Sample records for accretion thermal evaporation

  1. A semi-analytical model of disk evaporation by thermal conduction

    NASA Astrophysics Data System (ADS)

    Dullemond, C. P.

    1999-01-01

    The conditions for disk evaporation by electron thermal conduction are examined, using a simplified semi-analytical 1-D model. The model is based on the mechanism proposed by Meyer & Meyer-Hofmeister ( te{meyermeyhof:1994}) in which an advection dominated accretion flow evaporates the top layers from the underlying disk by thermal conduction. The evaporation rate is calculated as a function of the density of the advective flow, and an analysis is made of the time scales and length scales of the dynamics of the advective flow. It is shown that evaporation can only completely destroy the disk if the conductive length scale is of the order of the radius. This implies that radial conduction is an essential factor in the evaporation process. The heat required for evaporation is in fact produced at small radii and transported radially towards the evaporation region.

  2. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.

    PubMed

    Turolla; Dullemond

    2000-03-01

    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xi<1&solm0;2). The Bernoulli number of the inflowing gas is negative if the transition radius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  3. Evaporation of Accretion Disks around Black Holes: The Disk-Corona Transition and the Connection to the Advection-dominated Accretion Flow.

    PubMed

    Liu; Yuan; Meyer; Meyer-Hofmeister; Xie

    1999-12-10

    We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-dominated accretion flow (ADAF) model to the observed spectra (for a review, see Narayan, Mahadevan, & Quataert) and determine where the transition of accretion via a cool disk to a coronal flow/ADAF would be located for these rates. We compare this with the observed location of the inner disk edge, as estimated from the maximum velocity of the Halpha emission line. We find that the transition caused by evaporation agrees with this determination in stellar disks. We also show that the ADAF and the "thin outer disk + corona" are compatible in terms of the physics in the transition region.

  4. Changes in evaporation and potential hazards associated with ice accretion in a "New Arctic"

    NASA Astrophysics Data System (ADS)

    Boisvert, L.

    2016-12-01

    The Arctic sea ice acts as a barrier between the ocean and atmosphere inhibiting the exchange of heat, momentum, and moisture. Recently, the Arctic has seen unprecedented declines in the summer sea ice area, changing to a "New Arctic" climate system, one that is dominated by processes affected by large ice-free areas for the majority of the year as the melt season lengthens. Using atmospheric data from the Atmospheric Infrared Sounder (AIRS) instrument, we found that accompanying this loss of sea ice, the Arctic is becoming warmer and wetter. Evaporation, which plays an important role in the Arctic energy budget, water vapor feedback, and Arctic amplification, is also changing. The largest increases seen in evaporation are in the Arctic coastal seas during the spring and fall where there has been a reduction in sea ice cover and an increase in sea surface temperatures. Increases in evaporation also correspond to increases in low-level clouds. In this "New Arctic" transportation and shipping throughout the Arctic Ocean is becoming a more viable option as the areas in which ships can travel and the time period for ship travel continue to increase. There are various hazards associated with Arctic shipping, one being ice accretion. Ice accretion is the build up of ice on the surface of ships as they travel through regions of specific meteorological conditions unique to high-latitude environments. Besides reduced visibility, this build up of ice can cause ships to sink or capsize (by altering the ships center of gravity) depending on the severity and/or the location of ice build-up. With these changing atmospheric conditions in the Arctic, we expect there have been increases in the ice accretion potential over recent years, and an increase in the likelihood of high, and potentially dangerous ice accretion rates. Improved understanding of how this rapid loss of sea ice affects the "New Arctic" climate system, how evaporation is changing and how ice accretion could change

  5. Evolution of Post-accretion-induced Collapse Binaries: The Effect of Evaporation

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Min; Li, Xiang-Dong

    2017-12-01

    Accretion-induced collapse (AIC) is widely accepted to be one of the formation channels for millisecond pulsars (MSPs). Since the MSPs have high spin-down luminosities, they can immediately start to evaporate their companion stars after birth. In this paper, we present a detailed investigation on the evolution of the post-AIC binaries, taking into account the effect of evaporation both before and during the Roche-lobe overflow process. We discuss the possible influence of the input parameters including the evaporation efficiency, the initial spin period, and the initial surface magnetic field of the newborn neutron star. We compare the calculated results with the traditional low-mass X-ray binary evolution and suggest that they may reproduce at least part of the observed redbacks and black widows in the companion mass–orbital period plane depending on the mechanisms of angular momentum loss associated with evaporation.

  6. Well logging evaporative thermal protection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamers, M.D.; Martelli, V.P.

    1981-02-03

    An evaporative thermal protection system for use in hostile environment well logging applications, the system including a downhole thermal protection cartridge disposed within a well logging sonde or tool to keep a payload such as sensors and support electronics cool, the cartridge carrying either an active evaporative system for refrigeration or a passive evaporative system, both exhausting to the surface through an armored flexible fluidic communication mechanical cable.

  7. Thermal wind from hot accretion flows at large radii

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Yang, Xiao-Hong

    2018-06-01

    We study slowly rotating accretion flow at parsec and subparsec scales irradiated by low-luminosity active galactic nuclei. We take into account the Compton heating, photoionization heating by the central X-rays. The bremsstrahlung cooling, recombination, and line cooling are also included. We find that due to the Compton heating, wind can be thermally driven. The power of wind is in the range (10-6-10-3) LEdd, with LEdd being the Eddington luminosity. The mass flux of wind is in the range (0.01-1) \\dot{M}_Edd (\\dot{M}_Edd= L_Edd/0.1c^2 is the Eddington accretion rate, c is speed of light). We define the wind generation efficiency as ɛ = P_W/\\dot{M}_BHc^2, with PW being wind power, \\dot{M}_BH being the mass accretion rate on to the black hole. ɛ lies in the range 10-4-1.18. Wind production efficiency decreases with increasing mass accretion rate. The possible role of the thermally driven wind in the active galactic feedback is briefly discussed.

  8. Black Hole Accretion and Feedback Driven by Thermal Instability

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. P.; Churazov, E.; Brighenti, F.; Ettori, S.; Sharma, P.; Temi, P.

    2013-03-01

    Multiwavelength data indicate that the cores of several galaxy clusters are moderately cooling, though not catastrophically, showing signs of filamentary extended multiphase gas. Through 3D AMR hydrodynamic simulations, we study the impact of thermal instability in the evolution of the intracluster medium. Common moderate turbulence of just over 100 km/s leads to the growth of nonlinear thermal instability within the central few tens kpc. In the presence of a global counterbalancing heating, the condensation of extended filamentary cold gas is violent, occurring when the cooling time falls below 10 times the free-fall time. The frequent stochastic collisions, fragmentations and shearing motions between the cold clouds, filaments and the central torus, efficiently reduce angular momentum. Tracking the accreting gas with a dynamical range of 10 million, we find that the accretion rate is boosted up to 100 times with respect to the Bondi rate. In a commonly turbulent and quasi-stable atmosphere, the mode of black accretion is cold and chaotic, substantially different from the classic idealized scenario. Only in the transonic regime, turbulent dissipation starts to inhibit thermal instability. On sub-parsec scales the cold phase is channeled via a funnel, triggering the black hole feedback likely linked to mechanical jets/outflows. As shown by long-term self-regulated simulations, the interplay of chaotic cold accretion and AGN feedback is crucial in order to avoid the cooling catastrophe and to reproduce the key thermodynamical features of observed clusters.

  9. Effects of anisotropic thermal conduction on wind properties in hot accretion flow

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Wu, Mao-Chun; Yuan, Ye-Fei

    2016-06-01

    Previous works have clearly shown the existence of winds from black hole hot accretion flow and investigated their detailed properties. In extremely low accretion rate systems, the collisional mean-free path of electrons is large compared with the length-scale of the system, thus thermal conduction is dynamically important. When the magnetic field is present, the thermal conduction is anisotropic and energy transport is along magnetic field lines. In this paper, we study the effects of anisotropic thermal conduction on the wind production in hot accretion flows by performing two-dimensional magnetohydrodynamic simulations. We find that thermal conduction has only moderate effects on the mass flux of wind. But the energy flux of wind can be increased by a factor of ˜10 due to the increase of wind velocity when thermal conduction is included. The increase of wind velocity is because of the increase of driving forces (e.g. gas pressure gradient force and centrifugal force) when thermal conduction is included. This result demonstrates that thermal conduction plays an important role in determining the properties of wind.

  10. Hysteresis and thermal limit cycles in MRI simulations of accretion discs

    NASA Astrophysics Data System (ADS)

    Latter, H. N.; Papaloizou, J. C. B.

    2012-10-01

    The recurrentoutbursts that characterize low-mass binary systems reflect thermal state changes in their associated accretion discs. The observed outbursts are connected to the strong variation in disc opacity as hydrogen ionizes near 5000 K. This physics leads to accretion disc models that exhibit bistability and thermal limit cycles, whereby the disc jumps between a family of cool and low-accreting states and a family of hot and efficiently accreting states. Previous models have parametrized the disc turbulence via an alpha (or 'eddy') viscosity. In this paper we treat the turbulence more realistically via a suite of numerical simulations of the magnetorotational instability (MRI) in local geometry. Radiative cooling is included via a simple but physically motivated prescription. We show the existence of bistable equilibria and thus the prospect of thermal limit cycles, and in so doing demonstrate that MRI-induced turbulence is compatible with the classical theory. Our simulations also show that the turbulent stress and pressure perturbations are only weakly dependent on each other on orbital times; as a consequence, thermal instability connected to variations in turbulent heating (as opposed to radiative cooling) is unlikely to operate, in agreement with previous numerical results. Our work presents a first step towards unifying simulations of full magnetohydrodynamic turbulence with the correct thermal and radiative physics of the outbursting discs associated with dwarf novae, low-mass X-ray binaries and possibly young stellar objects.

  11. Microfabricated valveless devices for thermal bioreactions based on diffusion-limited evaporation.

    PubMed

    Wang, Fang; Yang, Ming; Burns, Mark A

    2008-01-01

    Microfluidic devices that reduce evaporative loss during thermal bioreactions such as PCR without microvalves have been developed by relying on the principle of diffusion-limited evaporation. Both theoretical and experimental results demonstrate that the sample evaporative loss can be reduced by more than 20 times using long narrow diffusion channels on both sides of the reaction region. In order to further suppress the evaporation, the driving force for liquid evaporation is reduced by two additional techniques: decreasing the interfacial temperature using thermal isolation and reducing the vapor concentration gradient by replenishing water vapor in the diffusion channels. Both thermal isolation and vapor replenishment techniques can limit the sample evaporative loss to approximately 1% of the reaction content.

  12. Thermal performance of a multi-evaporator loop heat pipe with thermal masses and thermal electrical coolers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Birur, Gajanana

    2004-01-01

    This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermal electric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of condenser is fully utilized. Ammonia was used ad the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 1OW even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/-0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing the orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling

  13. The role of anisotropic thermal conduction in a collisionless magnetized hot accretion flow

    NASA Astrophysics Data System (ADS)

    Ghasemnezhad, Maryam

    2018-06-01

    We study the importance and the effects of anisotropic thermal conduction in a collisionless magnetized advection dominated accretion flow in the presence of discontinuity of mass, angular momentum and energy between inflow and outflow. In this paper, we have considered that the thermal conduction is a heating mechanism like viscosity and leads to an increase in the temperature of the gas. A set of self similar solutions are used for steady state and axisymmetric structure of such hot accretion disc to solve the MHD equations in our model. Based on these solutions, we have found that increasing the level of two parts of anisotropic thermal conduction (parallel & transverse) results in increasing the mass accretion rate or radial velocity but decreasing the rotational velocity. Also both radial and rotational velocities are sub-Keplerian. Also we have shown that the anisotropic thermal conduction can be effective in the parameter space of specific energy of outflow, toroidal and vertical components of magnetic field according to a physical constraint tinfall ≥ t⊥, conduction.

  14. Super-Earths: Atmospheric Accretion, Thermal Evolution and Envelope Loss

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Inamdar, Niraj K.; Schlichting, Hilke E.

    Combined mass and radius observations have recently revealed many short-period planets a few times the size of Earth but with significantly lower densities. A natural explanation for the low density of these super Earths super-Earth is a voluminous gas atmosphere that engulfs more compact rocky cores. Planets with such substantial gas atmospheres may be a missing link between smaller planets, that did not manage to obtain or keep an atmosphere, and larger planets, that accreted gas too quickly and became gas giants gas- . In this chapter we review recent advancements in the understanding of low-density low- super-Earth formation and evolution. Specifically, we present a consistent picture of the various stages in the lives of these planets: gas accretion from the protoplanetary disk, possible atmosphere heating and evaporation mechanisms, collisions between planets, and finally, evolution up to the age at which the planets are observed.

  15. Evolving non-thermal electrons in simulations of black hole accretion

    NASA Astrophysics Data System (ADS)

    Chael, Andrew A.; Narayan, Ramesh; Saḑowski, Aleksander

    2017-09-01

    Current simulations of hot accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. However, processes like magnetic reconnection and shocks can accelerate electrons into a non-thermal distribution, which will not quickly thermalize at the very low densities found in many systems. Such non-thermal electrons have been invoked to explain the infrared and X-ray spectra and strong variability of Sagittarius A* (Sgr A*), the black hole at the Galactic Center. We present a method for self-consistent evolution of a non-thermal electron population in the general relativistic magnetohydrodynamic code koral. The electron distribution is tracked across Lorentz factor space and is evolved in space and time, in parallel with thermal electrons, thermal ions and radiation. In this study, for simplicity, energy injection into the non-thermal distribution is taken as a fixed fraction of the local electron viscous heating rate. Numerical results are presented for a model with a low mass accretion rate similar to that of Sgr A*. We find that the presence of a non-thermal population of electrons has negligible effect on the overall dynamics of the system. Due to our simple uniform particle injection prescription, the radiative power in the non-thermal simulation is enhanced at large radii. The energy distribution of the non-thermal electrons shows a synchrotron cooling break, with the break Lorentz factor varying with location and time, reflecting the complex interplay between the local viscous heating rate, magnetic field strength and fluid velocity.

  16. Thermal Evolution of Earth's Mantle During the Accretion

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.; Roberts, J. H.

    2017-12-01

    Earth is likely formed by accreting Moon to Mars size embryos. The impact heating by an embryo melts the embryo and the upper mantle of the Earth beneath the impact site. The iron core of the embryo sinks and merges with the core of the Earth, while the mantle of the embryo mixes with the upper mantle of the Earth, producing a buoyant molten/partially molten magma pond. Strong but localized mantle dynamics results in fast lithostatic adjustment that pours out a huge amount of molten and partially molten magma which spread on the Earth, and together with impact ejecta creates a globe encircling magma ocean. The lithostatic adjustment diminishes as the magma ocean becomes globe encircling within 104 to 105 yr. The major part of the thermal evolution of Earth's mantle after an impact takes place in the presence of a thick and hot magma ocean, which hampers heat loss from the mantle and suppresses global mantle dynamics. Because the impact velocity of an embryo increases as the Earth grows, a given magma ocean is hotter than the previous ones. We investigated this scenario using 25 Moon to Mars size embryos. Due to random geographic impact sites we considered vertical impacts since no information is available about the impact angles. This may over estimate the impact heating by a factor of 1.4 with respect to the most probable impact angle of 45o. The thermal structure of the Earth at the end of accretion is layered, aside from the localized magma ponds that are distributed randomly due to the random geographic impact sites. We also take into account the impact heating of the solid lower mantle, the heating of the lower mantle by the gravitational energy released through sinking of an embryo's core. We then follow the thermal evolution of the mantle of a growing Earth using a 3D convection model. The Earth grows due to merging of the impactor iron core with the Earth's core, and the accumulating magma ocean on the surface. The growth enhances the lithostatic pressure

  17. Measurements of clothing evaporative resistance using a sweating thermal manikin: an overview

    PubMed Central

    WANG, Faming

    2017-01-01

    Evaporative resistance has been widely used to describe the evaporative heat transfer property of clothing. It is also a critical variable in heat stress models for predicting human physiological responses in various environmental conditions. At present, sweating thermal manikins provide a fast and cost-effective way to determine clothing evaporative resistance. Unfortunately, the measurement repeatability and reproducibility of evaporative resistance are rather low due to the complicated moisture transfer processes through clothing. This review article presents a systematical overview on major influential factors affecting the measurement precision of clothing evaporative resistance measurements. It also illustrates the state-of-the-art knowledge on the development of test protocol to measure clothing evaporative resistance by means of a sweating manikin. Some feasible and robust test procedures for measurement of clothing evaporative resistance using a sweating manikin are described. Recommendations on how to improve the measurement accuracy of clothing evaporative resistance are addressed and expected future trends on development of advanced sweating thermal manikins are finally presented. PMID:28566566

  18. From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets

    NASA Astrophysics Data System (ADS)

    Perez-Becker, Daniel Alonso

    2013-12-01

    This dissertation is composed of three independent projects in astrophysics concerning phenomena that are concurrent with the birth, life, and death of planets. In Chapters 1 & 2, we study surface layer accretion in protoplanetary disks driven stellar X-ray and far-ultraviolet (FUV) radiation. In Chapter 3, we identify the dynamical mechanisms that control atmospheric heat redistribution on hot Jupiters. Finally, in Chapter 4, we characterize the death of low-mass, short-period rocky planets by their evaporation into a dusty wind. Chapters 1 & 2: Whether protoplanetary disks accrete at observationally significant rates by the magnetorotational instability (MRI) depends on how well ionized they are. We find that disk surface layers ionized by stellar X-rays are susceptible to charge neutralization by condensates---ranging from mum-sized dust to angstrom-sized polycyclic aromatic hydrocarbons (PAHs). Ion densities in X-ray-irradiated surfaces are so low that ambipolar diffusion weakens the MRI. In contrast, ionization by stellar FUV radiation enables full-blown MRI turbulence in disk surface layers. Far-UV ionization of atomic carbon and sulfur produces a plasma so dense that it is immune to ion recombination on grains and PAHs. Even though the FUV-ionized layer is ˜10--100 times more turbulent than the X-ray-ionized layer, mass accretion rates of both layers are comparable because FUV photons penetrate to lower surface densities than do X-rays. We conclude that surface layer accretion occurs at observationally significant rates at radii ≳ 1--10 AU. At smaller radii, both X-ray- and FUV-ionized surface layers cannot sustain the accretion rates generated at larger distance and an additional means of transport is needed. In the case of transitional disks, it could be provided by planets. Chapter 3: Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy

  19. Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation

    PubMed Central

    Liu, Mingzhao; Nam, Chang-Yong; Zhang, Lihua

    2015-01-01

    Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts. PMID:26709727

  20. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films depositedmore » by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.« less

  1. Evaporation thermal anslysis of Swallow-tailed Axial-grooved Heat Pipe

    NASA Astrophysics Data System (ADS)

    Zhang, Renping

    2018-03-01

    A detailed mathematical model that describes evaporating characteristics through thin liquid film at the evaporator section of swallow-tailed axial-grooved heat pipe was developed. The numerical simulation results about thin film profile, liquid-vapour interface temperature, evaporating rate and heat flux at the evaporating thin film region were given by the current investigation and the effect of superheat on the liquid-vapour interface temperature, evaporating mass rate and heat flux was discussed. Meanwhile, thermal model of the meniscus region at the evaporating section was developed to calculate the rate of heat transfer. The ratio of the heat conduction in the evaporating thin liquid film region and total heat rate were also discussed. It is indicated that the thickness of thin liquid film rises in a nearly linear fashion. The disjoining pressure can be neglected with increasing the liquid film thickness, tends to be negligibly small. The heat transfer rate at the intrinsic meniscus cannot be compared with that of the evaporating liquid film region.

