OUTFLOWS FROM DYNAMO-ACTIVE PROTOSTELLAR ACCRETION DISCS BRIGITTA VON REKOWSKI1 , AXEL BRANDENBURG2, Newcastle, UK Abstract. An axisymmetric model of a cool, dynamo-active accretion disc is applied by the disc dynamo driven by the magneto-rotational instability and some ...
E-print Network
We present the first results of a global axisymmetric simulation of accretion on to rotating magnetized stars from a turbulent accretion disc, where the turbulence is driven by the magnetorotational instability (MRI). We observed that the angular momentum is transported outwards by the magnetic stress and accretion ...
NASA Astrophysics Data System (ADS)
We analyse some properties of circumplanetary discs. Flow through such discs may provide most of the mass to gas giant planets, and such discs are likely sites for the formation of regular satellites. We model these discs as accretion discs subject to the tidal forces of ...
We numerically study the long-term evolution of the accretion disc around the neutron star in a coplanar Be/X-ray binary with a short period and a moderate eccentricity. From three-dimensional smoothed particle hydrodynamics simulations, we find that the disc evolves through three distinct phases, each characterized by different ...
We present optical spectroscopy of the microquasar SS433 covering a significant fraction of a precessional cycle of its jet axis. The components of the prominent stationary H? and H? lines are mainly identified as arising from three emitting regions: (i) a super-Eddington accretion disc wind, in the form of a broad component accounting ...
We consider the specific case of disc accretion for negligibly low viscosity and infinitely high electric conductivity. The key component in this model is the outflowing magnetized wind from the accretion disc, since this wind effectively carries away angular momentum of the accreting matter. ...
String theory predicts the existence of extremely compact objects spinning faster than Kerr black holes. The spacetime exterior to such superspinars is described by Kerr naked singularity geometry breaking the black-hole limit on the internal angular momentum. We demonstrate that the conversion of Kerr superspinars into a near-extreme black hole due to an accretion ...
We present time-dependent models of the remnant accretion discs created during compact object mergers, focusing on the energy available from accretion at late times and the composition of the disc and its outflows. We calculate the dynamics near the outer edge of the disc, which contains the ...
A range of important astrophysical systems consist of a strongly magnetic star accreting material from a surrounding disc. These include young stars in T Tauri systems, magnetic neutron stars in X-ray binaries and strongly magnetic white dwarfs in some cataclysmic variables. In all these objects, the stellar magnetic field disrupts the inner part of the ...
From observations collected with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope (CFHT) and with the NARVAL spectropolarimeter at the T�lescope Bernard Lyot (TBL), we report the detection of Zeeman signatures on the prototypical classical T Tauri star AA Tau, both in photospheric lines and accretion-powered emission lines. Using time series of ...
We investigate the properties of circumplanetary discs formed in three-dimensional, self-gravitating radiation hydrodynamical models of gas accretion by protoplanets. We determine disc sizes, scaleheights, and density and temperature profiles for different protoplanet masses, in solar nebulae of differing grain ...
We introduce a prescription for the luminosity from accreting protostars into smoothed particle hydrodynamics simulation and apply the method to simulations of five primordial minihaloes generated from cosmological initial conditions. We find that accretion luminosity delays fragmentation within the haloes but does not prevent it. In haloes that slowly ...
It has been clear for many years now that the process of accretion on to a compact object is largely dominated by magnetic fields. The magnetic field channels the accretion flow onto strongly magnetized stars such as magnetic white dwarfs (cataclysmic variables), and neutron stars (accreting X-ray pulsars). Magnetic fields are likely ...
Magnetic interactions between a protostar and its accretion disc can induce warping in the disc and produce secular changes in the stellar spin direction, so that the spin axis may not always be perpendicular to the disc. This may help to explain the 7� misalignment between the ecliptic plane of the Solar system ...
We present high-resolution 3D smoothed particle hydrodynamics simulations of the formation and evolution of protostellar discs in a turbulent molecular cloud. Using a piecewise polytropic equation of state, we perform two sets of simulations. In both cases, we find that isolated systems undergo a fundamentally different evolution than members of binary or multiple systems. ...
Gas falling quasi-spherically onto a Schwarzschild black hole can form an inner thin accretion disc if its specific angular momentum, $l$, exceeds $\\lmin\\approx 0.75r_gc$, where $r_g$ is the Schwarzschild radius. The standard disc model assumes $l\\gg\\lmin$. We argue that in many black-hole sources the ...
I calculate the specific angular momentum of mass accreted by a binary system embedded in the dense wind of a mass-losing asymptotic giant branch star. The accretion flow is of the Bondi-Hoyle-Lyttleton type. For most of the space of the relevant parameters the flow is basically an isothermal high Mach number accretion flow. I find ...
The formation and evolution of the circumstellar disc in the collapsing molecular cloud with and without magnetic field is investigated from the pre-stellar stage resolving both the molecular cloud core and the protostar itself. In the collapsing cloud core, the first (adiabatic) core appears prior to the protostar formation. Reflecting the thermodynamics of the collapsing ...
Radial oscillations resulting from axisymmetric perturbations in viscous accretion disks surrounding
NASA Technical Reports Server (NTRS)
In order to explain the main characteristics of the observed population of extrasolar planets and the giant planets in the Solar system, we need to get a clear understanding of which are the initial conditions that allowed their formation. To this end we develop a semi-analytical model for computing planetary systems formation based on the core instability model for the gas ...
May 13, 1999... observations of quiescent discs to determine the local physical properties of their atmospheres, and resolve their spatial dependence. ...
NASA Website
We present simulations of collapsing 100 M&sun; mass cores in the context of massive star formation. The effect of variable initial rotational and magnetic energies on the formation of massive stars is studied in detail. We focus on accretion rates and on the question under which conditions massive Keplerian discs can form in the ...
High Energy Astrophysics: Accretion Disks II 1/59 Accretion Disks II 1 The dynamical equations Astrophysics: Accretion Disks II 2/59 The simplest accretion disc model to construct is that of the thin disc on the azimuthal angle z #12;High Energy Astrophysics: ...
