Sample records for accreting stellar-mass black

  1. Growing massive black holes through supercritical accretion of stellar-mass seeds

    NASA Astrophysics Data System (ADS)

    Lupi, A.; Haardt, F.; Dotti, M.; Fiacconi, D.; Mayer, L.; Madau, P.

    2016-03-01

    The rapid assembly of the massive black holes that power the luminous quasars observed at z ˜ 6-7 remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses ˜105 M⊙, which can then reach a billion solar mass while accreting at the Eddington limit. Here, we propose an alternative scenario based on radiatively inefficient supercritical accretion of stellar-mass holes embedded in the gaseous circumnuclear discs (CNDs) expected to exist in the cores of high-redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the `slim-disc' solution can increase its mass by three orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of supercritical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.

  2. Accretion onto stellar mass black holes

    NASA Astrophysics Data System (ADS)

    Deegan, Patrick

    2009-12-01

    I present work on the accretion onto stellar mass black holes in several scenarios. Due to dynamical friction stellar mass black holes are expected to form high density cusps in the inner parsec of our Galaxy. These compact remnants may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. I build a simple but detailed time-dependent model of such emission. Future observations of the distribution and orbits of the gas in the inner parsec of Sgr A* will put tighter constraints on the cusp of compact remnants. GRS 1915+105 is an LMXB, whose large orbital period implies a very large accretion disc and explains the extraordinary duration of its current outburst. I present smoothed particle hydrodynamic simulations of the accretion disc. The models includes the thermo-viscous instability, irradiation from the central object and wind loss. I find that the outburst of GRS 1915+105 should last a minimum of 20 years and up to ˜ 100 years if the irradiation is playing a significant role in this system. The predicted recurrence times are of the order of 104 years, making the duty cycle of GRS 1915+105 to be a few 0.1%. I present a simple analytical method to describe the observable behaviour of long period black hole LMXBs, similar to GRS 1915+105. Constructing two simple models for the surface density in the disc, outburst and quiescence times are calculated as a function of orbital period. LMXBs are an important constituent of the X-ray light function (XLF) of giant elliptical galaxies. I find that the duty cycle can vary considerably with orbital period, with implications for modelling the XLF.

  3. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    PubMed

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  4. Accretion-induced variability links young stellar objects, white dwarfs, and black holes

    PubMed Central

    Scaringi, Simone; Maccarone, Thomas J.; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R.; Aranzana, Ester; Dhillon, Vikram S.; Barros, Susana C. C.

    2015-01-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  5. Stellar-mass black holes and ultraluminous x-ray sources.

    PubMed

    Fender, Rob; Belloni, Tomaso

    2012-08-03

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  6. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; Timmes, F. X.; Wyithe, J. Stuart B.; Alpaslan, Mehmet; Andrews, Stephen K.; Coe, Daniel; Diego, Jose M.; Dijkstra, Mark; Driver, Simon P.; Kelly, Patrick L.; Kim, Duho

    2018-02-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z ≃ 7–17. Theoretical predictions and recent near-infrared power spectra provide tighter constraints on their sky signal. We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z≳ 7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be μ ≃ {10}4{--}{10}5, with rise times of hours and decline times of ≲ 1 year for cluster transverse velocities of {v}T≲ 1000 km s‑1. Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3–30 lensing clusters to {AB}≲ 29 mag over a decade.

  7. The Growth of Stellar Mass Black Hole Binaries Trapped in the Accretion Disks of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu; Cheng, K. S.; Taam, Ronald E.

    2018-06-01

    Among the four black hole (BH) binary merger events detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO), six progenitor BHs have masses greater than 20 M ⊙. The existence of such massive BHs suggests that extreme metal-poor stars are the progenitors. An alternative possibility, that a pair of stellar mass BHs each with mass ∼7 M ⊙ increases to >20 M ⊙ via accretion from a disk surrounding a supermassive BH (SMBH) in an active galactic nucleus (AGN), is considered. The growth of mass of the binary and the transfer of orbital angular momentum to the disk accelerates the merger. Based on the recent numerical work of Tang et al., it is found that, in the disk of a low-mass AGN with mass ∼106 M ⊙ and Eddington ratio >0.01, the mass of an individual BH in the binary can grow to >20 M ⊙ before coalescence, provided that accretion takes place at a rate more than 10 times the Eddington value. This mechanism predicts a new class of gravitational wave (GW) sources involving the merger of two extreme Kerr black holes associated with AGNs and a possible electromagnetic wave counterpart.

  8. Observing stellar mass and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2016-07-01

    During the last 50 years, great progress has been made in observing stellar-mass black holes (BHs) in binary systems and supermassive BHs in galactic nuclei. In 1964, Zeldovich and Salpeter showed that in the case of nonspherical accretion of matter onto a BH, huge energy releases occur. The theory of disk accretion of matter onto BHs was developed in 1972-1973 by Shakura and Sunyaev, Pringle and Rees, and Novikov and Thorne. Up to now, 100 years after the creation of Albert Einstein's General Theory of Relativity, which predicts the existence of BHs, the masses of tens of stellar-mass BHs ( M_BH=(4-35) M_⊙) and many hundreds of supermassive BHs ( M_BH=(10^6-1010) M_⊙) have been determined. A new field of astrophysics, so-called BH demography, is developing. The recent discovery of gravitational waves from BH mergers in binary systems opens a new era in BH studies.

  9. A short review of relativistic iron lines from stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Miller, J. M.

    2006-12-01

    % In this contribution, I briefly review recent progress in detecting and measuring the properties of relativistic iron lines observed in stellar-mass black hole systems, and the aspects of these lines that are most relevant to studies of similar lines in Seyfert-1 AGN. In particular, the lines observed in stellar-mass black holes are not complicated by complex low-energy absorption or partial-covering of the central engine, and strong lines are largely independent of the model used to fit the underlying broad-band continuum flux. Indeed, relativistic iron lines are the most robust diagnostic of black hole spin that is presently available to observers, with specific advantages over the systematics-plagued disk continuum. If accretion onto stellar-mass black holes simply scales with mass, then the widespread nature of lines in stellar-mass black holes may indicate that lines should be common in Seyfert-1 AGN, though perhaps harder to detect.

  10. X-shooter study of accretion in Chamaeleon I. II. A steeper increase of accretion with stellar mass for very low-mass stars?

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Herczeg, G. J.; Pascucci, I.; Alcalá, J. M.; Natta, A.; Antoniucci, S.; Fedele, D.; Mulders, G. D.; Henning, T.; Mohanty, S.; Prusti, T.; Rigliaco, E.

    2017-08-01

    The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M⋆) 0.1 M⊙ for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 ± 0.1 and 2.3 ± 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than 0.45 L⊙ and for stellar masses lower than 0.3 M⊙ is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M⋆ 0.3 - 0.4 M⊙. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are 10-10M⊙/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk. This work is

  11. Gamma-ray bursts from stellar mass accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1993-01-01

    A cosmological model for gamma-ray bursts is explored in which the radiation is produced as a broadly beamed pair fireball along the rotation axis of an accreting black hole. The black hole may be a consequence of neutron star merger or neutron star-black hole merger, but for long complex bursts, it is more likely to come from the collapse of a single Wolf-Rayet star endowed with rotation ('failed' Type Ib supernova). The disk is geometrically thick and typically has a mass inside 100 km of several tenths of a solar mass. In the failed supernova case, the disk is fed for a longer period of time by the collapsing star. At its inner edge the disk is thick to its own neutrino emission and evolves on a viscous time scale of several seconds. In a region roughly 30 km across, interior to the accretion disk and along its axis of rotation, a pair fireball is generated by neutrino annihilation and electron-neutrino scattering which deposit approximately 10 exp 50 ergs/s.

  12. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; Wyithe, Stuart; Alpaslan, Mehmet; Timmes, F. X.; Andrews, Stephen K.; Kim, Duho; Kelly, Patrick; Coe, Dan A.; Diego, Jose M.; Driver, Simon P.; Dijkstra, Mark

    2018-06-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-IR surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z=7-17.We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z>7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions.We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be 10^4-10^5x, with rise times of hours and decline times of z~<1 year for cluster transverse velocities of v_T<~1000 km/s.Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3-30 lensing clusters to AB<29 mag over a decade (see Windhorst et al. 2018, ApJS, 234, 41; astro-ph/1801.03584).This work was supported by NASA JWST Interdisciplinary Scientist grants NAG5-12460, NX14AN10G, and 80NSSC18K0200, NASA Theoretical and Computational Astrophysics Networks grant NNX14AB53G, NSF Software Infrastructure for Sustained Innovation grant 1339600, NSF Physics Frontier Center JINA-CEE grant PHY-1430152, Australian Research Council projects AYA2015-64508-P, AYA2012-39475-C02-01, and Ministerio de Economia y Competitividad of Spain Consolider

  13. On Stellar Winds as a Source of Mass: Applying Bondi-Hoyle-Lyttleton Accretion

    NASA Astrophysics Data System (ADS)

    Detweiler, L. G.; Yates, K.; Siem, E.

    2017-12-01

    The interaction between planets orbiting stars and the stellar wind that stars emit is investigated and explored. The main goal of this research is to devise a method of calculating the amount of mass accumulated by an arbitrary planet from the stellar wind of its parent star via accretion processes. To achieve this goal, the Bondi-Hoyle-Lyttleton (BHL) mass accretion rate equation and model is employed. In order to use the BHL equation, various parameters of the stellar wind is required to be known, including the velocity, density, and speed of sound of the wind. In order to create a method that is applicable to arbitrary planets orbiting arbitrary stars, Eugene Parker's isothermal stellar wind model is used to calculate these stellar wind parameters. In an isothermal wind, the speed of sound is simple to compute, however the velocity and density equations are transcendental and so the solutions must be approximated using a numerical approximation method. By combining Eugene Parker's isothermal stellar wind model with the BHL accretion equation, a method for computing planetary accretion rates inside a star's stellar wind is realized. This method is then applied to a variety of scenarios. First, this method is used to calculate the amount of mass that our solar system's planets will accrete from the solar wind throughout our Sun's lifetime. Then, some theoretical situations are considered. We consider the amount of mass various brown dwarfs would accrete from the solar wind of our Sun throughout its lifetime if they were orbiting the Sun at Jupiter's distance. For very high mass brown dwarfs, a significant amount of mass is accreted. In the case of the brown dwarf 15 Sagittae B, it actually accretes enough mass to surpass the mass limit for hydrogen fusion. Since 15 Sagittae B is orbiting a star that is very similar to our Sun, this encouraged making calculations for 15 Sagittae B orbiting our Sun at its true distance from its star, 15 Sagittae. It was found that

  14. Establishing a relation between the mass and the spin of stellar-mass black holes.

    PubMed

    Banerjee, Indrani; Mukhopadhyay, Banibrata

    2013-08-09

    Stellar mass black holes (SMBHs), forming by the core collapse of very massive, rapidly rotating stars, are expected to exhibit a high density accretion disk around them developed from the spinning mantle of the collapsing star. A wide class of such disks, due to their high density and temperature, are effective emitters of neutrinos and hence called neutrino cooled disks. Tracking the physics relating the observed (neutrino) luminosity to the mass, spin of black holes (BHs) and the accretion rate (M) of such disks, here we establish a correlation between the spin and mass of SMBHs at their formation stage. Our work shows that spinning BHs are more massive than nonspinning BHs for a given M. However, slowly spinning BHs can turn out to be more massive than spinning BHs if M at their formation stage was higher compared to faster spinning BHs.

  15. Two stellar-mass black holes in the globular cluster M22.

    PubMed

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Seth, Anil C

    2012-10-04

    Hundreds of stellar-mass black holes probably form in a typical globular star cluster, with all but one predicted to be ejected through dynamical interactions. Some observational support for this idea is provided by the lack of X-ray-emitting binary stars comprising one black hole and one other star ('black-hole/X-ray binaries') in Milky Way globular clusters, even though many neutron-star/X-ray binaries are known. Although a few black holes have been seen in globular clusters around other galaxies, the masses of these cannot be determined, and some may be intermediate-mass black holes that form through exotic mechanisms. Here we report the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22, and we argue that these objects are black holes of stellar mass (each ∼10-20 times more massive than the Sun) that are accreting matter. We find a high ratio of radio-to-X-ray flux for these black holes, consistent with the larger predicted masses of black holes in globular clusters compared to those outside. The identification of two black holes in one cluster shows that ejection of black holes is not as efficient as predicted by most models, and we argue that M22 may contain a total population of ∼5-100 black holes. The large core radius of M22 could arise from heating produced by the black holes.

  16. Linking black hole growth with host galaxies: the accretion-stellar mass relation and its cosmic evolution

    NASA Astrophysics Data System (ADS)

    Yang, G.; Brandt, W. N.; Vito, F.; Chen, C.-T. J.; Trump, J. R.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Koekemoer, A. M.; Schneider, D. P.; Vignali, C.; Wang, J.-X.

    2018-04-01

    Previous studies suggest that the growth of supermassive black holes (SMBHs) may be fundamentally related to host-galaxy stellar mass (M⋆). To investigate this SMBH growth-M⋆ relation in detail, we calculate long-term SMBH accretion rate as a function of M⋆ and redshift [\\overlineBHAR(M_{\\star }, z)] over ranges of log (M⋆/M⊙) = 9.5-12 and z = 0.4-4. Our \\overlineBHAR(M_{\\star }, z) is constrained by high-quality survey data (GOODS-South, GOODS-North and COSMOS), and by the stellar mass function and the X-ray luminosity function. At a given M⋆, \\overlineBHAR is higher at high redshift. This redshift dependence is stronger in more massive systems [for log (M⋆/M⊙) ≈ 11.5, \\overlineBHAR is three decades higher at z = 4 than at z = 0.5], possibly due to AGN feedback. Our results indicate that the ratio between \\overlineBHAR and average star formation rate (\\overlineSFR) rises towards high M⋆ at a given redshift. This \\overlineBHAR/\\overlineSFR dependence on M⋆ does not support the scenario that SMBH and galaxy growth are in lockstep. We calculate SMBH mass history [MBH(z)] based on our \\overlineBHAR(M_{\\star }, z) and the M⋆(z) from the literature, and find that the MBH-M⋆ relation has weak redshift evolution since z ≈ 2. The MBH/M⋆ ratio is higher towards massive galaxies: it rises from ≈1/5000 at log M⋆ ≲ 10.5 to ≈1/500 at log M⋆ ≳ 11.2. Our predicted MBH/M⋆ ratio at high M⋆ is similar to that observed in local giant ellipticals, suggesting that SMBH growth from mergers is unlikely to dominate over growth from accretion.

  17. The Close Stellar Companions to Intermediate-mass Black Holes

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Trenti, Michele; Ramirez-Ruiz, Enrico

    2016-03-01

    When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 105 or 2 × 105 stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6-10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has a companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ˜107 years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.

  18. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bregman, Joel N.; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-01

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 1039 erg s-1. They could be intermediate-mass black holes (more than 100-1,000 solar masses, ) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 1039 erg s-1 and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5, and more probably a mass of 20-30, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  19. NGC 4051: Black hole mass and photon index-mass accretion rate correlation

    NASA Astrophysics Data System (ADS)

    Seifina, Elena; Chekhtman, Alexandre; Titarchuk, Lev

    2018-05-01

    We present a discovery of the correlation between the X-ray spectral (photon) index and mass accretion rate observed in an active galactic nucleus, NGC 4051. We analyzed spectral transition episodes observed in NGC 4051 using XMM-Newton, Suzaku and RXTE. We applied a scaling technique for a black hole (BH) mass evaluation which uses a correlation between the photon index and normalization of the seed (disk) component, which is proportional to a mass accretion rate. We developed an analytical model that shows the spectral (photon) index of the BH emergent spectrum undergoes an evolution from lower to higher values depending on a mass accretion rate in the accretion disk. We considered Cygnus X-1 and GRO J1550-564 as reference sources for which distances, inclination angles and the BH masses are evaluated by dynamical measurements. Application of the scaling technique for the photon index-mass accretion rate correlation provides an estimate of the black hole mass in NGC 4051 to be more than 6 × 105 solar masses.

  20. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1.

    PubMed

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-28

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  1. Vacuum birefringence and the x-ray polarization from black-hole accretion disks

    NASA Astrophysics Data System (ADS)

    Caiazzo, Ilaria; Heyl, Jeremy

    2018-04-01

    In the next decade, x-ray polarimetry will open a new window on the high-energy Universe, as several missions that include an x-ray polarimeter are currently under development. Observations of the polarization of x rays coming from the accretion disks of stellar-mass and supermassive black holes are among the new polarimeters' major objectives. In this paper, we show that these observations can be affected by the quantum electrodynamic (QED) effect of vacuum birefringence: after an x-ray photon is emitted from the accretion disk, its polarization changes as the photon travels through the accretion disk's magnetosphere, as a result of the vacuum becoming birefringent in the presence of a magnetic field. We show that this effect can be important for black holes in the energy band of the upcoming polarimeters and has to be taken into account in a complete model of the x-ray polarization that we expect to detect from black-hole accretion disks, both for stellar mass and for supermassive black holes. We find that, for a chaotic magnetic field in the disk, QED can significantly decrease the linear polarization fraction of edge-on photons, depending on the spin of the hole and on the strength of the magnetic field. This effect can provide, for the first time, a direct way to probe the magnetic field strength close to the innermost stable orbit of black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  2. Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity

    NASA Astrophysics Data System (ADS)

    Orlando, Salvatore; Reale, Fabio; Peres, Giovanni; Mignone, Andrea

    2014-11-01

    According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a signicant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but more energetic phenomena occur in YSOs and may influence the circumstellar environment. In fact, a recent study has shown that an intense flaring activity close to the disk may strongly perturb the stability of circumstellar disks, thus inducing mass accretion episodes (Orlando et al. 2011). Here we review the main results obtained in the field and the future perspectives.

  3. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  4. The nature of ULX source M101 X-1: optically thick outflow from a stellar mass black hole

    NASA Astrophysics Data System (ADS)

    Shen, Rong-Feng; Barniol Duran, Rodolfo; Nakar, Ehud; Piran, Tsvi

    2015-02-01

    The nature of ultraluminous X-ray sources (ULXs) has long been plagued by an ambiguity about whether the central compact objects are intermediate-mass (IMBH, ≳103 M⊙) or stellar-mass (a few tens M⊙) black holes (BHs). The high-luminosity (≃1039 erg s-1) and supersoft spectrum (T ≃ 0.1 keV) during the high state of the ULX source X-1 in the galaxy M101 suggest a large emission radius (≳109 cm), consistent with being an IMBH accreting at a sub-Eddington rate. However, recent kinematic measurement of the binary orbit of this source and identification of the secondary as a Wolf-Rayet star suggest a stellar-mass BH primary with a super-Eddington accretion. If that is the case, a hot, optically thick outflow from the BH can account for the large emission radius and the soft spectrum. By considering the interplay of photons' absorption and scattering opacities, we determine the radius and mass density of the emission region of the outflow and constrain the outflow mass-loss rate. The analysis presented here can be potentially applied to other ULXs with thermally dominated spectra, and to other super-Eddington accreting sources.

  5. The magnetic nature of disk accretion onto black holes.

    PubMed

    Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy

    2006-06-22

    Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.

  6. Disk Accretion and the Stellar Birthline

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.

    1997-02-01

    We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our

  7. THE SUPERMASSIVE BLACK HOLE MASS-SPHEROID STELLAR MASS RELATION FOR SERSIC AND CORE-SERSIC GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Nicholas; Graham, Alister W; Schombert, James

    2013-05-01

    We have examined the relationship between supermassive black hole mass (M{sub BH}) and the stellar mass of the host spheroid (M{sub sph,*}) for a sample of 75 nearby galaxies. To derive the spheroid stellar masses we used improved Two Micron All Sky Survey K{sub s}-band photometry from the ARCHANGEL photometry pipeline. Dividing our sample into core-Sersic and Sersic galaxies, we find that they are described by very different M{sub BH}-M{sub sph,*} relations. For core-Sersic galaxies-which are typically massive and luminous, with M{sub BH} {approx}> 2 Multiplication-Sign 10{sup 8} M{sub Sun }-we find M{sub BH}{proportional_to} M{sub sph,*}{sup 0.97{+-}0.14}, consistent with othermore » literature relations. However, for the Sersic galaxies-with typically lower masses, M{sub sph,*} {approx}< 3 Multiplication-Sign 10{sup 10} M{sub Sun }-we find M{sub BH}{proportional_to}M{sub sph,*}{sup 2.22{+-}0.58}, a dramatically steeper slope that differs by more than 2 standard deviations. This relation confirms that, for Sersic galaxies, M{sub BH} is not a constant fraction of M{sub sph,*}. Sersic galaxies can grow via the accretion of gas which fuels both star formation and the central black hole, as well as through merging. Their black hole grows significantly more rapidly than their host spheroid, prior to growth by dry merging events that produce core-Sersic galaxies, where the black hole and spheroid grow in lockstep. We have additionally compared our Sersic M{sub BH}-M{sub sph,*} relation with the corresponding relation for nuclear star clusters, confirming that the two classes of central massive object follow significantly different scaling relations.« less

  8. Probing the Jet Turnover Frequency Dependence on Mass and Mass Accretion Rate

    NASA Astrophysics Data System (ADS)

    Hammerstein, Erica; Gültekin, Kayhan; King, Ashley

    2018-01-01

    We have examined a sample of 15 sub-Eddington supermassive black holes (SMBHs) in a variety of galaxy classifications to further understand the proposed fundamental plane of black hole activity and scaling relations between black hole masses and their radio and X-ray luminosities. This plane describes black holes from stellar-mass to supermassive. The physics probed by these sub-Eddington systems is thought to be a radiatively inefficient, jet-dominated accretion flow. By studying black holes in this regime, we can learn important information on the disk-jet connection for accreting black holes.A key factor in studying the fundamental plane is the turnover frequency — the frequency at which emission transitions from optically thick at lower frequencies to optically thin at higher frequencies. This turnover point can be measured by observing the source in both radio and X-ray. Our project aims to test the dependence of the turnover frequency on mass and mass accretion rate.Radio observations of the sample were obtained using the Karl G. Jansky Very Large Array (VLA) in the range of 5-40 GHz across four different frequency bands in A configuration to give the highest spatial resolution to focus on the core emission. Our carefully chosen sample of SMBHs with dynamically measured masses consists of two sub-samples: those with approximately constant mass accretion rate (LX/LEdd ~ 10‑7) and those with approximately constant mass (MBH ~ 108 Msun). X-ray data were obtained from archival Chandra observations. To find the turnover frequency, we used Markov Chain Monte Carlo methods to fit two power laws to the radio data and the archival X-ray data. The intersection of the radio and X-ray fits is the turnover frequency.We present the results for both subsamples of SMBHs and their relationship between the turnover frequency and X-ray luminosity, which we take to scale with mass accretion rate, and jet power derived from both radio and X-ray properties.

  9. Amuse-Virgo: Downsizing In Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Gallo, Elena

    2010-03-01

    An issue of fundamental importance in understanding the galaxy-black hole connection is the duty cycle of accretion. If black holes are indeed ubiquitous in galactic nuclei, little is known about the frequency and intensity of their activity, the more so at the low-mass/low-luminosity end. I will present new results from AMUSE-Virgo, a Chandra survey of (formally) inactive early type galaxies in the Virgo cluster. Out of 100 objects, 32 show a nuclear X-ray source, including 6 hybrid nuclei which also host a massive nuclear cluster as visible from archival HST images. After carefully accounting for contamination from nuclear low mass X-ray binaries based on the shape and normalization of their X-ray luminosity function, we conclude that between 24-34% of the galaxies in our sample host a X-ray active super-massive black hole. This sets a firm lower limit to the black hole occupation fraction in nearby bulges within a cluster environment. At face value, the active fraction is found to increase with host stellar mass. However, taking into account selection effects, we find that the average Eddington-scaled X-ray luminosity scales with black hole mass to the power -0.62, with an intrinsic scatter of 0.46 dex. This represents the first observational evidence for down-sizing of black hole accretion in local early types, that is, the fraction of active galaxies, defined as those above a fixed X-ray Eddington ratio, decreases with increasing host galaxy mass.

  10. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds

    NASA Astrophysics Data System (ADS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  11. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    PubMed

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  12. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni

    NASA Astrophysics Data System (ADS)

    Muñoz-Darias, T.; Casares, J.; Mata Sánchez, D.; Fender, R. P.; Armas Padilla, M.; Linares, M.; Ponti, G.; Charles, P. A.; Mooley, K. P.; Rodriguez, J.

    2016-06-01

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10-8 solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  13. Upper stellar mass limit by radiative feedback at low-metallicities: metallicity and accretion rate dependence

    NASA Astrophysics Data System (ADS)

    Fukushima, Hajime; Omukai, Kazuyuki; Hosokawa, Takashi

    2018-02-01

    We investigate the upper stellar mass limit set by radiative feedback for a forming star with various accretion rates and metallicities. Thus, we numerically solve the structures of both a protostar and its surrounding accretion envelope assuming a spherical symmetric and steady flow. The optical depth of the dust cocoon, a dusty part of the accretion envelope, differs for direct light from the stellar photosphere and diffuse light re-emitted as dust thermal emission. As a result, varying the metallicity qualitatively changes the way that the radiative feedback suppresses the accretion flow. With a fixed accretion rate of 10-3 M⊙ yr-1, both direct and diffuse light jointly operate to prevent mass accretion at Z ≳ 10-1 Z⊙. At Z ≲ 10-1 Z⊙, the diffuse light is no longer effective and the direct light solely limits the mass accretion. At Z ≲ 10-3 Z⊙, formation of the H II region plays an important role in terminating the accretion. The resultant upper mass limit increases with decreasing metallicity, from a few × 10 M⊙ to ∼103 M⊙ over Z = 1 Z⊙-10-4 Z⊙. We also illustrate how the radiation spectrum of massive star-forming cores changes with decreasing metallicity. First, the peak wavelength of the spectrum, which is located around 30 μm at 1 Z⊙, shifts to < 3 μm at Z ≲ 0.1 Z⊙. Secondly, a characteristic feature at 10 μm due to the amorphous silicate band appears as a dip at 1 Z⊙, but changes to a bump at Z ≲ 0.1 Z⊙. Using these spectral signatures, we can search massive accreting protostars in nearby low-metallicity environments with upcoming observations.

  14. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less

  15. The masses and metallicities of stellar haloes reflect galactic merger histories

    NASA Astrophysics Data System (ADS)

    D'Souza, Richard; Bell, Eric F.

    2018-03-01

    There is increasing observational and theoretical evidence for a correlation between the metallicity and the mass of the stellar halo for galaxies with Milky Way-like stellar masses. Using the Illustris cosmological hydrodynamical simulations, we find that this relationship arises because a single massive progenitor contributes the bulk of the mass to the accreted stellar component as well as sets its metallicity. Moreover, in the Illustris simulations, this relationship extends over 3 orders of magnitude in accreted stellar mass for central galaxies. We show that for Milky Way-like mass galaxies, the scatter in accreted metallicity at a fixed accreted stellar mass encodes information about the stellar mass of the dominant accreted progenitor, while the radial density and metallicity gradients of the accreted stellar component encodes information about the time of accretion of the dominant progenitor. We demonstrate that for Milky Way-like mass galaxies, the Illustris simulations predict that the metallicity and the stellar mass of the total accreted stellar component can be reconstructed from aperture measurements of the stellar halo along the minor axis of edge-on disc galaxies. These correlations highlight the potential for observational studies of stellar haloes to quantify our understanding of the most dominant events in the growth history of galaxies. We explore the implications of our model for our understanding of the accretion histories of the Milky Way, M31, and NGC 5128. In particular, a relatively late and massive accretion is favoured for M31; additionally, we provide a first estimate of the accreted stellar mass for NGC 5128.

  16. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Noble, Scott C.; Krolik, Julian H.

    2011-01-01

    We present new global calculations of X-ray spectra from fully relativistic magneto-hydrodynamic (MHO) simulations of black hole (BH) accretion disks. With a self consistent radiative transfer code including Compton scattering and returning radiation, we can reproduce the predominant spectral features seen in decades of X-ray observations of stellar-mass BHs: a broad thermal peak around 1 keV, power-law continuum up to >100 keV, and a relativistically broadened iron fluorescent line. By varying the mass accretion rate, different spectral states naturally emerge: thermal-dominant, steep power-law, and low/hard. In addition to the spectral features, we briefly discuss applications to X-ray timing and polarization.

  17. Probing general relativistic precession around stellar-mass black holes with tomography and polarimetry

    NASA Astrophysics Data System (ADS)

    Ingram, A.

    2017-10-01

    Accreting stellar-mass black holes often show a quasi-periodic oscillation (QPO) in their X-ray flux, and an iron emission line in their X-ray spectrum. The iron line is generated through disc reflection, and its shape is distorted by rapid orbital motion and gravitational redshift. The physical origin of the QPO has long been debated, but is often attributed to Lense-Thirring precession, a General Relativistic effect causing the inner flow to precess as the spinning black hole twists up the surrounding space-time. This predicts a characteristic rocking of the iron line between red- and blueshift as the receding and approaching sides of the disc are respectively illuminated. I will first talk about our XMM-Newton and NuSTAR observations of the black hole binary H 1743-322 in which the line energy varies systematically over the ˜ 4 s QPO cycle, as predicted. This result has enabled us to map the inner accretion disc using tomographic techniques for the first time. I will then talk about the quasi-periodic swings in X-ray polarisation angle predicted by the precession model, and show how we can go about measuring such swings with the recently selected NASA Small explorer mission IXPE and proposed missions such as XIPE and eXTP.

  18. A Stellar-mass Black Hole in the Ultra-luminous X-ray Source M82 X-1

    NASA Technical Reports Server (NTRS)

    Okajima, Takashi; Ebisawa, Ken; Kawaguchi, Toshihiro

    2007-01-01

    We have analyzed the archival XMM-Newton data of the archetypal Ultra-Luminous X-ray Source (ULX) M82 X-1 with an LO5 ksec exposure when the source was in the steady state. Thanks to the high photon statistics from the large effective area and long exposure, we were able to discriminate different X-ray continuum spectral models. Neither the standard accretion disk model (where the radial dependency of the disk effective temperature is T(r) proportional to r(sup -3/4)) nor a power-law model gives a satisfactory fit. In fact, observed curvature of the M82 X-1 spectrum was just between those of the two models. When the exponent of the radial dependence (p in T(r) proportional to r(sup -P)) of the disk temperature is allowed to be free, we obtained p = 0.61 (sup +0.03)(sub -0.02). Such a reduction of p from the standard value 3/4 under extremely high mass accretion rates is predicted from the accretion disk theory as a consequence of the radial energy advection. Thus, the accretion disk in M82 X-1 is considered to be in the Slim disk state, where an optically thick Advection Dominant Accretion Flow (ADAF) is taking place. We have applied a theoretical slim disk spectral model to M82 X-1, and estimated the black hole mass approximately equal to 19 - 32 solar mass. We conclude that M82 X-1 is a stellar black hole which has been produced through evolution of an extremely massive star, shining at a several times the super-Eddington luminosity.

  19. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (I.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  20. Precession of orbits around the stellar-mass black hole in H 1743-322

    NASA Astrophysics Data System (ADS)

    Ingram, Adam

    2016-07-01

    Accreting stellar-mass black holes often show a quasi-periodic oscillation (QPO) in their X-ray flux with a period that slowly drifts from ~10s to ~0.05s, and an iron emission line in their X-ray spectrum. The iron line is generated by fluorescent re-emission, by the accretion disk, of X-ray photons originating in the innermost hot flow. The line shape is distorted by relativistic motion of the orbiting plasma and the gravitational pull of the black hole. The QPO arises from the immediate vicinity of the black hole, but its physical origin has long been debated. It has been suggested that the QPO originates via Lense-Thirring precession, a General Relativistic effect causing the inner flow to precess as the spinning black hole twists up the surrounding space-time. This predicts a characteristic rocking of the iron line between red and blue shift as the receding and approaching sides of the disk are respectively illuminated. I will talk about our observations of the black hole binary H 1743-322 in which the line energy varies in step with the ~4.5s QPO cycle, providing strong evidence that such QPOs originate via Lense-Thirring precession. This effect has previously been measured in our Solar System but our detection is in the strong field regime of General Relativity, at a precession rate 14 orders of magnitude faster than possible in the Earth's gravitational field. Our result enables the application of tomographic techniques to map the motion of matter in the strong gravity near black hole event horizons.

  1. X-ray constraints on the number of stellar mass black holes in the inner parsec

    NASA Astrophysics Data System (ADS)

    Deegan, Patrick; Nayakshin, Sergei

    2006-12-01

    Due to dynamical friction stellar mass black holes should form a cusp in the inner parsec. Calculations [5, 6] show that approximately 20 thousand black holes would be present in a sphere with radius of about a parsec around Sgr A*. The presence of these objects opens up the possibility that they might be accreting ''cool'' gas (i.e. the Minispiral) as discussed by Morris [6]. Here we calculate the X-ray emission expected from these black holes as a method to constrain their population. We find that the data limits the total number of such black holes to around 10 - 20 thousand. Even a much smaller number of such black holes, i.e. 5 thousand, is sufficient to produce several sources with X-ray luminosity above Lx ~ 1033 erg s-1 at any one time. We suggest that some of the discrete X-ray sources observed by Muno [7] with Chandra in the inner parsec may be such ''fake X-ray binaries''.

  2. Evaporation of Accretion Disks around Black Holes: The Disk-Corona Transition and the Connection to the Advection-dominated Accretion Flow.

    PubMed

    Liu; Yuan; Meyer; Meyer-Hofmeister; Xie

    1999-12-10

    We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-dominated accretion flow (ADAF) model to the observed spectra (for a review, see Narayan, Mahadevan, & Quataert) and determine where the transition of accretion via a cool disk to a coronal flow/ADAF would be located for these rates. We compare this with the observed location of the inner disk edge, as estimated from the maximum velocity of the Halpha emission line. We find that the transition caused by evaporation agrees with this determination in stellar disks. We also show that the ADAF and the "thin outer disk + corona" are compatible in terms of the physics in the transition region.

  3. Black holes in binary stellar systems and galactic nuclei

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  4. The Mass Distribution of Stellar-mass Black Holes

    NASA Astrophysics Data System (ADS)

    Farr, Will M.; Sravan, Niharika; Cantrell, Andrew; Kreidberg, Laura; Bailyn, Charles D.; Mandel, Ilya; Kalogera, Vicky

    2011-11-01

    We perform a Bayesian analysis of the mass distribution of stellar-mass black holes using the observed masses of 15 low-mass X-ray binary systems undergoing Roche lobe overflow and 5 high-mass, wind-fed X-ray binary systems. Using Markov Chain Monte Carlo calculations, we model the mass distribution both parametrically—as a power law, exponential, Gaussian, combination of two Gaussians, or log-normal distribution—and non-parametrically—as histograms with varying numbers of bins. We provide confidence bounds on the shape of the mass distribution in the context of each model and compare the models with each other by calculating their relative Bayesian evidence as supported by the measurements, taking into account the number of degrees of freedom of each model. The mass distribution of the low-mass systems is best fit by a power law, while the distribution of the combined sample is best fit by the exponential model. This difference indicates that the low-mass subsample is not consistent with being drawn from the distribution of the combined population. We examine the existence of a "gap" between the most massive neutron stars and the least massive black holes by considering the value, M 1%, of the 1% quantile from each black hole mass distribution as the lower bound of black hole masses. Our analysis generates posterior distributions for M 1%; the best model (the power law) fitted to the low-mass systems has a distribution of lower bounds with M 1%>4.3 M sun with 90% confidence, while the best model (the exponential) fitted to all 20 systems has M 1%>4.5 M sun with 90% confidence. We conclude that our sample of black hole masses provides strong evidence of a gap between the maximum neutron star mass and the lower bound on black hole masses. Our results on the low-mass sample are in qualitative agreement with those of Ozel et al., although our broad model selection analysis more reliably reveals the best-fit quantitative description of the underlying mass

  5. Mass-loss from advective accretion disc around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata; Nandi, Anuj

    2015-11-01

    We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure-supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (E) and specific angular momentum (λ) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole (ak) plays an important role in deciding the outflow rate R_{dot{m}} (ratio of mass flux of outflow to inflow); in particular, R_{dot{m}} is directly correlated with ak for the same set of inflow parameters. It is found that a large range of the inflow parameters allows global accretion-ejection solutions, and the effective area of the parameter space (E, λ) with and without outflow decreases with black hole spin (ak). We compute the maximum outflow rate (R^{max}_{dot{m}}) as a function of black hole spin (ak) and observe that R^{max}_{dot{m}} weakly depends on ak that lies in the range ˜10-18 per cent of the inflow rate for the adiabatic index (γ) with 1.5 ≥ γ ≥ 4/3. We present the observational implication of our approach while studying the steady/persistent jet activities based on the accretion states of black holes. We discuss that our formalism seems to have the potential to explain the observed jet kinetic power for several Galactic black hole sources and active galactic nuclei.

  6. Powerful, Rotating Disk Winds from Stellar-mass Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Fabian, A. C.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Raymond, J.; Reynolds, C. S.

    2015-12-01

    We present an analysis of ionized X-ray disk winds found in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe xxv line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe xxvi line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are rotating with the orbital velocity of the underlying disk, and provides a new means of estimating launching radii—crucial to understanding wind driving mechanisms. Some aspects of the wind velocities and radii correspond well to the broad-line region in active galactic nuclei (AGNs), suggesting a physical connection. We discuss these results in terms of prevalent models for disk wind production and disk accretion itself, and implications for massive black holes in AGNs.

  7. On the Calculation of the Fe K-alpha Line Emissivity of Black Hole Accretion Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawczynski, H.; Beheshtipour, B., E-mail: krawcz@wustl.edu

    Observations of the fluorescent Fe K α emission line from the inner accretion flows of stellar mass black holes in X-ray binaries and supermassive black holes in active galactic nuclei have become an important tool to study the magnitude and inclination of the black hole spin, and the structure of the accretion flow close to the event horizon of the black hole. Modeling spectral, timing, and soon also X-ray polarimetric observations of the Fe K α emission requires the calculation of the specific intensity in the rest frame of the emitting plasma. We revisit the derivation of the equation usedmore » for calculating the illumination of the accretion disk by the corona. We present an alternative derivation leading to a simpler equation, and discuss the relation to previously published results.« less

  8. On the Maximum Mass of Accreting Primordial Supermassive Stars

    NASA Astrophysics Data System (ADS)

    Woods, T. E.; Heger, Alexander; Whalen, Daniel J.; Haemmerlé, Lionel; Klessen, Ralf S.

    2017-06-01

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ˜ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01-10 M ⊙ yr-1 using the stellar evolution code Kepler. Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000-330,000 M ⊙ for accretion rates of 0.1-10 M ⊙ yr-1, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  9. Central stellar mass deficits of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Tsige Dullo, Bililign; Graham, Alister

    2016-01-01

    The centers of giant galaxies display stellar mass deficits (Mdef) which are thought to be a signature left by inspiraling supermassive black holes (SMBHs) from pre-merged galaxies. We quantify these deficits using the core-Sérsic model for the largest ever sample of early-type galaxies and find Mdef ˜ 0.5 to 4 MBH (SMBH mass). We find that lenticular disc galaxies with bulge magnitudes MV ≤ -21.0 mag also have central stellar deficits, suggesting that their bulges may have formed from major merger events while their surroundingdisc was subsequently built up, perhaps via cold gas accretion scenarios. Interestingly, these bulges have sizes and mass densities comparable to the compact galaxies found at z ˜ 1.5 to 2.

  10. A Very Massive Stellar Black Hole in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    2001-11-01

    VLT ISAAC Uncovers an Enigmatic Microquasar Summary One of the most enigmatic stellar systems in our Milky Way Galaxy has been shown to harbour a very massive black hole. With 14 times more mass than the Sun [1], this is the heaviest known stellar black hole in the Galaxy. Using the ISAAC instrument on the VLT 8.2-m ANTU telescope at the ESO Paranal Observatory , an international team of astronomers [2] peered into a remote area of the Milky Way to probe the binary system GRS 1915+105 , located almost 40,000 light-years away. They were able to identify the low-mass star that feeds the black hole by means of a steady flow of stellar material. A detailed follow-up study revealed how this star revolves around its hungry companion. The analysis of the orbital motion then made it possible to estimate the mass of the black hole. The observation of the heavy black hole in GRS 1915+105 is opening up fundamental questions about how massive stellar black holes form, and whether or not such objects rotate around their own axes. PR Photo 31a/01 : Schematic drawing of the GRS 1915+105 binary system . PR Photo 31b/01 : ISAAC spectrum of the companion star . PR Photo 31c/01 : The velocity curve from which the mass of the black hole was derived . Miniature Quasars in our Galaxy ESO PR Photo 31a/01 ESO PR Photo 31a/01 [Preview - JPEG: 400 x 399 pix - 44k] [Normal - JPEG: 800 x 797 pix - 192k] Caption : PR Photo 31a/01 shows an artist's impression of the binary stellar system GRS 1915+105 in which a heavy black hole is present. The distance between the donor star and the accreting black hole is about half the distance between the Earth and the Sun. The drawing illustrates how the donor star feeds the black hole via an accretion disk , and also the emergence of jets perpendicular to the disk. In the lower panel the blue colour denotes matter that spirals in the accretion disk, while in the orange region matter is freely falling radially into the black hole. Technical information

  11. Regimes of mini black hole abandoned to accretion

    NASA Astrophysics Data System (ADS)

    Paik, Biplab

    2018-01-01

    Being inspired by the Eddington’s idea, along with other auxiliary arguments, it is unveiled that there exist regimes of a black hole that would prohibit accretion of ordinary energy. In explicit words, there exists a lower bound to black hole mass below which matter accretion process does not run for black holes. Not merely the baryonic matter, but, in regimes, also the massless photons could get prohibited from rushing into a black hole. However, unlike the baryon accretion abandoned black hole regime, the mass-regime of a black hole prohibiting accretion of radiation could vary along with its ambient temperature. For example, we discuss that earlier to 10‑8 s after the big-bang, as the cosmological temperature of the Universe grew above ˜ 1014 K, the mass range of black hole designating the radiation accretion abandoned regime, had to be in varying state being connected with the instantaneous age of the evolving Universe by an “one half” power law. It happens to be a fact that a black hole holding regimes prohibiting accretion of energy is gigantic by its size in comparison to the Planck length-scale. Hence the emergence of these regimes demands mini black holes for not being viable as profound suckers of energy. Consideration of accretion abandoned regimes could be crucial for constraining or judging the evolution of primordial black holes over the age of the Universe.

  12. Growth problems of stellar black holes in early galaxies

    NASA Astrophysics Data System (ADS)

    Orofino, M. C.; Ferrara, A.; Gallerani, S.

    2018-06-01

    The nature of the seeds of the observed high-z super-massive black holes (SMBH) is unknown. Although different options have been proposed, involving e.g. intermediate mass direct collapse black holes, BH remnants of massive stars remain the most natural explanation. To identify the most favorable conditions (if any) for their rapid growth, we study the accretion rate of a M• = 100M⊙ BH formed in a typical z = 10 galaxy under different conditions (e.g. galaxy structure, BH initial position and velocity). We model the galaxy baryonic content and follow the BH orbit and accretion history for 300 Myr (the time span in 10 > z > 7), assuming the radiation-regulated accretion model by Park & Ricotti (2013). We find that, within the limits of our model, BH seeds cannot grow by more than 30%, suggesting that accretion on light-seed models are inadequate to explain high-z SMBH. We also compute the X-ray emission from such accreting stellar BH population in the [0.5 - 8] keV band and find it comparable to the one produced by high-mass X-ray binaries. This study suggests that early BHs, by X-ray pre-heating of the intergalactic medium at cosmic dawn, might leave a specific signature on the HI 21 cm line power spectrum potentially detectable with SKA.

  13. Einstein's Gift: Stellar Mass Black Holes in the LIGO Era

    NASA Astrophysics Data System (ADS)

    Cadonati, Laura; Georgia Institute of Technology, LIGO-Virgo Collaboration

    2017-01-01

    The discovery of gravitational waves from the coalescence of black hole binary systems in LIGO has provided the first evidence for heavy stellar mass black holes. In this talk, I will review the observational evidence for black holes in LIGO data, its astrophysical implications and the plans for the near and long term future of ground based gravitational wave detection of black hole binary coalescences.

  14. Accretion onto a higher dimensional black hole

    NASA Astrophysics Data System (ADS)

    John, Anslyn J.; Ghosh, Sushant G.; Maharaj, Sunil D.

    2013-11-01

    We examine the steady-state spherically symmetric accretion of relativistic fluids, with a polytropic equation of state, onto a higher-dimensional Schwarzschild black hole. The mass accretion rate, critical radius, and flow parameters are determined and compared with results obtained in standard four dimensions. The accretion rate, M˙, is an explicit function of the black hole mass, M, as well as the gas boundary conditions and the dimensionality, D, of the spacetime. We also find the asymptotic compression ratios and temperature profiles below the accretion radius and at the event horizon. This analysis is a generalization of Michel’s solution to higher dimensions and of the Newtonian expressions of Giddings and Mangano, which consider the accretion of TeV black holes.

  15. Multi-scale simulations of black hole accretion in barred galaxies. Self-gravitating disk models

    NASA Astrophysics Data System (ADS)

    Jung, M.; Illenseer, T. F.; Duschl, W. J.

    2018-06-01

    Due to the non-axisymmetric potential of the central bar, in addition to their characteristic arms and bar, barred spiral galaxies form a variety of structures within the thin gas disk, such as nuclear rings, inner spirals, and dust lanes. These structures in the inner kiloparsec are extremely important in order to explain and understand the rate of black hole feeding. The aim of this work is to investigate the influence of stellar bars in spiral galaxies on the thin self-gravitating gas disk. We focus on the accretion of gas onto the central supermassive black hole and its time-dependent evolution. We conducted multi-scale simulations simultaneously resolving the galactic disk and the accretion disk around the central black hole. In all the simulations we varied the initial gas disk mass. As an additional parameter we chose either the gas temperature for isothermal simulations or the cooling timescale for non-isothermal simulations. Accretion was either driven by a gravitationally unstable or clumpy accretion disk or by energy dissipation in strong shocks. Most of the simulations show a strong dependence of the accretion rate at the outer boundary of the central accretion disk (r < 300 pc) on the gas flow at kiloparsec scales. The final black hole masses reach up to 109 M⊙ after 1.6 Gyr. Our models show the expected influence of the Eddington limit and a decline in growth rate at the corresponding sub-Eddington limit.

  16. Small Seed Black Hole Growth in Various Accretion Regimes

    NASA Astrophysics Data System (ADS)

    Gerling-Dunsmore, Hannalore J.; Hopkins, Philip F.

    2016-03-01

    Observational evidence indicates a population of super massive black holes (SMBHs) (~109 -1010M⊙) formed within 1 Gyr after the Big Bang. One proposed means of SMBH formation is accretion onto small seed black holes (BHs) (~ 100M⊙). However, the existence of SMBHs within 1 Gyr requires rapid growth, but conventional models of accretion fail to grow the seed BHs quickly enough. Super Eddington accretion (Ṁ >ṀEddington) may aid in improving growth efficiency. We study small seed BH growth via accretion in 3D, using the magneto-hydrodynamics+gravity code GIZMO. In particular, we consider a BH in a high density turbulent star-forming cloud, and ask whether or not the BH can capture sufficient gas to grow rapidly. We consider both Eddington-limited and super Eddington regimes, and resolve physics on scales from 0.1 pc to 1 kpc while including detailed models for stellar feedback physics, including stellar winds, supernovae, radiation pressure, and photo-ionization. We present results on the viability of different small seed BHs growing into SMBH candidates.

  17. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  18. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  19. On the Maximum Mass of Accreting Primordial Supermassive Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, T. E.; Heger, Alexander; Whalen, Daniel J.

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ∼ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01–10 M {sub ⊙} yr{sup −1} using themore » stellar evolution code Kepler . Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000–330,000 M {sub ⊙} for accretion rates of 0.1–10 M {sub ⊙} yr{sup −1}, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.« less

  20. Super-Eddington Accretion in Tidal Disruption Events: the Impact of Realistic Fallback Rates on Accretion Rates

    NASA Astrophysics Data System (ADS)

    Wu, Samantha; Coughlin, Eric R.; Nixon, Chris

    2018-04-01

    After the tidal disruption of a star by a massive black hole, disrupted stellar debris can fall back to the hole at a rate significantly exceeding its Eddington limit. To understand how black hole mass affects the duration of super-Eddington accretion in tidal disruption events, we first run a suite of simulations of the disruption of a Solar-like star by a supermassive black hole of varying mass to directly measure the fallback rate onto the hole, and we compare these fallback rates to the analytic predictions of the "frozen-in" model. Then, adopting a Zero-Bernoulli Accretion flow as an analytic prescription for the accretion flow around the hole, we investigate how the accretion rate onto the black hole evolves with the more accurate fallback rates calculated from the simulations. We find that numerically-simulated fallback rates yield accretion rates onto the hole that can, depending on the black hole mass, be nearly an order of magnitude larger than those predicted by the frozen-in approximation. Our results place new limits on the maximum black hole mass for which super-Eddington accretion occurs in tidal disruption events.

  1. Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter.

    PubMed

    Koushiappas, Savvas M; Loeb, Abraham

    2017-07-28

    We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.

  2. Spectroscopy of the Stellar Wind in the Cygnus X-1 System

    NASA Technical Reports Server (NTRS)

    Miskovicova, Ivica; Hanke, Manfred; Wilms, Joern; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert

    2010-01-01

    The X-ray luminosity of black holes is produced through the accretion of material from their companion stars. Depending on the mass of the donor star, accretion of the material falling onto the black hole through the inner Lagrange point of the system or accretion by the strong stellar wind can occur. Cygnus X-1 is a high mass X-ray binary system, where the black hole is powered by accretion of the stellar wind of its supergiant companion star HDE226868. As the companion is close to filling its Roche lobe, the wind is not symmetric, but strongly focused towards the black hole. Chandra-HETGS observations allow for an investigation of this focused stellar wind, which is essential to understand the physics of the accretion flow. We compare observations at the distinct orbital phases of 0.0, 0.2, 0.5 and 0.75. These correspond to different lines of sights towards the source, allowing us to probe the structure and the dynamics of the wind.

  3. The Dynamical Evolution of Stellar-Mass Black Holes in Dense Star Clusters

    NASA Astrophysics Data System (ADS)

    Morscher, Maggie

    Globular clusters are gravitationally bound systems containing up to millions of stars, and are found ubiquitously in massive galaxies, including the Milky Way. With densities as high as a million stars per cubic parsec, they are one of the few places in the Universe where stars interact with one another. They therefore provide us with a unique laboratory for studying how gravitational interactions can facilitate the formation of exotic systems, such as X-ray binaries containing black holes, and merging double black hole binaries, which are produced much less efficiently in isolation. While telescopes can provide us with a snapshot of what these dense clusters look like at present, we must rely on detailed numerical simulations to learn about their evolution. These simulations are quite challenging, however, since dense star clusters are described by a complicated set of physical processes occurring on many different length and time scales, including stellar and binary evolution, weak gravitational scattering encounters, strong resonant binary interactions, and tidal stripping by the host galaxy. Until very recently, it was not possible to model the evolution of systems with millions of stars, the actual number contained in the largest clusters, including all the relevant physics required describe these systems accurately. The Northwestern Group's Henon Monte Carlo code, CMC, which has been in development for over a decade, is a powerful tool that can be used to construct detailed evolutionary models of large star clusters. With its recent parallelization, CMC is now capable of addressing a particularly interesting unsolved problem in astrophysics: the dynamical evolution of stellar black holes in dense star clusters. Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from 20 - 100

  4. Estimation of mass outflow rates from viscous relativistic accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Kumar, Rajiv

    2016-07-01

    We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≳ 0.06 in the general relativistic prescription, but is lower if mass-loss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. The jet terminal speed increases with stronger shocks; quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6 per cent of the mass accretion rate.

  5. Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47.

    PubMed

    Trigo, María Díaz; Miller-Jones, James C A; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso

    2013-12-12

    Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. Energetic considerations and circular-polarization measurements have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk than by the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission.

  6. Foundations of Black Hole Accretion Disk Theory.

    PubMed

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  7. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  8. Forming supermassive black holes by accreting dark and baryon matter

    NASA Astrophysics Data System (ADS)

    Hu, Jian; Shen, Yue; Lou, Yu-Qing; Zhang, Shuangnan

    2006-01-01

    Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around ~109Msolar at high redshifts z(>~6). The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter on to seed black holes (BHs) created at redshifts z<~ 30 by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of during z~ 20-15, where σ0 is the cross-section per unit mass of SIDM particles and Cs is the velocity dispersion in the SIDM halo referred to as an effective `sound speed'. The second phase of BH mass growth is envisaged to proceed primarily via baryon accretion, eventually leading to SMBH masses of MBH~ 109Msolar such SMBHs may form either by z~ 6 for a sustained accretion at the Eddington limit or later at lower z for sub-Eddington mean accretion rates. In between these two phases, there is a transitional yet sustained diffusively limited accretion of SIDM particles which in an eventual steady state would be much lower than the accretion rates of the two main phases. We intend to account for the reported detections of a few SMBHs at early epochs, e.g. Sloan Digital Sky Survey (SDSS) 1148+5251 and so forth, without necessarily resorting to either super-Eddington baryon accretion or very frequent BH merging processes. Only extremely massive dark SIDM haloes associated with rare peaks of density fluctuations in the early Universe may harbour such early SMBHs or quasars. Observational consequences are discussed. During the final stage of accumulating a SMBH mass, violent feedback in circumnuclear environs of a galactic nucleus leads to the central bulge formation and gives rise to the familiar empirical MBH-σb correlation inferred for nearby normal

  9. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    PubMed

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  10. An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae.

    PubMed

    Kızıltan, Bülent; Baumgardt, Holger; Loeb, Abraham

    2017-02-08

    Intermediate-mass black holes should help us to understand the evolutionary connection between stellar-mass and super-massive black holes. However, the existence of intermediate-mass black holes is still uncertain, and their formation process is therefore unknown. It has long been suspected that black holes with masses 100 to 10,000 times that of the Sun should form and reside in dense stellar systems. Therefore, dedicated observational campaigns have targeted globular clusters for many decades, searching for signatures of these elusive objects. All candidate signatures appear radio-dim and do not have the X-ray to radio flux ratios required for accreting black holes. Based on the lack of an electromagnetic counterpart, upper limits of 2,060 and 470 solar masses have been placed on the mass of a putative black hole in 47 Tucanae (NGC 104) from radio and X-ray observations, respectively. Here we show there is evidence for a central black hole in 47 Tucanae with a mass of solar masses when the dynamical state of the globular cluster is probed with pulsars. The existence of an intermediate-mass black hole in the centre of one of the densest clusters with no detectable electromagnetic counterpart suggests that the black hole is not accreting at a sufficient rate to make it electromagnetically bright and therefore, contrary to expectations, is gas-starved. This intermediate-mass black hole might be a member of an electromagnetically invisible population of black holes that grow into supermassive black holes in galaxies.

  11. Modelling accretion disc and stellar wind interactions: the case of Sgr A.

    PubMed

    Christie, I M; Petropoulou, M; Mimica, P; Giannios, D

    2016-07-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disc, the ram and thermal pressures of the disc terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in ∼10 8  cm s -1 range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericentre passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly a month long X-ray flare with a peak luminosity of L ≈ 4 × 10 33  erg s -1 for a stellar mass-loss rate, disc number density, and thermal pressure strength of [Formula: see text], n d  = 10 5  cm -3 , and α = 0.1, respectively. This peak luminosity is comparable to the quiescent X-ray emission detected from Sgr A* and is within the detection capabilities of current X-ray observatories. Its detection could constrain the density and thickness of the disc at a distance of ∼3000 gravitational radii from the supermassive black hole.

  12. Mass inflation followed by Belinskii-Khalatnikov-Lifshitz collapse inside accreting, rotating black holes

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew J. S.

    2017-10-01

    Numerical evidence is presented that the Poisson-Israel mass inflation instability at the inner horizon of an accreting, rotating black hole is generically followed by Belinskii-Khalatnikov-Lifshitz oscillatory collapse to a spacelike singularity. The computation involves following all 6 degrees of freedom of the gravitational field. To simplify the problem, the computation takes as initial conditions the conformally separable solutions of Andrew J. S. Hamilton and Gavin Polhemus [Interior structure of rotating black holes. I. Concise derivation, Phys. Rev. D 84, 124055 (2011), 10.1103/PhysRevD.84.124055] and Andrew J. S. Hamilton [Interior structure of rotating black holes. II. Uncharged black holes, Phys. Rev. D 84, 124056 (2011), 10.1103/PhysRevD.84.124056] just above the inner horizon of a slowly accreting, rotating black hole and integrates the equations inward along single latitudes.

  13. Black Hole Disk Accretion in Supernovae

    NASA Astrophysics Data System (ADS)

    Mineshige, Shin; Nomura, Hideko; Hirose, Masahito; Nomoto, Ken'ichi; Suzuki, Tomoharu

    1997-11-01

    Massive stars in a certain mass range may form low-mass black holes after supernova explosions. In such massive stars, fallback of ~0.1 M⊙ materials onto a black hole is expected because of a deep gravitational potential or a reverse shock propagating back from the outer composition interface. We study hydrodynamical disk accretion onto a newborn low-mass black hole in a supernova using the smoothed particle hydrodynamics method. If the progenitor was rotating before the explosion, the fallback material should have a certain amount of angular momentum with respect to the black hole, thus forming an accretion disk. The disk material will eventually accrete toward the central object because of viscosity at a supercritical accretion rate, Ṁ/Ṁcrit>106, for the first several tens of days. (Here, Ṁcrit is the Eddington luminosity divided by c2.) We then expect that such an accretion disk is optically thick and advection dominated; that is, the disk is so hot that the produced energy and photons are advected inward rather than being radiated away. Thus, the disk luminosity is much less than the Eddington luminosity. The disk becomes hot and dense; for Ṁ/Ṁcrit~106, for example, T ~ 109(αvis/0.01)-1/4 K and ρ ~ 103(αvis/0.01)-1 g cm-3 (with αvis being the viscosity parameter) in the vicinity of the black hole. Depending on the material mixing, some interesting nucleosynthesis processes via rapid proton and alpha-particle captures are expected even for reasonable viscosity magnitudes (αvis ~ 0.01), and some of them could be ejected in a disk wind or a jet without being swallowed by the black hole.