  2. The Thermal States of Accreting Planets: From Mars-like Embryos to a MAD Earth

    NASA Astrophysics Data System (ADS)

    Stewart, S. T.; Lock, S. J.

    2015-12-01

    The thermal states of rocky planets can vary widely during the process of accretion. The thermal structure affects several major processes on the growing planet, including the mechanics of core formation, pressure-temperature conditions for metal-silicate equilibration, mixing, and atmospheric erosion. Because impact energy is distributed heterogeneously, accretional energy is preferentially deposited in the gravitationally re-equilibrated outer layers of the planet for both small and giant impacts. The resulting stably stratified structure inhibits complete mixing within the mantle. Initially, the specific energy of giant impacts between Mars-mass embryos leads to melting of the mantle. However, as planet formation progresses, the specific energies of giant impacts increase and can drive the mantle into a transient supercritical state. In the hottest regions of the planet, metal and silicates are miscible, and metal exsolution occurs as the structure cools. The cooling time of the supercritical structure is typically longer than the timescale for metal segregation to the core. Thus, these high temperature excursions during planet formation are significant for understanding metal-silicate equilibration. Furthermore, when a supercritical planet is also rapidly rotating, the mantle, atmosphere and disk (MAD) form a continuous dynamic and thermodynamic structure. Lunar origin by condensation from a MAD Earth can explain the major characteristics of the Moon (Lock et al., this meeting). One of the greatest uncertainties in understanding the thermal states of planets during accretion is the changing composition and mass of the atmosphere. After the dispersal of the solar nebula, the thermal boundary condition imposed by the atmosphere can vary between silicate vapor and condensed ices. The coupled problem of atmospheric origin and planetary accretion can be used to constrain the many uncertainties in the growth and divergence of the terrestrial planets in our solar

  3. Thermal Performance of a Multi-Evaporator Loop Heat Pipe with Thermal Masses and Thermoelectric Coolers

    NASA Technical Reports Server (NTRS)

    Ku, Jen-Tung; Ottenstein, Laura; Birur, Gajanana

    2004-01-01

    This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermoelectric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of the condensers is fully utilized. Ammonia was used as the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 10W even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/- 0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling

  4. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi

    2017-11-01

    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  5. Comprehensive study of thin film evaporation from nanoporous membranes for enhanced thermal management

    NASA Astrophysics Data System (ADS)

    Wilke, Kyle; Barabadi, Banafsheh; Lu, Zhengmao; Zhang, Tiejun; Wang, Evelyn

    Performance of emerging electronics is often dictated by the ability to dissipate heat generated in the device. Thin film evaporation from nanopores promises enhanced thermal management by reducing the thermal transport resistance across the liquid film while providing capillary pumping. We present a study of the dependence of evaporation from nanopores on a variety of geometric parameters. Anodic aluminum oxide membranes were used as an experimental template. A biphilic treatment was also used to create a hydrophobic section of the pore to control meniscus location. We demonstrated different heat transfer regimes and observed more than an order of magnitude increase in dissipated heat flux by confining fluid within the nanopore. Pore diameter had little effect on evaporation performance at pore radii of this length scale due to the negligible conduction resistance from the pore wall to the evaporating interface. The dissipated heat flux scaled linearly with porosity as the evaporative area increased. Furthermore, it was demonstrated that moving the meniscus as little as 1 μm into the pore could decrease performance significantly. The results provide a better understanding of evaporation from nanopores and provide guidance in future device design.

  6. Estimating evaporation with thermal UAV data and two-source energy balance models

    NASA Astrophysics Data System (ADS)

    Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P.; Friborg, T.

    2016-02-01

    Estimating evaporation is important when managing water resources and cultivating crops. Evaporation can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST), which have recently become obtainable in very high resolution using lightweight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a thermal camera was mounted on a UAV and applied into the field of heat fluxes and hydrology by concatenating thermal images into mosaics of LST and using these as input for the two-source energy balance (TSEB) modelling scheme. Thermal images are obtained with a fixed-wing UAV overflying a barley field in western Denmark during the growing season of 2014 and a spatial resolution of 0.20 m is obtained in final LST mosaics. Two models are used: the original TSEB model (TSEB-PT) and a dual-temperature-difference (DTD) model. In contrast to the TSEB-PT model, the DTD model accounts for the bias that is likely present in remotely sensed LST. TSEB-PT and DTD have already been well tested, however only during sunny weather conditions and with satellite images serving as thermal input. The aim of this study is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to constitute as model input and thus attain accurate and high spatial and temporal resolution surface energy heat fluxes, with special focus on latent heat flux (evaporation). Furthermore, this study evaluates the performance of the TSEB scheme during cloudy and overcast weather conditions, which is feasible due to the low data retrieval altitude (due to low UAV flying altitude) compared to satellite thermal data that are only available during clear-sky conditions. TSEB-PT and DTD fluxes are compared and validated against eddy covariance measurements and the comparison shows that both TSEB-PT and DTD simulations are in good agreement with eddy covariance measurements, with DTD obtaining the best results. The

  7. Accretion-driven turbulence in filaments - I. Non-gravitational accretion

    NASA Astrophysics Data System (ADS)

    Heigl, S.; Burkert, A.; Gritschneder, M.

    2018-03-01

    We study accretion-driven turbulence for different inflow velocities in star-forming filaments using the code RAMSES. Filaments are rarely isolated objects and their gravitational potential will lead to radially dominated accretion. In the non-gravitational case, accretion by itself can already provoke non-isotropic, radially dominated turbulent motions responsible for the complex structure and non-thermal line widths observed in filaments. We find that there is a direct linear relation between the absolute value of the total density-weighted velocity dispersion and the infall velocity. The turbulent velocity dispersion in the filaments is independent of sound speed or any net flow along the filament. We show that the density-weighted velocity dispersion acts as an additional pressure term, supporting the filament in hydrostatic equilibrium. Comparing to observations, we find that the projected non-thermal line width variation is generally subsonic independent of inflow velocity.

  8. Accretion flows onto supermassive black holes

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1988-01-01

    The radiative and hydrodynamic properties of an angular momentum-dominated accretion flow onto a supermassive black hole depend largely on the ratio of the accretion rate to the Eddington accretion rate. High values of this ratio favor optically thick flows which produce largely thermal radiation, while optically thin 'two-temperature' flows may be present in systems with small values of this ratio. Observations of some AGN suggest that thermal and nonthermal sources of radiation may be of comparable importance in the 'central engine'. Consideration is given to the possibilities for coexistence of different modes of accretion in a single flow. One intriguing possibility is that runaway pair production may cause an optically thick 'accretion annulus' to form at the center of a two-temperature inflow.

  9. Thermal management of a Li-ion battery pack employing water evaporation

    NASA Astrophysics Data System (ADS)

    Ren, Yonghuan; Yu, Ziqun; Song, Guangji

    2017-08-01

    Battery thermal management (BTM) system plays a key part in vehicle thermal safety. A novel method employing water evaporation is presented in this paper. The thin sodium alginate film (SA-1 film) with water content of 99 wt% is prepared using a simple spraying method, and is attached on the surface of battery pack to explore its effectiveness on preventing heat accumulation. The result shows that under the condition with constant current charge/discharge larger than 1 C, the temperature rise rate is reduced by half. Under the condition with the New Europe Drive Cycle, the temperature could maintain stable without obvious rise. Moreover, a simple water automatic-refilling system is designed to address the dry issue of the film in terms of evaporation elimination. The proposed SA-1 film BTM system shows to be a very convenient and efficient approach in handling the thermal surge of Li-ion batteries without any change in battery pack integration and assembly.

  10. Evaluation of thermal and evaporative resistances in cricket helmets using a sweating manikin.

    PubMed

    Pang, Toh Yen; Subic, Aleksandar; Takla, Monir

    2014-03-01

    The main objective of this study is to establish an approach for measuring the dry and evaporative heat dissipation cricket helmets. A range of cricket helmets has been tested using a sweating manikin within a controlled climatic chamber. The thermal manikin experiments were conducted in two stages, namely the (i) dry test and (ii) wet test. The ambient air temperature for the dry tests was controlled to ~ 23 °C, and the mean skin temperatures averaged ~ 35 °C. The thermal insulation value measured for the manikin with helmet ensemble ranged from 1.0 to 1.2 clo. The results showed that among the five cricket helmets, the Masuri helmet offered slightly more thermal insulation while the Elite helmet offered the least. However, under the dry laboratory conditions and with minimal air movement (air velocity = 0.08 ± 0.01 ms(-1)), small differences exist between the thermal resistance values for the tested helmets. The wet tests were conducted in an isothermal condition, with an ambient and skin mean temperatures averaged ~ 35 °C, the evaporative resistance, Ret, varied between 36 and 60 m(2) Pa W(-1). These large variations in evaporative heat dissipation values are due to the presence of a thick layer of comfort lining in certain helmet designs. This finding suggests that the type and design of padding may influence the rate of evaporative heat dissipation from the head and face; hence the type of material and thickness of the padding is critical for the effectiveness of evaporative heat loss and comfort of the wearer. Issues for further investigations in field trials are discussed. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Tung; Chan, Yu-Chang; Lo, Ching-Hua; Malavieille, Jacques; Lu, Chia-Yu; Tang, Jui-Ting; Lee, Yuan-Hsi

    2018-02-01

    Deep tectonic processes are key integral components in the evolution of mountain belts, while observations of their temporal development are generally obscured by thermal resetting, retrograde alteration and structural overprinting. Here we recorded an integrated rock time-temperature history for the first time in the pro-wedge part of the active Taiwan arc-continent collision starting from sedimentation through cleavage-forming state to its final exhumation. The integrated thermal and age results from the Raman Spectroscopy of Carbonaceous Material (RSCM) method, zircon U-Pb laser ablation dating, and in-situ40Ar/39Ar laser microprobe dating suggest that the basal accretion process was crucial to the development of the Taiwanese orogenic wedge. The basal accretion process commenced early in the mountain building history (∼6 Ma) and gradually migrated to greater depths, as constrained by persistent plate convergence and cleavage formation under nearly isothermal state at similar depths until ∼ 2.5 Ma recorded in the early-accreted units. Such development essentially contributed to mountain root growth by the increased depth of the wedge detachment and the downward wedge thickening during the incipient to full collision stages in the Taiwan mountain belt.

  12. Aerodynamics and thermal physics of helicopter ice accretion

    NASA Astrophysics Data System (ADS)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  13. Early evolution of the Earth: Accretion, atmosphere formation, and thermal history

    NASA Astrophysics Data System (ADS)

    Abe, Yutaka; Matsui, Takafumi

    1986-03-01

    Atmospheric and thermal evolution of the earth growing by planetesimal impacts was modeled by taking into account the blanketing effect of an impact-induced H2O atmosphere and the temperature dependence of H2O degassing. When the water content of planetesimals is larger than 0.1% by weight and the accretion time of the earth is less than 5 × 107 years, the surface of the accreting earth melts and thus a “magma ocean” forms and covers the surface. The formation of a “magma ocean” will result in the initiation of core-mantle separation and mantle differentiation during accretion. Once a magma ocean is formed, the surface temperature, the degree of melting in the magma ocean, and the mass of the H2O atmosphere are nearly constant as the protoplanet grows further. The final mass of the H2O atmosphere is about 1021 kg, a value which is insensitive to variations in the model parameter values such as the accretion time and the water content of planetesimals. That the final mass of the H2O atmosphere is close to the mass of the present oceans suggests an impact origin for the earth's hydrosphere. On the other hand, most of the H2O retained in planetesimals will be deposited in the solid earth. Free water within the proto-earth may affect differentiation of the proto-mantle, in particular, the mantle FeO abundance and the incorporation of a light element in the outer core.

  14. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control

    NASA Technical Reports Server (NTRS)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  15. Specificity Switching Pathways in Thermal and Mass Evaporation of Multicomponent Hydrocarbon Droplets: A Mesoscopic Observation.

    PubMed

    Nasiri, Rasoul; Luo, Kai H

    2017-07-10

    For well over one century, the Hertz-Knudsen equation has established the relationship between thermal - mass transfer coefficients through a liquid - vapour interface and evaporation rate. These coefficients, however, have been often separately estimated for one-component equilibrium systems and their simultaneous influences on evaporation rate of fuel droplets in multicomponent systems have yet to be investigated at the atomic level. Here we first apply atomistic simulation techniques and quantum/statistical mechanics methods to understand how thermal and mass evaporation effects are controlled kinetically/thermodynamically. We then present a new development of a hybrid method of quantum transition state theory/improved kinetic gas theory, for multicomponent hydrocarbon systems to investigate how concerted-distinct conformational changes of hydrocarbons at the interface affect the evaporation rate. The results of this work provide an important physical concept in fundamental understanding of atomistic pathways in topological interface transitions of chain molecules, resolving an open problem in kinetics of fuel droplets evaporation.

  16. Accretion and outflow in the proplyd-like objects near Cygnus OB2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarcello, M. G.; Drake, J. J.; Wright, N. J.

    2014-09-20

    Cygnus OB2 is the most massive association within 2 kpc from the Sun, hosting hundreds of massive stars, thousands of young low mass members, and some sights of active star formation in the surrounding cloud. Recently, 10 photoevaporating proplyd-like objects with tadpole-shaped morphology were discovered in the outskirts of the OB association, approximately 6-14 pc away from its center. The classification of these objects is ambiguous, being either evaporating residuals of the parental cloud that are hosting a protostar inside or disk-bearing stars with an evaporating disk, such as the evaporating proplyds observed in the Trapezium Cluster in Orion. Inmore » this paper, we present a study based on low-resolution optical spectroscopic observations made with the Optical System for Imaging and low Resolution Integrated Spectroscopy, mounted on the 10.4 m Gran Telescopio CANARIAS, of two of these protostars. The spectrum of one of the objects shows evidence of accretion but not of outflows. In the latter object, the spectra show several emission lines indicating the presence of an actively accreting disk with outflow. We present estimates of the mass loss rate and the accretion rate from the disk, showing that the former exceeds the latter as observed in other known objects with evaporating disks. We also show evidence of a strong variability in the integrated flux observed in these objects as well as in the accretion and outflow diagnostics.« less

  17. Theoretical and experimental researches of the liquid evaporation during thermal vacuum influences

    NASA Astrophysics Data System (ADS)

    Trushlyakov, V.; Panichkin, A.; Prusova, O.; Zharikov, K.; Dron, M.

    2018-01-01

    The mathematical model of the evaporation process of model liquid with the free surface boundary conditions of the "mirror" type under thermal vacuum influence and the numerical estimates of the evaporation process parameters are developed. An experimental stand, comprising a vacuum chamber, an experimental model tank with a heating element is designed; the experimental data are obtained. A comparative analysis of numerical and experimental results showed their close match.

  18. Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mariano, Fabrizio; Listorti, Andrea; Rizzo, Aurora; Colella, Silvia; Gigli, Giuseppe; Mazzeo, Marco

    2017-10-01

    Thermal evaporation of green-light emitting perovskite (MaPbBr3) films is reported. Morphological studies show that a soft thermal treatment is needed to induce an outstanding crystal growth and film organization. Hetero-structured light-emitting diodes, embedding as-deposited and annealed MAPbBr3 films as active layers, are fabricated and their performances are compared, highlighting that the perovskite evolution is strongly dependent on the growing substrate, too.

  19. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    NASA Technical Reports Server (NTRS)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  20. Thermally evaporated conformal thin films on non-traditional/non-planar substrates

    NASA Astrophysics Data System (ADS)

    Pulsifer, Drew Patrick

    Conformal thin films have a wide variety of uses in the microelectronics, optics, and coatings industries. The ever-increasing capabilities of these conformal thin films have enabled tremendous technological advancement in the last half century. During this period, new thin-film deposition techniques have been developed and refined. While these techniques have remarkable performance for traditional applications which utilize planar substrates such as silicon wafers, they are not suitable for the conformal coating of non-traditional substrates such as biological material. The process of thermally evaporating a material under vacuum conditions is one of the oldest thin-film deposition techniques which is able to produce functional film morphologies. A drawback of thermally evaporated thin films is that they are not intrinsically conformal. To overcome this, while maintaining the advantages of thermal evaporation, a procedure for varying the substrates orientation with respect to the incident vapor flux during deposition was developed immediately prior to the research undertaken for this doctoral dissertation. This process was shown to greatly improve the conformality of thermally evaporated thin films. This development allows for several applications of thermally evaporated conformal thin films on non-planar/non-traditional substrates. Three settings in which to evaluate the improved conformal deposition of thermally evaporated thin films were investigated for this dissertation. In these settings the thin-film morphologies are of different types. In the first setting, a bioreplication approach was used to fabricate artificial visual decoys for the invasive species Agrilus planipennis, commonly known as the emerald ash borer (EAB). The mating behavior of this species involves an overflying EAB male pouncing on an EAB female at rest on an ash leaflet before copulation. The male spots the female on the leaflet by visually detecting the iridescent green color of the

  1. Sheet Membrane Spacesuit Water Membrane Evaporator Thermal Test

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Bue, Grant C.

    2009-01-01

    For future lunar extravehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon(Registered Trademark) membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using this membrane was successfully tested by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of a compact sheet membrane SWME development unit for use in the Constellation System Spacesuit Element Portable Life Support System (Vogel and et. al., ICES 2008). Major design objectives included minimizing mass, volume, and manufacturing complexity while rejecting a minimum of 810 watts of heat from water flowing through the SWME at 91 kg/hr with an inlet temperature of 291K. The design meeting these objectives consisted of three concentric cylindrical water channels interlaced with four water vapor channels. Two units were manufactured for the purpose of investigating manufacturing techniques and performing thermal testing. The extensive thermal test measured SWME heat rejection as a function of water inlet temperatures, water flow-rates, water absolute pressures, water impurities, and water vapor back-pressures. This paper presents the test results and subsequent analysis, which includes a comparison of SWME heat rejection measurements to pretest predictions. In addition, test measurements were taken such that an analysis of the commercial-off-the-shelf vapor pressure control valve could be performed.

  2. Thermal Evolution of Earht's Core during Accretion: a Preliminary Solid Inner Core at the End of Accrfetion.

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.

    2015-12-01

    Growth of an inner core has conventionally been related to core cooling blow the liquidus of iron. It is however possible that the core of the proto-Earth solidifies upon pressure increase during accretion. The lithostatic pressure in the proto-Earth increases immediately after merging each impactor, and the pressure-dependent liquidus of iron may supersede the temperature near the center resulting in a solid inner core. Assuming that Earth is formed by accreting a few dozen Moon to Mars size planetary embryos, the thermal evolution of the proto-Earth's core is investigated during accretion. The collision of an embryo heats the Earth differentially and the rotating low-viscosity, differentially heated core stratifies, creating a spherically symmetric stable and radially increasing temperature distribution. Convection occurs in the outer core while heat transfers by conduction in deeper parts. It is assumed that the iron core of an embryo pools at the bottom of partially molten mantle and thermally equilibrates with surroundings. It then descends as an iron diapir in the solid silicate mantle, while releasing its gravitational energy. Depending on its temperature when arrives at the core mantle boundary, it may spread on the core creating a hot layer or plunge into the core and descend to a neutrally buoyant level while further releasing its gravitational energy. A few dozen thermal evolution models of the core are investigates to examine effects of major parameters such as: total number of impacting embryos; partitioning of the gravitational energy released during the descent of the diaper in the mantle (between the silicate mantle and the iron diaper), and in the core (between the proto-Earth's core and that of the embryo); and gravitational energy and latent heat released due to the core solidification. All of the models predict a large solid inner core, about 1500 to 2000 km in radius, at the end of accretion.