Star-forming disc galaxies such as the Milky Way need to accrete >~1 Msolar of gas each year to sustain their star formation. This gas accretion is likely to come from the cooling of the hot corona, however it is still not clear how this process can take place. We present simulations supporting the idea that ...
Fully self consistent calculations of the spectra emitted by active galactic nuclei accretion disks are presented. The inner, radiation dominated regions of standard, alpha disks are treated. Incoherent Compton scattering and emission/absorption of radiation by hydrogen and helium are included in computing the vertical temperature structure within the disk and the emergent ...
We carry out a time-dependent numerical simulation where both the hydrodynamics and the radiative transfer are coupled together. We consider a two-component accretion flow in which the Keplerian disc is immersed inside an accreting low angular momentum flow (halo) around a black hole. The injected soft photons from the Keplerian ...
We report results from radiation hydrodynamical simulations of the collapse of molecular cloud cores to form protostars. The calculations follow the formation and evolution of the first hydrostatic core/disc, the collapse to form a stellar core, and effect of stellar core formation on the surrounding disc and ...
We continue our study of weakly ionized protostellar accretion discs that are threaded by a large-scale magnetic field and power a centrifugally driven wind. It has been argued that there is already evidence in several protostellar systems that such a wind transports a significant fraction of the angular momentum from at least some part of the ...
Chapitre IV Accretion Disc Outbursts: A New Version of an Old Model Jean�Marie HAMEURY, 1 Kristen inferred. In particular we show that outside�in outbursts are possible when a standard bimodal behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 #12; 86 Accretion Disc Outbursts: A New ...
We investigate numerically and semi-analytically the collapse of low-mass, rotating prestellar cores. Initially, the cores are in approximate equilibrium with low rotation (the initial ratio of thermal to gravitational energy is ?0~= 0.5, and the initial ratio of rotational to gravitational energy is ?0= 0.02-0.05). They are then subjected to a steady increase in external pressure. Fragmentation ...
We study the stellar discs and spheroids in eight simulations of galaxy formation within Milky Way mass haloes in a ? cold dark matter cosmology. The first paper in this series concentrated on disc properties. Here we extend this analysis to study how the formation history, structure and dynamics of discs and spheroids relate to the ...
We performed global three-dimensional magnetohydrodynamic simulations of accretion on to a star with magnetic field and other properties close to those observed in the classical T Tauri star BP Tau. We observed in the simulations that the disc is disrupted by the dipole component and matter flows towards the star in two funnel streams which ...
In this letter we show that the observed gamma -ray luminosity can be produced by an accretion disc around a non-magnetic neutron star or low mass black hole in which the dominant dissipative process in the disc is due to magnetic fields. The shearing mot...
National Technical Information Service (NTIS)
The presence of alpha-viscosity in the atmospheres of accretion discs is investigated. It results in the existence of coronae and/or winds. When discs are illuminated by the central X-ray sources, the mass loss may be a significant fraction of the total m...
In the hierarchical galaxy formation model, today's galaxies are the product of frequent galaxy merging, triggering the activity of active galactic nuclei and forming a supermassive black hole binary. A binary may become stalling at the parsec scale and is expected to be detected in nearby normal galaxies, which is inconsistent with observations. In this paper, we investigate ...
We study the mass flow rate through a disc resulting from a varying mass-supply rate. Variable mass-supply rate occurs, for example, during disc state transitions, and in interacting eccentric binaries. It is, however, damped by the viscosity of the disc. Here, we calculate this damping in detail. We derive an analytical description of ...
We formulate and solve the equations governing the transonic behaviour of a general relativistic black-hole accretion disc with non-zero advection velocity. We demonstrate that a relativistic Rankine Hugoniot shock may form leading to the formation of accretion powered outflow. We show that the critical points of ...
Star formation is thought to be triggered by gravitational collapse of the dense cores of molecular clouds. Angular momentum conservation during the collapse results in the progressive increase of the centrifugal force, which eventually halts the inflow of material and leads to the development of a central mass surrounded by a disc. In the presence of an angular momentum ...
Accretion discs with masses ~10-3-0.1Msolar are believed to form during the merger of a neutron star (NS) with another NS and the merger of a NS with a black hole (BH). Soon after their formation, such hyperaccreting discs cool efficiently by neutrino emission and their composition is driven neutron-rich by pair ...
When considering the X-ray spectrum resulting from the reflection off the surface of accretion discs of AGN, it is necessary to account for the variation in reflected flux over the disc, i.e. the emissivity profile. This will depend on factors including the location and geometry of the X-ray source and the disc ...
We have investigated how envelope pollution by icy planetesimals affects the critical core mass for gas giant formation and the gas accretion time-scales. In the core-accretion model, runaway gas accretion is triggered after a core reaches a critical core mass. All the previous studies on the core-accretion model ...
We model circumplanetary discs as accretion discs subject to the tidal forces of the central star. The tidal torques remove the disc angular momentum near the disc outer edge and permit the accreting disc gas to lose angular momentum at the rate ...
We explore the properties of an optical transient event formed by the destruction of a planet by a brown dwarf (BD) - a BD-planet mergerburst. When a massive planet approaches a BD towards a merging process it will be tidally destroyed and will form an accretion disc around the BD. The viscosity in the ...
The accretion disc eclipse mapping method is an astrotomographic inversion technique that makes use of the information contained in eclipse light curves to probe the structure, the spectrum and the time evolution of accretion discs in cataclysmic variables. This paper presents examples of eclipse mapping results ...
The evolution of the magnetic field of an accreting magnetic white dwarf with an initially dipolar field at the surface has been studied for non-spherical accretion under simplifying assumptions. Accretion on to the polar regions tends to advect the field toward the stellar equator which is then buried. This tendency is countered by ...
The activity of active galaxies may be triggered by the merging of galaxies, and present-day galaxies are probably the product of successive minor mergers. The frequent galactic mergers at high redshift imply that active galaxies harbour supermassive unequal-mass binary black holes at their centre at least once during their lifetime. The secondary black hole interacts and becomes coplanar with the ...
We studied the disc emission component hidden in the single-peaked broad emission lines (BELs) of active galactic nuclei using a two-component model. We assumed that the broad lines are formed in an accretion disc plus a surrounding non-disc region, with isotropic cloud velocities. To compare ...