  14. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    NASA Technical Reports Server (NTRS)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  15. Physics-Based Spectra of Accretion Disks around Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2005-01-01

    The purpose of this grant was to begin the process of deriving the light output of accretion disks around black holes directly from the actual processes that inject heat into the accreting matter, rather than from guessed dependences of heating rate on physical parameters. At JHU, the effort has focussed so far on models of accretion onto "intermediate mass black holes", a possible class of black holes, examples of which may have recently been discovered in nearby galaxies. There, Krolik and his student (Yawei Hui) have computed stellar atmospheres for uniformly-heated disks around this class of black holes. Their models serve two purposes: they are the very first serious attempts to compute the spectrum from accreting black holes in this mass range; and a library of such models can be used later in this program as contrasts for those computed on the basis of real disk dynamics. The output from these local disk calculations has also been successfully coupled to a program that applies the appropriate relativistic transformations and computes photon trajectories in order to predict the spectrum received by observers located at different polar angles. The principal new result of these calculations is the discovery of potentially observable ionization edges of H-like C and O at frequencies near the peak in flux from these objects. Most of the grant money at UCSB was spent on supporting graduate student Shane Davis. In addition. some money was spent on supporting two other students: Ari Socrates (now a Hubble Fellow at Princeton), and Laura Melling. Davis spent the year constructing stellar atmosphere models of accretion disks appropriate for the high/soft (thermal) state of black hole X-ray binaries. As with AGN models published previously by our collaboration with NASA support. our models include a complete general relativistic treatment of both the disk structure and the propagation of photons from the disk to a distant observer. They also include all important

  16. A Global Spectral Study of Stellar-Mass Black Holes with Unprecedented Sensitivity

    NASA Astrophysics Data System (ADS)

    Garci, Javier

    There are two well established populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, many millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range millions to billions of solar masses, which reside in the nucleus of most galaxies. Supermassive black holes play a leading role in shaping galaxies and are central to cosmology. However, they are hard to study because they are dim and they scarcely vary on a human timescale. Luckily, their variability and full range of behavior can be very effectively studied by observing their stellar-mass cousins, which display in miniature the full repertoire of a black hole over the course of a single year. The archive of data collected by NASA's Rossi X-ray Timing Explorer (RXTE) during its 16 year mission is of first importance for the study of stellar-mass black holes. While our ultimate goal is a complete spectral analysis of all the stellar-mass black hole data in the RXTE archive, the goal of this proposal is the global study of six of these black holes. The two key methodologies we bring to the study are: (1) Our recently developed calibration tool that increases the sensitivity of RXTE's detector by up to an order of magnitude; and (2) the leading X-ray spectral "reflection" models that are arguably the most effective means currently available for probing the effects of strong gravity near the event horizon of a black hole. For each of the six black holes, we will fit our models to all the archived spectral data and determine several key parameters describing the black hole and the 10-million-degree gas that surrounds it. Of special interest will be our measurement of the spin (or rate of rotation) of each black hole, which can be as high as tens of thousands of RPM. Profoundly, all the properties of an astronomical black hole are completely defined by specifying its spin and its mass. The main goal of this

  17. The doubling of stellar black hole nuclei

    NASA Astrophysics Data System (ADS)

    Kazandjian, Mher V.; Touma, J. R.

    2013-04-01

    It is strongly believed that Andromeda's double nucleus signals a disc of stars revolving around its central supermassive black hole on eccentric Keplerian orbits with nearly aligned apsides. A self-consistent stellar dynamical origin for such apparently long-lived alignment has so far been lacking, with indications that cluster self-gravity is capable of sustaining such lopsided configurations if and when stimulated by external perturbations. Here, we present results of N-body simulations which show unstable counter-rotating stellar clusters around supermassive black holes saturating into uniformly precessing lopsided nuclei. The double nucleus in our featured experiment decomposes naturally into a thick eccentric disc of apo-apse aligned stars which is embedded in a lighter triaxial cluster. The eccentric disc reproduces key features of Keplerian disc models of Andromeda's double nucleus; the triaxial cluster has a distinctive kinematic signature which is evident in Hubble Space Telescope observations of Andromeda's double nucleus, and has been difficult to reproduce with Keplerian discs alone. Our simulations demonstrate how the combination of an eccentric disc and a triaxial cluster arises naturally when a star cluster accreted over a preexisting and counter-rotating disc of stars drives disc and cluster into a mutually destabilizing dance. Such accretion events are inherent to standard galaxy formation scenarios. They are here shown to double stellar black hole nuclei as they feed them.

  18. Star-disc interaction in galactic nuclei: formation of a central stellar disc

    NASA Astrophysics Data System (ADS)

    Panamarev, Taras; Shukirgaliyev, Bekdaulet; Meiron, Yohai; Berczik, Peter; Just, Andreas; Spurzem, Rainer; Omarov, Chingis; Vilkoviskij, Emmanuil

    2018-05-01

    We perform high-resolution direct N-body simulations to study the effect of an accretion disc on stellar dynamics in an active galactic nucleus (AGN). We show that the interaction of the nuclear stellar cluster (NSC) with the gaseous accretion disc (AD) leads to formation of a stellar disc in the central part of the NSC. The accretion of stars from the stellar disc on to the super-massive black hole is balanced by the capture of stars from the NSC into the stellar disc, yielding a stationary density profile. We derive the migration time through the AD to be 3 per cent of the half-mass relaxation time of the NSC. The mass and size of the stellar disc are 0.7 per cent of the mass and 5 per cent of the influence radius of the super-massive black hole. An AD lifetime shorter than the migration time would result in a less massive nuclear stellar disc. The detection of such a stellar disc could point to past activity of the hosting galactic nucleus.

  19. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre.

    PubMed

    Genzel, R; Schödel, R; Ott, T; Eckart, A; Alexander, T; Lacombe, F; Rouan, D; Aschenbach, B

    2003-10-30

    Recent measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* (refs 4, 5) at the Galactic Centre is a 3.6-million-solar-mass black hole. Sgr A* is remarkably faint in all wavebands other than the radio region, however, which challenges current theories of matter accretion and radiation surrounding black holes. The black hole's rotation rate is not known, and therefore neither is the structure of space-time around it. Here we report high-resolution infrared observations of Sgr A* that reveal 'quiescent' emission and several flares. The infrared emission originates from within a few milliarcseconds of the black hole, and traces very energetic electrons or moderately hot gas within the innermost accretion region. Two flares exhibit a 17-minute quasi-periodic variability. If the periodicity arises from relativistic modulation of orbiting gas, the emission must come from just outside the event horizon, and the black hole must be rotating at about half of the maximum possible rate.

  20. Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    NASA Technical Reports Server (NTRS)

    Greene, Thomas P.; Lada, Charles J.; DeVincenzi, Donald L. (Technical Monitor)

    2002-01-01

    We present high-resolution (R is approximately equal to 18,000), high signal-to-noise 2 micron spectra of two luminous, X-ray flaring Class I protostars in the rho Ophiuchi cloud acquired with the NIRSPEC (near infrared spectrograph) of the Keck II telescope. We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L (sub bol) = 10 solar luminosity) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r(sub k) = 3.0. Its derived stellar luminosity (3 stellar luminosity) and stellar radius (3.1 solar radius) are consistent with those of a 0.5 solar mass pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.7 x 10(exp -6) solar masses yr(exp -1). We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute significantly to its near-IR (infrared) continuum veiling. Its rotational velocity v sin i = 50 km s(exp -1) is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 - 3 R(sub *). It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum

  1. ULXs from Accreting Neutron Stars: the Light Cylinder, the Stellar Surface, and Everything in Between

    NASA Astrophysics Data System (ADS)

    Parfrey, K.; Tchekhovskoy, A.

    2017-10-01

    I will present results from the first relativistic MHD simulations of accretion onto magnetized neutron stars, performed in general relativity in the Kerr spacetime. The accretion flow is geometrically thick with a relativistic-gas equation of state, appropriate for super-Eddington systems. Four regimes are recovered, in order of increasing stellar magnetic field strength (equivalently, decreasing mass accretion rate): (a) crushing of the stellar magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar's electromagnetic wind. A Poynting-flux-dominated relativistic jet, powered by stellar rotation, is produced when the intruding plasma succeeds in opening the pulsar's previously closed magnetic field lines. I will demonstrate the effect of changing the relative orientation of the stellar dipole and the large-scale magnetic field in the accreting plasma, and discuss our results in the context of the neutron-star-powered ULXs, as well as the transitional millisecond X-ray/radio pulsars and jet-launching neutron-star X-ray binaries.

  2. Tidal Disruptions Due to Stellar Mass Black Hole Binaries: Modifying the Spin Magnitudes and Directions of LIGO Sources

    NASA Astrophysics Data System (ADS)

    Lopez, Martin; Batta, Aldo; Ramírez-Ruiz, Enrico

    2018-01-01

    Globular clusters have about a thousand times denser stellar environments than our Milky Way. This crowded setting leads to many interactions between inhabitants of the cluster and the formation of a whole myriad of exotic objects. One such object is a binary system that forms which is composed of two stellar mass black holes (BHs). Due to the recent detection of gravitational waves (GWs), we know that some of these BH binaries (BHBs) are able to merge. Upon coalescence, BHBs produce GW signals that can be measured by the Laser Interferometer Gravitational-Wave Observatory (LIGO) group on Earth. Spin is one such parameter that LIGO can estimate from the type of signals they observe and as such can be used to constrain their production site. After these BHBs are assembled in dense stellar systems they can continue to interact with other members, either through tidal interactions or physical collisions. When a BHB tidally disrupts a star, a significant fraction of the debris can be accreted by the binary, effectively altering the spin of the BH members. Therefore, although a dynamically formed BHB will initially have low randomly aligned spins, through these types of interactions their birth spins can be significantly altered both in direction and magnitude. We have used a Lagrangian 3D Smoothed Particle Hydrodynamics (SPH) code GADGET-3 to simulate these interactions. Our results allow us to understand whether accretion from a tidal disruption event can significantly alter the birth properties of dynamically assembled BHBs such as spin, mass, and orbital attributes. The implications of these results will help us constrain the properties of BHBs in dense stellar systems in anticipation of an exciting decade ahead of us.

  3. Reconstructing the Accretion History of the Galactic Stellar Halo from Chemical Abundance Ratio Distributions

    NASA Astrophysics Data System (ADS)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-03-01

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ˜103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ˜6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.

  4. RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfsmore » from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10{sup 3–4} mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.« less

  5. Quasistationary solutions of scalar fields around accreting black holes

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  6. Young Stellar Objects in Lynds 1641: Disks and Accretion

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, 2MASS, and XMM covering 1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use this data, along with archival photometric data, to derive spectral types, masses, ages and extinction values. We also use the H_alpha and H_beta lines to derive accretion rates. We calculate the disk fraction as N(II)/N(II+III), where N(II) and N(III) are numbers of Class\\ II and Class\\ III sources, respectively, and obtain a disk fraction of 50% in L1641. We find that the disk frequency is almost constant as a function of stellar mass with a slight peak at log(M_*/M_sun) -0.25. The analysis of multi-epoch data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses in the M_acc vs. M_* plot. Forty-six new transition disk objects are confirmed in our spectroscopic survey and we find that the fraction of transition disks that are actively accreting is lower than for optically thick disks (40-45% vs. 77-79% respectively). We confirm our previous result that the accreting YSOs with transition disks have a similar median accretion rate to normal optically thick disks. Analyzing the age distributions of various populations, we find that the diskless YSOs are statistically older than the YSOs with optically-thick disks and the transition disk objects have a median age which is intermediate between the two populations.

  7. STELLAR VELOCITY DISPERSION MEASUREMENTS IN HIGH-LUMINOSITY QUASAR HOSTS AND IMPLICATIONS FOR THE AGN BLACK HOLE MASS SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grier, C. J.; Martini, P.; Peterson, B. M.

    We present new stellar velocity dispersion measurements for four luminous quasars with the Near-Infrared Integral Field Spectrometer instrument and the ALTAIR laser guide star adaptive optics system on the Gemini North 8 m telescope. Stellar velocity dispersion measurements and measurements of the supermassive black hole (BH) masses in luminous quasars are necessary to investigate the coevolution of BHs and galaxies, trace the details of accretion, and probe the nature of feedback. We find that higher-luminosity quasars with higher-mass BHs are not offset with respect to the M{sub BH}-{sigma}{sub *} relation exhibited by lower-luminosity active galactic nuclei (AGNs) with lower-mass BHs,more » nor do we see correlations with galaxy morphology. As part of this analysis, we have recalculated the virial products for the entire sample of reverberation-mapped AGNs and used these data to redetermine the mean virial factor (f) that places the reverberation data on the quiescent M{sub BH}-{sigma}{sub *} relation. With our updated measurements and new additions to the AGN sample, we obtain (f) = 4.31 {+-} 1.05, which is slightly lower than, but consistent with, most previous determinations.« less

  8. Black holes, disks, and jets following binary mergers and stellar collapse: The narrow range of electromagnetic luminosities and accretion rates.

    PubMed

    Shapiro, Stuart L

    2017-05-15

    We have performed magnetohydrodynamic simulations in general relativity of binary neutron star and binary black hole-neutron star mergers, as well as the magnetorotational collapse of supermassive stars. In many cases the outcome is a spinnng black hole (BH) immersed in a magnetized disk, with a jet emanating from the poles of the BH. While their formation scenarios differ and their BH masses, as well as their disk masses, densities, and magnetic field strengths, vary by orders of magnitude, these features conspire to generate jet Poynting luminosities that all lie in the same, narrow range of ~10 52±1 erg s -1 . A similar result applies to their BH accretion rates upon jet launch, which is ~0.1-10 M ⊙ s -1 . We provide a simple model that explains these unanticipated findings. Interestingly, these luminosities reside in the same narrow range characterizing the observed luminosity distributions of over 400 short and long GRBs with distances inferred from spectroscopic redshifts or host galaxies. This result, together with the GRB lifetimes predicted by the model, supports the belief that a compact binary merger is the progenitor of an SGRB, while a massive, stellar magnetorotational collapse is the progenitor of an LGRB.

  9. Black holes, disks, and jets following binary mergers and stellar collapse: The narrow range of electromagnetic luminosities and accretion rates

    PubMed Central

    Shapiro, Stuart L.

    2018-01-01

    We have performed magnetohydrodynamic simulations in general relativity of binary neutron star and binary black hole-neutron star mergers, as well as the magnetorotational collapse of supermassive stars. In many cases the outcome is a spinnng black hole (BH) immersed in a magnetized disk, with a jet emanating from the poles of the BH. While their formation scenarios differ and their BH masses, as well as their disk masses, densities, and magnetic field strengths, vary by orders of magnitude, these features conspire to generate jet Poynting luminosities that all lie in the same, narrow range of ~1052±1 erg s−1. A similar result applies to their BH accretion rates upon jet launch, which is ~0.1–10 M⊙ s−1. We provide a simple model that explains these unanticipated findings. Interestingly, these luminosities reside in the same narrow range characterizing the observed luminosity distributions of over 400 short and long GRBs with distances inferred from spectroscopic redshifts or host galaxies. This result, together with the GRB lifetimes predicted by the model, supports the belief that a compact binary merger is the progenitor of an SGRB, while a massive, stellar magnetorotational collapse is the progenitor of an LGRB. PMID:29881790

  10. An accreting black hole model for Sagittarius A

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio

    1992-01-01

    Several observations, notably of broad He I, Br-alpha, and Br-gamma emission lines from the vicinity of IRS 16, indicate the presence of a strong circumnuclear wind near the dynamical center of the Galaxy. Sgr A, a hypothesized supermassive object situated about 0.06 pc to the west of IRS 16, should be accreting from this wind if it is not itself a source of gaseous outflow, for which there is currently no observational evidence. Here, the spectrum and flux of radiation resulting from this process are calculated, and it is shown that they are consistent with the data over at least 12 decades of frequency. Together with the kinematic studies of the stellar and gas distributions in this region, the model argues strongly in favor of Sgr A being a black hole with mass over a million solar masses.

  11. Momentum-driven Winds from Radiatively Efficient Black Hole Accretion and Their Impact on Galaxies

    NASA Astrophysics Data System (ADS)

    Brennan, Ryan; Choi, Ena; Somerville, Rachel S.; Hirschmann, Michaela; Naab, Thorsten; Ostriker, Jeremiah P.

    2018-06-01

    We explore the effect of momentum-driven winds representing radiation-pressure-driven outflows from accretion onto supermassive black holes in a set of numerical hydrodynamical simulations. We explore two matched sets of cosmological zoom-in runs of 24 halos with masses ∼1012.0–1013.4 M ⊙ run with two different feedback models. Our “NoAGN” model includes stellar feedback via UV heating, stellar winds and supernovae, photoelectric heating, and cosmic X-ray background heating from a metagalactic background. Our fiducial “MrAGN” model is identical except that it also includes a model for black hole seeding and accretion, as well as heating and momentum injection associated with the radiation from black hole accretion. Our MrAGN model launches galactic outflows, which result in both “ejective” feedback—the outflows themselves that drive gas out of galaxies—and “preventative” feedback, which suppresses the inflow of new and recycling gas. As much as 80% of outflowing galactic gas can be expelled, and accretion can be suppressed by as much as a factor of 30 in the MrAGN runs when compared with the NoAGN runs. The histories of NoAGN galaxies are recycling dominated, with ∼70% of material that leaves the galaxy eventually returning, and the majority of outflowing gas reaccretes on 1 Gyr timescales without AGN feedback. Outflowing gas in the MrAGN runs has a higher characteristic velocity (500–1000 km s‑1 versus 100–300 km s‑1 for outflowing NoAGN gas) and travels as far as a few megaparsecs. Only ∼10% of ejected material is reaccreted in the MrAGN galaxies.

  12. Measurements of mass accretion rates in Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Donehew, Brian

    Herbig Ae/Be stars(HAeBes) are young stellar objects of spectral class F2 through B0, with the central star often surrounded by a circumstellar disk of gas and dust. They are the higher mass analogs to T Tauri stars. The interaction between the star and the disk is not well understood, nor is the disk structure. The central star will often accrete mass from the disk, and the mass accretion rate is an important parameter for modeling the disk structure and evolution. The methods for measuring mass accretion rates of T Tauri stars are generally not applicable to HAeBe stars. As such, reliable measurements of mass accretion rates for HAeBes are rare. Garrison(1978) saw that the Balmer Discontinuity of HAeBes was veiled, and attributed this veiling to accretion luminosity. Building on Garrison(1978) and the work of Muzerolle et al. (2004), I determine the mass accretion rates and accretion luminosities of a large sample of HAeBe stars by measuring the veiling of the Balmer Discontinuity due to the accretion luminosity. Muzerolle et al. (1998) established a strong correlation between the accretion luminosity of T Tauri stars and the luminosity of Br gamma, and this correlation seems to extend to the evolutionary precursors to HAeBes, intermediate T Tauri stars, as well Calvet et al. (2004). I test this correlation for HAeBes and discover that it is valid for HAe stars but not for HBe stars. From examining the HAeBes of my sample from spectral range A3 to B7, there does not seem to be a particular spectral type at which the correlation fails. A few of the late HBe stars are consistent with the correlation, but most of the HBe stars have Br gamma luminosities much larger than what one would expect from the correlation. This suggests that there might be a significant stellar wind component to the Br gamma luminosity for many of the HBe stars. T Tauri stars accrete mass from their disks magnetospherically, in which the strong stellar field of the star truncates the disk at

  13. Radio Observations of Ultra-Luminous X-Ray Sources ---Microblazars or Intermediate-Mass Black Holes?---

    NASA Astrophysics Data System (ADS)

    Körding, E.; Colbert, E.; Falcke, H.

    In recent years Ultra-Luminous X-Ray sources (ULXs) received wide attention, however, their true nature is not yet understood. Many explanations have been suggested, including intermediate-mass black holes, super-Eddington accretion flows, anisotropic emission, and relativistic beaming of microquasars. We model the logN-logS distribution of ULXs assuming that each neutron star or black hole XRB can be described by an accretion disk plus jet model, where the jet is relativistically beamed. The distribution can be either fit by intermediate-mass black holes or by stellar mass black holes with mildly relativistic jets. Even though the jet is intrinsically weaker than the accretion disk, relativistic beaming can in the latter approach lead to the high fluxes observed. To further explore the possibility of microblazars contributing to the ULX phenomenon, we have embarked on a radio-monitoring study of ULXs in nearby galaxies with the VLA. However, up to now no radio flare has been detected. Using the radio/X-ray correlation the upper limits on the radio flux can be converted into upper limits for the black hole masses of MBH ≲ 10^3 M⊙.

  14. Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Svirski, Gilad; Piran, Tsvi; Krolik, Julian

    2017-05-01

    Models for tidal disruption events (TDEs) in which a supermassive black hole disrupts a star commonly assume that the highly eccentric streams of bound stellar debris promptly form a circular accretion disc at the pericentre scale. However, the bolometric peak luminosity of most TDE candidates, ˜ 1044 erg s- 1, implies that we observe only ˜1 per cent of the energy expected from radiatively efficient accretion. Even the energy that must be lost to circularize the returning tidal flow is larger than the observed energy. Recently, Piran et al. suggested that the observed optical TDE emission is powered by shocks at the apocentre between freshly infalling material and earlier arriving matter. This model explains the small radiated energy, the low temperature and the large radius implied by the observations as well as the t-5/3 light curve. However the question of the system's low bolometric efficiency remains unanswered. We suggest that the high orbital energy and low angular momentum of the flow make it possible for magnetic stresses to reduce the matter's already small angular momentum to the point at which it can fall ballistically into the supermassive black hole before circularization. As a result, the efficiency is only ˜1-10 per cent of a standard accretion disc's efficiency. Thus, the intrinsically high eccentricity of the tidal debris naturally explains why most TDE candidates are fainter than expected.

  15. Accretion onto some well-known regular black holes

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  16. Accretion onto a moving Reissner-Nordström black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Lei; Yang, Rongjia, E-mail: jiaoleizhijia@163.com, E-mail: yangrongjia@tsinghua.org.cn

    We obtain an analytic solution for accretion of a gaseous medium with a adiabatic equation of state ( P =ρ) onto a Reissner-Nordström black hole which moves at a constant velocity through the medium. We obtain the specific expression for each component of the velocity and present the mass accretion rate which depends on the mass and the electric charge. The result we obtained may be helpful to understand the physical mechanism of accretion onto a moving black hole.

  17. Accretion onto a charged Kiselev black hole

    NASA Astrophysics Data System (ADS)

    Abbas, G.; Ditta, A.

    2018-04-01

    Accretion of matter onto a compact is one of the interesting astrophysical processes. Here, we study the accretion of matter onto a charged Kiselev black hole. The problem of static and spherically symmetric accretion of a polytropic fluid is explored for the analytic solution of equations of motion. We have investigated the necessary conditions for existence of the critical flow points and the mass accretion rate. Finally, we discuss the polytropic gas accretion in detail. It has been found that in the accretion process the quintessence and charge parameters play a dominant role.

  18. Black Hole Disk Accretion in Supernovae

    NASA Astrophysics Data System (ADS)

    Nomura, H.; Mineshige, S.; Hirose, M.; Nomoto, K.; Suzuki, T.

    Hydrodynamical disk accretion flow onto a new-born black hole in a supernova is studied using the SPH (Smoothed Particle Hydrodynamics) method. It has been suggested that a mass of ~0.1Modot falls back to a black hole by a reverse shock. If the progenitor was rotating before the explosion, the accreting material should have a certain amount of angular momentum, thus forming an accretion disk. Disk material will eventually accrete towards the central object via viscosity with a supercritical accretion rate, dotM / dotMc > 106, for first several tens of days. (Here, dotMc is the Eddington luminosity divided by c2.) We then expect that such an accretion disk is optically thick and advection-dominated; that is, the disk is so hot that produced energy and photons are advected inward rather than being radiated away. Thus, the disk luminosity is much less than the Eddington luminosity (~1038erg s-1). The disk becomes hot and dense; for dotM / dotMc ~106 and the viscosity parameter alphavis ~0.01, for example, T ~109K and rho ~103gcm-3 in the vicinity of the central object. Efficient nucleosynthesis is hence expected even for reasonable viscosity magnitudes, although produced elements may be swallowed by the black hole.

  19. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  20. Central Stellar Mass Deficits in the Bulges of Local Lenticular Galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, B. T.

    2014-03-01

    The centers of giant galaxies display stellar mass deficits (Mdef) which are thought to be a signature left by inspiraling supermassive black hole (SMBH) binaries that are formed in post-merger galaxies. We quantify these deficits for a sample of five luminous lenticular galaxies with bulge magnitude MV ≲ -21 mag and find Mdef ≍ 0.5 - 2MBH (black hole mass). Contrary to the traditionally proposed lenticular galaxy formation mechanisms such as ram-pressure stripping and galaxy harassment, the mass deficits in these galaxies suggest a two stage inside-out process for their assembly. That is, their bulges may have formed through “dry” major-merger events involving SMBHs while their disk was subsequently built up via cold gas accretion scenarios. Interestingly, these bulges have sizes and mass densities comparable to the compact massive galaxies found at z ˜ 2.

  1. Accretion Disks and the Formation of Stellar Systems

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin Michelle

    2011-02-01

    In this thesis, we examine the role of accretion disks in the formation of stellar systems, focusing on young massive disks which regulate the flow of material from the parent molecular core down to the star. We study the evolution of disks with high infall rates that develop strong gravitational instabilities. We begin in chapter 1 with a review of the observations and theory which underpin models for the earliest phases of star formation and provide a brief review of basic accretion disk physics, and the numerical methods that we employ. In chapter 2 we outline the current models of binary and multiple star formation, and review their successes and shortcomings from a theoretical and observational perspective. In chapter 3 we begin with a relatively simple analytic model for disks around young, high mass stars, showing that instability in these disks may be responsible for the higher multiplicity fraction of massive stars, and perhaps the upper mass to which they grow. We extend these models in chapter 4 to explore the properties of disks and the formation of binary companions across a broad range of stellar masses. In particular, we model the role of global and local mechanisms for angular momentum transport in regulating the relative masses of disks and stars. We follow the evolution of these disks throughout the main accretion phase of the system, and predict the trajectory of disks through parameter space. We follow up on the predictions made in our analytic models with a series of high resolution, global numerical experiments in chapter 5. Here we propose and test a new parameterization for describing rapidly accreting, gravitationally unstable disks. We find that disk properties and system multiplicity can be mapped out well in this parameter space. Finally, in chapter 6, we address whether our studies of unstable disks are relevant to recently detected massive planets on wide orbits around their central stars.

  2. A dark jet dominates the power output of the stellar black hole Cygnus X-1.

    PubMed

    Gallo, Elena; Fender, Rob; Kaiser, Christian; Russell, David; Morganti, Raffaella; Oosterloo, Tom; Heinz, Sebastian

    2005-08-11

    Black holes undergoing accretion are thought to emit the bulk of their power in the X-ray band by releasing the gravitational potential energy of the infalling matter. At the same time, they are capable of producing highly collimated jets of energy and particles flowing out of the system with relativistic velocities. Here we show that the 10-solar-mass (10M(o)) black hole in the X-ray binary Cygnus X-1 (refs 3-5) is surrounded by a large-scale (approximately 5 pc in diameter) ring-like structure that appears to be inflated by the inner radio jet. We estimate that in order to sustain the observed emission of the ring, the jet of Cygnus X-1 has to carry a kinetic power that can be as high as the bolometric X-ray luminosity of the binary system. This result may imply that low-luminosity stellar-mass black holes as a whole dissipate the bulk of the liberated accretion power in the form of 'dark', radiatively inefficient relativistic outflows, rather than locally in the X-ray-emitting inflow.

  3. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31.

    PubMed

    Middleton, Matthew J; Miller-Jones, James C A; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John S; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith

    2013-01-10

    A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.

  4. Magnetic Origin of Black Hole Winds Across the Mass Scale

    NASA Technical Reports Server (NTRS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2017-01-01

    Black hole accretion disks appear to produce invariably plasma outflows that result in blue-shifted absorption features in their spectra. The X-ray absorption-line properties of these outflows are quite diverse, ranging in velocity from non-relativistic (approx. 300 km/sec) to sub-relativistic (approx. 0.1c where c is the speed of light) and a similarly broad range in the ionization states of the wind plasma. We report here that semi-analytic, self-similar magnetohydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes, also fit well the high-resolution X-ray spectrum of the accreting stellar-mass black hole, GRO J1655-40. This provides an explicit theoretical argument of their MHD origin (aligned with earlier observational claims) and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.

  5. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.

    PubMed

    Neilsen, Joseph; Lee, Julia C

    2009-03-26

    Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet.

  6. Evolution of a rotating black hole with a magnetized accretion disk.

    NASA Astrophysics Data System (ADS)

    Lee, H. K.; Kim, H.-K.

    2000-03-01

    The effect of an accretion disk on the Blandford-Znajek process and the evolution of a black hole are discussed using a simplified system for the black hole-accretion disk in which the accretion rate is supposed to be dominated by the strong magnetic field on the disk. The evolution of the mass and the angular momentum of the black hole are formulated and discussed with numerical calculations.

  7. An Accretion Model for the Growth of Black Hole in Quasars

    NASA Technical Reports Server (NTRS)

    Lu, Ye; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability and the dormant quasars are the system in the lower branch. The disk is assumed to evolve as ADIOS configuration in the lower branch. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a black hole with a final mass 2 x 10(exp 8) solar masses.

  8. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    DOE PAGES

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir ~ 10 12.1 M ⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star ~ 10 8–10 10M ⊙. Halos with more quiescent accretion histories tendmore » to have lower mass progenitors (10 8–10 9 M ⊙), and lower overall accreted stellar masses. Ultra-faint mass (M star < 10 5 M ⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 10 5 < M star/M ⊙ < 10 8 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with M star > 10 8 M ⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  9. Formation of massive seed black holes via collisions and accretion

    NASA Astrophysics Data System (ADS)

    Boekholt, T. C. N.; Schleicher, D. R. G.; Fellhauer, M.; Klessen, R. S.; Reinoso, B.; Stutz, A. M.; Haemmerlé, L.

    2018-05-01

    Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here, we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (104-105 M⊙) objects. Our calculations demonstrate that the interplay among stellar dynamics, gas accretion, and protostellar evolution is particularly relevant. Gas accretion on to the protostars enhances their radii, resulting in an enhanced collisional cross-section. We show that the fraction of collisions can increase from 0.1 to 1 per cent of the initial population to about 10 per cent when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.

  10. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.

    2016-04-01

    The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers

  11. X-ray Winds from Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2017-08-01

    Across the mass scale, high-resolution X-ray spectroscopy has transformed our view of accretion onto black holes. The ionized disk winds observed from stellar-mass black holes may sometimes eject more mass than is able to accrete onto the black hole. It is possible that these winds can probe the fundamental physics that drive disk accretion. The most powerful winds from accretion onto massive black holes may play a role in feedback, seeding host bulges with hot gas and halting star formation. The lessons and techniques emerging from these efforts can also reveal the accretion flow geometry in tidal disruption events (TDEs), an especially rich discovery space. This talk will review some recent progress enabled by high-resolution X-ray spectroscopy, and look at the potential of gratings spectrometers and microcalorimeters in the years ahead.

  12. Lithium synthesis in microquasar accretion.

    PubMed

    Iocco, Fabio; Pato, Miguel

    2012-07-13

    We study the synthesis of lithium isotopes in the hot tori formed around stellar mass black holes by accretion of the companion star. We find that sizable amounts of both stable isotopes 6Li and 7Li can be produced, the exact figures varying with the characteristics of the torus and reaching as much as 10(-2) M⊙ for each isotope. This mass output is enough to contaminate the entire Galaxy at a level comparable with the original, pregalactic amount of lithium and to overcome other sources such as cosmic-ray spallation or stellar nucleosynthesis.

  13. Rethinking Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  14. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  15. Reconstructing the Accretion History of the Galactic Halo Using Stellar Chemical Abundance Ratio Distributions

    NASA Astrophysics Data System (ADS)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2016-08-01

    In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from eleven ``MW-like'' halos to generate satellite template sets of 2D CARDs of accreted dwarf satellites which are comprised of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ~ 103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those eleven halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the satellite template set (STS) used and the sample size. For certain STS used we typically can identify the relative mass contributions of all accreted satellites to within a factor of 2. We also find that this method is particularly sensitive to older accretion events involving low-luminous dwarfs e.g. ultra-faint dwarfs - precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early Universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ~ 6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us (given the development of new CARD-generating dwarf models) to recover the luminosity function of infalling dwarf galaxies - and the detailed accretion history of the halo - across cosmic time.

  16. Reconstructing the Accretion History of the Galactic Halo Using Stellar Chemical Abundance Ratio Distributions

    NASA Astrophysics Data System (ADS)

    Lee, Duane Morris; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-08-01

    In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from eleven ``MW-like'' halos to generate satellite template sets of 2D CARDs of accreted dwarf satellites which are comprised of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ~103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those eleven halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the satellite template set (STS) used and the sample size. For certain STS used we typically can identify the relative mass contributions of all accreted satellites to within a factor of 2. We also find that this method is particularly sensitive to older accretion events involving low-luminous dwarfs e.g. ultra-faint dwarfs --- precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early Universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ~6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us (given the development of new CARD-generating dwarf models) to recover the luminosity function of infalling dwarf galaxies --- and the detailed accretion history of the halo --- across cosmic time.

  17. Mass ejection in failed supernovae: variation with stellar progenitor

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Quataert, Eliot; Kashiyama, Kazumi; Coughlin, Eric R.

    2018-05-01

    We study the ejection of mass during stellar core-collapse when the stalled shock does not revive and a black hole forms. Neutrino emission during the protoneutron star phase causes a decrease in the gravitational mass of the core, resulting in an outward going sound pulse that steepens into a shock as it travels out through the star. We explore the properties of this mass ejection mechanism over a range of stellar progenitors using spherically symmetric, time-dependent hydrodynamic simulations that treat neutrino mass-loss parametrically and follow the shock propagation over the entire star. We find that all types of stellar progenitor can eject mass through this mechanism. The ejected mass is a decreasing function of the surface gravity of the star, ranging from several M⊙ for red supergiants to ˜0.1 M⊙ for blue supergiants and ˜10-3 M⊙ for Wolf-Rayet stars. We find that the final shock energy at the surface is a decreasing function of the core-compactness, and is ≲ 1047-1048 erg in all cases. In progenitors with a sufficiently large envelope, high core-compactness, or a combination of both, the sound pulse fails to unbind mass. Successful mass ejection is accompanied by significant fallback accretion that can last from hours to years. We predict the properties of shock breakout and thermal plateau emission produced by the ejection of the outer envelope of blue supergiant and Wolf-Rayet progenitors in otherwise failed supernovae.

  18. Simulating a Thin Accretion Disk Using PLUTO

    NASA Astrophysics Data System (ADS)

    Phillipson, Rebecca; Vogeley, Michael S.; Boyd, Patricia T.

    2017-08-01

    Accreting black hole systems such as X-ray binaries and active galactic nuclei exhibit variability in their luminosity on many timescales ranging from milliseconds to tens of days, and even hundreds of days. The mechanism(s) driving this variability and the relationship between short- and long-term variability is poorly understood. Current studies on accretion disks seek to determine how the changes in black hole mass, the rate at which mass accretes onto the central black hole, and the external environment affect the variability on scales ranging from stellar-mass black holes to supermassive black holes. Traditionally, the fluid mechanics equations governing accretion disks have been simplified by considering only the kinematics of the disk, and perhaps magnetic fields, in order for their phenomenological behavior to be predicted analytically. We seek to employ numerical techniques to study accretion disks including more complicated physics traditionally ignored in order to more accurately understand their behavior over time. We present a proof-of-concept three dimensional, global simulation using the astrophysical hydrodynamic code PLUTO of a simplified thin disk model about a central black hole which will serve as the basis for development of more complicated models including external effects such as radiation and magnetic fields. We also develop a tool to generate a synthetic light curve that displays the variability in luminosity of the simulation over time. The preliminary simulation and accompanying synthetic light curve demonstrate that PLUTO is a reliable code to perform sophisticated simulations of accretion disk systems which can then be compared to observational results.

  19. Feast and Famine: regulation of black hole growth in low-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere; Heckman, Timothy M.

    2009-07-01

    We analyse the observed distribution of Eddington ratios (L/LEdd) as a function of supermassive black hole mass for a large sample of nearby galaxies drawn from the Sloan Digital Sky Survey. We demonstrate that there are two distinct regimes of black hole growth in nearby galaxies. The first is associated with galaxies with significant star formation [M*/starformationrate (SFR) ~ a Hubble time] in their central kiloparsec regions, and is characterized by a broad lognormal distribution of accretion rates peaked at a few per cent of the Eddington limit. In this regime, the Eddington ratio distribution is independent of the mass of the black hole and shows little dependence on the central stellar population of the galaxy. The second regime is associated with galaxies with old central stellar populations (M*/SFR >> a Hubble time), and is characterized by a power-law distribution function of Eddington ratios. In this regime, the time-averaged mass accretion rate on to black holes is proportional to the mass of stars in the galaxy bulge, with a constant of proportionality that depends on the mean stellar age of the stars. This result is once again independent of black hole mass. We show that both the slope of the power law and the decrease in the accretion rate on to black holes in old galaxies are consistent with population synthesis model predictions of the decline in stellar mass loss rates as a function of mean stellar age. Our results lead to a very simple picture of black hole growth in the local Universe. If the supply of cold gas in a galaxy bulge is plentiful, the black hole regulates its own growth at a rate that does not further depend on the properties of the interstellar medium. Once the gas runs out, black hole growth is regulated by the rate at which evolved stars lose their mass.

  20. A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate Mass Black Hole

    NASA Astrophysics Data System (ADS)

    Barth, Aaron

    2004-09-01

    POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy is a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses. We request HST ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACIS imaging to investigate the spectral and variability properties of the X-ray emission. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.

  1. Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Quataert, Eliot; Hopkins, Philip F.; Feldmann, Robert; Torrey, Paul; Wetzel, Andrew; Kereš, Dušan

    2017-11-01

    We introduce massive black holes (BHs) in the Feedback In Realistic Environments (FIRE) project and perform high-resolution cosmological hydrodynamic simulations of quasar-mass haloes [Mhalo(z = 2) ≈ 1012.5 M⊙] down to z = 1. These simulations model stellar feedback by supernovae, stellar winds and radiation, and BH growth using a gravitational torque-based prescription tied to the resolved properties of galactic nuclei. We do not include BH feedback. We show that early BH growth occurs through short (≲1 Myr) accretion episodes that can reach or even exceed the Eddington rate. In this regime, BH growth is limited by bursty stellar feedback continuously evacuating gas from galactic nuclei, and BHs remain undermassive in low-mass galaxies relative to the local MBH-Mbulgerelation. BH growth is more efficient at later times, when the nuclear stellar potential retains a significant gas reservoir, star formation becomes less bursty and galaxies settle into a more ordered state. BHs rapidly converge on to the observed scaling relations when the host reaches Mbulge ∼ 1010 M⊙. We show that resolving the effects of stellar feedback on the gas supply in the inner ∼100 pc of galaxies is necessary to accurately capture the growth of central BHs. Our simulations imply that bursty stellar feedback has important implications for BH-galaxy relations, AGN demographics and time variability, the formation of early quasars and massive BH mergers.

  2. A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster

    NASA Astrophysics Data System (ADS)

    Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Page, Dany; Romanowsky, Aaron J.; Homan, Jeroen; Irwin, Jimmy A.; Remillard, Ronald A.; Godet, Olivier; Webb, Natalie A.; Baumgardt, Holger; Wijnands, Rudy; Barret, Didier; Duc, Pierre-Alain; Brodie, Jean P.; Gwyn, Stephen D. J.

    2018-06-01

    A unique signature for the presence of massive black holes in very dense stellar regions is occasional giant-amplitude outbursts of multi-wavelength radiation from tidal disruption and subsequent accretion of stars that make a close approach to the black holes1. Previous strong tidal disruption event (TDE) candidates were all associated with the centres of largely isolated galaxies2-6. Here, we report the discovery of a luminous X-ray outburst from a massive star cluster at a projected distance of 12.5 kpc from the centre of a large lenticular galaxy. The luminosity peaked at 1043 erg s-1 and decayed systematically over 10 years, approximately following a trend that supports the identification of the event as a TDE. The X-ray spectra were all very soft, with emission confined to be ≲3.0 keV, and could be described with a standard thermal disk. The disk cooled significantly as the luminosity decreased—a key thermal-state signature often observed in accreting stellar-mass black holes. This thermal-state signature, coupled with very high luminosities, ultrasoft X-ray spectra and the characteristic power-law evolution of the light curve, provides strong evidence that the source contains an intermediate-mass black hole with a mass tens of thousand times that of the solar mass. This event demonstrates that one of the most effective means of detecting intermediate-mass black holes is through X-ray flares from TDEs in star clusters.

  3. Cyclotron emission near stellar mass black holes

    NASA Technical Reports Server (NTRS)

    Apparao, K. M. V.

    1984-01-01

    Cyclotron emission in the inner regions of an accretion disk around a matter accreting black hole can be appreciable. In the case of the X-ray source Cyg X-1, cyclotron emission may provide the soft photons needed for 'Comptonization' to produce high energy X-rays. The inverse correlation between the fluxes of high energy and low energy X-rays during the 'high' and 'low' states of Cyg X-1, may be understood as a result of the variation of the rate of accretion and the Compton scattering of the cyclotron photons. In the case of the X-ray source GX 339-4, the observed optical flux during the high states does not seem to be due to cyclotron emission, but probably due to reprocessing of high energy X-rays by the outer regions of the disk.

  4. Intermediate-mass black holes from Population III remnants in the first galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ryu, Taeho; Tanaka, Takamitsu L.; Perna, Rosalba; Haiman, Zoltán

    2016-08-01

    We report the formation of intermediate-mass black holes (IMBHs) in suites of numerical N-body simulations of Population III remnant black holes (BHs) embedded in gas-rich protogalaxies at redshifts z ≳ 10. We model the effects of gas drag on the BHs' orbits, and allow BHs to grow via gas accretion, including a mode of hyper-Eddington accretion in which photon trapping and rapid gas inflow suppress any negative radiative feedback. Most initial BH configurations lead to the formation of one (but never more than one) IMBH in the centre of the protogalaxy, reaching a mass of 103-5 M⊙ through hyper-Eddington growth. Our results suggest a viable pathway to forming the earliest massive BHs in the centres of early galaxies. We also find that the nuclear IMBH typically captures a stellar-mass BH companion, making these systems observable in gravitational waves as extreme mass-ratio inspirals with eLISA.

  5. Mass Accretion Rate of Very Low Luminosity Objects

    NASA Astrophysics Data System (ADS)

    Sung, Ren-Shiang; Lai, Shih-Ping; Hsieh, Tien-Hao

    2013-08-01

    We propose to measure the mass accretion rate of six Very Low Luminosity Objects (VeLLOs) using Near-infrared Integral Spectrometer (NIFS). The extremely low luminosity of VeLLOs, L_int ≤ 0.1 L_⊙, was previously thought not existing in the nature because the typical accretion rate gives much larger accretion luminosity even for the lowest mass star (``Luminosity Problem''). The commonly accepted solution is that the accretion rate is not constant but episodic. Thus, VeLLOs could be interpreted as protostars being in the quiescent phase of accretion activities. However, there is no observational data directly measuring the mass accretion rate of VeLLOs. The main goal of this proposal is to examine such theory and directly measure the mass accretion rate of VeLLOs for the first time. We propose to measure the blue continuum excess (veiling) of the stellar spectrum, which is the most reliable method for measuring the accretion rate. The measurements have to be made in infrared due to the very high extinction for highly embedded protostars. Our proposal provide a first opportunity to explain the long time ``Luminosity Problem'' through the observational aspects, and Gemini is the only instrument that can provide accurate and high sensitivity infrared spectroscopy measurements within reasonably short time scale.

  6. Using Simulations of Black Holes to Study General Relativity and the Properties of Inner Accretion Flow

    NASA Astrophysics Data System (ADS)

    Hoormann, Janie Katherine

    2016-06-01

    While Albert Einstein's theory of General Relativity (GR) has been tested extensively in our solar system, it is just beginning to be tested in the strong gravitational fields that surround black holes. As a way to study the behavior of gravity in these extreme environments, I have used and added to a ray-tracing code that simulates the X-ray emission from the accretion disks surrounding black holes. In particular, the observational channels which can be simulated include the thermal and reflected spectra, polarization, and reverberation signatures. These calculations can be performed assuming GR as well as four alternative spacetimes. These results can be used to see if it is possible to determine if observations can test the No-Hair theorem of GR which states that stationary, astrophysical black holes are only described by their mass and spin. Although it proves difficult to distinguish between theories of gravity, it is possible to exclude a large portion of the possible deviations from GR using observations of rapidly spinning stellar mass black holes such as Cygnus X-1. The ray-tracing simulations can furthermore be used to study the inner regions of black hole accretion flows. I examined the dependence of X-ray reverberation observations on the ionization of the disk photosphere. My results show that X-ray reverberation and X-ray polarization provides a powerful tool to constrain the geometry of accretion disks which are too small to be imaged directly. The second part of my thesis describes the work on the balloon-borne X-Calibur hard X-ray polarimetry mission and on the space-borne PolSTAR polarimeter concept.

  7. Evolution of an accretion disc in binary black hole systems

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Takahashi, Sanemichi Z.; Toma, Kenji

    2017-03-01

    We investigate evolution of an accretion disc in binary black hole (BBH) systems and possible electromagnetic counterparts of the gravitational waves from mergers of BBHs. Perna et al. proposed a novel evolutionary scenario of an accretion disc in BBHs in which a disc eventually becomes 'dead', I.e. the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disc survives until a few seconds before the merger event. We improve the dead disc model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disc is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the mass inflow induced by the tidal torque reactivates MRI, restarting mass accretion on to the black hole. We also find that this disc 'revival' happens more than thousands of years before the merger. The mass accretion induced by the tidal torque increases as the separation decreases, and a relativistic jet could be launched before the merger. The emissions from these jets are too faint compared to gamma-ray bursts, but detectable if the merger events happen within ≲10 Mpc or if the masses of the black holes are as massive as ˜105 M⊙.

  8. NuSTAR Observations of the Black Hole GS 1354-645: Evidence of Rapid Black Hole Spin

    NASA Astrophysics Data System (ADS)

    El-Batal, A. M.; Miller, J. M.; Reynolds, M. T.; Boggs, S. E.; Chistensen, F. E.; Craig, W. W.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Stern, D. K.; Tomsick, J.; Walton, D. J.; Zhang, W. W.

    2016-07-01

    We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 “hard” state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a={cJ}/{{GM}}2≥slant 0.98 (1σ statistical limits only). The fits also require a high inclination: θ ≃ 75{(2)}\\circ . Strong “dips” are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates.

  9. NuSTAR Observations of the Black Hole GS 1354-645: Evidence of Rapid Black Hole Spin

    NASA Technical Reports Server (NTRS)

    El-Batal, A. M.; Miller, J. M.; Reynolds, M. T.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Stern, D. K.; hide

    2016-01-01

    We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 "hard" state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a = cJ/ GM(sup 2) > or = 0.98 (1(sigma) statistical limits only). The fits also require a high inclination: theta approx. = 75(2)deg. Strong "dips" are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates.

  10. Young Stellar Objects in Lynds 1641: Disks, Accretion, and Star Formation History

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering ~1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of ~50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M */M ⊙) ≈ -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.

  11. Hydrodynamic Simulations of the Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds

    NASA Astrophysics Data System (ADS)

    Ressler, S. M.; Quataert, E.; Stone, J. M.

    2018-05-01

    We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A* via the stellar winds of the ˜30 Wolf-Rayet stars within the central parsec of the galactic center. These simulations span ˜ 4 orders of magnitude in radius, reaching all the way down to 300 gravitational radii of the black hole, ˜32 times further in than in previous work. We reproduce reasonably well the diffuse thermal X-ray emission observed by Chandra in the central parsec. The resulting accretion flow at small radii is a superposition of two components: 1) a moderately unbound, sub-Keplerian, thick, pressure-supported disc that is at most (but not all) times aligned with the clockwise stellar disc, and 2) a bound, low-angular momentum inflow that proceeds primarily along the southern pole of the disc. We interpret this structure as a natural consequence of a few of the innermost stellar winds dominating accretion, which produces a flow with a broad distribution of angular momentum. Including the star S2 in the simulation has a negligible effect on the flow structure. Extrapolating our results from simulations with different inner radii, we find an accretion rate of ˜ a few × 10-8M⊙/yr at the horizon scale, consistent with constraints based on modeling the observed emission of Sgr A*. The flow structure found here can be used as more realistic initial conditions for horizon scale simulations of Sgr A*.

  12. A Dual Power Law Distribution for the Stellar Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Hoffmann, Karl Heinz; Essex, Christopher; Basu, Shantanu; Prehl, Janett

    2018-05-01

    We introduce a new dual power law (DPL) probability distribution function for the mass distribution of stellar and substellar objects at birth, otherwise known as the initial mass function (IMF). The model contains both deterministic and stochastic elements, and provides a unified framework within which to view the formation of brown dwarfs and stars resulting from an accretion process that starts from extremely low mass seeds. It does not depend upon a top down scenario of collapsing (Jeans) masses or an initial lognormal or otherwise IMF-like distribution of seed masses. Like the modified lognormal power law (MLP) distribution, the DPL distribution has a power law at the high mass end, as a result of exponential growth of mass coupled with equally likely stopping of accretion at any time interval. Unlike the MLP, a power law decay also appears at the low mass end of the IMF. This feature is closely connected to the accretion stopping probability rising from an initially low value up to a high value. This might be associated with physical effects of ejections sometimes (i.e., rarely) stopping accretion at early times followed by outflow driven accretion stopping at later times, with the transition happening at a critical time (therefore mass). Comparing the DPL to empirical data, the critical mass is close to the substellar mass limit, suggesting that the onset of nuclear fusion plays an important role in the subsequent accretion history of a young stellar object.

  13. Low-mass black holes as the remnants of primordial black hole formation.

    PubMed

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  14. Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.

    PubMed

    Bartos, I; Haiman, Z; Marka, Z; Metzger, B D; Stone, N C; Marka, S

    2017-10-10

    The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.

  15. The evolution of kicked stellar-mass black holes in star cluster environments

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Leigh, Nathan W. C.; Singh, Abhishek; Ford, K. E. Saavik; McKernan, Barry; Bellovary, Jillian

    2018-03-01

    We consider how dynamical friction acts on black holes that receive a velocity kick while located at the centre of a gravitational potential, analogous to a star cluster, due to either a natal kick or the anisotropic emission of gravitational waves during a black hole-black hole merger. Our investigation specifically focuses on how well various Chandrasekhar-based dynamical friction models can predict the orbital decay of kicked black holes with mbh ≲ 100 M⊙ due to an inhomogeneous background stellar field. In general, the orbital evolution of a kicked black hole follows that of a damped oscillator where two-body encounters and dynamical friction serve as sources of damping. However, we find models for approximating the effects of dynamical friction do not accurately predict the amount of energy lost by the black hole if the initial kick velocity vk is greater than the stellar velocity dispersion σ. For all kick velocities, we also find that two-body encounters with nearby stars can cause the energy evolution of a kicked BH to stray significantly from standard dynamical friction theory as encounters can sometimes lead to an energy gain. For larger kick velocities, we find the orbital decay of a black hole departs from classical theory completely as the black hole's orbital amplitude decays linearly with time as opposed to exponentially. Therefore, we have developed a linear decay formalism, which scales linearly with black hole mass and v_k/σ in order to account for the variations in the local gravitational potential.

  16. Star-disc interaction in galactic nuclei: orbits and rates of accreted stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Gareth F.; Meiron, Yohai; Shukirgaliyev, Bekdaulet; Panamarev, Taras; Berczik, Peter; Just, Andreas; Spurzem, Rainer

    2016-07-01

    We examine the effect of an accretion disc on the orbits of stars in the central star cluster surrounding a central massive black hole by performing a suite of 39 high-accuracy direct N-body simulations using state-of-the art software and accelerator hardware, with particle numbers up to 128k. The primary focus is on the accretion rate of stars by the black hole (equivalent to their tidal disruption rate for black holes in the small to medium mass range) and the eccentricity distribution of these stars. Our simulations vary not only the particle number, but disc model (two models examined), spatial resolution at the centre (characterized by the numerical accretion radius) and softening length. The large parameter range and physically realistic modelling allow us for the first time to confidently extrapolate these results to real galactic centres. While in a real galactic centre both particle number and accretion radius differ by a few orders of magnitude from our models, which are constrained by numerical capability, we find that the stellar accretion rate converges for models with N ≥ 32k. The eccentricity distribution of accreted stars, however, does not converge. We find that there are two competing effects at work when improving the resolution: larger particle number leads to a smaller fraction of stars accreted on nearly circular orbits, while higher spatial resolution increases this fraction. We scale our simulations to some nearby galaxies and find that the expected boost in stellar accretion (or tidal disruption, which could be observed as X-ray flares) in the presence of a gas disc is about a factor of 10. Even with this boost, the accretion of mass from stars is still a factor of ˜100 slower than the accretion of gas from the disc. Thus, it seems accretion of stars is not a major contributor to black hole mass growth.

  17. ACCRETION DISKS AROUND KICKED BLACK HOLES: POST-KICK DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, Marcelo; Faber, Joshua A.; Lombardi, James C., E-mail: mponce@astro.rit.edu, E-mail: jafsma@rit.edu, E-mail: jalombar@allegheny.edu

    2012-01-20

    Numerical calculations of merging black hole binaries indicate that asymmetric emission of gravitational radiation can kick the merged black hole at up to thousands of km s{sup -1}, and a number of systems have been observed recently whose properties are consistent with an active galactic nucleus containing a supermassive black hole moving with substantial velocity with respect to its broader accretion disk. We study here the effect of an impulsive kick delivered to a black hole on the dynamical evolution of its accretion disk using a smoothed particle hydrodynamics code, focusing attention on the role played by the kick anglemore » with respect to the orbital angular momentum vector of the pre-kicked disk. We find that for more vertical kicks, for which the angle between the kick and the normal vector to the disk {theta} {approx}< 30 Degree-Sign , a gap remains present in the inner disk, in accordance with the prediction from an analytic collisionless Keplerian disk model, while for more oblique kicks with {theta} {approx}> 45 Degree-Sign , matter rapidly accretes toward the black hole. There is a systematic trend for higher potential luminosities for more oblique kick angles for a given black hole mass, disk mass, and kick velocity, and we find large amplitude oscillations in time in the case of a kick oriented 60 Degree-Sign from the vertical.« less

  18. Electromagnetic Signals Following Stellar-mass Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    de Mink, S. E.; King, A.

    2017-04-01

    It is often assumed that gravitational-wave (GW) events resulting from the merger of stellar-mass black holes are unlikely to produce electromagnetic (EM) counterparts. We point out that the progenitor binary has probably shed a mass ≳10 M ⊙ during its prior evolution. If even a tiny fraction of this gas is retained in a circumbinary disk, the sudden mass loss and recoil of the merged black hole shocks and heats it within hours of the GW event. Whether the resulting EM signal is detectable is uncertain. The optical depth through the disk is likely to be high enough that the prompt emission consists only of photons from its optically thin skin, while the majority may take years to emerge. However, if some mechanism can release more photons in a time comparable to the few-hour energy production time, the peak luminosity of the EM signal could be detectable. For a disk retaining only ˜10-3 of the mass shed in the earlier binary evolution, medium-energy X-rays to infrared emission would be observable hours after the GW event for source distances of ˜500 Mpc. Events like this may already have been observed, but ascribed to unidentified active galactic nuclei. Improved sky localization should eventually allow identification based on spatial coincidence. A detection would provide unique constraints on formation scenarios and potentially offer tests of strong-field general relativity. Accordingly, we argue that the high scientific payoff of an EM detection fully justifies search campaigns.

  19. Electromagnetic Signals Following Stellar-mass Black Hole Mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mink, S. E. de; King, A., E-mail: S.E.deMink@uva.nl, E-mail: ark@leicester.ac.uk

    It is often assumed that gravitational-wave (GW) events resulting from the merger of stellar-mass black holes are unlikely to produce electromagnetic (EM) counterparts. We point out that the progenitor binary has probably shed a mass ≳10 M {sub ⊙} during its prior evolution. If even a tiny fraction of this gas is retained in a circumbinary disk, the sudden mass loss and recoil of the merged black hole shocks and heats it within hours of the GW event. Whether the resulting EM signal is detectable is uncertain. The optical depth through the disk is likely to be high enough thatmore » the prompt emission consists only of photons from its optically thin skin, while the majority may take years to emerge. However, if some mechanism can release more photons in a time comparable to the few-hour energy production time, the peak luminosity of the EM signal could be detectable. For a disk retaining only ∼10{sup −3} of the mass shed in the earlier binary evolution, medium-energy X-rays to infrared emission would be observable hours after the GW event for source distances of ∼500 Mpc. Events like this may already have been observed, but ascribed to unidentified active galactic nuclei. Improved sky localization should eventually allow identification based on spatial coincidence. A detection would provide unique constraints on formation scenarios and potentially offer tests of strong-field general relativity. Accordingly, we argue that the high scientific payoff of an EM detection fully justifies search campaigns.« less

  20. Gravitomagnetic acceleration from black hole accretion disks

    NASA Astrophysics Data System (ADS)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  1. Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Colbert, E. J. M.

    2004-01-01

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3 20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106 1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102 104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  2. Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Coleman Miller, M.; Colbert, E. J. M.

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3-20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106-1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102-104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  3. Intermediate mass black holes in AGN discs - I. Production and growth

    NASA Astrophysics Data System (ADS)

    McKernan, B.; Ford, K. E. S.; Lyra, W.; Perets, H. B.

    2012-09-01

    Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in discs around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disc. Stars, compact objects and binaries can migrate, accrete and merge within discs around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disc, gas in the disc damps NCO orbits. If gas damping dominates, NCOs remain in the disc with circularized orbits and large collision cross-sections. IMBH seeds can grow extremely rapidly by collisions with disc NCOs at low relative velocities, allowing for super-Eddington growth rates. Once an IMBH seed has cleared out its feeding zone of disc NCOs, growth of IMBH seeds can become dominated by gas accretion from the active galactic nucleus (AGN) disc. However, the IMBH can migrate in the disc and expand its feeding zone, permitting a super-Eddington accretion rate to continue. Growth of IMBH seeds via NCO collisions is enhanced by a pile-up of migrators. We highlight the remarkable parallel between the growth of IMBH in AGN discs with models of giant planet growth in protoplanetary discs. If an IMBH becomes massive enough it can open a gap in the AGN disc. IMBH migration in AGN discs may stall, allowing them to survive the end of the AGN phase and remain in galactic nuclei. Our proposed mechanisms should be more efficient at growing IMBH in AGN discs than the standard model of IMBH growth in stellar clusters. Dynamical heating of disc NCOs by cusp stars is transferred to the gas in an AGN disc helping to maintain the outer disc against gravitational instability. Model predictions, observational constraints and implications are discussed in a companion paper (Paper II).

  4. A universal minimal mass scale for present-day central black holes

    NASA Astrophysics Data System (ADS)

    Alexander, Tal; Bar-Or, Ben

    2017-08-01

    The early stages of massive black hole growth are poorly understood1. High-luminosity active galactic nuclei at very high redshift2 z further imply rapid growth soon after the Big Bang. Suggested formation mechanisms typically rely on the extreme conditions found in the early Universe (very low metallicity, very high gas or star density). It is therefore plausible that these black hole seeds were formed in dense environments, at least a Hubble time ago (z > 1.8 for a look-back time of tH = 10 Gyr)3. Intermediate-mass black holes (IMBHs) of mass M• ≈ 102-105 solar masses, M⊙, are the long-sought missing link4 between stellar black holes, born of supernovae5, and massive black holes6, tied to galaxy evolution by empirical scaling relations7,8. The relation between black hole mass, M•, and stellar velocity dispersion, σ★, that is observed in the local Universe over more than about three decades in massive black hole mass, correlates M• and σ★ on scales that are well outside the massive black hole's radius of dynamical influence6, rh≈GM•/σ★2. We show that low-mass black hole seeds that accrete stars from locally dense environments in galaxies following a universal M•/σ★ relation9,10 grow over the age of the Universe to be above M0≈3×105M⊙ (5% lower limit), independent of the unknown seed masses and formation processes. The mass M0 depends weakly on the uncertain formation redshift, and sets a universal minimal mass scale for present-day black holes. This can explain why no IMBHs have yet been found6, and it implies that present-day galaxies with σ★ < S0 ≈ 40 km s-1 lack a central black hole, or formed it only recently. A dearth of IMBHs at low redshifts has observable implications for tidal disruptions11 and gravitational wave mergers12.