  3. Thermal Vacuum Testing of a Multi-Evaporator Miniature Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Nagano, Hosei

    2008-01-01

    Under NASA's New Millennium Program Space Technology 8 Project, four experiments are being developed for future small system applications requiring low mass, low power, and compactness. GSFC is responsible for developing the Thermal Loop experiment, which is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and condensers. The objective is to validate the operation of an MLHP, including reliable start-ups, steady operation, heat load sharing, and tight temperature control over the range of 273K to 308K. An MLHP Breadboard has been built and tested for 1200 hours under the laboratory environment and 500 hours in a thermal vacuum chamber. Results of the TV tests are presented here.

  4. Thermal Vacuum Testing of a Proto-flight Miniature Loop Heat Pipe with Two Evaporators and Two Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura

    2011-01-01

    This paper describes thermal vacuum testing of a proto-flight miniature loop heat pipe (MLHP) with two evaporators and two condensers designed for future small systems applications requiring low mass, low power and compactness. Each evaporator contains a wick with an outer diameter of 6.35 mm, and each has its own integral compensation chamber (CC). Miniaturization of the loop components reduces the volume and mass of the thermal system. Multiple evaporators provide flexibility for placement of instruments that need to be maintained at the same temperature, and facilitate heat load sharing among instruments, reducing the auxiliary heater power requirement. A flow regulator is used to regulate heat dissipations between the two condensers, allowing flexible placement of radiators on the spacecraft. A thermoelectric converter (TEC) is attached to each CC for control of the operating temperature and enhancement of start-up success. Tests performed include start-up, power cycle, sink temperature cycle, high power and low power operation, heat load sharing, and operating temperature control. The proto-flight MLHP demonstrated excellent performance in the thermal vacuum test. The loop started successfully and operated stably under various evaporator heat loads and condenser sink temperatures. The TECs were able to maintain the loop operating temperature within b1K of the desired set point temperature at all power levels and all sink temperatures. The un-powered evaporator would automatically share heat from the other powered evaporator. The flow regulator was able to regulate the heat dissipation among the radiators and prevent vapor from flowing into the liquid line.

  5. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Sheng; Ji, Jianghui; Mordasini, Christoph

    2014-11-01

    We apply hydrodynamic evaporation models to different synthetic planet populations that were obtained from a planet formation code based on the core-accretion paradigm. We investigated the evolution of the planet populations using several evaporation models, which are distinguished by the driving force of the escape flow (X-ray or EUV), the heating efficiency in energy-limited evaporation regimes, or both. Although the mass distribution of the planet populations is barely affected by evaporation, the radius distribution clearly shows a break at approximately 2 R {sub ⊕}. We find that evaporation can lead to a bimodal distribution of planetary sizes and to anmore » 'evaporation valley' running diagonally downward in the orbital distance—planetary radius plane, separating bare cores from low-mass planets that have kept some primordial H/He. Furthermore, this bimodal distribution is related to the initial characteristics of the planetary populations because low-mass planetary cores can only accrete small primordial H/He envelopes and their envelope masses are proportional to their core masses. We also find that the population-wide effect of evaporation is not sensitive to the heating efficiency of energy-limited description. However, in two extreme cases, namely without evaporation or with a 100% heating efficiency in an evaporation model, the final size distributions show significant differences; these two scenarios can be ruled out from the size distribution of Kepler candidates.« less

  6. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    PubMed

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  7. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method?

    PubMed

    Wang, Faming; Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2011-08-01

    This paper addresses selection between two calculation options, i.e heat loss option and mass loss option, for thermal manikin measurements on clothing evaporative resistance conducted in an isothermal condition (T(manikin) = T(a) = T(r)). Five vocational clothing ensembles with a thermal insulation range of 1.05-2.58 clo were selected and measured on a sweating thermal manikin 'Tore'. The reasons why the isothermal heat loss method generates a higher evaporative resistance than that of the mass loss method were thoroughly investigated. In addition, an indirect approach was applied to determine the amount of evaporative heat energy taken from the environment. It was found that clothing evaporative resistance values by the heat loss option were 11.2-37.1% greater than those based on the mass loss option. The percentage of evaporative heat loss taken from the environment (H(e,env)) for all test scenarios ranged from 10.9 to 23.8%. The real evaporative cooling efficiency ranged from 0.762 to 0.891, respectively. Furthermore, it is evident that the evaporative heat loss difference introduced by those two options was equal to the heat energy taken from the environment. In order to eliminate the combined effects of dry heat transfer, condensation, and heat pipe on clothing evaporative resistance, it is suggested that manikin measurements on the determination of clothing evaporative resistance should be performed in an isothermal condition. Moreover, the mass loss method should be applied to calculate clothing evaporative resistance. The isothermal heat loss method would appear to overestimate heat stress and thus should be corrected before use.

  8. Experimental investigation of interfacial energy transport in an evaporating sessile droplet for evaporative cooling applications

    NASA Astrophysics Data System (ADS)

    Mahmud, Md. Almostasim; MacDonald, Brendan D.

    2017-01-01

    In this paper we experimentally examine evaporation flux distributions and modes of interfacial energy transport for continuously fed evaporating spherical sessile water droplets in a regime that is relevant for applications, particularly for evaporative cooling systems. The contribution of the thermal conduction through the vapor phase was found to be insignificant compared to the thermal conduction through the liquid phase for the conditions we investigated. The local evaporation flux distributions associated with thermal conduction were found to vary along the surface of the droplet. Thermal conduction provided a majority of the energy required for evaporation but did not account for all of the energy transport, contributing 64 ±3 % , 77 ±3 % , and 77 ±4 % of the energy required for the three cases we examined. Based on the temperature profiles measured along the interface we found that thermocapillary flow was predicted to occur in our experiments, and two convection cells were consistent with the temperature distributions for higher substrate temperatures while a single convection cell was consistent with the temperature distributions for a lower substrate temperature.

  9. EVAPORATION OF ICY PLANETESIMALS DUE TO BOW SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Kyoko K.; Yamamoto, Tetsuo; Tanaka, Hidekazu

    2013-02-20

    We present the novel concept of evaporation of planetesimals as a result of bow shocks associated with planetesimals orbiting with supersonic velocities relative to the gas in a protoplanetary disk. We evaluate the evaporation rates of the planetesimals based on a simple model describing planetesimal heating and evaporation by the bow shock. We find that icy planetesimals with radius {approx}>100 km evaporate efficiently even outside the snow line in the stage of planetary oligarchic growth, where strong bow shocks are produced by gravitational perturbations from protoplanets. The obtained results suggest that the formation of gas giant planets is suppressed owingmore » to insufficient accretion of icy planetesimals onto the protoplanet within the {approx}<5 AU disk region.« less

  10. How cores grow by pebble accretion. I. Direct core growth

    NASA Astrophysics Data System (ADS)

    Brouwers, M. G.; Vazan, A.; Ormel, C. W.

    2018-03-01

    Context. Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by the accretion of cm- to m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal-driven core accretion is the increased thermal ablation experienced by pebbles. This can provide early enrichment to the planet's envelope, which influences its subsequent evolution and changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Specifically, we calculate the core mass where pebbles completely evaporate and are absorbed before reaching the core, which signifies the end of direct core growth. Methods: We model the early growth of a protoplanet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the temperature-dependent vapor pressure. We include enrichment effects by locally modifying the mean molecular weight of the envelope. Results: In the pebble case, three phases of core growth can be identified. In the first phase (Mcore < 0.23-0.39 M⊕), pebbles impact the core without significant ablation. During the second phase (Mcore < 0.5M⊕), ablation becomes increasingly severe. A layer of high-Z vapor starts to form around the core that absorbs a small fraction of the ablated mass. The rest of the material either rains out to the core or instead mixes outwards, slowing core growth. In the third phase (Mcore > 0.5M⊕), the high-Z inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M⊕, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M⊕. Conclusions: Our results indicate that pebble accretion can

  11. Cooling of Accretion-Heated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  12. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya

    2008-01-01

    This paper presents the development of the Thermal Loop experiment under NASA's New Millennium Program Space Technology 8 (ST8) Project. The Thermal Loop experiment was originally planned for validating in space an advanced heat transport system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers. Details of the thermal loop concept, technical advances and benefits, Level 1 requirements and the technology validation approach are described. An MLHP breadboard has been built and tested in the laboratory and thermal vacuum environments, and has demonstrated excellent performance that met or exceeded the design requirements. The MLHP retains all features of state-of-the-art loop heat pipes and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. In addition, an analytical model has been developed to simulate the steady state and transient operation of the MHLP, and the model predictions agreed very well with experimental results. A protoflight MLHP has been built and is being tested in a thermal vacuum chamber to validate its performance and technical readiness for a flight experiment.

  13. The Evaporation and Survival of Cluster Galaxy Coronae. I. The Effectiveness of Isotropic Thermal Conduction Including Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayaraghavan, Rukmani; Sarazin, Craig, E-mail: rukmani@virginia.edu

    We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conductionmore » is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.« less

  14. The Evaporation and Survival of Cluster Galaxy Coronae. I. The Effectiveness of Isotropic Thermal Conduction Including Saturation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Sarazin, Craig

    2017-05-01

    We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conduction is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.

  15. Miniature Loop Heat Pipe with Multiple Evaporators for Thermal Control of Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Denya; Pauken, Michael; Birur, Gajanana

    2005-01-01

    This paper presents an advanced miniature heat transport system for thermal control of small spacecraft. The thermal system consists of a loop heat pipe (LHP) with multiple evaporators and multiple deployable radiators for heat transfer, and variable emittance coatings on the radiators for performance enhancement. Thermoelectric coolers are used to control the loop operating temperature. The thermal system combines the functions of variable conductance heat pipes, thermal switches, thermal diodes, and the state-of-the-art LHPs into a single integrated thermal system. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Steady state and transient analytical models have been developed, and scaling criteria have also been established. A breadboard unit has been built for functional testing in laboratory and thermal vacuum environments. Experimental results show excellent performance of the thermal system and correlate very well with theoretical predictions.

  16. Thermal Management Optimization of a Thermoelectric-Integrated Methanol Evaporator Using a Compact CFD Modeling Approach

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Chen, Min; Snyder, G. Jeffrey; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2013-07-01

    To better manage the magnitude and direction of the heat flux in an exchanger-based methanol evaporator of a fuel cell system, thermoelectric (TE) modules can be deployed as TE heat flux regulators (TERs). The performance of the TE-integrated evaporator is strongly influenced by its heat exchange structure. The structure transfers the fuel cell exhaust heat to the evaporation chamber to evaporate the methanol, where TE modules are installed in between to facilitate the heat regulation. In this work, firstly, a numerical study is conducted to determine the working currents and working modes of the TERs under the system working condition fluctuations and during the system cold start. A three-dimensional evaporator model is generated in ANSYS FLUENT® by combining a compact TE model with various heat exchange structure geometries. The compact TE model can dramatically improve the computational efficiency, and uses a different material property acquisition method based on module manufacturers' datasheets. Secondly, a simulation study is carried out on the novel evaporator to minimize its thermal resistance and to assess the evaporator pressure drop. The factors studied include the type of fins in the heat exchange structure, the thickness of the fins, the axial conduction penalty, etc. Results show that the TE-integrated evaporator can work more efficiently and smoothly during both load fluctuations and system cold start, offering superior performance.

  17. Constraints on Bygone Nucleosynthesis of Accreting Neutron Stars

    DOE PAGES

    Meisel, Zach; Deibel, Alex

    2017-03-06

    Nuclear burning near the surface of an accreting neutron star produces ashes that, when compressed deeper by further accretion, alter the star’s thermal and compositional structure. Bygone nucleosynthesis can be constrained by the impact of compressed ashes on the thermal relaxation of quiescent neutron star transients. In particular, Urca cooling nuclei pairs in nuclear burning ashes that cool the neutron star crust via neutrino emission from e --capture/β --decay cycles and provide signatures of prior nuclear burning over the ~century timescales it takes to accrete to the e --capture depth of the strongest cooling pairs. By using crust cooling modelsmore » of the accreting neutron star transient MAXI J0556-332, we show that this source likely lacked Type I X-ray bursts and superbursts ≳120 years ago. Reduced nuclear physics uncertainties in rp-process reaction rates and e --capture weak transition strengths for low-lying transitions will improve nucleosynthesis constraints using this technique.« less

  18. Remotely monitoring evaporation rate and soil water status using thermal imaging and "three-temperatures model (3T Model)" under field-scale conditions.

    PubMed

    Qiu, Guo Yu; Zhao, Ming

    2010-03-01

    Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.

  19. Disk Accretion and the Stellar Birthline

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Cassen, Patrick; Kenyon, Scott J.

    1997-02-01

    We present a simplified analysis of some effects of disk accretion on the early evolution of fully convective, low-mass pre-main-sequence stars. Our analysis builds on the previous seminal work of Stahler, but it differs in that the accretion of material occurs over a small area of the stellar surface, such as through a disk or magnetospheric accretion column, so that most of the stellar photosphere is free to radiate to space. This boundary condition is similar to the limiting case considered by Palla & Stahler for intermediate-mass stars. We argue that for a wide variety of disk mass accretion rates, material will be added to the star with relatively small amounts of thermal energy. Protostellar evolution calculated assuming this ``low-temperature'' limit of accretion generally follows the results of Stahler because of the thermostatic nature of deuterium fusion, which prevents protostars from contracting below a ``birthline'' in the H-R diagram. Our calculated protostellar radii tend to fall below Stahler's at higher masses; the additional energy loss from the stellar photosphere in the case of disk accretion tends to make the protostar contract. The low-temperature disk accretion evolutionary tracks never fall below the deuterium-fusion birthline until the internal deuterium is depleted, but protostellar tracks can lie above the birthline in the H-R diagram if the initial radius of the protostellar core is large enough or if rapid disk accretion (such as might occur during FU Ori outbursts) adds significant amounts of thermal energy to the star. These possibilities cannot be ruled out by either theoretical arguments or observational constraints at present, so that individual protostars might evolve along a multiplicity of birthlines with a modest range of luminosity at a given mass. Our results indicate that there are large uncertainties in assigning ages for the youngest stars from H-R diagram positions, given the uncertainty in birthline positions. Our

  20. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  1. Enhanced Charge Extraction of Li-Doped TiO₂ for Efficient Thermal-Evaporated Sb₂S₃ Thin Film Solar Cells.

    PubMed

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-02-28

    We provided a new method to improve the efficiency of Sb₂S₃ thin film solar cells. The TiO₂ electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb₂S₃ solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO₂ films. Compared with the undoped TiO₂, Li-doped mesoporous TiO₂ dramatically improved the photo-voltaic performance of the thermal-evaporated Sb₂S₃ thin film solar cells, with the average power conversion efficiency ( PCE ) increasing from 1.79% to 4.03%, as well as the improved open-voltage ( V oc ), short-circuit current ( J sc ) and fill factors. The best device based on Li-doped TiO₂ achieved a power conversion efficiency up to 4.42% as well as a V oc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb₂S₃ solar cells. This study showed that Li-doping on TiO₂ can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb₂S₃-based solar cells.

  2. Thermally evaporated Cu2ZnSnS4 solar cells

    NASA Astrophysics Data System (ADS)

    Wang, K.; Gunawan, O.; Todorov, T.; Shin, B.; Chey, S. J.; Bojarczuk, N. A.; Mitzi, D.; Guha, S.

    2010-10-01

    High efficiency Cu2ZnSnS4 solar cells have been fabricated on glass substrates by thermal evaporation of Cu, Zn, Sn, and S. Solar cells with up to 6.8% efficiency were obtained with absorber layer thicknesses less than 1 μm and annealing times in the minutes. Detailed electrical analysis of the devices indicate that the performance of the devices is limited by high series resistance, a "double diode" behavior of the current voltage characteristics, and an open circuit voltage that is limited by a carrier recombination process with an activation energy below the band gap of the material.

  3. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  4. Thermal evaporation and condensation synthesis of metallic Zn layered polyhedral microparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Waheed S.; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Usman, Zahid

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Zn polyhedral microparticles prepared by thermal evaporation and condensation route. Black-Right-Pointing-Pointer Vapour-solid process based growth model governs the formation of Zn microparticles. Black-Right-Pointing-Pointer A strong PL emission band is observed at 369 nm in UV region. Black-Right-Pointing-Pointer Radiative recombination of electrons in the s, p conduction band and the holes in the d bands causes this emission. -- Abstract: Metallic zinc layered polyhedral microparticles have been fabricated by thermal evaporation and condensation technique using zinc as precursor at 750 Degree-Sign C for 120 min and NH{sub 3} as a carrier gas. The zinc polyhedral microparticles with oblate sphericalmore » shape are observed to be 2-9 {mu}m in diameter along major axes and 1-7 {mu}m in thickness along minor axes. The structural, compositional and morphological characterizations were performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). A vapour-solid (VS) mechanism based growth model has been proposed for the formation of Zn microparticles. Room temperature photoluminescence (PL) emission spectrum of the product exhibited a strong emission band at 369 nm attributed to the radiative recombination of electrons in the s, p conduction band near Fermi surface and the holes in the d bands generated by the optical excitation.« less

  5. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, G.; Labrosse, S.; Gerya, T.; Morishima, R.; Tackley, P. J.

    2012-12-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies.

  6. Low-temperature mechanical dissipation of thermally evaporated indium film for use in interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Murray, Peter G.; Martin, Iain W.; Cunningham, Liam; Craig, Kieran; Hammond, Giles D.; Hofmann, Gerd; Hough, James; Nawrodt, Ronny; Reifert, David; Rowan, Sheila

    2015-06-01

    Indium bonding is under consideration for use in the construction of cryogenic mirror suspensions in future gravitational wave detectors. This paper presents measurements of the mechanical loss of a thermally evaporated indium film over a broad range of frequencies and temperatures. It provides an estimate of the resulting thermal noise at 20 K for a typical test mass geometry for a cryogenic interferometric gravitational wave detector from an indium layer between suspension elements.

  7. CO2 evaporative cooling: The future for tracking detector thermal management

    NASA Astrophysics Data System (ADS)

    Tropea, P.; Daguin, J.; Petagna, P.; Postema, H.; Verlaat, B.; Zwalinski, L.

    2016-07-01

    In the last few years, CO2 evaporative cooling has been one of the favourite technologies chosen for the thermal management of tracking detectors at LHC. ATLAS Insertable B-Layer and CMS Pixel phase 1 upgrade have adopted it and their systems are now operational or under commissioning. The CERN PH-DT team is now merging the lessons learnt on these two systems in order to prepare the design and construction of the cooling systems for the new Upstream Tracker and the Velo upgrade in LHCb, due by 2018. Meanwhile, the preliminary design of the ATLAS and CMS full tracker upgrades is started, and both concepts heavily rely on CO2 evaporative cooling. This paper highlights the performances of the systems now in operation and the challenges to overcome in order to scale them up to the requirements of the future generations of trackers. In particular, it focuses on the conceptual design of a new cooling system suited for the large phase 2 upgrade programmes, which will be validated with the construction of a common prototype in the next years.

  8. Studies for determining thermal ion extraction potential for aluminium plasma generated by electron beam evaporator

    NASA Astrophysics Data System (ADS)

    Dileep Kumar, V.; Barnwal, Tripti A.; Mukherjee, Jaya; Gantayet, L. M.

    2010-02-01

    For effective evaporation of refractory metal, electron beam is found to be most suitable vapour generator source. Using electron beam, high throughput laser based purification processes are carried out. But due to highly concentrated electron beam, the vapour gets ionised and these ions lead to dilution of the pure product of laser based separation process. To estimate the concentration of these ions and extraction potential requirement to remove these ions from vapour stream, experiments have been conducted using aluminium as evaporant. The aluminium ingots were placed in water cooled copper crucible. Inserts were used to hold the evaporant, in order to attain higher number density in the vapour processing zone and also for confining the liquid metal. Parametric studies with beam power, number density and extraction potential were conducted. In this paper we discuss the trend of the generation of thermal ions and electrostatic field requirement for extraction.