A small fraction of core-collapse supernovae (SNe) show evidence that the outgoing blast wave has encountered a substantial mass ~1-10Msolar of circumstellar matter (CSM) at radii ~102-103 au, much more than can nominally be explained by pre-explosion stellar winds. In extreme cases, this interaction may power the most luminous, optically energetic SNe yet discovered. Interpretations for the ...
One possible scenario for the formation of massive black holes (BHs) in the early Universe is from the direct collapse of primordial gas in atomic-cooling dark matter haloes in which the gas is unable to cool efficiently via molecular transitions. We study the formation of such BHs, as well as the accretion of gas on to these objects and the high energy radiation emitted in ...
The magnetic field of the classical T Tauri star V2129 Oph can be modelled approximately by superposing slightly tilted dipole and octupole moments, with polar magnetic field strengths of 0.35 and 1.2 kG, respectively, as observed by Donati et al. Here we construct a numerical model of V2129 Oph incorporating this result and simulate accretion on to the star using a ...
Accretion discs are composed of ionized gas in motion around a central object. Sometimes, the disc is the source of powerful bipolar jets along its rotation axis. Theoretical models invoke the existence of a bipolar magnetic field crossing the disc and require two conditions to produce powerful jets: field lines ...
Wind flows and collimated jets are believed to be a feature of a range of disc accreting systems. These include active galactic nuclei, T Tauri stars, X-ray binaries and cataclysmic variables. The observed collimation implies large-scale magnetic fields and it is known that dipole-symmetry fields of sufficient strength can channel wind flows emanating from ...
We report calculations of the evolution, under Reynolds viscosity, of the massive gaseous accretion discs thought to form in the centres of galaxies as a result of major galactic mergers at early epochs. Starting with the formation of such a disc and the postulated existence of a low-mass �seed� black hole, we ...
The discovery of planets around other stars has revealed that planet formation is ubiquitous. However, the mechanisms determining planet formation are not (yet) well-understood. Primordial protoplanetary discs consist 99% out of gas, and only 1% out of dust. With time, those discs are believed to evolve from a flaring geometry into a flat geometry, as the ...
We report results from calculations investigating stationary magnetic field configurations in accretion discs around magnetised neutron stars. Our strategy is to start with a very simple model and then progressively improve it, providing complementary insight into results obtained with large numerical simulations. In our first model, presented here, we ...
We study the eccentricity distribution of a thick-disc sample of stars (defined as those with Vy > 50 km s-1 and 1 < |z|/kpc < 3) observed in the Radial Velocity Experiment (RAVE). We compare this distribution with those obtained in four simulations of galaxy formation taken from the literature as compiled by Sales et al. Each simulation emphasizes different scenarios ...
We study the evolution of a massive black hole pair in a rotationally supported nuclear disc. The distributions of stars and gas mimic the nuclear region of a gas-rich galaxy merger remnant. Using high-resolution SPH simulations, we follow the black hole dynamics and trace the evolution of the underlying background, until the black holes form a binary. We ...
We track the coevolution of supermassive black holes (SMBHs) and their host galaxies through cosmic time. The calculation is embedded in the GALFORM semi-analytic model which simulates the formation and evolution of galaxies in a cold dark matter (CDM) universe. The black hole (BH) and galaxy formation models are coupled: during the evolution of the host galaxy, hot and cold gas are added to the ...
We present high-speed spectroscopic observations of the intermediate polar (IP) DQ Herculis. Doppler tomography of two HeI lines reveals a spiral density structure in the accretion disc around the white dwarf (WD) primary. The spirals look very similar to the spirals seen in dwarf novae during outburst. DQ Her is the first well-established IP in which ...
We present the results of hydrodynamic simulations of the formation and subsequent orbital evolution of giant planets embedded in a circumbinary disc. We assume that a 20 earth masses core has migrated to the edge of the inner cavity formed by the binary where it remains trapped by corotation torques. This core is then allowed to ...
Mergers of black hole-neutron star (BHNS) binaries offer a remarkable opportunity to study strongly-curved space-time and supernuclear-density matter in the most extreme, dynamical conditions. The gravitational waves emitted as they spiral in and merge should be detectable by Advanced LIGO and VIRGO, while the accretion disc which ...
The broad iron line profile in the X-ray spectra of active galactic nuclei and black hole X-ray binaries allows us to constrain the spin parameter of the black hole. In my talk I will summarize the main effects of strong gravity on the emitted radiation from the optically thick and geometrically thin Keplerian accretion disc near the black hole that ...
We performed a systematic analysis of all INTEGRAL observations from 2003 to 2009 of 14 supergiant fast X-ray transients (SFXTs), implying a net exposure time of about 30 Ms. For each source we obtained light curves and spectra (3-100 keV), discovering several new outbursts. We discuss the X-ray behaviour of SFXTs emerging from our analysis in the framework of the clumpy wind ...
We consider the effects of supernovae (SNe) on accretion and star formation in a massive gaseous disc in a large primeval galaxy. The gaseous disc we envisage, roughly 1 kpc in size with >~108Msolar of gas, could have formed as a result of galaxy mergers where tidal interactions removed angular momentum from gas ...
We extract all the XMM-Newton European Photon Imaging Camera (EPIC) pn burst mode spectra of GX 339-4, together with simultaneous/contemporaneous RXTE data. These include three disc-dominated and two soft intermediate spectra, and the combination of broad bandpass/moderate spectral resolution gives some of the best data on these bright soft states in black hole binaries. The ...
The formation of a circumplanetary disc and accretion of angular momentum on to a protoplanetary system are investigated using three-dimensional hydrodynamical simulations. The local region around a protoplanet in a protoplanetary disc is considered with sufficient spatial resolution: the region from outside the Hill sphere to the ...
Hyper-accretion discs around black holes emit copious neutrinos and anti-neutrinos. A fraction of the emitted neutrinos convert to electron-positron plasma above the disc through the annihilation reaction $\
thin accretion discs boundary layms are presented for classical '1'l'auri stars, for various values of M* (0.8, l. OMO), R* (1 .6, '2.15, 4.3}~) and M ...