  5. Observational Signatures of Mass-loading in Jets Launched by Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    O’ Riordan, Michael; Pe’er, Asaf; McKinney, Jonathan C.

    2018-01-01

    It is widely believed that relativistic jets in X-ray binaries (XRBs) and active-galactic nuclei are powered by the rotational energy of black holes. This idea is supported by general-relativistic magnetohydrodynamic (GRMHD) simulations of accreting black holes, which demonstrate efficient energy extraction via the Blandford–Znajek mechanism. However, due to uncertainties in the physics of mass loading, and the failure of GRMHD numerical schemes in the highly magnetized funnel region, the matter content of the jet remains poorly constrained. We investigate the observational signatures of mass loading in the funnel by performing general-relativistic radiative transfer calculations on a range of 3D GRMHD simulations of accreting black holes. We find significant observational differences between cases in which the funnel is empty and cases where the funnel is filled with plasma, particularly in the optical and X-ray bands. In the context of Sgr A*, current spectral data constrains the jet filling only if the black hole is rapidly rotating with a ≳ 0.9. In this case, the limits on the infrared flux disfavor a strong contribution from material in the funnel. We comment on the implications of our models for interpreting future Event Horizon Telescope observations. We also scale our models to stellar-mass black holes, and discuss their applicability to the low-luminosity state in XRBs.

  6. The effect of stellar-mass black holes on the central kinematics of ω Cen: a cautionary tale for IMBH interpretations

    NASA Astrophysics Data System (ADS)

    Zocchi, Alice; Gieles, Mark; Hénault-Brunet, Vincent

    2018-06-01

    The search for intermediate-mass black holes (IMBHs) in the centre of globular clusters is often based on the observation of a central cusp in the surface brightness profile and a rise towards the centre in the velocity dispersion profiles. Similar signatures, however, could result from other effects, that need to be taken into account in order to determine the presence (or the absence) of an IMBH in these stellar systems. Following our previous exploration of the role of radial anisotropy in shaping these observational signatures, we analyse here the effects produced by the presence of a population of centrally concentrated stellar-mass black holes. We fit dynamical models to ω Cen data, and we show that models with ˜5% of their mass in black holes (consistent with ˜100% retention fraction after natal kicks) can reproduce the data. When simultaneously considering both radial anisotropy and mass segregation, the best-fit model includes a smaller population of remnants, and a less extreme degree of anisotropy with respect to the models that include only one of these features. These results underline that before conclusions about putative IMBHs can be made, the effects of stellar-mass black holes and radial anisotropy need to be properly accounted for.

  7. The black hole binary V404 Cygni: a highly accreting obscured AGN analogue

    NASA Astrophysics Data System (ADS)

    Motta, S. E.; Kajava, J. J. E.; Sánchez-Fernández, C.; Giustini, M.; Kuulkers, E.

    2017-06-01

    Typical black hole binaries in outburst show spectral states and transitions, characterized by a clear connection between the inflow on to the black hole and outflows from its vicinity. The transient stellar mass black hole binary V404 Cyg apparently does not fit in this picture. Its outbursts are characterized by intense flares and intermittent plateau and low-luminosity states, with a dynamical intensity range of several orders of magnitude on time-scales of hours. During the 2015 June-July X-ray outburst a joint Swift and INTEGRAL observing campaign captured V404 Cyg in one of these plateau states. The simultaneous Swift/XRT + INTRGRAL/JEM-X + INTEGRAL/IBIS-ISGRI spectrum is reminiscent of that of obscured/absorbed active galactic nuclei (AGN). It can be modelled as a Comptonization spectrum, heavily absorbed by a partial covering, high column density material (NH ≈ 1-3 × 1024 cm-2), and a dominant reprocessed component, including a narrow iron Kα line. Such spectral distribution can be produced by a geometrically thick accretion flow able to launch a clumpy outflow, likely responsible for both the high intrinsic absorption and the intense reprocessed emission observed. Similarly to what happens in certain obscured AGN, the low-flux states might not be (solely) related to a decrease in the intrinsic luminosity, but could instead be caused by an almost complete obscuration of the inner accretion flow.

  8. The Observed Evolution of the Black-Hole-Host Mass Relation to z~3.5

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, Benny; Urry, C. Megan; Civano, Francesca M.; Rosario, David J.; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke; Marchesi, Stefano

    2016-01-01

    We present our Keck/MOSFIRE project to probe basic black hole and host galaxy properties in a sample of faint Active Galactic Nuclei (AGN) at z~2.1-3.7, selected through the extensive X-ray Chandra coverage of the COSMOS field. Compared with previous studies of unobscured AGN at these high redshifts, our sources have lower AGN luminosities, corresponding to significantly higher number densities, of order ˜10-6-10-5 Mpc-3. The new K-band data covers the spectral region surrounding the broad Hbeta or Halpha emission lines, and enables the estimation of black hole masses (MBH) and accretion rates (in terms of L/LEdd). The lower AGN luminosities also allow for robust determinations of the host galaxies stellar masses, therefore enabling us to trace the evolution of the BH-to-stellar mass ratio (MBH/M*) to z~3.5. Compared with the rarer, higher-luminosity quasars targeted in previous studies, we find that the 12 AGN in our sample have lower MBH (~5x108 Msun), but similar accretion rates (L/LEdd~0.1-0.5). The BH-to-stellar mass ratio, MBH/M*, has a large scatter, with several sources reaching extremely high ratios of MBH/M* ~ 10% - higher by at least an order of magnitude than what is observed in the local Universe. The typical mass ratio for our sample is consistent with a trend of MBH/M* ~ (1+z)2. I will highlight some intriguing sources in the sample, and will briefly discuss the implications of our findings to the co-evolution of SMBHs and their host galaxies.

  9. The Disk Wind in the Rapidly Spinning Stellar-mass Black Hole 4U 1630-472 Observed with NuSTAR

    NASA Technical Reports Server (NTRS)

    King, Ashley L.; Walton, Dominic J.; Miller, Jon M.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fabian, Andy C.; Furst, Felix; Hailey, Charles J.; hide

    2014-01-01

    We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630-472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we find evidence for a rapidly spinning black hole, a* = 0.985(+0.005/-0.014) (1 sigma statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also report the clear detection of an absorption feature at 7.03 +/- 0.03 keV, likely signaling a disk wind. If this line arises in dense, moderately ionized gas (log xi = 3.6(+0.2/-0.3) and is dominated by He-like Fe xxv, the wind has a velocity of v/c = 0.043(+0.002/-0.007) (12900(+600/-2100) km s(exp -1)). If the line is instead associated with a more highly ionized gas (log xi = 6.1(+0.7/-0.6)), and is dominated by Fe xxvi, evidence of a blueshift is only marginal, after taking systematic errors into account. Our analysis suggests the ionized wind may be launched within 200-1100 Rg, and may be magnetically driven.

  10. Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs D.; Pascucci, Ilaria; Manara, Carlo F.; Testi, Leonardo; Herczeg, Gregory J.; Henning, Thomas; Mohanty, Subhanjoy; Lodato, Giuseppe

    2017-09-01

    In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit {M}{dust}-{M}\\star and {\\dot{M}}{acc}-{M}\\star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant α viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in {M}{dust} and {\\dot{M}}{acc} is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.

  11. Black Hole Event Horizons and Advection-Dominated Accretion

    NASA Technical Reports Server (NTRS)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    The work supported in part by this grant is part of a larger program on the detection of black hole event horizons, which is also partially supported by NASA grant GO0-1105A. This work has been carried out primarily in collaboration with Dr. M. Garcia and Prof. R. Narayan at the Harvard-Smithsonian Center for Astrophysics and with D. Barret and J. Hameury at Centre d'Etude Spoliate des Rayonnements, France. Our purpose is to confirm the existence of black-hole event horizons by comparing accreting black holes to secreting neutron stars in quiescent X-ray novae. Such a comparison is feasible because black holes and neutron stars are both present in similar environments in X-ray novae. Our second purpose is to assess the nature of accretion flows onto black holes at very low mass transfer rates. Observations of some XMM targets are still pending, whereas most of the Chandra observations have been completed. We anticipate further publications on this work in the future.

  12. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  13. Three-Layered Atmospheric Structure in Accretion Disks Around Stellar-Mass Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Cui, Wei; Chen, Wan; Yao, Yangsen; Zhang, Xiaoling; Sun, Xuejun; Wu, Xue-Bing; Xu, Haiguang

    2000-01-01

    Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of the inner accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.

  14. Three-layered atmospheric structure in accretion disks around stellar-mass black holes

    PubMed

    Zhang; Cui; Chen; Yao; Zhang; Sun; Wu; Xu

    2000-02-18

    Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of their accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.

  15. A Uniformly Selected Sample of Low-mass Black Holes in Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Dong, Xiao-Bo; Ho, Luis C.; Yuan, Weimin; Wang, Ting-Gui; Fan, Xiaohui; Zhou, Hongyan; Jiang, Ning

    2012-08-01

    We have conducted a systematic search of low-mass black holes (BHs) in active galactic nuclei (AGNs) with broad Hα emission lines, aiming at building a homogeneous sample that is more complete than previous ones for fainter, less highly accreting sources. For this purpose, we developed a set of elaborate, automated selection procedures and applied it uniformly to the Fourth Data Release of the Sloan Digital Sky Survey. Special attention is given to AGN-galaxy spectral decomposition and emission-line deblending. We define a sample of 309 type 1 AGNs with BH masses in the range 8 × 104-2 × 106 M ⊙ (with a median of 1.2 × 106 M ⊙), using the virial mass estimator based on the broad Hα line. About half of our sample of low-mass BHs differs from that of Greene & Ho, with 61 of them discovered here for the first time. Our new sample picks up more AGNs with low accretion rates: the Eddington ratios of the present sample range from <~ 0.01 to ~1, with 30% below 0.1. This suggests that a significant fraction of low-mass BHs in the local universe are accreting at low rates. The host galaxies of the low-mass BHs have luminosities similar to those of L* field galaxies, optical colors of Sbc spirals, and stellar spectral features consistent with a continuous star formation history with a mean stellar age of less than 1 Gyr.

  16. The close environments of accreting massive black holes are shaped by radiative feedback

    NASA Astrophysics Data System (ADS)

    Ricci, Claudio; Trakhtenbrot, Benny; Koss, Michael J.; Ueda, Yoshihiro; Schawinski, Kevin; Oh, Kyuseok; Lamperti, Isabella; Mushotzky, Richard; Treister, Ezequiel; Ho, Luis C.; Weigel, Anna; Bauer, Franz E.; Paltani, Stephane; Fabian, Andrew C.; Xie, Yanxia; Gehrels, Neil

    2017-09-01

    The majority of the accreting supermassive black holes in the Universe are obscured by large columns of gas and dust. The location and evolution of this obscuring material have been the subject of intense research in the past decades, and are still debated. A decrease in the covering factor of the circumnuclear material with increasing accretion rates has been found by studies across the electromagnetic spectrum. The origin of this trend may be driven by the increase in the inner radius of the obscuring material with incident luminosity, which arises from the sublimation of dust; by the gravitational potential of the black hole; by radiative feedback; or by the interplay between outflows and inflows. However, the lack of a large, unbiased and complete sample of accreting black holes, with reliable information on gas column density, luminosity and mass, has left the main physical mechanism that regulates obscuration unclear. Here we report a systematic multi-wavelength survey of hard-X-ray-selected black holes that reveals that radiative feedback on dusty gas is the main physical mechanism that regulates the distribution of the circumnuclear material. Our results imply that the bulk of the obscuring dust and gas is located within a few to tens of parsecs of the accreting supermassive black hole (within the sphere of influence of the black hole), and that it can be swept away even at low radiative output rates. The main physical driver of the differences between obscured and unobscured accreting black holes is therefore their mass-normalized accretion rate.

  17. The close environments of accreting massive black holes are shaped by radiative feedback.

    PubMed

    Ricci, Claudio; Trakhtenbrot, Benny; Koss, Michael J; Ueda, Yoshihiro; Schawinski, Kevin; Oh, Kyuseok; Lamperti, Isabella; Mushotzky, Richard; Treister, Ezequiel; Ho, Luis C; Weigel, Anna; Bauer, Franz E; Paltani, Stephane; Fabian, Andrew C; Xie, Yanxia; Gehrels, Neil

    2017-09-27

    The majority of the accreting supermassive black holes in the Universe are obscured by large columns of gas and dust. The location and evolution of this obscuring material have been the subject of intense research in the past decades, and are still debated. A decrease in the covering factor of the circumnuclear material with increasing accretion rates has been found by studies across the electromagnetic spectrum. The origin of this trend may be driven by the increase in the inner radius of the obscuring material with incident luminosity, which arises from the sublimation of dust; by the gravitational potential of the black hole; by radiative feedback; or by the interplay between outflows and inflows. However, the lack of a large, unbiased and complete sample of accreting black holes, with reliable information on gas column density, luminosity and mass, has left the main physical mechanism that regulates obscuration unclear. Here we report a systematic multi-wavelength survey of hard-X-ray-selected black holes that reveals that radiative feedback on dusty gas is the main physical mechanism that regulates the distribution of the circumnuclear material. Our results imply that the bulk of the obscuring dust and gas is located within a few to tens of parsecs of the accreting supermassive black hole (within the sphere of influence of the black hole), and that it can be swept away even at low radiative output rates. The main physical driver of the differences between obscured and unobscured accreting black holes is therefore their mass-normalized accretion rate.

  18. X-shooter spectroscopy of young stellar objects in Lupus. Accretion properties of class II and transitional objects

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Manara, C. F.; Natta, A.; Frasca, A.; Testi, L.; Nisini, B.; Stelzer, B.; Williams, J. P.; Antoniucci, S.; Biazzo, K.; Covino, E.; Esposito, M.; Getman, F.; Rigliaco, E.

    2017-04-01

    The mass accretion rate, Ṁacc, is a key quantity for the understanding of the physical processes governing the evolution of accretion discs around young low-mass (M⋆ ≲ 2.0 M⊙) stars and substellar objects (YSOs). We present here the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-shooter spectrograph. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. The stellar and accretion properties of the 81 bona fide YSOs, which represent more than 90% of the whole class II and transition disc YSO population in the aforementioned Lupus clouds, have been homogeneously and self-consistently derived, allowing for an unbiased study of accretion and its relationship with stellar parameters. The accretion luminosity, Lacc, increases with the stellar luminosity, L⋆, with an overall slope of 1.6, similar but with a smaller scatter than in previous studies. There is a significant lack of strong accretors below L⋆ ≈ 0.1 L⊙, where Lacc is always lower than 0.01 L⋆. We argue that the Lacc - L⋆ slope is not due to observational biases, but is a true property of the Lupus YSOs. The log Ṁacc - log M⋆ correlation shows a statistically significant evidence of a break, with a steeper relation for M⋆ ≲ 0.2 M⊙ and a flatter slope for higher masses. The bimodality of the Ṁacc - M⋆ relation is confirmed with four different evolutionary models used to derive the stellar mass. The bimodal behaviour of the observed relationship supports the importance of modelling self-gravity in the early evolution of the more massive discs, but other processes, such as photo-evaporation and planet formation during the YSO's lifetime, may

  19. Accreting CO material onto ONe white dwarfs towards accretion-induced collapse

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Yuan; Wang, Bo

    2018-03-01

    The final outcomes of accreting ONe white dwarfs (ONe WDs) have been studied for several decades, but there are still some issues that are not resolved. Recently, some studies suggested that the deflagration of oxygen would occur for accreting ONe WDs with Chandrasekhar masses. In this paper, we aim to investigate whether ONe WDs can experience accretion-induced collapse (AIC) or explosions when their masses approach the Chandrasekhar limit. Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA), we simulate the long-term evolution of ONe WDs with accreting CO material. The ONe WDs undergo weak multicycle carbon flashes during the mass-accretion process, leading to mass increase of the WDs. We found that different initial WD masses and mass-accretion rates influence the evolution of central density and temperature. However, the central temperature cannot reach the explosive oxygen ignition temperature due to neutrino cooling. This work implies that the final outcome of accreting ONe WDs is electron-capture induced collapse rather than thermonuclear explosion.

  20. Chandra Pinpoints Edge Of Accretion Disk Around Black Hole

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Using four NASA space observatories, astronomers have shown that a flaring black hole source has an accretion disk that stops much farther out than some theories predict. This provides a better understanding of how energy is released when matter spirals into a black hole. On April 18, 2000, the Hubble Space Telescope and the Extreme Ultraviolet Explorer observed ultraviolet radiation from the object known as XTE J1118+480, a black hole roughly seven times the mass of the Sun, locked in a close binary orbit with a Sun-like star. Simultaneously, the Rossi X-ray Timing Explorer observed high-energy X-rays from matter plunging toward the black hole, while the Chandra X-ray Observatory focused on the critical energy band between the ultraviolet and high-energy X-rays, providing the link that tied all the data together. "By combining the observations of XTE J1118+480 at many different wavelengths, we have found the first clear evidence that the accretion disk can stop farther out," said Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics who led the Chandra observations. "The Chandra data indicate that this accretion disk gets no closer to the event horizon than about 600 miles, a far cry from the 25 miles that some had expected." Scientists theorize that the accretion disk is truncated there because the material erupts into a hot bubble of gas before taking its final plunge into the black hole. Matter stripped from a companion star by a black hole can form a flat, pancake-like structure, called an “accretion disk.” As material spirals toward the inner edge of the accretion disk, it is heated by the immense gravity of the black hole, which causes it to radiate in X-rays. By examining the X-rays, researchers can gauge how far inward the accretion disk extends. Most astronomers agree that when material is transferred onto the black hole at a high rate, then the accretion disk will reach to within about 25 miles of the event horizon -- the surface of

  1. Blinded by the light: on the relationship between CO first overtone emission and mass accretion rate in massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.

    2018-07-01

    To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects (MYSOs), but instead is only detected towards approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near-infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳10-4 M⊙ yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲10-6 M⊙ yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.

  2. Blinded by the light: on the relationship between CO first overtone emission and mass accretion rate in massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.

    2018-04-01

    To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects, but instead is only detected toward approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳ 10-4 M⊙yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲ 10-6 M⊙yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.

  3. Corona accretion in active galactic nuclei and the observational test

    NASA Astrophysics Data System (ADS)

    Qiao, E.; Liu, B.; Taam, R.; Yuan, W.

    2017-10-01

    In this talk, we propose a new accretion model, in which the matter is accreted initially in the form of a vertically extended, hot gas (corona) to the central supermassive black hole by capturing the interstellar medium or the stellar wind in active galactic nuclei (AGNs). In this scenario, when the initial mass accretion rate is greater than about 0.01 \\dot M_{Edd}, at a critical radius r_{d}, part of the hot gas begins to condense on to the equatorial disc plane of the black hole, forming an inner cold accretion disc. Then, the matter is accreted in the form of a disc-corona structure extending down to the ISCO of the black hole. We calculate the theoretical structure and the corresponding emergent spectra of the model. It is shown that the model can naturally explain the origin of the X-ray emission in AGNs. Meanwhile the model predicts a new geometry of the accretion flow, which can very well explain some observations, such as the correlation between the hard X-ray slope Γ and the reflection scaling factor R found in AGNs. Finally, we discuss the potential applications of the model to high mass X-ray binaries.

  4. Super-Eddington Mechanical Power of an Accreting Black Hole in M83

    NASA Technical Reports Server (NTRS)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.

    2014-01-01

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  5. Super-Eddington mechanical power of an accreting black hole in M83.

    PubMed

    Soria, R; Long, K S; Blair, W P; Godfrey, L; Kuntz, K D; Lenc, E; Stockdale, C; Winkler, P F

    2014-03-21

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(40) erg second(-1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  6. Connections between Narrow Line Seyfert 1 Galaxies and Stellar Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    Negoro, H.

    Connections between narrow line Seyfert 1 galaxies (NLS1s) and black hole candidates are described. It has been pointed out that X-ray properties of NLS1s are simlar to those of stellar black hole candidates (BHCs). It is, however, not clear that NLS1s are corresponding to what `state' in the BHCs. Recently, rapid spectral variations during X-ray flares in a few NLS1s have been discovered using ASCA data. The properties of the spectral variations are very similar to those seen in stellar black hole candidates in the hard state. Such temporal variability accompanying the spectral change has not been recognized in black hole candidates in other states. These and recent theoretical progress based on a time variability model of the BHCs in the hard state imply that the advection plays an important role in the accretion process not only in the BHCs in the hard state, but also in NLS1s.

  7. Gamma-ray bursts from accreting black holes in neutron star mergers

    NASA Astrophysics Data System (ADS)

    Ruffert, M.; Janka, H.-Th.

    1999-04-01

    By means of three-dimensional hydrodynamic simulations with a Eulerian PPM code we investigate the formation and the properties of the accretion torus around the stellar mass black hole which we assume to originate from the remnant of a neutron star merger within the dynamical time scale of a few milliseconds. The simulations are performed with four nested cartesian grids which allow for both a good resolution near the central black hole and a large computational volume. They include the use of a physical equation of state as well as the neutrino emission from the hot matter of the torus. The gravity of the black hole is described with a Newtonian and alternatively with a Paczyński-Wiita potential. In a post-processing step, we evaluate our models for the energy deposition by nu bar nu annihilation around the accretion torus. We find that the torus formed after neutron star merging has a mass between several 10(-2} M_{sun) and a few 10(-1} M_{sun) with maximum densities around 10(12) g cm(-3) and maximum temperatures of about 10 MeV (entropies around 5 k_B per nucleon). Correspondingly, the neutrino emission is huge with a total luminosity near 10(53) erg s(-1) . Neutrino-antineutrino annihilation deposits energy in the vicinity of the torus at a rate of (3-5)x 10(50) erg s(-1) . It is most efficient near the rotation axis where 10 to 30% of this energy or up to a total of 10(49) erg are dumped within an estimated emission period of 0.02-0.1 s in a region with a low integral baryonic mass of about 10(-5} M_{sun) . This baryon pollution is still dangerously high, and the estimated maximum relativistic Lorentz factors Gamma -1 are around unity. The conversion of neutrino energy into a pair plasma, however, is sufficiently powerful to blow out the baryons along the axis so that a clean funnel should be produced within only milliseconds. Our models show that accretion on the black hole formed after neutron star merging can yield enough energy by nu bar nu annihilation

  8. Circumnuclear media of quiescent supermassive black holes

    NASA Astrophysics Data System (ADS)

    Generozov, Aleksey; Stone, Nicholas C.; Metzger, Brian D.

    2015-10-01

    We calculate steady-state, one-dimensional hydrodynamic profiles of hot gas in slowly accreting (`quiescent') galactic nuclei for a range of central black hole masses M•, parametrized gas heating rates, and observationally motivated stellar density profiles. Mass is supplied to the circumnuclear medium by stellar winds, while energy is injected primarily by stellar winds, supernovae, and black hole feedback. Analytic estimates are derived for the stagnation radius (where the radial velocity of the gas passes through zero) and the large-scale gas inflow rate, dot{M}, as a function of M• and the gas heating efficiency, the latter being related to the star formation history. We assess the conditions under which radiative instabilities develop in the hydrostatic region near the stagnation radius, both in the case of a single burst of star formation and for the average star formation history predicted by cosmological simulations. By combining a sample of measured nuclear X-ray luminosities, LX, of nearby quiescent galactic nuclei with our results for dot{M}(M_{bullet }), we address whether the nuclei are consistent with accreting in a steady state, thermally stable manner for radiative efficiencies predicted for radiatively inefficiency accretion flows. We find thermally stable accretion cannot explain the short average growth times of low-mass black holes in the local Universe, which must instead result from gas being fed in from large radii, due either to gas inflows or thermal instabilities acting on larger, galactic scales. Our results have implications for attempts to constrain the occupation fraction of upermassive black holes in low-mass galaxies using the mean LX-M• correlation, as well as the predicted diversity of the circumnuclear densities encountered by relativistic outflows from tidal disruption events.

  9. EFFECTS OF BIASES IN VIRIAL MASS ESTIMATION ON COSMIC SYNCHRONIZATION OF QUASAR ACCRETION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhardt, Charles L.

    2011-09-01

    Recent work using virial mass estimates and the quasar mass-luminosity plane has yielded several new puzzles regarding quasar accretion, including a sub-Eddington boundary (SEB) on most quasar accretion, near-independence of the accretion rate from properties of the host galaxy, and a cosmic synchronization of accretion among black holes of a common mass. We consider how these puzzles might change if virial mass estimation turns out to have a systematic bias. As examples, we consider two recent claims of mass-dependent biases in Mg II masses. Under any such correction, the surprising cosmic synchronization of quasar accretion rates and independence from themore » host galaxy remain. The slope and location of the SEB are very sensitive to biases in virial mass estimation, and various mass calibrations appear to favor different possible physical explanations for feedback between the central black hole and its environment. The alternative mass estimators considered do not simply remove puzzling quasar behavior, but rather replace it with new puzzles that may be more difficult to solve than those using current virial mass estimators and the Shen et al. catalog.« less

  10. Unveiling early black holes with JWST

    NASA Astrophysics Data System (ADS)

    Natarajan, Priyamvada

    The formation of direct collapse black hole seeds with masses ~104 - 105 ~M⊙ could help explain the assembly of supermassive black holes powering high redshift quasars. Conditions conducive to the formation of these massive initial seeds exist at high redshift. Halos hosting these massive seeds merge promptly with a nearby galaxy. These early stage mergers at high redshift produce a new class of transient galaxies that contain an accreting black hole that is over-massive compared to the newly acquired stellar component - Obese Black hole Galaxies (OBGs). During this phase, the accretion luminosity of the direct collapse black hole seed exceeds that of the acquired stellar component. Here we calculate the multi-wavelength spectrum of this short-lived OBG stage, and show that there exist unique observational signatures in long wavelengths spanning near, mid to far-infrared that should be detectable by instruments aboard the upcoming James Webb Space Telescope (JWST).

  11. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core.

    PubMed

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J; Greene, Jenny E; Blakeslee, John P; Janish, Ryan

    2016-04-21

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day 'dormant' descendants of this population of 'active' black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall--the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600--a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

  12. Multi-time-scale X-ray reverberation mapping of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel

    2018-04-01

    Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.

  13. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation - II

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran

    2018-01-01

    The study of stellar-remnant black holes (BH) in dense stellar clusters is now in the spotlight, especially due to their intrinsic ability to form binary black holes (BBH) through dynamical encounters, which potentially coalesce via gravitational-wave (GW) radiation. In this work, which is a continuation from a recent study (Paper I), additional models of compact stellar clusters with initial masses ≲ 105 M⊙ and also those with small fractions of primordial binaries (≲ 10 per cent) are evolved for long term, applying the direct N-body approach, assuming state-of-the-art stellar-wind and remnant-formation prescriptions. That way, a substantially broader range of computed models than that in Paper I is achieved. As in Paper I, the general-relativistic BBH mergers continue to be mostly mediated by triples that are bound to the clusters rather than happen among the ejected BBHs. In fact, the number of such in situ BBH mergers, per cluster, tends to increase significantly with the introduction of a small population of primordial binaries. Despite the presence of massive primordial binaries, the merging BBHs, especially the in situ ones, are found to be exclusively dynamically assembled and hence would be spin-orbit misaligned. The BBHs typically traverse through both the LISA's and the LIGO's detection bands, being audible to both instruments. The 'dynamical heating' of the BHs keeps the electron-capture-supernova (ECS) neutron stars (NS) from effectively mass segregating and participating in exchange interactions; the dynamically active BHs would also exchange into any NS binary within ≲1 Gyr. Such young massive and open clusters have the potential to contribute to the dynamical BBH merger detection rate to a similar extent as their more massive globular-cluster counterparts.

  14. The formation of bulges and black holes: lessons from a census of active galaxies in the SDSS.

    PubMed

    Kauffmann, Guinevere; Heckman, Timothy M

    2005-03-15

    We examine the relationship between galaxies, supermassive black holes and AGN using a sample of 23,000 narrow-emission-line ('type 2') active galactic nuclei (AGN) drawn from a sample of 123,000 galaxies from the Sloan Digital Sky Survey. We have studied how AGN host properties compare with those of normal galaxies and how they depend on the luminosity of the active nucleus. We find that AGN reside in massive galaxies and have distributions of sizes and concentrations that are similar to those of the early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high- luminosity AGN have much younger mean stellar ages, and a significant fraction have experienced recent starbursts. High-luminosity AGN are also found in lower-density environments. We then use the stellar velocity dispersions of the AGN hosts to estimate black hole masses and their [OIII]lambda5007 emission-line luminosities to estimate black hole accretion rates. We find that the volume averaged ratio of star formation to black hole accretion is approximately 1000 for the bulge-dominated galaxies in our sample. This is remarkably similar to the observed ratio of stellar mass to black hole mass in nearby bulges. Most of the present-day black hole growth is occurring in black holes with masses less than 3 x 10(7)M(3). Our estimated accretion rates imply that low-mass black holes are growing on a time-scale that is comparable with the age of the Universe. Around 50% this growth takes place in AGN that are radiating within a factor of five of the Eddington luminosity. Such systems are rare, making up only 0.2% of the low-mass black hole population at the present day. The remaining growth occurs in lower luminosity AGN. The growth time-scale increases by more than an order of magnitude for the most massive black holes in our sample. We conclude that the evolution of the AGN luminosity function documented in recent optical

  15. An ultra-relativistic outflow from a neutron star accreting gas from a companion.

    PubMed

    Fender, Rob; Wu, Kinwah; Johnston, Helen; Tzioumis, Tasso; Jonker, Peter; Spencer, Ralph; Van Der Klis, Michiel

    2004-01-15

    Collimated relativistic outflows-also known as jets-are amongst the most energetic phenomena in the Universe. They are associated with supermassive black holes in distant active galactic nuclei, accreting stellar-mass black holes and neutron stars in binary systems and are believed to be responsible for gamma-ray bursts. The physics of these jets, however, remains something of a mystery in that their bulk velocities, compositions and energetics remain poorly determined. Here we report the discovery of an ultra-relativistic outflow from a neutron star accreting gas within a binary stellar system. The velocity of the outflow is comparable to the fastest-moving flows observed from active galactic nuclei, and its strength is modulated by the rate of accretion of material onto the neutron star. Shocks are energized further downstream in the flow, which are themselves moving at mildly relativistic bulk velocities and are the sites of the observed synchrotron emission from the jet. We conclude that the generation of highly relativistic outflows does not require properties that are unique to black holes, such as an event horizon.

  16. An unusually massive stellar black hole in the Galaxy.

    PubMed

    Greiner, J; Cuby, J G; McCaughrean, M J

    2001-11-29

    The X-ray source known as GRS1915+105 belongs to a group dubbed 'microquasars'. These objects are binary systems which sporadically eject matter at speeds that appear superluminal, as is the case for some quasars. GRS1915+105 is also one of only two known binary sources thought to contain a maximally spinning black hole. Determining the basic parameters of GRS195+105, such as the masses of the components, will help us to understand jet formation in this system, as well as providing links to other objects which exhibit jets. Using X-ray data, indirect methods have previously been used to infer a variety of masses for the accreting compact object in the range 10-30 solar masses (M middle dot in circle). Here we report a direct measurement of the orbital period and mass function of GRS1915+105, which allow us to deduce a mass of 14 +/- 4 M middle dot in circle for the black hole. Black holes with masses >5-7 M middle dot in circle challenge the conventional picture of black-hole formation in binary systems. Based on the mass estimate, we interpret the distinct X-ray variability of GRS1915+105 as arising from instabilities in an accretion disk that is dominated by radiation pressure, and radiating near the Eddington limit (the point where radiation pressure supports matter against gravity). Also, the mass estimate constrains most models which relate observable X-ray properties to the spin of black holes in microquasars.

  17. X-ray and gamma-ray emission of Sagittarius A* as a wind-accreting black hole

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Ozernoy, L. M.

    1994-01-01

    If, as many believe, Sgr A* is a massive black hole at the Galactic center, one should expect it to be a source of X-ray and gamma-ray activity, behaving basically as a scaled-down active galactic nucleus. An unavoidable source of accretion is the wind from IRS 16, a nearby group of hot, massive stars. Since the density and velocity of the accreting matter are known from observations, the accretion rate is basically a function of the putative black hole mass, M(sub h), only; this value represents a reliable lower limit to a real rate, given the other possible sources of accreting matter. Based on this and on the theories about shock acceleration in active galactic nuclei, we have estimated the expected production of relativistic particles and their hard radiation. These values turn out to be a function of M(sub h) as well. Comparing our results with available X-ray and gamma-ray observations which show Sgr A* to have a relatively low activity level, we conclude tentatively that the putative black hole in the Galactic center cannot have a mass greater than approximately 6 x 10(exp 3) solar mass. This conclusion is consistent with the upper limits to the black hole mass found by different methods earlier, although much more work is needed to make calculations of shock acceleration around black holes more reliable.

  18. A detached stellar-mass black hole candidate in the globular cluster NGC 3201

    NASA Astrophysics Data System (ADS)

    Giesers, Benjamin; Dreizler, Stefan; Husser, Tim-Oliver; Kamann, Sebastian; Anglada Escudé, Guillem; Brinchmann, Jarle; Carollo, C. Marcella; Roth, Martin M.; Weilbacher, Peter M.; Wisotzki, Lutz

    2018-03-01

    As part of our massive spectroscopic survey of 25 Galactic globular clusters with MUSE, we performed multiple epoch observations of NGC 3201 with the aim of constraining the binary fraction. In this cluster, we found one curious star at the main-sequence turn-off with radial velocity variations of the order of 100 km s- 1, indicating the membership to a binary system with an unseen component since no other variations appear in the spectra. Using an adapted variant of the generalized Lomb-Scargle periodogram, we could calculate the orbital parameters and found the companion to be a detached stellar-mass black hole with a minimum mass of 4.36 ± 0.41 M⊙. The result is an important constraint for binary and black hole evolution models in globular clusters as well as in the context of gravitational wave sources.

  19. Constraining the initial conditions and final outcomes of accretion processes around young stars and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.

    2015-04-01

    In this thesis I discuss probes of small spatial scales around young stars and protostars and around the supermassive black hole at the galactic center. I begin by describing adaptive optics-fed infrared spectroscopic studies of nascent and newborn binary systems. Binary star formation is a significant mode of star formation that could be responsible for the production of a majority of the galactic stellar population. Better characterization of the binary formation mechanism is important for better understanding many facets of astronomy, from proper estimates of the content of unresolved populations, to stellar evolution and feedback, to planet formation. My work revealed episodic accretion onto the more massive component of the pre-main sequence binary system UY Aur. I also showed changes in the accretion onto the less massive component, revealing contradictory indications of the change in accretion rate when considering disk-based and shock-based tracers. I suggested two scenarios to explain the inconsistency. First, increased accretion should alter the disk structure, puffing it up. This change could obscure the accretion shock onto the central star if the disk is highly inclined. Second, if accretion through the disk is impeded before it makes it all the way onto the central star, then increased disk tracers of accretion would not be accompanied by increased shock tracers. In this case mass must be piling up at some radius in the disk, possibly supplying the material for planet formation or a future burst of accretion. My next project focused on characterizing the atmospheres of very low-mass companions to nearby young stars. Whether these objects form in an extension of the binary-star formation mechanism to very low masses or they form via a different process is an open question. Different accretion histories should result in different atmospheric composition, which can be constrained with spectroscopy. I showed that 3--4mum spectra of a sample of these

  20. Effects of local thermodynamics and of stellar mass ratio on accretion disc stability in close binaries

    NASA Astrophysics Data System (ADS)

    Lanzafame, G.

    2009-08-01

    Inflow kinematics at the inner Lagrangian point L1, gas compressibility, and physical turbulent viscosity play a fundamental role on accretion disc dynamics and structure in a close binary (CB). Physical viscosity supports the accretion disc development inside the primary gravitational potential well, developing the gas radial transport, converting mechanical energy into heat. The Stellar-Mass-Ratio (SMR) between the compact primary and the secondary star (M1/M2) is also effective, not only in the location of the inner Lagrangian point, but also in the angular kinematics of the mass transfer and in the geometry of the gravitational potential wells. In this work we pay attention in particular to the role of the SMR, evaluating boundaries, separating theoretical domains in compressibility-viscosity graphs where physical conditions allow a well-bound disc development, as a function of mass transfer kinematic conditions. In such domains, the lower is the gas compressibility (the higher the polytropic index γ), the higher is the physical viscosity (α) requested. In this work, we show how the boundaries of such domains vary as a function of M1/M2. Conclusions as far as dwarf novae outbursts are concerned, induced by mass transfer rate variations, are also reported. The smaller M1/M2, the shorter the duration of the active-to-quiet and vice-versa transitional phases. Time-scales are of the order of outburst duration of SU Uma, OY Car, Z Cha and SS Cyg-like objects. Moreover, conclusions as far as active-quiet-active phenomena in a CB, according to viscous-thermal instabilities, in accordance to such domains, are also reported.

  1. Stellar black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.; Hut, Piet; Mcmillan, Steve

    1993-01-01

    The recent discovery of large populations of millisec pulsars associated with neutron stars in globular clusters indicates that several hundred stellar black holes of about 10 solar masses each can form within a typical cluster. While, in clusters of high central density, the rapid dynamical evolution of the black-hole population leads to an ejection of nearly all holes on a short timescale, systems of intermediate density may involve a normal star's capture by one of the surviving holes to form a low-mass X-ray binary. One or more such binaries may be found in the globular clusters surrounding our galaxy.

  2. Inclination Angles of Black Hole X-Ray Binaries Manifest Strong Gravity around Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiao-Ling; Yao, Yangsen

    2002-01-01

    System inclination angles have been determined for about 15 X-ray binaries, in which stellar mass black holes are considered to exist. These inclination angles range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity. However, this peak is reproduced naturally if we model the observed X-ray radiations as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer. Therefore the peak of the inclination angle distribution provides evidence or strong gravity around stellar mass black holes.

  3. A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate-Mass Black Hole

    NASA Astrophysics Data System (ADS)

    Barth, Aaron

    2004-07-01

    We propose a comprehensive optical, UV, and X-ray investigation of the unique galaxy POX 52. POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy appears to be a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses, placing POX 52 in a region of AGN parameter space that is almost completely unexplored at present. We request ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACS imaging to detect the X-ray emission from the nucleus and investigate its spectral and variability properties. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.

  4. Quasi-periodic accretion and gravitational waves from oscillating `toroidal neutron stars' around a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Zanotti, Olindo; Rezzolla, Luciano; Font, José A.

    2003-05-01

    We present general relativistic hydrodynamics simulations of constant specific angular momentum tori orbiting a Schwarzschild black hole. These tori are expected to form as a result of stellar gravitational collapse, binary neutron star merger or disruption, can reach very high rest-mass densities and behave effectively as neutron stars but with a toroidal topology (i.e. `toroidal neutron stars'). Here our attention is focused on the dynamical response of these objects to axisymmetric perturbations. We show that upon the introduction of perturbations, these systems either become unstable to the runaway instability or exhibit a regular oscillatory behaviour, resulting in a quasi-periodic variation of the accretion rate as well as of the mass quadrupole. The latter, in particular, is responsible for the emission of intense gravitational radiation for which the signal-to-noise ratio at the detector is comparable to or larger than the typical one expected in stellar-core collapse, making these new sources of gravitational waves potentially detectable. We discuss a systematic investigation of the parameter space in both the linear and non-linear regimes, providing estimates of how the gravitational radiation emitted depends on the mass of the torus and on the strength of the perturbation.

  5. Magnetohydrodynamic Simulations of Black Hole Accretion

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.

    Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.

  6. Accretion onto a noncommutative geometry inspired black hole

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Ghosh, Sushant G.

    2017-09-01

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate \\dot{M}, sonic speed a_s and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that \\dot{M} ≈ {M^2} is still achievable but r_s seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process.

  7. Satellite accretion on to massive galaxies with central black holes

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Ma, Chung-Pei

    2007-02-01

    Minor mergers of galaxies are expected to be common in a hierarchical cosmology such as Λ cold dark matter. Though less disruptive than major mergers, minor mergers are more frequent and thus have the potential to affect galactic structure significantly. In this paper, we dissect the case-by-case outcome from a set of numerical simulations of a single satellite elliptical galaxy accreting on to a massive elliptical galaxy. We take care to explore cosmologically relevant orbital parameters and to set up realistic initial galaxy models that include all three relevant dynamical components: dark matter haloes, stellar bulges, and central massive black holes (BHs). The effects of several different parameters are considered, including orbital energy and angular momentum, satellite density and inner density profile, satellite-to-host mass ratio, and presence of a BH at the centre of the host. BHs play a crucial role in protecting the shallow stellar cores of the hosts, as satellites merging on to a host with a central BH are more strongly disrupted than those merging on to hosts without BHs. Orbital parameters play an important role in determining the degree of disruption: satellites on less-bound or more-eccentric orbits are more easily destroyed than those on more-bound or more-circular orbits as a result of an increased number of pericentric passages and greater cumulative effects of gravitational shocking and tidal stripping. In addition, satellites with densities typical of faint elliptical galaxies are disrupted relatively easily, while denser satellites can survive much better in the tidal field of the host. Over the range of parameters explored, we find that the accretion of a single satellite elliptical galaxy can result in a broad variety of changes, in both signs, in the surface brightness profile and colour of the central part of an elliptical galaxy. Our results show that detailed properties of the stellar components of merging satellites can strongly affect

  8. X-Ray Iron Line Constraints on the Inner Accretion Disk and Black Hole Spin

    NASA Technical Reports Server (NTRS)

    Reynolds, C. S.

    2000-01-01

    The broad iron line, seen in the X-ray spectra of many AGN, is thought to originate from the inner regions of the black hole accretion disk. I will summarize recent developments in using this line to probe the accretion disk structure, as well as the mass and spin of black holes n Seyfert galaxies. In particular, I will present observational evidence suggesting that the inner regions of the accretion disks in low-luminosity AGN (LLAGN) are distinctly different from those in higher-luminosity AGN. This tentative result lends support models of LLAGN based upon advective accretion disks.

  9. Gravitomagnetic Acceleration of Black Hole Accretion Disk Matter to Polar Jets

    NASA Astrophysics Data System (ADS)

    Poirier, John; Mathews, Grant

    2015-04-01

    It is shown that the motion of the neutral masses in an accretion disk orbiting a black hole creates a magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk away from the disk and then inward toward the axis of the accretion disk. Moreover, as the accelerated material nears the axis, a frame-dragging effect twists the trajectories around the axis thus contributing to the formation of a narrow polar jet emanating from the poles.

  10. Accretion disk modeling of AGN continuum using non-LTE stellar atmospheres. [active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Sun, Wei-Hsin; Malkan, Matthew A.

    1988-01-01

    Active galactic nuclei (AGN) accretion disk spectra were calculated using non-LTE stellar atmosphere models for Kerr and Schwarzschild geometries. It is found that the Lyman limit absorption edge, probably the most conclusive observational evidence for the accretion disk, would be drastically distorted and displaced by the relativistic effects from the large gravitational field of the central black hole and strong Doppler motion of emitting material on the disk surface. These effects are especially pronounced in the Kerr geometry. The strength of the Lyman limit absorption is very sensitive to the surface gravity in the stellar atmosphere models used. For models at the same temperature but different surface gravities, the strength of the Lyman edge exhibits an almost exponential decrease as the surface gravity approach the Eddington limit, which should approximate the thin disk atmosphere. The relativistic effects as well as the vanishing of the Lyman edge at the Eddington gravity may be the reasons that not many Lyman edges in the rest frames of AGNs and quasars are found.

  11. Quasi-spherical accretion in High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Postnov, Konstantin

    2016-07-01

    Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.

  12. X-shooter spectroscopy of young stellar objects. IV. Accretion in low-mass stars and substellar objects in Lupus

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Natta, A.; Manara, C. F.; Spezzi, L.; Stelzer, B.; Frasca, A.; Biazzo, K.; Covino, E.; Randich, S.; Rigliaco, E.; Testi, L.; Comerón, F.; Cupani, G.; D'Elia, V.

    2014-01-01

    We present VLT/X-shooter observations of a sample of 36 accreting low-mass stellar and substellar objects (YSOs) in the Lupus star-forming region, spanning a range in mass from ~0.03 to ~1.2 M⊙, but mostly with 0.1 M⊙accretion diagnostics, and, secondly, to investigate the accretion properties in terms of the physical properties of the central object. The accretion luminosity (Lacc), and in turn the accretion rate (Ṁacc), was derived by modelling the excess emission from the UV to the near-infrared as the continuum emission of a slab of hydrogen. We computed the flux and luminosity (Lline) of many emission lines of H , He , and Ca ii, observed simultaneously in the range from ~330 nm to 2500 nm. The luminosity of all the lines is well correlated with Lacc. We provide empirical relationships between Lacc and the luminosity of 39 emission lines, which have a lower dispersion than relationships previously reported in the literature. Our measurements extend the Paβ and Brγ relationships to Lacc values about two orders of magnitude lower than those reported in previous studies. We confirm that different methodologies of measuring Lacc and Ṁacc yield significantly different results: Hα line profile modelling may underestimate Ṁacc by 0.6 to 0.8 dex with respect to Ṁacc derived from continuum-excess measures. These differences may explain the probably spurious bi-modal relationships between Ṁacc and other YSOs properties reported in the literature. We derived Ṁacc in the range 2 × 10-12-4 × 10-8 M⊙ yr-1 and conclude that Ṁacc ∝ M⋆1.8(±0.2), with a dispersion lower by a factor of about 2 than in previous studies. A number of properties indicate that the physical conditions of the accreting gas are similar over more than 5 orders of magnitude in Ṁacc, confirming previous suggestions that the geometry of the accretion flow

  13. Testing the Paradigm that Ultraluminous X-Ray Sources as a Class Represent Accreting Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.

    2008-11-01

    To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting intermediate-mass black holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish as a general property of ULXs that the most X-ray-luminous objects possess the flattest X-ray spectra (in the Chandra bandpass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity >=5 × 1039 erg s-1) and is in line with recent models arguing that ULXs are actually stellar mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs—i.e., the "simple IMBH model"—is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to a large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find that (1) cool-disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) cool-disk components extend below the standard ULX luminosity cutoff of 1039 erg s-1, down to our sample limit of 1038.3 erg s-1. The fact that cool-disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which strong statistical support was never found.

  14. Dynamics of stellar black holes in young star clusters with different metallicities - II. Black hole-black hole binaries

    NASA Astrophysics Data System (ADS)

    Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe

    2014-07-01

    In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.

  15. Accretion Signatures on Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.

    2015-01-01

    We present preliminary results from a survey of molecular H2 (2.12 μm) emission in massive young stellar objects (MYSO) candidates selected from the Red MSX Source survey. We observed 354 MYSO candidates through the H2 S(1) 1-0 transition (2.12 μm) and an adjacent continuum narrow-band filters using the Spartan/SOAR and WIRCam/CFHT cameras. The continuum-subtracted H2 maps were analyzed and extended H2 emission was found in 50% of the sample (178 sources), and 38% of them (66) have polar morphology, suggesting collimated outflows. The polar-like structures are more likely to be driven on radio-quiet sources, indicating that these structures occur during the pre-ultra compact H ii phase. We analyzed the continuum images and found that 54% (191) of the sample displayed extended continuum emission and only ~23% (80) were associated to stellar clusters. The extended continuum emission is correlated to the H2 emission and those sources within stellar clusters does display diffuse H2 emission, which may be due to fluorescent H2 emission. These results support the accretion scenario for massive star formation, since the merging of low-mass stars would not produce jet-like structures. Also, the correlation between jet-like structures and radio-quiet sources indicates that higher inflow rates are required to form massive stars in a typical timescale less than 105 years.

  16. Dark matter haloes determine the masses of supermassive black holes

    NASA Astrophysics Data System (ADS)

    Booth, C. M.; Schaye, Joop

    2010-06-01

    The energy and momentum deposited by the radiation from accretion flows on to the supermassive black holes (BHs) that reside at the centres of virtually all galaxies can halt or even reverse gas inflow, providing a natural mechanism for supermassive BHs to regulate their growth and to couple their properties to those of their host galaxies. However, it remains unclear whether this self-regulation occurs on the scale at which the BH is gravitationally dominant, on that of the stellar bulge, the galaxy or that of the entire dark matter halo. To answer this question, we use self-consistent simulations of the co-evolution of the BH and galaxy populations that reproduce the observed correlations between the masses of the BHs and the properties of their host galaxies. We first confirm unambiguously that the BHs regulate their growth: the amount of energy that the BHs inject into their surroundings remains unchanged when the fraction of the accreted rest mass energy that is injected is varied by four orders of magnitude. The BHs simply adjust their masses so as to inject the same amount of energy. We then use simulations with artificially reduced star formation rates to demonstrate explicitly that BH mass is not set by the stellar mass. Instead, we find that it is determined by the mass of the dark matter halo with a secondary dependence on the halo concentration, of the form that would be expected if the halo binding energy were the fundamental property that controls the mass of the BH. We predict that the BH mass, mBH, scales with halo mass as mBH ~ mαhalo, with α ~ 1.55 +/- 0.05, and that the scatter around the mean relation in part reflects the scatter in the halo concentration-mass relation.

  17. Isothermal Bondi Accretion in Jaffe and Hernquist Galaxies with a Central Black Hole: Fully Analytical Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciotti, Luca; Pellegrini, Silvia, E-mail: luca.ciotti@unibo.it

    One of the most active fields of research of modern-day astrophysics is that of massive black hole formation and coevolution with the host galaxy. In these investigations, ranging from cosmological simulations, to semi-analytical modeling, to observational studies, the Bondi solution for accretion on a central point-mass is widely adopted. In this work we generalize the classical Bondi accretion theory to take into account the effects of the gravitational potential of the host galaxy, and of radiation pressure in the optically thin limit. Then, we present the fully analytical solution, in terms of the Lambert–Euler W -function, for isothermal accretion inmore » Jaffe and Hernquist galaxies with a central black hole. The flow structure is found to be sensitive to the shape of the mass profile of the host galaxy. These results and the formulae that are provided, most importantly, the one for the critical accretion parameter, allow for a direct evaluation of all flow properties, and are then useful for the abovementioned studies. As an application, we examine the departure from the true mass accretion rate of estimates obtained using the gas properties at various distances from the black hole, under the hypothesis of classical Bondi accretion. An overestimate is obtained from regions close to the black hole, and an underestimate outside a few Bondi radii; the exact position of the transition between the two kinds of departure depends on the galaxy model.« less

  18. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign,more » trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.« less

  19. Can accretion disk properties observationally distinguish black holes from naked singularities?

    NASA Astrophysics Data System (ADS)

    Kovács, Z.; Harko, T.

    2010-12-01

    Naked singularities are hypothetical astrophysical objects, characterized by a gravitational singularity without an event horizon. Penrose has proposed a conjecture, according to which there exists a cosmic censor who forbids the occurrence of naked singularities. Distinguishing between astrophysical black holes and naked singularities is a major challenge for present day observational astronomy. In the context of stationary and axially symmetrical geometries, a possibility of differentiating naked singularities from black holes is through the comparative study of thin accretion disks properties around rotating naked singularities and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around axially-symmetric rotating naked singularities, obtained as solutions of the field equations in the Einstein-massless scalar field theory. A first major difference between rotating naked singularities and Kerr black holes is in the frame dragging effect, the angular velocity of a rotating naked singularity being inversely proportional to its spin parameter. Because of the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures that could discriminate between black holes and naked singularities. For specific values of the spin parameter and of the scalar charge, the energy flux from the disk around a rotating naked singularity can exceed by several orders of magnitude the flux from the disk of a Kerr black hole. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation by rotating naked singularities is always higher than the conversion efficiency for black holes, i.e., naked singularities provide a much more efficient mechanism for converting mass into radiation than black

  20. The rise and fall of stellar across the peak of cosmic star formation history: effects of mergers versus diffuse stellar mass acquisition

    NASA Astrophysics Data System (ADS)

    Welker, C.; Dubois, Y.; Devriendt, J.; Pichon, C.; Kaviraj, S.; Peirani, S.

    2017-02-01

    Building galaxy merger trees from a state-of-the-art cosmological hydrodynamical simulation, Horizon-AGN, we perform a statistical study of how mergers and diffuse stellar mass acquisition processes drive galaxy morphologic properties above z > 1. By diffuse mass acquisition here, we mean both accretion of stars by unresolved mergers (relative stellar mass growth smaller than 4.5 per cent) as well as in situ star formation when no resolved mergers are detected along the main progenitor branch of a galaxy. We investigate how stellar densities, galaxy sizes and galaxy morphologies (defined via shape parameters derived from the inertia tensor of the stellar density) depend on mergers of different mass ratios. We investigate how stellar densities, effective radii and shape parameters derived from the inertia tensor depend on mergers of different mass ratios. We find strong evidence that diffuse stellar accretion and in situ formation tend to flatten small galaxies over cosmic time, leading to the formation of discs. On the other hand, mergers, and not only the major ones, exhibit a propensity to puff up and destroy stellar discs, confirming the origin of elliptical galaxies. We confirm that mergers grow galaxy sizes more efficiently than diffuse processes (r_{0.5}∝ M_s^{0.85} and r_{0.5}∝ M_s^{0.1} on average, respectively) and we also find that elliptical galaxies are more susceptible to grow in size through mergers than disc galaxies with a size-mass evolution r_{0.5}∝ M_s^{1.2} instead of r_{0.5}∝ M_s^{-0.5}-M^{0.5} for discs depending on the merger mass ratio. The gas content drives the size-mass evolution due to merger with a faster size growth for gas-poor galaxies r_{0.5}∝ M_s2 than for gas-rich galaxies r0.5 ∝ Ms.

  1. Super-Eddington accreting massive black holes as long-lived cosmological standards.

    PubMed

    Wang, Jian-Min; Du, Pu; Valls-Gabaud, David; Hu, Chen; Netzer, Hagai

    2013-02-22

    Super-Eddington accreting massive black holes (SEAMBHs) reach saturated luminosities above a certain accretion rate due to photon trapping and advection in slim accretion disks. We show that these SEAMBHs could provide a new tool for estimating cosmological distances if they are properly identified by hard x-ray observations, in particular by the slope of their 2-10 keV continuum. To verify this idea we obtained black hole mass estimates and x-ray data for a sample of 60 narrow line Seyfert 1 galaxies that we consider to be the most promising SEAMBH candidates. We demonstrate that the distances derived by the new method for the objects in the sample get closer to the standard luminosity distances as the hard x-ray continuum gets steeper. The results allow us to analyze the requirements for using the method in future samples of active black holes and to demonstrate that the expected uncertainty, given large enough samples, can make them into a useful, new cosmological ruler.

  2. Evidence for a massive stellar black hole in x ray Nova Muscae

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil; Cheng, F. H.

    1992-01-01

    We present evidence that the X-ray Nova Muscae system contains a massive, greater than 10 M solarmass, black hole. A recently measured photometric binary mass function gives the black hole mass for this system as a function of orbital inclination angle. From the spectral redshift and width of the positron annihilation gamma-ray line observed by GRANAT/SIGMA, we find the accretion disk inclination angle to be 22 deg plus or minus 18 deg. Assuming the accretion disk lies in the orbital plane of the system, the black hole mass is found to have a lower limit of 14 M solar mass although statistics are poor. This is supported by spectral modeling of combined optical/UV/x-ray/gamma-ray data and by a new Nova Muscae distance limit we derive of greater than 3 kpc. The large mass for this black hole and the high binary mass ratio it implies (greater than 20) raise a serious challenge to theoretical models of the formation and evolution of massive binaries. The gamma-ray line technique introduced here can give tight constraints on orbital parameters when high-sensitivity line measurements are made by such missions as GRO.

  3. Accreting Neutron Star and Black Hole Binaries with NICER

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto

    2018-01-01

    The NICER mission on the International Space Station has significant new capabilities for the study of accreting neutron stars and blackholes, including large effective area, low background, and excellent low-energy X-ray response. Both the NICER Burst and Accretion Working Group and the Observatory Science Working Group have designed observing programs that probe various aspects of accretion physics. I will present some early results from the first six months of the NICER mission, including observations of the black hole transients MAXI J1535-571 and GX 339-4, the high-mass X-ray binary pulsars GRO J1008-57 and Swift J02436+6124, and the X-ray burster 4U 1820-30.

  4. Radiative Feedback from Primordial Protostars and Final Mass of the First Stars

    NASA Technical Reports Server (NTRS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yoshida, Naoki; Yorke, Harold W.

    2012-01-01

    In this contribution, we review our efforts toward understanding the typical mass-scale of primordial stars. Our direct numerical simulations show that, in both of Population III.1 and III.2 cases, strong UV stellar radiative feedback terminatesmass accretion onto a protostar.AnHII region formed around the protostar very dynamically expands throughout the gas accreting envelope, which cuts off the gas supply to a circumstellar disk. The disk is exposed to the stellar UV radiation and loses its mass by photoevaporation. The derived final masses are 43 Stellar Mass and 17 Stellar Mass in our fiducial Population III.1 and III.2 cases. Much more massive stars should form in other exceptional conditions. In atomic-cooling halos where H2 molecules are dissociated, for instance, a protostar grows via very rapid mass accretion with the rates M* approx. 0.1 - 1 Stellar Mass/yr. Our newstellar evolution calculations show that the protostar significantly inflates and never contracts to reach the ZAMS stage in this case. Such the "supergiant protostars" have very low UV luminosity, which results in weak radiative feedback against the accretion flow. In the early universe, supermassive stars formed through this process might provide massive seeds of supermassive black holes.

  5. Black Hole Event Horizons and Advection-Dominated Accretion

    NASA Technical Reports Server (NTRS)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2001-01-01

    The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the

  6. Diverse stellar haloes in nearby Milky Way mass disc galaxies

    NASA Astrophysics Data System (ADS)

    Harmsen, Benjamin; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; Holwerda, Benne W.

    2017-04-01

    We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly inclined Milky Way (MW) mass disc galaxies using Hubble Space Telescope data from the Galaxy haloes, Outer discs, Substructure, Thick discs, and Star clusters (GHOSTS) survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of -2 to -3.7 and a diversity of stellar halo masses of 1-6 × 109 M⊙, or 2-14 per cent of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power-law fit is 0.05-0.1 dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios c/a at ˜25 kpc between 0.4and0.75. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the MW and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients, and density profiles.

  7. Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization

    NASA Astrophysics Data System (ADS)

    Talbot, Colm; Thrane, Eric

    2018-04-01

    Gravitational-wave detections have revealed a previously unknown population of stellar mass black holes with masses above 20 M ⊙. These observations provide a new way to test models of stellar evolution for massive stars. By considering the astrophysical processes likely to determine the shape of the binary black hole mass spectrum, we construct a parameterized model to capture key spectral features that relate gravitational-wave data to theoretical stellar astrophysics. In particular, we model the signature of pulsational pair-instability supernovae, which are expected to cause all stars with initial mass 100 M ⊙ ≲ M ≲ 150 M ⊙ to form ∼40 M ⊙ black holes. This would cause a cutoff in the black hole mass spectrum along with an excess of black holes near 40 M ⊙. We carry out a simulated data study to illustrate some of the stellar physics that can be inferred using gravitational-wave measurements of binary black holes and demonstrate several such inferences that might be made in the near future. First, we measure the minimum and maximum stellar black hole mass. Second, we infer the presence of a peak due to pair-instability supernovae. Third, we measure the distribution of black hole mass ratios. Finally, we show how inadequate models of the black hole mass spectrum lead to biased estimates of the merger rate and the amplitude of the stochastic gravitational-wave background.