  9. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. I: Properties of the Corona and the Spectrum of Escaping Radiation

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Jorn; Begelman, Mitchell C.

    1997-01-01

    We present the properties of accretion disk corona (ADC) models in which the radiation field, the temperature, and the total opacity of the corona are determined self-consistently. We use a nonlinear Monte Carlo code to perform the calculations. As an example, we discuss models in which the corona is situated above and below a cold accretion disk with a plane-parallel (slab) geometry, similar to the model of Haardt & Maraschi. By Comptonizing the soft radiation emitted by the accretion disk, the corona is responsible for producing the high-energy component of the escaping radiation. Our models include the reprocessing of radiation in the accretion disk. Here the photons either are Compton-reflected or photoabsorbed, giving rise to fluorescent line emission and thermal emission. The self- consistent coronal temperature is determined by balancing heating (due to viscous energy dissipation) with Compton cooling, determined using the fully relativistic, angle-dependent cross sections. The total opacity is found by balancing pair productions with annihilations. We find that, for a disk temperature kT(sub BB) approx. less than 200 eV, these coronae are unable to have a self-consistent temperature higher than approx. 140 keV if the total optical depth is approx. less than 0.2, regardless of the compactness parameter of the corona and the seed opacity. This limitation corresponds to the angle-averaged spectrum of escaping radiation having a photon index approx. greater than 1.8 within the 5-30 keV band. Finally, all models that have reprocessing features also predict a large thermal excess at lower energies. These constraints make explaining the X-ray spectra of persistent black hole candidates with ADC models very problematic.

  10. Multiphonon Raman scattering and photoluminescence studies of CdS nanocrystals grown by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Farid, Sidra; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    Thermal evaporation growth technique is presented as a route to grow cost effective high quality CdS thin films. We have successfully grown high quality CdS thin films on ITO coated glass substrates by thermal evaporation technique and analyzed the effects of annealing and excitation dependent input of CdS thin film using Raman and photoluminescence spectroscopy. LO phonon modes have been analyzed quantitatively considering the contributions due to anneal induced effects on film quality using phonon spatial correlation model, line shape and defect state analysis. Asymmetry in the Raman line shape towards the low frequency side is related to the phonon confinement effects and is modeled by spatial correlation model. Calculations of width (FWHM), integrated intensity, and line shape for the longitudinal (LO) optical phonon modes indicate improved crystalline quality for the annealed films as compared to the as grown films. With increase in laser power, intensity ratio of 2-LO to 1-LO optical phonon modes is found to increase while multiple overtones upto fourth order are observed. Power dependent photoluminescence data indicates direct band-to-band transition in CdS thin films.

  11. Hot accretion disks with pairs: Effects of magnetic field and thermal cyclocsynchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kusunose, Masaaki; Zdziarski, Andrzej A.

    1994-01-01

    We show the effects of thermal cyclosynchrotron radiation and magnetic viscosity on the structure of hot, two-temperature accretion disks. Magnetic field, B, is assumed to be randomly oriented and the ratio of magnetic pressure to either gas pressure, alpha = P(sub mag)/P(sub gas), or the sum of the gas and radiation pressures, alpha = (P(sub mag)/P(sub gas) + P(sub rad)), is fixed. We find those effects do not change the qualitative properties of the disks, i.e., there are still two critical accretion rates related to production of e(sup +/-) pairs, (M dot)((sup U)(sub cr)) and (M dot)((sup L)(sub cr)), that affect the number of local and global disk solutions, as recently found by Bjoernsson and Svensson for the case with B = 0. However, a critical value of the alpha-viscosity parameter above which those critical accretion rates disappear becomes smaller than alpha(sub cr) = 1 found in the case of B = 0, for P(sub mag) = alpha(P(sub gas) + P(sub rad)). If P(sub mag) = alpha P(sub gas), on the other hand, alpha(sub cr) is still about unity. Moreover, when Comptonized cyclosynchrotron radiation dominates Comptonized bremsstrahlung, radiation from the disk obeys a power law with the energy spectral index of approximately 0.5, in a qualitative agreement with X-ray observations of active galactic nuclei (AGNS) and Galactic black hole candidates. We also extend the hot disk solutions for P(sub mag) = alpha(P(sub gas) + P(sub rad)) to the effectively optically thick region, where they merge with the standard cold disk solutions. We find that the mapping method by Bjoernsson and Svensson gives a good approximation to the disk structure in the hot region and show where it breaks in the transition region. Finally, we find a region in the disk parameter space with no solutions due to the inability of Coulomb heating to supply enough energy to electrons.

  12. Modeling properties of chromospheric evaporation driven by thermal conduction fronts from reconnection shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannon, Sean; Longcope, Dana

    2014-09-01

    Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. The hydrodynamic shocks produced in this manner drive thermal conduction fronts (TCFs) which transport energy into the chromosphere and drive upflows (evaporation) and downflows (condensation) in the cooler, denser footpoint plasma. Observations have revealed that certain properties of the transition point between evaporation and condensation (the 'flow reversal point' or FRP), such as temperature and velocity-temperature derivative at the FRP, vary between different flares. These properties may provide a diagnostic tool to determine parameters of the coronal energy release mechanism and the loopmore » atmosphere. In this study, we develop a one-dimensional hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere/transition region/corona), with TCFs initiated by shocks introduced in the corona. We investigate the effect of two different flare loop parameters (post-shock temperature and transition region temperature ratio) on the FRP properties. We find that both of the evaporation characteristics have scaling-law relationships to the varied flare parameters, and we report the scaling exponents for our model. This provides a means of using spectroscopic observations of the chromosphere as quantitative diagnostics of flare energy release in the corona.« less

  13. Thermoelectric properties of V2O5 thin films deposited by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Santos, R.; Loureiro, J.; Nogueira, A.; Elangovan, E.; Pinto, J. V.; Veiga, J. P.; Busani, T.; Fortunato, E.; Martins, R.; Ferreira, I.

    2013-10-01

    This work reports the structural, optical, electrical and thermoelectric properties of vanadium pentoxide (V2O5) thin films deposited at room temperature by thermal evaporation on Corning glass substrates. A post-deposition thermal treatment up to 973 K under atmospheric conditions induces the crystallization of the as-deposited amorphous films with an orthorhombic V2O5 phase with grain sizes around 26 nm. As the annealing temperature rises up to 773 K the electrical conductivity increases. The films exhibit thermoelectric properties with a maximum Seebeck coefficient of -218 μV/K and electrical conductivity of 5.5 (Ω m)-1. All the films show NIR-Vis optical transmittance above 60% and optical band gap of 2.8 eV.

  14. Towards combined modeling of planetary accretion and differentiation

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Gerya, T. V.; Morishima, R.; Tackley, P. J.; Labrosse, S.

    2012-09-01

    accretion yield an onion-like thermal structure with very high internal temperatures due to powerful short-lived radiogenic heating in the planetesimals. These lead to extensive silicate melting in the parent bodies. Yet, magma ocean and impact processes are not considered in these models and core formation is, if taken into account, assumed to be instantaneous with no feedback on the mantle evolution. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [1], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [2]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the onset of mantle convection and cannot be described properly in 1D geometry. Here we present a new methodology, which can be used to simulate the internal evolution of a planetary body during accretion and differentiation: Using the N-body code PKDGRAV[3] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [4]. The thermomechanical model takes recent parametrizations of impact processes like impact heating and crater excavation [5] into account. The model also includes both long- and short-lived radiogenic isotopes and a more realistic treatment of largely molten silicates [6]. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron

  15. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  16. Instability of evaporation fronts in the interstellar medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeong-Gyu; Kim, Woong-Tae, E-mail: jgkim@astro.snu.ac.kr, E-mail: wkim@astro.snu.ac.kr

    2013-12-10

    The neutral component of the interstellar medium is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that a plane-parallel CNM-WNM evaporation interface, across which the CNM undergoes thermal expansion, is linearly unstable to corrugational disturbances, in complete analogy with the Darrieus-Landau instability (DLI) of terrestrial flames. We perform a full linear stability analysis as well as nonlinear hydrodynamic simulations of the DLI of such evaporation fronts in the presence of thermal conduction. We find that the DLI is suppressed at short length scales by conduction. The lengthmore » and time scales of the fastest growing mode are inversely proportional to the evaporation flow speed of the CNM and its square, respectively. In the nonlinear stage, the DLI saturates to a steady state where the front deforms to a finger-like shape protruding toward the WNM, without generating turbulence. The evaporation rate at nonlinear saturation is larger than the initial plane-parallel value by a factor of ∼2.4 when the equilibrium thermal pressure is 1800 k {sub B} cm{sup –3} K. The degrees of front deformation and evaporation-rate enhancement at nonlinear saturation are determined primarily by the density ratio between the CNM and WNM. We demonstrate that the Field length in the thermally unstable medium should be resolved by at least four grid points to obtain reliable numerical outcomes involving thermal instability.« less

  17. Classical Accreting Pulsars with NICER

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.

  18. Elemental Fractionation During Rapid Accretion of the Moon Triggered by a Giant Impact

    NASA Technical Reports Server (NTRS)

    Abe, Y.; Zahnle, K. J.; Hashimoto, A.

    1998-01-01

    Recently, Ida et al. made an N-body simulation of lunar accretion from a protolunar disk formed by a giant impact. One of their important conclusions is that the accretion time of the Moon is as short as one month. Such rapid accretion is a necessary consequence of the high surface density of a lunar mass disk accreting just beyond the Roche limit (about 3Re); the Safronov accretion time (a few days) is even shorter. The energy of accretion always exceeds the gravitational binding energy of newly arriving matter. Hence, without an energy sink, the accreting body is thermally unstable. For the Earth and other planets, radiation acts as the sink. However, in such a short accretion time, the Moon cannot radiate the accretional energy. Even radiating at a silicate cloudtop temperature of roughly 2000 K, it would take more than 100 yr to radiatively cool the Moon. The plausible alternative heat sinks are heat capacity, latent heat of vaporization, and thermal escape of the gas to space (i.e., hydrodynamic blowoff). The latter becomes plausible for the Moon because the scale height at 2000 K (about 300 km) is a significant fraction of the lunar radius. The early stages of lunar (or "lunatesimal") growth release relatively little energy and can occur simply by heating the material, especially if the accreting material is originally cold. However, the material is unlikely to be cold, because the disk itself is hot and cooling time is long, while the lunar accretion time iss very short. Therefore, the moon is likely to accrete condensed material just after it condenses. Accordingly, the newly accreted material will be on the verge of vaporization and will have very little heat capacity to spare. The immediate heat sink is the latent heat of vaporization. Most of the vapor will escape from the moon, because the thermal energy in the gas can be used to drive escape. However, vaporization is generally incomplete. the latent heat of vaporization exceeds the energy of accretion

  19. Accretion in Radiative Equipartition (AiRE) Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks andmore » show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.« less

  20. Accretion in Radiative Equipartition (AiRE) Disks

    NASA Astrophysics Data System (ADS)

    Yazdi, Yasaman K.; Afshordi, Niayesh

    2017-07-01

    Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (I.e., inner disk) need to be modified. Here, we present a modification to the Shakura & Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.

  1. Accretion onto a noncommutative-inspired Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Sunandan; Paik, Biplab; Mandal, Rituparna

    2018-05-01

    In this paper, we investigate the problem of ordinary baryonic matter accretion onto the noncommutative (NC) geometry-inspired Schwarzschild black hole. The fundamental equations governing the spherically symmetric steady state matter accretion are deduced. These equations are seen to be modified due to the presence of noncommutativity. The matter accretion rate is computed and is found to increase rapidly with the increase in strength of the NC parameter. The sonic radius reduces while the sound speed at the sonic point increases with the increase in the strength of noncommutativity. The profile of the thermal environment is finally investigated below the sonic radius and at the event horizon and is found to be affected by noncommutativity.

  2. Marangoni Convection and Deviations from Maxwells' Evaporation Model

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; Snell, E. H.; Adamek, D. H.

    2003-01-01

    We investigate the convective dynamics of evaporating pools of volatile liquids using an ultra-sensitive thermal imaging camera. During evaporation, there are significant convective flows inside the liquid due to Marangoni forces. We find that Marangoni convection during evaporation can dramatically affect the evaporation rates of volatile liquids. A simple heat balance model connects the convective velocities and temperature gradients to the evaporation rates.

  3. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Nerney, S. F.

    1998-01-01

    Evaporation is the consequence of heating near the top of streamers in ideal Magnetohydrodynamics (MHD) models, where the plasma is weakly contained by the magnetic field. Heating causes slow opening of field lines and release of new solar wind. It was discovered in simulations and, due to the absence of loss mechanisms, the ultimate end point is the complete evaporation of the streamer. Of course streamers do not behave in this way because there are losses by thermal conduction and radiation. Physically, heating is also expected to depend on ambient conditions. We use our global MHD model with thermal conduction to examine the effect of changing the heating scale height. We also apply and extend an analytic model of streamers developed by Pneuman (1968) to show that steady streamers are unable to contain plasma for temperatures near the cusp greater than approximately 2 x 10(exp 6) K.

  4. Chaotic cold accretion on to black holes

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Ruszkowski, M.; Oh, S. Peng

    2013-07-01

    Bondi theory is often assumed to adequately describe the mode of accretion in astrophysical environments. However, the Bondi flow must be adiabatic, spherically symmetric, steady, unperturbed, with constant boundary conditions. Using 3D adaptive mesh refinement simulations, linking the 50 kpc to the sub-parsec (sub-pc) scales over the course of 40 Myr, we systematically relax the classic assumptions in a typical galaxy hosting a supermassive black hole. In the more realistic scenario, where the hot gas is cooling, while heated and stirred on large scales, the accretion rate is boosted up to two orders of magnitude compared with the Bondi prediction. The cause is the non-linear growth of thermal instabilities, leading to the condensation of cold clouds and filaments when tcool/tff ≲ 10. The clouds decouple from the hot gas, `raining' on to the centre. Subsonic turbulence of just over 100 km s-1 (M > 0.2) induces the formation of thermal instabilities, even in the absence of heating, while in the transonic regime turbulent dissipation inhibits their growth (tturb/tcool ≲ 1). When heating restores global thermodynamic balance, the formation of the multiphase medium is violent, and the mode of accretion is fully cold and chaotic. The recurrent collisions and tidal forces between clouds, filaments and the central clumpy torus promote angular momentum cancellation, hence boosting accretion. On sub-pc scales the clouds are channelled to the very centre via a funnel. In this study, we do not inject a fixed initial angular momentum, though vorticity is later seeded by turbulence. A good approximation to the accretion rate is the cooling rate, which can be used as subgrid model, physically reproducing the boost factor of 100 required by cosmological simulations, while accounting for the frequent fluctuations. Since our modelling is fairly general (turbulence/heating due to AGN feedback, galaxy motions, mergers, stellar evolution), chaotic cold accretion may be common in

  5. Intense ultraviolet emission from needle-like WO3 nanostructures synthesized by noncatalytic thermal evaporation

    PubMed Central

    2011-01-01

    Photoluminescence measurements showed that needle-like tungsten oxide nanostructures synthesized at 590°C to 750°C by the thermal evaporation of WO3 nanopowders without the use of a catalyst had an intense near-ultraviolet (NUV) emission band that was different from that of the tungsten oxide nanostructures obtained in other temperature ranges. The intense NUV emission might be due to the localized states associated with oxygen vacancies and surface states. PMID:21752275

  6. Low-density, radiatively inefficient rotating-accretion flow on to a black hole

    NASA Astrophysics Data System (ADS)

    Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf

    2018-05-01

    We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(thermal energy generated by viscosity is transported via convection. Physical properties of the inner solution agree with those expected in convection-dominated accretion flows (ρ ∝ r-1/2). In the inner solution, the gas inflow rate decreases towards the centre due to convection (\\dot{M}∝ r), and the net accretion rate (including both inflows and outflows) is strongly suppressed by several orders of magnitude from the Bondi accretion rate \\dot{M}_B. The net accretion rate depends on the viscous strength, following \\dot{M}/\\dot{M}_B∝ (α /0.01)^{0.6}. This solution holds for low accretion rates of \\dot{M}_B/\\dot{M}_Edd≲ 10^{-3} having minimal radiation cooling, where \\dot{M}_Edd is the Eddington accretion rate. In a hot plasma at the bottom (r < 10-3 RB), thermal conduction would dominate the convective energy flux. Since suppression of the accretion by convection ceases, the final BH feeding rate is found to be \\dot{M}/\\dot{M}_B˜ 10^{-3}-10-2. This rate is as low as \\dot{M}/\\dot{M}_Edd˜ 10^{-7}-10-6 inferred for SgrA* and the nuclear BHs in M31 and M87, and can explain their low luminosities, without invoking any feedback mechanism.

  7. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of the- art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments. This approach can lead to large loss of water and a significant mass penalty for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. The optimal system is based on a trade-off between the mass of water saved and extra power needed to regenerate the LiCl absorber. This paper describes analysis models and the predicted performance and optimize the size of the SEAR system, estimated size and mass of key components, and power requirements for regeneration. We also present a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  8. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  9. Optimized evaporation from a microchannel heat sink

    NASA Astrophysics Data System (ADS)

    Monazami, Reza; Haj-Hariri, Hossein

    2011-11-01

    Two-phase heat transfer devices, benefiting the unique thermal capacities of phase- change, are considered as the top choice for a wide range of applications involving cooling and temperature control. Evaporation and condensation in these devices usually take place on porous structures. It is widely accepted that they improve the evaporation rates and the overall performance of the device. The liquid menisci formed on the pores of a porous material can be viewed as the active sites of evaporation. Therefore, quantifying the rate of evaporation from a single pore can be used to calculate the total evaporation taking place in the evaporator given the density and the average size of the pores. A microchannel heat sink can be viewed as an structured porous material. In this work, an analytical model is developed to predict the evaporation rate from a liquid meniscus enclosed in a microchannel. The effects of the wall superheat and the width of the channel on the evaporation profile through the meniscus are studied. The results suggest that there is an optimum size for the width of the channel in order to maximize the thermal energy absorbed by the unit area of the heat sink as an array of microchannels.

  10. Production of Sn/SnO2/MWCNT composites by plasma oxidation after thermal evaporation from pure Sn targets onto buckypapers.

    PubMed

    Alaf, M; Gultekin, D; Akbulut, H

    2012-12-01

    In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).

  11. Effects of high-energy particles on accretion flows onto a super massive black hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo

    We study effects of high-energy particles on the accretion flow onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma-rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and high-energy particles, supposing that some fraction of viscous dissipation energy is converted to the acceleration of high-energy particles. The thermal component is governed by fluid dynamics while the high-energy particles obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection dominated flows as steady state solutions. Effects of the high-energy particles on the flow structure turn out to be very small because the compressional heating is so effective that the thermal component always provides the major part of the pressure. We calculate luminosities of escaping particles for these steady solutions. For a broad range of mass accretion rates, escaping particles can extract the energy about one-thousandth of the accretion energy. We also discuss some implications on relativistic jet production by escaping particles.