Galactic nuclei should contain a cluster of stars and compact objects in the vicinity of the central supermassive black hole due to stellar evolution, minor mergers and gravitational dynamical friction. By analogy with protoplanetary migration, nuclear cluster objects (NCOs) can migrate in the accretion discs that power active galactic nuclei (AGN) by ...
Recent observations have shown that in many exoplanetary systems the spin axis of the parent star is misaligned with the planet's orbital axis. These have been used to argue against the scenario that short-period planets migrated to their present-day locations due to tidal interactions with their natal discs. However, this interpretation is based on the assumption that the ...
In the past few years, dusty discs have been observed around several evolved objects. Around post-AGB binaries they appear more often than not, and they have been seen at the center of planetary nebulae. The formation of such discs could, according to theory, occur in different ways, among which a common envelope phase or wind ...
Context: When a galaxy acquires material from the outside, it is likely that the resulting angular momentum of the accreted material is decoupled from that of the pre-existing galaxy. The presence of stars counter-rotating with respect to other stars and/or gas represents an extreme case of decoupling. Aims: NGC 5719, an almost edge-on Sab galaxy with a prominent skewed dust ...
Emission-Line Variability and Implications for Reverberation Mapping: Ballantyne , D. R., .... Impact of reverberation in flared accretion discs on temporal ...
We present fully self-consistent calculations of the spectra emitted by accretion disks in active galactic nuclei. We treat the inner, radiation-pressure-dominated regions of standard alpha-disks. Incoherent Compton scattering and emission/absorption of radiation by hydrogen and helium are included in compting the vertical temperature structure within the disk and the emergent ...
We numerically model fragmentation of a gravitationally unstable gaseous disc under conditions that may be appropriate for the formation of the young massive stars observed in the central parsec of our Galaxy. In this study, we adopt a simple prescription with a locally constant cooling time. We find that, for cooling times just short enough to induce disc ...
Context. A large fraction of stars, including young T Tauri stars, are observed to be members of binary or multiple systems. During the early stages of evolution when the individual binary stars are surrounded by a gaseous and dusty disc, the binary orbit plane and disc midplane may be mutually inclined. For the relatively thick protostellar ...
We present multidimensional non-local thermodynamic equilibrium radiative transfer models of hydrogen and helium line profiles formed in the accretion flows and the outflows near the star-disc interaction regions of classical T Tauri stars (CTTSs). The statistical equilibrium calculations, performed under the assumption of the Sobolev ...
Spectral features can arise by reflection of coronal X-rays on a black hole accretion disc. The resulting profile bears various imprints of a strong gravitational field acting on the light-emitting gas. The observed shape of the reflection line is formed by integrating contributions over a range of radii across the ...
T Tauri stars (TTS) are low-mass pre-main-sequence stars that are accreting mass from the surrounding disc. The hotspots detected in some of them are probably heated by the release of gravitational energy in the accretion of the disc material on to the star. In this work we study the UV spectrum of the hotspot ...
We suggest that low-mass hydrogen-burning stars like the Sun should sometimes form with massive extended discs, and we show, by means of radiation hydrodynamic simulations, that the outer parts of such discs (R >~ 100au) are likely to fragment on a dynamical time-scale (103 to 104yr), forming low-mass ...
Recent discoveries of strongly misaligned transiting exoplanets pose a challenge to the established planet formation theory which assumes planetary systems to form and evolve in isolation. However, the fact that the majority of stars actually do form in star clusters raises the question how isolated forming planetary systems really ...
Black holes grow by accreting matter from their surroundings. However, angular momentum provides an efficient natural barrier to accretion and so only the lowest angular momentum material will be available to feed the black holes. The standard subgrid model for black hole accretion in galaxy formation simulations - based on the ...
The structure of planetary systems around their host stars depends on their initial formation conditions. Massive planets will likely be formed as a consequence of rapid migration of planetesimals and low-mass cores into specific trapping sites in protoplanetary discs. We present analytical modelling of inhomogeneities in protoplanetary ...
It is shown that some aspects of the accretion disc physics can be experimentally simulated with the use of an array of properly directed plasma jets created by intense laser beams. For the laser energy of 1 to 3 kJ, one can create a quasi-planar disc with the Reynolds number exceeding 104 and magnetic Reynolds number in the range of ...
Local hydromagnetic simulations of accretion-disc turbulence currently provide the most convincing evidence that the origin of turbulence in discs could be the Balbus-Hawley magnetorotational instability. The main results of such calculations are highlighted with particular emphasis on the generation of large-scale magnetic fields. Comparison with ...
We present 3D numerical simulations of the early evolution of long-duration gamma-ray bursts in the collapsar scenario. Starting from the core collapse of a realistic progenitor model, we follow the formation and evolution of a central black hole and centrifugally balanced disc. The dense, hot accretion disc produces freely escaping ...
Ultraviolet observations of classical T Tauri Stars (cTTSs) have shown that there is a hot (Te? 80 000 K) and dense (ne? 1010 cm-3) component associated with the large-scale jet. This hot component is formed very close to the base of the jet providing fundamental information on the jet formation mechanism. In this series, we have investigated whether this component can be ...
We study the effects of a global magnetic field on viscously rotating and vertically integrated accretion discs around compact objects using a self-similar treatment. We extend Akizuki & Fukue's work by discussing a general magnetic field with three components (r, ?, z) in advection-dominated accretion flows (ADAFs). We also ...
We construct Super-Eddington Slim discs models around both stellar and supermassive black holes by allowing the formation of a porous layer with a reduced effective opacity. Unlike the standard scenario in which the discs become thick, super-Eddington discs remain slim. In addition, they accelerate a significant wind with a 'thick ...
As a formation route for objects such as giant planets and low-mass stars in protostellar discs (as well as stars in AGN discs), theories of self-gravitating disc fragmentation need to be able to predict the initial masses of fragments. We describe a means by which the local Jeans mass inside the spiral structure of a self-gravitating ...
Aims: Bipolarity in proto-planetary and planetary nebulae is associated with events occurring in or around their cores. Past infrared observations have revealed the presence of dusty structures around the cores, many in the form of discs. Characterising those dusty discs provides invaluable constraints on the physical processes that ...