  8. Spectra of black hole accretion models of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Sa̧dowski, Aleksander; Soria, Roberto

    2017-08-01

    We present general relativistic radiation magnetohydrodynamics simulations of super-Eddington accretion on a 10 M⊙ black hole. We consider a range of mass accretion rates, black hole spins and magnetic field configurations. We compute the spectra and images of the models as a function of viewing angle and compare them with the observed properties of ultraluminous X-ray sources (ULXs). The models easily produce apparent luminosities in excess of 1040 erg s-1 for pole-on observers. However, the angle-integrated radiative luminosities rarely exceed 2.5 × 1039 erg s-1 even for mass accretion rates of tens of Eddington. The systems are thus radiatively inefficient, though they are energetically efficient when the energy output in winds and jets is also counted. The simulated models reproduce the main empirical types of spectra - disc-like, supersoft, soft, hard - observed in ultraluminous X-ray sources (ULXs). The magnetic field configuration, whether 'standard and normal evolution' (SANE) or 'magnetically arrested disc' (MAD), has a strong effect on the results. In SANE models, the X-ray spectral hardness is almost independent of accretion rate, but decreases steeply with increasing inclination. MAD models with non-spinning black holes produce significantly softer spectra at higher values of \\dot{M}, even at low inclinations. MAD models with rapidly spinning black holes are unique. They are radiatively efficient (efficiency factor ˜10-20 per cent), superefficient when the mechanical energy output is also included (70 per cent) and produce hard blazar-like spectra. In all models, the emission shows strong geometrical beaming, which disagrees with the more isotropic illumination favoured by observations of ULX bubbles.

  9. Hyper-Eddington accretion in GRB

    NASA Astrophysics Data System (ADS)

    Janiuk, A.; Czerny, B.; Perna, R.; Di Matteo, T.

    2005-05-01

    Popular models of the GRB origin associate this event with a cosmic explosion, birth of a stellar mass black hole and jet ejection. Due to the shock collisions that happen in the jet, the gamma rays are produced and we detect a burst of duration up to several tens of seconds. This burst duration is determined by the lifetime of the central engine, which may be different in various scenarios. Characteristically, the observed bursts have a bimodal distribution and constitute the two classes: short (t < 2s) and long bursts. Theoretical models invoke the mergers of two neutron stars or a neutron star with a black hole, or, on the other hand, a massive star explosion (collapsar). In any of these models we have a phase of disc accretion onto a newly born black hole: the disc is formed from the disrupted neutron star or fed by the material fallback from the ejected collapsar envelope. The disc is extremely hot and dense, and the accretion rate is orders of magnitude higher than the Eddington rate. In such physical conditions the main cooling mechanism is neutrino emission, and one of possible ways of energy extraction from the accretion disc is the neutrino-antineutrino annihilation.

  10. Formation of new stellar populations from gas accreted by massive young star clusters.

    PubMed

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  11. The Universal Stellar Mass-Stellar Metallicity Relation for Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Cheng, Lucy; Bullock, James S.; Gallazzi, Anna

    2013-12-01

    We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z_* \\propto M_*^{0.30+/- 0.02}. The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M * = 1012 M ⊙. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the sudden truncation of star formation due to ram pressure stripping. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  12. Black holes and local dark matter

    NASA Technical Reports Server (NTRS)

    Hegyi, D. J.; Kolb, E. W.; Olive, K. A.

    1986-01-01

    Two independent constraints are placed on the amount of dark matter in black holes contained in the galactic disk. First, gas accretion by black holes leads to X-ray emission which cannot exceed the observed soft X-ray background. Second, metals produced in stellar processes that lead to black hole formation cannot exceed the observed disk metal abundance. Based on these constraints, it appears unlikely that the missing disk mass could be contained in black holes. A consequence of this conclusion is that at least two different types of dark matter are needed to solve the various missing mass problems.

  13. Very Broad [O III] λλ4959, 5007 Emission from the NGC 4472 Globular Cluster RZ 2109 and Implications for the Mass of Its Black Hole X-Ray Source

    NASA Astrophysics Data System (ADS)

    Zepf, Stephen E.; Stern, Daniel; Maccarone, Thomas J.; Kundu, Arunav; Kamionkowski, Marc; Rhode, Katherine L.; Salzer, John J.; Ciardullo, Robin; Gronwall, Caryl

    2008-08-01

    We present Keck LRIS spectroscopy of the black hole-hosting globular cluster RZ 2109 in the Virgo elliptical galaxy NGC 4472. We find that this object has extraordinarily broad [O III] λ5007 and [O III] λ4959 emission lines, with velocity widths of approximately 2000 km s-1. This result has significant implications for the nature of this accreting black hole system and the mass of the globular cluster black hole. We show that the broad [O III] λ5007 emission must arise from material driven at high velocity from the black hole system. This is because the volume available near the black hole is too small by many orders of magnitude to have enough [O III]-emitting atoms to account for the observed L([O III] λ5007) at high velocities, even if this volume is filled with oxygen at the critical density for [O III] λ5007. The Balmer emission is also weak, indicating the observed [O III] is not due to shocks. We therefore conclude that the [O III] λλ4959, 5007 is produced by photoionization of material driven across the cluster. The only known way to drive significant material at high velocity is for a system accreting mass near or above its Eddington limit, which indicates a stellar-mass black hole. Since it is dynamically implausible to form an accreting stellar-mass black hole system in a globular cluster with an intermediate-mass black hole (IMBH), it appears this massive globular cluster does not have an IMBH. We discuss further tests of this conclusion, and its implications for the MBH - Mstellar and MBH - σ relations. Based on observations made at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. Galaxy And Mass Assembly (GAMA): galaxy close pairs, mergers and the future fate of stellar mass

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Driver, S. P.; Davies, L. J. M.; Hopkins, A. M.; Baldry, I. K.; Agius, N. K.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cluver, M.; De Propris, R.; Drinkwater, M. J.; Holwerda, B. W.; Kelvin, L. S.; Lara-Lopez, M. A.; Liske, J.; López-Sánchez, Á. R.; Loveday, J.; Mahajan, S.; McNaught-Roberts, T.; Moffett, A.; Norberg, P.; Obreschkow, D.; Owers, M. S.; Penny, S. J.; Pimbblet, K.; Prescott, M.; Taylor, E. N.; van Kampen, E.; Wilkins, S. M.

    2014-11-01

    We use a highly complete subset of the Galaxy And Mass Assembly II (GAMA-II) redshift sample to fully describe the stellar mass dependence of close pairs and mergers between 108 and 1012 M⊙. Using the analytic form of this fit we investigate the total stellar mass accreting on to more massive galaxies across all mass ratios. Depending on how conservatively we select our robust merging systems, the fraction of mass merging on to more massive companions is 2.0-5.6 per cent. Using the GAMA-II data we see no significant evidence for a change in the close pair fraction between redshift z = 0.05 and 0.2. However, we find a systematically higher fraction of galaxies in similar mass close pairs compared to published results over a similar redshift baseline. Using a compendium of data and the function γM = A(1 + z)m to predict the major close pair fraction, we find fitting parameters of A = 0.021 ± 0.001 and m = 1.53 ± 0.08, which represents a higher low-redshift normalization and shallower power-law slope than recent literature values. We find that the relative importance of in situ star formation versus galaxy merging is inversely correlated, with star formation dominating the addition of stellar material below M^* and merger accretion events dominating beyond M^*. We find mergers have a measurable impact on the whole extent of the galaxy stellar mass function (GSMF), manifest as a deepening of the `dip' in the GSMF over the next ˜Gyr and an increase in M^* by as much as 0.01-0.05 dex.

  15. Galaxies Grow Their Bulges and Black Holes in Diverse Ways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Eric F.; Harmsen, Benjamin; D’Souza, Richard

    Galaxies with Milky Way–like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offer a novel and robust measurement of galactic merger history; cosmologically motivated models predict that mergers with larger satellites produce more massive, higher-metallicity stellar halos, reproducing the recently observed stellar halo metallicity–mass relation. We quantify the relationship between stellar halo mass and bulge or black hole prominence using a sample of 18more » Milky Way-mass galaxies with newly available measurements of (or limits on) stellar halo properties. There is an order of magnitude range in bulge mass, and two orders of magnitude in black hole mass, at a given stellar halo mass (or, equivalently, merger history). Galaxies with low-mass bulges show a wide range of quiet merger histories, implying formation mechanisms that do not require intense merging activity. Galaxies with massive “classical” bulges and central black holes also show a wide range of merger histories. While three of these galaxies have massive stellar halos consistent with a merger origin, two do not—merging appears to have had little impact on making these two massive “classical” bulges. Such galaxies may be ideal laboratories to study massive bulge formation through pathways such as early gas-rich accretion, violent disk instabilities, or misaligned infall of gas throughout cosmic time.« less

  16. Galaxies Grow Their Bulges and Black Holes in Diverse Ways

    NASA Astrophysics Data System (ADS)

    Bell, Eric F.; Monachesi, Antonela; Harmsen, Benjamin; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; D'Souza, Richard; Holwerda, Benne W.

    2017-03-01

    Galaxies with Milky Way-like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offer a novel and robust measurement of galactic merger history; cosmologically motivated models predict that mergers with larger satellites produce more massive, higher-metallicity stellar halos, reproducing the recently observed stellar halo metallicity-mass relation. We quantify the relationship between stellar halo mass and bulge or black hole prominence using a sample of 18 Milky Way-mass galaxies with newly available measurements of (or limits on) stellar halo properties. There is an order of magnitude range in bulge mass, and two orders of magnitude in black hole mass, at a given stellar halo mass (or, equivalently, merger history). Galaxies with low-mass bulges show a wide range of quiet merger histories, implying formation mechanisms that do not require intense merging activity. Galaxies with massive “classical” bulges and central black holes also show a wide range of merger histories. While three of these galaxies have massive stellar halos consistent with a merger origin, two do not—merging appears to have had little impact on making these two massive “classical” bulges. Such galaxies may be ideal laboratories to study massive bulge formation through pathways such as early gas-rich accretion, violent disk instabilities, or misaligned infall of gas throughout cosmic time.

  17. MASSIVE GALAXIES IN COSMOS: EVOLUTION OF BLACK HOLE VERSUS BULGE MASS BUT NOT VERSUS TOTAL STELLAR MASS OVER THE LAST 9 Gyr?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahnke, Knud; Cisternas, Mauricio; Inskip, Katherine

    2009-12-01

    We constrain the ratio of black hole (BH) mass to total stellar mass of type-1 active galactic nuclei (AGNs) in the COSMOS survey at 1 < z < 2. For 10 AGNs at mean redshift z approx 1.4 with both Hubble Space Telescope (HST)/ACS and HST/NICMOS imaging data, we are able to compute the total stellar mass M {sub *,total}, based on rest-frame UV-to-optical host galaxy colors which constrain mass-to-light ratios. All objects have virial M {sub BH} estimates available from the COSMOS Magellan/IMACS and zCOSMOS surveys. We find within errors zero difference between the M {sub BH}-M {sub *,total}more » relation at z approx 1.4 and the M {sub BH}-M {sub *,bulge} relation in the local universe. Our interpretation is (1) if our objects were purely bulge-dominated, the M {sub BH}-M {sub *,bulge} relation has not evolved since z approx 1.4. However, (2) since we have evidence for substantial disk components, the bulges of massive galaxies (M {sub *,total} = 11.1 +- 0.3 or log M {sub BH} approx 8.3 +- 0.2) must have grown over the last 9 Gyr predominantly by redistribution of the disk into the bulge mass. Since all necessary stellar mass exists in galaxies at z = 1.4, no star formation or addition of external stellar material is required, but only a redistribution, e.g., induced by minor and major merging or through disk instabilities. Merging, in addition to redistributing mass in the galaxy, will add both BH and stellar/bulge mass, but does not change the overall final M {sub BH}/M {sub *,bulge} ratio. Since the overall cosmic stellar and BH mass buildup trace each other tightly over time, our scenario of bulge formation in massive galaxies is independent of any strong BH feedback and means that the mechanism coupling BH and bulge mass until the present is very indirect.« less

  18. Ubiquitous equatorial accretion disc winds in black hole soft states

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Fender, R. P.; Begelman, M. C.; Dunn, R. J. H.; Neilsen, J.; Coriat, M.

    2012-05-01

    High-resolution spectra of Galactic black holes (GBHs) reveal the presence of highly ionized absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are a ubiquitous component of the jet-free soft states of all GBHs. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV/Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionization and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds and their presence ubiquitously during the soft X-ray states suggest they are fundamental components of the accretion phenomenon.

  19. Mass-accreting white dwarfs and type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Bo

    2018-05-01

    Type Ia supernovae (SNe Ia) play a prominent role in understanding the evolution of the Universe. They are thought to be thermonuclear explosions of mass-accreting carbon-oxygen white dwarfs (CO WDs) in binaries, although the mass donors of the accreting WDs are still not well determined. In this article, I review recent studies on mass-accreting WDs, including H- and He-accreting WDs. I also review currently most studied progenitor models of SNe Ia, i.e., the single-degenerate model (including the WD+MS channel, the WD+RG channel and the WD+He star channel), the double-degenerate model (including the violent merger scenario) and the sub-Chandrasekhar mass model. Recent progress on these progenitor models is discussed, including the initial parameter space for producing SNe Ia, the binary evolutionary paths to SNe Ia, the progenitor candidates for SNe Ia, the possible surviving companion stars of SNe Ia, some observational constraints, etc. Some other potential progenitor models of SNe Ia are also summarized, including the hybrid CONe WD model, the core-degenerate model, the double WD collision model, the spin-up/spin-down model and the model of WDs near black holes. To date, it seems that two or more progenitor models are needed to explain the observed diversity among SNe Ia.

  20. The impact of feedback and the hot halo on the rates of gas accretion onto galaxies

    NASA Astrophysics Data System (ADS)

    Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.

    2018-04-01

    We investigate the physics that drives the gas accretion rates onto galaxies at the centers of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2 the accretion rate onto the galaxy increases with halo mass in the halo mass range 1010 - 1011.7 M⊙, flattens between the halo masses 1011.7 - 1012.7 M⊙, and increases again for higher-mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when AGN feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates onto galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.

  1. Accretion of magnetized matter into a black hole.

    NASA Astrophysics Data System (ADS)

    Bisnovatyj-Kogan, G. S.

    1999-12-01

    Accretion is the main source of energy in binary X-ray sources inside the Galaxy, and most probably in active galactic nuclei, where numerous observational data for the existence of supermassive black holes have been obtained. Standard accretion disk theory is formulated which is based on local heat balance. The whole energy produced by turbulent viscous heating is supposed to be emitted to the sides of the disk. Sources of turbulence in the accretion disk are discussed, including nonlinear hydrodynamic turbulence, convection and magnetic field. In standard theory there are two branches of solution, optically thick, anti-optically thin, which are individually self-consistent. The choice between these solutions should be done on the basis of a stability analysis. Advection in the accretion disks is described by differential equations, which makes the theory nonlocal. The low-luminosity optically thin accretion disk model with advection under some conditions may become advectively dominated, carrying almost all the energy inside the black hole. A proper account for magnetic field in the process of accretion limits the energy advected into a black hole, and does not allow the radiative efficiency of accretion to become lower than about 1/4 of the standard accretion disk model efficiency.

  2. Accretion and Outflow from a Magnetized, Neutrino Cooled Torus around the Gamma Ray Burst Central Engine

    NASA Astrophysics Data System (ADS)

    Janiuk, Agnieszka; Moscibrodzka, Monika

    Gamma Ray Bursts (GRB) are the extremely energetic transient events, visible from the most distant parts of the Universe. They are most likely powered by accretion on the hyper-Eddington rates that proceeds onto a newly born stellar mass black hole. This central engine gives rise to the most powerful, high Lorentz factor jets that are responsible for energetic gamma ray emission. We investigate the accretion flow evolution in GRB central engine, using the 2D MHD simulations in General Relativity. We compute the structure and evolution of the extremely hot and dense torus accreting onto the fast spinning black hole, which launches the magnetized jets. We calculate the chemical structure of the disk and account for neutrino cooling. Our preliminary runs apply to the short GRB case (remnant torus accreted after NS-NS or NS-BH merger). We estimate the neutrino luminosity of such an event for chosen disk and central BH mass.

  3. Accretion Discs Around Black Holes: Developement of Theory

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.

    Standard accretion disk theory is formulated which is based on the local heat balance. The energy produced by a turbulent viscous heating is supposed to be emitted to the sides of the disc. Sources of turbulence in the accretion disc are connected with nonlinear hydrodynamic instability, convection, and magnetic field. In standard theory there are two branches of solution, optically thick, and optically thin. Advection in accretion disks is described by the differential equations what makes the theory nonlocal. Low-luminous optically thin accretion disc model with advection at some suggestions may become advectively dominated, carrying almost all the energy inside the black hole. The proper account of magnetic filed in the process of accretion limits the energy advected into a black hole, efficiency of accretion should exceed ˜ 1/4 of the standard accretion disk model efficiency.

  4. The profiles of Fe K α line from the inhomogeneous accretion flow

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Di; Ma, Ren-Yi; Li, Ya-Ping; Zhang, Hui; Fang, Tao-Tao

    2018-05-01

    The clumpy disc, or inhomogeneous accretion flow, has been proposed to explain the properties of accreting black hole systems. However, the observational evidence remains to be explored. In this work, we calculate the profiles of Fe K α lines emitted from the inhomogeneous accretion flow through the ray-tracing technique, in order to find possible observable signals of the clumps. Compared with the skewed double-peaked profile of the continuous standard accretion disc, the lines show a multipeak structure when the emissivity index is not very steep. The peaks and wings are affected by the position and size of the cold clumps. When the clump is small and is located in the innermost region, due to the significant gravitational redshift, the blue wing can overlap with the red wing of the outer cold disc/clump, forming a fake peak or greatly enhancing the red peak. Given high enough resolution, it is easier to constrain the clumps around the supermassive black holes than the clumps in stellar mass black holes due to the thermal Doppler effect.

  5. X-Shooter study of accretion in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Fedele, D.; Herczeg, G. J.; Teixeira, P. S.

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star-forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to ~700 nm. The dependence of accretion on stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are not influenced by sample selection. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 084.C-1095 and 094.C-0913.

  6. Stellar and Circumstellar Properties of Low-Mass, Young, Subarcsecond Binaries

    NASA Astrophysics Data System (ADS)

    Bruhns, Sara; Prato, L. A.

    2014-01-01

    We present a study of the stellar and circumstellar characteristics of close (< 1''), young (< 2 to 3 Myr), low-mass (<1 solar mass) binary stars in the Taurus star forming region. Low-resolution (R ~ 2000) spectra were taken in the K-band using adaptive optics to separate the observations for each component and identify the individual spectral types, extinction, and K-band excess. Combining these data with stellar luminosities allows us to estimate the stellar masses and ages. We also measured equivalent widths of the hydrogen Brackett gamma line in order to estimate the strength of gas accretion. We obtained spectra for six binary systems with separations from 1'' down to 0.3''. In the CZ Tau binary we found that the fainter secondary star spectrum appears to be of earlier spectral type than the primary; we speculate on the origin of this inversion.

  7. Stellar Death by Black Hole: How Tidal Disruption Events Unveil the High Energy Universe

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric Robert

    2017-08-01

    When a star comes very close to a supermassive black hole, the tidal field of the hole can be strong enough to deform and stretch the star into a stream of debris. Half of this stellar debris stream returns to the black hole and forms an accretion disk, briefly lighting up the black hole and, in the most extreme cases, launching relativistic jets. These ``tidal disruption events,'' from the initial stellar destruction to the eventual jet production, are the focus of my thesis, and during this talk I will describe some of the theoretical advances we have made in understanding them. I will also discuss more recent work that shows how this relatively simple picture can be more complicated when the disrupting black hole is part of a binary system. Despite the added complexity, I will argue that there is a timescale over which one expects to see variation in the luminosity of a tidal disruption event from a binary supermassive black hole system. Using these predictions and a set of simulations, I will motivate such an interpretation for the superluminous supernova ASASSN-15lh.

  8. General polytropic self-gravitating cylinder free-fall and accreting mass string with a chain of collapsed objects

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Hu, Xu-Yao

    2016-06-01

    We present a theoretical model framework for general polytropic (GP) hydrodynamic cylinder under self-gravity of infinite length with axial uniformity and axisymmetry. For self-similar dynamic solutions, we derive valuable integrals, analytic asymptotic solutions, sonic critical curves, shock conditions, and global numerical solutions with or without expansion shocks. Among others, we investigate various dynamic solutions featured with central free-fall asymptotic behaviours, corresponding to a collapsed mass string with a sustained dynamic accretion from a surrounding mass reservoir. Depending on the allowed ranges of a scaling index a < -1, such cylindrical dynamic mass accretion rate could be steady, increasing with time and decreasing with time. Physically, such a collapsed mass string or filament would break up into a sequence of sub-clumps and segments as induced by gravitational Jeans instabilities. Depending on the scales involved, such sub-clumps would evolve into collapsed objects or gravitationally bound systems. In diverse astrophysical and cosmological contexts, such a scenario can be adapted on various temporal, spatial and mass scales to form a chain of collapsed clumps and/or compact objects. Examples include the formation of chains of proto-stars, brown dwarfs and gaseous planets along molecular filaments; the formation of luminous massive stars along magnetized spiral arms and circum-nuclear starburst rings in barred spiral galaxies; the formation of chains of compact stellar objects such as white dwarfs, neutron stars, and black holes along a highly condensed mass string. On cosmological scales, one can perceive the formation of chains of galaxies, chains of galaxy clusters or even chains of supermassive and hypermassive black holes in the Universe including the early Universe. All these chains referred to above include possible binaries.

  9. Multi-wavelength Observations of Accreting Compact Objects

    NASA Astrophysics Data System (ADS)

    Hernandez Santisteban, Juan Venancio

    2016-11-01

    The study of compact binaries invokes core astrophysical concepts ranging from stellar and sub-stellar atmospheres and interiors, stellar and binary evolution to physics of accretion. All of these systems are hosts to a compact object a white dwarf, neutron star or black hole ???? which produces a wide variety of exotic and energetic phenomena across the full electromagnetic spectrum. In this thesis, I will make use of multi-wavelength observations ranging from far-ultraviolet to nearinfrared in order to investigate two main topics: a) the late evolution of cataclysmic variables, and b) the accreting state of transitional millisecond pulsars. Firstly, I analyse the Very Large Telescope X-Shooter time-resolved spectroscopy of the short orbital period cataclysmic variable, SDSS J1433+1011, in Chapter 2. The wide wavelength coverage allowed me to perform a detailed characterisation of the system, as well as a direct mass measurement of the brown dwarf companion. I show that the donor in SDSS J1433+1011 successfully transitioned from the stellar to sub-stellar regime, as predicted by evolutionary models. Further light-curve modelling allowed me to show that a low albedo as well as a low heat circulation efficiency is present in the atmosphere of the sub-stellar donor. In Chapter 3, I analyse data from large synoptic surveys, such as SDSS and PTF, to search for the predicted population of dead cataclysmic variables. Following the non-detection of dead CVs, I was able to estimate the space density (?0 < 2?10????5 pc????3) of this hidden population via a Monte Carlo simulation of the Galactic CV population. In Chapter 4, I present Hubble Space Telescope ultraviolet observations of the transitional millisecond pulsar PSR J1023+0038, during its latest accretion state. In combination with optical and near-infrared data, I show that a standard accretion disc does not reach the magnetosphere of the neutron star. Instead, the overall spectrum is consistent with a truncated disc

  10. The Observed Galactic Annihilation Line: Possible Signature of Accreting Small Mass Black Holes in the Galactic Center

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Chardonnet, Pascal

    2006-01-01

    Various balloon and satellite observatories have revealed what appears to be an extended source of 0.511 MeV annihilation radiation with flux of approx. 10(exp -3) photons/sq cm/s centered on the Galactic Center. Positrons from radioactive products of stellar explosions can account for a significant fraction of the emission. We discuss an additional source for this emission: namely e(+)e(-) pairs produced when X-rays generated from the approx. 2.6 x 10(exp 6) solar mass Galactic Center Black Hole interact with approx. 10 MeV temperature blackbody emission from 10(exp 17) g black holes within 10(exp 14-l5) cm of the center. The number of such Small Mass Black Holes (SMMBHs) can account for the production of the 10(exp 42) e(+)/s that produces the observed annihilation in the inner Galaxy when transport effects are taken into account. We consider the possibility for confirming the presence of these SMMBHs in the Galactic Center region with future generations of gamma-ray instruments if a blackbody like emission of approx. 10 MeV temperature would be detected by them. Small Mass Black Hole can be a potential candidate for dark (invisible) matter hal

  11. Collisions in primordial star clusters. Formation pathway for intermediate mass black holes

    NASA Astrophysics Data System (ADS)

    Reinoso, B.; Schleicher, D. R. G.; Fellhauer, M.; Klessen, R. S.; Boekholt, T. C. N.

    2018-06-01

    Collisions were suggested to potentially play a role in the formation of massive stars in present day clusters, and have likely been relevant during the formation of massive stars and intermediate mass black holes within the first star clusters. In the early Universe, the first stellar clusters were particularly dense, as fragmentation typically only occurred at densities above 109 cm-3, and the radii of the protostars were enhanced as a result of larger accretion rates, suggesting a potentially more relevant role of stellar collisions. We present here a detailed parameter study to assess how the number of collisions and the mass growth of the most massive object depend on the properties of the cluster. We also characterize the time evolution with three effective parameters: the time when most collisions occur, the duration of the collisions period, and the normalization required to obtain the total number of collisions. We apply our results to typical Population III (Pop. III) clusters of about 1000 M⊙, finding that a moderate enhancement of the mass of the most massive star by a factor of a few can be expected. For more massive Pop. III clusters as expected in the first atomic cooling halos, we expect a more significant enhancement by a factor of 15-32. We therefore conclude that collisions in massive Pop. III clusters were likely relevant to form the first intermediate mass black holes.

  12. Estimation of bipolar jets from accretion discs around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2017-08-01

    We analyse flows around a rotating black hole and obtain self-consistent accretion-ejection solutions in full general relativistic prescription. Entire energy-angular momentum parameter space is investigated in the advective regime to obtain shocked and shock-free accretion solutions. Jet equations of motion are solved along the von Zeipel surfaces computed from the post-shock disc, simultaneously with the equations of accretion disc along the equatorial plane. For a given spin parameter, the mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. Interestingly, we obtain all types of possible jet solutions, for example, steady shock solution with multiple critical points, bound solution with two critical points and smooth solution with single critical point. Multiple critical points may exist in jet solution for spin parameter as ≥ 0.5. The jet terminal speed generally increases if the accretion shock forms closer to the horizon and is higher for corotating black hole than the counter-rotating and the non-rotating one. Quantitatively speaking, shocks in jet may form for spin parameter as > 0.6 and jet shocks range between 6rg and 130rg above the equatorial plane, while the jet terminal speed vj∞ > 0.35 c if Bernoulli parameter E≥1.01 for as > 0.99.

  13. Heaviest Stellar Black Hole Discovered in Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    2007-10-01

    Astronomers have located an exceptionally massive black hole in orbit around a huge companion star. This result has intriguing implications for the evolution and ultimate fate of massive stars. The black hole is part of a binary system in M33, a nearby galaxy about 3 million light years from Earth. By combining data from NASA's Chandra X-ray Observatory and the Gemini telescope on Mauna Kea, Hawaii, the mass of the black hole, known as M33 X-7, was determined to be 15.7 times that of the Sun. This makes M33 X-7 the most massive stellar black hole known. A stellar black hole is formed from the collapse of the core of a massive star at the end of its life. Chandra X-ray Image of M33 X-7 Chandra X-ray Image of M33 X-7 "This discovery raises all sorts of questions about how such a big black hole could have been formed," said Jerome Orosz of San Diego State University, lead author of the paper appearing in the October 18th issue of the journal Nature. M33 X-7 orbits a companion star that eclipses the black hole every three and a half days. The companion star also has an unusually large mass, 70 times that of the Sun. This makes it the most massive companion star in a binary system containing a black hole. Hubble Optical Image of M33 X-7 Hubble Optical Image of M33 X-7 "This is a huge star that is partnered with a huge black hole," said coauthor Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "Eventually, the companion will also go supernova and then we'll have a pair of black holes." The properties of the M33 X-7 binary system - a massive black hole in a close orbit around a massive companion star - are difficult to explain using conventional models for the evolution of massive stars. The parent star for the black hole must have had a mass greater than the existing companion in order to have formed a black hole before the companion star. Gemini Optical Image of M33 X-7 Gemini Optical Image of M33 X-7 Such a massive star would

  14. Accreting neutron stars, black holes, and degenerate dwarf stars.

    PubMed

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  15. Criteria for retrograde rotation of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. G.; Piotrovich, M. Yu; Gnedin, Yu N.; Natsvlishvili, T. M.; Buliga, S. D.

    2018-06-01

    Rotating supermassive black holes produce jets and their origin is connected to the magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by accretion. In this situation the prograde accreting discs produce weaker large-scale black hole threading magnetic fields, implying weaker jets than in retrograde regimes. The basic goal of this paper is to find the best candidates for retrograde accreting systems in observed active galactic nuclei. We show that active galactic nuclei with low Eddington ratio are really the best candidates for retrograde systems. This conclusion is obtained for kinetically dominated Fanaroff-Riley class II radio galaxies, flat-spectrum radio-loud narrow-line Seyfert I galaxies and a number of nearby galaxies. Our conclusion is that the best candidates for retrograde systems are the noticeable population of active galactic nuclei in the Universe. This result corresponds to the conclusion that in the merging process the interaction of merging black holes with a retrograde circumbinary disc is considerably more effective for shrinking the binary system.

  16. The impact of feedback and the hot halo on the rates of gas accretion on to galaxies

    NASA Astrophysics Data System (ADS)

    Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.

    2018-07-01

    We investigate the physics that drives the gas accretion rates on to galaxies at the centres of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2, the accretion rate on to the galaxy increases with halo mass in the halo mass range 1010-1011.7 M⊙, flattens between the halo masses 1011.7 and 1012.7 M⊙, and increases again for higher mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when active galactic nucleus (AGN) feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes, AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much, and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates on to galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.

  17. Protomagnetar and black hole formation in high-mass stars

    NASA Astrophysics Data System (ADS)

    Obergaulinger, M.; Aloy, M. Á.

    2017-07-01

    Using axisymmetric simulations coupling special relativistic magnetohydrodynamics (MHD), an approximate post-Newtonian gravitational potential and two-moment neutrino transport, we show different paths for the formation of either protomagnetars or stellar mass black holes. The fraction of prototypical stellar cores which should result in collapsars depends on a combination of several factors, among which the structure of the progenitor star and the profile of specific angular momentum are probably the foremost. Along with the implosion of the stellar core, we also obtain supernova-like explosions driven by neutrino heating and hydrodynamic instabilities or by magneto-rotational effects in cores of high-mass stars. In the latter case, highly collimated, mildly relativistic outflows are generated. We find that after a rather long post-collapse phase (lasting ≳1 s) black holes may form in cases both of successful and failed supernova-like explosions. A basic trend is that cores with a specific angular momentum smaller than that obtained by standard, one-dimensional stellar evolution calculations form black holes (and eventually collapsars). Complementary, protomagnetars result from stellar cores with the standard distribution of specific angular momentum obtained from prototypical stellar evolution calculations including magnetic torques and moderate to large mass-loss rates.

  18. Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    NASA Astrophysics Data System (ADS)

    Yang, G.; Chen, C.-T. J.; Vito, F.; Brandt, W. N.; Alexander, D. M.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Bauer, F. E.; Koekemoer, A. M.; Lehmer, B. D.; Liu, T.; Schneider, D. P.; Shemmer, O.; Trump, J. R.; Vignali, C.; Wang, J.-X.

    2017-06-01

    We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M *) in the CANDELS/GOODS-South field in the redshift range of 0.5≤slant z< 2.0. Our sample consists of ≈ {{18,000}} galaxies, allowing us to probe galaxies with 0.1{M}⊙ {{yr}}-1≲ {SFR}≲ 100 {M}⊙ {{yr}}-1 and/or {10}8{M}⊙ ≲ {M}* ≲ {10}11 {M}⊙ . We use sample-mean BHAR to approximate long-term average BHAR. Our sample-mean BHARs are derived from the Chandra Deep Field-South 7 Ms observations, while the SFRs and M * have been estimated by the CANDELS team through spectral energy distribution fitting. The average BHAR is correlated positively with both SFR and M *, and the BHAR-SFR and BHAR-M * relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M * than SFR. This result indicates that M * is the primary host-galaxy property related to supermassive black hole (SMBH) growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ({M}* ≳ {10}10{M}⊙ ) have significantly higher BHAR/SFR ratios than less massive galaxies, indicating that the former have higher SMBH fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between {M}{BH} and M * for local giant ellipticals and suggest that their {M}{BH}/{M}* is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher {M}{BH}/{M}* compared to dwarfs.

  19. Cold-mode Accretion: Driving the Fundamental Mass-Metallicity Relation at z ~ 2

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn G.; van de Voort, Freeke; Glazebrook, Karl; Tran, Kim-Vy H.; Yuan, Tiantian; Nanayakkara, Themiya; Allen, Rebecca J.; Alcorn, Leo; Cowley, Michael; Labbé, Ivo; Spitler, Lee; Straatman, Caroline; Tomczak, Adam

    2016-07-01

    We investigate the star formation rate (SFR) dependence on the stellar mass and gas-phase metallicity relation at z = 2 with MOSFIRE/Keck as part of the ZFIRE survey. We have identified 117 galaxies (1.98 ≤ z ≤ 2.56), with 8.9 ≤ log(M/M ⊙) ≤ 11.0, for which we can measure gas-phase metallicities. For the first time, we show a discernible difference between the mass-metallicity relation, using individual galaxies, when dividing the sample by low (<10 M ⊙ yr-1) and high (>10 M ⊙ yr-1) SFRs. At fixed mass, low star-forming galaxies tend to have higher metallicity than high star-forming galaxies. Using a few basic assumptions, we further show that the gas masses and metallicities required to produce the fundamental mass-metallicity relation and its intrinsic scatter are consistent with cold-mode accretion predictions obtained from the OWLS hydrodynamical simulations. Our results from both simulations and observations are suggestive that cold-mode accretion is responsible for the fundamental mass-metallicity relation at z = 2 and it demonstrates the direct relationship between cosmological accretion and the fundamental properties of galaxies.

  20. Accretion flows onto supermassive black holes

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1988-01-01

    The radiative and hydrodynamic properties of an angular momentum-dominated accretion flow onto a supermassive black hole depend largely on the ratio of the accretion rate to the Eddington accretion rate. High values of this ratio favor optically thick flows which produce largely thermal radiation, while optically thin 'two-temperature' flows may be present in systems with small values of this ratio. Observations of some AGN suggest that thermal and nonthermal sources of radiation may be of comparable importance in the 'central engine'. Consideration is given to the possibilities for coexistence of different modes of accretion in a single flow. One intriguing possibility is that runaway pair production may cause an optically thick 'accretion annulus' to form at the center of a two-temperature inflow.

  1. Observational evidence for black holes

    NASA Astrophysics Data System (ADS)

    Hutchings, J. B.

    1985-02-01

    Observational data supporting the existence of black holes are presented graphically and characterized in a general review. Object classes discussed include quasars as galaxy cores, X-ray-emitting binaries (Cyg X-1, LMC X-3, and the apparent miniature quasar SS 433), radio galaxies and quasars with twin jets, and interacting galaxies. This evidence is found to strongly suggest that quasars are accreting black holes of mass about 10 to the 8th solar mass, that they formed more easily in earlier stages of the universe (corresponding to redshifts around 2), and that they are analogous in many ways to the stellar-mass object SS 433.

  2. The Interplay of Star formation and Accretion in the Local Universe

    NASA Astrophysics Data System (ADS)

    Green, Paul

    2010-09-01

    Galaxy evolution and supermassive black hole growth are closely linked, but the inter-relationships between active accretion and star formation, AGN outflows, and host morphological trends remain poorly understood. We propose to study an unprecedented sample of 615 low redshift SDSS galaxies and AGN detected in archival Chandra fields. We will measure diverse optical and X-ray spectroscopic properties spanning the artificial galaxy/AGN divide, and provide detailed results of our model fitting. We highlight tests of (1) an evolutionary sequence from star-forming through AGN to passive galaxy modes (2) narrow line Sy1 galaxies and new parallels between the accretion modes of AGN and stellar mass X-ray binaries and (3) the relationship of host morphology and mergers to accretion.

  3. Bondi or not Bondi: the impact of resolution on accretion and drag force modelling for supermassive black holes

    NASA Astrophysics Data System (ADS)

    Beckmann, R. S.; Slyz, A.; Devriendt, J.

    2018-07-01

    Whilst in galaxy-size simulations, supermassive black holes (SMBHs) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion on to a point mass, and the related estimate of the drag force exerted on to a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply-limited accretion scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force, it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above M_∞ ≥ 3, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates on to the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.

  4. Bondi or not Bondi: the impact of resolution on accretion and drag force modelling for Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Beckmann, R. S.; Slyz, A.; Devriendt, J.

    2018-04-01

    Whilst in galaxy-size simulations, supermassive black holes (SMBH) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion onto a point mass, and the related estimate of the drag force exerted onto a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply limited accretion (SLA) scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above M_∞ ≥ 3, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates onto the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.

  5. Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Bonito, R.; Argiroffi, C.; Reale, F.; Peres, G.; Miceli, M.; Matsakos, T.; Stehlé, C.; Ibgui, L.; de Sa, L.; Chièze, J. P.; Lanz, T.

    2013-11-01

    Context. According to the magnetospheric accretion model, hot spots form on the surface of classical T Tauri stars (CTTSs) in regions where accreting disk material impacts the stellar surface at supersonic velocity, generating a shock. Aims: We investigate the dynamics and stability of postshock plasma that streams along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. Methods: We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model considers the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction (including the effects of heat flux saturation). We explore different configurations and strengths of the magnetic field. Results: The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. In the case of weak magnetic fields (plasma β ≳ 1 in the postshock region), a large component of B may develop perpendicular to the stream at the base of the accretion column, which limits the sinking of the shocked plasma into the chromosphere and perturbs the overstable shock oscillations induced by radiative cooling. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields (β < 1 in the postshock region close to the chromosphere), the field configuration determines the position of the shock and its stand-off height. If the field is strongly tapered close to the chromosphere, an oblique shock may form well above the stellar surface at the height where the plasma β ≈ 1. In general, we find that a nonuniform magnetic field makes the distribution of emission measure vs. temperature of the postshock plasma at T > 106 K lower than when there is uniform magnetic field

  6. Suppression of accretion on to low-mass Population III stars

    NASA Astrophysics Data System (ADS)

    Johnson, Jarrett L.; Khochfar, Sadegh

    2011-05-01

    Motivated by recent theoretical work suggesting that a substantial fraction of Population (Pop) III stars may have had masses low enough for them to survive to the present day, we consider the role that the accretion of metal-enriched gas may have had in altering their surface composition, thereby disguising them as Pop II stars. We demonstrate that if weak, solar-like winds are launched from low-mass Pop III stars formed in the progenitors of the dark matter halo of the Galaxy, then such stars are likely to avoid significant enrichment via accretion of material from the interstellar medium. We find that at early times accretion is easily prevented if the stars are ejected from the central regions of the haloes in which they form, either by dynamical interactions with more massive Pop III stars or by violent relaxation during halo mergers. While accretion may still take place during passage through sufficiently dense molecular clouds at later times, we find that the probability of such a passage is generally low (≲0.1), assuming that stars have velocities of the order of the maximum circular velocity of their host haloes and accounting for the orbital decay of merging haloes. In turn, due to the higher gas density required for accretion on to stars with higher velocities, we find an even lower probability of accretion (˜10-2) for the subset of Pop III stars formed at z > 10, which are more quickly incorporated into massive haloes than stars formed at lower redshift. While there is no a priori reason to assume that low-mass Pop III stars do not have solar-like winds, without them surface enrichment via accretion is likely to be inevitable. We briefly discuss the implications that our results hold for stellar archaeology.

  7. Low-mass Active Galactic Nuclei on the Fundamental Plane of Black Hole Activity

    NASA Astrophysics Data System (ADS)

    Qian, Lei; Dong, Xiao-Bo; Xie, Fu-Guo; Liu, Wenjuan; Li, Di

    2018-06-01

    It is widely known that in active galactic nuclei (AGNs) and black hole X-ray binaries (BHXBs), there is a tight correlation among their radio luminosity (L R ), X-ray luminosity (L X), and BH mass ({M}BH}), the so-called “fundamental plane” (FP) of BH activity. Yet the supporting data are very limited in the {M}BH} regime between stellar mass (i.e., BHXBs) and 106.5 {M}ȯ (namely, the lower bound of supermassive BHs in common AGNs). In this work, we developed a new method to measure the 1.4 GHz flux directly from the images of the VLA FIRST survey, and apply it to the type-1 low-mass AGNs in the Dong et al. sample. As a result, we obtained 19 new low-mass AGNs for FP research with both {M}BH} estimates ({M}BH} ≈ 105.5–6.5 {M}ȯ ), reliable X-ray measurements, and (candidate) radio detections, tripling the number of such candidate sources in the literature. Most (if not all) of the low-mass AGNs follow the standard radio/X-ray correlation and the universal FP relation fitted with the combined data set of BHXBs and supermassive AGNs by Gültekin et al.; the consistency in the radio/X-ray correlation slope among those accretion systems supports the picture that the accretion and ejection (jet) processes are quite similar in all accretion systems of different {M}BH}. In view of the FP relation, we speculate that the radio loudness { \\mathcal R } (i.e., the luminosity ratio of the jet to the accretion disk) of AGNs depends not only on Eddington ratio, but probably also on {M}BH}.

  8. Feedback Limits to Maximum Seed Masses of Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacucci, Fabio; Natarajan, Priyamvada; Ferrara, Andrea

    The most massive black holes observed in the universe weigh up to ∼10{sup 10} M {sub ⊙}, nearly independent of redshift. Reaching these final masses likely required copious accretion and several major mergers. Employing a dynamical approach that rests on the role played by a new, relevant physical scale—the transition radius—we provide a theoretical calculation of the maximum mass achievable by a black hole seed that forms in an isolated halo, one that scarcely merged. Incorporating effects at the transition radius and their impact on the evolution of accretion in isolated halos, we are able to obtain new limits formore » permitted growth. We find that large black hole seeds ( M {sub •} ≳ 10{sup 4} M {sub ⊙}) hosted in small isolated halos ( M {sub h} ≲ 10{sup 9} M {sub ⊙}) accreting with relatively small radiative efficiencies ( ϵ ≲ 0.1) grow optimally in these circumstances. Moreover, we show that the standard M {sub •}– σ relation observed at z ∼ 0 cannot be established in isolated halos at high- z , but requires the occurrence of mergers. Since the average limiting mass of black holes formed at z ≳ 10 is in the range 10{sup 4–6} M {sub ⊙}, we expect to observe them in local galaxies as intermediate-mass black holes, when hosted in the rare halos that experienced only minor or no merging events. Such ancient black holes, formed in isolation with subsequent scant growth, could survive, almost unchanged, until present.« less

  9. Radiative, two-temperature simulations of low-luminosity black hole accretion flows in general relativity

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Wielgus, Maciek; Narayan, Ramesh; Abarca, David; McKinney, Jonathan C.; Chael, Andrew

    2017-04-01

    We present a numerical method that evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components - ions and electrons - which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric space-time of the black hole. Numerical results are presented for five models of low-luminosity black hole accretion. In the case of a model with a mass accretion rate dot{M}˜ 4× 10^{-8} dot{M}_Edd, we find that radiation has a negligible effect on either the dynamics or the thermodynamics of the accreting gas. In contrast, a model with a larger dot{M}˜ 4× 10^{-4} dot{M}_Edd behaves very differently. The accreting gas is much cooler and the flow is geometrically less thick, though it is not quite a thin accretion disc.

  10. On the Theoretical Framework of Magnetized Outflows from Stellar-Mass Black Holes and Related Observations

    NASA Technical Reports Server (NTRS)

    Christodoulou, D. M.; Contopoulos, I.; Kazanas, D.; Steiner, J. F.; Papadopoulos, D. B.; Laycock, S. G. T.

    2016-01-01

    The spins of stellar-mass black holes (BHs) and the power outputs of their jets are measurable quantities. Unfortunately, the currently employed methods do not agree and the results are controversial. Two major issues concern the measurements of BH spin and beam (jet) power. The former issue can be resolved by future observations. But the latter issue can be resolved now, if we pay attention to what is expected from theoretical considerations. The question of whether a correlation has been found between the power outputs of few objects and the spins of their BHs is moot because BH beam power does not scale with the square of the spin of the BH. We show that the theoretical BH beam power is a strongly nonlinear function of spin that cannot be approximated by a quadratic relation, as is generally stated when the influence of the magnetic field is not accounted for in the Blandford & Znajek model. The BH beam power of ballistic jets should scale a lot more steeply with BH spin irrespective of the magnetic field assumed to thread the horizon and the spin range considered. This behavior may already be visible in the analyses of radio observations by Narayan & McClintock and Russell et al. In agreement with previous studies, we also find that the power output that originates in the inner regions of the surrounding accretion disks is higher than that from the BHs and it cannot be ignored in investigations of continuous compact jets from these systems.

  11. Merger of a Neutron Star with a Newtonian Black Hole

    NASA Technical Reports Server (NTRS)

    Lee, William H.; Kluzniak, Wlodzimierz

    1995-01-01

    Newtonian smooth particle hydro simulations are presented of the merger of a 1.4 solar mass neutron star with a black hole of equal mass. The initial state of the system is modeled with a stiff polytrope orbiting a point mass. Dynamical instability sets in when the orbital separation is equal to about three stellar radii. The ensuing mass transfer occurs on the dynamical timescale. No accretion torus is formed. At the end of the computation a corona of large extent shrouds an apparently stable binary system of a 0.25 solar mass star orbiting a 2.3 solar mass black hole.

  12. Magnetic massive stars as progenitors of `heavy' stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.

    2017-04-01

    The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.

  13. More on accreting black hole spacetime in equatorial plane

    NASA Astrophysics Data System (ADS)

    Salahshoor, K.; Nozari, K.; Khesali, A. R.

    2017-02-01

    Spacetime around an accreting black hole is an interesting issue to study. The metric of an isolated black hole (rotating or non-rotating) spacetime has been well-known for decades. Although metrics of some spacetimes containing accreting black holes are known in some situations, the issue has some faces that are not well-known yet and need further investigation. In this paper, we construct a new form of metric which the effect of accretion disk on black hole spacetime is taken into account in the equatorial plane. We study motion and trajectories of massive particles and also photons falling from infinity towards black hole in equatorial plane around the black hole. We use an exponential form for the density profile of the accretion disk in equatorial plane as ρ =ρ0e^{-α r}. We show that with this density profile, the disk is radially stable if α ≤ 3 × 10^{-3} (in units of length inverse). In order to study some important quantities related to the accretion disks such as locations of marginally stable circular orbits (r_{ms} or r_{ISCO}), marginally bounded circular orbits (r_{mb}), and also photon orbits in equatorial plane, we use the effective potential approach. We show that in this spacetime metric the innermost stable circular orbit in equatorial plane is given by r_{ISCO}=4.03 μ (where μ =MG/c 2) which is different, but comparable, with the Schwarzschild spacetime result, r^{(Sch)}_{ISCO}=6 μ . We show that the maximum radiation efficiency of the accretion disk, η , in equatorial plane is 8.6 percent which is greater than the corresponding value for Schwarzschild spacetime. Finally, we show that in this setup photons can have stable circular orbits in equatorial plane unlike the Schwarzschild spacetime.

  14. Dynamical evolution of stellar mass black holes in dense stellar clusters: estimate for merger rate of binary black holes originating from globular clusters

    NASA Astrophysics Data System (ADS)

    Tanikawa, A.

    2013-10-01

    We have performed N-body simulations of globular clusters (GCs) in order to estimate a detection rate of mergers of binary stellar mass black holes (BBHs) by means of gravitational wave (GW) observatories. For our estimate, we have only considered mergers of BBHs which escape from GCs (BBH escapers). BBH escapers merge more quickly than BBHs inside GCs because of their small semimajor axes. N-body simulation cannot deal with a GC with the number of stars N ˜ 106 due to its high calculation cost. We have simulated dynamical evolution of small N clusters (104 ≲ N ≲ 105), and have extrapolated our simulation results to large N clusters. From our simulation results, we have found the following dependence of BBH properties on N. BBHs escape from a cluster at each two-body relaxation time at a rate proportional to N. Semimajor axes of BBH escapers are inversely proportional to N, if initial mass densities of clusters are fixed. Eccentricities, primary masses and mass ratios of BBH escapers are independent of N. Using this dependence of BBH properties, we have artificially generated a population of BBH escapers from a GC with N ˜ 106, and have estimated a detection rate of mergers of BBH escapers by next-generation GW observatories. We have assumed that all the GCs are formed 10 or 12 Gyr ago with their initial numbers of stars Ni = 5 × 105-2 × 106 and their initial stellar mass densities inside their half-mass radii ρh,i = 6 × 103-106 M⊙ pc-3. Then, the detection rate of BBH escapers is 0.5-20 yr-1 for a BH retention fraction RBH = 0.5. A few BBH escapers are components of hierarchical triple systems, although we do not consider secular perturbation on such BBH escapers for our estimate. Our simulations have shown that BHs are still inside some of GCs at the present day. These BHs may marginally contribute to BBH detection.

  15. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2011-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  16. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2009-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than approximately equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observation of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer (RXTE) that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35R(sub g) at i = 0 degrees and R(sub in) greater than 175R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically-dominated accretion flows.

  17. Cold, clumpy accretion onto an active supermassive black hole

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  18. Cold, clumpy accretion onto an active supermassive black hole.

    PubMed

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  19. Numerical Treatment of Thin Accretion Disk Dynamics around Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Yildiran, Deniz; Donmez, Orhan

    is much smaller than the one by [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920], due to the representation of results at the different coordinates. Contrary to the nonrotating black hole, the tail shock is slightly warped around the rotating black hole. The filled computational domain without any injection leads to an unstable accretion disk. However much of it reaches a steady state for a short period of time and presents quasi-periodic oscillation (QPO). Furthermore, the disk tends to loose mass during the whole dynamical evolution. The time-variability of these types of accretion flowing close to the black hole may clarify the light curves in Sgr A*.

  20. Supermassive black holes with higher Eddington ratios preferentially form in gas-rich galaxies

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma

    2018-06-01

    The Eddington ratio (λEdd) of supermassive black holes (SMBHs) is a fundamental parameter that governs their cosmic growth. Although gas mass accretion onto SMBHs is sustained when they are surrounded by large amounts of gas, little is known about the molecular content of galaxies, particularly those hosting super-Eddington SMBHs (λEdd > 1: the key phase of SMBH growth). Here, we have compiled reported optical and 12CO(1-0) data of local quasars to characterize their hosts. We found that higher-λEdd SMBHs tend to reside in gas-rich (i.e., high gas mass to stellar mass fraction = fgas) galaxies. We used two methods to make this conclusion: one uses black hole mass as a surrogate for stellar mass by assuming a local co-evolutionary relationship, and the other directly uses stellar masses estimated from near-infrared observations. The fgas-λEdd correlation we found concurs with the cosmic decreasing trend in λEdd, as cold molecular gas is primarily consumed by star formation. This correlation qualitatively matches predictions of recent semi-analytic models of the cosmic downsizing of SMBHs as well. As the gas mass surface density would eventually be a key parameter controlling mass accretion, we need high-resolution observations to identify further differences in the molecular properties around super-Eddington and sub-Eddington SMBHs.

  1. Supermassive black holes with higher Eddington ratios preferentially form in gas-rich galaxies

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma

    2018-05-01

    The Eddington ratio (λEdd) of supermassive black holes (SMBHs) is a fundamental parameter that governs their cosmic growth. Although gas mass accretion onto SMBHs is sustained when they are surrounded by large amounts of gas, little is known about the molecular content of galaxies, particularly those hosting super-Eddington SMBHs (λEdd > 1: the key phase of SMBH growth). Here, we have compiled reported optical and 12CO(1-0) data of local quasars to characterize their hosts. We found that higher-λEdd SMBHs tend to reside in gas-rich (i.e., high gas mass to stellar mass fraction = fgas) galaxies. We used two methods to make this conclusion: one uses black hole mass as a surrogate for stellar mass by assuming a local co-evolutionary relationship, and the other directly uses stellar masses estimated from near-infrared observations. The fgas-λEdd correlation we found concurs with the cosmic decreasing trend in λEdd, as cold molecular gas is primarily consumed by star formation. This correlation qualitatively matches predictions of recent semi-analytic models of the cosmic downsizing of SMBHs as well. As the gas mass surface density would eventually be a key parameter controlling mass accretion, we need high-resolution observations to identify further differences in the molecular properties around super-Eddington and sub-Eddington SMBHs.

  2. Periodic self-lensing from accreting massive black hole binaries

    NASA Astrophysics Data System (ADS)

    D'Orazio, Daniel J.; Di Stefano, Rosanne

    2018-03-01

    Nearly 150 massive black hole binary (MBHB) candidates at sub-pc orbital separations have been reported in recent literature. Nevertheless, the definitive detection of even a single such object remains elusive. If at least one of the black holes is accreting, the light emitted from its accretion disc will be lensed by the other black hole for binary orbital inclinations near to the line of sight. This binary self-lensing could provide a unique signature of compact MBHB systems. We show that, for MBHBs with masses in the range 106-1010 M⊙ and with orbital periods less than ˜10 yr, strong lensing events should occur in one to 10s of per cent of MBHB systems that are monitored for an entire orbit. Lensing events will last from days for the less massive, shorter period MBHBs to a year for the most massive ˜10 year orbital period MBHBs. At small inclinations of the binary orbit to the line of sight, lensing must occur and will be accompanied by periodicity due to the relativistic Doppler boost. Flares at the same phase as the otherwise average flux of the Doppler modulation would be a smoking gun signature of self-lensing and can be used to constrain binary parameters. For MBHBs with separation ≳100 Schwarzschild radii, we show that finite-sized source effects could serve as a probe of MBH accretion disc structure. Finally, we stress that our lensing probability estimate implies that ˜10 of the known MBHB candidates identified through quasar periodicity should exhibit strong lensing flares.

  3. Constraining Accreting Binary Populations in Normal Galaxies

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.

    2011-01-01

    X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.

  4. Black holes in short period X-ray binaries and the transition to radiatively inefficient accretion

    NASA Astrophysics Data System (ADS)

    Knevitt, G.; Wynn, G. A.; Vaughan, S.; Watson, M. G.

    2014-02-01

    By comparing the orbital period distributions of black hole and neutron star low-mass X-ray binaries (LMXBs) in the Ritter-Kolb catalogue we show that there is statistical evidence for a dearth of black hole systems at short orbital periods (Porb < 4 h). This could either be due to a true divergence in orbital period distributions of these two types of system, or to black hole LMXBs being preferentially hidden from view at short orbital periods. We explore the latter possibility, by investigating whether black hole LMXBs could be concealed by a switch to radiatively inefficient accretion at low luminosities. The peak luminosity and the duration of X-ray binary outbursts are related to the disc radius and, hence, the orbital period. At short periods, where the peak outburst luminosity drops close to the threshold for radiatively inefficient accretion, black hole LMXBs have lower outburst luminosities, shorter outburst durations and lower X-ray duty cycles than comparable neutron star systems. These factors can combine to severely reduce the detection probability of short period black hole LMXBs relative to those containing neutron stars. We estimate the outburst properties and orbital period distribution of black hole LMXBs using two models of the transition to radiatively inefficient accretion: an instantaneous drop in accretion efficiency (η) to zero, at a fraction (f) of the Eddington luminosity (LEdd) and a power-law efficiency decrease, η ∝ dot{M}^n, for L < f LEdd. We show that a population of black hole LMXBs at short orbital periods can only be hidden by a sharp drop in efficiency, either instantaneous or for n ≳ 3. This could be achieved by a genuine drop in luminosity or through abrupt spectral changes that shift the accretion power out of a given X-ray band.

  5. SPOON-FEEDING GIANT STARS TO SUPERMASSIVE BLACK HOLES: EPISODIC MASS TRANSFER FROM EVOLVING STARS AND THEIR CONTRIBUTION TO THE QUIESCENT ACTIVITY OF GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Grady, Sean

    2013-11-10

    Stars may be tidally disrupted if, in a single orbit, they are scattered too close to a supermassive black hole (SMBH). Tidal disruption events are thought to power luminous but short-lived accretion episodes that can light up otherwise quiescent SMBHs in transient flares. Here we explore a more gradual process of tidal stripping where stars approach the tidal disruption radius by stellar evolution while in an eccentric orbit. After the onset of mass transfer, these stars episodically transfer mass to the SMBH every pericenter passage, giving rise to low-level flares that repeat on the orbital timescale. Giant stars, in particular,more » will exhibit a runaway response to mass loss and 'spoon-feed' material to the black hole for tens to hundreds of orbital periods. In contrast to full tidal disruption events, the duty cycle of this feeding mode is of order unity for black holes M{sub bh} ∼> 10{sup 7} M{sub ☉}. This mode of quasi-steady SMBH feeding is competitive with indirect SMBH feeding through stellar winds, and spoon-fed giant stars may play a role in determining the quiescent luminosity of local SMBHs.« less

  6. Dynamically important magnetic fields near accreting supermassive black holes.

    PubMed

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  7. Erratic Black Hole Regulates Itself

    NASA Astrophysics Data System (ADS)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  8. Intermediate-Mass Black Holes in Globular Cluster Systems

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.; Miller-Jones, J. C. A.; Nyland, K. E.; Maccarone, T. J.

    2018-01-01

    Theory suggests that globular clusters (GCs) of stars can host intermediate-mass black holes (IMBHs) with masses of about 100 to 100,000 solar masses. We invoke a semi-empirical model to predict the mass of an IMBH that, if undergoing accretion in the long-lived hard X-ray state, is consistent with the synchrotron radio luminosity of a GC. We apply this model to extant images from the Karl G. Jansky Very Large Array (VLA) and to simulated images from the Next Generation Very Large Array (ngVLA). Guided by our VLA results for M81's system of 206 probable GCs at a distance of 3.6 Mpc, we consider using the ngVLA to study the hundreds of globular cluster systems out to a distance of 25 Mpc. With its sensitivity, spatial resolution, and field of view, we conclude that the ngVLA at 2cm will efficiently probe IMBH masses for tens of thousands of GCs. Finding IMBHs in GCs could validate a formation channel for seed BHs in the early universe, underpin gravitational wave predictions for space missions, and test scaling relations between stellar systems and the central BHs they host. The NRAO is a facility of the NSF, operated under cooperative agreement by AUI, Inc.

  9. An Extreme X-ray Disk Wind in the Black Hole Candidate IGR J17091-3624

    NASA Technical Reports Server (NTRS)

    King, A. L.; Miller, J. M.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Maitra, D.; Cackett, E. M.; Rupen, M. P.