  12. Thermal History and Volatile Partitioning between Proto-Atmosphere and Interior of Mars Accreted in a Solar Nebula

    NASA Astrophysics Data System (ADS)

    Saito, Hiroaki; Kuramoto, Kiyoshi

    2015-11-01

    Recent precise Hf-W chronometry of Martian meteorites reveals that Mars had likely reached the half of its present mass within 3 Myr from the birth of the solar system (Dauphas and Pourmand, 2011). Hence, the accretion is considered to almost proceed within the solar nebula associated with the capture of nebula gas components. At the same time, the impact degassing may inevitably occur because impact velocity increases high enough for such degassing when a proto-planet gets larger than around lunar size. Thus, we can expect the formation of a hybrid-type proto-atmosphere that consists of nebula gas and degassed one.This study analyzes the thermal structure of this proto-atmosphere sustained by accretional heating by building a 1D radiative-convective equilibrium model. Raw materials of Mars are supposed to be volatile-rich on the basis of the geochemical systematics of Mars meteorites (Dreibus and Wanke, 1988). The composition of degassed component comprised of H2, H2O, CH4, and CO is determined by chemical equilibrium with silicate and metal under the physical condition of locally heated region generated by each impact (Kuramoto, 1997). Degassed component lies beneath the nebula gas atmosphere at altitudes below the compositional boundary height that would change depending on the amount of degassed component. The accretion time is taken to be from 1 to 6 Myr.Our model predicts that the surface temperature exceeds the liquidus temperature of rock when a proto Mars grows larger than 0.7 times of its present mass for the longest accretion time case. In this case, the magma ocean mass just after the end of accretion is 0.2 times of its present mass if heat transfer and heat sources such as short-lived radionuclides are neglected in the interior. The corresponding amount of water dissolved into the magma ocean would be around 1.8 times the present Earth ocean mass. These results suggest that the earliest Mars would be hot enough to form deep magma oceans, which

  13. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    PubMed

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  14. Parsec-Scale Accretion and Winds Irradiated by a Quasar

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.; Proga, D.

    2016-01-01

    We present numerical simulations of properties of a parsec-scale torus exposed to illumination by the central black hole in an active galactic nucleus (AGN). Our physical model allows to investigate the balance between the formation of winds and accretion simultaneously. Radiation-driven winds are allowed by taking into account radiation pressure due to UV and IR radiation along with X-ray heating and dust sublimation. Accretion is allowed through angular momentum transport and the solution of the equations of radiative, viscous radiation hydrodynamics. Our methods adopt flux-limited diffusion radiation hydrodynamics for the dusty, infrared pressure driven part of the flow, along with X-ray heating and cooling. Angular momentum transport in the accreting part of the flow is modeled using effective viscosity. Our results demonstrate that radiation pressure on dust can play an important role in shaping AGN obscuration. For example, when the luminosity illuminating the torus exceeds L greater than 0.01 L(sub Edd), where L(sub Edd) is the Eddington luminosity, we find no episodes of sustained disk accretion because radiation pressure does not allow a disk to form. Despite the absence of the disk accretion, the flow of gas to smaller radii still proceeds at a rate 10(exp -4)-10(exp -1)M dot yr(exp -1) through the capturing of the gas from the hot evaporative flow, thus providing a mechanism to deliver gas from a radiation-pressure dominated torus to the inner accretion disk. As L L(sub edd) increases, larger radiation input leads to larger torus aspect ratios and increased obscuration of the central black hole. We also find the important role of the X-ray heated gas in shaping the obscuring torus.

  15. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Noble, Scott C.; Krolik, Julian H.

    2011-01-01

    We present new global calculations of X-ray spectra from fully relativistic magneto-hydrodynamic (MHO) simulations of black hole (BH) accretion disks. With a self consistent radiative transfer code including Compton scattering and returning radiation, we can reproduce the predominant spectral features seen in decades of X-ray observations of stellar-mass BHs: a broad thermal peak around 1 keV, power-law continuum up to >100 keV, and a relativistically broadened iron fluorescent line. By varying the mass accretion rate, different spectral states naturally emerge: thermal-dominant, steep power-law, and low/hard. In addition to the spectral features, we briefly discuss applications to X-ray timing and polarization.

  16. Characterizations of the Core-Shell Structured MgB2/CARBON Fiber Synthesis by Rf-Sputtering and Thermal Evaporation

    NASA Astrophysics Data System (ADS)

    Park, Sung Chang; Lim, Yeong Jin; Lee, Tae-Keun; Kim, Cheol Jin

    MgB2/carbon fibers have been synthesized by the combination of RF-sputtering of B and thermal evaporation of Mg, followed by co-evaporation. First, boron layer was deposited by RF-sputtering on the carbon fiber with average diameter of 7.1 μm. Later this coated layer of B was reacted with Mg vapor to transform into MgB2. Since the MgB2 reaction proceed with Mg diffusion into the boron layer, Mg vapor pressure and the diffusion time had to be controlled precisely to secure the complete reaction. Also the deposition rate of each element was controlled separately to obtain stoichiometric MgB2, since Mg was evaporated by thermal heating and B by sputtering system. The sintered B target was magnetron sputtered at the RF-power of ~200 W, which corresponded to the deposition rate of ~3.6 Å/s. With the deposition rate of B fixed, the vapor pressure of Mg was controlled by varying the temperature of tungsten boat with heating element control unit between 100 and 900°C. The MgB2 layers with the thickness of 200-950 nm could be obtained and occasionally MgO appeared as a second phase. Superconducting transition temperatures were measured around ~38 K depending on the deposition condition.

  17. Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wahl, Tina; Hanisch, Jonas; Ahlswede, Erik

    2018-04-01

    In this work, we present inverted perovskite solar cells with Al top electrodes, which were deposited by three different methods. Besides the widely used thermal evaporation of Al, we also used the industrially important high deposition rate processes sputtering and electron beam evaporation for aluminium electrodes and examined the influence of the deposition method on the solar cell performance. The current-voltage characteristics of as grown solar cells with sputtered and e-beam Al electrode show an s-shape due to damage done to the organic electronic transport layers (ETL) during Al deposition. It can be cured by a short annealing step at a moderate temperature so that fill factors  >60% and power conversion efficiencies of almost 12% with negligible hysteresis can be achieved. While solar cells with thermally evaporated Al electrode do not show an s-shape, they also exhibit a clear improvement after a short annealing step. In addition, we varied the thickness of the ETL consisting of a double layer ([6,6]-Phenyl-C61-butyric acid methyl ester and bathocuproine) and investigated the influence on the solar cell parameters for the three different Al deposition methods, which showed distinct dependencies on ETL thickness.

  18. Analyzing the Spectra of Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  19. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    PubMed Central

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-01-01

    We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE) increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc), short-circuit current (Jsc) and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells. PMID:29495612

  20. Parametric study of thin film evaporation from nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Wilke, Kyle L.; Barabadi, Banafsheh; Lu, Zhengmao; Zhang, TieJun; Wang, Evelyn N.

    2017-10-01

    The performance and lifetime of advanced electronics are often dictated by the ability to dissipate heat generated within the device. Thin film evaporation from nanoporous membranes is a promising thermal management approach, which reduces the thermal transport distance across the liquid film while also providing passive capillary pumping of liquid to the evaporating interface. In this work, we investigated the dependence of thin film evaporation from nanoporous membranes on a variety of geometric parameters. Anodic aluminum oxide membranes were used as experimental templates, where pore radii of 28-75 nm, porosities of 0.1-0.35, and meniscus locations down to 1 μm within the pore were tested. We demonstrated different heat transfer regimes and observed more than an order of magnitude increase in dissipated heat flux by operating in the pore-level evaporation regime. The pore diameter had little effect on pore-level evaporation performance due to the negligible conduction resistance from the pore wall to the evaporating interface. The dissipated heat flux scaled with porosity as the evaporative area increased. Furthermore, moving the meniscus as little as 1 μm into the pore decreased the dissipated heat flux by more than a factor of two due to the added resistance to vapor escaping the pore. The experimental results elucidate thin film evaporation from nanopores and confirm findings of recent modeling efforts. This work also provides guidance for the design of future thin film evaporation devices for advanced thermal management. Furthermore, evaporation from nanopores is relevant to water purification, chemical separations, microfluidics, and natural processes such as transpiration.

  1. Gas Accretion onto a Supermassive Black Hole: A Step to Model AGN Feedback

    NASA Astrophysics Data System (ADS)

    Nagamine, K.; Barai, P.; Proga, D.

    2012-08-01

    We study gas accretion onto a supermassive black hole (SMBH) using the 3D SPH code GADGET-3 on scales of 0.1-200 pc. First we test our code with the spherically symmetric, adiabatic Bondi accretion problem. We find that our simulation can reproduce the expected Bondi accretion flow very well for a limited amount of time until the effect of the outer boundary starts to be visible. We also find artificial heating of gas near the inner accretion boundary due to the artificial viscosity of SPH. Second, we implement radiative cooling and heating due to X-rays, and examine the impact of thermal feedback by the central X-ray source. The accretion flow roughly follows the Bondi solution for low central X-ray luminosities; however, the flow starts to exhibit non-spherical fragmentation due to the thermal instability for a certain range of central LX, and a strong overall outflow develops for greater LX. The cold gas develops filamentary structures that fall into the central SMBH, whereas the hot gas tries to escape through the channels in between the cold filaments. Such fragmentation of accreting gas can assist in the formation of clouds around AGN, induce star-formation, and contribute to the observed variability of narrow-line regions.

  2. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r).

    PubMed

    Lu, Yehu; Wang, Faming; Peng, Hui; Shi, Wen; Song, Guowen

    2016-04-01

    The ASTM F2370 (2010) is the only standard with regard to measurement of clothing real evaporative resistance by means of a sweating manikin. However, the sweating set-point is not recommended in the standard. In this study, the effect of sweating rate on clothing real evaporative resistance was investigated on a 34-zone "Newton" sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r). Four different sweating set rates (i.e., all segments had a sweating rate of 400, 800, 1200 ml/hr ∙ m(2), respectively, and different sweating rates were assigned to different segments) were applied to determine the clothing real evaporative resistance of five clothing ensembles and the boundary air layer. The results indicated that the sweating rate did not affect the real evaporative resistance of clothing ensembles with the absence of strong moisture absorbent layers. For the clothing ensemble with tight cotton underwear, a sweating rate of lower than 400 ml/hr ∙ m(2) is not recommended. This is mainly because the wet fabric "skin" might not be fully saturated and thus led to a lower evaporative heat loss and thereby a higher real evaporative resistance. For vapor permeable clothing, the real evaporative resistance determined in the so-called isothermal condition should be corrected before being used in thermal comfort or heat strain models. However, the reduction of wet thermal insulation due to moisture absorption in different test scenarios had a limited contribution to the effect of sweating rate on the real evaporative resistance.

  3. Fabrication and characterization of silver- and copper-coated Nylon 6 forcespun nanofibers by thermal evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihut, Dorina M., E-mail: dorinamm@yahoo.com; Lozano, Karen; Foltz, Heinrich

    2014-11-01

    Silver and copper nanoparticles were deposited as thin films onto substrates consisting of Nylon 6 nanofibers manufactured using forcespinning{sup ®} equipment. Different rotational speeds were used to obtain continuous nanofibers of various diameters arranged as nonwoven mats. The Nylon 6 nanofibers were collected as successive layers on frames, and a high-vacuum thermal evaporation method was used to deposit the silver and copper thin films on the nanofibers. The structures were investigated using scanning electron microscopy–scanning transmission electron microscopy, atomic force microscopy, x-ray diffraction, and electrical resistance measurements. The results indicate that evaporated silver and copper nanoparticles were successfully deposited onmore » Nylon 6 nanofibers as thin films that adhered well to the polymer substrate while the native morphology of the nanofibers were preserved, and electrically conductive nanostructures were achieved.« less

  4. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets.

    PubMed

    Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-03-04

    The local evaporation rate and interfacial temperature are two quintessential characteristics for the study of evaporating droplets. Here, it is shown how one can extract these quantities by measuring the vapor concentration field around the droplet with digital holographic interferometry. As a concrete example, an evaporating freely receding pending droplet of 3M Novec HFE-7000 is analyzed at ambient conditions. The measured vapor cloud is shown to deviate significantly from a pure-diffusion regime calculation, but it compares favorably to a new boundary-layer theory accounting for a buoyancy-induced convection in the gas and the influence upon it of a thermal Marangoni flow. By integration of the measured local evaporation rate over the interface, the global evaporation rate is obtained and validated by a side-view measurement of the droplet shape. Advective effects are found to boost the global evaporation rate by a factor of 4 as compared to the diffusion-limited theory.

  5. Bondi-Hoyle accretion in an isothermal magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I.

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbersmore » of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than

  6. Evaluation of tear evaporation from ocular surface by functional infrared thermography.

    PubMed

    Tan, Jen-Hong; Ng, E Y K; Acharya, U Rajendra

    2010-11-01

    A novel technique was developed to measure tear evaporation and monitor its variation with respect to time, for the studying of ocular physiology based on dynamic functional infrared thermography and the first law of thermodynamics using the measured ocular surface temperatures (OSTs). This is a noninvasive, noncontact temperature measuring method that is widely applied in the field of biomedicine. A simple method based on the ocular thermal data was proposed to measure the rate of tear evaporation. The OST of 60 normal subjects were recorded in the form of sequential thermal images. For each thermal sequence, the ocular region was selected and warped to a standard form. Thermal data within the regions were processed, on the basis of the first law of thermodynamics to derive the evaporation rate. For elder subjects (aged above 35), the rate was determined to be 55.82 Wm(-2) and for younger subjects, the rate was 58.9 Wm(-2). The corneal rate of evaporation in elder subjects was found statistically (p < 0.11) larger than their younger counterparts. The rate of blinking was observed to be related to the variation of evaporation rate. The authors have measured the evaporation rate on a sequence of thermographic images. A region of interest was selected at first and the same region on all the images were warped into a standard form. Calculations were performed based on the thermal data in those regions to obtain the values of interest. The authors found that the tear evaporation rate for subjects of all age groups was 57.36 +/- 12.73 Wm(-2) and the corneal tear evaporation was higher in elder subjects. The corneal rate of evaporation fluctuated in a larger magnitude in subjects who blinked more than average.

  7. Bulk Comptonization by Turbulence in Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Kaufman, Jason

    Radiation pressure dominated accretion discs may have turbulent velocities that exceed the electron thermal velocities. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. We discuss how to self-consistently resolve and interpret this effect in calculations of spectra of radiation MHD simulations. In particular, we show that this effect is dominated by radiation viscous dissipation and can be treated as thermal Comptonization with an equivalent temperature. We investigate whether bulk Comptonization may provide a physical basis for warm Comptonization models of the soft X-ray excess in AGN. We characterize our results with temperatures and optical depths to make contact with other models of this component. We show that bulk Comptonization shifts the Wien tail to higher energy and lowers the gas temperature, broadening the spectrum. More generally, we model the dependence of this effect on a wide range of fundamental accretion disc parameters, such as mass, luminosity, radius, spin, inner boundary condition, and the alpha parameter. Because our model connects bulk Comptonization to one dimensional vertical structure temperature profiles in a physically intuitive way, it will be useful for understanding this effect in future simulations run in new regimes. We also develop a global Monte Carlo code to study this effect in global radiation MHD simulations. This code can be used more broadly to compare global simulations with observed systems, and in particular to investigate whether magnetically dominated discs can explain why observed high Eddington accretion discs appear to be thermally stable.

  8. Pulsed Thermal Emission from the Accreting Pulsar XMMU J054134.7-682550

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonis; Walter, Roland; Audard, Marc; Lanz, Thierry

    2009-05-01

    XMMU J054134.7-682550, located in the LMC, featured a type II outburst in August 2007. We analyzed XMM-Newton (EPIC-MOS) and RXTE (PCA) data in order to derive the spectral and temporal characteristics of the system throughout the outburst. Spectral variability, spin period evolution, energy dependent pulse shape are discussed. The outburst (LX~3×1038 erg/s~LEDD) spectrum can be modeled using, cutoff power law, soft X-ray blackbody, disk emission, and cyclotron absorption line. The blackbody component shows a sinusoidal behavior, expected from hard X-ray reprocessing on the inner edge of the accretion disk. The thickness of the inner accretion disk (width of ~75 km) can be constrained. The spin-up of the pulsar during the outburst is the signature of a (huge) accretion rate. Simbol-X will provide similar capabilities as XMM-Newton and RXTE together, for such bright events.

  9. Multilayer composite material and method for evaporative cooling

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  10. Externally Induced Evaporation of Young Stellar Disks in Orion

    NASA Technical Reports Server (NTRS)

    Johnstone, D.; Hollenbach, D.; Shu, F.

    1996-01-01

    In this paper we propose a model for the evaporation of disks around young low-mass stars by external sources of high energy photons. Two evaporation techniques are possible. Lyman continuum radiation can ionize hydrogen at the disk surface powering a steady thermal ionized disk-wind, or FUV radiation can heat the disk through photo-electric grain processes powering a slower thermal neutral disk-wind. Applying these two models to the evaporating objects in the Trapezium produces a satisfactory solution to both the mass-loss rate and size of the ionized envelopes.

  11. Accretion onto neutron stars with the presence of a double layer

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.

    1986-01-01

    It is known from laboratory experiments that double layers can form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  12. Accretion onto neutron stars with the presence of a double layer

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.

    1987-01-01

    It is known, from laboratory experiments, that double layers will form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  13. Magnetic dynamos in accreting planetary bodies

    NASA Astrophysics Data System (ADS)

    Golabek, Gregor; Labrosse, Stéphane; Gerya, Taras; Morishima, Ryuji; Tackley, Paul

    2013-04-01

    Laboratory measurements revealed ancient remanent magnetization in meteorites [1] indicating the activity of magnetic dynamos in the corresponding meteorite parent body. To study under which circumstances dynamo activity is possible, we use a new methodology to simulate the internal evolution of a planetary body during accretion and differentiation. Using the N-body code PKDGRAV [2] we simulate the accretion of planetary embryos from an initial annulus of several thousand planetesimals. The growth history of the largest resulting planetary embryo is used as an input for the thermomechanical 2D code I2ELVIS [3]. The thermomechanical model takes recent parametrizations of impact processes [4] and of the magnetic dynamo [5] into account. It was pointed out that impacts can not only deposit heat deep into the target body, which is later buried by ejecta of further impacts [6], but also that impacts expose in the crater region originally deep-seated layers, thus cooling the interior [7]. This combination of impact effects becomes even more important when we consider that planetesimals of all masses contribute to planetary accretion. This leads occasionally to collisions between bodies with large ratios between impactor and target mass. Thus, all these processes can be expected to have a profound effect on the thermal evolution during the epoch of planetary accretion and may have implications for the magnetic dynamo activity. Results show that late-formed planetesimals do not experience silicate melting and avoid thermal alteration, whereas in early-formed bodies accretion and iron core growth occur almost simultaneously and a highly variable magnetic dynamo can operate in the interior of these bodies. [1] Weiss, B.P. et al., Science, 322, 713-716, 2008. [2] Richardson, D. C. et al., Icarus, 143, 45-59, 2000. [3] Gerya, T.V and Yuen, D.J., Phys. Earth Planet. Int., 163, 83-105, 2007. [4] Monteux, J. et al., Geophys. Res. Lett., 34, L24201, 2007. [5] Aubert, J. et al

  14. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  15. An Ultrathin Nanoporous Membrane Evaporator.

    PubMed

    Lu, Zhengmao; Wilke, Kyle L; Preston, Daniel J; Kinefuchi, Ikuya; Chang-Davidson, Elizabeth; Wang, Evelyn N

    2017-10-11

    Evaporation is a ubiquitous phenomenon found in nature and widely used in industry. Yet a fundamental understanding of interfacial transport during evaporation remains limited to date owing to the difficulty of characterizing the heat and mass transfer at the interface, especially at high heat fluxes (>100 W/cm 2 ). In this work, we elucidated evaporation into an air ambient with an ultrathin (≈200 nm thick) nanoporous (≈130 nm pore diameter) membrane. With our evaporator design, we accurately monitored the temperature of the liquid-vapor interface, reduced the thermal-fluidic transport resistance, and mitigated the clogging risk associated with contamination. At a steady state, we demonstrated heat fluxes of ≈500 W/cm 2 across the interface over a total evaporation area of 0.20 mm 2 . In the high flux regime, we showed the importance of convective transport caused by evaporation itself and that Fick's first law of diffusion no longer applies. This work improves our fundamental understanding of evaporation and paves the way for high flux phase-change devices.