A common feature of hierarchical galaxy formation models is the process of `inverse' morphological transformation: a bulge dominated galaxy accretes a gas disc, dramatically reducing the system's bulge-to-disc mass ratio. During their formation, present-day galaxies may execute many such cycles across the Hubble diagram. A good ...
Located at the centre of our Galaxy is Sgr A*, a 3 million Msun super-massive black hole (SMBH). Sgr A* is hundreds of times closer than any other known SMBH, and as such it is an ideal object to study accretion physics. Recent observations have revealed the presence of dozens of young mass-losing stars. The winds from these stars provide in principle enough material to ...
We argue that brown dwarfs (BDs) and planemos form by the same mechanisms as low-mass hydrogen-burning stars, but that as one moves to lower and lower masses, an increasing fraction of these objects is formed by fragmentation of the outer parts (R ? 100 AU) of protostellar accretion discs around more massive ...
There has been considerable progress in our understanding of how massive stars form but still much confusion as to why they form. Recent work from several sources has shown that the formation of massive stars through disc accretion, possibly aided by gravitational and Rayleigh-Taylor instabilities is a viable ...
Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at ...
We consider the basic physical properties of matter forming a thin accretion disc in the static and spherically symmetric space-time metric of the vacuum f(R) modified gravity models. The Lagrangian of the generalized gravity theory is also obtained in a parametric form, and the conditions of the viability of the ...
Energy Citations Database
In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic ...
We find a self-consistent solution for the outflow rate from an accretion disc around a black hole. The centrifugal pressure dominated shock in a transonic accretion flow can act as a Compton cloud by emitting radiation in the form of hard X-rays. It is also the base of an outflow where considerable matter is ...
I present work on the accretion onto stellar mass black holes in several scenarios. Due to dynamical friction stellar mass black holes are expected to form high density cusps in the inner parsec of our Galaxy. These compact remnants may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. I ...
... Accession Number : ADD143663. Title : Spray Formed Waspaloy for Disc Forgings,. Descriptive Note : Conference Paper,. ...
DTIC Science & Technology
The accretion-induced collapse (AIC) of a white dwarf to form a neutron star can leave behind a rotationally supported disc with mass of up to ~ 0.1 Msolar. The disc is initially composed of free nucleons but as it accretes and spreads to larger radii, the free nucleons recombine to ...
We suggest that a high proportion of brown dwarf (BD) stars are formed by gravitational fragmentation of massive extended discs around Sun-like primary stars. We argue that such discs should arise frequently, but should be observed infrequently, precisely because they fragment rapidly. By performing an ensemble of ...
We propose to exploit the unique capabilities of it FUSE to monitor variations in the wind-formed spectral lines of 3 luminous, low-inclination, cataclysmic variables (CVs). Our principal goal is to improve our understanding of the dynamics of accretion-disc winds. We have previously used HST to investigate substantial and rapid (sim hours to minutes) ...
In order to investigate whether massive stars form similarly to their low-mass counterparts, we have used the standard envelope plus disc geometry successfully applied to low-mass protostars to model the near-IR to submillimetre spectral energy distribution (SED) and several mid-IR images of the embedded massive star IRAS 20126+4104. We have used a Monte ...
A generic expectation for gas accreted by high-mass haloes is that it is shock-heated to the virial temperature of the halo. In low-mass haloes, or at high redshift, however, the gas cooling rate is sufficiently rapid that an accretion shock is unlikely to form close to the virial radius. Instead, the accretion ...
We perform three-dimensional self-gravitating radiative transfer simulations of protoplanet migration in circumstellar discs to explore the impact upon migration of the radial temperature profiles in these discs. We model protoplanets with masses ranging between 10-100 M?, in discs with surface density profiles of ??r-1/2, and ...
The spin behaviour of a strongly magnetic star accreting from an internally disrupted disc is considered. The torques are calculated due to the interaction of the star with the disc and the accretion flow, together with the modified structure of the disc. The torques depend on the spin period ...
We present an analysis of deep Westerbork Synthesis Radio Telescope observations of the neutral hydrogen in 33 nearby early-type galaxies selected from a representative sample studied earlier at optical wavelengths with the SAURON integral-field spectrograph. This is the deepest homogeneous set of HI imaging data available for this class of objects. The sample covers both field environments and ...
Slim accretion discs have a total luminosity of the order L/L(sub E) = m (proportional to) 1, where L(sub E) is the Eddington luminosity and m = M/M(sub c), where M(sub c) is a critical accretion rate, related to the Teddington one. The local stability pr...
We study the stability of disc accretion in the recurrent nova RS Ophiuchi. We construct a one-dimensional time-dependent model of the binary-disc system, which includes viscous heating and radiative cooling and a self-consistent treatment of the binary potential. We find that the extended accretion ...
Context. In August 2008, the accreting milli-second X-ray pulsar (AMXP), IGR J00291+5934, underwent an outburst lasting ~100 days, the first since its discovery in 2004. Aims: We present data from the 2008 double-peaked outburst of IGR J00291+5934 from Faulkes Telescope North, the Isaac Newton Telescope, the Keck Telescope, PAIRITEL, the Westerbork Synthesis Radio Telescope ...
Material falling (accreting) onto a black hole in a binary system, or at the center of a galaxy, forms an accretion disk about the event horizon, with the inner ...
I present a model for acceleration of protons by the second-order Fermi process acting on randomly scrambled magnetic flux arches above an accretion disc. The accelerated protons collide with thermal protons in the disc, producing degraded energetic protons, charged and neutral pions, and neutrons. The pions produce gamma-rays by ...
The stress evolution process is taken into account in the linear stability analysis of standard thin accretion discs. We find that the growth rate of thermally unstable modes can decrease significantly owing to the stress delay, which may help to understand the quasi-periodic variability of GRS 1915+105. We also discuss the possible application of stress ...
Dawn space mission will provide the first, detailed data of two of the major bodies in the main asteroid belt, Vesta and Ceres. Through its connection with Howardite, Eucrite, Diogenite (HED) meteorites, Vesta is known as one of the first bodies to have accreted and differentiated in the solar nebula, predating the formation of Jupiter and surviving the violent evolution of ...