    2012-01-01

    Chandra spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk-dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observed to be highly ionized. dense. and to have typical velocities of approx 1000 km/s or less projected along our line of sight. Here. we present an analysis of two Chandra High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091-3624 and contemporaneous EVLA radio observations. obtained in 2011. The second Chandra observation reveals an absorption line at 6.91+/-0.01 keV; associating this line with He-like Fe XXV requires a blue-shift of 9300(+500/-400) km/ s (0.03c. or the escape velocity at 1000 R(sub schw)). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of approx 14600 km/s (0.05c), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091-3624 may originate within 43,300 Schwarzschild radii of the black hole, and may be expelling more gas than accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our Chandra observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems

  10. DEAD, UNDEAD, AND ZOMBIE ZONES IN PROTOSTELLAR DISKS AS A FUNCTION OF STELLAR MASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhanjoy; Ercolano, Barbara; Turner, Neal J., E-mail: s.mohanty@imperial.ac.uk, E-mail: ercolano@usm.lmu.de, E-mail: neal.turner@jpl.nasa.gov

    We investigate the viability of the magnetorotational instability (MRI) in X-ray ionized viscous accretion disks around both solar-type stars and very low mass stars. In particular, we determine the disk regions where the MRI can be shut off either by Ohmic resistivity (the so-called dead and undead zones) or by ambipolar diffusion (a region we term the zombie zone). We consider two stellar masses: M {sub *} = 0.7 M {sub Sun} and 0.1 M {sub Sun }. In each case, we assume that: the disk surface density profile is that of a scaled Minimum Mass Solar Nebula, with Mmore » {sub disk}/M {sub *} = 0.01 as suggested by current data; disk ionization is driven primarily by stellar X-rays, complemented by cosmic rays and radionuclides; and the stellar X-ray luminosity scales with bolometric luminosity as L{sub X} /L {sub *} Almost-Equal-To 10{sup -3.5}, as observed. Ionization rates are calculated with the MOCCASIN Monte Carlo X-ray transport code, and ionization balance determined using a simplified chemical network, including well-mixed 0.1 {mu}m grains at various levels of depletion. We find that (1) ambipolar diffusion is the primary factor controlling MRI activity in disks around both solar-type and very low mass classical T Tauri stars. Assuming that the MRI yields the maximum possible field strength at each radius, we further find that: (2) the MRI-active layer constitutes only {approx}5%-10% of the total disk mass; (3) the accretion rate ( M-dot ) varies radially in both magnitude and sign (inward or outward), implying time-variable accretion as well as the creation of disk gaps and overdensities, with consequences for planet formation and migration; (4) achieving the empirical accretion rates in solar-type and very low mass stars requires a depletion of well-mixed small grains (via grain growth and/or settling) by a factor of 10-1000 relative to the standard dust-to-gas mass ratio of 10{sup -2}; and (5) the current non-detection of polarized emission from field

  11. Testing Models of the Black-Hole X-ray Source in the NGC4472 Globular Cluster RZ2109 with COS UV Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zepf, Stephen

    2014-10-01

    We propose to obtain COS ultraviolet spectroscopy of the black-hole X-ray source in the NGC 4472 globular cluster RZ2109. This object was the first unambiguous black hole X-ray source in a globular cluster. It is clearly identified as a black hole through its high X-ray luminosity and short-term variability. The optical spectrum of RZ2109 shows strong and extraordinarily broad [OIII]4959, 5007 emission, and our recent STIS spectrum demonstrates that this comes from an outflow extended across most of the globular cluster. The optical spectrum also remarkably shows no emission lines other than [OIII] to sensitive limits, indicating that the material is very hydrogen-poor. One way to account for these observations is if RZ2109 hosts a CO white dwarf accreting onto a stellar mass black hole. In this case, CIV 1549 emission is expected and no nitrogren lines will be seen. However, if nitrogen lines such as NIV 1486 and NV 1239, 1243 are observed, then a different source for the accreting material such as a nova shell or a horizontal branch star would be required, and a re-evaluation of all aspects of our understanding of the dynamics and accretion in RZ2109 would be needed. Determining which of these is the case is a major step for understanding how accreting black holes form and grow in dense stellar systems, whether they make intermediate mass black holes, and what accretion and feedback processes lead to strong outflows rich in elements such as oxygen.

  12. Transient jet formation and state transitions from large-scale magnetic reconnection in black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; McKinney, Jonathan C.; Markoff, Sera; Tchekhovskoy, Alexander

    2014-05-01

    Magnetically arrested accretion discs (MADs), where the magnetic pressure in the inner disc is dynamically important, provide an alternative mechanism for regulating accretion to what is commonly assumed in black hole systems. We show that a global magnetic field inversion in the MAD state can destroy the jet, significantly increase the accretion rate, and move the effective inner disc edge in to the marginally stable orbit. Reconnection of the MAD field in the inner radii launches a new type of transient outflow containing hot plasma generated by magnetic dissipation. This transient outflow can be as powerful as the steady magnetically dominated Blandford-Znajek jet in the MAD state. The field inversion qualitatively describes many of the observational features associated with the high-luminosity hard-to-soft state transition in black hole X-ray binaries: the jet line, the transient ballistic jet, and the drop in rms variability. These results demonstrate that the magnetic field configuration can influence the accretion state directly, and hence the magnetic field structure is an important second parameter in explaining observations of accreting black holes across the mass and luminosity scales.

  13. The formation of stellar black holes

    NASA Astrophysics Data System (ADS)

    Mirabel, Félix

    2017-08-01

    It is believed that stellar black holes (BHs) can be formed in two different ways: Either a massive star collapses directly into a BH without a supernova (SN) explosion, or an explosion occurs in a proto-neutron star, but the energy is too low to completely unbind the stellar envelope, and a large fraction of it falls back onto the short-lived neutron star (NS), leading to the delayed formation of a BH. Theoretical models set progenitor masses for BH formation by implosion, namely, by complete or almost complete collapse, but observational evidences have been elusive. Here are reviewed the observational insights on BHs formed by implosion without large natal kicks from: (1) the kinematics in three dimensions of space of five Galactic BH X-ray binaries (BH-XRBs), (2) the diversity of optical and infrared observations of massive stars that collapse in the dark, with no luminous SN explosions, possibly leading to the formation of BHs, and (3) the sources of gravitational waves (GWs) produced by mergers of stellar BHs so far detected with LIGO. Multiple indications of BH formation without ejection of a significant amount of matter and with no natal kicks obtained from these different areas of observational astrophysics, and the recent observational confirmation of the expected dependence of BH formation on metallicity and redshift, are qualitatively consistent with the high merger rates of binary black holes (BBHs) inferred from the first detections with LIGO.

  14. Classification of Tidal Disruption Events Based on Stellar Orbital Properties

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Zhong, Shiyan; Li, Shuo; Berczik, Peter; Spurzem, Rainer

    2018-03-01

    We study the rates of tidal disruption of stars on bound to unbound orbits by intermediate-mass to supermassive black holes using high-accuracy direct N-body experiments. Stars from the star cluster approaching the black hole can have three types of orbit: eccentric, parabolic, and hyperbolic. Since the mass fallback rate shows different variabilities depending on the orbital type, we can classify tidal disruption events (TDEs) into three main categories: eccentric, parabolic, and hyperbolic. The respective TDEs are characterized by two critical values of the orbital eccentricity: the lower critical eccentricity is the one below which stars on eccentric orbits cause finite, intense accretion, and the upper critical eccentricity is the one above which stars on hyperbolic orbits cause no accretion. Moreover, we find that parabolic TDEs can be divided into three subclasses: precisely parabolic, marginally eccentric, and marginally hyperbolic. We analytically derive that the mass fallback rate of marginally eccentric TDEs can be flatter and slightly higher than the standard fallback rate proportional to t ‑5/3, whereas it can be flatter and lower for marginally hyperbolic TDEs. We confirm using N-body experiments that only a few eccentric, precisely parabolic, and hyperbolic TDEs can occur in a spherical stellar system with a single intermediate-mass to supermassive black hole. A substantial fraction of the stars approaching the black hole would cause marginally eccentric or marginally hyperbolic TDEs.

  15. Supermassive black holes and their feedback effects in the IllustrisTNG simulation

    NASA Astrophysics Data System (ADS)

    Weinberger, Rainer; Springel, Volker; Pakmor, Rüdiger; Nelson, Dylan; Genel, Shy; Pillepich, Annalisa; Vogelsberger, Mark; Marinacci, Federico; Naiman, Jill; Torrey, Paul; Hernquist, Lars

    2018-06-01

    We study the population of supermassive black holes (SMBHs) and their effects on massive central galaxies in the IllustrisTNG cosmological hydrodynamical simulations of galaxy formation. The employed model for SMBH growth and feedback assumes a two-mode scenario in which the feedback from active galactic nuclei occurs through a kinetic, comparatively efficient mode at low accretion rates relative to the Eddington limit, and in the form of a thermal, less efficient mode at high accretion rates. We show that the quenching of massive central galaxies happens coincidently with kinetic-mode feedback, consistent with the notion that active supermassive black cause the low specific star formation rates observed in massive galaxies. However, major galaxy mergers are not responsible for initiating most of the quenching events in our model. Up to black hole masses of about 108.5 M⊙, the dominant growth channel for SMBHs is in the thermal mode. Higher mass black holes stay mainly in the kinetic mode and gas accretion is self-regulated via their feedback, which causes their Eddington ratios to drop, with SMBH mergers becoming the main channel for residual mass growth. As a consequence, the quasar luminosity function is dominated by rapidly accreting, moderately massive black holes in the thermal mode. We show that the associated growth history of SMBHs produces a low-redshift quasar luminosity function and a redshift zero black hole mass - stellar bulge mass relation in good agreement with observations, whereas the simulation tends to over-predict the high-redshift quasar luminosity function.

  16. The most massive black holes on the Fundamental Plane of black hole accretion

    NASA Astrophysics Data System (ADS)

    Mezcua, M.; Hlavacek-Larrondo, J.; Lucey, J. R.; Hogan, M. T.; Edge, A. C.; McNamara, B. R.

    2018-02-01

    We perform a detailed study of the location of brightest cluster galaxies (BCGs) on the Fundamental Plane of black hole (BH) accretion, which is an empirical correlation between a BH X-ray and radio luminosity and mass supported by theoretical models of accretion. The sample comprises 72 BCGs out to z ˜ 0.3 and with reliable nuclear X-ray and radio luminosities. These are found to correlate as L_X ∝ L_R^{0.75 ± 0.08}, favouring an advection-dominated accretion flow as the origin of the X-ray emission. BCGs are found to be on average offset from the Fundamental Plane such that their BH masses seem to be underestimated by the MBH-MK relation a factor ˜10. The offset is not explained by jet synchrotron cooling and is independent of emission process or amount of cluster gas cooling. Those core-dominated BCGs are found to be more significantly offset than those with weak core radio emission. For BCGs to on average follow the Fundamental Plane, a large fraction ( ˜ 40 per cent) should have BH masses >1010 M⊙ and thus host ultramassive BHs. The local BH-galaxy scaling relations would not hold for these extreme objects. The possible explanations for their formation, either via a two-phase process (the BH formed first, the galaxy grows later) or as descendants of high-z seed BHs, challenge the current paradigm of a synchronized galaxy-BH growth.

  17. Minidisks in Binary Black Hole Accretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress thatmore » causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.« less

  18. Discovery of a Three-Layered Atmospheric Structure in Accretion Disks around Stellar-Mass Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiaoling; Sun, Xuejun; Yao, Yangsen; Cui, Wei; Chen, Wan; Wu, Xuebing; Xu, Haiguang

    1999-01-01

    We have carried out systematic modeling of the X-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40, using our newly developed spectral fitting methods. Our results reveal, for the first time, a three-layered structure of the atmosphere in the inner region of the accretion disks. Above the conanonly known, cold and optically thick disk of a blackbody temperature 0.2-0.5 keV, there is a layer of warm gas with a temperature of 1.0-1.5 keV and an optical depth of around 10. Compton scattering of the underlying disk blackbody photons produces the soft X-ray component we comonly observe. Under certain conditions, there is also a much hotter, optically thin corona above the warm layer, characterized by a temperature of 100 keV or higher and an optical depth of unity or less. The corona produces the hard X-ray component typically seen in these sources. We emphasize that the existence of the warm layer seem to be independent of the presence of the hot corona and, therefore, it is not due to irradiation of the disk by hard X-rays from the corona. Our results suggest a striking structural similarity between the accretion disks and the solar atmosphere, which may provide a new stimulus to study the common underlying physical processes operating in these vastly different systems. We also report the first unambiguous detection of an emission line around 6.4 keV in GRO J1655-40, which may allow further constraining of the accretion disk structure. We acknowledge NASA GSFC and MFC for partial financial support. (copyright) 1999: American Astronomical Society. All rights reverved.

  19. Stellar Properties of Embedded Protostars: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Greene, Thomas

    2006-01-01

    Until now, high extinctions have prevented direct observation of the central objects of self-embedded, accreting protostars. However, sensitive high dispersion spectrographs on large aperture telescopes have allowed us to begin studying the stellar astrophysical properties of dozens of embedded low mass protostars in the nearest regions of star formation. These high dispersion spectra allow, for the first time, direct measurements of their stellar effective temperatures, surface gravities, rotation velocities, radial velocities (and spectroscopic binarity), mass accretion properties, and mass outflow indicators. Comparisons of the stellar properties with evolutionary models also allow us to estimate masses and constrain ages. We find that these objects have masses similar to those of older, more evolved T Tauri stars, but protostars have higher mean rotation velocities and angular momenta. Most protostars indicate high mass accretion or outflow, but some in Taurus-Auriga appear to be relatively quiescent. These new results are testing, expanding, and refining the standard star formation paradigm, and we explore how to expand this work further.

  20. Dissipative advective accretion disc solutions with variable adiabatic index around black holes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2014-10-01

    We investigated accretion on to black holes in presence of viscosity and cooling, by employing an equation of state with variable adiabatic index and multispecies fluid. We obtained the expression of generalized Bernoulli parameter which is a constant of motion for an accretion flow in presence of viscosity and cooling. We obtained all possible transonic solutions for a variety of boundary conditions, viscosity parameters and accretion rates. We identified the solutions with their positions in the parameter space of generalized Bernoulli parameter and the angular momentum on the horizon. We showed that a shocked solution is more luminous than a shock-free one. For particular energies and viscosity parameters, we obtained accretion disc luminosities in the range of 10- 4 - 1.2 times Eddington luminosity, and the radiative efficiency seemed to increase with the mass accretion rate too. We found steady state shock solutions even for high-viscosity parameters, high accretion rates and for wide range of composition of the flow, starting from purely electron-proton to lepton-dominated accretion flow. However, similar to earlier studies of inviscid flow, accretion shock was not obtained for electron-positron pair plasma.

  1. A SEARCH FOR STELLAR-MASS BLACK HOLES VIA ASTROMETRIC MICROLENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, J. R.; Sinukoff, E.; Ofek, E. O.

    While dozens of stellar-mass black holes (BHs) have been discovered in binary systems, isolated BHs have eluded detection. Their presence can be inferred when they lens light from a background star. We attempt to detect the astrometric lensing signatures of three photometrically identified microlensing events, OGLE-2011-BLG-0022, OGLE-2011-BLG-0125, and OGLE-2012-BLG-0169 (OB110022, OB110125, and OB120169), located toward the Galactic Bulge. These events were selected because of their long durations, which statistically favors more massive lenses. Astrometric measurements were made over one to two years using laser-guided adaptive optics observations from the W. M. Keck Observatory. Lens model parameters were first constrained bymore » the photometric light curves. The OB120169 light curve is well fit by a single-lens model, while both OB110022 and OB110125 light curves favor binary lens models. Using the photometric fits as prior information, no significant astrometric lensing signal was detected and all targets were consistent with linear motion. The significant lack of astrometric signal constrains the lens mass of OB110022 to 0.05–1.79 M {sub ⊙} in a 99.7% confidence interval, which disfavors a BH lens. Fits to OB110125 yielded a reduced Einstein crossing time and insufficient observations during the peak, so no mass limits were obtained. Two degenerate solutions exist for OB120169, which have a lens mass between 0.2–38.8 M {sub ⊙} and 0.4–39.8 M {sub ⊙} for a 99.7% confidence interval. Follow-up observations of OB120169 will further constrain the lens mass. Based on our experience, we use simulations to design optimal astrometric observing strategies and show that with more typical observing conditions the detection of BHs is feasible.« less

  2. The limited role of galaxy mergers in driving stellar mass growth over cosmic time

    NASA Astrophysics Data System (ADS)

    Martin, G.; Kaviraj, S.; Devriendt, J. E. G.; Dubois, Y.; Laigle, C.; Pichon, C.

    2017-11-01

    A key unresolved question is the role that galaxy mergers play in driving stellar mass growth over cosmic time. Recent observational work hints at the possibility that the overall contribution of 'major' mergers (mass ratios ≳ 1 : 4) to cosmic stellar mass growth may be small, because they enhance star formation rates by relatively small amounts at high redshift, when much of today's stellar mass was assembled. However, the heterogeneity and relatively small size of today's data sets, coupled with the difficulty in identifying genuine mergers, makes it challenging to empirically quantify the merger contribution to stellar mass growth. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation, to comprehensively quantify the contribution of mergers to the star formation budget over the lifetime of the Universe. We show that (1) both major and minor mergers enhance star formation to similar amounts, (2) the fraction of star formation directly attributable to merging is small at all redshifts (e.g. ∼35 and ∼20 per cent at z ∼ 3 and z ∼ 1, respectively) and (3) only ∼25 per cent of today's stellar mass is directly attributable to galaxy mergers over cosmic time. Our results suggest that smooth accretion, not merging, is the dominant driver of stellar mass growth over the lifetime of the Universe.

  3. THE COOL ACCRETION DISK IN ESO 243-49 HLX-1: FURTHER EVIDENCE OF AN INTERMEDIATE-MASS BLACK HOLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Shane W.; Narayan, Ramesh; Zhu Yucong

    2011-06-20

    With an inferred bolometric luminosity exceeding 10{sup 42} erg s{sup -1}, HLX-1 in ESO 243-49 is the most luminous of ultraluminous X-ray sources and provides one of the strongest cases for the existence of intermediate-mass black holes. We obtain good fits to disk-dominated observations of the source with BHSPEC, a fully relativistic black hole accretion disk spectral model. Due to degeneracies in the model arising from the lack of independent constraints on inclination and black hole spin, there is a factor of 100 uncertainty in the best-fit black hole mass M. Nevertheless, spectral fitting of XMM-Newton observations provides robust lowermore » and upper limits with 3000 M{sub sun} {approx}< M {approx}< 3 x 10{sup 5} M{sub sun}, at 90% confidence, placing HLX-1 firmly in the intermediate-mass regime. The lower bound on M is entirely determined by matching the shape and peak energy of the thermal component in the spectrum. This bound is consistent with (but independent of) arguments based solely on the Eddington limit. Joint spectral modeling of the XMM-Newton data with more luminous Swift and Chandra observations increases the lower bound to 6000 M{sub sun}, but this tighter constraint is not independent of the Eddington limit. The upper bound on M is sensitive to the maximum allowed inclination i, and is reduced to M {approx}< 10{sup 5} M{sub sun} if we limit i {approx}< 75{sup 0}.« less

  4. Feeding supermassive black holes through supersonic turbulence and ballistic accretion

    NASA Astrophysics Data System (ADS)

    Hobbs, Alexander; Nayakshin, Sergei; Power, Chris; King, Andrew

    2011-06-01

    It has long been recognized that the main obstacle to the accretion of gas on to supermassive black holes (SMBHs) is a large specific angular momentum. It is feared that the gas settles in a large-scale disc, and that accretion would then proceed too inefficiently to explain the masses of the observed SMBHs. Here we point out that, while the mean angular momentum in the bulge is very likely to be large, the deviations from the mean can also be significant. Indeed, cosmological simulations show that velocity and angular momentum fields of gas flows on to galaxies are very complex. Furthermore, inside bulges the gas velocity distribution can be further randomized by the velocity kicks due to feedback from star formation. We perform hydrodynamical simulations of gaseous rotating shells infalling on to an SMBH, attempting to quantify the importance of velocity dispersion in the gas at relatively large distances from the black hole. We implement this dispersion by means of a supersonic turbulent velocity spectrum. We find that, while in the purely rotating case the circularization process leads to efficient mixing of gases with different angular momenta, resulting in a low accretion rate, the inclusion of turbulence increases this accretion rate by up to several orders of magnitude. We show that this can be understood based on the notion of 'ballistic' accretion, whereby dense filaments, created by convergent turbulent flows, travel through the ambient gas largely unaffected by hydrodynamical drag. This prevents the efficient gas mixing that was found in the simulations without turbulence, and allows a fraction of gas to impact the innermost boundary of the simulations directly. Using the ballistic approximation, we derive a simple analytical formula that captures the numerical results to within a factor of a few. Rescaling our results to astrophysical bulges, we argue that this 'ballistic' mode of accretion could provide the SMBHs with sufficient fuel without the need

  5. Hypercompact Stellar Systems Around Recoiling Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Merritt, David; Schnittman, Jeremy D.; Komossa, S.

    2009-07-01

    A supermassive black hole ejected from the center of a galaxy by gravitational-wave recoil carries a retinue of bound stars—a "hypercompact stellar system" (HCSS). The numbers and properties of HCSSs contain information about the merger histories of galaxies, the late evolution of binary black holes, and the distribution of gravitational-wave kicks. We relate the structural properties (size, mass, density profile) of HCSSs to the properties of their host galaxies and to the size of the kick in two regimes: collisional (M BH lsim 107 M sun), i.e., short nuclear relaxation times, and collisionless (M BH gsim 107 M sun), i.e., long nuclear relaxation times. HCSSs are expected to be similar in size and luminosity to globular clusters, but in extreme cases (large galaxies, kicks just above escape velocity) their stellar mass can approach that of ultracompact dwarf galaxies. However, they differ from all other classes of compact stellar system in having very high internal velocities. We show that the kick velocity is encoded in the velocity dispersion of the bound stars. Given a large enough sample of HCSSs, the distribution of gravitational-wave kicks can therefore be empirically determined. We combine a hierarchical merger algorithm with stellar population models to compute the rate of production of HCSSs over time and the probability of observing HCSSs in the local universe as a function of their apparent magnitude, color, size, and velocity dispersion, under two different assumptions about the star formation history prior to the kick. We predict that ~102 HCSSs should be detectable within 2 Mpc of the center of the Virgo cluster, and that many of these should be bright enough that their kick velocities (i.e., velocity dispersions) could be measured with reasonable exposure times. We discuss other strategies for detecting HCSSs and speculate on some exotic manifestations.

  6. Massive black holes in galactic halos?

    NASA Technical Reports Server (NTRS)

    Lacey, C. G.; Ostriker, J. P.

    1985-01-01

    In the present attempt to resolve the problems posed by the composition of dark halos and the heating of stellar disks, under the assumption that galaxy halos are composed of massive black holes, it is noted that the black holes must have masses of the order of one million solar masses. The heating mechanism proposed yields predictions for the dependence of the velocity dispersion on time, and for the shape of the velocity ellipsoid, which are in good agreement with observations. Attention is given to the constraints set by dynamical friction causing black holes to spiral to the Galactic center, by the possible presence of dark matter in dwarf spheroidal galaxies, and by the accretion of interstellar gas by the black holes that produce luminous objects in the Galaxy.

  7. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris

    2017-09-01

    High-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parameters a≳ 0.84. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an 8 {M}⊙ pre-SN star in a close binary with a 12 {M}⊙ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter a≳ 0.8 even when the expected spin parameter from direct collapse is a≲ 0.3. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.

  8. An X-shooter survey of star forming regions: Low-mass stars and sub-stellar objects

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Stelzer, B.; Covino, E.; Cupani, G.; Natta, A.; Randich, S.; Rigliaco, E.; Spezzi, L.; Testi, L.; Bacciotti, F.; Bonito, R.; Covino, S.; Flaccomio, E.; Frasca, A.; Gandolfi, D.; Leone, F.; Micela, G.; Nisini, B.; Whelan, E.

    2011-03-01

    We present preliminary results of our X-shooter survey in star forming regions. In this contribution we focus on sub-samples of young stellar and sub-stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X-shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low-mass (VLM) and sub-stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X-shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near-IR, avoiding ambiguities due to possible YSO variability. Based on observations collected at the European Southern Observatory, Chile, under Programmes 084.C-0269 and 085.C-0238.

  9. THE (BLACK HOLE)-BULGE MASS SCALING RELATION AT LOW MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Alister W.; Scott, Nicholas

    2015-01-01

    Several recent papers have reported on the occurrence of active galactic nuclei (AGNs) containing undermassive black holes relative to a linear scaling relation between black hole mass (M {sub bh}) and host spheroid stellar mass (M {sub sph,} {sub *}). However, dramatic revisions to the M {sub bh}-M {sub sph,} {sub *} and M {sub bh}-L {sub sph} relations, based on samples containing predominantly inactive galaxies, have recently identified a new steeper relation at M {sub bh} ≲ (2-10) × 10{sup 8} M {sub ☉}, roughly corresponding to M {sub sph,} {sub *} ≲ (0.3-1) × 10{sup 11} M {submore » ☉}. We show that this steeper, quadratic-like M {sub bh}-M {sub sph,} {sub *} relation defined by the Sérsic galaxies, i.e., galaxies without partially depleted cores, roughly tracks the apparent offset of the AGN having 10{sup 5} ≲ M {sub bh}/M {sub ☉} ≲ 0.5 × 10{sup 8}. That is, these AGNs are not randomly offset with low black hole masses, but also follow a steeper (nonlinear) relation. As noted by Busch et al., confirmation or rejection of a possible AGN offset from the steeper M {sub bh}-M {sub sph,} {sub *} relation defined by the Sérsic galaxies will benefit from improved stellar mass-to-light ratios for the spheroids hosting these AGNs. Several implications for formation theories are noted. Furthermore, reasons for possible under- and overmassive black holes, the potential existence of intermediate mass black holes (<10{sup 5} M {sub ☉}), and the new steep (black hole)-(nuclear star cluster) relation, M{sub bh}∝M{sub nc}{sup 2.7±0.7}, are also discussed.« less

  10. Stellar dynamics around a massive black hole - II. Resonant relaxation

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Touma, Jihad R.

    2016-06-01

    We present a first-principles theory of resonant relaxation (RR) of a low-mass stellar system orbiting a more massive black hole (MBH). We first extend the kinetic theory of Gilbert to include the Keplerian field of a black hole of mass M•. Specializing to a Keplerian stellar system of mass M ≪ M•, we use the orbit-averaging method of Sridhar & Touma to derive a kinetic equation for RR. This describes the collisional evolution of a system of N ≫ 1 Gaussian rings in a reduced 5-dim space, under the combined actions of self-gravity, 1 post-Newtonian (PN) and 1.5 PN relativistic effects of the MBH and an arbitrary external potential. In general geometries, RR is driven by both apsidal and nodal resonances, so the distinction between scalar RR and vector RR disappears. The system passes through a sequence of quasi-steady secular collisionless equilibria, driven by irreversible two-ring correlations that accrue through gravitational interactions, both direct and collective. This correlation function is related to a `wake function', which is the linear response of the system to the perturbation of a chosen ring. The wake function is easier to appreciate, and satisfies a simpler equation, than the correlation function. We discuss general implications for the interplay of secular dynamics and non-equilibrium statistical mechanics in the evolution of Keplerian stellar systems towards secular thermodynamic equilibria, and set the stage for applications to the RR of axisymmetric discs in Paper III.

  11. Standing shocks in magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2018-02-01

    We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain the global transonic accretion solutions and show that centrifugal barrier in the rotating magnetized accretion flow causes a discontinuous transition of the flow variables in the form of shock waves. The shock properties and the dynamics of the post-shock corona are affected by the flow parameters such as viscosity, cooling rate and strength of the magnetic fields. The shock properties are investigated against these flow parameters. We further show that for a given set of boundary parameters at the outer edge of the disc, accretion flow around a black hole admits shock when the flow parameters are tuned for a considerable range.

  12. The characteristic black hole mass resulting from direct collapse in the early Universe

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.; Schmidt, W.; Niemeyer, J. C.

    2013-12-01

    Black holes of a billion solar masses are observed in the infant Universe a few hundred million years after the big bang. The direct collapse of protogalactic gas clouds in primordial haloes with Tvir ≥ 104 K provides the most promising way to assemble massive black holes. In this study, we aim to determine the characteristic mass scale of seed black holes and the time evolution of the accretion rates resulting from the direct collapse model. We explore the formation of supermassive black holes via cosmological large eddy simulations (LES) by employing sink particles and following their evolution for 20 000 yr after the formation of the first sink. As the resulting protostars were shown to have cool atmospheres in the presence of strong accretion, we assume here that UV feedback is negligible during this calculation. We confirm this result in a comparison run without sinks. Our findings show that black hole seeds with characteristic mass of 105 M⊙ are formed in the presence of strong Lyman-Werner flux which leads to an isothermal collapse. The characteristic mass is about two times higher in LES compared to the implicit large eddy simulations. The accretion rates increase with time and reach a maximum value of 10 M⊙ yr-1 after 104 yr. Our results show that the direct collapse model is clearly feasible as it provides the expected mass of the seed black holes.

  13. Preferential Accretion in the Supermassive Black Holes of Milky Way-size Galaxies Due to Direct Feeding by Satellites

    NASA Astrophysics Data System (ADS)

    Sanchez, N. Nicole; Bellovary, Jillian M.; Holley-Bockelmann, Kelly; Tremmel, Michael; Brooks, Alyson; Governato, Fabio; Quinn, Tom; Volonteri, Marta; Wadsley, James

    2018-06-01

    Using a new, high-resolution cosmological hydrodynamic simulation of a Milky Way-type (MW-type) galaxy, we explore how a merger-rich assembly history affects the mass budget of the central supermassive black hole (SMBH). We examine a MW-mass halo at the present epoch whose evolution is characterized by several major mergers to isolate the importance of merger history on black hole (BH) accretion. This study is an extension of Bellovary et al. (2013), which analyzed the accretion of high mass, high-redshift galaxies and their central BHs, and found that the gas content of the central BH reflects what is accreted by the host galaxy halo. In this study, we find that a merger-rich galaxy will have a central SMBH preferentially fed by gas accreted through mergers. Moreover, we find that the gas composition of the inner ∼10 kpc of the galaxy can account for the increase of merger-accreted gas fueling the SMBH. Through an investigation of the angular momentum of the gas entering the host and its SMBH, we determine that gas accreted through mergers enters the galaxy halo with lower angular momentum compared to smooth accretion, partially accounting for the preferential fueling witnessed in the SMBH. In addition, the presence of mergers, particularly major mergers, also helps funnel low angular momentum gas more readily to the center of the galaxy. Our results imply that galaxy mergers play an important role in feeding the SMBH in MW-type galaxies with merger-rich histories.

  14. EXPLORING THE UNUSUALLY HIGH BLACK-HOLE-TO-BULGE MASS RATIOS IN NGC 4342 AND NGC 4291: THE ASYNCHRONOUS GROWTH OF BULGES AND BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdan, Akos; Forman, William R.; Kraft, Ralph P.

    2012-07-10

    We study two nearby early-type galaxies, NGC 4342 and NGC 4291, that host unusually massive black holes relative to their low stellar mass. The observed black-hole-to-bulge mass ratios of NGC 4342 and NGC 4291 are 6.9{sup +3.8}{sub -2.3}% and 1.9% {+-} 0.6%, respectively, which significantly exceed the typical observed ratio of {approx}0.2%. As a consequence of the exceedingly large black-hole-to-bulge mass ratios, NGC 4342 and NGC 4291 are Almost-Equal-To 5.1{sigma} and Almost-Equal-To 3.4{sigma} outliers from the M{sub .}-M{sub bulge} scaling relation, respectively. In this paper, we explore the origin of the unusually high black-hole-to-bulge mass ratio. Based on Chandra X-raymore » observations of the hot gas content of NGC 4342 and NGC 4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC 4342 and NGC 4291 and a deep optical image of the environment of NGC 4342 indicate that tidal stripping, in which {approx}> 90% of the stellar mass was lost, cannot explain the observed high black-hole-to-bulge mass ratios. Therefore, we conclude that these galaxies formed with low stellar masses, implying that the bulge and black hole did not grow in tandem. We also find that the black hole mass correlates well with the properties of the dark matter halo, suggesting that dark matter halos may play a major role in regulating the growth of the supermassive black holes.« less

  15. A Stellar Dynamical Black Hole Mass for the Reverberation Mapped AGN NGC 5273

    NASA Astrophysics Data System (ADS)

    Batiste, Merida; Bentz, Misty C.; Valluri, Monica; Onken, Christopher A.

    2018-01-01

    We present preliminary results from stellar dynamical modeling of the mass of the central super-massive black hole (MBH) in the active galaxy NGC 5273. NGC 5273 is one of the few AGN with a secure MBH measurement from reverberation-mapping that is also nearby enough to measure MBH with stellar dynamical modeling. Dynamical modeling and reverberation-mapping are the two most heavily favored methods of direct MBH determination in the literature, however the specific limitations of each method means that there are very few galaxies for which both can be used. To date only two such galaxies, NGC 3227 and NGC 4151, have MBH determinations from both methods. Given this small sample size, it is not yet clear that the two methods give consistent results. Moreover, given the inherent uncertainties and potential systematic biases in each method, it is likewise unclear whether one method should be preferred over the other. This study is part of an ongoing project to increase the sample of galaxies with secure MBH measurements from both methods, so that a direct comparison may be made. NGC 5273 provides a particularly valuable comparison because it is free of kinematic substructure (e.g. the presence of a bar, as is the case for NGC 4151) which can complicate and potentially bias results from stellar dynamical modeling. I will discuss our current results as well as the advantages and limitations of each method, and the potential sources of systematic bias that may affect comparison between results.

  16. Testing galaxy quenching theories with scatter in the stellar-to-halo mass relation

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.

    2017-05-01

    We use the scatter in the stellar-to-halo mass relation to constrain galaxy evolution models. If the efficiency of converting accreted baryons into stars varies with time, haloes of the same present-day mass but different formation histories will have different z = 0 galaxy stellar mass. This is one of the sources of scatter in stellar mass at fixed halo mass, σlog M*. For massive haloes that undergo rapid quenching of star formation at z ˜ 2, different mechanisms that trigger this quenching yield different values of σlog M*. We use this framework to test various models in which quenching begins after a galaxy crosses a threshold in one of the following physical quantities: redshift, halo mass, stellar mass and stellar-to-halo mass ratio. Our model is highly idealized, with other sources of scatter likely to arise as more physics is included. Thus, our test is whether a model can produce scatter lower than observational bounds, leaving room for other sources. Recent measurements find σlog M* = 0.16 dex for 1011 M⊙ galaxies. Under the assumption that the threshold is constant with time, such a low value of σlog M* rules out all of these models with the exception of quenching by a stellar mass threshold. Most physical quantities, such as metallicity, will increase scatter if they are uncorrelated with halo formation history. Thus, to decrease the scatter of a given model, galaxy properties would correlate tightly with formation history, creating testable predictions for their clustering. Understanding why σlog M* is so small may be key to understanding the physics of galaxy formation.

  17. Sub-millimeter detected z ~ 2 radio-quiet QSOs. Accurate redshifts, black hole masses, and inflow/outflow velocities

    NASA Astrophysics Data System (ADS)

    Orellana, G.; Nagar, N. M.; Isaak, K. G.; Priddey, R.; Maiolino, R.; McMahon, R.; Marconi, A.; Oliva, E.

    2011-07-01

    Context. We present near-IR spectroscopy of a sample of luminous (MB - 27.5; Lbol > 1014 L⊙), sub-millimeter-detected, dusty (Md ~ 109 M⊙), radio-quiet quasi-stellar objects (QSOs) at z ~ 2. Aims: A primary aim is to provide a more accurate QSO redshift determination in order to trace kinematics and inflows/outflows in these sub-mm bright QSOs. Additionally, the Hα and continuum properties allow an estimation of the black hole mass and accretion rate, offering insights into the starburst-AGN connection in sub-mm bright QSOs. Methods: We measure the redshift, width, and luminosity of the Hα line, and the continuum luminosity near Hα. Relative velocity differences between Hα and rest-frame UV emission lines are used to study the presence and strength of outflows/inflows. Luminosities and line widths are used to estimate the black hole masses, bolometric luminosities, Eddington fractions, and accretion rates; these are compared to the star-formation-rate (SFR), estimated from the sub-mm derived far-infrared (FIR) luminosity. Finally our sub-mm-bright QSO sample is compared with other QSO samples at similar redshifts. Results: The Hα emission line was strongly detected in all sources. Two components - a very broad (≳5000 km s-1) Gaussian and an intermediate-width (≳1500 km s-1) Gaussian, were required to fit the Hα profile of all observed QSOs. Narrow (≲1000 km s-1) lines were not detected in the sample QSOs. The rest-frame UV emission lines in these sub-mm bright QSOs show larger than average blue-shifted velocities, potentially tracing strong - up to 3000 km s-1 - outflows in the broad line region. With the exception of the one QSO which shows exceptionally broad Hα lines, the black hole masses of the QSO sample are in the range log MBH = 9.0-9.7 and the Eddington fractions are between 0.5 and ~1. In black hole mass and accretion rate, this sub-mm bright QSO sample is indistinguishable from the Shemmer et al. (2004, ApJ, 614, 547) optically

  18. The black tide model of QSOs

    NASA Technical Reports Server (NTRS)

    Young, P. J.; Shields, G. A.; Wheeler, J. C.

    1977-01-01

    The paper develops certain aspects of a model wherein a QSO is a massive black hole located in a dense galactic nucleus, with its growth and luminosity fueled by tidal disruption of passing stars. Cross sections for tidal disruptions are calculated, taking into account the thermal energy of stars, relativistic effects, and partial disruption removing only the outer layers of a star. Accretion rates are computed for a realistic distribution of stellar masses and evolutionary phases, the effect of the black hole on the cluster distribution is examined, and the red-giant disruption rate is evaluated for hole mass of at least 300 million solar masses, the cutoff of disruption of main-sequence stars. The results show that this black-tide model can explain QSO luminosities of at least 1 trillion suns if the black hole remains almost maximally Kerr as it grows above 100 million solar masses and if 'loss-cone' depletion of the number of stars in disruptive orbits is unimportant.

  19. Radial accretion flows on static spherically symmetric black holes

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Sarbach, Olivier

    2015-08-01

    We analyze the steady radial accretion of matter into a nonrotating black hole. Neglecting the self-gravity of the accreting matter, we consider a rather general class of static, spherically symmetric and asymptotically flat background spacetimes with a regular horizon. In addition to the Schwarzschild metric, this class contains certain deformation of it, which could arise in alternative gravity theories or from solutions of the classical Einstein equations in the presence of external matter fields. Modeling the ambient matter surrounding the black hole by a relativistic perfect fluid, we reformulate the accretion problem as a dynamical system, and under rather general assumptions on the fluid equation of state, we determine the local and global qualitative behavior of its phase flow. Based on our analysis and generalizing previous work by Michel, we prove that for any given positive particle density number at infinity, there exists a unique radial, steady-state accretion flow which is regular at the horizon. We determine the physical parameters of the flow, including its accretion and compression rates, and discuss their dependency on the background metric.

  20. An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907.

    PubMed

    Israel, Gian Luca; Belfiore, Andrea; Stella, Luigi; Esposito, Paolo; Casella, Piergiorgio; De Luca, Andrea; Marelli, Martino; Papitto, Alessandro; Perri, Matteo; Puccetti, Simonetta; Castillo, Guillermo A Rodríguez; Salvetti, David; Tiengo, Andrea; Zampieri, Luca; D'Agostino, Daniele; Greiner, Jochen; Haberl, Frank; Novara, Giovanni; Salvaterra, Ruben; Turolla, Roberto; Watson, Mike; Wilms, Joern; Wolter, Anna

    2017-02-24

    Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of [Formula: see text]1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity [Formula: see text] 10 41 erg second[Formula: see text]) might harbor NSs. Copyright © 2017, American Association for the Advancement of Science.

  1. Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya

    2003-01-01

    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.

  2. Equation of State Dependent Dynamics and Multi-messenger Signals from Stellar-mass Black Hole Formation

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Couch, Sean M.; Thielemann, Friedrich-Karl

    2018-04-01

    We investigate axisymmetric black hole (BH) formation and its gravitational wave (GW) and neutrino signals with self-consistent core-collapse supernova simulations of a non-rotating 40 M ⊙ progenitor star using the isotropic diffusion source approximation for the neutrino transport and a modified gravitational potential for general relativistic effects. We consider four different neutron star (NS) equations of state (EoS): LS220, SFHo, BHBΛϕ, and DD2, and study the impact of the EoS on BH formation dynamics and GW emission. We find that the BH formation time is sensitive to the EoS from 460 to >1300 ms and is delayed in multiple dimensions for ∼100–250 ms due to the finite entropy effects. Depending on the EoS, our simulations show the possibility that shock revival can occur along with the collapse of the proto-neutron star (PNS) to a BH. The gravitational waveforms contain four major features that are similar to previous studies but show extreme values: (1) a low-frequency signal (∼300–500 Hz) from core-bounce and prompt convection, (2) a strong signal from the PNS g-mode oscillation among other features, (3) a high-frequency signal from the PNS inner-core convection, and (4) signals from the standing accretion shock instability and convection. The peak frequency at the onset of BH formation reaches to ∼2.3 kHz. The characteristic amplitude of a 10 kpc object at peak frequency is detectable but close to the noise threshold of the Advanced LIGO and KAGRA, suggesting that the next-generation GW detector will need to improve the sensitivity at the kHz domain to better observe stellar-mass BH formation from core-collapse supernovae or failed supernovae.

  3. Relativistic jet activity from the tidal disruption of a star by a massive black hole [Discovery of the onset of rapid accretion by a dormant massive black hole

    DOE PAGES

    Burrows, D. N.; Kennea, J. A.; Ghisellini, G.; ...

    2011-08-24

    Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased inmore » brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. Furthermore, this event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.« less

  4. Constraints on core collapse from the black hole mass function

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2015-01-01

    We model the observed black hole mass function under the assumption that black hole formation is controlled by the compactness of the stellar core at the time of collapse. Low-compactness stars are more likely to explode as supernovae and produce neutron stars, while high-compactness stars are more likely to be failed supernovae that produce black holes with the mass of the helium core of the star. Using three sequences of stellar models and marginalizing over a model for the completeness of the black hole mass function, we find that the compactness ξ2.5 above which 50% of core collapses produce black holes is ξ _{2.5}^{50%}=0.24 (0.15 < ξ _{2.5}^{50%} < 0.37 at 90% confidence). The models also predict that f = 0.18 (0.09 < f < 0.39) of core collapses fail. We tested four other criteria for black hole formation based on ξ2.0 and ξ3.0, the compactnesses at enclosed masses of 2.0 or 3.0 rather than 2.5 M⊙, the mass of the iron core MFe, and the mass inside the oxygen burning shell MO. We found that ξ2.0 works as well as ξ2.5, while ξ3.0, MFe and MO are significantly worse. As expected from the high compactness of 20-25 M⊙ stars, black hole formation in this mass range provides a natural explanation of the red supergiant problem.

  5. A black hole in a globular cluster.

    PubMed

    Maccarone, Thomas J; Kundu, Arunav; Zepf, Stephen E; Rhode, Katherine L

    2007-01-11

    Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of approximately 1,000 solar masses. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 x 10(39) erg s(-1), which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed.

  6. Effects of Planetesimal Accretion on the Structural Evolution of Sub-Neptunes

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Chen, Howard

    2018-01-01

    A remarkable discovery of NASA's Kepler mission is the wide diversity in the average densities of planets even when they are of similar mass. After gas disk dissipation, fully formed planets could accrete nearby planetesimals from a remnant planetesimal disk. We present calculations using the open-source stellar evolution toolkit Modules for Experiments in Stellar Astrophysics (MESA) modified to include the deposition of planetesimals into the H/He envelopes of sub-Neptunes. We show that planetesimal accretion can alter the mass-radius isochrones for these planets. The additional energy deposited via planetesimal accretion puffs up the envelopes leading to enhanced gas loss during the phase of rapid accretion. As a result, the same initial planet can evolve to contain very different final envelope-mass fractions. This manifest as differences in the average planet densities long after accretion stops. Differences in the accretion history, total accreted mass, and the inherent stochasticity of the accretion process can bring wide diversity in final average densities even when the initial planets are very similar. These effects are particularly important for planets initially less massive than ~10 MEarth and with envelope mass fraction less than ~10%, thought to be the most common type of planets discovered by Kepler.

  7. Grumblings from an Awakening Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    In June of this year, after nearly three decades of sleep, the black hole V404 Cygni woke up and began grumbling. Scientists across the globe scrambled to observe the sudden flaring activity coming from this previously peaceful black hole. And now were getting the first descriptions of what weve learned from V404 Cygs awakening!Sudden OutburstV404 Cyg is a black hole of roughly nine solar masses, and its in a binary system with a low-mass star. The black hole pulls a stream of gas from the star, which then spirals in around the black hole, forming an accretion disk. Sometimes the material simply accumulates in the disk but every two or three decades, the build-up of gas suddenly rushes toward the black hole as if a dam were bursting.The sudden accretion in these events causes outbursts of activity from the black hole, its flaring easily visible to us. The last time V404 Cyg exhibited such activity was in 1989, and its been rather quiet since then. Our telescopes are of course much more powerful and sensitive now, nearly three decades later so when the black hole woke up and began flaring in June, scientists were delighted at the chance to observe it.The high variability of V404 Cyg is evident in this example set of spectra, where time increases from the bottom panel to the top. [King et al. 2015]Led by Ashley King (Einstein Fellow at Stanford University), a team of scientists observed V404 Cyg with the Chandra X-ray Observatory, obtaining spectra of the black hole during its outbursts. The black hole flared so brightly during its activity that the team had to take precautions to protect the CCDs in their detector from radiation damage! Now the group has released the first results from their analysis.Windy DiskThe primary surprise from V404 Cyg is its winds. Many stellar-mass black holes have outflows of mass, either in the form of directed jets emitted from their centers, or in the form of high-energy winds isotropically emitted from their accretion disks. But V404

  8. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  9. Mining the Sloan Digital Sky Survey to trace the M-sigma correlation below 106 solar masses

    NASA Astrophysics Data System (ADS)

    Barth, A. J.; Greene, J. E.; Ho, L. C.

    2004-05-01

    Do dwarf galaxies and late-type spirals host central black holes with masses below 106 M⊙? Stellar-dynamical detections of black holes with such low masses are only possible for the very nearest galaxies, but in more distant objects the presence of a black hole can still be inferred if its accretion luminosity can be detected. NGC 4395 and POX 52 are two examples of Seyfert galaxies with black hole masses well below 106 M⊙, but very little is known about the demographics of such objects. We have searched the Sloan DR1 archives to identify Seyfert galaxies that are likely to have black hole masses below 106 M⊙, using the luminosity-radius relation and the broad-line widths to derive virial mass estimates for the black holes (Greene & Ho 2004). To examine the host galaxy properties, we have begun a program to measure their stellar velocity dispersions using the ESI spectrograph at Keck. Here we present preliminary results from this project, including 12 newly identified Seyfert galaxies having stellar velocity dispersions below 70 km s-1. The masses and velocity dispersions of these objects are consistent with an extrapolation of the local M--σ relation to masses below 106 M⊙.

  10. Comparing the birth rate of stellar black holes in binary black hole mergers and long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Atteia, J.-L.; Dezalay, J.-P.; Godet, O.; Klotz, A.; Turpin, D.; Bernardini, M. G.

    2018-02-01

    Context. Gravitational wave interferometers have proven the existence of a new class of binary black hole (BBH) weighing tens of solar masses, and have provided the first reliable measurement of the rate of coalescing black holes (BHs) in the local Universe. Furthermore, long gamma-ray bursts (GRBs) detected with gamma-ray satellites are believed to be associated with the birth of stellar-mass BHs, providing a measure of the rate of these events across the history of the Universe, thanks to the measure of their cosmological redshift. These two types of sources, which are subject to different detection biases and involve BHs born in different environments with potentially different characteristics, provide complementary information on the birth rate of stellar BHs. Aim. We compare the birth rates of BHs found in BBH mergers and in long GRBs. Methods: We construct a simple model that makes reasonable assumptions on the history of GRB formation, and takes into account some major uncertainties, like the beaming angle of GRBs or the delay between the formation of BBHs and their coalescence. We use this model to evaluate the ratio of the number of stellar mass BHs formed in BBH mergers to those formed in GRBs. Results: We find that in our reference model the birth rate of stellar BHs in BBH mergers represents a significant fraction of the rate of long GRBs and that comparable birth rates are favored by models with moderate beaming angles. These numbers, however, do not consider subluminous GRBs, which may represent another population of sources associated with the birth of stellar mass BHs. We briefly discuss this result in view of our understanding of the progenitors of GRBs and BBH mergers, and we emphasize that this ratio, which will be better constrained in the coming years, can be directly compared with the prediction of stellar evolution models if a single model is used to produce GRBs and BBH mergers with the same assumptions.

  11. Galaxy-scale Bars in Late-type Sloan Digital Sky Survey Galaxies Do Not Influence the Average Accretion Rates of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Goulding, A. D.; Matthaey, E.; Greene, J. E.; Hickox, R. C.; Alexander, D. M.; Forman, W. R.; Jones, C.; Lehmer, B. D.; Griffis, S.; Kanek, S.; Oulmakki, M.

    2017-07-01

    Galaxy-scale bars are expected to provide an effective means for driving material toward the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). Here we present a statistically complete study of the effect of bars on average BH accretion. From a well-selected sample of 50,794 spiral galaxies (with {M}* ˜ 0.2{--}30× {10}10 {M}⊙ ) extracted from the Sloan Digital Sky Survey Galaxy Zoo 2 project, we separate those sources considered to contain galaxy-scale bars from those that do not. Using archival data taken by the Chandra X-ray Observatory, we identify X-ray luminous ({L}{{X}}≳ {10}41 {erg} {{{s}}}-1) active galactic nuclei and perform an X-ray stacking analysis on the remaining X-ray undetected sources. Through X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star-formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars ({\\dot{M}}{acc}≈ 3× {10}-5 {M}⊙ yr-1). Hence, we robustly conclude that large-scale bars have little or no effect on the average growth of BHs in nearby (z< 0.15) galaxies over gigayear timescales.

  12. Submillimeter evidence for the coeval growth of massive black holes and galaxy bulges.

    PubMed

    Page, M J; Stevens, J A; Mittaz, J P; Carrera, F J

    2001-12-21

    The correlation, found in nearby galaxies, between black hole mass and stellar bulge mass implies that the formation of these two components must be related. Here we report submillimeter photometry of eight x-ray-absorbed active galactic nuclei that have luminosities and redshifts characteristic of the sources that produce the bulk of the accretion luminosity in the universe. The four sources with the highest redshifts are detected at 850 micrometers, with flux densities between 5.9 and 10.1 millijanskies, and hence are ultraluminous infrared galaxies. If the emission is from dust heated by starbursts, then the majority of stars in spheroids were formed at the same time as their central black holes built up most of their mass by accretion. This would account for the observed demography of massive black holes in the local universe. The skewed rate of submillimeter detection with redshift is consistent with a high redshift epoch of star formation in radio-quiet active galactic nuclei, similar to that seen in radio galaxies.

  13. Black Hole Boldly Goes Where No Black Hole Has Gone Before

    NASA Astrophysics Data System (ADS)

    2007-01-01

    centres of galaxies. It is perhaps possible for a stellar-mass black hole to gain enough mass through merging with other stellar-mass black holes or accreting star gas to stay locked in a cluster. About 100 solar masses would do. Once entrenched, the black hole has the opportunity to merge with other black holes or accrete gas from a local neighbourhood rife with star-stuff. In this way, they could grow into IMBHs. "If a black hole is massive enough, there's a good chance it can survive the pressures of living in a globular cluster, since it will be too heavy to be kicked out," said Arunav Kundu of Michigan State University, a co-author on the Nature report. "That's what is intriguing about this discovery. We may be seeing how a black hole can grow considerably, become more entrenched in the cluster, and then grow some more. "On the other hand," continued Kundu, "there are a variety of ways to make ULXs without requiring intermediate mass black holes. In particular, if the light goes out in a different direction than the one from which the gas comes in, it doesn't put any force on the gas. Also, if the light can be 'focused' towards us by reflecting off the gas in the same way that light from a flashlight bulb bounces off the little mirror in the flashlight, making the object appear brighter than it really is." Ongoing work will help to determine whether this object is a stellar-mass black hole showing an unusual manner of sucking in gas, allowing it to be extra bright, or an IMBH. The team, which also includes Steve Zepf from Michigan State University, and Katherine Rhode from Wesleyan University, has data for thousands of other globular clusters, which they are now analyzing in an effort to determine just how common this phenomenon is. Note for editors The findings appear on line in the 4 January issue of the journal Nature, in the article titled: "A black hole in a globular cluster", by Thomas J. Maccarone, Arunav Kundu, Stephen E. Zepf and Katherine L. Rhode.

  14. Mergers and Mass Accretion for Infalling Halos Both End Well Outside Cluster Virial Radii

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu; Hahn, Oliver; Busha, Michael T.; Klypin, Anatoly; Primack, Joel R.

    2014-06-01

    We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of 1.8^{+2.3}_{-1.0} \\,R_{vir,host} for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances (3.7^{+3.3}_{-2.2} \\,R_{vir,host} at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ~1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (~1.9 R vir, host) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

  15. The tidal disruption of a star by a massive black hole

    NASA Technical Reports Server (NTRS)

    Evans, Charles R.; Kochanek, Christopher S.

    1989-01-01

    Results are reported from a three-dimensional numerical calculation of the tidal disruption of a low-mass main-sequence star on a parabolic orbit around a massive black hole (Mh = 10 to the 6th stellar mass). The postdisruption evolution is followed until hydrodynamic forces becomes negligible and the liberated gas becomes ballistic. Also given is the rate at which bound mass returns to pericenter after orbiting the hole once. The processes that determine the time scale to circularize the debris orbits and allow an accretion torus to form are discussed. This time scale and the time scales for radiative cooling and accretion inflow determine the onset and duration of the subsequent flare in the AGN luminosity.

  16. Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 From The Nuclear Stellar Dynamics

    NASA Technical Reports Server (NTRS)

    Bower, G. A.; Green, R. F.; Bender, R.; Gebhardt, K.; Lauer, T. R.; Magorrian, J.; Richstone, D. O.; Danks, A.; Gull, T.; Hutchings, J.

    2000-01-01

    We analyze the nuclear stellar dynamics of the SBO galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V equals approx. 70 km/s at a distance of O.1 deg = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence > 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 +/- 0.4) x 10(exp 7) solar masses and mass-to-light ratio (M/L(sub v)) of 5.38 +/- 0.08, and the goodness-of-fit (CHI(exp 2)) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which non-parametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4) x 10(exp 7) solar masses and M/L(sub v) of 5.56 +/- 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line of sight velocity distribution has enhanced wings at velocities >= 600 km/s from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.

  17. Stellar mass buildup in galaxies in the first 1.5 Gyr of the universe

    NASA Astrophysics Data System (ADS)

    Gonzalez, Valentino

    systems at these redshifts. The UV luminosity vs. stellar mass relation indicates only a small variation of the mass-to-light ratio as a function of UV luminosity. This is confirmed in a stacking analysis of a large number of sources from the HUDF and the Early Release Science fields (˜ 400 z ˜ 4, ˜ 120 z ˜ 5, ˜ 60 z ˜ 6, 36 at z ˜ 7). Interestingly, the stacked SEDs at z ≳ 5 in the rest-frame optical shows a color [3.6] -- [4.5] ˜ 0.3 mag. This color is hard to reproduce by synthetic stellar population models that only include stellar continua, and it probably indicates the presence of moderately strong emission lines (Halpha EWrest ˜ 300 A). The contribution from such emission lines in the IRAC fluxes indicates that the stellar masses and ages could both be over-estimated by a factor ˜ 2. One of the most interesting results presented in this thesis is the apparent plateau of the specific SFR (sSFR = SFR / stellar mass). In early results, the similarity in the SEDs of galaxies at a given UV luminosity in the z ˜ 4 -- 7 redshift range resulted in very similar estimates of the SFR and stellar masses of these galaxies. Furthermore, we find that the reported sSFR estimates at z ˜ 2 are also very similar to the ones in the z ˜ 4 -- 7 redshift range (˜ 2 Gyr--1 for ˜ 5 x 109 M⊙ galaxies). A puzzle arises from the fact that the dark matter accretion rate onto halos is predicted to decrease monotonically and rather fast as a function of cosmic time (approximately ∝ (1 + z) 2.5). If gas and star formation follow the inflow of dark matter, the sSFR at a constant mass should also decrease monotonically with time, which is contrary to the indication from these observations. When we include the possible effects of emission lines, the stellar masses decrease by a factor ˜ 2x at z ≳ 5. The revised stellar masses may favor a slowly rising sSFR at z ≳ 2, but the rise as a function of redshift is still much slower (sSFR(z) ∝ (1 + z)0.7) than that of specific

  18. Are merging black holes born from stellar collapse or previous mergers?

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Berti, Emanuele

    2017-06-01

    Advanced LIGO detectors at Hanford and Livingston made two confirmed and one marginal detection of binary black holes during their first observing run. The first event, GW150914, was from the merger of two black holes much heavier that those whose masses have been estimated so far, indicating a formation scenario that might differ from "ordinary" stellar evolution. One possibility is that these heavy black holes resulted from a previous merger. When the progenitors of a black hole binary merger result from previous mergers, they should (on average) merge later, be more massive, and have spin magnitudes clustered around a dimensionless spin ˜0.7 . Here we ask the following question: can gravitational-wave observations determine whether merging black holes were born from the collapse of massive stars ("first generation"), rather than being the end product of earlier mergers ("second generation")? We construct simple, observationally motivated populations of black hole binaries, and we use Bayesian model selection to show that measurements of the masses, luminosity distance (or redshift), and "effective spin" of black hole binaries can indeed distinguish between these different formation scenarios.

  19. The Nature of Accreting Black Holes in Nearby Galaxy Nuclei

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Mushotzky, R. F.

    1999-04-01

    We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.

  20. The Nature of Accreting Black Holes in Nearby Galaxy Nuclei

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Mushotzky, R. F.

    1999-05-01

    We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.

  1. Discovery of the correlation between peak episodic jet power and X-ray peak luminosity of the soft state in black hole transients

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Yu, W.

    2015-08-01

    Episodic jets are usually observed in the intermediate state of black hole transients during their X-ray outbursts. Here we report the discovery of a strong positive correlation between the peak radio power of the episodic jet Pjet and the corresponding peak X-ray luminosity Lx of the soft state (in Eddington units) in a complete sample of the outbursts of black hole transients observed during the RXTE era of which data are available, which follows the relation log Pjet = (2.2 ± 0.3) + (1.6 ± 0.2) × log Lx. The transient ultraluminous X-ray source in M31 and HLX-1 in EXO 243-49 fall on the relation if they contain stellar-mass black hole and either stellar-mass black hole or intermediate-mass black hole, respectively. Besides, a significant correlation between the peak power of the episodic jet and the rate of increase of the X-ray luminosity dLx/dt during the rising phase of those outbursts is also found, following log Pjet = (2.0 ± 0.4) + (0.7 ± 0.2) × log dLx/dt. In GX 339-4 and H 1743-322 in which data for two outbursts are available, measurements of the peak radio power of the episodic jet and the X-ray peak luminosity (and its rate of change) shows similar positive correlations between outbursts, which demonstrate the dominant role of accretion over black hole spin in generating episodic jet power. On the other hand, no significant difference is seen among the systems with different measured black hole spin in current sample. This implies that the power of the episodic jet is strongly affected by non-stationary accretion instead of black hole spin characterized primarily by the rate of change of the mass accretion rate.