  16. Thermodynamic performance testing of the orbiter flash evaporator system

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.; Melgares, M. A.; Frahm, J. P.

    1980-01-01

    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.

  17. Use of a Spacer Vest to Increase Evaporative Cooling Under Military Body Armor

    DTIC Science & Technology

    2006-07-01

    could significantly improve wearer thermal comfort . A study that tested six different configurations (closed, open front, open sides, all with and...thermal and evaporative resistances of the IBA, allowing for increases in predicted human sweat evaporation and overall thermal comfort during exposure

  18. Formation of ZnS nanostructures by a simple way of thermal evaporation

    NASA Astrophysics Data System (ADS)

    Yuan, H. J.; Xie, S. S.; Liu, D. F.; Yan, X. Q.; Zhou, Z. P.; Ci, L. J.; Wang, J. X.; Gao, Y.; Song, L.; Liu, L. F.; Zhou, W. Y.; Wang, G.

    2003-11-01

    The mass synthesis of ZnS nanobelts, nanowires, and nanoparticles has been achieved by a simple method of thermal evaporation of ZnS powders onto silicon substrates in the presence of Au catalyst. The temperature of the substrates and the concentration of ZnS vapor were the critical experimental parameters for the formation of different morphologies of ZnS nanostructures. Scanning electron microscopy and transmission electron microscopy show that the diameters of as-prepared nanowires were 30-70 nm. The UV emission at 374 nm is probably related to the exciton emission, while the mechanism of blue emission at 443 nm is probably mainly due to the presence of various surface states.

  19. ZnS thin films deposition by thermal evaporation for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Benyahia, K.; Benhaya, A.; Aida, M. S.

    2015-10-01

    ZnS thin films were deposited on glass substrates by thermal evaporation from millimetric crystals of ZnS. The structural, compositional and optical properties of the films are studied by X-ray diffraction, SEM microscopy, and UV-VIS spectroscopy. The obtained results show that the films are pin hole free and have a cubic zinc blend structure with (111) preferential orientation. The estimated optical band gap is 3.5 eV and the refractive index in the visible wavelength ranges from 2.5 to 1.8. The good cubic structure obtained for thin layers enabled us to conclude that the prepared ZnS films may have application as buffer layer in replacement of the harmful CdS in CIGS thin film solar cells or as an antireflection coating in silicon-based solar cells.

  20. Large-scale uniform ZnO tetrapods on catalyst free glass substrate by thermal evaporation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Hassan, Z.; Ahmed, Naser M.

    2016-07-15

    Highlights: • Investigate the growth of ZnO-Ts on glass substrate by thermal evaporation method. • Glass substrate without any catalyst or a seed layer. • The morphology was controlled by adjusting the temperature of the material and the substrate. • Glass substrate was placed vertically in the quartz tube. - Abstract: Here, we report for the first time the catalyst-free growth of large-scale uniform shape and size ZnO tetrapods on a glass substrate via thermal evaporation method. Three-dimensional networks of ZnO tetrapods have needle–wire junctions, an average leg length of 2.1–2.6 μm, and a diameter of 35–240 nm. The morphologymore » and structure of ZnO tetrapods were investigated by controlling the preparation temperature of each of the Zn powder and the glass substrate under O{sub 2} and Ar gases. Studies were carried out on ZnO tetrapods using X-ray diffraction, field emission scanning electron microscopy, UV–vis spectrophotometer, and a photoluminescence. The results showed that the sample grow in the hexagonal wurtzite structure with preferentially oriented along (002) direction, good crystallinity and high transmittance. The band gap value is about 3.27 eV. Photoluminescence spectrum exhibits a very sharp peak at 378 nm and a weak broad green emission.« less

  1. High-Capacity Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  2. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1990-01-01

    A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

  3. A multiple ion counter total evaporation (MICTE) method for precise analysis of plutonium by thermal ionization mass spectrometry

    DOE PAGES

    Inglis, Jeremy D.; Maassen, Joel; Kara, Azim; ...

    2017-04-28

    This study presents a total evaporation method for the analysis of sub-picogram quantities of Pu, utilizing an array of multiple ion counters. Data from three standards are presented to assess the utility of the technique. An external precision of 1.5% RSD (2σ) was achieved on aliquots approaching 100 fg for the minor 240Pu isotope. Accurate analysis of <1 femtogram of 240Pu, is achievable, with an external reproducibility of better than 10% RSD (2σ). Finally, this new technique represents a significant advance in the total evaporation method and will allow routine measurement of femtogram sized Pu samples by thermal ionization massmore » spectrometry.« less

  4. A multiple ion counter total evaporation (MICTE) method for precise analysis of plutonium by thermal ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inglis, Jeremy D.; Maassen, Joel; Kara, Azim

    This study presents a total evaporation method for the analysis of sub-picogram quantities of Pu, utilizing an array of multiple ion counters. Data from three standards are presented to assess the utility of the technique. An external precision of 1.5% RSD (2σ) was achieved on aliquots approaching 100 fg for the minor 240Pu isotope. Accurate analysis of <1 femtogram of 240Pu, is achievable, with an external reproducibility of better than 10% RSD (2σ). Finally, this new technique represents a significant advance in the total evaporation method and will allow routine measurement of femtogram sized Pu samples by thermal ionization massmore » spectrometry.« less

  5. New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature

    NASA Astrophysics Data System (ADS)

    Shokri-Kuehni, Salomé M. S.; Vetter, Thomas; Webb, Colin; Shokri, Nima

    2017-06-01

    Understanding salt transport and deposition patterns during evaporation from porous media is important in many engineering and hydrological processes such as soil salinization, ecosystem functioning, and land-atmosphere interaction. As evaporation proceeds, salt concentration increases until it exceeds solubility limits, locally, and crystals precipitate. The interplay between transport processes, crystallization, and evaporation influences where crystallization occurs. During early stages, the precipitated salt creates an evolving porous structure affecting the evaporation kinetics. We conducted a comprehensive series of experiments to investigate how the salt concentration and precipitation influence evaporation dynamics. Our results illustrate the contribution of the evolving salt crust to the evaporative mass losses. High-resolution thermal imaging enabled us to investigate the complex temperature dynamics at the surface of precipitated salt, providing further confirmation of salt crust contribution to the evaporation. We identify different phases of saline water evaporation from porous media with the corresponding dominant mechanisms in each phase and extend the physical understanding of such processes.

  6. Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication

    DOE PAGES

    Yu, Yue; Zhao, Dewei; Grice, Corey R.; ...

    2016-09-16

    Here, we report on the synthesis of methylammonium tin triiodide (MASnI 3) thin films at room temperature by a hybrid thermal evaporation method and their application in fabricating lead (Pb)-free perovskite solar cells. The as-deposited MASnI 3 thin films exhibit smooth surfaces, uniform coverage across the entire substrate, and strong crystallographic preferred orientation along the < 100 > direction. By incorporating this film with an inverted planar device architecture, our Pb-free perovskite solar cells are able to achieve an open-circuit voltage ( V oc) up to 494 mV. The relatively high V oc is mainly ascribed to the excellent surfacemore » coverage, the compact morphology, the good stoichiometry control of the MASnI 3 thin films, and the effective passivation of the electron-blocking and hole-blocking layers. Finally, our results demonstrate the potential capability of the hybrid evaporation method to prepare high-quality Pb-free MASnI 3 perovskite thin films which can be used to fabricate efficient Pb-free perovskite solar cells.« less

  7. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays

    NASA Astrophysics Data System (ADS)

    Caldeira Filho, A. M.; Mulato, M.

    2011-04-01

    Some semiconductor materials such as lead iodide (PbI2) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 108 Ω cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.

  8. Radio emission from Sgr A*: pulsar transits through the accretion disc

    NASA Astrophysics Data System (ADS)

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2017-06-01

    Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at the shock front, are injected into the disc. The radio-emitting particles are long lived and remain within the disc long after the pulsar's transit. Periodic pulsar transits through the disc result in regular injection episodes of non-thermal particles. We show that for a pulsar with spin-down luminosity Lsd ˜ 3 × 1035 erg s-1 and a wind Lorentz factor of γw ˜ 104 a quasi-steady synchrotron emission is established with luminosities in the 1-10 GHz range comparable to the observed one.

  9. Radiation-driven Turbulent Accretion onto Massive Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, KwangHo; Wise, John H.; Bogdanović, Tamara, E-mail: kwangho.park@physics.gatech.edu

    Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo , equipped with adaptive ray-tracing module Moray , to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findingsmore » from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2–3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.« less

  10. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chander, Subhash, E-mail: sckhurdra@gmail.com; Purohit, A.; Lal, C.

    2016-05-06

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays anmore » important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.« less

  11. Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition

    PubMed Central

    Jaramillo, Rafael; Steinmann, Vera; Yang, Chuanxi; Hartman, Katy; Chakraborty, Rupak; Poindexter, Jeremy R.; Castillo, Mariela Lizet; Gordon, Roy; Buonassisi, Tonio

    2015-01-01

    Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm2. Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices. PMID:26067454

  12. Solid-Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory.

    PubMed

    Han, Haoxue; Schlawitschek, Christiane; Katyal, Naman; Stephan, Peter; Gambaryan-Roisman, Tatiana; Leroy, Frédéric; Müller-Plathe, Florian

    2017-05-30

    We study the role of solid-liquid interface thermal resistance (Kapitza resistance) on the evaporation rate of droplets on a heated surface by using a multiscale combination of molecular dynamics (MD) simulations and analytical continuum theory. We parametrize the nonbonded interaction potential between perfluorohexane (C 6 F 14 ) and a face-centered-cubic solid surface to reproduce the experimental wetting behavior of C 6 F 14 on black chromium through the solid-liquid work of adhesion (quantity directly related to the wetting angle). The thermal conductances between C 6 F 14 and (100) and (111) solid substrates are evaluated by a nonequilibrium molecular dynamics approach for a liquid pressure lower than 2 MPa. Finally, we examine the influence of the Kapitza resistance on evaporation of droplets in the vicinity of a three-phase contact line with continuum theory, where the thermal resistance of liquid layer is comparable with the Kapitza resistance. We determine the thermodynamic conditions under which the Kapitza resistance plays an important role in correctly predicting the evaporation heat flux.

  13. Oscillations of Accretion Disks in Cataclysmic Variable Stars

    NASA Astrophysics Data System (ADS)

    Osaki, Y.

    2013-12-01

    The disk instability model for the outbursts of dwarf novae is reviewed, with particular attention given to the superoutburst of SU UMa stars. Two intrinsic instabilities in accretion disks of dwarf novae are known; the thermal instability and the tidal instability. The thermal-tidal instability model (abbreviated the TTI model), which combines these two instabilities, was first proposed in 1989 by Osaki (1989) to explain the superoutburst phenomenon of SU UMa stars. Recent Kepler observations of one SU UMa star, V1504 Cyg, have dramatically demonstrated that the superoutburst phenomenon of the SU UMa stars is explained by the thermal-tidal instability model.

  14. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    PubMed

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  15. Efficiency of using solid wood fuels in maple syrup evaporators

    Treesearch

    Lawrence D. Garrett

    1981-01-01

    A study of commercial, wood-fired evaporators revealed that normal expected thermal efficiencies are between 35 and 50 percent. The moisture content and quality of wood fuels used and the design and method of firing the evaporator are critical in determining evaporator efficiency and the economic implications of using wood.

  16. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-07-01

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, I.e., state transitions in galactic black hole binaries (GBHBs), and large systems, I.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ - ϕ stress that is less than the generic r - ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.

  17. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, J. Drew; Reynolds, Christopher S.

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to supportmore » this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ − ϕ stress that is less than the generic r − ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.« less

  18. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 2; Validation Results

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, Goddard Space Fight Center has conducted a Thermal Loop experiment to advance the maturity of the Thermal Loop technology from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. The thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for the TRL 4 and TRL 5 validations, respectively, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. The MLHP demonstrated excellent performance during experimental tests and the analytical model predictions agreed very well with experimental data. All success criteria at various TRLs were met. Hence, the Thermal Loop technology has reached a TRL of 6. This paper presents the validation results, both experimental and analytical, of such a technology development effort.

  19. Effects of High-energy Particles on Accretion Flows onto a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Toma, Kenji; Takahara, Fumio

    2014-08-01

    We study the effects of high-energy particles (HEPs) on the accretion flows onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and HEPs, supposing that some fraction of the released energy is converted to the acceleration of HEPs. The thermal component is governed by fluid dynamics while the HEPs obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection-dominated flows as the steady state solutions. The effects of the HEPs on the flow structures turn out to be small even if the pressure of the HEPs dominates over the thermal pressure. For a model in which the escaping protons take away almost all the energy released, the HEPs have a large enough influence to make the flow have a Keplerian angular velocity at the inner region. We calculate the luminosities of the escaping particles for these steady solutions. The escaping particles can extract the energy from about 10^{-4}\\dot{M} c^2 to 10^{-2}\\dot{M} c^2, where \\dot{M} is the mass accretion rate. The luminosities of the escaping particles depend on parameters such as the injection Lorentz factors, the mass accretion rates, and the diffusion coefficients. We also discuss some implications on the relativistic jet production by the escaping particles.

  20. Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles

    NASA Astrophysics Data System (ADS)

    Chambers, John

    2017-11-01

    In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2-5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1-3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.

  1. Morphological, spectroscopic and thermal studies of samarium chloride coordinated single crystal grown by slow evaporation method

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Raina, Bindu; Gupta, Rashmi; Bamzai, K. K.

    2018-05-01

    The synthesis of samarium chloride coordinated single crystal was carried out at room temperature by slow evaporation method. The crystal possesses a well defined hexagonal morphology with six symmetrically equivalent growth sectors separated by growth boundaries. The theoretical morphology has been established by structural approach using Bravaise-Friedele-Donnaye-Harker (BFDH) law. Fourier transform infra red spectroscopy was carried in order to study the geometry and structure of the crystal. The detailed thermogravimetric analysis elucidates the thermal stability of the complex.

  2. Global Evolution of an Accretion Disk with a Net Vertical Field: Coronal Accretion, Flux Transport, and Disk Winds

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Stone, James M.

    2018-04-01

    We report results from global ideal MHD simulations that study thin accretion disks (with thermal scale height H/R = 0.1 and 0.05) threaded by net vertical magnetic fields. Our computations span three orders of magnitude in radius, extend all the way to the pole, and are evolved for more than 1000 innermost orbits. We find that (1) inward accretion occurs mostly in the upper magnetically dominated regions of the disk at z ∼ R, similar to predictions from some previous analytical work and the “coronal accretion” flows found in GRMHD simulations. (2) A quasi-static global field geometry is established in which flux transport by inflows at the surface is balanced by turbulent diffusion. The resulting field is strongly pinched inwards at the surface. A steady-state advection–diffusion model, with a turbulent magnetic Prandtl number of order unity, reproduces this geometry well. (3) Weak unsteady disk winds are launched beyond the disk corona with the Alfvén radius R A /R 0 ∼ 3. Although the surface inflow is filamentary and the wind is episodic, we show that the time-averaged properties are well-described by steady-wind theory. Even with strong fields, β 0 = 103 at the midplane initially, only 5% of the angular momentum transport is driven by the wind, and the wind mass flux from the inner decade of the radius is only ∼0.4% of the mass accretion rate. (4) Within the disk, most of the accretion is driven by the Rϕ stress from the MRI and global magnetic fields. Our simulations have many applications to astrophysical accretion systems.

  3. Self catalytic growth of indium oxide (In2O3) nanowires by resistive thermal evaporation.

    PubMed

    Kumar, R Rakesh; Rao, K Narasimha; Rajanna, K; Phani, A R

    2014-07-01

    Self catalytic growth of Indium Oxide (In2O3) nanowires (NWs) have been grown by resistive thermal evaporation of Indium (In) in the presence of oxygen without use of any additional metal catalyst. Nanowires growth took place at low substrate temperature of 370-420 degrees C at an applied current of 180-200 A to the evaporation boat. Morphology, microstructures, and compositional studies of the grown nanowires were performed by employing field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. Nanowires were uniformly grown over the entire Si substrate and each of the nanowire is capped with a catalyst particle at their end. X-ray diffraction study reveals the crystalline nature of the grown nanowires. Transmission electron microscopy study on the nanowires further confirmed the single crystalline nature of the nanowires. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirmed that Indium act as catalyst for In2O3 nanowires growth. A self catalytic Vapor-Liquid-Solid (VLS) growth mechanism was responsible for the growth of In2O3 nanowires. Effect of oxygen partial pressure variation and variation of applied currents to the evaporation boat on the nanowires growth was systematically studied. These studies concluded that at oxygen partial pressure in the range of 4 x 10(-4), 6 x 10(-4) mbar at applied currents to the evaporation boat of 180-200 A were the best conditions for good nanowires growth. Finally, we observed another mode of VLS growth along with the standard VLS growth mode for In2O3 nanowires similar to the growth mechanism reported for GaAs nanowires.

  4. Effect of water temperature and air stream velocity on performance of direct evaporative air cooler for thermal comfort

    NASA Astrophysics Data System (ADS)

    Aziz, Azridjal; Mainil, Rahmat Iman; Mainil, Afdhal Kurniawan; Listiono, Hendra

    2017-01-01

    The aim of this work was to determine the effects of water temperature and air stream velocity on the performance of direct evaporative air cooler (DEAC) for thermal comfort. DEAC system requires the lower cost than using vapor compression refrigeration system (VCRS), because VCRS use a compressor to circulate refrigerant while DEAC uses a pump for circulating water in the cooling process to achieve thermal comfort. The study was conducted by varying the water temperature (10°C, 20°C, 30°C, 40°C, and 50°C) at different air stream velocity (2,93 m/s, 3.9 m/s and 4,57 m/s). The results show that the relative humidity (RH) in test room tends to increase with the increasing of water temperature, while on the variation of air stream velocity, RH remains constant at the same water temperature, because the amount of water that evaporates increase with the increasing water temperature. The cooling effectiveness (CE) increase with the increasing of air stream velocity where the higher CE was obtained at lower water temperature (10°C) with high air velocity (4,57m/s). The lower room temperature (26°C) was achieved at water temperature 10°C and air stream velocity 4.57 m/s with the relative humidity 85,87%. DEAC can be successfully used in rooms that have smoothly air circulation to fulfill the indoor thermal comfort.

  5. LUNAR ACCRETION FROM A ROCHE-INTERIOR FLUID DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, Julien; Canup, Robin M., E-mail: julien@boulder.swri.edu, E-mail: robin@boulder.swri.edu

    2012-11-20

    We use a hybrid numerical approach to simulate the formation of the Moon from an impact-generated disk, consisting of a fluid model for the disk inside the Roche limit and an N-body code to describe accretion outside the Roche limit. As the inner disk spreads due to a thermally regulated viscosity, material is delivered across the Roche limit and accretes into moonlets that are added to the N-body simulation. Contrary to an accretion timescale of a few months obtained with prior pure N-body codes, here the final stage of the Moon's growth is controlled by the slow spreading of themore » inner disk, resulting in a total lunar accretion timescale of {approx}10{sup 2} years. It has been proposed that the inner disk may compositionally equilibrate with the Earth through diffusive mixing, which offers a potential explanation for the identical oxygen isotope compositions of the Earth and Moon. However, the mass fraction of the final Moon that is derived from the inner disk is limited by resonant torques between the disk and exterior growing moons. For initial disks containing <2.5 lunar masses (M{sub Last-Quarter-Moon }), we find that a final Moon with mass > 0.8 M{sub Last-Quarter-Moon} contains {<=}60% material derived from the inner disk, with this material preferentially delivered to the Moon at the end of its accretion.« less

  6. The effect of accretion environment at large radius on hot accretion flows

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Hong; Bu, De-Fu

    2018-05-01

    We study the effects of accretion environment (gas density, temperature, and angular momentum) at large radii (˜10 pc) on luminosity of hot accretion flows. The radiative feedback effects from the accretion flow on the accretion environment are also self-consistently taken into account. We find that the slowly rotating flows at large radii can significantly deviate from Bondi accretion when radiation heating and cooling are considered. We further find that when the temperature of environment gas is low (e.g. T = 2 × 107 K), the luminosity of hot accretion flows is high. When the temperature of gas is high (e.g. T ≥ 4 × 107 K), the luminosity of hot accretion flow significantly deceases. The environment gas density can also significantly influence the luminosity of accretion flows. When density is higher than ˜4 × 10-22 g cm-3 and temperature is lower than 2 × 107 K, hot accretion flow with luminosity lower than 2 per cent LEdd is not present. Therefore, the parsec-scale environment density and temperature are two important parameters to determine the luminosity. The results are also useful for the subgrid models adopted by the cosmological simulations.

