmon stocks: a Lake Michigan stock from Wisconsin (WI) and the progenitor stock from the Green River. We found that the WI stock had significantly greater survival than the Green River stock. Next, the WI and Green River stocks were exposed to the marine pathogen Listonella anguillarum (formerly Vibrio anguillarum), one of the causative agents of vibriosis; survival after this challenge was significantly poorer for the WI stock than for the Green River stock. A close genetic relationship between the Green River and WI stocks was confirmed by analyzing 13 microsatellite loci. These results collectively suggest that disease susceptibility of Lake Michigan Chinook salmon has diverged from that of the source population, possibly in response to pathogen-driven selection. ?? Copyright by the American Fisheries Society 2008.

  19. Factors affecting stranding of juvenile salmonids by wakes from ship passage in the Lower Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, Walter H.; Skalski, John R.

    2011-09-01

    The effects of deep-draft vessel traffic in confined riverine channels on shorelines and fish are of widespread concern. In the Pacific Northwest of the United States, wakes and subsequent beach run-up from ships transiting the Lower Columbia River have been observed to strand juvenile salmon and other fish. As part of a before-and-after study to assess stranding effects that may be associated with channel deepening, we measured 19 co-variables from observations of 126 vessel passages at three low-slope beaches and used multiple logistic regression to discern the significant factors influencing the frequency of stranding. Subyearling Chinook salmon were 82% ofmore » the fish stranded over all sites and seasons. Given a low-slope beach, stranding frequencies for juvenile salmon were significantly related to river location, salmon density in the shallows, a proxy for ship kinetic energy, tidal height, and two interactions. The beach types selected for our study do not include all the beach types along the Lower Columbia River so that the stranding probabilities described here cannot be extrapolated river-wide. A more sophisticated modeling effort, informed by additional field data, is needed to assess salmon losses by stranding for the entire lower river. Such modeling needs to include river-scale factors such as beach type, berms, proximity to navigation channel, and perhaps, proximity to tributaries that act as sources of out-migrating juvenile salmon. At both river and beach scales, no one factor produces stranding; rather interactions among several conditions produce a stranding event and give stranding its episodic nature.« less

  20. Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.; Loffink, Ken; Duke, Bill

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelheadmore » and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition

  1. Application of the SHOALS survey system to fisheries investigations in the Columbia River

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Wagner, Paul G.; Wolf, Keith S.; Hoffarth , Paul A.

    2009-01-01

    We used a Scanning Hydrographic Operational Airborne LiDAR (Light Detection and Ranging) Survey (SHOALS) system to collect high-resolution bathymetry for 33 km of the Hanford Reach. Data were used in conjunction with hydrodynamic and predictive habitat models within a GIS (Geographical Information System) framework to evaluate the effects of a varying hydrograph on juvenile fall Chinook salmon rearing habitat and risk from stranding and entrapment. Furthermore, we were able to estimate the number of juvenile fish that were stranded and entrapped in pools when operations at Priest Rapids Dam caused rapid decreases in river flows. Our findings were ultimately used to estimate impacts of power generation operations at Priest Rapids Dam and develop long-term policy and operational guidelines to protect juvenile fall Chinook salmon during the spring rearing period.

  2. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snakemore » River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach

  3. Acclimation of photosynthesis to low leaf water potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, M.A.; Boyer, J.S.

    1984-01-01

    Photosynthesis is reduced at low leaf water potentials (PSI/sub l/) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. The authors evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and PSI/sub l/, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower PSI/sub l/ in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantummore » yield and the capacity to fix CO/sub 2/ at all partial pressures of CO/sub 2/, and in vitro by photosystem II activity of isolated organelles, was inhibited at low PSI/sub l/ but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low PSI/sub l/. 32 references, 8 figures.« less

  4. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operations and Maintenance, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2003-03-01