  2. Smoothed particle hydrodynamics simulations of black hole accretion: a step to model black hole feedback in galaxies

    NASA Astrophysics Data System (ADS)

    Barai, Paramita; Proga, Daniel; Nagamine, Kentaro

    2011-11-01

    We test how accurately the smoothed particle hydrodynamics (SPH) numerical technique can follow spherically symmetric Bondi accretion. Using the 3D SPH code GADGET-3, we perform simulations of gas accretion on to a central supermassive black hole of mass 108 M⊙ within the radial range of 0.1-200 pc. We carry out simulations without and with radiative heating by a central X-ray corona and radiative cooling. For an adiabatic case, the radial profiles of hydrodynamical properties match the Bondi solution, except near the inner and outer radius of the computational domain. The deviation from the Bondi solution close to the inner radius is caused by the combination of numerical resolution, artificial viscosity and our inner boundary condition. Near the outer radius (≤200 pc), we observe either an outflow or development of a non-spherical inflow unless the outer boundary conditions are very stringently implemented. Despite these issues related to the boundary conditions, we find that adiabatic Bondi accretion can be reproduced for durations of a few dynamical times at the Bondi radius, and for longer times if the outer radius is increased. In particular, the mass inflow rate at the inner boundary, which we measure, is within 3-4 per cent of the Bondi accretion rate. With radiative heating and cooling included, the spherically accreting gas takes a longer time to reach a steady state than the adiabatic Bondi accretion runs, and in some cases does not reach a steady state even within several hundred dynamical times. We find that artificial viscosity causes excessive heating near the inner radius, making the thermal properties of the gas inconsistent with a physical solution. This overheating occurs typically only in the supersonic part of the flow, so that it does not affect the mass accretion rate. We see that increasing the X-ray luminosity produces a lower central mass inflow rate, implying that feedback due to radiative heating is operational in our simulations

  3. Hyper-Eddington accretion flows on to massive black holes

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Haiman, Zoltán; Ostriker, Jeremiah P.

    2016-07-01

    We study very high rate, spherically symmetric accretion flows on to massive black holes (BHs; 102 ≲ MBH ≲ 106 M⊙) embedded in dense metal-poor clouds, performing one-dimensional radiation hydrodynamical simulations. We find solutions from outside the Bondi radius at hyper-Eddington rates, unimpeded by radiation feedback when (n∞/105 cm-3) > (MBH/104 M⊙)-1(T∞/104 K)3/2, where n∞ and T∞ are the density and temperature of ambient gas. Accretion rates in this regime are steady, and larger than 5000LEdd/c2, where LEdd is the Eddington luminosity. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is below the Eddington rate. In the hyper-Eddington case, the solution consists of a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T ≃ 8000 K. When the emergent luminosity is limited to ≲ LEdd because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of Tvir ≳ 104K. Once a seed BH forms at the centre of the galaxy, it can grow to a maximum ˜105(Tvir/104 K) M⊙ via gas accretion independent of the initial BH mass. Finally, we discuss possible observational signatures of rapidly accreting BHs with/without allowance for dust. We suggest that these systems could explain Lyα emitters without X-rays and nearby luminous infrared sources with hot dust emission, respectively.

  4. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  5. Evidence for an Intermediate Mass Black Hole in NGC 5408 X-1

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2009-01-01

    We report the discovery with XMM-Newton of correlated spectral and timing behavior in the ultraluminous X-ray source (ULX) NGC 5408 X-1. An approx. 100 ksec pointing with XMM/Newton obtained in January, 2008 reveals a strong 10 mHz QPO in the > 1 keV flux, as well as flat-topped, band limited noise breaking to a power law. The energy spectrum is again dominated by two components, a 0.16 keV thermal disk and a power-law with an index of approx. 2.5. These new measurements, combined with results from our previous January 2006 pointing in which we first detected QPOs, show for the first time in a ULX a pattern of spectral and temporal correlations strongly analogous to that seen in Galactic black hole sources, but at much higher X-ray luminosity and longer characteristic time-scales. We find that the QPO frequency is proportional to the inferred disk flux, while the QPO and broad-band noise amplitude (root mean squared, rms) are inversely proportional to the disk flux. Assuming that QPO frequency scales inversely with black hole mass at a given power-law spectral index we derive mass estimates using the observed QPO frequency - spectral index relations from five stellar-mass black hole systems with dynamical mass constraints. The results from all sources are consistent with a mass range for NGC 5408 X-1 from 1000 - 9000 Stellar mass. We argue that these are conservative limits, and a more likely range is from 2000 - 5000 Stellar mass. Moreover, the recent relation from Gierlinski et al. that relates black hole mass to the strength of variability at high frequencies (above the break in the power spectrum), and the variability plane results of McHardy et al. and Koerding et al., are also suggestive of such a. high mass for NGC 5408 X-1. Importantly, none of the above estimates appears consistent with a black hole mass less than approx. 1000 Stellar mass for NGC 5408 X-1. We argue that these new findings strongly support the conclusion that NGC 5408 X-1 harbors an

  6. The Dual Origin Of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Zolotov, Adi

    In the dominant Lambda+Cold Dark Matter cosmological paradigm, galaxy stellar halos are thought to form hierarchically from multiple accretion events, starting from the first structures to collapse in the Universe. This dissertation aims to make the first detailed theoretical predictions for the origin of galactic stellar halos. We focus on understanding the physical processes involved in halo formation using high-resolution, N-body + Smooth Particle Hydrodynamic simulations of disk galaxies in a cosmological context. These self-consistent simulations are used to study the competing importance of dissipative processes and dissipationless mergers in the formation of stellar halos. The relative contribution of each mechanism, and its specific role in assembling the inner and outer regions of halos is explored, as a function of galaxy mass and merging history. We show that the presence of both accreted and in situ stars in halos is a generic feature of galaxy formation. For L* galaxies, the relative contribution of each stellar population to a halo is shown to be a function of a galaxy's accretion history. Galaxies with recent mergers, like M31, will host relatively few in situ stars, while galaxies with more quiescent recent histories, like the Milky Way, will likely have a larger relative contribution from an in situ population. We show that in situ halo stars are more [alpha/Fe]-rich than accreted stars at the high [Fe/H] end of a halo's metallicity distribution function. In lower mass galaxies, M ˜ 1010 M, in situ stars dominate the stellarmass of halos. In these galaxies, in situ halo stars are, on average, younger and more metal-rich than accreted halo stars. Because in situ stars are dominant, these trends result in halos that are more metal-rich than simple accretion models predict. The halos of low mass galaxies do not extend out to the virial radii of the primary, as they do in more massive galaxies. We find that the ratio of luminous-halo mass to total

  7. A 400-solar-mass black hole in the galaxy M82.

    PubMed

    Pasham, Dheeraj R; Strohmayer, Tod E; Mushotzky, Richard F

    2014-09-04

    M82 X-1, the brightest X-ray source in the galaxy M82, has been thought to be an intermediate-mass black hole (100 to 10,000 solar masses) because of its extremely high luminosity and variability characteristics, although some models suggest that its mass may be only about 20 solar masses. The previous mass estimates were based on scaling relations that use low-frequency characteristic timescales which have large intrinsic uncertainties. For stellar-mass black holes, we know that the high-frequency quasi-periodic oscillations (100-450 hertz) in the X-ray emission that occur in a 3:2 frequency ratio are stable and scale in frequency inversely with black hole mass with a reasonably small dispersion. The discovery of such stable oscillations thus potentially offers an alternative and less ambiguous means of mass determination for intermediate-mass black holes, but has hitherto not been realized. Here we report stable, twin-peak (3:2 frequency ratio) X-ray quasi-periodic oscillations from M82 X-1 at frequencies of 3.32 ± 0.06 hertz and 5.07 ± 0.06 hertz. Assuming that we can extrapolate the inverse-mass scaling that holds for stellar-mass black holes, we estimate the black hole mass of M82 X-1 to be 428 ± 105 solar masses. In addition, we can estimate the mass using the relativistic precession model, from which we get a value of 415 ± 63 solar masses.

  8. Black Hole Accretion Discs on a Moving Mesh

    NASA Astrophysics Data System (ADS)

    Ryan, Geoffrey

    2017-01-01

    We present multi-dimensional numerical simulations of black hole accretion disks relevant for the production of electromagnetic counterparts to gravitational wave sources. We perform these simulations with a new general relativistic version of the moving-mesh magnetohydrodynamics code DISCO which we will present. This open-source code, GR-DISCO uses an orbiting and shearing mesh which moves with the dominant flow velocity, greatly improving the numerical accuracy of the thermodynamic variables in supersonic flows while also reducing numerical viscosity and greatly increasing computational efficiency by allowing for a larger time step. We have used GR-DISCO to study black hole accretion discs subject to gravitational torques from a binary companion, relevant for both current and future supermassive binary black hole searches and also as a possible electromagnetic precursor mechanism for LIGO events. Binary torques in these discs excite spiral shockwaves which effectively transport angular momentum in the disc and propagate through the innermost stable orbit, leading to stress corresponding to an alpha-viscosity of 10-2. We also present three-dimensional GRMHD simulations of neutrino dominated accretion flows (NDAFs) occurring after a binary neutron star merger in order to elucidate the conditions for electromagnetic transient production accompanying these gravitational waves sources expected to be detected by LIGO in the near future.

  9. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    DOE PAGES

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris Lee

    2017-09-01

    In this paper, high-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parametersmore » $$a\\gtrsim 0.84$$. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an $$8\\,{M}_{\\odot }$$ pre-SN star in a close binary with a $$12\\,{M}_{\\odot }$$ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter $$a\\gtrsim 0.8$$ even when the expected spin parameter from direct collapse is $$a\\lesssim 0.3$$. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.« less

  10. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris Lee

    In this paper, high-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parametersmore » $$a\\gtrsim 0.84$$. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an $$8\\,{M}_{\\odot }$$ pre-SN star in a close binary with a $$12\\,{M}_{\\odot }$$ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter $$a\\gtrsim 0.8$$ even when the expected spin parameter from direct collapse is $$a\\lesssim 0.3$$. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.« less

  11. A Be-type star with a black-hole companion.

    PubMed

    Casares, J; Negueruela, I; Ribó, M; Ribas, I; Paredes, J M; Herrero, A; Simón-Díaz, S

    2014-01-16

    Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10(-7) times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.

  12. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5(sigma). The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4(+0.7/-0.9) x 10(exp -22). The inferred source-frame initial black hole masses are 14.2(+8.3/-3.7 Stellar Mass and 7.5(+2.3/-2.3) Stellar Mass, and the final black hole mass is 20.8(+6.1/-1.7) Stellar Mass. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440(+180/-190) Mpc corresponding to a redshift of 0.090(+.030/-0.04). All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  13. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  14. NASA Missions Monitor a Waking Black Hole

    NASA Image and Video Library

    2015-06-30

    On June 15, NASA's Swift caught the onset of a rare X-ray outburst from a stellar-mass black hole in the binary system V404 Cygni. Astronomers around the world are watching the event. In this system, a stream of gas from a star much like the sun flows toward a 10 solar mass black hole. Instead of spiraling toward the black hole, the gas accumulates in an accretion disk around it. Every couple of decades, the disk switches into a state that sends the gas rushing inward, starting a new outburst. Read more: www.nasa.gov/feature/goddard/nasa-missions-monitor-a-waki... Credits: NASA's Goddard Space Flight Center Download this video in HD formats from NASA Goddard's Scientific Visualization Studio svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11110

  15. The mass of the black hole in 1A 0620-00, revisiting the ellipsoidal light curve modelling

    NASA Astrophysics Data System (ADS)

    van Grunsven, Theo F. J.; Jonker, Peter G.; Verbunt, Frank W. M.; Robinson, Edward L.

    2017-12-01

    The mass distribution of stellar-mass black holes can provide important clues to supernova modelling, but observationally it is still ill constrained. Therefore, it is of importance to make black hole mass measurements as accurate as possible. The X-ray transient 1A 0620-00 is well studied, with a published black hole mass of 6.61 ± 0.25 M⊙, based on an orbital inclination i of 51.0° ± 0.9°. This was obtained by Cantrell et al. (2010) as an average of independent fits to V-, I- and H-band light curves. In this work, we perform an independent check on the value of i by re-analysing existing YALO/SMARTS V-, I- and H-band photometry, using different modelling software and fitting strategy. Performing a fit to the three light curves simultaneously, we obtain a value for i of 54.1° ± 1.1°, resulting in a black hole mass of 5.86 ± 0.24 M⊙. Applying the same model to the light curves individually, we obtain 58.2° ± 1.9°, 53.6° ± 1.6° and 50.5° ± 2.2° for V-, I- and H-band, respectively, where the differences in best-fitting i are caused by the contribution of the residual accretion disc light in the three different bands. We conclude that the mass determination of this black hole may still be subject to systematic effects exceeding the statistical uncertainty. Obtaining more accurate masses would be greatly helped by continuous phase-resolved spectroscopic observations simultaneous with photometry.

  16. Gravitational Waves from Stellar Black Hole Binaries and the Impact on Nearby Sun-like Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, Ilídio; Silk, Joseph, E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: silk@astro.ox.ac.uk

    We investigate the impact of resonant gravitational waves on quadrupole acoustic modes of Sun-like stars located nearby stellar black hole binary systems (such as GW150914 and GW151226). We find that the stimulation of the low-overtone modes by gravitational radiation can lead to sizeable photometric amplitude variations, much larger than the predictions for amplitudes driven by turbulent convection, which in turn are consistent with the photometric amplitudes observed in most Sun-like stars. For accurate stellar evolution models, using up-to-date stellar physics, we predict photometric amplitude variations of 1–10{sup 3} ppm for a solar mass star located at a distance between 1more » au and 10 au from the black hole binary and belonging to the same multi-star system. The observation of such a phenomenon will be within the reach of the Plato mission because the telescope will observe several portions of the Milky Way, many of which are regions of high stellar density with a substantial mixed population of Sun-like stars and black hole binaries.« less

  17. Three-dimensional structure of clumpy outflow from supercritical accretion flow onto black holes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Ohsuga, Ken; Takahashi, Hiroyuki R.; Kawashima, Tomohisa; Asahina, Yuta; Takeuchi, Shun; Mineshige, Shin

    2018-03-01

    We perform global three-dimensional (3D) radiation-hydrodynamic (RHD) simulations of outflow from supercritical accretion flow around a 10 M⊙ black hole. We only solve the outflow part, starting from the axisymmetric 2D simulation data in a nearly steady state but with small perturbations in a sinusoidal form being added in the azimuthal direction. The mass accretion rate onto the black hole is ˜102LE/c2 in the underlying 2D simulation data, and the outflow rate is ˜10 LE/c2 (with LE and c being the Eddington luminosity and speed of light, respectively). We first confirm the emergence of clumpy outflow, which was discovered by the 2D RHD simulations, above the photosphere located at a few hundreds of Schwarzschild radii (rS) from the central black hole. As prominent 3D features we find that the clumps have the shape of a torn sheet, rather than a cut string, and that they are rotating around the central black hole with a sub-Keplerian velocity at a distance of ˜103 rS from the center. The typical clump size is ˜30 rS or less in the radial direction, and is more elongated in the angular directions, ˜ hundreds of rS at most. The sheet separation ranges from 50 to 150 rS. We expect stochastic time variations when clumps pass across the line of the sight of a distant observer. Variation timescales are estimated to be several seconds for a black hole with mass of ten to several tens of M⊙, in rough agreement with the observations of some ultra-luminous X-ray sources.

  18. LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi

    2012-10-20

    Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon ismore » quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.« less

  19. ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. II. GROWTH RATE AND DUTY CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kwang Ho; Ricotti, Massimo, E-mail: kpark@astro.umd.edu, E-mail: ricotti@astro.umd.edu

    2012-03-01

    This paper, the second in a series on radiation-regulated accretion onto black holes (BHs) from galactic scales, focuses on the effects of radiation pressure and angular momentum of the accreting gas. We simulate accretion onto intermediate-mass black holes, but we derive general scaling relationships that are solutions of the Bondi problem with radiation feedback valid for any mass of the BH M{sub bh}. Thermal pressure of the ionized sphere around the BH regulates the accretion rate, producing periodic and short-lived luminosity bursts. We find that for ambient gas densities exceeding n{sup cr}{sub H,{infinity}}{proportional_to}M{sup -1}{sub bh}, the period of the oscillationsmore » decreases rapidly and the duty cycle increases from 6%, in agreement with observations of the fraction of active galactic nuclei at z {approx} 3, to 50%. The mean accretion rate becomes Eddington limited for n{sub H,{infinity}} > n{sup Edd}{sub H,{infinity}} {approx_equal} n{sup cr}{sub H,{infinity}} T{sub {infinity},4}{sup -1} where T{sub {infinity},4} is the gas temperature in units of 10{sup 4} K. In the sub-Eddington regime, the mean accretion rate onto BHs is about 1%T{sup 2.5}{sub {infinity},4} of the Bondi rate, and thus is proportional to the thermal pressure of the ambient medium. The period of the oscillations coincides with the depletion timescale of the gas inside the ionized bubble surrounding the BH. Gas depletion is dominated by a pressure gradient pushing the gas outward if n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} and by accretion onto the BH otherwise. Generally, for n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} angular momentum does not significantly affect the accretion rate and period of the oscillations.« less

  20. Black hole mass function from gravitational wave measurements

    NASA Astrophysics Data System (ADS)

    Kovetz, Ely D.; Cholis, Ilias; Breysse, Patrick C.; Kamionkowski, Marc

    2017-05-01

    We examine how future gravitational-wave measurements from merging black holes (BHs) can be used to infer the shape of the black-hole mass function, with important implications for the study of star formation and evolution and the properties of binary BHs. We model the mass function as a power law, inherited from the stellar initial mass function, and introduce lower and upper mass cutoff parametrizations in order to probe the minimum and maximum BH masses allowed by stellar evolution, respectively. We initially focus on the heavier BH in each binary, to minimize model dependence. Taking into account the experimental noise, the mass measurement errors and the uncertainty in the redshift dependence of the merger rate, we show that the mass function parameters, as well as the total rate of merger events, can be measured to <10 % accuracy within a few years of advanced LIGO observations at its design sensitivity. This can be used to address important open questions such as the upper limit on the stellar mass which allows for BH formation and to confirm or refute the currently observed mass gap between neutron stars and BHs. In order to glean information on the progenitors of the merging BH binaries, we then advocate the study of the two-dimensional mass distribution to constrain parameters that describe the two-body system, such as the mass ratio between the two BHs, in addition to the merger rate and mass function parameters. We argue that several years of data collection can efficiently probe models of binary formation, and show, as an example, that the hypothesis that some gravitational-wave events may involve primordial black holes can be tested. Finally, we point out that in order to maximize the constraining power of the data, it may be worthwhile to lower the signal-to-noise threshold imposed on each candidate event and amass a larger statistical ensemble of BH mergers.

  1. A Method to Constrain Mass and Spin of GRB Black Holes within the NDAF Model

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Xue, Li; Zhao, Xiao-Hong; Zhang, Fu-Wen; Zhang, Bing

    2016-04-01

    Black holes (BHs) hide themselves behind various astronomical phenomena and their properties, I.e., mass and spin, are usually difficult to constrain. One leading candidate for the central engine model of gamma-ray bursts (GRBs) invokes a stellar mass BH and a neutrino-dominated accretion flow (NDAF), with the relativistic jet launched due to neutrino-anti-neutrino annihilations. Such a model gives rise to a matter-dominated fireball, and is suitable to interpret GRBs with a dominant thermal component with a photospheric origin. We propose a method to constrain BH mass and spin within the framework of this model and apply the method to the thermally dominant GRB 101219B, whose initial jet launching radius, r0, is constrained from the data. Using our numerical model of NDAF jets, we estimate the following constraints on the central BH: mass MBH ˜ 5-9 M⊙, spin parameter a* ≳ 0.6, and disk mass 3 M⊙ ≲ Mdisk ≲ 4 M⊙. Our results also suggest that the NDAF model is a competitive candidate for the central engine of GRBs with a strong thermal component.

  2. The structure of galaxies : the division of stellar mass by morphological type and structural component

    NASA Astrophysics Data System (ADS)

    Kelvin, Lee Steven

    This thesis explores the relation between galaxy structure, morphology and stellar mass. In the first part I present single-Sersic two-dimensional model fits to 167,600 galaxies modelled independently in the ugrizYJHK bandpasses using reprocessed Sloan Digital Sky Survey Data Release Seven (SDSS DR7) and UKIRT Infrared Deep Sky Survey Large Area Survey (UKIDSS LAS) imaging data available via the Galaxy and Mass Assembly (GAMA) data base. In order to facilitate this study, we developed Structural Investigation of Galaxies via Model Analysis (SIGMA): an automated wrapper around several contemporary astronomy software packages. We confirm that variations in global structural measurements with wavelength arise due to the effects of dust attenuation and stellar population/metallicity gradients within galaxies. In the second part of this thesis we establish a volume-limited sample of 3,845 galaxies in the local Universe and visually classify these galaxies according to their morphological Hubble type. We find that single-Sersic photometry accurately reproduces the morphology luminosity functions predicted in the literature. We employ multi-component Sersic profiling to provide bulge-disk decompositions for this sample, allowing for the luminosity and stellar mass to be divided between the key structural components: spheroids and disks. Grouping the stellar mass in these structures by the evolutionary mechanisms that formed them, we find that hot-mode collapse, merger or otherwise turbulent mechanisms account for ~46% of the total stellar mass budget, cold-mode gas accretion and splashback mechanisms account for ~48% of the total stellar mass budget and secular evolutionary processes for ~6.5% of the total stellar mass budget in the local (z<0.06) Universe.

  3. CONSTRAINTS ON BLACK HOLE GROWTH, QUASAR LIFETIMES, AND EDDINGTON RATIO DISTRIBUTIONS FROM THE SDSS BROAD-LINE QUASAR BLACK HOLE MASS FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Brandon C.; Hernquist, Lars; Siemiginowska, Aneta

    2010-08-20

    We present an estimate of the black hole mass function of broad-line quasars (BLQSOs) that self-consistently corrects for incompleteness and the statistical uncertainty in the mass estimates, based on a sample of 9886 quasars at 1 < z < 4.5 drawn from the Sloan Digital Sky Survey (SDSS). We find evidence for 'cosmic downsizing' of black holes in BLQSOs, where the peak in their number density shifts to higher redshift with increasing black hole mass. The cosmic mass density for black holes seen as BLQSOs peaks at z {approx} 2. We estimate the completeness of the SDSS as a functionmore » of the black hole mass and Eddington ratio, and find that at z > 1 it is highly incomplete at M {sub BH} {approx}< 10{sup 9} M {sub sun} and L/L{sub Edd} {approx}< 0.5. We estimate a lower limit on the lifetime of a single BLQSO phase to be t {sub BL} > 150 {+-} 15 Myr for black holes at z = 1 with a mass of M {sub BH} = 10{sup 9} M{sub sun}, and we constrain the maximum mass of a black hole in a BLQSO to be {approx}3 x 10{sup 10} M{sub sun}. Our estimated distribution of BLQSO Eddington ratios peaks at L/L {sub Edd} {approx} 0.05 and has a dispersion of {approx}0.4 dex, implying that most BLQSOs are not radiating at or near the Eddington limit; however, the location of the peak is subject to considerable uncertainty. The steep increase in number density of BLQSOs toward lower Eddington ratios is expected if the BLQSO accretion rate monotonically decays with time. Furthermore, our estimated lifetime and Eddington ratio distributions imply that the majority of the most massive black holes spend a significant amount of time growing in an earlier obscured phase, a conclusion which is independent of the unknown obscured fraction. These results are consistent with models for self-regulated black hole growth, at least for massive systems at z > 1, where the BLQSO phase occurs at the end of a fueling event when black hole feedback unbinds the accreting gas, halting the accretion flow.« less

  4. Exploring stellar evolution with gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph

    2018-05-01

    Recent detections of gravitational waves from merging binary black holes opened new possibilities to study the evolution of massive stars and black hole formation. In particular, stellar evolution models may be constrained on the basis of the differences in the predicted distribution of black hole masses and redshifts. In this work we propose a framework that combines galaxy and stellar evolution models and use it to predict the detection rates of merging binary black holes for various stellar evolution models. We discuss the prospects of constraining the shape of the time delay distribution of merging binaries using just the observed distribution of chirp masses. Finally, we consider a generic model of primordial black hole formation and discuss the possibility of distinguishing it from stellar-origin black holes.

  5. The mass function of black holes 1

    NASA Astrophysics Data System (ADS)

    Natarajan, Priyamvada; Volonteri, Marta

    2012-05-01

    In this paper, we compare the observationally derived black hole mass function (BHMF) of luminous (>1045-1046 erg s-1) broad-line quasars (BLQSOs) at 1 < z < 4.5 drawn from the Sloan Digital Sky Survey (SDSS) presented by Kelly et al., with models of merger-driven black hole (BH) growth in the context of standard hierarchical structure formation models. In these models, we explore two distinct black hole seeding prescriptions at the highest redshifts: 'light seeds'- remnants of Population III stars and 'massive seeds' that form from the direct collapse of pre-galactic discs. The subsequent merger triggered mass build-up of the black hole population is tracked over cosmic time under the assumption of a fixed accretion rate as well as rates drawn from the distribution derived by Merloni & Heinz. Four model snapshots at z= 1.25, 2, 3.25 and 4.25 are compared with the SDSS-derived BHMFs of BLQSOs. We find that the light seed models fall short of reproducing the observationally derived mass function of BLQSOs at MBH > 109 M⊙ throughout the redshift range; the massive seed models with a fixed accretion rate of 0.3 Edd, or with accretion rates drawn from the Merloni & Heinz distribution provide the best fit to the current observational data at z > 2, although they overestimate the high-mass end of the mass function at lower redshifts. At low redshifts, a drastic drop in the accretion rate is observed and this is explained as arising due to the diminished gas supply available due to consumption by star formation or changes in the geometry of the inner feeding regions. Therefore, the overestimate at the high-mass end of the black hole mass function for the massive seed models can be easily modified, as the accretion rate is likely significantly lower at these epochs than what we assume. For the Merloni & Heinz model, examining the Eddington ratio distributions fEdd, we find that they are almost uniformly sampled from fEdd= 10-2 to 1 at z≃ 1, while at high redshift

  6. Theory of Bipolar Outflows from Accreting Hot Stars

    NASA Astrophysics Data System (ADS)

    Konigl, A.

    1996-05-01

    There is a growing number of observational indicators for the presence of bipolar outflows in massive, young stellar objects that are still accreting mass as part of their formation process. In particular, there is evidence that the outflows from these objects can attain higher velocities and kinetic luminosities than their lower-mass counterparts. Furthermore, the higher-mass objects appear to smoothly continue the correlation found in T Tauri stars between outflow and accretion signatures, and in several cases there are direct clues to the existence of a disk from optical and infrared spectroscopy. These results suggest that the disk--outflow connection found in low-mass pre--main-sequence stars extends to more massive objects, and that a similar physical mechanism may drive the outflows in both cases. In this presentation, I first critically examine the observational basis for this hypothesis, considering, among other things, the possibility that several low-luminosity outflows might occasionally masquerade as a single flow from a luminous object, and the effects that the radiation field of a hot star could have on the spectroscopic diagnostics of an accretion-driven outflow. I then go on to consider how the commonly invoked centrifugally driven wind models of bipolar outflows in low-mass stars would be affected by the various physical processes (such as photoionization, photoevaporation, radiation pressure, and stellar wind ram pressure) that operate in higher-mass stars. I conclude by mentioning some of the tantalizing questions that one could hope to address as this young field of research continues to develop (for example: is there a high-mass analog of the FU Orionis outburst phenomenon? Could one use observations of progressively more massive, and hence less convective, stars to elucidate the role of stellar magnetic fields in the accretion and outflow processes? Would it be possible to observationally identify massive stars that have reached the main

  7. Tilted Thick-Disk Accretion onto a Kerr Black Hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fragile, P C; Anninos, P

    2003-12-12

    We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}.more » The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.« less

  8. An intermediate-mass black hole in the darf galaxy Pox 52

    NASA Astrophysics Data System (ADS)

    Barth, Aaron

    2005-01-01

    Do dwarf elliptical and dwarf spiral galaxies contain central black holes with masses below 106 solar masses? Beyond the Local Group dynamical searches for black holes in this mass range are very difficult but the detection of accretion-powered nuclear activity could be used to infer the presence of a black hole. The nearby dwarf spiral galaxy NGC 4395 hosts a faint Seyfert 1 nucleus with a likely black hole mass in the range 104-105 solar masses and for more than a decade it has been the only known example of a Seyfert 1 nucleus in a dwarf galaxy. I will present new Keck spectra of the dwarf galaxy POX 52 which demonstrate that it has a Seyfert 1 spectrum nearly identical to that of NGC 4395. Its velocity dispersion is 37 km/s suggesting a possible black hole mass of order 105 solar masses. I will discuss the prospects for systematic searches for nuclear activity in dwarf galaxies and the implications for black hole demographics.

  9. An Intermediate-Mass Black Hole in the Dwarf Galaxy Pox 52

    NASA Astrophysics Data System (ADS)

    Barth, Aaron

    Do dwarf elliptical and dwarf spiral galaxies contain central black holes with masses below 106 solar masses? Beyond the Local Group dynamical searches for black holes in this mass range are very difficult but the detection of accretion-powered nuclear activity could be used to infer the presence of a black hole. The nearby dwarf spiral galaxy NGC 4395 hosts a faint Seyfert 1 nucleus with a likely black hole mass in the range 104-105 solar masses and for more than a decade it has been the only known example of a Seyfert 1 nucleus in a dwarf galaxy. I will present new Keck spectra of the dwarf galaxy POX 52 which demonstrate that it has a Seyfert 1 spectrum nearly identical to that of NGC 4395. Its velocity dispersion is 37 km/s suggesting a possible black hole mass of order 105 solar masses. I will discuss the prospects for systematic searches for nuclear activity in dwarf galaxies and the implications for black hole demographics.

  10. An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core.

    PubMed

    Gezari, S; Chornock, R; Rest, A; Huber, M E; Forster, K; Berger, E; Challis, P J; Neill, J D; Martin, D C; Heckman, T; Lawrence, A; Norman, C; Narayan, G; Foley, R J; Marion, G H; Scolnic, D; Chomiuk, L; Soderberg, A; Smith, K; Kirshner, R P; Riess, A G; Smartt, S J; Stubbs, C W; Tonry, J L; Wood-Vasey, W M; Burgett, W S; Chambers, K C; Grav, T; Heasley, J N; Kaiser, N; Kudritzki, R-P; Magnier, E A; Morgan, J S; Price, P A

    2012-05-02

    The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two 'relativistic' candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.

  11. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    PubMed

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-03

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  12. Spherical accretion of matter by charged black holes on f(T) Gravity

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. E.; Junior, E. L. B.

    2018-03-01

    We studied the spherical accretion of matter by charged black holes on f(T) Gravity. Considering the accretion model of a isentropic perfect fluid we obtain the general form of the Hamiltonian and the dynamic system for the fluid. We have analysed the movements of an isothermal fluid model with p=ω e and where p is the pressure and e the total energy density. The analysis of the cases shows the possibility of spherical accretion of fluid by black holes, revealing new phenomena as cyclical movement inside the event horizon.

  13. Researchers Resolve Intermediate Mass Black Hole Mystery

    NASA Astrophysics Data System (ADS)

    2004-04-01

    New research, funded by the Royal Netherlands Academy of Sciences, the Institute of Advanced Physical and Chemical Research, NASA and the University of Tokyo, solved the mystery of how a black hole, with the mass more than several hundreds times larger than that of our Sun, could be formed in the nearby starburst galaxy, M82. Recent observations of the Chandra X-ray observatory (Matsumoto et al., 2001 ApJ 547, L25) indicate the presence of an unusually bright source in the star cluster MGG11 in the starburst galaxy M82. The properties of the X-ray source are best explained by a black hole with a mass of about a thousand times the mass of the Sun, placing it intermediate between the relatively small (stellar mass) black holes in the Milky way Galaxy and the supermassive black holes found in the nuclei of galaxies. For comparison, stellar-mass black holes are only a few times more massive than the Sun, whereas the black hole in the center of the Milky-way Galaxy is more than a few million times more massive than the Sun. An international team of researchers, using the world's fastest computer, the GRAPE-6 system in Japan, were engaged in a series of simulations of star clusters that resembled MGG11. They used the GRAPE-6 to perform simulations with two independently developed computer programs (Starlab and NBODY4 developed by Sverre Aarseth in Cambridge), both of which give the same qualitative result. The simulations ware initiated by high resolution observations of the star cluster MGG11 by McCrady et al (2003, ApJ 596, 240) using the Hubble Space Telescope and Keck, and by Harashima et al (2001) using the giant Subaru telescope. M82 Chandra X-ray image of the central region of the starburst galaxy M82. The GRAPE's detailed, star-by-star simulations represent the state of the art in cluster modeling. For the first time using the GRAPE, researchers perform simulations of the evolution of young and dense star clusters with up to 600000 stars; they calculate the

  14. Evolution of the luminosity function of quasar accretion disks

    NASA Technical Reports Server (NTRS)

    Caditz, David M.; Petrosian, Vahe; Wandel, Amri

    1991-01-01

    Using an accretion-disk model, accretion disk luminosities are calculated for a grid of black hole masses and accretion rates. It is shown that, as the black-hole mass increases with time, the monochromatic luminosity at a given frequency first increases and then decreases rapidly as this frequency is crossed by the Wien cutoff. The upper limit on the monochromatic luminosity, which is characteristic for a given epoch, constrains the evolution of quasar luminosities and determines the evolultion of the quasar luminosity function.

  15. Properties of two-temperature dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Dihingia, Indu K.; Das, Santabrata; Mandal, Samir

    2018-04-01

    We study the properties of two-temperature accretion flow around a non-rotating black hole in presence of various dissipative processes where pseudo-Newtonian potential is adopted to mimic the effect of general relativity. The flow encounters energy loss by means of radiative processes acted on the electrons and at the same time, flow heats up as a consequence of viscous heating effective on ions. We assumed that the flow is exposed with the stochastic magnetic fields that leads to Synchrotron emission of electrons and these emissions are further strengthen by Compton scattering. We obtain the two-temperature global accretion solutions in terms of dissipation parameters, namely, viscosity (α) and accretion rate ({\\dot{m}}), and find for the first time in the literature that such solutions may contain standing shock waves. Solutions of this kind are multitransonic in nature, as they simultaneously pass through both inner critical point (xin) and outer critical point (xout) before crossing the black hole horizon. We calculate the properties of shock-induced global accretion solutions in terms of the flow parameters. We further show that two-temperature shocked accretion flow is not a discrete solution, instead such solution exists for wide range of flow parameters. We identify the effective domain of the parameter space for standing shock and observe that parameter space shrinks as the dissipation is increased. Since the post-shock region is hotter due to the effect of shock compression, it naturally emits hard X-rays, and therefore, the two-temperature shocked accretion solution has the potential to explain the spectral properties of the black hole sources.

  16. Strong disk winds traced throughout outbursts in black-hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  17. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.

    PubMed

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  18. GRB060218 as a Tidal Disruption of a White Dwarf by an Intermediate-mass Black Hole

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Roman V.; Pe'er, Asaf; Reynolds, Christopher S.; Haas, Roland; Bode, Tanja; Laguna, Pablo

    2013-06-01

    The highly unusual pair of a gamma-ray burst (GRB) GRB060218 and an associated supernova, SN2006aj, has puzzled theorists for years. A supernova shock breakout and a jet from a newborn stellar mass compact object have been proposed to explain this pair's multiwavelength signature. Alternatively, we propose that the source is naturally explained by another channel: the tidal disruption of a white dwarf (WD) by an intermediate-mass black hole (IMBH). This tidal disruption is accompanied by a tidal pinching, which leads to the ignition of a WD and a supernova. Some debris falls back onto the IMBH, forms a disk, which quickly amplifies the magnetic field, and launches a jet. We successfully fit soft X-ray spectra with the Comptonized blackbody emission from a jet photosphere. The optical/UV emission is consistent with self-absorbed synchrotron emission from the expanding jet front. The temporal dependence of the accretion rate \\dot{M}(t) in a tidal disruption provides a good fit to the soft X-ray light curve. The IMBH mass is found to be about 104 M ⊙ in three independent estimates: (1) fitting the tidal disruption \\dot{M}(t) to the soft X-ray light curve, (2) computing the jet base radius in a jet photospheric emission model, and (3) inferring the mass of the central black hole based on the host dwarf galaxy's stellar mass. The position of the supernova is consistent with the center of the host galaxy, while the low supernova ejecta mass is consistent with that of a WD. The high expected rate of tidal disruptions in dwarf galaxies is consistent with one source observed by the Swift satellite over several years at a distance of 150 Mpc measured for GRB060218. Encounters with WDs provide much fuel for the growth of IMBHs.

  19. A tilted and warped inner accretion disc around a spinning black hole: an analytical solution

    NASA Astrophysics Data System (ADS)

    Chakraborty, Chandrachur; Bhattacharyya, Sudip

    2017-08-01

    Inner accretion disc around a black hole provides a rare, natural probe to understand the fundamental physics of the strong gravity regime. A possible tilt of such a disc, with respect to the black hole spin equator, is important. This is because such a tilt affects the observed spectral and timing properties of the disc X-ray emission via Lense-Thirring precession, which could be used to test the theoretical predictions regarding the strong gravity. Here, we analytically solve the steady, warped accretion disc equation of Scheurer and Feiler, and find an expression of the radial profile of the disc tilt angle. In our exact solution, considering a prograde disc around a slowly spinning black hole, we include the inner part of the disc, which was not done earlier in this formalism. Such a solution is timely, as a tilted inner disc has recently been inferred from X-ray spectral and timing features of the accreting black hole H1743-322. Our tilt angle radial profile expression includes observationally measurable parameters, such as black hole mass and Kerr parameter, and the disc inner edge tilt angle Win, and hence can be ideal to confront observations. Our solution shows that the disc tilt angle in 10-100 gravitational radii is a significant fraction of the disc outer edge tilt angle, even for Win = 0. Moreover, tilt angle radial profiles have humps in ˜10-1000 gravitational radii for some sets of parameter values, which should have implications for observed X-ray features.

  20. Accretion onto CO White Dwarfs using MESA

    NASA Astrophysics Data System (ADS)

    Feng, Wanda; Starrfield, Sumner

    2018-06-01

    The nature of type Ia Supernovae (SNe Ia) progenitor systems and their underlying mechanism are not well understood. There are two competing progenitor scenarios: the single-degenerate scenario wherein a white dwarf (WD) star accretes material from a companion star, reaching the Chandrasekhar mass limit; and, the double-degenerate scenario wherein two WDs merge. In this study, we investigate the single-degenerate scenario by accretion onto carbon-oxygen (CO) WDs using the Modules for Experiments in Stellar Astrophysics (MESA). We vary the WD mass, composition of the accreting material, and accretion rate in our models. Mixing between the accreted material and the WD core is informed by multidimensional studies that suggest occurance after thermonuclear runaway (TNR) ensues. We compare the accretion of solar composition material onto CO WDs with the accretion of mixed solar and core material after TNR. As many of our models eject less material than accreted, our study supports that accretion onto CO WDs is a feasible channel for SNe I progenitors.

  1. Stellar winds and coronae of low-mass Population II/III stars

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.

    2018-06-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  2. Stellar winds and coronae of low-mass Population II/III stars

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  3. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  4. Chandra Imaging of the Outer Accretion Flow onto the Black Hole at the Center of the Perseus Cluster

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Bautz, M. W.; McNamara, B. R.

    2017-11-01

    Nowhere is black hole feedback seen in sharper relief than in the Perseus cluster of galaxies. Owing to a combination of astrophysical and instrumental challenges, however, it can be difficult to study the black hole accretion that powers feedback into clusters of galaxies. Recent observations with Hitomi have resolved the narrow Fe Kα line associated with accretion onto the black hole in NGC 1275 (3C 84), the active galaxy at the center of Perseus. The width of that line indicates that the fluorescing material is located 6-45 pc from the black hole. Here, we report on a specialized Chandra imaging observation of NGC 1275 that offers a complementary angle. Using a sub-array, sub-pixel event repositioning, and an X-ray “lucky imaging” technique, Chandra imaging suggests an upper limit of about 0.3 arcsec on the size of the Fe Kα emission region, corresponding to ˜98 pc. Both spectroscopy and direct imaging now point to an emission region consistent with an extended molecular torus or disk, potentially available to fuel the black hole. A low X-ray continuum flux was likely measured from NGC 1275; contemporaneously, radio flaring and record-high GeV fluxes were recorded. This may be an example of the correlation between X-ray flux dips and jet activity that is observed in other classes of accreting black holes across the mass scale.

  5. An Accretion Model for the Growth of the Central Black Holes Associated with Ionization Instability in Quasars

    NASA Technical Reports Server (NTRS)

    Lu, Y.; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole (BH) harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify the accretion rate in the disk and separate the accretion flows of the disk into three different phases, like an S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of the S-shaped instability, and the faint or 'dormant' quasars are simply these systems in the lower branch. The middle branch is the transition state, which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solution (ADIOS) configuration in the stable lower branch of the S-shaped instability, and the Eddington accretion rate is used to constrain the accretion rate in the highly active phase. The mass ratio between a BH and its host galactic bulge is a natural consequence of an ADIOS. Our model also demonstrates that a seed BH approx. 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a BH with a final mass of approx. 2 x 10(exp 8) solar masses.

  6. The Radiative Efficiency and Spectra of Slowly Accreting Black Holes from Two-temperature GRRMHD Simulations

    DOE PAGES

    Ryan, Benjamin R.; Ressler, Sean M.; Dolence, Joshua C.; ...

    2017-07-31

    In this paper, we present axisymmetric numerical simulations of radiatively inefficient accretion flows onto black holes combining general relativity, magnetohydrodynamics, self-consistent electron thermodynamics, and frequency-dependent radiation transport. We investigate a range of accretion rates up tomore » $${10}^{-5}\\,{\\dot{M}}_{\\mathrm{Edd}}$$ onto a $${10}^{8}\\,{M}_{\\odot }$$ black hole with spin $${a}_{\\star }=0.5$$. We report on averaged flow thermodynamics as a function of accretion rate. We present the spectra of outgoing radiation and find that it varies strongly with accretion rate, from synchrotron-dominated in the radio at low $$\\dot{M}$$ to inverse-Compton-dominated at our highest $$\\dot{M}$$. In contrast to canonical analytic models, we find that by $$\\dot{M}\\approx {10}^{-5}\\,{\\dot{M}}_{\\mathrm{Edd}}$$, the flow approaches $$\\sim 1 \\% $$ radiative efficiency, with much of the radiation due to inverse-Compton scattering off Coulomb-heated electrons far from the black hole. Finally, these results have broad implications for modeling of accreting black holes across a large fraction of the accretion rates realized in observed systems.« less

  7. The Radiative Efficiency and Spectra of Slowly Accreting Black Holes from Two-temperature GRRMHD Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Benjamin R.; Ressler, Sean M.; Dolence, Joshua C.

    In this paper, we present axisymmetric numerical simulations of radiatively inefficient accretion flows onto black holes combining general relativity, magnetohydrodynamics, self-consistent electron thermodynamics, and frequency-dependent radiation transport. We investigate a range of accretion rates up tomore » $${10}^{-5}\\,{\\dot{M}}_{\\mathrm{Edd}}$$ onto a $${10}^{8}\\,{M}_{\\odot }$$ black hole with spin $${a}_{\\star }=0.5$$. We report on averaged flow thermodynamics as a function of accretion rate. We present the spectra of outgoing radiation and find that it varies strongly with accretion rate, from synchrotron-dominated in the radio at low $$\\dot{M}$$ to inverse-Compton-dominated at our highest $$\\dot{M}$$. In contrast to canonical analytic models, we find that by $$\\dot{M}\\approx {10}^{-5}\\,{\\dot{M}}_{\\mathrm{Edd}}$$, the flow approaches $$\\sim 1 \\% $$ radiative efficiency, with much of the radiation due to inverse-Compton scattering off Coulomb-heated electrons far from the black hole. Finally, these results have broad implications for modeling of accreting black holes across a large fraction of the accretion rates realized in observed systems.« less

  8. STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, James F.; Remillard, Ronald A.; García, Javier A.

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction ofmore » our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.« less

  9. Stellar X-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  10. Accretion onto a noncommutative-inspired Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Sunandan; Paik, Biplab; Mandal, Rituparna

    2018-05-01

    In this paper, we investigate the problem of ordinary baryonic matter accretion onto the noncommutative (NC) geometry-inspired Schwarzschild black hole. The fundamental equations governing the spherically symmetric steady state matter accretion are deduced. These equations are seen to be modified due to the presence of noncommutativity. The matter accretion rate is computed and is found to increase rapidly with the increase in strength of the NC parameter. The sonic radius reduces while the sound speed at the sonic point increases with the increase in the strength of noncommutativity. The profile of the thermal environment is finally investigated below the sonic radius and at the event horizon and is found to be affected by noncommutativity.

  11. The multiplicity and anisotropy of galactic satellite accretion

    NASA Astrophysics Data System (ADS)

    Shao, Shi; Cautun, Marius; Frenk, Carlos S.; Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Simpson, Christine M.

    2018-05-01

    We study the incidence of group and filamentary dwarf galaxy accretion into Milky Way (MW) mass haloes using two types of hydrodynamical simulations: EAGLE, which resolves a large cosmological volume, and the AURIGA suite, which are very high resolution zoom-in simulations of individual MW-sized haloes. The present-day 11 most massive satellites are predominantly (75 per cent) accreted in single events, 14 per cent in pairs, and 6 per cent in triplets, with higher group multiplicities being unlikely. Group accretion becomes more common for fainter satellites, with 60 per cent of the top 50 satellites accreted singly, 12 per cent in pairs, and 28 per cent in richer groups. A group similar in stellar mass to the Large Magellanic Cloud would bring on average 15 members with stellar mass larger than 104 M⊙. Half of the top 11 satellites are accreted along the two richest filaments. The accretion of dwarf galaxies is highly anisotropic, taking place preferentially perpendicular to the halo minor axis, and, within this plane, preferentially along the halo major axis. The satellite entry points tend to be aligned with the present-day central galaxy disc and satellite plane, but to a lesser extent than with the halo shape. Dwarfs accreted in groups or along the richest filament have entry points that show an even larger degree of alignment with the host halo than the full satellite population. We also find that having most satellites accreted as a single group or along a single filament is unlikely to explain the MW disc of satellites.

  12. Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Dovčiak, M.; Mouchet, M.; Czerny, B.; Karas, V.; Gonçalves, A.

    2009-05-01

    A major goal of the Simbol-X mission is to improve our knowledge about black hole accretion. By opening up the X-ray window above 10 keV with unprecedented sensitivity and resolution we obtain new constraints on the X-ray spectral and variability properties of active galactic nuclei. To interpret the future data, detailed X-ray modeling of the dynamics and radiation processes in the black hole vicinity is required. Relativistic effects must be taken into account, which then allow to constrain the fundamental black hole parameters and the emission pattern of the accretion disk from the spectra that will be obtained with Simbol-X.

  13. Introducing galactic structure finder: the multiple stellar kinematic structures of a simulated Milky Way mass galaxy

    NASA Astrophysics Data System (ADS)

    Obreja, Aura; Macciò, Andrea V.; Moster, Benjamin; Dutton, Aaron A.; Buck, Tobias; Wang, Gregory S. Stinson Liang

    2018-04-01

    We present the first results of applying Gaussian Mixture Models in the stellar kinematic space of normalized angular momentum and binding energy on NIHAO high resolution galaxies to separate the stars into multiple components. We exemplify this method using a simulated Milky Way analogue, whose stellar component hosts: thin and thick discs, classical and pseudo bulges, and a stellar halo. The properties of these stellar structures are in good agreement with observational expectations in terms of sizes, shapes and rotational support. Interestingly, the two kinematic discs show surface mass density profiles more centrally concentrated than exponentials, while the bulges and the stellar halo are purely exponential. We trace back in time the Lagrangian mass of each component separately to study their formation history. Between z ˜ 3 and the end of halo virialization, z ˜ 1.3, all components lose a fraction of their angular momentum. The classical bulge loses the most (˜95%) and the thin disc the least (˜60%). Both bulges formed their stars in-situ at high redshift, while the thin disc formed ˜98% in-situ, but with a constant SFR ˜ 1.5M⊙yr-1 over the last ˜ 11 Gyr. Accreted stars (6% of total stellar mass) are mainly incorporated to the thick disc or the stellar halo, which formed ex-situ 8% and 45% of their respective masses. Our analysis pipeline is freely available at https://github.com/aobr/gsf.

  14. The low-mass stellar population in the young cluster Tr 37. Disk evolution, accretion, and environment

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Kim, Jinyoung Serena; Sobolev, Andrej; Getman, Konstantin; Henning, Thomas; Fang, Min

    2013-11-01

    Aims: We present a study of accretion and protoplanetary disks around M-type stars in the 4 Myr-old cluster Tr 37. With a well-studied solar-type population, Tr 37 is a benchmark for disk evolution. Methods: We used low-resolution spectroscopy to identify and classify 141 members (78 new ones) and 64 probable members, mostly M-type stars. Hα emission provides information about accretion. Optical, 2MASS, Spitzer, and WISE data are used to trace the spectral energy distributions (SEDs) and search for disks. We construct radiative transfer models to explore the structures of full-disks, pre-transition, transition, and dust-depleted disks. Results: Including the new members and the known solar-type stars, we confirm that a substantial fraction (~2/5) of disks show signs of evolution, either as radial dust evolution (transition/pre-transition disks) or as a more global evolution (with low small-dust masses, dust settling, and weak/absent accretion signatures). Accretion is strongly dependent on the SED type. About half of the transition objects are consistent with no accretion, and dust-depleted disks have weak (or undetectable) accretion signatures, especially among M-type stars. Conclusions: The analysis of accretion and disk structure suggests a parallel evolution of dust and gas. We find several distinct classes of evolved disks, based on SED type and accretion status, pointing to different disk dispersal mechanisms and probably different evolutionary paths. Dust depletion and opening of inner holes appear to be independent processes: most transition disks are not dust-depleted, and most dust-depleted disks do not require inner holes. The differences in disk structure between M-type and solar-type stars in Tr 37 (4 Myr old) are not as remarkable as in the young, sparse, Coronet cluster (1-2 Myr old), suggesting that other factors, like the environment/interactions in each cluster, are likely to play an important role in the disk evolution and dispersal. Finally, we

  15. A CONNECTION BETWEEN PLASMA CONDITIONS NEAR BLACK HOLE EVENT HORIZONS AND OUTFLOW PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koljonen, K. I. I.; Russell, D. M.; Bernardini, F.

    Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the universe. The formation process of powerful jets close to black holes is poorly understood, and the conditions leading to jet formation are currently hotly debated. In this paper, we report an unambiguous empirical correlation between the properties of the plasma close to the black hole and the particle acceleration properties within jets launched from the central regions of accreting stellar-mass and supermassive black holes. In these sources the emission of the plasma near the black hole is characterized by a power law at X-raymore » energies during times when the jets are produced. We find that the photon index of this power law, which gives information on the underlying particle distribution, correlates with the characteristic break frequency in the jet spectrum, which is dependent on magnetohydrodynamical processes in the outflow. The observed range in break frequencies varies by five orders of magnitude in sources that span nine orders of magnitude in black hole mass, revealing a similarity of jet properties over a large range of black hole masses powering these jets. This correlation demonstrates that the internal properties of the jet rely most critically on the conditions of the plasma close to the black hole, rather than other parameters such as the black hole mass or spin, and will provide a benchmark that should be reproduced by the jet formation models.« less

  16. Propagating mass accretion rate fluctuations in black hole X-ray binaries: quantitative tests

    NASA Astrophysics Data System (ADS)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-10-01

    Over the past 20 years, a consistent phenomenology has been established to describe the variability properties of Black Hole X-ray Binaries (BHBs). However, the physics behind the observational data is still poorly understood. The recently proposed model PROPFLUC assumes a truncated disc/hot inner flow geometry, with mass accretion rate fluctuations propagating through a precessing inner flow. These two processes give rise respectively to broad band variability and QPO. Because of propagation, the emission from different regions of the disc/hot flow geometry is correlated. In our study we applied the model PROPFLUC on different BHBs (including XTE J1550-564 and Cygnus X-1) in different spectral states, fitting jointly the power spectra in two energy bands and the cross-spectrum between these two bands. This represents the first study to utilize quantitive fitting of a physical model simultaneously to observed power and cross-spectra. For the case of XTE J1550-564, which displays a strong QPO, we found quantitative and qualitative discrepancies between model predictions and data, whereas we find a good fit for the Cygnus X-1 data, which does not display a QPO. We conclude that the discrepancies are generic to the propagating fluctuations paradigm, and may be related to the mechanism originating the QPO.

  17. The Stellar Mass Assembly of Galaxies at z=1 -- New Results from Subaru

    NASA Astrophysics Data System (ADS)

    Bundy, K.; Fukugita, M.; Ellis, R.; Conselice, C.; Kodama, T.; Brinchmann, J.

    2002-12-01

    We report on progress made analyzing deep CISCO K' imaging of well-studied HST redshift survey fields to determine the mass accretion and merger rates of field galaxies out to z ~1. Using an approach similar to that employed by Le Fevre et al. 2000, we find a field-corrected infrared pair fraction of 15% +/- 8% in the z ~ 0.5 to 1 redshift range. This is lower than the result of an equivalent analysis performed on WFPC2-814 images of the same fields, which delivers a pair fraction of 24% +/- 10% over the identical redshift range. Although currently marginal, this result supports the contention that optical pair fractions are inflated by associated star formation and that IR data will be more reliable in tracing the mass assembly history. Future observations will extend this sample beyond the 89 galaxies studied so far, allowing us to test this hypothesis more rigorously. We also report on a comparison between pair fraction and morphological type as wells as estimates of the stellar mass of companion galaxies, used to determine the time-dependent mass accretion rate.

  18. Gravitational Waves from Accreting Neutron Stars Undergoing Common-envelope Inspiral

    NASA Astrophysics Data System (ADS)

    Holgado, A. Miguel; Ricker, Paul M.; Huerta, E. A.

    2018-04-01

    The common-envelope phase is a likely formation channel for close binary systems containing compact objects. Neutron stars in common envelopes accrete at a fraction of the Bondi–Hoyle–Lyttleton accretion rate, since the stellar envelope is inhomogeneous, but they may still be able to accrete at hypercritical rates (though not enough to become black holes). We show that common-envelope systems consisting of a neutron star with a massive primary may be gravitational-wave (GW) sources detectable in the Advanced LIGO band as far away as the Magellanic Clouds. To characterize their evolution, we perform orbital integrations using 1D models of 12 M ⊙ and 20 M ⊙ primaries, considering the effects of density gradient on the accretion onto the NS and spin evolution. From the range of possible accretion rates relevant to common-envelope evolution, we find that these systems may be louder GW sources than low-mass X-ray binaries like Sco X-1, which are currently the target of directed searches for continuous GWs. We also find that their strain amplitude signal may allow for novel constraints on the orbital separation and inspiral timescale in common envelopes when combined with pre-common-envelope electromagnetic observations.

  19. Disk–Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.

    We study the disk–jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power (more » $${P}_{\\mathrm{jet}}$$), the bolometric disk luminosity ($${L}_{\\mathrm{disk}}$$), and the black hole mass ($${M}_{\\mathrm{BH}}$$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $$\\mathrm{log}{P}_{\\mathrm{jet}}=(0.96\\pm 0.012)\\mathrm{log}{L}_{\\mathrm{disk}}+(0.79\\pm 0.55)$$. This suggests the jet production efficiency of $${\\eta }_{\\mathrm{jet}}\\simeq {1.1}_{-0.76}^{+2.6}\\,\\times {10}^{-2}$$ assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios $$0.01\\lesssim \\lambda \\lesssim 0.3$$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among $${P}_{\\mathrm{jet}}$$, $${L}_{\\mathrm{disk}}$$, and $${M}_{\\mathrm{BH}}$$. In conclusion, we could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.« less

  20. Disk–Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime

    DOE PAGES

    Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.; ...

    2017-05-04

    We study the disk–jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power (more » $${P}_{\\mathrm{jet}}$$), the bolometric disk luminosity ($${L}_{\\mathrm{disk}}$$), and the black hole mass ($${M}_{\\mathrm{BH}}$$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $$\\mathrm{log}{P}_{\\mathrm{jet}}=(0.96\\pm 0.012)\\mathrm{log}{L}_{\\mathrm{disk}}+(0.79\\pm 0.55)$$. This suggests the jet production efficiency of $${\\eta }_{\\mathrm{jet}}\\simeq {1.1}_{-0.76}^{+2.6}\\,\\times {10}^{-2}$$ assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios $$0.01\\lesssim \\lambda \\lesssim 0.3$$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among $${P}_{\\mathrm{jet}}$$, $${L}_{\\mathrm{disk}}$$, and $${M}_{\\mathrm{BH}}$$. In conclusion, we could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.« less

  1. Accretion physics: It's not U, it's B

    NASA Astrophysics Data System (ADS)

    Miller, Jon

    2017-03-01

    Black holes grow by accreting mass, but the process is messy and redistributes gas and energy into their environments. New evidence shows that magnetic processes mediate both the accretion and ejection of matter.

  2. The Future of Black Hole Astrophysics in the LIGO-VIRGO-LPF Era

    NASA Astrophysics Data System (ADS)

    Blandford, Roger; Anantua, Richard

    2017-05-01

    There is a resurgence of interest in black holes sparked by the LIGO-VIRGO detection of stellar black hole mergers and recent astronomical investigations of jets and accretion disks which probe the spacetime geometry of black holes with masses ranging from a few times the mass of the sun to tens of billions of solar masses. Many of these black holes appear to be spinning rapidly. Some new approaches are described to studying how accreting black holes function as cosmic machines paying special attention to observations of AGN jets, especially with VLBI and γ-ray telescopes. It is assumed that these jets are powered by the electromagnetic extraction of the spin energy of their associated black holes, which are described by the Kerr metric, and that they become simpler and more electromagnetically dominated as the event horizon is approached. The major uncertainty in these models is in describing acceleration and transport of relativistic electrons and positrons and simple phenomenological prescriptions are proposed. The application of these ideas to M87 and 3C279 is outlined and the prospects for learning more, especially from the Event Horizon Telescope and the Cerenkov Telescope Array, are discussed. The main benefit of a better understanding of black hole astrophysics to the LISA mission should be a firmer understanding of the source demographics.

  3. Features of globular cluster's dynamics with an intermediate-mass black hole

    NASA Astrophysics Data System (ADS)

    Ryabova, Marina V.; Gorban, Alena S.; Shchekinov, Yuri A.; Vasiliev, Evgenii O.

    2018-02-01

    In this paper, we address the question of how a central intermediate-mass black hole (IMBH) in a globular cluster (GC) affects dynamics, core collapse, and formation of the binary population. It is shown that the central IMBH forms a binary system that affects dynamics of stars in the cluster significantly. The presence of an intermediate-mass black hole with mass ≥ 1.0-1.7%of the total stellar mass in the cluster inhibits the formation of binary stars population.