NGC 7217 is an unbarred early-type spiral galaxy having a multisegment exponential light profile and a system of star-forming rings of the unknown origin; it also possesses a circumnuclear gaseous polar disc. We analysed new long-slit spectroscopic data for NGC 7217 and derived the radial distributions of its stellar population parameters, and stellar and ...
We argue that jittering jets, i.e. jets that have their launching direction rapidly change, launched by the newly formed neutron star in a core-collapse supernova can explode the star. We show that under a wide range of parameters the fast narrow jets deposit their energy inside the star via shock waves, and form two hot bubbles, that eventually merge, ...
The persistent black hole binary LMC X-3 is the best system on which to test theoretical models on the shape of the accretion disc spectrum. This is due to the combination of very low absorbing column density along this line of sight, which allows the shape of the disc emission to be constrained at low energies, and its mass ...
Intermediate mass black holes (IMBHs; 101.3 to 105Msolar) are thought to form as relics of Population III stars or from the runaway collapse of stars in young clusters; their number and very existence are uncertain. We ran N-body simulations of Galactic IMBHs, modelling them as a halo population distributed according to a Navarro, Frenk & White (NFW) or a more concentrated ...
The fact that self-confined jets are observed around black holes, neutron stars and young forming stars points to a jet launching mechanism independent of the nature of the central object, namely the surrounding accretion disc. The properties of Jet Emitting Discs (JEDs) are briefly reviewed. It is argued that, ...
There are two fundamentally different physical origins of faint satellite galaxies: cosmological substructures that contain shining baryons and the fragmentation of gas-rich tidal arms thrown out from interacting galaxies during hierarchical structure formation. The latter tidal dwarf galaxies (TDGs) may form populations with correlated orbital angular momenta about their host ...
Using high resolution, fully cosmological smoothed particle hydrodynamical simulations of dwarf galaxies in a Lambda cold dark matter Universe, we show how high redshift gas outflows can modify the baryon angular momentum distribution and allow pure disc galaxies to form. We outline how galactic outflows preferentially remove low angular momentum material ...
Young massive stars in the central parsec of our Galaxy are best explained by star formation within at least one, and possibly two, massive self-gravitating gaseous discs. With help of numerical simulations, we here consider whether the observed population of young stars could have originated from a large angle collision of two massive gaseous clouds at R ~= 1pc from SgrA*. In ...
A widely supported formation scenario for the Galactic disc is that it formed inside-out from material accumulated via accretion events. The Sagittarius dwarf spheroidal galaxy (Sgr dSph) is the best example of such an accretion, and its ongoing disruption has resulted in that its stars are being deposited in the ...
millisecond pulsar SAX J1808.4-3658 during its 2002 outburst: evidence for a receding disc Askar Ibragimov1 2009 July 31. Received 2009 July 30; in original form 2008 December 29 ABSTRACT An outburst in the course of the outburst together with the reflection amplitude. These trends are in agreement
An approximation theory of the acceleration of particles in low-density shear flows is developed and is applied to a number of astrophysical flows including accretion disks, radial accretion, and convective turbulence. In the disk application, the theory suggests a mechanism by which the bulk of the accretion power may be converted to ...
We explore the role of X-ray photoevaporation in the evolution and dispersal of viscously evolving T Tauri discs. We show that the X-ray photoevaporation wind rates scale linearly with X-ray luminosity, such that the observed range of X-ray luminosities for solar-type T Tauri stars (1028-1031 erg s-1) gives rise to vigorous disc winds with rates of the ...
In this paper we analyze the behavior of the unusual dwarf nova EM Cyg using the data obtained in April-October, 2007, at the Vyhorlat observatory (Slovak Republic) and in September, 2006, at the Crimean Astrophysical Observatory (Ukraine). During our observations, EM Cyg has shown outbursts in every 15-40 days. Because on the light curves of EM Cyg a partial eclipse of the ...
We discuss transportation and redistribution of energy and angular momentum in the magnetic connection (MC) process and Blandford-Payne (BP) process. MC results in readjusting the interior viscous torque, and its effects are operative not only in but also beyond the MC region. The BP process is invoked to transfer the �excessive� angular momentum from an accretion ...
Bounds are placed on the growth rates of dynamical instability in shear flows in accretion discs and tori. Ft is shown that the critical layer lies in the flow even when the boundaries are free for flows in accretion discs, cylinders and isentropic, constant angular momentum tori (for which the relativistic effects ...
Gravitational instability plays an important role in driving gas accretion in massive protostellar discs. Particularly strong is the global gravitational instability which arises when the disc mass is of order 0.1 of the mass of the central star and has a characteristic spatial scale much greater than the disc's ...
In this paper we derive equations describing the dynamics and stationary configurations of a twisted fully relativistic thin accretion disc around a slowly rotating black hole. We assume that the inclination angle of the disc is small and that the standard relativistic generalization of the ? model of accretion ...
We present the results of global cylindrical disc simulations and local shearing box simulations of protoplanets interacting with a disc undergoing magnetohydrodynamic (MHD) turbulence. The specific emphasis of this paper is to examine and quantify the magnitude of the torque exerted by the disc on the embedded protoplanets as a ...
In studies of accreting black holes in binary systems, empirical relations have been proposed to quantify the coupling between accretion processes and ejection mechanisms. These processes are probed, respectively, by means of X-ray and radio/optical-infrared observations. The relations predict, given certain accretion conditions, the ...
Young low-mass stars are characterized by ejection of collimated outflows and by circumstellar discs which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn remove the excess angular momentum from the ...
The broadened iron lines observed from accreting compact objects are most easily interpreted in terms of reflection onto the accretion disc of the hard X-ray photons emitted by the central source. In this context, such a broadness is due to the relativistic motion of the reflecting plasma, in the deep gravitational well of the compact ...
The dynamics of an axisymmetric stationary disc of accreting magnetofluid with finite conductivity around a rotating compact object is presented here. Along with the Maxwell equations and the generalized Ohm law, the basic equations governing the motion of a finitely conducting plasma in a curved space-time around a slowly rotating compact object are ...