    The Catherine Creek Acclimation Facility (CCAF) received 180,912 smolts from LFH. The size of the fish at delivery was 18.4 fish/lb. Volitional releases started 1 April 2002 with a total of 7,998 PIT-tagged fish (68,948 estimated total fish) migrating from the raceways during the volitional release period. Hourly detections of PIT-tagged fish showed that most of the fish left between 1400 and 2200 hours. The size of the fish remaining just before the forced release was 16.4 fish/lb. The total mortality for the acclimation period was 569 (0.3 %). No significant mortality related to disease was observed. The fish weremore » fed a total of 1,968 lbs of food for the acclimation period. The total number of fish released from the acclimation facility in 2002 was 180,343. The Upper Grande Ronde Acclimation Facility (UGRAF) received 201,958 smolts from LFH. The size of the fish at delivery was 17.4 fish/lb. On 3 March 2002 the water inflow to raceway 4 froze in the early morning hours and the entire raceway was lost. Volitional releases started 1 April 2002 with a total of 682 PIT-tagged fish (68,200 estimated total fish) migrating from the raceways during the volitional release period. Hourly detections of PIT-tagged fish showed that most of the fish left between 1500 and 2200 hours. The size of the fish left in the raceways just before the forced release was 18.3 fish/lb. The total mortality for the acclimation period not including raceway 4 was 402 (0.3 %). No significant mortality related to disease was observed. The fish were fed a total of 568 lbs of food for the acclimation period. The total number of fish released from the acclimation facility in 2002 was 151,444. Maintenance and repair activities were conducted at the acclimation facilities in 2002. Facility maintenance work consisted of snow removal, painting of building, installation of backup water supply system, construction of steps to intake area, improvements to raceway standpipes, removal of gravel from

  5. Hypohydration and Heat Acclimation: Plasma Renin and Aldosterone during Exercise,

    DTIC Science & Technology

    1983-01-01

    vasoconstriction in heat-stressed men: role of McGraw-Hill, 1964, p. 419-423. renin - angiotensin system . J. AppL PhysioL: Respirat. Environ. 13. LINDQUIST, E...AL.A137 365 HYPOHYDRATION AND HEAT ACCLIMATION: PLASMA RENIN AND I/ ALDOSTERONE DURING EXERCISE(U) ARMY RESEARCH INST OF ENVIRONMENTAL MEDICINE...heat acclimation:plasma renin dependent not only on the mode of exercise but also the and aldosterone during exercise. J. Appl. Physiol.: Respirat

  6. Zn2+-induced changes at the root level account for the increased tolerance of acclimated tobacco plants

    PubMed Central

    Bazihizina, Nadia; Taiti, Cosimo; Marti, Lucia; Rodrigo-Moreno, Ana; Spinelli, Francesco; Giordano, Cristiana; Caparrotta, Stefania; Gori, Massimo; Azzarello, Elisa; Mancuso, Stefano

    2014-01-01

    Evidence suggests that heavy-metal tolerance can be induced in plants following pre-treatment with non-toxic metal concentrations, but the results are still controversial. In the present study, tobacco plants were exposed to increasing Zn2+ concentrations (up to 250 and/or 500 μM ZnSO4) with or without a 1-week acclimation period with 30 μM ZnSO4. Elevated Zn2+ was highly toxic for plants, and after 3 weeks of treatments there was a marked (≥50%) decline in plant growth in non-acclimated plants. Plant acclimation, on the other hand, increased plant dry mass and leaf area up to 1.6-fold compared with non-acclimated ones. In non-acclimated plants, the addition of 250 μM ZnSO4 led to transient membrane depolarization and stomatal closure within 24h from the addition of the stress; by contrast, the acclimation process was associated with an improved stomatal regulation and a superior ability to maintain a negative root membrane potential, with values on average 37% more negative compared with non-acclimated plants. The different response at the plasma-membrane level between acclimated and non-acclimated plants was associated with an enhanced vacuolar Zn2+ sequestration and up to 2-fold higher expression of the tobacco orthologue of the Arabidopsis thaliana MTP1 gene. Thus, the acclimation process elicited specific detoxification mechanisms in roots that enhanced Zn2+ compartmentalization in vacuoles, thereby improving root membrane functionality and stomatal regulation in leaves following elevated Zn2+ stress. PMID:24928985

  7. Basis of acoustic discrimination of Chinook salmon from other salmons by echolocating Orcinus orca.

    PubMed

    Au, Whitlow W L; Horne, John K; Jones, Christopher

    2010-10-01

    The "resident" ecotype of killer whales (Orcinus orca) in the waters of British Columbia and Washington State have a strong preference for Chinook salmon even in months when Chinook comprise less than about 10% of the salmon population. The foraging behavior of killer whales suggests that they depend on echolocation to detect and recognize their prey. In order to determine possible cues in echoes from salmon species, a series of backscatter measurements were made at the Applied Physics Laboratory (Univ. of Wash.) Facility on Lake Union, on three different salmon species using simulated killer whale echolocation signals. The fish were attached to a monofilament net panel and rotated while echoes were collected, digitized and stored on a laptop computer. Three transducer depths were used; same depth, 22° and 45° above the horizontal plane of the fish. Echoes were collected from five Chinook, three coho and one sockeye salmon. Radiograph images of all specimens were obtained to examine the swimbladder shape and orientation. The results show that echo structure from similar length but different species of salmon were different and probably recognizable by foraging killer whales.