  4. Confirmation of an Intermediate-Mass Black Hole in an Extragalactic Globular Cluster

    NASA Astrophysics Data System (ADS)

    Irwin, Jimmy

    2015-10-01

    The long and controversial search for black holes within globular clusters has reached the point where extragalactic globular clusters provide fertile hunting grounds for finding black holes of both stellar and intermediate-mass (IMBH) varieties. While a luminous X-ray point source within a cluster can indicate the presence of a black hole, little can generally be said of its mass without further observation. In the event that a black hole tidally disrupts a passing star in the cluster, optical/UV emission lines from the X-ray-illuminated debris can not only demonstrate the existence of a black hole in the cluster, but can also provide powerful constraints on the mass of the black hole, the composition of the disrupted star, and even the time since the tidal disruption event took place. We propose an HST COS G140L UV spectrum of a globular cluster within the Fornax elliptical galaxy NGC1399 that exhibits unusual optical [N II] and [O III] forbidden emission lines that are believed to result from such a tidal disruption event by a 100 solar mass black hole. Our models predict that the ratios of the expected emission lines from carbon, nitrogen, and oxygen that should be present in the UV spectrum of the source will be able to distinguish a stellar-mass black hole from an IMBH as the disruptor, as well as determine the nature of the disrupted star. If the mass of the black hole is constrained to be in excess of 100 solar masses, this would provide one of the most compelling pieces of evidence to date that IMBHs exist within globular clusters.

  5. Jet-induced star formation by accreting black holes: impact on stellar, galaxy, and cosmic evolution

    NASA Astrophysics Data System (ADS)

    Mirabel, Igor Felix

    2016-07-01

    Evidence that relativistic jets trigger star formation along their axis has been found associated to low redshift and high redshift accreting supermassive black holes. However, the physical processes by which jet-cloud interaction may trigger star formation has so far not been elucidated. To gain insight into this potentially important star formation mechanism during reionization, when microquasars were form prolifically before AGN, our international team is carrying out a muliwavelength study of a microquasar jet-induced star formation region in the Milky Way using data from space missions (Chandra, Integral, ISO, Herschel) and from the ground (at cm and mm wavelengths with the VLA and IRAM, and IR with Gemini and VLT). I will show that this relative nearby star forming region is an ideal laboratory to test models of jet-induced star formation elsewhere in the universe.

  6. Formation of the black-hole binary M33 X-7 through mass exchange in a tight massive system.

    PubMed

    Valsecchi, Francesca; Glebbeek, Evert; Farr, Will M; Fragos, Tassos; Willems, Bart; Orosz, Jerome A; Liu, Jifeng; Kalogera, Vassiliki

    2010-11-04

    The X-ray source M33 X-7 in the nearby galaxy Messier 33 is among the most massive X-ray binary stellar systems known, hosting a rapidly spinning, 15.65M(⊙) black hole orbiting an underluminous, 70M(⊙) main-sequence companion in a slightly eccentric 3.45-day orbit (M(⊙), solar mass). Although post-main-sequence mass transfer explains the masses and tight orbit, it leaves unexplained the observed X-ray luminosity, the star's underluminosity, the black hole's spin and the orbital eccentricity. A common envelope phase, or rotational mixing, could explain the orbit, but the former would lead to a merger and the latter to an overluminous companion. A merger would also ensue if mass transfer to the black hole were invoked for its spin-up. Here we report simulations of evolutionary tracks which reveal that if M33 X-7 started as a primary body of 85M(⊙)-99M(⊙) and a secondary body of 28M(⊙)-32M(⊙), in a 2.8-3.1-d orbit, its observed properties can be consistently explained. In this model, the main-sequence primary transfers part of its envelope to the secondary and loses the rest in a wind; it ends its life as a ∼16M(⊙) helium star with an iron-nickel core that collapses to a black hole (with or without an accompanying supernova). The release of binding energy, and possibly collapse asymmetries, 'kick' the nascent black hole into an eccentric orbit. Wind accretion explains the X-ray luminosity, and the black-hole spin can be natal.

  7. Stellar, Remnant, Planetary, and Dark-Object Masses from Astrometric Microlensing

    NASA Technical Reports Server (NTRS)

    Gould, Andrew P.; Bennett, David P.; Boden, Andrew; Depoy, Darren L.; Gaudi, Scott B.; Griest, Kim; Han, Cheongho; Paczynski, Bohdan; Reid, I. Neill

    2004-01-01

    The primary goal of our project is to make a complete census of the stellar population of the Galaxy. We are broadening the term stellar here to include both ordinary stars and dark stars. Ordinary stars, burning their nuclear fuel and shining, can perhaps best be studied with traditional astronomical techniques, but dark stars, by which we include old brown dwarfs, black holes, old white dwarfs, neutron stars, and perhaps exotic objects such as mirror matter stars or primordial black holes, can only be studied by their gravitational effects. Traditionally, these objects have been probed in binaries, and thus selected in a way that may or may not be representative of their respective field populations. The only way to examine the field population of these stars is through microlensing, the deflection of light from a visible star in the background by an object (dark or not) in the foreground. When lensed, there are two images of the background star. Although these images cannot be resolved when the lens has a stellar mass, the lensing effect can be detected in two ways: photometrically, i.e. by measuring the magnification of the source by the lens, and astrometrically, i.e. by measuring the shift in the centroid of the two images. Photometric microlensing experiments have detected hundreds of microlensing events over the past decade. Despite its successes, photometric microlensing has so far been somewhat frustrating because these events are difficult to interpret. Almost nothing is known about the masses of individual lenses and very little is known about the statistical properties of the lenses treated as a whole, such as their average mass. Although probably over 100 of the lenses are in fact dark objects, we can't determine which they are, let alone investigate finer details such as what their masses are, and where they are in the Galaxy. With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We

  8. Accreting SMBH in the COSMOS field: the connection to their host galaxies .

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Bongiorno, A.

    Using the rich multi-band photometry in the COSMOS field we explore the host galaxy properties of a large, complete, sample of X-ray and spectroscopically selected AGN. Based on a two-components fit to their Spectral Energy Distribution (SED) we derive rest-frame magnitudes, colours, stellar masses and star formation rates up to z˜ 3. The probability for a galaxy to host a black hole growing at any given specific accretion rate (the ratio of X-ray luminosity to the host stellar mass) is independent of the galaxy mass and follows a power-law distribution in L_X/M. By looking at the normalisation of such a probability distribution, we show how the incidence of AGN increases with redshift as rapidly as (1+z)4.2, in close resemblance with the overall evolution of the specific star formation rate. Although AGN activity and star formation appear to have a common triggering mechanism, we do not find any 'smoking gun' signalling powerful AGN influence on the global properties of their host galaxies.

  9. Dusty Gas Accretion onto Massive Black Holes and Infrared Diagnosis of the Eddington Ratio

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Ricotti, Massimo; Park, KwangHo; Sugimura, Kazuyuki

    2017-09-01

    Evidence for dust around supermassive black holes (SMBHs) in the early universe is strongly suggested by recent observations. However, the accretion mechanism of SMBHs in dusty gas is not well understood yet. We investigate the growth of intermediate-mass black holes (IMBHs) of ˜ {10}4{--}{10}6 {M}⊙ in dusty clouds by using one-dimensional radiative-hydrodynamics simulations. We find that the accretion of dusty gas onto IMBHs proceeds gently with small fluctuations of the accretion rate, whereas that of pristine gas causes more violent periodic bursts. At dust-to-gas mass ratios similar to the solar neighborhood, the time-averaged luminosity becomes smaller than that for primordial gas by one order of magnitude and the time-averaged Eddington ratio ranges from ˜ {10}-4 to ˜ {10}-2 in clouds with initial gas densities of {n}{{H}}=10{--}1000 {{cm}}-3. Our calculations show that the effect of dust opacity alone is secondary compared to the radiation pressure on dust in regulating the BH growth. We also derive spectral energy distributions at IR bands by calculating dust thermal emission and show that the flux ratio between λ ≲ 20 μ {{m}} and ≳ 100 μ {{m}} is closely related to the Eddington ratio. Thermal emission from hot dust near the BH dominates only during the phase of high accretion, producing higher flux density at ≲ 20 μ {{m}}. Therefore, we suggest that a combination of mid-IR observations by the James Webb Space Telescope and far-IR observations by ALMA or Spitzer can be used to estimate the Eddington ratio of massive BHs. We also extend our simple modeling to SMBHs of {10}8{--}{10}9 {M}⊙ and show that ALMA can detect SMBHs of ˜ {10}9 {M}⊙ at z≳ 5.

  10. Interaction of the accretion flows in corona and disk near the black hole in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Meyer-Hofmeister, E.; Liu, B. F.; Qiao, E.

    2017-11-01

    Context. Accretion flows toward black holes can be of a quite different nature, described as an optically thick cool gas flow in a disk for high accretion rates or as a hot coronal optically thin gas flow for low accretion rates, possibly affected by outflowing gas. Aims: The detection of broad iron emission lines in active galactic nuclei (AGN) indicates the coexistence of corona and disk. The appearance and relative strength of such flows essentially depends on their interaction. Liu et al. suggested that condensation of gas from the corona to the disk allows to understand accretion flows of comparable strength of emission. Matter inflow due to gravitational capture of gas is important for the condensation process. We discuss observational features predicted by the model. Methods: Data from simultaneous observations of AGN with Swift's X-ray and UV-optical telescopes are compared with the theoretical predictions. Results: The frequent detection of broad iron Kα emission lines and the dependence of the emitted spectra on the Eddington ratio, described by the values of the photon index Γ and the two-point spectral index αox are in approximate agreement with the predictions of the condensation model; the latter, however, with a large scatter. The model further yields a coronal emission concentrated in a narrow inner region as is also deduced from the analysis of emissivity profiles. Conclusions: The accretion flows in bright AGN could be described by the accretion of stellar wind or interstellar medium and its condensation into a thin disk.

  11. An elevation of 0.1 light-seconds for the optical jet base in an accreting Galactic black hole system

    NASA Astrophysics Data System (ADS)

    Gandhi, P.; Bachetti, M.; Dhillon, V. S.; Fender, R. P.; Hardy, L. K.; Harrison, F. A.; Littlefair, S. P.; Malzac, J.; Markoff, S.; Marsh, T. R.; Mooley, K.; Stern, D.; Tomsick, J. A.; Walton, D. J.; Casella, P.; Vincentelli, F.; Altamirano, D.; Casares, J.; Ceccobello, C.; Charles, P. A.; Ferrigno, C.; Hynes, R. I.; Knigge, C.; Kuulkers, E.; Pahari, M.; Rahoui, F.; Russell, D. M.; Shaw, A. W.

    2017-12-01

    Relativistic plasma jets are observed in many systems that host accreting black holes. According to theory, coiled magnetic fields close to the black hole accelerate and collimate the plasma, leading to a jet being launched1-3. Isolating emission from this acceleration and collimation zone is key to measuring its size and understanding jet formation physics. But this is challenging because emission from the jet base cannot easily be disentangled from other accreting components. Here, we show that rapid optical flux variations from an accreting Galactic black-hole binary are delayed with respect to X-rays radiated from close to the black hole by about 0.1 seconds, and that this delayed signal appears together with a brightening radio jet. The origin of these subsecond optical variations has hitherto been controversial4-8. Not only does our work strongly support a jet origin for the optical variations but it also sets a characteristic elevation of ≲103 Schwarzschild radii for the main inner optical emission zone above the black hole9, constraining both internal shock10 and magnetohydrodynamic11 models. Similarities with blazars12,13 suggest that jet structure and launching physics could potentially be unified under mass-invariant models. Two of the best-studied jetted black-hole binaries show very similar optical lags8,14,15, so this size scale may be a defining feature of such systems.

  12. Theoretical models for stellar X-ray polarization in compact objects

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1991-01-01

    Degenerate stellar objects are expected to be strong sources of polarized X-ray emission. This is particularly true for strongly magnetized neutron stars, e.g. accretion or rotation powered pulsars, and gamma ray bursters. In these, linear polarization degrees well in excess of 30 percent are expected. Weaker magnetic field stellar sources, such as old neutron stars in low mass binary systems, white dwarfs and black holes are expected to have polarization degrees in the range 1-3 percent. A great interest attaches to the detection of polarization in these objects, since this would provide invaluable information concerning the geometry, radiation mechanism and magnetic field strength, necessary for testing and proving models of the structure and evolution of stars in their late stages. In this paper we review the theoretical models of the production of polarized radiation in compact stellar X-ray sources, and discuss the possibility of detecting these properties using currently planned detectors to be flown in space.

  13. On the mean radiative efficiency of accreting massive black holes in AGNs and QSOs

    NASA Astrophysics Data System (ADS)

    Zhang, XiaoXia; Lu, YouJun

    2017-10-01

    Radiative efficiency is an important physical parameter that describes the fraction of accretion material converted to radiative energy for accretion onto massive black holes (MBHs). With the simplest Sołtan argument, the radiative efficiency of MBHs can be estimated by matching the mass density of MBHs in the local universe to the accreted mass density by MBHs during AGN/QSO phases. In this paper, we estimate the local MBH mass density through a combination of various determinations of the correlations between the masses of MBHs and the properties of MBH host galaxies, with the distribution functions of those galaxy properties. We also estimate the total energy density radiated by AGNs and QSOs by using various AGN/QSO X-ray luminosity functions in the literature. We then obtain several hundred estimates of the mean radiative efficiency of AGNs/QSOs. Under the assumption that those estimates are independent of each other and free of systematic effects, we apply the median statistics as described by Gott et al. and find the mean radiative efficiency of AGNs/QSOs is ɛ = 0.105 -0.008 +0.006 , which is consistent with the canonical value 0.1. Considering that about 20% Compton-thick objects may be missed from current available X-ray surveys, the true mean radiative efficiency may be actually 0.12.

  14. The Hunt for Low-Mass Black Holes in the JWST Era

    NASA Astrophysics Data System (ADS)

    Cann, Jenna; Satyapal, Shobita; Abel, Nicholas; Ricci, Claudio; Gliozzi, Mario; Blecha, Laura; Secrest, Nathan

    2018-01-01

    Most, if not all, massive galaxies have a central supermassive black hole (SMBH) millions to billions of times the mass of the Sun. While the properties of SMBHs and their host galaxies have been well-studied in massive galaxies, very few SMBHs have been found in galaxies with low masses and those with small bulges. This is a significant deficiency, because the study of this population allows us to gain an understanding of merger-free pathways to black hole growth, and to gain insight into the origin and growth of SMBH ‘seeds’, thought to have formed at high redshift. Most studies aimed at finding SMBHs have been conducted using optical spectroscopic studies, where active SMBHs (active galactic nuclei or AGNs) display distinctive optical emission lines indicative of accreting SMBHs. However, in low mass (dwarf) galaxies, the SMBHs will likely be less massive, and can be energetically weak and possibly deeply embedded in their host galaxies. As a result, the optical emission lines may be dominated by star formation regions, severely limiting the diagnostic power of optical surveys in finding and characterizing the properties of the AGN in dwarf galaxies. In such galaxies, infrared coronal lines provide a robust method of finding AGNs. Furthermore, as the black hole mass decreases, the Schwarzschild radius of the black hole decreases, and in response, the temperature of the surrounding accretion disk increases. The shape of the ionizing radiation spectral energy distribution therefore changes with black hole mass, which will affect the emission line spectrum from the surrounding gas. In this work, we investigate the diagnostic power of infrared coronal lines and the effect of black hole mass on the emission line spectra from AGNs, with a particular focus on the emission lines accessible by JWST.

  15. An ultraluminous X-ray source powered by an accreting neutron star.

    PubMed

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-09

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects.

  16. Black Hole Spin Evolution and Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Chen, W.; Cui, W.; Zhang, S. N.

    1999-04-01

    We show that the accretion process in X-ray binaries is not likely to spin up or spin down the accreting black holes due to the short lifetime of the system or the lack of sufficient mass supply from the donor star. Therefore, the black hole mass and spin distribution we observe today also reflects that at birth and places interesting constraints on the supernova explosion models across the mass spectrum. On the other hand, it has long been puzzled that accretion from a Keplerian accretion disk with large enough mass supply might spin up the black hole to extremity, thus violate Penrose's cosmic censorship conjecture and the third law of black hole dynamics. This prompted Thorne to propose an astrophysical solution which caps the maximum attainable black hole spin to a value slightly below unity. We show that the black hole will never reach extreme Kerr state under any circumstances by accreting Keplerian angular momentum from the last stable orbit and the cosmic censorship will always be upheld. The maximum black hole spin which can be reached for a fixed, astrophysically meaningful accretion rate is, however, very close to unity, thus the peak spin rate of black holes one can hope to observe from Nature is still 0.998, the Thorne limit.

  17. Introducing galactic structure finder: the multiple stellar kinematic structures of a simulated Milky Way mass galaxy

    NASA Astrophysics Data System (ADS)

    Obreja, Aura; Macciò, Andrea V.; Moster, Benjamin; Dutton, Aaron A.; Buck, Tobias; Stinson, Gregory S.; Wang, Liang

    2018-07-01

    We present the first results of applying Gaussian Mixture Models in the stellar kinematic space of normalized angular momentum and binding energy on NIHAO high-resolution galaxies to separate the stars into multiple components. We exemplify this method, using a simulated Milky Way analogue, whose stellar component hosts thin and thick discs, classical and pseudo bulges, and a stellar halo. The properties of these stellar structures are in good agreement with observational expectations in terms of sizes, shapes, and rotational support. Interestingly, the two kinematic discs show surface mass density profiles more centrally concentrated than exponentials, while the bulges and the stellar halo are purely exponential. We trace back in time the Lagrangian mass of each component separately to study their formation history. Between z ˜ 3 and the end of halo virialization, z ˜ 1.3, all components lose a fraction of their angular momentum. The classical bulge loses the most (˜ 95 per cent) and the thin disc the least (˜ 60 per cent). Both bulges formed their stars in situ at high redshift, while the thin disc formed ˜ 98 per cent in situ, but with a constant SFR ˜ 1.5 M⊙ yr-1 over the last ˜11 Gyr. Accreted stars (6 per cent of total stellar mass) are mainly incorporated to the thick disc or the stellar halo, which formed ex situ 8 per cent and 45 per cent of their respective masses. Our analysis pipeline is freely available at https://github.com/aobr/gsf.

  18. Relativistic Jets on all Scales in Accreting Black Holes: Contributions from Simbol-X

    NASA Astrophysics Data System (ADS)

    Corbel, Stéphane

    2009-05-01

    In the last several years, multiwavelength observations of accreting black holes have allowed a general characterisation of black holes properties as they evolve along the course of their outburst cycles. Relativistic jets, in their multiple forms, have profoundly impacted our perception and understanding of emission processes in these systems. In these Proceedings, I will highlight some possible contributions from Simbol-X related to jets in accreting sources.

  19. Spin and mass of the supermassive black hole in the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokuchaev, V. I., E-mail: dokuchaev@inr.ac.ru

    2015-12-15

    A new method for exact determination of the masses and spins of black holes from the observations of quasi-periodic oscillations is discussed. The detected signal from the hot clumps in the accretion plasma must contain modulations with two characteristic frequencies: the frequency of rotation of the black hole event horizon and the frequency of the latitudinal precession of the clump’s orbit. Application of the method of two characteristic frequencies for interpretation of the observed quasi-periodic oscillations from the supermassive black hole in the Galactic center in the X-rays and in the near IR region yields the most exact, for themore » present, values of the mass and the spin (Kerr parameter) of the Sgr A* black hole: M = (4.2 ± 0.2) × 10{sup 6}M{sub ⊙} and a = 0.65 ± 0.05. The observed quasi-periodic oscillations with a period of about 11.5 min are identified as the black hole event horizon rotation period and those with a period of about 19 min are identified as the latitudinal oscillation period of the hot spot orbits in the accretion disk.« less

  20. A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li.

    PubMed

    van Velzen, S; Anderson, G E; Stone, N C; Fraser, M; Wevers, T; Metzger, B D; Jonker, P G; van der Horst, A J; Staley, T D; Mendez, A J; Miller-Jones, J C A; Hodgkin, S T; Campbell, H C; Fender, R P

    2016-01-01

    The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive detection. We present a detection of variable radio emission from a thermal TDF, which we interpret as originating from a newly launched jet. The multiwavelength properties of the source present a natural analogy with accretion-state changes of stellar mass black holes, which suggests that all TDFs could be accompanied by a jet. In the rest frame of the TDF, our radio observations are an order of magnitude more sensitive than nearly all previous upper limits, explaining how these jets, if common, could thus far have escaped detection. Copyright © 2016, American Association for the Advancement of Science.

  1. Effects of high-energy particles on accretion flows onto a super massive black hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo

    We study effects of high-energy particles on the accretion flow onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma-rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and high-energy particles, supposing that some fraction of viscous dissipation energy is converted to the acceleration of high-energy particles. The thermal component is governed by fluid dynamics while the high-energy particles obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection dominated flows as steady state solutions. Effects of the high-energy particles on the flow structure turn out to be very small because the compressional heating is so effective that the thermal component always provides the major part of the pressure. We calculate luminosities of escaping particles for these steady solutions. For a broad range of mass accretion rates, escaping particles can extract the energy about one-thousandth of the accretion energy. We also discuss some implications on relativistic jet production by escaping particles.

  2. Mapping accretion and its variability in the young open cluster NGC 2264: a study based on u-band photometry

    NASA Astrophysics Data System (ADS)

    Venuti, L.; Bouvier, J.; Flaccomio, E.; Alencar, S. H. P.; Irwin, J.; Stauffer, J. R.; Cody, A. M.; Teixeira, P. S.; Sousa, A. P.; Micela, G.; Cuillandre, J.-C.; Peres, G.

    2014-10-01

    Context. The accretion process has a central role in the formation of stars and planets. Aims: We aim at characterizing the accretion properties of several hundred members of the star-forming cluster NGC 2264 (3 Myr). Methods: We performed a deep ugri mapping as well as a simultaneous u-band+r-band monitoring of the star-forming region with CFHT/MegaCam in order to directly probe the accretion process onto the star from UV excess measurements. Photometric properties and stellar parameters are determined homogeneously for about 750 monitored young objects, spanning the mass range ~0.1-2 M⊙. About 40% of the sample are classical (accreting) T Tauri stars, based on various diagnostics (Hα, UV and IR excesses). The remaining non-accreting members define the (photospheric + chromospheric) reference UV emission level over which flux excess is detected and measured. Results: We revise the membership status of cluster members based on UV accretion signatures, and report a new population of 50 classical T Tauri star (CTTS) candidates. A large range of UV excess is measured for the CTTS population, varying from a few times 0.1 to ~3 mag. We convert these values to accretion luminosities and accretion rates, via a phenomenological description of the accretion shock emission. We thus obtain mass accretion rates ranging from a few 10-10 to ~10-7 M⊙/yr. Taking into account a mass-dependent detection threshold for weakly accreting objects, we find a >6σ correlation between mass accretion rate and stellar mass. A power-law fit, properly accounting for censored data (upper limits), yields Ṁacc ∝ M*1.4±0.3. At any given stellar mass, we find a large spread of accretion rates, extending over about 2 orders of magnitude. The monitoring of the UV excess on a timescale of a couple of weeks indicates that its variability typically amounts to 0.5 dex, i.e., much smaller than the observed spread in accretion rates. We suggest that a non-negligible age spread across the star

  3. Stellar explosions from accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off

  4. QUIESCENCE CORRELATES STRONGLY WITH DIRECTLY MEASURED BLACK HOLE MASS IN CENTRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrazas, Bryan A.; Bell, Eric F.; Henriques, Bruno M. B.

    Roughly half of all stars reside in galaxies without significant ongoing star formation. However, galaxy formation models indicate that it is energetically challenging to suppress the cooling of gas and the formation of stars in galaxies that lie at the centers of their dark matter halos. In this Letter, we show that the dependence of quiescence on black hole and stellar mass is a powerful discriminant between differing models for the mechanisms that suppress star formation. Using observations of 91 star-forming and quiescent central galaxies with directly measured black hole masses, we find that quiescent galaxies host more massive blackmore » holes than star-forming galaxies with similar stellar masses. This observational result is in qualitative agreement with models that assume that effective, more-or-less continuous active galactic nucleus feedback suppresses star formation, strongly suggesting the importance of the black hole in producing quiescence in central galaxies.« less

  5. Rapid Jet Precession During the 2015 Outburst of the Black Hole X-ray Binary V404 Cygni

    NASA Astrophysics Data System (ADS)

    Sivakoff, Gregory R.; Miller-Jones, James; Tetarenko, Alex J.

    2017-08-01

    In stellar-mass black holes that are orbited by lower-mass companions (black hole low-mass X-ray binaries), the accretion process can undergo dramatic outbursts that can be accompanied by the launching of powerful relativistic jets. We still do not know the exact mechanism responsible for launching these jets, despite decades of research and the importance of determining this mechanism given the clear analogue of accreting super-massive black holes and their jets. The two main models for launching jets involve the extraction of the rotational energy of a spinning black hole (Blandford-Znajek) and the centrifugal acceleration of particles by open magnetic field lines rotating with the accretion flow (Blandford-Payne). Since some relativistic jets are not fully aligned with the angular momentum of the binary's orbit, the inner accretion flow of some black hole X-ray binaries may precess due to frame-dragging by a spinning black hole (Lense-Thirring precession). This precession has been previously observed close to the black hole as second-timescale quasi-periodic (X-ray) variability. In this talk we will present radio-through-sub-mm timing and high-angular resolution radio imaging (including a high-timing resolution movie) of the black hole X-ray binary V404 Cygni during its 2015 outburst. These data show that at the peak of the outburst the relativistic jets in this system were precessing on timescales of hours. We will discuss how rapid precession can be explained by Lense-Thirring precession of a vertically-extended slim disc that is maintained out to a radius of 6 X 1010 cm by a highly super-Eddington accretion rate. This would imply that the jet axis of V404 Cyg is not aligned with the black hole spin. More importantly, this places a key requirement on any model for launching jets, and may favour launching the jet from the rotating magnetic fields threading the disc.

  6. Effects of High-energy Particles on Accretion Flows onto a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Toma, Kenji; Takahara, Fumio

    2014-08-01

    We study the effects of high-energy particles (HEPs) on the accretion flows onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and HEPs, supposing that some fraction of the released energy is converted to the acceleration of HEPs. The thermal component is governed by fluid dynamics while the HEPs obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection-dominated flows as the steady state solutions. The effects of the HEPs on the flow structures turn out to be small even if the pressure of the HEPs dominates over the thermal pressure. For a model in which the escaping protons take away almost all the energy released, the HEPs have a large enough influence to make the flow have a Keplerian angular velocity at the inner region. We calculate the luminosities of the escaping particles for these steady solutions. The escaping particles can extract the energy from about 10^{-4}\\dot{M} c^2 to 10^{-2}\\dot{M} c^2, where \\dot{M} is the mass accretion rate. The luminosities of the escaping particles depend on parameters such as the injection Lorentz factors, the mass accretion rates, and the diffusion coefficients. We also discuss some implications on the relativistic jet production by the escaping particles.

  7. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33.

    PubMed

    Orosz, Jerome A; McClintock, Jeffrey E; Narayan, Ramesh; Bailyn, Charles D; Hartman, Joel D; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A; Shporer, Avi; Mazeh, Tsevi

    2007-10-18

    Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.

  8. Black hole winds II: Hyper-Eddington winds and feedback

    NASA Astrophysics Data System (ADS)

    King, Andrew; Muldrew, Stuart I.

    2016-01-01

    We show that black holes supplied with mass at hyper-Eddington rates drive outflows with mildly sub-relativistic velocities. These are ˜0.1-0.2c for Eddington accretion factors {dot{m}_acc}˜ 10-100, and ˜1500 km s-1 for {dot{m}_acc}˜ 10^4. Winds like this are seen in the X-ray spectra of ultraluminous sources (ULXs), strongly supporting the view that ULXs are stellar-mass compact binaries in hyper-Eddington accretion states. SS433 appears to be an extreme ULX system ({dot{m}_acc}˜ 10^4) viewed from outside the main X-ray emission cone. For less-extreme Eddington factors {dot{m}_acc}˜ 10-100 the photospheric temperatures of the winds are ˜100 eV, consistent with the picture that the ultraluminous supersoft sources (ULSs) are ULXs seen outside the medium-energy X-ray beam, unifying the ULX/ULS populations and SS433 (actually a ULS but with photospheric emission too soft to detect). For supermassive black holes (SMBHs), feedback from hyper-Eddington accretion is significantly more powerful than the usual near-Eddington (`UFO') case, and if realized in nature would imply M - σ masses noticeably smaller than observed. We suggest that the likely warping of the accretion disc in such cases may lead to much of the disc mass being expelled, severely reducing the incidence of such strong feedback. We show that hyper-Eddington feedback from bright ULXs can have major effects on their host galaxies. This is likely to have important consequences for the formation and survival of small galaxies.

  9. A 200-second quasi-periodicity after the tidal disruption of a star by a dormant black hole.

    PubMed

    Reis, R C; Miller, J M; Reynolds, M T; Gültekin, K; Maitra, D; King, A L; Strohmayer, T E

    2012-08-24

    Supermassive black holes (SMBHs; mass is greater than or approximately 10(5) times that of the Sun) are known to exist at the center of most galaxies with sufficient stellar mass. In the local universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, which often comes in the form of long-term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a ~200-second x-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local universe.

  10. An accreting black hole model for Sagittarius A(*). 2: A detailed study

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio

    1994-01-01

    Sgr A(*) is a unique, compact radio source at the Galactic center whose characteristics suggest that it may be a massive (i.e., approximately 10(exp 6) solar mass) black hole accreting from an ambient wind in that region. Earlier (simplified) calculations suggested that its 10(exp 8) - 10(exp 20) Hz spectrum could be derived from bremsstrahlung and magnetic bremsstrahlung emission from plasma descending toward the event horizon at a rate of roughly 10(exp 22) g/s. Here, we introduce several significant improvements to the model, including (1) an exact treatment of the cyclotron/synchrotron emissivity that is valid for all temperatures, (2) the actual determination of the temperature distribution in the inflow, and (3) the effect on the spectrum should the accreting plasma have a residual angular momentum, possibly forming a disk at small radii. We find that the most likely value of the mass in this improved model is approximately equals 2 +/- 1 x 10(exp 6) solar mass, close to the range inferred earlier, but about a factor of 2 greater than the previous 'best-fit' number. The main reason for this difference is that the more realistic (new) formulation of the magnetic bremsstrahlung emissivity has fluctuations with frequency that decrease the overall line-of-sight intensity, thereby pointing to a slightly larger mass in order to account for the observed spectrum. We also find that a slight excess of angular momentum in the accreting gas may be necessary in order to account for the IR luminosity from this source. Such an excess is consistent with the results of ongoing three-dimensional simulations that will be reported elsewhere.

  11. X-ray Emission from Seyfert 2 Galaxies with Low-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Barth, Aaron

    2005-10-01

    We have recently identified the first sample of Seyfert 2 nuclei in host galaxies with stellar velocity dispersions smaller than 60 km/s, as a way to detect and study black holes with likely masses below 10^6 solar masses. These galaxies are Type 2 analogs of "dwarf" Seyfert 1 galaxies such as NGC 4395 and POX 52. We propose to obtain XMM exposures of four Seyfert 2 galaxies with stellar velocity dispersions in the range 25-47 km/s in order to (a) determine X-ray luminosities as part of an overall program to measure the SEDs of these sources; (b) determine the amount of X-ray absorption to establish whether these are obscured versions of NLS1 galaxies; (c) search for variability, which is expected for AGNs with very low black hole masses.

  12. BLUETIDES simulation: establishing black hole-galaxy relations at high-redshift

    NASA Astrophysics Data System (ADS)

    Huang, Kuan-Wei; Di Matteo, Tiziana; Bhowmick, Aklant K.; Feng, Yu; Ma, Chung-Pei

    2018-05-01

    The scaling relations between the mass of supermassive black holes (M•) and host galaxy properties (stellar mass, M⋆, and velocity dispersion, σ), provide a link between the growth of black holes (BHs) and that of their hosts. Here we investigate if and how the BH-galaxy relations are established in the high-z universe using BLUETIDES, a high-resolution large volume cosmological hydrodynamic simulation. We find the M• - M⋆ and M• - σ relations at z = 8: log10(M•) = 8.25 + 1.10 log10(M⋆/1011M⊙) and log10(M•) = 8.35 + 5.31 log10(σ/200kms-1) at z = 8, both fully consistent with the local measurements. The slope of the M• - σ relation is slightly steeper for high star formation rate and M⋆ galaxies while it remains unchanged as a function of Eddington accretion rate onto the BH. The intrinsic scatter in M• - σ relation in all cases (ɛ ˜ 0.4) is larger at these redshifts than inferred from observations and larger than in M• - M⋆ relation (ɛ ˜ 0.14). We find the gas-to-stellar ratio f = Mgas/M⋆ in the host (which can be very high at these redshifts) to have the most significant impact setting the intrinsic scatter of M• - σ. The scatter is significantly reduced when galaxies with high gas fractions (ɛ = 0.28 as f < 10) are excluded (making the sample more comparable to low-z galaxies); these systems have the largest star formation rates and black hole accretion rates, indicating that these fast-growing systems are still moving toward the relation at these high redshifts. Examining the evolution (from z = 10 to 8) of high mass black holes in M• - σ plane confirms this trend.

  13. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Hilding R.; Lester, John B.; Baron, Fabien

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angularmore » diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.« less

  14. Numerical simulations of the Cosmic Battery in accretion flows around astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Contopoulos, I.; Nathanail, A.; Sądowski, A.; Kazanas, D.; Narayan, R.

    2018-01-01

    We implement the KORAL code to perform two sets of very long general relativistic radiation magnetohydrodynamic simulations of an axisymmetric optically thin magnetized flow around a non-rotating black hole: one with a new term in the electromagnetic field tensor due to the radiation pressure felt by the plasma electrons on the comoving frame of the electron-proton plasma, and one without. The source of the radiation is the accretion flow itself. Without the new term, the system evolves to a standard accretion flow due to the development of the magneto-rotational instability. With the new term, however, the system eventually evolves to a magnetically arrested disc state in which a large-scale jet-like magnetic field threads the black hole horizon. Our results confirm the secular action of the Cosmic Battery in accretion flows around astrophysical black holes.

  15. Supermassive blackholes without super Eddington accretion

    NASA Astrophysics Data System (ADS)

    Christian, Damian Joseph; Kim, Matt I.; Garofalo, David; D'Avanzo, Jaclyn; Torres, John

    2017-08-01

    We explore the X-ray luminosity function at high redshift for active galactic nuclei using an albeit simplified model for mass build-up using a combination of mergers and mass accretion in the gap paradigm (Garofalo et al. 2010). Using a retrograde-dominated configuration we find an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion (Kim et al. 2016). This result is made more compelling by the connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. We will discuss our connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs that will help further understand their properties and evolution.

  16. The Formation and Gravitational-wave Detection of Massive Stellar Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman; Walczak, Marek

    2014-07-01

    If binaries consisting of two ~100 M ⊙ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ~ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several >~ 150 M ⊙ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  17. I-process Nucleosynthesis and Mass Retention Efficiency in He-shell Flash Evolution of Rapidly Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Denissenkov, Pavel A.; Herwig, Falk; Battino, Umberto; Ritter, Christian; Pignatari, Marco; Jones, Samuel; Paxton, Bill

    2017-01-01

    Based on stellar evolution simulations, we demonstrate that rapidly accreting white dwarfs (WDs) in close binary systems are an astrophysical site for the intermediate neutron-capture process. During recurrent and very strong He-shell flashes in the stable H-burning accretion regime H-rich material enters the He-shell flash convection zone. {}12{{C}}(p,γ ){}13{{N}} reactions release enough energy to potentially impact convection, and I process is activated through the {}13{{C}}{(α ,{{n}})}16{{O}} reaction. The H-ingestion flash may not cause a split of the convection zone as it was seen in simulations of He-shell flashes in post-AGB and low-Z asymptotic giant branch (AGB) stars. We estimate that for the production of first-peak heavy elements this site can be of similar importance for galactic chemical evolution as the s-process production by low-mass AGB stars. The He-shell flashes result in the expansion and, ultimately, ejection of the accreted and then I-process enriched material, via super-Eddington-luminosity winds or Roche-lobe overflow. The WD models do not retain any significant amount of the accreted mass, with a He retention efficiency of ≲ 10 % depending on mass and convective boundary mixing assumptions. This makes the evolutionary path of such systems to supernova Ia explosion highly unlikely.

  18. BL Lacertae: X-ray spectral evolution and a black-hole mass estimate

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Seifina, Elena

    2017-06-01

    We present an analysis of the spectral properties observed in X-rays from active galactic nucleus BL Lacertae using RXTE, Suzaku, ASCA, BeppoSAX, and Swift observations. The total time covered by these observations is approximately 20 yr. We show strong observational evidence that this source undergoes X-ray spectral transitions from the low hard state (LHS) through the intermediate state (IS) to the high soft state (HSS) during these observations. During the RXTE observations (1997-2001, 180 ks, for a total 145 datasets), the source was approximately 75%, 20% and only 5% of the time in the IS, LHS, and HSS, respectively. We also used Swift observations (470 datasets, for a total 800 ks), which occurred during 12 yr (2005-2016), the broadband (0.3-200 keV) data of BeppoSAX (1997-2000, 160 ks), and the low X-ray energy (0.3-10 keV) data of ASCA (1995-1999, 160 ks). Two observations of Suzaku (2006, 2013; 50 ks) in combinations with long-term RXTE and Swift data-sets fortunately allow us to describe all spectral states of BL Lac. The spectra of BL Lac are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index saturation level, Γsat = 2.2 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ - Ṁ correlation allows us to estimate the black-hole (BH) mass in BL Lac to be MBH 3 × 107M⊙ for a distance of 300 Mpc. For the BH mass estimate, we use the scaling method taking stellar-mass Galactic BHs 4U 1543-47 and GX 339-4 as reference sources. The Γ - Ṁ correlation revealed in BL Lac is similar to those in a number of stellar-mass Galactic BHs and two recently studied intermediate-mass extragalactic BHs. It clearly shows the correlation along with the very extended Γ saturation at 2.2. This is robust observational evidence for the presence of a BH in BL Lac. We also reveal that the seed (disk) photon temperatures are relatively low, of order of 100 eV, which are consistent

  19. ROTATING ACCRETION FLOWS: FROM INFINITY TO THE BLACK HOLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jason; Ostriker, Jeremiah; Sunyaev, Rashid, E-mail: jgli@astro.princeton.edu

    2013-04-20

    Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There have been broadly utilized analytic and numerical treatments of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions for which the centrifugal balance radius significantly exceeds the Schwarzschild radius, with and without viscous angular momentum transport. Infalling gas is followed from well beyond the Bondi radiusmore » down to the vicinity of the black hole. We produce a continuum of solutions with respect to the single parameter M-dot{sub B}/ M-dot{sub Edd}, and there is a sharp transition between two general classes of solutions at an Eddington ratio of M-dot{sub B}/M-dot{sub Edd}{approx}few Multiplication-Sign 10{sup -2}. Our high inflow solutions are very similar to the standard Shakura and Sunyaev results. But our low inflow results are to zeroth order the stationary Papaloizou and Pringle solution, which has no accretion. To next order in the small, assumed viscosity they show circulation, with disk and conical wind outflows almost balancing inflow. These solutions are characterized by hot, vertically extended disks, and net accretion proceeds at an extremely low rate, only of order {alpha} times the inflow rate. Our simulations have converged with respect to spatial resolution and temporal duration, and they do not depend strongly on our choice of boundary conditions.« less

  20. Stellar Astrophysics with Arcus

    NASA Astrophysics Data System (ADS)

    Brickhouse, Nancy S.; Huenemoerder, David P.; Wolk, Scott; Schulz, Norbert; Foster, Adam; Brenneman, Laura; Poppenhaeger, Katja; Arcus Team

    2018-01-01

    The Arcus mission is now in Phase A of the NASA Medium-Class Explorer competition. We present here the Arcus science case for stellar astrophysics. With spectral resolving power of at least 2500 and effective area greater than 400 cm^2, Arcus will measure new diagnostic lines, e.g. for H- and He-like ions of oxygen and other elements. Weak dielectronic recombination lines will provide sensitive measurements of temperature to test stellar coronal heating models. Arcus will also resolve the coronal and accretion line components in young accreting stars, allowing detailed studies of accretion shocks and their post-shock behavior. Arcus can resolve line shapes and variability in hot star winds to study inhomogeneities and dynamics of wind structure. Such profiles will provide an independent measure of mass loss rates, for which theoretical and observational discrepancies can reach an order of magnitude. Arcus will also study exoplanet atmospheres through X-ray absorption, determing their extent and composition.

  1. Accretion flow dynamics during 1999 outburst of XTE J1859+226—modeling of broadband spectra and constraining the source mass

    NASA Astrophysics Data System (ADS)

    Nandi, Anuj; Mandal, S.; Sreehari, H.; Radhika, D.; Das, Santabrata; Chattopadhyay, I.; Iyer, N.; Agrawal, V. K.; Aktar, R.

    2018-05-01

    We examine the dynamical behavior of accretion flow around XTE J1859+226 during the 1999 outburst by analyzing the entire outburst data (˜166 days) from RXTE Satellite. Towards this, we study the hysteresis behavior in the hardness intensity diagram (HID) based on the broadband (3-150 keV) spectral modeling, spectral signature of jet ejection and the evolution of Quasi-periodic Oscillation (QPO) frequencies using the two-component advective flow model around a black hole. We compute the flow parameters, namely Keplerian accretion rate (\\dot{m}d), sub-Keplerian accretion rate (\\dot{m}h), shock location (rs) and black hole mass (M_{bh}) from the spectral modeling and study their evolution along the q-diagram. Subsequently, the kinetic jet power is computed as L^{obs}_{jet} ˜3-6 ×10^{37} erg s^{-1} during one of the observed radio flares which indicates that jet power corresponds to 8-16% mass outflow rate from the disc. This estimate of mass outflow rate is in close agreement with the change in total accretion rate (˜14%) required for spectral modeling before and during the flare. Finally, we provide a mass estimate of the source XTE J1859+226 based on the spectral modeling that lies in the range of 5.2-7.9 M_{⊙} with 90% confidence.

  2. Estimatining biases in the stellar dynamical black hole mass measurements in barred galaxies and prospects for measuring SMBH masses with JWST

    NASA Astrophysics Data System (ADS)

    Valluri, Monica; Vasiliev, Eugene; Bentz, Misty; Shen, Juntai

    2018-04-01

    Although 60% of disk galaxies are barred, stellar dynamical measurements of the masses of supermassive black holes (SMBH) in barred galaxies have always been obtained under the assumption that the bulges are axisymmetric. We use N-body simulations with self-consistently grown SMBHs in barred and unbarred galaxies to create a suite of mock Integral Field Spectrographic (IFS) datasets for galaxies with various observed orientations. We then apply an axisymmetric orbit superposition code to these mock IFS datasets to assess the reliability with which SMBH masses can be recovered. We also assess which disk and bar orientations give rise to biases. We use these simulations to assess whether or not existing SMBH measurements in barred galaxies are likely to be biased. We also present a brief preview of our JWST Early Release Science proposal to study the nuclear dynamics of nearby Seyfert I galaxy NGC 4151 with the NIRSpec Integral Field Spectrograph and describe how simulations of disk galaxies will used to create mock NIRSpec data to prepare for the real data.

  3. Stunted accretion growth of black holes by combined effect of the flow angular momentum and radiation feedback

    NASA Astrophysics Data System (ADS)

    Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Inayoshi, Kohei; Omukai, Kazuyuki

    2018-05-01

    Accretion on to seed black holes (BHs) is believed to play a crucial role in formation of supermassive BHs observed at high-redshift (z > 6). Here, we investigate the combined effect of gas angular momentum and radiation feedback on the accretion flow, by performing 2D axially symmetric radiation hydrodynamics simulations that solve the flow structure across the Bondi radius and the outer part of the accretion disc simultaneously. The accreting gas with finite angular momentum forms a rotationally-supported disc inside the Bondi radius, where the accretion proceeds by the angular momentum transport due to assumed α-type viscosity. We find that the interplay of radiation and angular momentum significantly suppresses accretion even if the radiative feedback is weakened in an equatorial shadowing region. The accretion rate is O(α) ˜ O(0.01 - 0.1) times the Bondi value, where α is the viscosity parameter. By developing an analytical model, we show that such a great reduction of the accretion rate persists unless the angular momentum is so small that the corresponding centrifugal radius is ≲ 0.04 times the Bondi radius. We argue that BHs are hard to grow quickly via rapid mass accretion considering the angular momentum barrier presented in this paper.

  4. The Accretion Disk Wind in the Black Hole GRS 1915 + 105

    NASA Technical Reports Server (NTRS)

    Miller, J.M.; Raymond, J.; Fabian, A. C.; Gallo, E.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Reynolds, C. S.; Zoghbi, A.

    2016-01-01

    We report on a 120 kiloseconds Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in 2015 June. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blueshift of v = 0.03 c (velocity equals 0.03 the speed of light). Broadened reemission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r approximately equal to 10 (sup 2-4) GM (Gravitational constant times Mass) divided by c (sup 2) (the speed of light squared). Wind density values of n approximately equal to 10 (sup 13-16) per cubic centimeter are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to be B approximately equal to 10 (sup 3-4) G (Gravitational constant) if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk and B approximately equal to 10 (sup 4-5) G (Gravitational constant) if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model. We discuss these results in terms of fundamental disk physics and black hole accretion modes.

  5. Evidence of Spin and Energy Extraction in a Galactic Black Hole Candidate: The XMM-NEWTON/EPIC SPECTRUM of XTE 11650-500

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Fabian, A. C.; Wunands, R.; Reynolds, C. S.; Ehle, M.; Freyberg, M. J.; VanDerKlis, M.; Lewin, W. H. G.; Sanchez-Fernandez, C.; Castro-Tirado, A. J.

    2002-01-01

    We observed the Galactic black hole candidate XTE J1650-500 early in its fall of 2001 outburst with the XMM-Newton European Photon Imaging pn Camera (EPIC-pn). The observed spectrum is consistent with the source having been in the very high state. We h d a broad, skewed Fe Kar emission line that suggests the primary in this system may be a Kerr black hole and that indicates a steep disk emissivity profile that is hard to explain in terms of a standard accretion disk model. These results are quantitatively and qualitatively similar to those from an XMM-Newton observation of the Seyfert galaxy MCG -6-30-15. The steep emissivity in MCG -6-30-15 may be explained by the extraction and dissipation of rotational energy from a black hole with nearly maximal angular momentum or from material in the plunging region via magnetic connections to the inner accretion disk. If this process is at work in both sources, an exotic but fundamental general relativistic prediction may be confirmed across a factor of l0(exp 6) in black hole mass. We discuss these results in terms of the accretion flow geometry in stellar-mass black holes and the variety of enigmatic phenomena often observed in the very high state.

  6. Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion

    NASA Technical Reports Server (NTRS)

    Kenyon, S. J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution.

  7. Scaling of the photon index vs. mass accretion rate correlation and estimate of black hole mass in M101 ULX-1

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Seifina, Elena

    2016-01-01

    We report the results of Swift and Chandra observations of an ultraluminous X-ray source, ULX-1 in M101. We show strong observational evidence that M101 ULX-1 undergoes spectral transitions from the low/hard state to the high/soft state during these observations. The spectra of M101 ULX-1 are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index (Γ) saturation level, Γsat = 2.8 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ-Ṁ correlation allows us to evaluate black hole (BH) mass in M101 ULX-1 to be MBH ~ (3.2-4.3) × 104 M⊙, assuming the spread in distance to M101 (from 6.4 ± 0.5 Mpc to 7.4 ± 0.6 Mpc). For this BH mass estimate we apply the scaling method, using Galactic BHs XTE J1550-564, H 1743-322 and 4U 1630-472 as reference sources. The Γ vs. Ṁ correlation revealed in M101 ULX-1 is similar to that in a number of Galactic BHs and clearly exhibits the correlation along with the strong Γ saturation at ≈ 2.8. This is robust observational evidence for the presence of a BH in M101 ULX-1. We also find that the seed (disk) photon temperatures are low, on the order of 40-100 eV, which is consistent with high BH mass in M101 ULX-1. Thus, we suggest that the central object in M101 ULX-1 has intermediate BH mass on the order of 104 solar masses.

  8. Black Hole Accretion and Feedback Driven by Thermal Instability

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. P.; Churazov, E.; Brighenti, F.; Ettori, S.; Sharma, P.; Temi, P.

    2013-03-01

    Multiwavelength data indicate that the cores of several galaxy clusters are moderately cooling, though not catastrophically, showing signs of filamentary extended multiphase gas. Through 3D AMR hydrodynamic simulations, we study the impact of thermal instability in the evolution of the intracluster medium. Common moderate turbulence of just over 100 km/s leads to the growth of nonlinear thermal instability within the central few tens kpc. In the presence of a global counterbalancing heating, the condensation of extended filamentary cold gas is violent, occurring when the cooling time falls below 10 times the free-fall time. The frequent stochastic collisions, fragmentations and shearing motions between the cold clouds, filaments and the central torus, efficiently reduce angular momentum. Tracking the accreting gas with a dynamical range of 10 million, we find that the accretion rate is boosted up to 100 times with respect to the Bondi rate. In a commonly turbulent and quasi-stable atmosphere, the mode of black accretion is cold and chaotic, substantially different from the classic idealized scenario. Only in the transonic regime, turbulent dissipation starts to inhibit thermal instability. On sub-parsec scales the cold phase is channeled via a funnel, triggering the black hole feedback likely linked to mechanical jets/outflows. As shown by long-term self-regulated simulations, the interplay of chaotic cold accretion and AGN feedback is crucial in order to avoid the cooling catastrophe and to reproduce the key thermodynamical features of observed clusters.

  9. The Effects of Accretion Disk Thickness on the Black Hole Reflection Spectrum

    NASA Astrophysics Data System (ADS)

    Taylor, Corbin; Reynolds, Christopher S.

    2018-01-01

    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and into the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in other contemporary models that approximate that disk as having negligible vertical extent.

  10. A 200-Second Quasi-Periodicity After the Tidal Disruption of a Star by a Dormant Black Hole

    NASA Technical Reports Server (NTRS)

    Reis, R. C.; Miller, J. M.; Reynolds, M. T.; Gueltkinm K.; Maitra, D.; King, A. L.; Strohmayer, T.

    2012-01-01

    Supermassive black holes are known to exist at the center of most galaxies with sufficient stellar mass, In the local Universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, often coming in the form of long term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a approx.200-s X-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local Universe.

  11. Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick; Morse, Jon A.; Raymond, John

    1994-01-01

    In this paper we calculate emission-line ratios from a series of planar radiative shock models that cover a wide range of shock velocities, preshock densities, and magnetic fields. The models cover the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows. The ionization fractions in the HH 34, HH 47, and HH 111 jets are approximately 2%, considerably smaller than previous estimates, and the shock velocities are approximately 30 km/s. For each jet the ionization fractions were found from five different line ratios, and the estimates agree to within a factor of approximately 2. The scatter in the estimates of the shock velocities is also small (+/- 4 km/s). The low ionization fractions of stellar jets imply that the observed electron densities are much lower than the total densities, so the mass-loss rates in these flows are correspondingly higher (approximately greater than 2 x 10(exp -7) solar mass/yr). The mass-loss rates in jets are a significant fraction (1%-10%) of the disk accretion rates onto young stellar objects that drive the outflows. The momentum and energy supplied by the visible portion of a typical stellar jet are sufficient to drive a weak molecular outflow. Magnetic fields in stellar jets are difficult to measure because the line ratios from a radiative shock with a magnetic field resemble those of a lower velocity shock without a field. The observed line fluxes can in principle indicate the strength of the field if the geometry of the shocks in the jet is well known.

  12. Episodic accretion: the interplay of infall and disc instabilities

    NASA Astrophysics Data System (ADS)

    Kuffmeier, Michael; Frimann, Søren; Jensen, Sigurd S.; Haugbølle, Troels

    2018-04-01

    Using zoom-simulations carried out with the adaptive mesh-refinement code RAMSES with a dynamic range of up to 227 ≈ 1.34 × 108 we investigate the accretion profiles around six stars embedded in different environments inside a (40 pc)3 giant molecular cloud, the role of mass infall and disc instabilities on the accretion profile, and thus on the luminosity of the forming protostar. Our results show that the environment in which the protostar is embedded determines the overall accretion profile of the protostar. Infall on to the circumstellar disc may trigger gravitational disc instabilities in the disc at distances of around ˜10 to ˜50 au leading to rapid transport of angular momentum and strong accretion bursts. These bursts typically last for about ˜10 to a ˜100 yr, consistent with typical orbital times at the location of the instability, and enhance the luminosity of the protostar. Calculations with the stellar evolution code MESA show that the accretion bursts induce significant changes in the protostellar properties, such as the stellar temperature and radius. We apply the obtained protostellar properties to produce synthetic observables with RADMC3D and predict that accretion bursts lead to observable enhancements around 20 to 200 μm in the spectral energy distribution of Class 0 type young stellar objects.

  13. CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264

    NASA Astrophysics Data System (ADS)

    Sousa, A. P.; Alencar, S. H. P.; Bouvier, J.; Stauffer, J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Guimarães, M. M.; McGinnis, P. T.; Rebull, L.; Flaccomio, E.; Fürész, G.; Micela, G.; Gameiro, J. F.

    2016-02-01

    Context. NGC 2264 is a young stellar cluster (~3 Myr) with hundreds of low-mass accreting stars that allow a detailed analysis of the accretion process taking place in the pre-main sequence. Aims: Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. Methods: NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and photometric and spectroscopic observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. Results: The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light curves correspond mostly to systems with a low mass-accretion rate and low mid-IR excess. About 30% of the classical T Tauri stars observed in the 2008 and 2011 CoRoT runs changed their light-curve morphology. Transitions from AA Tau-like and spot-like to aperiodic light curves and vice versa were common. The analysis of the Hα emission line variability of 58 accreting stars showed that 8 presented a periodicity that in a few cases was coincident with the photometric period. The blue and red wings of the Hα line profiles often do not correlate with each other, indicating that they are strongly influenced by different physical processes. Classical T Tauri stars have a dynamic stellar and circumstellar environment that can be explained by magnetospheric

  14. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I

  15. Shocks in the relativistic transonic accretion with low angular momentum

    NASA Astrophysics Data System (ADS)

    Suková, P.; Charzyński, S.; Janiuk, A.

    2017-12-01

    We perform 1D/2D/3D relativistic hydrodynamical simulations of accretion flows with low angular momentum, filling the gap between spherically symmetric Bondi accretion and disc-like accretion flows. Scenarios with different directional distributions of angular momentum of falling matter and varying values of key parameters such as spin of central black hole, energy and angular momentum of matter are considered. In some of the scenarios the shock front is formed. We identify ranges of parameters for which the shock after formation moves towards or outwards the central black hole or the long-lasting oscillating shock is observed. The frequencies of oscillations of shock positions which can cause flaring in mass accretion rate are extracted. The results are scalable with mass of central black hole and can be compared to the quasi-periodic oscillations of selected microquasars (such as GRS 1915+105, XTE J1550-564 or IGR J17091-3624), as well as to the supermassive black holes in the centres of weakly active galaxies, such as Sgr A*.

  16. Songlines from Direct Collapse Seed Black Holes

    NASA Astrophysics Data System (ADS)

    Aykutalp, Aycin; Wise, John; Spaans, Marco; Meijerink, Rowin

    2015-01-01

    In the last decade, the growth of supermassive black holes (SMBHs) has been intricately linked to galaxy formation and evolution, and is a key ingredient in the assembly of galaxies. Observations of SMBHs with masses of 109 solar at high redshifts (z~7) poses challenges to the theory of seed black hole formation and their growth in young galaxies. Fundamental to understanding their existence within the first billion years after the Big Bang, is the identification of their formation processes, growth rate and evolution through cosmic time. We perform cosmological hydrodynamic simulations following the growth of direct collapse seed black holes (DCBH) including X-ray irradiation from the central black hole, stellar feedback both from metal-free and metal-rich stars and H2 self-shielding. These simulations demonstrate that X-ray irradiation from the central black hole regulates its growth and influence the formation of stellar population in the host halo. In particular, X-ray radiation enhances H2 formation in metal-free gas and initially induces the star formation in the halo. However, in the long term, X-ray irradiation from the accreting seed DCBH stifles the initial growth relative to the Eddington rate argument. This further complicates the explanation for the existence of SMBHs in the early universe.

  17. Three-dimensional GRMHD Simulations of Neutrino-cooled Accretion Disks from Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Siegel, Daniel M.; Metzger, Brian D.

    2018-05-01

    Merging binaries consisting of two neutron stars (NSs) or an NS and a stellar-mass black hole typically form a massive accretion torus around the remnant black hole or long-lived NS. Outflows from these neutrino-cooled accretion disks represent an important site for r-process nucleosynthesis and the generation of kilonovae. We present the first three-dimensional, general-relativistic magnetohydrodynamic (GRMHD) simulations including weak interactions and a realistic equation of state of such accretion disks over viscous timescales (380 ms). We witness the emergence of steady-state MHD turbulence, a magnetic dynamo with an ∼20 ms cycle, and the generation of a “hot” disk corona that launches powerful thermal outflows aided by the energy released as free nucleons recombine into α-particles. We identify a self-regulation mechanism that keeps the midplane electron fraction low (Y e ∼ 0.1) over viscous timescales. This neutron-rich reservoir, in turn, feeds outflows that retain a sufficiently low value of Y e ≈ 0.2 to robustly synthesize third-peak r-process elements. The quasi-spherical outflows are projected to unbind 40% of the initial disk mass with typical asymptotic escape velocities of 0.1c and may thus represent the dominant mass ejection mechanism in NS–NS mergers. Including neutrino absorption, our findings agree with previous hydrodynamical α-disk simulations that the entire range of r-process nuclei from the first to the third r-process peak can be synthesized in the outflows, in good agreement with observed solar system abundances. The asymptotic escape velocities and quantity of ejecta, when extrapolated to moderately higher disk masses, are consistent with those needed to explain the red kilonova emission following the NS merger GW170817.

  18. Accretion Processes in Cosmic Sources

    NASA Astrophysics Data System (ADS)

    2016-10-01

    Accretion is a universal phenomenon that takes place in the vast majority of astrophysical objects. The progress of ground-based and space-borne observational facilities has resulted in the great amount of information on various accreting astrophysical objects, collected within the last decades. The accretion is accompanied by the process of extensive energy release that takes place on the surface of an accreting object and in various gaseous envelopes, accretion disk, jets and other elements of the flow pattern. The results of observations inspired the intensive development of accretion theory, which, in turn, enabled us to study unique properties of accreting objects and physical conditions in the surrounding environment. One of the most interesting outcomes of this intensive study is the fact that accretion processes are, in a sense, self-similar on various spatial scales from planetary systems to galaxies. This fact gives us new opportunities to investigate objects that, by various reasons, are not available for direct study. Cataclysmic variable stars are unique natural laboratories where one can conduct the detailed observational study of accretion processes and accretion disks. This is the main reason why several participants and a few members of the Organizing Committee of the conference "The Golden Age of Cataclysmic Variables and Related Objects - III" (September 7-12, 2015, Palermo, Italy) have decided to hold a special conference, focused on accretion processes, as a branch of that series. Main topics: Young Stellar Objects, protoplanetary discs, exoplanets in binary stars Accretion on white dwarfs (Cataclysmic variables and related objects) Accretion on neutron stars (X-ray Binary Systems and related objects) Accretion on black holes (stellar BH and AGN) The workshop will include a few 35-minute general review talks to introduce the current problems, and 20-minute talks to discuss new experimental and theoretical results. A series of 15-minute talks

  19. The formation and gravitational-wave detection of massive stellar black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra

    2014-07-10

    If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by themore » recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.« less

  20. A Simple test for the existence of two accretion modes in active galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jester, Sebastian; /Fermilab

    2005-02-01

    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretionmore » rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.« less

  1. Bulgeless Galaxies Hosting 107 M⊙ AGN in Galaxy Zoo: The Growth of Black Holes via Secular Processes

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Lintott, C. J.; Schawinski, K.; Moran, E. C.; Han, A.; Kaviraj, S.; Masters, K. L.; Urry, C. M.; Willett, K.; Bamford, S. P.; Nichol, R.