  7. DASCH ON KU Cyg: A {approx} 5 YEAR DUST ACCRETION EVENT IN {approx} 1900

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Sumin; Grindlay, Jonathan; Los, Edward

    2011-09-01

    KU Cyg is an eclipsing binary consisting of an F-type star accreting through a large accretion disk from a K5III red giant. Here we present the discovery of a 5 year dip around 1900 found from its 100 year DASCH light curve. It showed a {approx}0.5 mag slow fading from 1899 to 1903 and brightened back around 1904 on a relatively shorter timescale. The light curve shape of the 1899-1904 fading-brightening event differs from the dust production and dispersion process observed in R Coronae Borealis stars, which usually has a faster fading and slower recovery, and for KU Cyg ismore » probably related to the accretion disk surrounding the F star. The slow fading in KU Cyg is probably caused by increases in dust extinction in the disk, and the subsequent quick brightening may be due to the evaporation of dust transported inward through the disk. The extinction excess which caused the fading may arise from increased mass transfer rate in the system or from dust clump ejections from the K giant.« less

  8. Seed/catalyst-free growth of zinc oxide nanostructures on multilayer graphene by thermal evaporation

    PubMed Central

    2014-01-01

    We report the seed/catalyst-free growth of ZnO on multilayer graphene by thermal evaporation of Zn in the presence of O2 gas. The effects of substrate temperatures were studied. The changes of morphologies were very significant where the grown ZnO structures show three different structures, i.e., nanoclusters, nanorods, and thin films at 600°C, 800°C, and 1,000°C, respectively. High-density vertically aligned ZnO nanorods comparable to other methods were obtained. A growth mechanism was proposed based on the obtained results. The ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics. PMID:24533793

  9. To accrete or not accrete, that is the question

    USGS Publications Warehouse

    von Huene, Roland E.

    1986-01-01

    Along modern convergent margins tectonic processes span a spectrum from accretion to erosion. The process of accretion is generally recognized because it leaves a geologic record, whereas the process of erosion is generally hypothetical because it produces a geologic hiatus. Major conditions that determine the dominance of accretion or erosion at modern convergent margins are: 1) rate and direction of plate convergence, 2) sediment supply and type in the trench, and 3) topography of the subducting ocean floor. Most change in structure has been ascribed to plate motion, but both erosion and accretion are observed along the same convergence margin. Thus sediment supply and topography are probably of equivalent importance to plate motion because both erosion and accretion are observed under constant conditions of plate convergence. The dominance of accretion or erosion at a margin varies with the thickness of trench sediment. In a sediment flooded trench, the proportions of subducted and accreted sediment are commonly established by the position of a decollement along a weak horizon in the sediment section. Thus, the vertical variation of sediment strength and the distribution of horizontal stress are important factors. Once deformation begins, the original sediment strength is decreased by sediment remolding and where sediment thickens rapidly, increases in pore fluid pressure can be pronounced. In sediment-starved trenches, where the relief of the subducting ocean floor is not smoothed over, the front of the margin must respond to the topography subducted as well as that accreted. The hypothesized erosion by the drag of positive features against the underside of the upper plate (a high stress environment) may alternate with erosion due to the collapse of a margin front into voids such as graben (a low stress environment). ?? 1986 Ferdinand Enke Verlag Stuttgart.

  10. Magnetically gated accretion in an accreting ‘non-magnetic’ white dwarf

    NASA Astrophysics Data System (ADS)

    Scaringi, S.; Maccarone, T. J.; D’Angelo, C.; Knigge, C.; Groot, P. J.

    2017-12-01

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 106 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as ‘non-magnetic’, because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the ‘non-magnetic’ accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 104 gauss and 1 × 105 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  11. Accreting CO material onto ONe white dwarfs towards accretion-induced collapse

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Yuan; Wang, Bo

    2018-03-01

    The final outcomes of accreting ONe white dwarfs (ONe WDs) have been studied for several decades, but there are still some issues that are not resolved. Recently, some studies suggested that the deflagration of oxygen would occur for accreting ONe WDs with Chandrasekhar masses. In this paper, we aim to investigate whether ONe WDs can experience accretion-induced collapse (AIC) or explosions when their masses approach the Chandrasekhar limit. Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA), we simulate the long-term evolution of ONe WDs with accreting CO material. The ONe WDs undergo weak multicycle carbon flashes during the mass-accretion process, leading to mass increase of the WDs. We found that different initial WD masses and mass-accretion rates influence the evolution of central density and temperature. However, the central temperature cannot reach the explosive oxygen ignition temperature due to neutrino cooling. This work implies that the final outcome of accreting ONe WDs is electron-capture induced collapse rather than thermonuclear explosion.

  12. Convection Enhances Magnetic Turbulence in AM CVn Accretion Disks

    NASA Astrophysics Data System (ADS)

    Coleman, Matthew S. B.; Blaes, Omer; Hirose, Shigenobu; Hauschildt, Peter H.

    2018-04-01

    We present the results of local, vertically stratified, radiation magnetohydrodynamic shearing-box simulations of magnetorotational instability (MRI) turbulence for a (hydrogen poor) composition applicable to accretion disks in AM CVn type systems. Many of these accreting white dwarf systems are helium analogs of dwarf novae (DNe). We utilize frequency-integrated opacity and equation-of-state tables appropriate for this regime to accurately portray the relevant thermodynamics. We find bistability of thermal equilibria in the effective-temperature, surface-mass-density plane typically associated with disk instabilities. Along this equilibrium curve (i.e., the S-curve), we find that the stress to thermal pressure ratio α varied with peak values of ∼0.15 near the tip of the upper branch. Similar to DNe, we found enhancement of α near the tip of the upper branch caused by convection; this increase in α occurred despite our choice of zero net vertical magnetic flux. Two notable differences we find between DN and AM CVn accretion disk simulations are that AM CVn disks are capable of exhibiting persistent convection in outburst, and ideal MHD is valid throughout quiescence for AM CVns. In contrast, DNe simulations only show intermittent convection, and nonideal MHD effects are likely important in quiescence. By combining our previous work with these new results, we also find that convective enhancement of the MRI is anticorrelated with mean molecular weight.

  13. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  14. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Currie, Tom; Knezevici, Danny; Fuleki, Dan; Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-ching; Vargas, Mario; Wright, William

    2011-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 grams per cubic meter, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 millimeters in 3 minutes. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic

  15. Water evaporation in silica colloidal deposits.

    PubMed

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Global Modeling of Nebulae with Particle Growth, Drift, and Evaporation Fronts. I. Methodology and Typical Results

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2016-02-01

    We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 105 years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.

  17. In-situ biofouling of ocean thermal energy conversion (OTEC) evaporator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasscer, D.S.; Morgan, T.

    1981-05-01

    The Puerto Rico Center for Energy and Environmental Research equipped a LCU facility in 1100 m of water near Punta Tuna, Puerto Rico to measure in situ biofouling of simulated Ocean Thermal Energy Conversion evaporator tubes. The system consisted of two 5052 aluminum alloy and two titanium tubes, through which a continuous flow of ocean water was maintained. The tubes were cleaned three times and the fouling resistance was measured, showing only slight differences between the tubes with respect to heat transfer loss resulting from biofouling. In all units, the average fouling rate after cleaning was greater than before cleaning,more » and only after the first cleaning did the aluminum units show greater fouling rates than did the titanium. The titanium units showed a progressive increase in the fouling rates with each cleaning. The subsequent average fouling rates for all units after eight months were between 4 and 4.6 x 0.000010 sq m-k/W-day.« less

  18. Development of a laboratory prototype spraying flash evaporator.

    NASA Technical Reports Server (NTRS)

    Gaddis, J. L.

    1972-01-01

    A functional description of the flash evaporator that is being developed as a candidate for the Space Shuttle Environmental Control System thermal control is presented. A single evaporator configuration uses water as an evaporant to accommodate on-orbit peak heat loads and Freon 22 for terrestrial flight phases below 120,000 ft altitude. Development history, test plans, and operational characteristics are described. Detailed information is included to show: design features, fabrication techniques used for a prototype unit, redundancy considerations, and the control arrangement.

  19. Localised boundary air layer and clothing evaporative resistances for individual body segments.

    PubMed

    Wang, Faming; del Ferraro, Simona; Lin, Li-Yen; Sotto Mayor, Tiago; Molinaro, Vincenzo; Ribeiro, Miguel; Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2012-01-01

    Evaporative resistance is an important parameter to characterise clothing thermal comfort. However, previous work has focused mainly on either total static or dynamic evaporative resistance. There is a lack of investigation of localised clothing evaporative resistance. The objective of this study was to study localised evaporative resistance using sweating thermal manikins. The individual and interaction effects of air and body movements on localised resultant evaporative resistance were examined in a strict protocol. The boundary air layer's localised evaporative resistance was investigated on nude sweating manikins at three different air velocity levels (0.18, 0.48 and 0.78 m/s) and three different walking speeds (0, 0.96 and 1.17 m/s). Similarly, localised clothing evaporative resistance was measured on sweating manikins at three different air velocities (0.13, 0.48 and 0.70 m/s) and three walking speeds (0, 0.96 and 1.17 m/s). Results showed that the wind speed has distinct effects on local body segments. In contrast, walking speed brought much more effect on the limbs, such as thigh and forearm, than on body torso, such as back and waist. In addition, the combined effect of body and air movement on localised evaporative resistance demonstrated that the walking effect has more influence on the extremities than on the torso. Therefore, localised evaporative resistance values should be provided when reporting test results in order to clearly describe clothing local moisture transfer characteristics. Localised boundary air layer and clothing evaporative resistances are essential data for clothing design and assessment of thermal comfort. A comprehensive understanding of the effects of air and body movement on localised evaporative resistance is also necessary by both textile and apparel researchers and industry.

  20. Role of entrapped vapor bubbles during microdroplet evaporation

    NASA Astrophysics Data System (ADS)

    Putnam, Shawn A.; Byrd, Larry W.; Briones, Alejandro M.; Hanchak, Michael S.; Ervin, Jamie S.; Jones, John G.

    2012-08-01

    On superheated surfaces, the air bubble trapped during impingement grows into a larger vapor bubble and oscillates at the frequency predicted for thermally induced capillary waves. In some cases, the entrapped vapor bubble penetrates the droplet interface, leaving a micron-sized coffee-ring pattern of pure fluid. Vapor bubble entrapment, however, does not influence the evaporation rate. This is also true on laser heated surfaces, where a laser can thermally excite capillary waves and induce bubble oscillations over a broad range of frequencies, suggesting that exciting perturbations in a pinned droplets interface is not an effective avenue for enhancing evaporative heat transfer.

  1. Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, John, E-mail: jchambers@carnegiescience.edu

    In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planetsmore » with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2–5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1–3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.« less

  2. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer Helen Seng; E-Nova Project

    2017-01-01

    In this dissertation, I use radio observations with the Karl G. Jansky Very Large Array (VLA) to reveal that colliding flows within the ejecta from nova explosions can lead to shocks that accelerate particles and produce radio synchrotron emission. In both novae V1723 Aql and V5589 Sgr, radio emission within the first one to two months deviated strongly from the classic thermal model for radio emission from novae. Three years of radio observations of V1723 Aql show that multiple outflows from the system collided to create non-thermal shocks with a brightness temperature of >106 K. After these shocks faded, the radio light curve became roughly consistent with an expanding thermal shell. However, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months. In the case of nova V5589 Sgr, I show that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. These findings have important implications for understanding how normal novae generate GeV gamma-rays.Additionally, I present VLA observations of the symbiotic star CH Cyg and two small surveys of symbiotic binaries. Radio observations of CH Cyg tie the ejection of a collimated jet to a change of state in the accretion disk, strengthening the link between bipolar outflows from accreting white dwarfs and other types of accreting compact objects. Next, I use a survey of eleven accretion-driven symbiotic binaries to determine that the radio brightness of a symbiotic system could potentially be used as an indicator of whether it is powered predominantly by shell burning on the surface of the white dwarf or by accretion. This survey also produces the first radio detections of seven of the target systems. In the second survey of seventeen symbiotic binaries, I spatially resolve extended radio emission in several systems for the first time. The results from these surveys provide some support for the

  3. The role of the global magnetic field and thermal conduction on the structure of the accretion disks of all models

    NASA Astrophysics Data System (ADS)

    Farahinezhad, M.; Khesali, A. R.

    2018-05-01

    In this paper, the effects of global magnetic field and thermal conduction on the vertical structure of the accretion disks has been investigated. In this study, four types disks were examined: Gas pressure dominated the standard disk, while radiation pressure dominated the standard disk, ADAF disk, slim disk. Moreover, the general shape of the magnetic field, including toroidal and poloidal components, is considered. The magnetohydrodynamic equations were solved in spherical coordinates using self-similar assumptions in the radial direction. Following previous authors, the polar velocity vθ is non-zero and Trφ was considered as a dominant component of the stress tensor. The results show that the disk becomes thicker compared to the non-magnetic fields. It has also been shown that the presence of the thermal conduction in the ADAF model makes the disk thicker; the disk is expanded in the standard model.

  4. Optically thin core accretion: how planets get their gas in nearly gas-free discs

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Chiang, Eugene; Ferguson, Jason W.

    2018-05-01

    Models of core accretion assume that in the radiative zones of accreting gas envelopes, radiation diffuses. But super-Earths/sub-Neptunes (1-4 R⊕, 2-20 M⊕) point to formation conditions that are optically thin: their modest gas masses are accreted from short-lived and gas-poor nebulae reminiscent of the transparent cavities of transitional discs. Planetary atmospheres born in such environments can be optically thin to both incident starlight and internally generated thermal radiation. We construct time-dependent models of such atmospheres, showing that super-Earths/sub-Neptunes can accrete their ˜1 per cent-by-mass gas envelopes, and super-puffs/sub-Saturns their ˜20 per cent-by-mass envelopes, over a wide range of nebular depletion histories requiring no fine tuning. Although nascent atmospheres can exhibit stratospheric temperature inversions affected by atomic Fe and various oxides that absorb strongly at visible wavelengths, the rate of gas accretion remains controlled by the radiative-convective boundary (rcb) at much greater pressures. For dusty envelopes, the temperature at the rcb Trcb ≃ 2500 K is still set by H2 dissociation; for dust-depleted envelopes, Trcb tracks the temperature of the visible or thermal photosphere, whichever is deeper, out to at least ˜5 au. The rate of envelope growth remains largely unchanged between the old radiative diffusion models and the new optically thin models, reinforcing how robustly super-Earths form as part of the endgame chapter in disc evolution.

  5. Optical Properties of CdS Nanobelts and Nanosaws Synthesized by Thermal Evaporation Method

    NASA Astrophysics Data System (ADS)

    Peng, Zhi-wei; Zou, Bing-suo

    2012-04-01

    By a simple one-step H2-assisted thermal evaporation method, high quality CdS nanostructures have been successfully fabricated on Au coated Si substrates in large scale. The as-synthesized CdS nanostructures consisted of sword-like nanobelts and toothed nanosaws with a single-crystal hexagonal wurtzite structure. The deposition temperature played an important role in determining the size and morphology of the CdS nanostructures. A combination of vapor-liquid-solid and vapor-solid growth mechanisms were proposed to interpret the formation of CdS nanostructures. Photoluminescence measurement indicated that the nanobelts and nanosaws have a prominent green emission at about 512 nm, which is the band-to-band emission of CdS. The waveguide characteristics of both types of CdS nanostructures were observed and discussed.

  6. Large-scale thermal events in the solar nebula: evidence from Fe,Ni metal grains in primitive meteorites

    PubMed

    Meibom; Desch; Krot; Cuzzi; Petaev; Wilson; Keil

    2000-05-05

    Chemical zoning patterns in some iron, nickel metal grains from CH carbonaceous chondrites imply formation at temperatures from 1370 to 1270 kelvin by condensation from a solar nebular gas cooling at a rate of approximately 0.2 kelvin per hour. This cooling rate requires a large-scale thermal event in the nebula, in contrast to the localized, transient heating events inferred for chondrule formation. In our model, mass accretion through the protoplanetary disk caused large-scale evaporation of precursor dust near its midplane inside of a few astronomical units. Gas convectively moved from the midplane to cooler regions above it, and the metal grains condensed in these parcels of rising gas.

  7. Electrical transport properties of thermally evaporated phthalocyanine (H 2Pc) thin films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.

    2006-08-01

    Thin films of H 2Pc of various thicknesses have been deposited onto glass substrates using thermal evaporation technique at room temperature. The dark electrical resistivity measurements were carried out at different temperatures in the range 298-473 K. An estimation of mean free path ( lo) of charge carriers in H 2Pc thin films was attempted. Measurements of thermoelectric power confirm that H 2Pc thin films behave as a p-type semiconductor. The current density-voltage characteristics of Au/H 2Pc/Au at room temperature showed ohmic conduction mechanism at low voltages. At higher voltages the space-charge-limited conduction (SCLC) accompanied by an exponential trap distribution was dominant. The temperature dependence of current density allows the determination of some essential parameters such as the hole mobility ( μh), the total trap concentration ( Nt), the characteristic temperature ( Tt) and the trap density P( E).

  8. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  9. On the Effect of Energy Conservation on Black Hole Evaporation

    NASA Astrophysics Data System (ADS)

    Torres, R.; Fayos, F.; Lorente-Espín, O.

    2013-06-01

    We consider the emission of Hawking radiation by black holes as a consequence of a tunneling process. By requiring energy conservation in the derivation of the emission rate we get a well-known deviation from an exact thermal spectrum. A model that takes into account the implications of energy conservation, as well as the back-scattered radiation, is then constructed in order to describe the evolution of black holes as they evaporate. The evaporation process in this model is compared with the results in the standard "thermal" approximation. This allows us to point out the relevance that energy conservation might have in the last stages of black hole evaporation. We also comment about the possible implications of energy conservation in the information loss paradox.

  10. Evaporation Kinetics of Polyol Droplets: Determination of Evaporation Coefficients and Diffusion Constants

    NASA Astrophysics Data System (ADS)

    Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.

    2017-11-01

    In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.

  11. Micromachined evaporators for AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izenson, M.G.; Crowley, C.J.

    1996-12-31

    To achieve high cell efficiency and reliability, the capillary pumping system for Alkali Metal Thermal to Electric Conversion (AMTEC) must have three key characteristics: (1) very small pores to achieve a high capillary pumping head, (2) high permeability for the flow of liquid sodium to minimize internal losses, and (3) be made from a material that is exceptionally stable at high temperatures in a sodium environment. The authors have developed micromachining techniques to manufacture high performance evaporators for AMTEC cells. The evaporators have been fabricated from stainless steel, molybdenum, and a niobium alloy (Nb-1Zr). The regular, micromachined structure leads tomore » very high capillary pumping head with high permeability for liquid flow. Data from tests performed with common fluids at room temperature characterize the capillary pumping head and permeability of these structures. Three micromachined evaporators have been built into AMTEC cells and operated at temperatures up to 1,100 K. Results from these tests confirm the excellent pumping capabilities of the micromachined evaporators.« less

  12. Thermalization of X-rays in evaporated tin and bismuth films used as the absorbing materials in X-ray calorimeters

    NASA Astrophysics Data System (ADS)

    Stahle, C. K.; Kelley, R. L.; Moseley, S. H.; Szymkowiak, A. E.; Juda, M.; McCammon, D.; Zhang, J.