  8. Spring Emigration of Natural and Hatchery Chinook Salmon and Steelhead Trout Smolts from the Imnaha River, Oregon; 1997 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blenden, Michael L.; Veach, Eric R.; Kucera, Paul A.

    1998-10-01

    For the fourth consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A screw trap was used to collect emigrating natural and hatchery chinook salmon (Uncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 25 to June 27, 1997. A total of 270 natural chinook salmon, 10,616 hatchery chinook salmon, 864 natural steelhead trout (and 13 natural steelhead parr), and 7,345 hatchery steelhead trout smolts were captured during emigration studies on the Imnaha River. Mortality associated with trapping, handling and tagging was low: 0.37% formore » natural chinook, 0.11% for hatchery chinook, 0.11% for natural steelhead, and 0.39% for hatchery steelhead trout smolts. Natural chinook salmon smolts emigrated from the Imnaha River from February 25 to June 10 and had a mean length of 108 mm, average weight of 13 g, and mean condition factor of 1.02. The peak period of natural chinook smolt emigration, based on number of fish collected, occurred between March 25 and April 30. Hatchery reared chinook salmon smolts were collected from April 9 to May 9, with 99% of the smolts being caught within 10 days after release. Hatchery chinook smolts mean length, weight, and condition factor were 131 mm, 25.4 g, and 1.12, respectively. Emigration of natural steelhead smolts in the Imnaha River occurred between March 14 and June 25. Peak emigration occurred from May 1 to May 15. Natural steelhead smolts averaged 175 mm in fork length, 55.8 g in weight and had a mean condition factor of 1 .OO. Hatchery steelhead smolts emigrated from the Imnaha River between April 15 and June 27. Hatchery steelhead smolts averaged 210 mm in fork length, 88 g in weight and had a mean condition factor of 0.93. Spring runoff water conditions in 1997 provided above average flows for emigrating anadromous salmonid smolts. Imnaha River mean daily discharge during spring emigration ranged

  9. Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): Seasonal development and seawater acclimation

    USGS Publications Warehouse

    Nilsen, Tom O.; Ebbesson, Lars O.E.; Kiilerich, P.; Bjornsson, B. Th; Madsen, Steffen S.; McCormick, S.D.; Stefansson, S.O.

    2008-01-01

    The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt transformation (smoltification) period and following four days and one month seawater (SW) acclimation. Plasma GH and gill GH receptor (GHR) mRNA levels increased continuously during the spring smoltification period in the anadromous, but not in landlocked salmon. There were no differences in plasma IGF-I levels between strains, or any increase during smoltification. Gill IGF-I and IGF-I receptor (IGF-IR) mRNA levels increased in anadromous salmon during smoltification, with no changes observed in landlocked fish. Gill PRLR mRNA levels remained stable in both strains during spring. Plasma cortisol levels in anadromous salmon increased 5-fold in May and June, but not in landlocked salmon. Gill glucocorticoid receptor (GR) mRNA levels were elevated in both strains at the time of peak smoltification in anadromous salmon, while mineralocorticoid receptor (MR) mRNA levels remained stable. Only anadromous salmon showed an increase of gill 11??-hydroxysteroid dehydrogenase type-2 (11??-HSD2) mRNA levels in May. GH and gill GHR mRNA levels increased in both strains following four days of SW exposure in mid-May, whereas only the anadromous salmon displayed elevated plasma GH and GHR mRNA after one month in SW. Plasma IGF-I increased after four days in SW in both strains, decreasing in both strains after one month in SW. Gill IGF-I mRNA levels were only increased in landlocked salmon after 4 days in SW. Gill IGF-IR mRNA levels in SW did not differ from FW levels in either strain. Gill PRLR mRNA did not change after four days of SW exposure, and decreased in both strains after one month in SW. Plasma cortisol levels did not change following SW exposure in either strain. Gill GR, 11

  10. Whole-body heat exchange during heat acclimation and its decay.

    PubMed

    Poirier, Martin P; Gagnon, Daniel; Friesen, Brian J; Hardcastle, Stephen G; Kenny, Glen P