    2013-01-01

    The growth of supermassive black holes (SMBHs) appears to proceed via multiple pathways including mergers and secular processes, but these are difficult to disentangle for most galaxies given their complex evolutionary histories. In order to understand the effects of secular galaxy evolution on black hole growth, we require a sample of active galactic nuclei (AGN) in galaxies with a calm formation history free of significant mergers, a population that heretofore has been difficult to locate. Here we present a sample of 13 AGN in massive galaxies lacking the classical bulges believed inevitably to result from mergers; they also either lack or have extremely small pseudobulges, meaning they have had very calm accretion histories. This is the largest sample to date of massive, bulgeless AGN host galaxies selected without any direct restriction on the SMBH mass. The broad-line objects in the sample have black hole masses of 106-7 M⊙ Eddington arguments imply similar masses for the rest of the sample, meaning these black holes have grown substantially in the absence of mergers or other bulge-building processes such as violent disk instabilities. The black hole masses are systematically higher than expected from established bulge-black hole relations. However, these systems may be consistent with the correlation between black hole mass and total stellar mass. We discuss these results in the context of other studies and consider the implication that the details of stellar galaxy evolution and dynamics may not be fundamental to the co-evolution of galaxies and black holes.

  2. Rapid mass segregation in small stellar clusters

    NASA Astrophysics Data System (ADS)

    Spera, Mario; Capuzzo-Dolcetta, Roberto

    2017-12-01

    In this paper we focus our attention on small-to-intermediate N-body systems that are, initially, distributed uniformly in space and dynamically `cool' (virial ratios Q=2T/|Ω| below ˜0.3). In this work, we study the mass segregation that emerges after the initial violent dynamical evolution. At this scope, we ran a set of high precision N-body simulations of isolated clusters by means of HiGPUs, our direct summation N-body code. After the collapse, the system shows a clear mass segregation. This (quick) mass segregation occurs in two phases: the first shows up in clumps originated by sub-fragmentation before the deep overall collapse; this segregation is partly erased during the deep collapse to re-emerge, abruptly, during the second phase, that follows the first bounce of the system. In this second stage, the proper clock to measure the rate of segregation is the dynamical time after virialization, which (for cold and cool systems) may be significantly different from the crossing time evaluated from initial conditions. This result is obtained for isolated clusters composed of stars of two different masses (in the ratio mh/ml=2), at varying their number ratio, and is confirmed also in presence of a massive central object (simulating a black hole of stellar size). Actually, in stellar systems starting their dynamical evolution from cool conditions, the fast mass segregation adds to the following, slow, secular segregation which is collisionally induced. The violent mass segregation is an effect persistent over the whole range of N (128 ≤ N ≤1,024) investigated, and is an interesting feature on the astronomical-observational side, too. The semi-steady state reached after virialization corresponds to a mass segregated distribution function rather than that of equipartition of kinetic energy per unit mass as it should result from violent relaxation.

  3. Accretion, winds and jets: High-energy emission from young stellar objects

    NASA Astrophysics Data System (ADS)

    Günther, Hans Moritz

    2009-03-01

    Stars form by gravitational collapse from giant molecular clouds. Due to the conservation of angular momentum this collapse does not happen radially, but the matter forms circumstellar disk first and is consequently accreted from the disk onto the star. This thesis deals with the high-energy emission from young stellar objects, which are on the one hand still actively accreting from their disk, and on the other hand are no longer deeply obscured by their natal cloud. Stars of spectral type B and A are called Herbig Ae/Be (HAeBe) stars in this stage, all stars of later spectral type are termed classical T Tauri stars (CTTS); strictly speaking both types are defined by spectroscopic signatures, which are equivalent to the evolutionary stage described above. In this thesis CTTS and HAeBes are studied through high-resolution X-ray and UV spectroscopy and through detailed physical simulations. Spectroscopic X-ray data is reduced and presented for two targets: The CTTS V4046 Sgr was observed with Chandra for 100 ks, using a high-resolution grating spectrometer. The lightcurve contains one flare and the He-like triplets of SiXIII, NeIX and OVII indicate high densities in the X-ray emitting regions. The second target is the HAeBe HD 163296, which was observed with XMM-Newton for 130 ks. The lightcurve shows only moderate variability, the elemental abundance follows a pattern, that is usual for active stars. The He-like triplet of OVII exhibits line ratios similar to coronal sources, indicating that neither a high density nor a strong UV-field is present in the region of the X-ray emission. Using these and similar observations, it can be concluded that at least three mechanisms contribute to the observed high-energy emission from CTTS: First, those stars have active coronae similar to main-sequence stars, second, the accreted material passes through a strong accretion shock at the stellar surface, which heats it to a few MK, and, third, some CTTS drive powerful outflows

  4. Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1

    NASA Technical Reports Server (NTRS)

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-01-01

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (approx. 3 to 20 solar masses) as well as supermassive black holes (approx.. 10(exp 6) to 10(exp 9) Solar Mass) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (approx. 10(exp 2) to 10(exp 5) Solar Mass), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between approx. 9 × 10(exp 3) Solar Mass and approx. 9 × 10(exp 4) Solar Mass.

  5. Evolving non-thermal electrons in simulations of black hole accretion

    NASA Astrophysics Data System (ADS)

    Chael, Andrew A.; Narayan, Ramesh; Saḑowski, Aleksander

    2017-09-01

    Current simulations of hot accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. However, processes like magnetic reconnection and shocks can accelerate electrons into a non-thermal distribution, which will not quickly thermalize at the very low densities found in many systems. Such non-thermal electrons have been invoked to explain the infrared and X-ray spectra and strong variability of Sagittarius A* (Sgr A*), the black hole at the Galactic Center. We present a method for self-consistent evolution of a non-thermal electron population in the general relativistic magnetohydrodynamic code koral. The electron distribution is tracked across Lorentz factor space and is evolved in space and time, in parallel with thermal electrons, thermal ions and radiation. In this study, for simplicity, energy injection into the non-thermal distribution is taken as a fixed fraction of the local electron viscous heating rate. Numerical results are presented for a model with a low mass accretion rate similar to that of Sgr A*. We find that the presence of a non-thermal population of electrons has negligible effect on the overall dynamics of the system. Due to our simple uniform particle injection prescription, the radiative power in the non-thermal simulation is enhanced at large radii. The energy distribution of the non-thermal electrons shows a synchrotron cooling break, with the break Lorentz factor varying with location and time, reflecting the complex interplay between the local viscous heating rate, magnetic field strength and fluid velocity.

  6. Exhaustion of the gas next to the supermassive black hole of M31

    NASA Astrophysics Data System (ADS)

    Melchior, Anne-Laure; Combes, Françoise

    2017-11-01

    New observations performed at the IRAM Plateau de Bure reveal the absence of molecular gas next to the black hole of the Andromeda galaxy. We derived a 3σ upper limit on the molecular gas mass of 4300 M⊙ for a line width of 1000 km s-1. This is compatible with infra-red observations, which reveal a hole in the dust emission next to the black hole. Some gas from stellar feedback is expected from the old eccentric stellar disc population, but it is not accreted close to the black hole. This absence of gas explains the absence of stellar formation observed in this region, contrary to what is observed next to Sgr A* in the Milky Way. Either the gas has been swallowed by the black hole, or a feedback mechanism has pushed the gas outside the central 1 pc. Nevertheless, we detect a small clump of gas with a very low velocity dispersion at 2.4″ from the black hole. It is probable that this clumpy gas is seen in projection, as it does not follow the rotation of the disc surrounding the black hole, its velocity dispersion is ten times lower than the expected velocity gradient, and the tidal shear from the black hole requires a gas density for this clump that is not compatible with our observations.

  7. DEUTERIUM BURNING IN MASSIVE GIANT PLANETS AND LOW-MASS BROWN DWARFS FORMED BY CORE-NUCLEATED ACCRETION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodenheimer, Peter; D'Angelo, Gennaro; Lissauer, Jack J.

    Using detailed numerical simulations, we study the formation of bodies near the deuterium-burning limit according to the core-nucleated giant planet accretion scenario. The objects, with heavy-element cores in the range 5-30 M{sub Circled-Plus }, are assumed to accrete gas up to final masses of 10-15 Jupiter masses (M{sub Jup}). After the formation process, which lasts 1-5 Myr and which ends with a ''cold-start'', low-entropy configuration, the bodies evolve at constant mass up to an age of several Gyr. Deuterium burning via proton capture is included in the calculation, and we determined the mass, M{sub 50}, above which more than 50%more » of the initial deuterium is burned. This often-quoted borderline between giant planets and brown dwarfs is found to depend only slightly on parameters, such as core mass, stellar mass, formation location, solid surface density in the protoplanetary disk, disk viscosity, and dust opacity. The values for M{sub 50} fall in the range 11.6-13.6 M{sub Jup}, in agreement with previous determinations that do not take the formation process into account. For a given opacity law during the formation process, objects with higher core masses form more quickly. The result is higher entropy in the envelope at the completion of accretion, yielding lower values of M{sub 50}. For masses above M{sub 50}, during the deuterium-burning phase, objects expand and increase in luminosity by one to three orders of magnitude. Evolutionary tracks in the luminosity versus time diagram are compared with the observed position of the companion to Beta Pictoris.« less

  8. Scaling Stellar Mass Estimates of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carr, Brandon Michael; McQuinn, Kristen B.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew E.; Skillman, Evan D.; Williams, Benjamin F.; van Zee, Liese

    2017-01-01

    Hubble Space Telescope (HST) optical imaging of resolved stellar populations has been used to constrain the star formation history (SFH) and chemical evolution of many nearby dwarf galaxies. However, even for dwarf galaxies, the angle subtended by nearby systems can be greater than the HST field of view. Thus, estimates of stellar mass from the HST footprint do not accurately represent the total mass of the system, impacting how SFH results can be used in holistic comparisons of galaxy properties. Here, we use the SFHs of dwarfs combined with stellar population synthesis models to determine mass-to-light ratios for individual galaxies, and compare these values with measured infrared luminosities from Spitzer IRAC data. In this way, we determine what fraction of mass is not included in the HST field of view. To test our methodology, we focus on dwarfs whose stellar disks are contained within the HST observations. Then, we also apply this method to galaxies with larger angular sizes to scale the stellar masses accordingly.

  9. Radiation-driven Turbulent Accretion onto Massive Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, KwangHo; Wise, John H.; Bogdanović, Tamara, E-mail: kwangho.park@physics.gatech.edu

    Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo , equipped with adaptive ray-tracing module Moray , to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findingsmore » from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2–3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.« less

  10. Making Supermassive Black Holes Spin

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Where does the angular momentum come from that causes supermassive black holes (SMBHs) to spin on their axes and launch powerful jets? A new study of nearby SMBHs may help to answer this question.High-mass SMBHs are thought to form when two galaxies collide and the SMBHs at their centers merge. [NASA/Hubble Heritage Team (STScI)]High- vs. Low-Mass MonstersObservational evidence suggests a dichotomy between low-mass SMBHs (those with 106-7 M) and high-mass ones (those with 108-10 M). High-mass SMBHs are thought to form via the merger of two smaller black holes, and the final black hole is likely spun up by the rotational dynamics of the merger. But what spins up low-mass SMBHs, which are thought to build up very gradually via accretion?A team of scientists led by Jing Wang (National Astronomical Observatories, Chinese Academy of Sciences) have attempted to address this puzzle by examining the properties of the galaxies hosting low-mass SMBHs.A Sample of Neighboring SMBHsWang and collaborators began by constructing a sample of radio-selected nearby Seyfert 2 galaxies: those galaxies in which the stellar population and morphology of the host galaxy are visible to us, instead of being overwhelmed by continuum emission from the galaxys active nucleus.An example of a galaxy with a concentrated, classical bulge (M87; top) and a one with a disk-like pseudo bulge (Triangulum Galaxy; bottom). The authors find that for galaxies hosting low-mass SMBHs, those with more disk-like bulges appear to have more powerful radio jets. [Top: NASA/Hubble Heritage Team (STScI), Bottom: Hewholooks]From this sample, the authors then selected 31 galaxies that have low-mass SMBHs at their centers, as measured using the surrounding stellar dynamics. Wang and collaborators cataloged radio information revealing properties of the powerful jets launched by the SMBHs, and they analyzed the host galaxies properties by modeling their brightness profiles.Spin-Up From Accreting GasBy examining this

  11. Growth of Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  12. A black hole nova obscured by an inner disk torus.

    PubMed

    Corral-Santana, J M; Casares, J; Muñoz-Darias, T; Rodríguez-Gil, P; Shahbaz, T; Torres, M A P; Zurita, C; Tyndall, A A

    2013-03-01

    Stellar-mass black holes (BHs) are mostly found in x-ray transients, a subclass of x-ray binaries that exhibit violent outbursts. None of the 50 galactic BHs known show eclipses, which is surprising for a random distribution of inclinations. Swift J1357.2-093313 is a very faint x-ray transient detected in 2011. On the basis of spectroscopic evidence, we show that it contains a BH in a 2.8-hour orbital period. Further, high-time-resolution optical light curves display profound dips without x-ray counterparts. The observed properties are best explained by the presence of an obscuring toroidal structure moving outward in the inner disk, seen at very high inclination. This observational feature should play a key role in models of inner accretion flows and jet collimation mechanisms in stellar-mass BHs.

  13. Inclusion of TCAF model in XSPEC to study accretion flow dynamics around black hole candidates

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Chakrabarti, Sandip Kumar; Mondal, Santanu

    Spectral and Temporal properties of black hole candidates can be well understood with the Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the sub-Keplerian halo accretion rate, the latter being composed of a low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time we are able to create a user friendly version by implementing additive Table model FITS file into GSFC/NASA's spectral analysis software package XSPEC. This enables any user to extract physical parameters of accretion flows, such as two accretion rates, shock location, shock strength etc. for any black hole candidate. Most importantly, unlike any other theoretical model, we show that TCAF is capable of predicting timing properties from spectral fits, since in TCAF, a shock is responsible for deciding spectral slopes as well as QPO frequencies.

  14. New methods to benchmark simulations of accreting black holes systems against observations

    NASA Astrophysics Data System (ADS)

    Markoff, Sera; Chatterjee, Koushik; Liska, Matthew; Tchekhovskoy, Alexander; Hesp, Casper; Ceccobello, Chiara; Russell, Thomas

    2017-08-01

    The field of black hole accretion has been significantly advanced by the use of complex ideal general relativistic magnetohydrodynamics (GRMHD) codes, now capable of simulating scales from the event horizon out to ~10^5 gravitational radii at high resolution. The challenge remains how to test these simulations against data, because the self-consistent treatment of radiation is still in its early days, and is complicated by dependence on non-ideal/microphysical processes not yet included in the codes. On the other extreme, a variety of phenomenological models (disk, corona, jet, wind) can well-describe spectra or variability signatures in a particular waveband, although often not both. To bring these two methodologies together, we need robust observational “benchmarks” that can be identified and studied in simulations. I will focus on one example of such a benchmark, from recent observational campaigns on black holes across the mass scale: the jet break. I will describe new work attempting to understand what drives this feature by searching for regions that share similar trends in terms of dependence on accretion power or magnetisation. Such methods can allow early tests of simulation assumptions and help pinpoint which regions will dominate the light production, well before full radiative processes are incorporated, and will help guide the interpretation of, e.g. Event Horizon Telescope data.

  15. Suppressing star formation in quiescent galaxies with supermassive black hole winds.

    PubMed

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-05-26

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

  16. GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O’Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; Ormiston, R.; Ortega, L. F.; O’Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of {12}-2+7 {M}ȯ and {7}-2+2 {M}ȯ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagnetic observations. The source’s luminosity distance is {340}-140+140 {Mpc}, corresponding to redshift {0.07}-0.03+0.03. We verify that the signal waveform is consistent with the predictions of general relativity.

  17. The low-metallicity QSO HE 2158 - 0107: a massive galaxy growing by accretion of nearly pristine gas from its environment?

    NASA Astrophysics Data System (ADS)

    Husemann, B.; Wisotzki, L.; Jahnke, K.; Sánchez, S. F.

    2011-11-01

    The metallicities of active galactic nuclei (AGN) are usually well above solar in their narrow-line regions, often reaching up to several times solar in their broad-line regions independent of redshift. Low-metallicity AGN are rare objects that have so far always been associated with low-mass galaxies hosting low-mass black holes (MBH106M⊙). We present integral field spectroscopy data of the low-redshift (z = 0.212) quasi-stellar object (QSO) HE 2158 - 0107 for which we find strong evidence of sub-solar NLR metallicities associated with a massive black hole (MBH ~ 3 × 108M⊙). The QSO is surrounded by a large extended emission-line region reaching out to 30 kpc from the QSO in a tail-like geometry. We present optical and near-infrared images and investigate the properties of the host galaxy. The host of HE 2158 - 0107 is most likely a very compact bulge-dominated galaxy with a size of re ~ 1.4 kpc. The multi-colour spectral energy distribution (SED) of the host is quite blue, indicative of a significant young age stellar population formed within the last 1 Gyr. A 3σ upper limit of Lbulge,H < 4.5 × 1010L ⊙ ,H for the H-band luminosity and a corresponding stellar mass upper limit of Mbulge < 3.4 × 1010M⊙ show that the host is offset from the local black hole-bulge relations. This is independently supported by the kinematics of the gas. Although the stellar mass of the host galaxy is lower than expected, it cannot explain the exceptionally low metallicity of the gas. We suggest that the extended emission-line region and the galaxy growth are caused by the infall of nearly pristine gas from the environment of the QSO host. Minor mergers of low-metallicity dwarf galaxies or the theoretically predicted smooth accretion of cold (~ 104 K) gas are both potential drivers behind that process. Because the metallicity of the gas in the QSO narrow-line region is much lower than expected, we suspect that the external gas has already reached the galaxy centre and may

  18. Andromeda's SMBH Projected Accretion Rate

    NASA Astrophysics Data System (ADS)

    Wilson, John

    2014-03-01

    A formula for calculating the half-life of galaxy clusters is proposed. A galactic half-life is the estimated amount of time that the most massive supermassive black hole (SMBH) in the galaxy cluster will have accreted one half of the mass in the cluster. The calculation is based on a projection of the SMBH continuing its exponentially decreasing rate of accretion that it had in its first 13 billion years. The calculated half-life for the Andromeda SMBH is approximately 1.4327e14 years from the Big Bang. Several proposals have suggested that black holes could be significant factors in the formation of new universes. Part of the verification or falsification of this hypothesis could be done by an N-body simulation. These simulations require an enormous amount of computer power and time. Some plausible projection of the growth of the supermassive black hole is needed to prepare an N-body simulation budget proposal. For now, this method provides an estimate for the growth rate of the Andromeda SMBH and deposition of the outcome of most of the galaxy cluster's mass which is either accreted by the SMBH, lost by ejection from the cluster, or lost in the form of energy.

  19. REVIEWS OF TOPICAL PROBLEMS: Masses of black holes in binary stellar systems

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, Anatolii M.

    1996-08-01

    Mass determination methods and their results for ten black holes in X-ray binary systems are summarised. A unified interpretation of the radial velocity and optical light curves allows one to reliably justify the close binary system model and to prove the correctness of determination of the optical star mass function fv(m).The orbit plane inclination i can be estimated from an analysis of optical light curve of the system, which is due mainly to the ellipsoidal shape of the optical star (the so-called ellipticity effect). The component mass ratio q = mx/mv is obtained from information about the distance to the binary system as well as from data about rotational broadening of absorption lines in the spectrum of the optical star. These data allow one to obtain from the value of fv(m) a reliable value of the black hole mass mx or its low limit, as well as the optical star mass mv. An independent estimate of the optical star mass mv obtained from information about its spectral class and luminosity gives us test results. Additional test comes from information about the absence or presence of X-ray eclipses in the system. Effects of the non-zero dimension of the optical star, its pear-like shape, and X-ray heating on the absorption line profiles and the radial velocity curve are investigated. It is very significant that none of ten known massive (mx > 3M\\odot) X-ray sources considered as black hole candidates is an X-ray pulsar or an X-ray burster of the first kind.

  20. The sustainable growth of the first black holes

    NASA Astrophysics Data System (ADS)

    Pezzulli, Edwige; Volonteri, Marta; Schneider, Raffaella; Valiante, Rosa

    2017-10-01

    Super-Eddington accretion has been suggested as a possible formation pathway of 109 M⊙ supermassive black holes (SMBHs) 800 Myr after the big bang. However, stellar feedback from BH seed progenitors and winds from BH accretion discs may decrease BH accretion rates. In this work, we study the impact of these physical processes on the formation of z ˜ 6 quasar, including new physical prescriptions in the cosmological, data-constrained semi-analytic model GAMETE/QSOdust. We find that the feedback produced by the first stellar progenitors on the surrounding does not play a relevant role in preventing SMBHs formation. In order to grow the z ≳ 6 SMBHs, the accreted gas must efficiently lose angular momentum. Moreover, disc winds, easily originated in super-Eddington accretion regime, can strongly reduce duty cycles. This produces a decrease in the active fraction among the progenitors of z ˜ 6 bright quasars, reducing the probability to observe them.

  1. Radio detections during two state transitions of the intermediate-mass black hole HLX-1.

    PubMed

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-08-03

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (~3 to 20 solar masses, M(⊙)) as well as supermassive black holes (~10(6) to 10(9) M(⊙)) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (~10(2) to 10(5) M(⊙)), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between ~9 × 10(3) M(⊙) and ~9 × 10(4) M(⊙).

  2. The ω{OMEGA} dynamo in accretion disks of rotating black holes.

    NASA Astrophysics Data System (ADS)

    Khanna, R.; Camenzind, M.

    1996-03-01

    We develop the kinematic theory of axisymmetric dynamo action in the innermost part of an accretion disk around a rotating black hole. The problem is formulated in the 3+1 split of Kerr spacetime. It turns out that the gravitomagnetic field of the hole gives rise to a dynamo current for the the poloidal magnetic field without any need of turbulent plasma motions even in axisymmetry. We show that Cowling's theorem does not apply in the Kerr metric. This gravitomagnetic dynamo effect (ω-effect) requires finite diffusivity and is enhanced by anomalous or turbulent magnetic diffusivity. The reformulation of the problem in the framework of mean field magnetohydrodynamics introduces the familiar α-effect. The dynamo equations are formally identical with their classical equivalents (i.e. equations for the α{OMEGA} dynamo in flat space), augmented by the general relativistic ω-effect-term as source. We have carried out time-dependent numerical simulations of the dynamo in a turbulent differentially rotating accretion disk using a finite element code with implicit time-stepping. The advection of the magnetic field with the plasma is fully included. Solutions are discussed for extremely and less rapidly rotating black holes. We observe growing dipolar, quadrupolar and mixed modes, the second being, however, dominant. A common feature of all our simulations of the ω{OMEGA} dynamo is that it will finally build up a stellar like magnetosphere around the black hole, which blends into the outer disk field topology in a transition region. This finding enforces the analogy in the models of jet formation in AGN and YSOs. An interesting feature occurs for less rapidly rotating holes. The frame dragging effect introduces a boundary layer in the plasma rotation, where the plasma is prone to resistive magnetohydrodynamical instabilities such as the rippling mode or the tearing mode and thus the boundary layer has to be regarded as a potential site of particle acceleration. We also

  3. Central Stellar Mass Deficits in the Bulges of Local Lenticular Galaxies, and the Connection with Compact z ~ 1.5 Galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Graham, Alister W.

    2013-05-01

    We have used the full radial extent of images from the Hubble Space Telescope's Advanced Camera for Surveys and Wide Field Planetary Camera 2 to extract surface brightness profiles from a sample of six, local lenticular galaxy candidates. We have modeled these profiles using a core-Sérsic bulge plus an exponential disk model. Our fast rotating lenticular disk galaxies with bulge magnitudes MV <~ -21.30 mag have central stellar deficits, suggesting that these bulges may have formed from "dry" merger events involving supermassive black holes (BHs) while their surrounding disk was subsequently built up, perhaps via cold gas accretion scenarios. The central stellar mass deficits M def are roughly 0.5-2 M BH (BH mass), rather than ~10-20 M BH as claimed from some past studies, which is in accord with core-Sérsic model mass deficit measurements in elliptical galaxies. Furthermore, these bulges have Sérsic indices n ~3, half-light radii Re < 2 kpc and masses >1011 M ⊙, and therefore appear to be descendants of the compact galaxies reported at z ~ 1.5-2. Past studies which have searched for these local counterparts by using single-component galaxy models to provide the z ~ 0 size comparisons have overlooked these dense, compact, and massive bulges in today's early-type disk galaxies. This evolutionary scenario not only accounts for what are today generally old bulges—which must be present in z ~ 1.5 images—residing in what are generally young disks, but it eliminates the uncomfortable suggestion of a factor of three to five growth in size for the compact, z ~ 1.5 galaxies that are known to possess infant disks.

  4. Radio emission from an ultraluminous x-ray source.

    PubMed

    Kaaret, Philip; Corbel, Stephane; Prestwich, Andrea H; Zezas, Andreas

    2003-01-17

    The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.

  5. Stellar wind erosion of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Schnepf, N. R.; Lovelace, R. V. E.; Romanova, M. M.; Airapetian, V. S.

    2015-04-01

    An analytic model is developed for the erosion of protoplanetary gas discs by high-velocity magnetized stellar winds. The winds are centrifugally driven from the surface of rapidly rotating, strongly magnetized young stars. The presence of the magnetic field in the wind leads to Reynolds numbers sufficiently large to cause a strongly turbulent wind/disc boundary layer which entrains and carries away the disc gas. The model uses the conservation of mass and momentum in the turbulent boundary layer. The time-scale for significant erosion depends on the disc accretion speed, disc accretion rate, the wind mass-loss rate, and the wind velocity. The time-scale is estimated to be ˜2 × 106 yr. The analytic model assumes a steady stellar wind with mass- loss rate dot {M}}_w ˜ 10^{-10} M_{⊙} yr-1 and velocity vw ˜ 103 km s-1. A significant contribution to the disc erosion can come from frequent powerful coronal mass ejections (CMEs) where the average mass-loss rate in CMEs, dot{M}_CME, and velocities, vCME, have values comparable to those for the steady wind.

  6. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Nino, Armando; Valenzuela, Octavio; Pichardo, Barbara

    Assuming the dark matter halo of the Milky Way to be a non-spherical potential (i.e., triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo. In contrast with tidal streams, which are associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups were confirmed, they wouldmore » be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less

  7. Possible Imprints of Cold-mode Accretion on the Present-day Properties of Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Noguchi, Masafumi

    2018-01-01

    Recent theoretical studies suggest that a significant part of the primordial gas accretes onto forming galaxies as narrow filaments of cold gas without building a shock and experiencing heating. Using a simple model of disk galaxy evolution that combines the growth of dark matter halos predicted by cosmological simulations with a hypothetical form of cold-mode accretion, we investigate how this cold-accretion mode affects the formation process of disk galaxies. It is found that the shock-heating and cold-accretion models produce compatible results for low-mass galaxies owing to the short cooling timescale in such galaxies. However, cold accretion significantly alters the evolution of disk galaxies more massive than the Milky Way and puts observable fingerprints on their present properties. For a galaxy with a virial mass {M}{vir}=2.5× {10}12 {M}ȯ , the scale length of the stellar disk is larger by 41% in the cold-accretion model than in the shock-heating model, with the former model reproducing the steep rise in the size–mass relation observed at the high-mass end. Furthermore, the stellar component of massive galaxies becomes significantly redder (0.66 in u ‑ r at {M}{vir}=2.5× {10}12 {M}ȯ ), and the observed color–mass relation in nearby galaxies is qualitatively reproduced. These results suggest that large disk galaxies with red optical colors may be the product of cold-mode accretion. The essential role of cold accretion is to promote disk formation in the intermediate-evolution phase (0.5< z< 1.5) by providing the primordial gas having large angular momentum and to terminate late-epoch accretion, quenching star formation and making massive galaxies red.

  8. The vertical structure and stability of accretion disks surrounding black holes and neutron stars

    NASA Technical Reports Server (NTRS)

    Milsom, J. A.; Chen, Xingming; Taam, Ronald E.

    1994-01-01

    The structure and stability of the inner regions of accretion disks surrounding neutron stars and black holes have been investigated. Within the framework of the alpha viscosity prescription for optically thick disks, we assume the viscous stress scales with gas pressure only, and the alpha parameter, which is less than or equal to unity, is formulated as alpha(sub 0)(h/r)(exp n), where h is the local scale height and n and alpha(sub 0) are constants. We neglect advective energy transport associated with radial motions and construct the vertical structure of the disks by assuming a Keplerian rotation law and local hydrostatic and thermal equilibrium. The vertical structures have been calculated with and without convective energy transport, and it has been demonstrated that convection is important especially for mass accretion rates, M-dot, greater than about 0.1 times the Eddington value, M-dot(sub Edd). Although the efficiency of convection is not high, convection significantly modifies the vertical structure of the disk (as compared with a purely radiative model) and leads to lower temperatures at a given M-dot. The results show that the disk can be locally unstable and that for n greater than or = 0.75, an S-shaped relation can exist between M-dot and the column density, sigma, at a given radius. While the lower stable branch (derivative of M-dot/derivative of sigma greater than 0) and middle unstable branch (derivative of M-dot/derivative of sigma less than 0) represent structures for which the gas and radiation pressure dominate respectively, the stable upper branch (derivative of M-dot/derivative of sigma greater than 0) is a consequence of the saturation of alpha. This saturation of alpha can occur for large alpha(sub 0) and at M-dot less than or = M-dot(sub Edd). The instability is found to occur at higher mass accretion rates for neutron stars than for black holes. In particular, the disk is locally unstable for M-dot greater than or = 0.5 M-dot(sub Edd

  9. A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru K.

    2018-04-01

    We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.

  10. Accretion and Magnetic Reconnection in the Pre-Main Sequence Binary DQ Tau as Revealed through High-Cadence Optical Photometry

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto

    2016-01-01

    Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential

  11. The edge of galaxy formation - I. Formation and evolution of MW-satellite analogues before accretion

    NASA Astrophysics Data System (ADS)

    Macciò, Andrea V.; Frings, Jonas; Buck, Tobias; Penzo, Camilla; Dutton, Aaron A.; Blank, Marvin; Obreja, Aura

    2017-12-01

    The satellites of the Milky Way and Andromeda represent the smallest galaxies we can observe in our Universe. In this series of papers, we aim to shed light on their formation and evolution using cosmological hydrodynamical simulations. In this first paper, we focus on the galaxy properties before accretion, by simulating 27 haloes with masses between 5 × 108 and 1010 M⊙. Out of this set 19 haloes successfully form stars, while 8 remain dark. The simulated galaxies match quite well present day observed scaling relations between stellar mass, size and metallicity, showing that such relations are in place before accretion. Our galaxies show a large variety of star formation histories, from extended star formation periods to single bursts. As in more massive galaxies, large star formation bursts are connected with major mergers events, which greatly contribute to the overall stellar mass build up. The intrinsic stochasticity of mergers induces a large scatter in the stellar mass-halo mass relation, up to two orders of magnitude. Despite the bursty star formation history, on these mass scales baryons are very ineffective in modifying the dark matter profiles, and galaxies with a stellar mass below ≈106 M⊙ retain their cuspy central dark matter distribution, very similar to results from pure N-body simulations.

  12. Gravitational waves from extreme mass ratio inspirals around bumpy black holes

    NASA Astrophysics Data System (ADS)

    Moore, Christopher J.; Chua, Alvin J. K.; Gair, Jonathan R.

    2017-10-01

    The space based interferometer LISA will be capable of detecting the gravitational waves emitted by stellar mass black holes or neutron stars slowly inspiralling into the supermassive black holes found in the centre of most galaxies. The gravitational wave signal from such an extreme mass ratio inspiral (EMRI) event will provide a unique opportunity to test whether the spacetime metric around the central black hole is well described by the Kerr solution. In this paper a variant of the well studied ‘analytic kludge’ model for EMRIs around Kerr black holes is extended to a family of parametrically deformed bumpy black holes which preserve the basic symmetries of the Kerr metric. The new EMRI model is then used to quantify the constraints that LISA observations of EMRIs may be able to place on the deviations, or bumps, on the Kerr metric.

  13. Searching for intermediate-mass black holes in extremely-metal poor galaxies

    NASA Astrophysics Data System (ADS)

    Mezcua, Mar

    2016-09-01

    Extremely metal-poor dwarf galaxies (XMPs) are star-forming, low-mass galaxies with metallicites highly sub-solar. Their regions of star formation could be triggered by the accretion of pristine gas from the cosmic web and harbour Population III stars. XMPs are thus ideal laboratories for searching for the seed black holes or intermediate-mass black holes (IMBHs) that populated the early Universe. The combination of X-ray, radio and optical observations offer the best tool for detecting such IMBHs in the local Universe. We propose Chandra observations of a sample of XMPs whose optical spectra indicate the possible presence of an active black hole of 1e4 - 1e6 Msun. The Chandra data could confirm this and yield the first detection of an IMBH in these type of galaxies.

  14. Accretion tori and cones of ionizing radiation in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Acosta-Pulido, Jose A.; Perez-Fournon, Ismael; Calvani, Massimo; Wilson, Andrew S.

    1990-01-01

    The photoionization of extended narrow-line regions in Seyfert galaxies by the radiation produced in a thick accretion disk is studied. The emission-line spectrum is calculated for a range of black hole masses, varying the values of the ionization parameter and the disk size. It is found that models with a million solar masses fit observations of very large accretion disk sizes, while models with 10 million solar masses fit them better with smaller disks. The latter models are preferable since they have lower super-Eddington accretion rates.

  15. Probing Cosmic Gas Accretion with RESOLVE and ECO

    NASA Astrophysics Data System (ADS)

    Kannappan, Sheila; Eckert, Kathleen D.; Stark, David; Lagos, Claudia; Nasipak, Zachary; Moffett, Amanda J.; Baker, Ashley; Berlind, Andreas A.; Hoversten, Erik A.; Norris, Mark A.; RESOLVE Team

    2016-01-01

    We review results bearing on the existence, controlling factors, and mechanisms of cosmic gas accretion in the RESOLVE and ECO surveys. Volume-limited analysis of RESOLVE's complete census of HI-to-stellar mass ratios and star formation histories for ~1500 galaxies points to the necessity of an "open box" model of galaxy fueling, with the most gas-dominated galaxies doubling their stellar masses on ~Gyr timescales in a regime of rapid accretion. Transitions in gas richness and disk-building activity for isolated or central galaxies with halo masses near ~10^11.5 Msun and ~10^12 Msun plausibly correspond to the endpoints of a theoretically predicted transition in halo gas temperature that slows accretion across this range. The same mass range is associated with the initial grouping of isolated galaxies into common halos, where "isolated" is defined relative to the survey baryonic mass limits of >~10^9 Msun. Above 10^11.5 Msun, patterns in central vs. satellite gas richness as a function of group halo mass suggest that galaxy refueling is valved off from the inside out as the halo grows, with total quenching beyond the virial radius for halo masses >~10^13-13.5 Msun. Within the transition range from ~10^11.5-10^12 Msun, theoretical models predict >3 dex dispersion in ratios of uncooled halo gas to cold gas in galaxies (or more generally gas and stars). In RESOLVE and ECO, the baryonic mass function of galaxies in this transitional halo mass range displays signs of stripping or destruction of satellites, leading us to investigate a possible connection with halo gas heating using central galaxy color and group dynamics to probe group evolutionary state. Finally, we take a first look at how internal variations in metallicity, dynamics, and star formation constrain accretion mechanisms such as cold streams, induced extraplanar gas cooling, isotropic halo gas cooling, and gas-rich merging in different mass and environment regimes. The RESOLVE and ECO surveys have been

  16. ON THE RELIABILITY OF STELLAR AGES AND AGE SPREADS INFERRED FROM PRE-MAIN-SEQUENCE EVOLUTIONARY MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosokawa, Takashi; Offner, Stella S. R.; Krumholz, Mark R., E-mail: Takashi.Hosokawa@jpl.nasa.gov, E-mail: hosokwtk@gmail.com

    2011-09-10

    We revisit the problem of low-mass pre-main-sequence stellar evolution and its observational consequences for where stars fall on the Hertzsprung-Russell diagram (HRD). In contrast to most previous work, our models follow stars as they grow from small masses via accretion, and we perform a systematic study of how the stars' HRD evolution is influenced by their initial radius, by the radiative properties of the accretion flow, and by the accretion history, using both simple idealized accretion histories and histories taken from numerical simulations of star cluster formation. We compare our numerical results to both non-accreting isochrones and to the positionsmore » of observed stars in the HRD, with a goal of determining whether both the absolute ages and the age dispersions inferred from non-accreting isochrones are reliable. We show that non-accreting isochrones can sometimes overestimate stellar ages for more massive stars (those with effective temperatures above {approx}3500 K), thereby explaining why non-accreting isochrones often suggest a systematic age difference between more and less massive stars in the same cluster. However, we also find the only way to produce a similar overestimate for the ages of cooler stars is if these stars grow from {approx}0.01 M{sub sun} seed protostars that are an order of magnitude smaller than predicted by current theoretical models, and if the size of the seed protostar correlates systematically with the final stellar mass at the end of accretion. We therefore conclude that, unless both of these conditions are met, inferred ages and age spreads for cool stars are reliable, at least to the extent that the observed bolometric luminosities and temperatures are accurate. Finally, we note that the time dependence of the mass accretion rate has remarkably little effect on low-mass stars' evolution on the HRD, and that such time dependence may be neglected for all stars except those with effective temperatures above {approx}4000

  17. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  18. Black Holes across the Mass Spectrum-from Stellar Mass BH to ULXs and AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2006-01-01

    I will discuss the observational characteristics of black holes and how they compare across the 10^8 range in mass and as a function of luminosity and apparent Eddington ratio. I will concentrate on the broad band spectrum, the timing signatures and the energy budget of these objects. In particular I will stress the similarities and differences in the x-ray spectra and power density spectra of AGN, ultraluminous x-ray sources and galactic black holes as a function of 'state'. I will also discuss the nature of the Fe K line and other diagnostics of the regions near the event horizon.

  19. EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H-R DIAGRAMS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraffe, I.; Chabrier, G.; Gallardo, J.

    2009-09-01

    We present evolutionary models for young low-mass stars and brown dwarfs taking into account episodic phases of accretion at early stages of the evolution, a scenario supported by recent large surveys of embedded protostars. An evolution including short episodes of vigorous accretion followed by longer quiescent phases can explain the observed luminosity spread in H-R diagrams of star-forming regions at ages of a few Myr, for objects ranging from a few Jupiter masses to a few tenths of a solar mass. The gravitational contraction of these accreting objects strongly departs from the standard Hayashi track at constant T{sub eff}. Themore » best agreement with the observed luminosity scatter is obtained if most of the accretion shock energy is radiated away. The obtained luminosity spread at 1 Myr in the H-R diagram is equivalent to what can be misinterpreted as an {approx}10 Myr age spread for non-accreting objects. We also predict a significant spread in radius at a given T{sub eff}, as suggested by recent observations. These calculations bear important consequences for our understanding of star formation and early stages of evolution and on the determination of the initial mass function for young ({<=} a few Myr) clusters. Our results also show that the concept of a stellar birthline for low-mass objects has no valid support.« less

  20. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  1. Variability of accretion disks surrounding black holes: The role of inertial-acoustic mode instabilities

    NASA Technical Reports Server (NTRS)

    Chen, Xingming; Taam, Ronald E.

    1995-01-01

    The global nonlinear time-dependent evolution of the inertial-acoustic mode instability in accretion disks surrounding black holes has been investigated. The viscous stress is assumed to be proportional to the gas pressure only, i.e., tau = alphap(sub g). It is found that an oscillatory nonsteady behavior exists in the inner regions of disks (r is less than 10r(sub g) where r(sub g) is the Schwarzschild radius) for sufficiently large alpha(greater than or approximately equal to 0.2) and for mass accretion rates less than about 0.3 times the Eddington value. The variations of the integrated bolometric luminosity from the disk, Delta L/L, are less than 3%. A power spectrum analysis of these variations reveals a power spectrum which can be fitted to a power-law function of the frequency Pis proportional to f(exp -gamma), with index gamma = 1.4-2.3 and a low-frequency feature at about 4 Hz in one case. In addition, a narrow peak centered at a frequency corresponding to the maximum epicyclic frequency of the disk at approximately 100-130 Hz and its first harmonic is also seen. The low-frequency modulations are remarkably similar to those observed in black hole candidate systems. The possible existence of a scattering corona in the inner region of the disk and/or other processes contributing to the power at high frequencies in the inner region of the accretion disk may make the detection of the high-frequency component difficult.

  2. Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies.

    PubMed

    McConnell, Nicholas J; Ma, Chung-Pei; Gebhardt, Karl; Wright, Shelley A; Murphy, Jeremy D; Lauer, Tod R; Graham, James R; Richstone, Douglas O

    2011-12-08

    Observational work conducted over the past few decades indicates that all massive galaxies have supermassive black holes at their centres. Although the luminosities and brightness fluctuations of quasars in the early Universe suggest that some were powered by black holes with masses greater than 10 billion solar masses, the remnants of these objects have not been found in the nearby Universe. The giant elliptical galaxy Messier 87 hosts the hitherto most massive known black hole, which has a mass of 6.3 billion solar masses. Here we report that NGC 3842, the brightest galaxy in a cluster at a distance from Earth of 98 megaparsecs, has a central black hole with a mass of 9.7 billion solar masses, and that a black hole of comparable or greater mass is present in NGC 4889, the brightest galaxy in the Coma cluster (at a distance of 103 megaparsecs). These two black holes are significantly more massive than predicted by linearly extrapolating the widely used correlations between black-hole mass and the stellar velocity dispersion or bulge luminosity of the host galaxy. Although these correlations remain useful for predicting black-hole masses in less massive elliptical galaxies, our measurements suggest that different evolutionary processes influence the growth of the largest galaxies and their black holes.

  3. Powerful radiative jets in supercritical accretion discs around non-spinning black holes

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Narayan, Ramesh

    2015-11-01

    We describe a set of simulations of supercritical accretion on to a non-rotating supermassive black hole (BH). The accretion flow takes the form of a geometrically thick disc with twin low-density funnels around the rotation axis. For accretion rates {gtrsim } 10 dot{M}_Edd, there is sufficient gas in the funnel to make this region optically thick. Radiation from the disc first flows into the funnel, after which it accelerates the optically thick funnel gas along the axis. The resulting jet is baryon loaded and has a terminal density-weighted velocity ≈0.3c. Much of the radiative luminosity is converted into kinetic energy by the time the escaping gas becomes optically thin. These jets are not powered by BHrotation or magnetic driving, but purely by radiation. Their characteristic beaming angle is ˜0.2 rad. For an observer viewing down the axis, the isotropic equivalent luminosity of total energy is as much as 1048 erg s- 1 for a 107 M⊙ BH accreting at 103 Eddington. Therefore, energetically, the simulated jets are consistent with observations of the most powerful tidal disruption events, e.g. Swift J1644. The jet velocity is, however, too low to match the Lorentz factor γ > 2 inferred in J1644. There is no such conflict in the case of other tidal disruption events. Since favourably oriented observers see isotropic equivalent luminosities that are highly super-Eddington, the simulated models can explain observations of ultraluminous X-ray sources, at least in terms of luminosity and energetics, without requiring intermediate-mass BHs.

  4. FRB as products of accretion disc funnels

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2017-10-01

    The repeating FRB 121102, the only fast radio burst (FRB) with an accurately determined position, is associated with a variable persistent radio source. I suggest that an FRB originates in the accretion disc funnels of black holes. Narrowly collimated radiation is emitted along the wandering instantaneous angular momentum axis of accreted matter. This emission is observed as a fast radio burst when it sweeps across the direction to the observer. In this model, in contrast to neutron star (pulsar, RRAT or SGR) models, repeating FRBs do not have underlying periodicity and are co-located with persistent radio sources resulting from their off-axis emission. The model is analogous, on smaller spatial, lower mass and accretion rate and shorter temporal scales, to an active galactic nucleus (AGN), with FRB corresponding to blazars in which the jets point towards us. The small inferred black hole masses imply that FRBs are not associated with galactic nuclei.

  5. THE DUAL ORIGIN OF STELLAR HALOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotov, Adi; Hogg, David W.; Willman, Beth

    2009-09-10

    We investigate the formation of the stellar halos of four simulated disk galaxies using high-resolution, cosmological SPH + N-body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in galaxy formation. The simulated galaxies presented here each have a total mass of {approx}10{sup 12} M{sub sun}, but span a range of merger histories. These simulations allow us to study the competing importance of in situ star formation (stars formed in the primary galaxy) and accretion of stars from subhalos in the building of stellar halos in a {lambda}CDM universe. All four simulated galaxies are surroundedmore » by a stellar halo, whose inner regions (r < 20 kpc) contain both accreted stars, and an in situ stellar population. The outer regions of the galaxies' halos were assembled through pure accretion and disruption of satellites. Most of the in situ halo stars formed at high redshift out of smoothly accreted cold gas in the inner 1 kpc of the galaxies' potential wells, possibly as part of their primordial disks. These stars were displaced from their central locations into the halos through a succession of major mergers. We find that the two galaxies with recently quiescent merger histories have a higher fraction of in situ stars ({approx}20%-50%) in their inner halos than the two galaxies with many recent mergers ({approx}5%-10% in situ fraction). Observational studies concentrating on stellar populations in the inner halo of the Milky Way will be the most affected by the presence of in situ stars with halo kinematics, as we find that their existence in the inner few tens of kpc is a generic feature of galaxy formation.« less

  6. Fallback Accretion in Core-Collapse Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Gerling-Dunsmore, Hannalore J.; Ott, Christian D.

    2015-04-01

    Core-collapse supernovae (CCSNe) are expected to result in one of two kinds remnants: neutron stars (NSs) and black holes (BHs). It is believed that if a CCSN explosion fails, a BH results, and if the explosion is successful, a NS results. This certainly is the case if there is a strong explosion that unbinds the entire stellar mantle. However, in the case of a weak or severely asymmetric explosion, a substantial quantity of material may fall back. This is commonly called fallback accretion, and it is a potential means of BH formation. We study fallback accretion in spherically-symmetric (1D) neutrino-driven CCSNe using the open-source GR1D code. We obtain explosions by artificially enchancing neutrino energy deposition and in this way also control the explosion energy. We present results on the mapping from progenitor structure and explosion energy to amount and rate of fallback accretion. This research was partially supported by NSF Award No. AST-1212170.

  7. Optical veiling, disk accretion, and the evolution of T Tauri stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, L.W.; Kenyon, S.J.

    1990-01-01

    High-resolution spectra of 31 K7-M1 T Tauri stars (TTs) in the Taurus-Auriga molecular cloud demonstrate that most of these objects exhibit substantial excess emission at 5200 A. Extrapolations of these data consistent with low-resolution spectrophotometry indicate that the extra emission is comparable to the stellar luminosity in many cases. If this continuum emission arises in the boundary layers of accreting disks, more than about 30 percent of all TTs may be accreting material at a rate which is sufficiently rapid to alter their evolution from standard Hayashi tracks. It is estimated that roughly 10 percent of the final stellar massmore » is accreted in the TT phase. This amount of material is comparable to the minimum gravitationally unstable disk mass estimated by Larson and it is speculated that the TT phase represents the final stages of disk accretion driven by gravitational instabilities. 40 refs.« less

  8. The Prospect for Detecting Stellar Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Osten, Rachel A.; Crosley, Michael Kevin

    2018-06-01

    The astrophysical study of mass loss, both steady-state and transient, on the cool half of the HR diagram has implications bothfor the star itself and the conditions created around the star that can be hospitable or inimical to supporting life. Recent results from exoplanet studies show that planets around M dwarfs are exceedingly common, which together with the commonality of M dwarfs in our galaxy make this the dominant mode of star and planet configurations. The closeness of the exoplanets to the parent M star motivate a comprehensive understanding of habitability for these systems. Radio observations provide the most clear signature of accelerated particles and shocks in stars arising as the result of MHD processes in the stellar outer atmosphere. Stellar coronal mass ejections have not been conclusively detected, despite the ubiquity with which their radiative counterparts in an eruptive event (stellar flares) have. I will review some of the different observational methods which have been used and possibly could be used in the future in the stellar case, emphasizing some of the difficulties inherent in such attempts. I will provide a framework for interpreting potential transient stellar mass loss in light of the properties of flares known to occur on magnetically active stars. This uses a physically motivated way to connect the properties of flares and coronal mass ejections and provides a testable hypothesis for observing or constraining transient stellar mass loss. I will describe recent results using radio observations to detect stellar coronal mass ejections, and what those results imply about transient stellar mass loss. I will provide some motivation for what could be learned in this topic from space-based low frequency radio experiments.

  9. Backflows by active galactic nuclei jets: global properties and influence on supermassive black hole accretion

    NASA Astrophysics Data System (ADS)

    Cielo, S.; Antonuccio-Delogu, V.; Silk, J.; Romeo, A. D.

    2017-06-01

    Jets from active galactic nuclei (AGN) inflate large cavities in the hot gas environment around galaxies and galaxy clusters. The large-scale gas circulation promoted within such cavities by the jet itself gives rise to backflows that propagate back to the centre of the jet-cocoon system, spanning all the physical scales relevant for the AGN. Using an adaptive mesh refinement code, we study these backflows through a series of numerical experiments, aiming at understanding how their global properties depend on jet parameters. We are able to characterize their mass flux down to a scale of a few kiloparsecs to about 0.5 M⊙ yr-1 for as long as 15 or 20 Myr, depending on jet power. We find that backflows are both spatially coherent and temporally intermittent, independently of jet power in the range 1043-1045 erg s-1. Using the mass flux thus measured, we model analytically the effect of backflows on the central accretion region, where a magnetically arrested disc lies at the centre of a thin circumnuclear disc. Backflow accretion on to the disc modifies its density profile, producing a flat core and tail. We use this analytic model to predict how accretion beyond the black hole magnetopause is modified, and thus how the jet power is temporally modulated. Under the assumption that the magnetic flux stays frozen in the accreting matter, and that the jets are always launched via the Blandford-Znajek mechanism, we find that backflows are capable of boosting the jet power up to tenfold during relatively short time episodes (a few Myr).

  10. First Results on the Cluster Galaxy Population from the Subaru Hyper Suprime-Cam Survey. III. Brightest Cluster Galaxies, Stellar Mass Distribution, and Active Galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-Non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi

    2017-12-01

    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z∼ 1 to date. In this exploratory study of cluster galaxy evolution from z = 1 to z = 0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), the evolution of stellar mass and luminosity distributions, the stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high-redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Over the 230 deg2 area of the current HSC-SSP footprint, selecting the top 100 clusters in each of the four redshift bins allows us to observe the buildup of galaxy population in descendants of clusters whose z≈ 1 mass is about 2× {10}14 {M}ȯ . Our stellar mass is derived from a machine-learning algorithm, which is found to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs (about 35% between z = 1 and 0.3), and no evidence for evolution in both the total stellar mass–cluster mass correlation and the shape of the stellar mass surface density profile. We also present the first measurement of the radio luminosity distribution in clusters out to z∼ 1, and show hints of changes in the dominant accretion mode powering the cluster radio galaxies at z∼ 0.8.

  11. The Origin of Variability of the Intermediate-mass Black-hole ULX System HLX-1 in ESO 243-49

    NASA Astrophysics Data System (ADS)

    Lasota, J.-P.; Alexander, T.; Dubus, G.; Barret, D.; Farrell, S. A.; Gehrels, N.; Godet, O.; Webb, N. A.

    2011-07-01

    The ultra-luminous (LX <~ 1042 erg s-1) intermediate-mass black-hole (IMBH) system HLX-1 in the ESO 243-49 galaxy exhibits variability with a possible recurrence time of a few hundred days. Finding the origin of this variability would constrain the still largely unknown properties of this extraordinary object. Since it exhibits a hardness-intensity behavior characteristic of black-hole X-ray transients, we have analyzed the variability of HLX-1 in the framework of the disk instability model that explains outbursts of such systems. We find that the long-term variability of HLX-1 is unlikely to be explained by a model in which outbursts are triggered by thermal-viscous instabilities in an accretion disk. Possible alternatives include the instability in a radiation-pressure-dominated disk but we argue that a more likely explanation is a modulated mass transfer due to tidal stripping of a star in an eccentric orbit around the IMBH. We consider an evolutionary scenario leading to the creation of such a system and estimate the probability of its observation. We conclude, using a simplified dynamical model of the post-collapse cluster, that no more than 1/100 to 1/10 of M • <~ 104 M sun IMBHs—formed by runaway stellar mergers in the dense collapsed cores of young clusters—could have a few ×1 M sun main-sequence star evolve to an asymptotic giant branch on an orbit eccentric enough for mass transfer at periapse, while avoiding collisional destruction or being scattered into the IMBH by two-body encounters. The finite but low probability of this configuration is consistent with the uniqueness of HLX-1. We note, however, that the actual response of a standard accretion disk to bursts of mass transfer may be too slow to explain the observations unless the orbit is close to parabolic (and hence even rarer). Also, increased heating, presumably linked to the highly time-dependent gravitational potential, could shorten the relevant timescales.

  12. High energy spectrum of spherically accreting black holes

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Ostriker, J. P.

    1983-01-01

    Spherically accreting black holes may sustain strong collisionless shocks, downstream of which the fluid approximation is not valid. The proton-electron Coulomb exchange provides for the downstream matter diffusion into the hole. Energy conversion efficiencies upward of 10-30 percent are obtained, with most of the luminosity in hard X-rays and gamma-rays. The whole spectrum and its application for radio-quiet QSO's and galactic X- and gamma-ray sources are discussed.

  13. Upper Limit of the Viscosity Parameter in Accretion Flows around a Black Hole with Shock Waves

    NASA Astrophysics Data System (ADS)

    Nagarkoti, Shreeram; Chakrabarti, Sandip K.

    2016-01-01

    Black hole accretion is necessarily transonic; thus, flows must become supersonic and, therefore, sub-Keplerian before they enter into the black hole. The viscous timescale is much longer than the infall timescale close to a black hole. Hence, the angular momentum remains almost constant and the centrifugal force ˜ {l}2/{r}3 becomes increasingly dominant over the gravitational force ˜ 1/{r}2. The slowed down matter piles creating an accretion shock. The flow between shock and inner sonic point is puffed up and behaves like a boundary layer. This so-called Comptonizing cloud/corona produces hard X-rays and jets/outflows and, therefore, is an important component of black hole astrophysics. In this paper, we study steady state viscous, axisymmetric, transonic accretion flows around a Schwarzschild black hole. We adopt a viscosity parameter α and compute the highest possible value of α (namely, {α }{cr}) for each pair of two inner boundary parameters (namely, specific angular momentum carried to horizon, lin and specific energy at inner sonic point, E({x}{in})) which is still capable of producing a standing or oscillating shock. We find that while such possibilities exist for α as high as {α }{cr}=0.3 in very small regions of the flow parameter space, typical {α }{cr} appears to be about ˜0.05-0.1. Coincidentally, this also happens to be the typical viscosity parameter achieved by simulations of magnetorotational instabilities in accretion flows. We therefore believe that all realistic accretion flows are likely to have centrifugal pressure supported shocks unless the viscosity parameter everywhere is higher than {α }{cr}.

  14. Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Forbes, Duncan; Hargis, Jonathan R.; Peter, Annika; Pucha, Ragadeepika; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2018-06-01

    We discuss our ongoing observational program to comprehensively map the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. Our results will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. This program has already yielded the discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB, and at least two additional candidate satellites. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  15. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-07-01

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, I.e., state transitions in galactic black hole binaries (GBHBs), and large systems, I.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ - ϕ stress that is less than the generic r - ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.

  16. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, J. Drew; Reynolds, Christopher S.

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to supportmore » this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ − ϕ stress that is less than the generic r − ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.« less

  17. Stellar-to-halo mass relation of cluster galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can bemore » used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.« less

  18. Stellar-to-halo mass relation of cluster galaxies

    DOE PAGES

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; ...

    2017-07-04

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can bemore » used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.« less

  19. Wandering Supermassive Black Holes in Milky-Way-mass Halos

    NASA Astrophysics Data System (ADS)

    Tremmel, Michael; Governato, Fabio; Volonteri, Marta; Pontzen, Andrew; Quinn, Thomas R.

    2018-04-01

    We present a self-consistent prediction from a large-scale cosmological simulation for the population of “wandering” supermassive black holes (SMBHs) of mass greater than 106 M ⊙ on long-lived, kpc-scale orbits within Milky Way (MW)-mass galaxies. We extract a sample of MW-mass halos from the ROMULUS25 cosmological simulation, which is uniquely able to capture the orbital evolution of SMBHs during and following galaxy mergers. We predict that such halos, regardless of recent merger history or morphology, host an average of 5.1 ± 3.3 SMBHs, including their central black hole, within 10 kpc from the galactic center and an average of 12.2 ± 8.4 SMBHs total within their virial radius, not counting those in satellite halos. Wandering SMBHs exist within their host galaxies for several Gyr, often accreted by their host halo in the early Universe. We find, with >4σ significance, that wandering SMBHs are preferentially found outside of galactic disks.

  20. Low-radiative efficiency accretion: Microphysics and applications to low-luminosity AGN

    NASA Astrophysics Data System (ADS)

    Quataert, Eliot James Leo

    There is growing dynamical evidence that most nearby galaxies contain central ``massive dark objects,'' most likely supermassive black holes. Accretion onto a supermassive black hole may therefore be commonplace, and not just restricted to quasars and active galactic nuclei (AGN). This hypothesis is supported by observational surveys which show that the majority of nearby galaxies have nuclear emission properties reminiscent of AGN. Their emission-line and bolometric luminosities are, however, ~102 - 105 times smaller than typical AGN. In this thesis I explore several issues related to the physics of these low luminosity active galactic nuclei (LLAGN). In particular, it has been proposed that LLAGN are supermassive black holes accreting mass via a radiatively inefficient advection-dominated accretion flow, in which most of the energy dissipated by turbulence is carried with the gas through the event horizon rather than being radiated. This requires that turbulence dissipate most of its energy into the protons, rather than the electrons. I calculate the heating of electrons and protons by the collisionless dissipation of magneto-hydrodynamic turbulence and argue that preferential proton heating can only be achieved for relatively subthermal magnetic fields (roughly β >~ 10, where β is the average ratio of the gas pressure to the magnetic pressure in the accretion flow). For stronger, near equipartition, magnetic fields (β ~ 1), the electrons receive most of the turbulent energy. I give an independent argument, based on a fluid model for the radial evolution of the magnetic energy density in the accretion flow, that magnetic fields in advection- dominated accretion flows may be somewhat subthermal. An alternative explanation for LLAGN is that they accrete mass at very low rates. This is, however, inconsistent with accretion rate estimates (based on Bondi's method) in nearby massive elliptical galaxies and the center of our Galaxy. I give a detailed discussion of