It is nowadays widely accepted that low mass star formation initiated from a molecular cloud undergoes a phase where the central object is surrounded by a disc, in which planets may form later. The study of such a disc mainly aims at the understanding of the evolutionary sequence of star formation and of planet formation. Radiative ...
... Note that the four black discs inside the illusory square appear closer ... motion-related occlusion information as occurs in the accretion and deletion ...
... Additonal cues such as accretion/deletion of texture (not considered here) are ... a perceptually vivid, illusory white square in a field of black discs. ...
May 13, 1999 ... Astro-tomography also has applications over timescales longer or ... optical and IR reprocessing off the accretion disc and companion star. ...
Hyper-accretion discs around black holes emit copious neutrinos and anti-neutrinos. A fraction of the emitted neutrinos convert to electron-positron plasma above the disc through the annihilation reaction ?. This process may drive relativistic jets associated with gamma-ray bursts (GRB) explosions. We calculate the efficiency of energy ...
, Baltimore, MD 21250, USA e-mail: mukai@milkyway.gsfc.nasa.gov Received ???; accepted ??? ABSTRACT Context
turbulent viscocity in accretion discs," Astrophys. Letter & Comm. 34, 383-388 56. Abramowicz, M. A
... onto aluminum or steel discs previously sprayed with silicon oil. A spray mask size of 5 mm ... ...
NBII National Biological Information Infrastructure
Radial velocity studies using optical emission lines (from the accretion discs) have been performed for a few TOADs. However, when mass determinations ...
The growth of planetesimals is an essential step in planet formation. Decimetre-size dust agglomerates mark a transition point in this growth process. In laboratory experiments we simulated the formation, evolution, and properties of decimetre-scale dusty bodies in protoplanetary discs. Small sub-mm size dust aggregates consisting of micron-size SiO2 particles randomly ...
We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. Our studies cover about seven orders of magnitude in accretion luminosity (expressed in Eddington units, i.e. as Eddington ratios) and the full range of AGN black hole masses. We find that AGNs ...
DOE Information Bridge
We present the first results from a project to model the prestellar cores in Ophiuchus, using initial conditions constrained as closely as possible by observation. The prestellar cores in Ophiuchus appear to be evolving in isolation - in the sense that the timescale on which an individual prestellar core collapses and fragments is estimated to be much shorter than the timescale on which it is ...
Optically violent variable quasars and BL Lac objects, which form a subclass of active galactic nuclei are termed as Blazars. Blazars show high degree variation in their flux and polarization in a relatively shorter period of time. They are strong radio sources with a non-stellar continuum. Most of the BL Lac objects do not show any emission lines though in some cases very ...
We study conditions for magnetocentrifugal jet launching from accretion discs around black holes, whereby large-scale magnetic field lines anchored in the disc may fling tenuous coronal gas outwards. We find that a disc around a critically spinning black hole may centrifugally launch a jet along the rotation axis.
This study inspects the light and radial-velocity curves of the eclipsing binary AV Del. In comparison with other studies already done, the study shows that the absolute elements, fundamental orbital and physical parameters of the system can be determined using the Wilson-Devinney code. Using these parameters, the configuration of the system is presented. Then, an accretion ...
We report on the numerical discovery of quasi-periodic oscillations (QPOs) associated with accretion through a non-axisymmetric magnetic boundary layer in the unstable regime, when two ordered equatorial streams form and rotate synchronously at approximately the angular velocity of the inner disc. The streams hit the star's surface ...
We investigate the evolution of a thin viscous disc surrounding a magnetic star, including the spin-down of the star by the magnetic torques it exerts on the disc. The transition from an accreting to a non-accreting state, and the change of the magnetic torque across the corotation radius rc are included in a ...
The main aim in the current survey is to suggest models of the development of structures, such as vortices and spirals, in accretion white dwarf's binaries. On the base of hydrodynamical analytical considerations it is applied numerical methods and simulations. It is suggested in the theoretical model the perturbation's parameters of the accretion flow, ...
CAN MASSIVE STARS BE FORMED BY ACCRETION? Harold W. Yorke. Jet Propulsion Laboratory, California Insitute of Technology, Pasadena, CA email: Harold. ...
The analysis of disc formation in this paper is based on the White & Rees model, in which disc galaxies form by the continuous cooling and accretion of gas within a merging hierarchy of dark matter haloes. A simple Kennicutt law of star formation for discs, based on a single-fluid ...
We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. We find that AGNs form two distinct and well separated sequences on the radio-loudness -- Eddington-ratio plane. We argue that these sequences mark the real upper bounds of radio-loudness of two distinct ...
The observation of the bright Seyfert 1 galaxy RE J1034+396 is believed to demonstrate a drift in the central period of the quasi-periodic oscillation (QPO) linearly correlated with the temporary X-ray luminosity. We show, using a specific scenario of the oscillation mechanism in a black hole accretion disc, that modelling such correlated trends puts very ...
In this paper we describe the application of the Smoothed Particle Hydrodynamics (SPH) method to the dynamics of protostellar discs, and in particular to the problem of characterising gravitational instabilities in such discs. Initially, we briefly describe the basic features of SPH, a Lagrangian mesh-free method of solving the equations of fluid dynamics ...
High-resolution two-dimensional magnetohydrodynamical simulations have been carried out to investigate the role of continuing infall of clumpy gas as a driver of turbulence in extended H I galactic discs. We have compared the responses of isothermal gas discs with sound speeds 4 and 8 km/s to infalling, condensed clouds. For mass ...
Highly nonstationary accretion onto a magnetized neutron star from a surrounding accretion disc is considered. Nonstationary accretion has been considered before in terms of droplets or rain or as a necessary consequence of instabilities in the accretion column flow. Here, the extreme of very ...
A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without magnetic a field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required ...
We use a multidimensional Monte Carlo code to compute X-ray spectra for a variety of active galactic nucleus (AGN) disc-wind outflow geometries. We focus on the formation of blueshifted absorption features in the Fe K band and show that line features similar to those which have been reported in observations are often produced for lines of sight through ...