    2015-02-01

    The purpose of this study was to quantify how much whole-body heat loss increases during heat acclimation and the decay in these improvements after heat acclimation. Ten males underwent a 14-d heat acclimation protocol that consisted of 90 min of cycling in the heat (40°C, 20% relative humidity) at approximately 50% of maximum oxygen consumption. Before (day 0), during (day 7), and at the end (day 14) of the heat acclimation protocol as well as 7 and 14 d after heat acclimation (days 21 and 28), whole-body heat exchange (evaporative and dry) was measured using direct calorimetry during three bouts of 30-min exercise at 300 (Ex1), 350 (Ex2), and 400 W·m (Ex3), each separated by 10 and 20 min of recovery, respectively, at 35°C and 16% relative humidity. Concurrent measurements of metabolic heat production (indirect calorimetry) allowed for the direct calculation of change in body heat content (ΔHb). After accounting for an increase in net dry heat gain, increases in whole-body evaporative heat loss were evident for Ex2 and Ex3 on day 7 (Ex2, 4.9 ± 5.6%; Ex3, 9.0 ± 6.0%; both P ≤ 0.05) and all heat loads on day 14 (Ex1, 7.6 ± 8.3%; Ex2, 7.7 ± 5.5%; Ex3, 11.2 ± 4.6%; all P ≤ 0.05) relative to day 0 (Ex1, 494 ± 27 W; Ex2, 583 ± 21 W; Ex3, 622 ± 36 W). As a result, a lower cumulative ΔHb was measured on day 7 (-18 ± 8%, P ≤ 0.001) and day 14 (-26 ± 10%, P ≤ 0.001) compared with that measured on day 0 (1062 ± 123 kJ). Most of these improvements were retained after 2 wk of nonexposure to the heat. This is the first study to quantify how much 14 d of heat acclimation can increase whole-body evaporative heat loss, which can improve by as much as approximately 11%.

  11. Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Scott

    2009-04-10

    Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by themore » construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass

  12. Heat Acclimation-Mediated Cross-Tolerance: Origins in within-Life Epigenetics?

    PubMed

    Horowitz, Michal

    2017-01-01

    The primary outcome of heat acclimation is increased thermotolerance, which stems from enhancement of innate cytoprotective pathways. These pathways produce "ON CALL" molecules that can combat stressors to which the body has never been exposed, via cross-tolerance mechanisms (heat acclimation-mediated cross-tolerance-HACT). The foundation of HACT lies in the sharing of generic stress signaling, combined with tissue/organ- specific protective responses. HACT becomes apparent when acclimatory homeostasis is achieved, lasts for several weeks, and has a memory. HACT differs from other forms of temporal protective mechanisms activated by exposure to lower "doses" of the stressor, which induce adaptation to higher "doses" of the same/different stressor; e.g., preconditioning, hormesis. These terms have been adopted by biochemists, toxicologists, and physiologists to describe the rapid cellular strategies ensuring homeostasis. HACT employs two major protective avenues: constitutive injury attenuation and abrupt post-insult release of help signals enhanced by acclimation. To date, the injury-attenuating features seen in all organs studied include fast-responding, enlarged cytoprotective reserves with HSPs, anti-oxidative, anti-apoptotic molecules, and HIF-1α nuclear and mitochondrial target gene products. Using cardiac ischemia and brain hypoxia models as a guide to the broader framework of phenotypic plasticity, HACT is enabled by a metabolic shift induced by HIF-1α and there are less injuries caused by Ca +2 overload, via channel or complex-protein remodeling, or decreased channel abundance. Epigenetic markers such as post-translational histone modification and altered levels of chromatin modifiers during acclimation and its decline suggest that dynamic epigenetic mechanisms controlling gene expression induce HACT and acclimation memory, to enable the rapid return of the protected phenotype. In this review the link between in vivo physiological evidence and the

  13. Impact of stressors on transmission potential of Renibacterium salmoninarum in Chinook salmon

    USGS Publications Warehouse

    Purcell, Maureen K.; Winton, James R.

    2014-01-01

    Renibacterium salmoninarum is the causative agent of bacterial kidney disease (BKD) affecting several species of Pacific salmon.  The severity of BKD can range from a chronic infection to overt disease with high mortality as in the case of large losses of adult Chinook salmon (Oncorhynchus tshawytscha) in the Great Lakes during late 1980s. The goal of this study was to empirically evaluate how environmental stressors relevant to the Great Lakes impact R. salmoninarum disease progression and bacterial shedding, the latter parameter being a proxy of horizontal transmission. In the first study (Aim 1), we focused on how endogenous host thiamine levels and dietary fatty acids impacted resistance of Chinook salmon to R. salmoninarum. Juvenile fish were fed one of four experimental diets, including a (1) thiamine replete diet formulated with fish oil, (2) thiamine deplete diet formulated with fish oil, (3) thiamine replete diet formulated with soybean oil, and (4) thiamine deplete diet formulated with soybean oil, before being challenged with buffer or R. salmoninarum. We observed significantly higher mortality in the R. salmoninarum infected groups relative to the corresponding mock controls in only the thiamine replete diet groups. We also observed a significant effect of time and diet on kidney bacterial load and bacterial shedding, with a significant trend towards higher shedding and bacterial load in the fish oil – thiamine replete diet group. However, during the course of the study, unexpected mortality occurred in all groups attributed to the myxozoan parasite Ceratomyxa shasta. Since the fish were dually-infected with C. shasta, we evaluated parasite DNA levels (parasitic load) in the kidney of sampled fish. We found that parasite load varied across time points but there was no significant effect of diet. However, parasite load did differ significantly between the mock and R. salmoninarum challenge groups with a trend towards longer persistence of C. shasta

  14. Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues.

    PubMed

    Des Marteaux, Lauren E; McKinnon, Alexander H; Udaka, Hiroko; Toxopeus, Jantina; Sinclair, Brent J

    2017-05-08

    Cold tolerance is a key determinant of temperate insect distribution and performance. Chill-susceptible insects lose ion and water homeostasis during cold exposure, but prior cold acclimation improves both cold tolerance and defense of homeostasis. The mechanisms underlying these processes are mostly unknown; cold acclimation is thought to enhance ion transport in the cold and/or prevent leak of water and ions. To identify candidate mechanisms of cold tolerance plasticity we generated transcriptomes of ionoregulatory tissues (hindgut and Malpighian tubules) from Gryllus pennsylvanicus crickets and compared gene expression in warm- and cold-acclimated individuals. We assembled a G. pennsylvanicus transcriptome de novo from 286 million 50-bp reads, yielding 70,037 contigs (~44% of which had putative BLAST identities). We compared the transcriptomes of warm- and cold-acclimated hindguts and Malpighian tubules. Cold acclimation led to a ≥ 2-fold change in the expression of 1493 hindgut genes (733 downregulated, 760 upregulated) and 2008 Malpighian tubule genes (1009 downregulated, 999 upregulated). Cold-acclimated crickets had altered expression of genes putatively associated with ion and water balance, including: a downregulation of V-ATPase and carbonic anhydrase in the Malpighian tubules and an upregulation of Na + -K + ATPase in the hindgut. We also observed acclimation-related shifts in the expression of cytoskeletal genes in the hindgut, including actin and actin-anchoring/stabilizing proteins, tubulin, α-actinin, and genes involved in adherens junctions organization. In both tissues, cold acclimation led to differential expression of genes encoding cytochrome P450s, glutathione-S-transferases, apoptosis factors, DNA repair, and heat shock proteins. This is the first G. pennsylvanicus transcriptome, and our tissue-specific approach yielded new candidate mechanisms of cold tolerance plasticity. Cold acclimation may reduce loss of hemolymph volume in the

  15. Acclimation of Photosynthesis to Low Leaf Water Potentials 1

    PubMed Central

    Matthews, Mark A.; Boyer, John S.

    1984-01-01

    Photosynthesis is reduced at low leaf water potentials (Ψl) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. We evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and Ψl, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower Ψl, in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantum yield and the capacity to fix CO2 at all partial pressures of CO2, and in vitro by photosystem II activity of isolated organelles, was inhibited at low Ψl but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low Ψl. PMID:16663372

  16. Low productivity of Chinook salmon strongly correlates with high summer stream discharge in two Alaskan rivers in the Yukon drainage

    USGS Publications Warehouse

    Neuswanger, Jason R.; Wipfli, Mark S.; Evenson, Matthew J.; Hughes, Nicholas F.; Rosenberger, Amanda E.