Aims.We present a photometric study of the deeply eclipsing SW Sex-type nova-like cataclysmic variable star BH Lyn. Methods: .Time-resolved V-band CCD photometry was obtained for seven nights between 1999 and 2004. Results: .We determined 11 new eclipse timings of BH Lyn and derived a refined orbital ephemeris with an orbital period of 0.155875577(14) �. During the observations, BH Lyn was in ...
In this paper, we study the structure of the broad emission-line regions (BLRs) of the well-known double-peaked emitter (an active galactic nucleus with broad double-peaked low-ionization emission lines) 3C 390.3. Besides the best-fitting results for the double-peaked broad optical Balmer lines of 3C 390.3 obtained from the theoretical disc model, we also try to find another ...
in form- ing giant planets; the role of disc thermodynamics in determining the rate and direction disc properties. The possibility that outer planets form closer in but then migrate out was discussed distributions of exoplanets. (6) The mechanisms responsible for forming the terrestrial ...
The X-ray transient source XTE J1818-245 went through an outburst in 2005 that was observed during a multi-wavelength campaign from radio to soft ?-rays. We performed new optical observations with the ESO/NTT telescope at La Silla. The broad-band spectral energy distribution revealed that the outer parts of the accretion disc had to be irradiated by its ...
Dynamo�generated Turbulence and Outflows from Accretion Discs B y Axel Brandenburg Department scale magnetic fields. Comparison with mean�field dynamo theory is made. This theory is then used, in the case of the sun there is turbulent convection which leads to dynamo action. However, the strong shear
We report a time-lapse eclipse mapping analysis of B-band time-series of the nova-like variable UU Aqr along a typical stunted outburst in 2002 August. Disc asymmetries rotating in the prograde sense in the eclipse maps are interpreted as a precessing elliptical disc with enhanced emission at periastron. From the disc expansion ...
Context. Interpretation of the X-ray spectra of X-ray binaries during their hard states requires a hot, optically thin medium. There are several accretion disc models that account for this aspect. However, none is designed to simultaneously explain powerful jets detected during these states. Aims: A new quasi-Keplerian hot accretion ...
The observed properties of wind-formed resonance lines in the spectra of nova-like variables and dwarf novae in outburst, are discussed. A method is then presented of calculating inclination- and orbital-phase-dependent resonance line profiles formed in a constant-ionization wind flowing from an accretion disc ...
We present a grid of models of accreting brown dwarf systems with circumstellar discs. The calculations involve a self-consistent solution of both vertical hydrostatic and radiative equilibrium along with a sophisticated treatment of dust sublimation. We have simulated observations of the spectral energy distributions and several broad-band photometric ...
Young Sun-like stars at the beginning of the pre-main sequence (PMS) evolution are surrounded by accretion discs and remnant protostellar envelopes. Photometric and spectroscopic variations of these stars are driven by interactions of the star with the disc. Time scales and wavelength dependence of the variability carry information on ...
Young Sun-like stars at the beginning of the pre-main-sequence (PMS) evolution are surrounded by accretion discs and remnant protostellar envelopes. Photometric and spectroscopic variations of these stars are driven by interactions of the star with the disc. Time-scales and wavelength dependence of the variability carry information on ...
Accreting millisecond pulsars show significant variability of their pulse profiles, especially at low accretion rates. On the other hand, their X-ray spectra are remarkably similar with not much variability over the course of the outbursts. For the first time, we have discovered that during the 2008 outburst of SAX J1808.4-3658 a major pulse profile change ...
It was recently proposed that metal-rich white dwarfs (WDs) accrete their metals from compact discs of debris found to exist around more than a dozen of them. At the same time, elemental abundances measured in atmospheres of some WDs imply vigorous metal accretion at rates up to 1011 g s-1, far in excess of what can be supplied solely ...
In a recent work by the first author, we show that accretion discs in binary systems could retrogradely precess by the same physics that causes the Earth to retrogradely precess [i.e. tidal torques by the Moon and the Sun (or a secondary star) on a tilted, spinning, non-spherical Earth (or e.g. a primary star surrounded by an accretion ...
TWO�PHASE PAIR CORONA MODEL FOR AGN: PHYSICAL MODELLING AND DIAGNOSTICS Juri Poutanen 1;2 , Roland of the two�phase accretion disc�corona models for active galactic nuclei are compared with ob� servations. We a hemisphere�corona. Keywords: accretion, accretion discs; galaxies: ...
A newborn star is encircled by a remnant disc of gas and dust. A fraction of the disc coalesces into planets. Another fraction spirals inward and accretes onto the star. Accreting gas not only produces observed ultraviolet radiation, but also drags along embedded planets, helping to explain otherwise mysterious ...
We have performed a large set of high-resolution cosmological simulations using smoothed particle hydrodynamics to study the formation of the first luminous objects in the Lambda cold dark matter cosmology. We follow the collapse of primordial gas clouds in eight early structures and document the scatter in the properties of the first star-forming clouds. Our first objects ...
The formation and evolution of an accretion disk formed during the collapse of a rotating cloud core
Although massive stars play a critical role in the production of turbulent energy in the ISM, in the
Context: .Satellite accretion events have been invoked for mimicking the internal secular evolutionary processes of bulge growth. However, N-body simulations of satellite accretions have paid little attention to the evolution of bulge photometric parameters, to the processes driving this evolution, and to the consistency of this evolution with ...
We present the frequency-resolved energy spectra (FRS) of the low-mass X-ray binary dipper XB1323-619 during persistent emission in four different frequency bands using an archival XMM-Newton observation. FRS method helps to probe the inner zones of an accretion disc. XB1323-619 is an Atoll source and a type-I burster. We find that the FRS is well ...
The interest in X/ ?-ray Astronomy has grown enormously in the last decades thanks to the ability to send X-ray space missions above the Earth�s atmosphere. There are more than half a million X-ray sources detected and over a hundred missions (past and currently operational) devoted to the study of cosmic X/ ? rays. With the improved sensibilities of the currently active missions new detections ...
We investigate the behaviour of the accretion discs in the outbursts of the low-mass black hole X-ray binaries (BHXRBs), an overview of which we have presented previously. Almost all of the systems in which there are sufficient observations in the most-disc-dominated states show a variation in the disc luminosity ...