    2015-01-01

    Yukon River Chinook salmon (Oncorhynchus tshawytscha) populations are declining for unknown reasons, creating hardship for thousands of stakeholders in subsistence and commercial fisheries. An informed response to this crisis requires understanding the major sources of variation in Chinook salmon productivity. However, simple stock–recruitment models leave much of the variation in this system’s productivity unexplained. We tested adding environmental predictors to stock–recruitment models for two Yukon drainage spawning streams in interior Alaska — the Chena and Salcha rivers. Low productivity was strongly associated with high stream discharge during the summer of freshwater residency for young-of-the-year Chinook salmon. This association was more consistent with the hypothesis that sustained high discharge negatively affects foraging conditions than with acute mortality during floods. Productivity may have also been reduced in years when incubating eggs experienced major floods or cold summers and falls. These freshwater effects — especially density dependence and high discharge — helped explain population declines in both rivers. They are plausible as contributors to the decline of Chinook salmon throughout the Yukon River drainage.

  17. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.

    PubMed

    Feder, M E

    1986-03-01

    To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.

  18. Rate of disappearance of gas bubble trauma signs in juvenile salmonids

    USGS Publications Warehouse

    Hans, K.M.; Mesa, M.G.; Maule, A.G.

    1999-01-01

    To assess the rate of disappearance of gas bubble trauma (GBT) signs in juvenile salmonids, we exposed spring chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss to water containing high levels of dissolved gas supersaturation (DGS) for a time period sufficient to induce signs of GBT, reduced the DGS to minimal levels, and then sampled fish through time to document changes in severity of GBT. Because of the tendency of GBT signs to dissipate at different rates, we conducted trials focusing on emboli (bubbles) in the gill filaments and lateral line and separate trials that focused on bubbles in the external surfaces (fins, eyes, and opercula). Bubbles in gill filaments dissipated almost completely within 2 h after transfer of fish to water of nearly normal DGS (104%), whereas bubbles in the lateral line dissipated to negligible levels within 5 h. Bubbles on external surfaces were more persistent through time than they were in gill filaments and the lateral line. Although typically dissipating to low levels within 48 h, external bubbles sometimes remained for 4 d. Assuming a direct relation exists between easily observable signs and direct mortality, our results suggest that fish can recover quickly from the potentially lethal effects of DGS once they move from water with high DGS to water of almost normal gas saturation. These results should be of fundamental importance to fishery managers interpreting the results of monitoring for the severity and prevalence of GBT in juvenile salmonids in the Columbia River system and perhaps elsewhere.

  19. Movements of adult chinook salmon during spawning migration in a metals-contaminated system, Coeur d'Alene River, Idaho

    USGS Publications Warehouse

    Goldstein, J.N.; Woodward, D.F.; Farag, A.M.

    1999-01-01

    Spawning migration of adult male chinook salmon Oncorhynchus tshawytscha was monitored by radio telemetry to determine their response to the presence of metals contamination in the South Fork of the Coeur d'Alene River, Idaho. The North Fork of the Coeur d'Alene River is relatively free of metals contamination and was used as a control. In all, 45 chinook salmon were transported from their natal stream, Wolf Lodge Creek, tagged with radio transmitters, and released in the Coeur d'Alene River 2 km downstream of the confluence of the South Fork and the North Fork of the Coeur d'Alene River. Fixed telemetry receivers were used to monitor the upstream movement of the tagged chinook salmon through the confluence area for 3 weeks after release. During this period, general water quality and metals concentrations were monitored in the study area. Of the 23 chinook salmon observed to move upstream from the release site and through the confluence area, the majority (16 fish, 70%) moved up the North Fork, and only 7 fish (30%) moved up the South Fork, where greater metals concentrations were observed. Our results agree with laboratory findings and suggest that natural fish populations will avoid tributaries with high metals contamination.

  20. Modeling chinook salmon with SALMOD on the Sacramento River, California

    USGS Publications Warehouse

    Bartholow, J.M.

    2004-01-01

    Four races of Pacific salmon crowd the Sacramento River below a large reservoir that prevents access to historical spawning grounds. Each race is keyed to spawn at specific times through the year. A salmon population model was used to estimate: (1) the effects that unique run timing, interacting with seasonal river flows and water temperatures, have on each race; and (2) which habitats appeared to be the most limiting for each race. The model appeared to perform well without substantive calibration. Late fall, winter, and spring run Chinook do not appear to have the same production potential as fall run Chinook even though fall run production is more variable than that for the other three races. Spring fish have the lowest production on average, and production appears to be declining through time, perhaps making that race harder to recover should the population become more depressed. Rearing habitat appears to be the factor most limiting production for all races, but water temperature is responsible for most year-to-year production variation.