    1993-11-01

    We have investigated the use of evaporated tin and bismuth films as the absorbing materials in X-ray calorimeters. When the films were deposited directly on monolithic silicon calorimeters, the output signal from both Sn and Bi devices was strongly dependent on the location of the absorption event relative to the ion-implanted thermistors, presumably indicating thermistor sensitivity to a non-thermal spectrum of phonons. With Sn films we also observed that a component of the thermalization proceeded slowly, relative to a complete thermalization reference. The thermalization function could be modified by trapping magnetic flux within the film. In order to distinguish thermalization effects in the films from the thermistor sensitivity to energetic phonons, we deposited Sn and Bi films on thin Si substrates which we then affixed to calorimeters using epoxy. With glued Sn films, we were able to attain as good as 13.6 eV resolution of 6 keV X-rays with no excess broadening of the line beyond the width of the baseline, while similarly made Bi devices showed excess broadening.

  13. A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants.

    PubMed

    Bellur, K; Médici, E F; Kulshreshtha, M; Konduru, V; Tyrewala, D; Tamilarasan, A; McQuillen, J; Leao, J; Hussey, D S; Jacobson, D L; Scherschligt, J; Hermanson, J C; Choi, C K; Allen, J S

    2016-03-01

    Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide.

  14. A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants

    PubMed Central

    Bellur, K.; Médici, E. F.; Kulshreshtha, M.; Konduru, V.; Tyrewala, D.; Tamilarasan, A.; McQuillen, J.; Leao, J.; Hussey, D. S.; Jacobson, D. L.; Scherschligt, J.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.

    2016-01-01

    Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide. PMID:28154426

  15. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, Desikan

    1984-01-01

    A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  16. Method and apparatus for flash evaporation of liquids

    DOEpatents

    Bharathan, D.

    1984-01-01

    A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  17. GLOBAL MODELING OF NEBULAE WITH PARTICLE GROWTH, DRIFT, AND EVAPORATION FRONTS. I. METHODOLOGY AND TYPICAL RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A., E-mail: Paul.R.Estrada@nasa.gov

    2016-02-20

    We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplanemore » temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 10{sup 5} years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.« less

  18. A microscopic description of black hole evaporation via holography

    DOE PAGES

    Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan

    2016-07-19

    Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.

  19. A microscopic description of black hole evaporation via holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan

    Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.

  20. Simultaneous Spectral and Timing Observations of Accreting Neuron Stars

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goal of this proposal is to perform simultaneous x-ray spectral and millisecond timing observations of accreting neutron stars to further our understanding of their accretion dynamics and in the hope of using these systems as probes of the physics of strong gravitational fields. NAG5-9104 is the successor grant to NAG5-8408. Observations using the Rossi X-Ray Timing Explorer (RXTE) and BeppoSAX were performed of 4U1702-429, 4U1735-44, and Cyg X-2. Unfortunately, only a small fraction of the approved observing time was obtained for the first two targets and the data are of limited scientific value. Data analysis has been completed on the observations of Cyg X-2. We discovered a correlation between the frequency of the horizontal branch oscillations (HBO) and a soft, thermal component of the x-ray spectrum likely associated with emission from the accretion disk. This correlation may place constraints on models of the oscillations. A paper based on these results appeared in the Astrophysical Journal.

  1. Surface enhanced Raman scattering substrates prepared by thermal evaporation on liquid surfaces.

    PubMed

    Ye, Ziran; Sun, Guofang; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Xu, Fengyun; Wang, Ke; Ye, Gaoxiang; Yang, Shikuan

    2018-06-25

    We present an effective surface-enhancement Raman scattering(SERS) substrate enabled by depositing metallic film on a liquid surface at room temperature. Thermal evaporation is used to deposit Au atoms on silicone oil surface and then form quasi-continuous films. Due to the isotropic characteristics of the liquid surface, this film consists of substantial nanoparticles with uniform diameter, which is different from films fabricated on solid substrates and can be served as an applicable substrate for SERS detection. With the assistance of this substrate, SERS signals of Rhodamine 6G(R6G) were significantly enhanced, the dependence between SERS spectra and film thickness was investigated. Analytical simulation results confirm the experimental observations and the superiorities of our proposed method for preparation of SERS substrate. This work provides a potential application of metallic film deposition on free-sustained surface and holds promise as an efficient sensor in rapid trace detection of small molecule analytes. © 2018 IOP Publishing Ltd.

  2. Photon Bubbles and the Vertical Structure of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2006-06-01

    We consider the effects of ``photon bubble'' shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability (MRI). They increase the rate at which radiation escapes from the disk and may allow disks to exceed the Eddington limit by a substantial factor without blowing themselves apart. To refine our earlier analysis of photon bubble transport in accretion disks, we generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low τ tend to ``fill in'' the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities from 10 to >100 times the Eddington limit (LEdd), depending on the mass of the central object, while remaining geometrically thin. However, photon bubble-dominated disks with α-viscosity are subject to the same thermal and viscous instabilities that plague standard radiation pressure-dominated disks, suggesting that they may be intrinsically unsteady. Photon bubbles can lead to a ``core-halo'' vertical disk structure. In super-Eddington disks the halo forms the base of a wind, which carries away substantial energy and mass, but not enough to prevent the luminosity from exceeding LEdd. Photon bubble-dominated disks may have smaller color corrections than standard accretion disks of the same luminosity. They remain viable contenders for some ultraluminous X-ray sources and may play a role in the rapid growth of supermassive black holes at high redshift.

  3. Cu2ZnGeS4 thin films deposited by thermal evaporation: the impact of Ge concentration on physical properties

    NASA Astrophysics Data System (ADS)

    Courel, Maykel; Sanchez, T. G.; Mathews, N. R.; Mathew, X.

    2018-03-01

    In this work, the processing of Cu2ZnGeS4 (CZGS) thin films by a thermal evaporation technique starting from CuS, GeS and ZnS precursors, and post-deposition thermal processing, is discussed. Batches of films with GeS layers of varying thicknesses are deposited in order to study the role of Ge concentration on the structural, morphological, optical and electrical properties of CZGS films. The formation of the CZGS compound with a tetragonal phase and a kesterite structure is confirmed for all samples using XRD and Raman studies. An improvement in crystallite size for Ge-poor films is also observed in the XRD analysis, which is in good agreement with the grain size observed in the cross section SEM image. Furthermore, it is found that the band-gap of CZGS film can be tailored in the range of 2.0-2.23 eV by varying Ge concentration. A comprehensive electrical characterization is also performed which demonstrates that slightly Ge-poor samples are described by the lowest grain boundary defect densities and the highest photosensitivity and mobility values. A study of the work function of CZGS samples with different Ge concentrations is also presented. Finally, a theoretical evaluation is presented, considering, under ideal conditions, the possible impact of these films on device performance. Based on the characterization results, it is concluded that Ge-poor CZGS samples deposited by thermal evaporation present better physical properties for device applications.

  4. ACCRETION ONTO BLACK HOLES FROM LARGE SCALES REGULATED BY RADIATIVE FEEDBACK. II. GROWTH RATE AND DUTY CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kwang Ho; Ricotti, Massimo, E-mail: kpark@astro.umd.edu, E-mail: ricotti@astro.umd.edu

    2012-03-01

    This paper, the second in a series on radiation-regulated accretion onto black holes (BHs) from galactic scales, focuses on the effects of radiation pressure and angular momentum of the accreting gas. We simulate accretion onto intermediate-mass black holes, but we derive general scaling relationships that are solutions of the Bondi problem with radiation feedback valid for any mass of the BH M{sub bh}. Thermal pressure of the ionized sphere around the BH regulates the accretion rate, producing periodic and short-lived luminosity bursts. We find that for ambient gas densities exceeding n{sup cr}{sub H,{infinity}}{proportional_to}M{sup -1}{sub bh}, the period of the oscillationsmore » decreases rapidly and the duty cycle increases from 6%, in agreement with observations of the fraction of active galactic nuclei at z {approx} 3, to 50%. The mean accretion rate becomes Eddington limited for n{sub H,{infinity}} > n{sup Edd}{sub H,{infinity}} {approx_equal} n{sup cr}{sub H,{infinity}} T{sub {infinity},4}{sup -1} where T{sub {infinity},4} is the gas temperature in units of 10{sup 4} K. In the sub-Eddington regime, the mean accretion rate onto BHs is about 1%T{sup 2.5}{sub {infinity},4} of the Bondi rate, and thus is proportional to the thermal pressure of the ambient medium. The period of the oscillations coincides with the depletion timescale of the gas inside the ionized bubble surrounding the BH. Gas depletion is dominated by a pressure gradient pushing the gas outward if n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} and by accretion onto the BH otherwise. Generally, for n{sub H,{infinity}} < n{sup cr}{sub H,{infinity}} angular momentum does not significantly affect the accretion rate and period of the oscillations.« less

  5. On the wind production from hot accretion flows with different accretion rates

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Gan, Zhao-Ming

    2018-02-01

    We perform two-dimensional simulations to study how the wind strength changes with accretion rate. We take into account bremsstrahlung, synchrotron radiation and the Comptonization. We find that when the accretion rate is low, radiative cooling is not important, and the accretion flow is hot. For the hot accretion flow, wind is very strong. The mass flux of wind can be ˜ 50 per cent of the mass inflow rate. When the accretion rate increases to a value at which radiative cooling rate is roughly equal to or slightly larger than viscous heating rate, cold clumps can form around the equatorial plane. In this case, the gas pressure gradient force is small and wind is very weak. Our results may be useful for the sub-grid model of active galactic nuclear feedback study.

  6. Cold, clumpy accretion onto an active supermassive black hole

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  7. Cold, clumpy accretion onto an active supermassive black hole.

    PubMed

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  8. The Evaporation and Survival of Cluster Galaxies’ Coronae. II. The Effectiveness of Anisotropic Thermal Conduction and Survival of Stripped Galactic Tails

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Sarazin, Craig

    2017-10-01

    We simulate anisotropic thermal conduction between the intracluster medium (ICM) and the hot coronal interstellar medium (ISM) gas in cluster galaxies. In Paper I, we simulated the evaporation of the hot ISM due to isotropic (possibly saturated) conduction between the ISM and ICM. We found that hot coronae evaporate on ˜ {10}2 {Myr} timescales, significantly shorter than the ˜ {10}3 {Myr} gas loss times due to ram pressure stripping. No tails of stripped gas are formed. This is in tension with the observed ubiquity and implied longevity of compact X-ray coronae and stripped ISM tails, and requires the suppression of evaporation, possibly due to magnetic fields and anisotropic conduction. We perform a series of wind tunnel simulations similar to that in Paper I, now including ISM and ICM magnetic fields. We simulate the effect of anisotropic conduction for a range of extreme magnetic field configurations: parallel and perpendicular to the ICM wind, and continuous and completely disjointed between the ISM and ICM. We find that when conduction is anisotropic, gas loss due to evaporation is severely reduced; the overall gas loss rates with and without anisotropic conduction do not differ by more than 10%-20%. Magnetic fields also prevent stripped tails from evaporating in the ICM by shielding, and providing few pathways for heat transport between the ICM and ISM. The morphology of stripped tails and magnetic fields in the tails and wakes of galaxies are sensitive to the initial magnetic field configuration.

  9. Probing the Accretion Geometry of Black Holes with X-Ray Polarization

    NASA Technical Reports Server (NTRS)

    Schnitman, Jeremy D.

    2011-01-01

    In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.

  10. Evolution of a steam atmosphere during earth's accretion

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Kasting, J. F.; Pollack, J. B.

    1988-04-01

    The evolution of an impact-generated steam atmosphere around an accreting earth is presently modeled under the assumption of Safronov (1978) accretion, in a scheme that encompasses the degassing of planetesimals on impact, thermal blanketing by the steam atmosphere, surface-to-interior water exchange, the shock heating and convective cooling of the earth's interior, and hydrogen escape due both to solar EUV-powered planetary wind and impact erosion. The model yields four distinct classes of impact-generated atmospheres: the first, on which emphasis is placed, has as its salient feature a molten surface that is maintained by the opacity of a massive water vapor atmosphere; the second occurs when the EUV-limited escape exceeds the impact degassing rate, while the third is dominated by impact erosion and the fourth is characterized by an atmosphere more massive than any thus far encountered.

  11. Evolution of a steam atmosphere during earth's accretion

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin J.; Kasting, James F.; Pollack, James B.

    1988-01-01

    The evolution of an impact-generated steam atmosphere around an accreting earth is presently modeled under the assumption of Safronov (1978) accretion, in a scheme that encompasses the degassing of planetesimals on impact, thermal blanketing by the steam atmosphere, surface-to-interior water exchange, the shock heating and convective cooling of the earth's interior, and hydrogen escape due both to solar EUV-powered planetary wind and impact erosion. The model yields four distinct classes of impact-generated atmospheres: the first, on which emphasis is placed, has as its salient feature a molten surface that is maintained by the opacity of a massive water vapor atmosphere; the second occurs when the EUV-limited escape exceeds the impact degassing rate, while the third is dominated by impact erosion and the fourth is characterized by an atmosphere more massive than any thus far encountered.

  12. Investigation of local evaporation flux and vapor-phase pressure at an evaporative droplet interface.

    PubMed

    Duan, Fei; Ward, C A

    2009-07-07

    In the steady-state experiments of water droplet evaporation, when the throat was heating at a stainless steel conical funnel, the interfacial liquid temperature was found to increase parabolically from the center line to the rim of the funnel with the global vapor-phase pressure at around 600 Pa. The energy conservation analysis at the interface indicates that the energy required for evaporation is maintained by thermal conduction to the interface from the liquid and vapor phases, thermocapillary convection at interface, and the viscous dissipation globally and locally. The local evaporation flux increases from the center line to the periphery as a result of multiple effects of energy transport at the interface. The local vapor-phase pressure predicted from statistical rate theory (SRT) is also found to increase monotonically toward the interface edge from the center line. However, the average value of the local vapor-phase pressures is in agreement with the measured global vapor-phase pressure within the measured error bar.

  13. Determining the virtual surface in the thermal evaporation process of magnesium fluoride from a tungsten boat for different deposition rates, to be used in precision optical components

    NASA Astrophysics Data System (ADS)

    Tejada Esteves, A.; Gálvez de la Puente, G.

    2013-11-01

    Vacuum thermal evaporation has, for some time now, been the principal method for the deposition of thin films, given, among other aspects, its simplicity, flexibility, and relatively low cost. Therefore, the development of models attempting to predict the deposition patterns of given thin film materials in different locations of a vacuum evaporation chamber are arguably important. With this in mind, we have designed one of such models for the thermal evaporation process of magnesium fluoride (MgF2), a common material used in optical thin films, originating from a tungsten boat source. For this we took several deposition samples in glass slide substrates at different locations in the vacuum chamber, considering as independent variables the mean deposition rate, and the axial and vertical distances of the source to the substrate. After a careful analysis by matrix method from the spectral transmittance data of the samples, while providing as output data the spectral transmittance, as well as the physical thickness of the films, both as functions of the aforementioned variables, the virtual surface of the source was determined.

  14. The profiles of Fe K α line from the inhomogeneous accretion flow

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Di; Ma, Ren-Yi; Li, Ya-Ping; Zhang, Hui; Fang, Tao-Tao

    2018-05-01

    The clumpy disc, or inhomogeneous accretion flow, has been proposed to explain the properties of accreting black hole systems. However, the observational evidence remains to be explored. In this work, we calculate the profiles of Fe K α lines emitted from the inhomogeneous accretion flow through the ray-tracing technique, in order to find possible observable signals of the clumps. Compared with the skewed double-peaked profile of the continuous standard accretion disc, the lines show a multipeak structure when the emissivity index is not very steep. The peaks and wings are affected by the position and size of the cold clumps. When the clump is small and is located in the innermost region, due to the significant gravitational redshift, the blue wing can overlap with the red wing of the outer cold disc/clump, forming a fake peak or greatly enhancing the red peak. Given high enough resolution, it is easier to constrain the clumps around the supermassive black holes than the clumps in stellar mass black holes due to the thermal Doppler effect.

  15. Kinetic Limited Water Evaporation in Hydrophilic Nanofluidic Channels

    NASA Astrophysics Data System (ADS)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Xie, Quan; Duan, Chuanhua

    2015-11-01

    Capillary evaporation is one of the most efficient approaches for heat and mass transfer, but the interfacial resistance in capillary evaporation governed by the kinetic theory has remained poorly understood. Here we report experimental studies of the kinetic-limited water capillary evaporation in 2-D hydrophilic nanochannels. A novel hybrid nanochannel design is employed to guarantee sufficient water supply to the liquid/vapor evaporation interface and to enable precise evaporation rate measurements. We study the effects of confinement (16 ~ 105nm), temperature (20 ~ 40 °C), and relative humidity (0% ~ 60%) on the evaporation rate and the evaporation coefficient. A maximum evaporation flux of 21287 micron/s is obtained in 16-nm nanochannels at 40°C and RH =0%, which corresponds to a heat flux of 4804 W/cm°. The evaporation coefficient is found to be independent on geometrical confinement, but shows a clear dependence on temperature, decreasing from 0.55 at 20°C to 0.5 at 40 °C. These findings have implications for understanding heat and mass transport in nanofluidic devices and porous media, and shed light on further development of evaporation-based technologies for thermal management, membrane purification and lab-on-a-chip devices. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  16. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  17. Nano-Crystalline Thermally Evaporated Bi2Se3 Thin Films Synthesized from Mechanically Milled Powder

    NASA Astrophysics Data System (ADS)

    Amara, A.; Abdennouri, N.; Drici, A.; Abdelkader, D.; Bououdina, M.; Chaffar Akkari, F.; Khemiri, N.; Kanzari, M.; Bernède, J. C.

    2017-08-01

    Bi2Se3 powder has been successfully synthesized via mechanical ball milling of bismuth and selenium as starting materials. X-ray diffraction characterization revealed the formation of the rhombohedral and orthorhombic phases of Bi2Se3 material belonging to systems with space groups R\\bar{3}m and Pbnm, respectively. The advantageous last finding is confirmed by the Rietveld refinement of the x-ray diffraction data. Furthermore, the analysis of the x-ray data of thermally deposited thin films revealed that both orthorhombic and rhombohedral phases are coexisting in the layer. The morphology of the ball milled powder was studied by scanning electron microscopy. The phase formation of the material is confirmed by Raman spectroscopy. M-H (Magnetization versus Magnetic field) curve indicates that Bi2Se3 powder has a ferromagnetic behavior. Additionally, absorbance and transmittance measurements were carried out on the obtained thermally evaporated thin films and yielded a band gap of 1.33 eV supporting the potential application of the heterogeneous rhombohedral/orthorhombic Bi2Se3 material in photovoltaics.

  18. Bondi Accretion and the Problem of the Missing Isolated Neutron Stars

    NASA Technical Reports Server (NTRS)

    Perna, Rosalba; Narayan, Ramesh; Rybicki, George; Stella, Luigi; Treves, Aldo

    2003-01-01

    A large number of neutron stars (NSs), approximately 10(exp 9), populate the Galaxy, but only a tiny fraction of them is observable during the short radio pulsar lifetime. The majority of these isolated NSs, too cold to be detectable by their own thermal emission, should be visible in X-rays as a result of accretion from the interstellar medium. The ROSAT All-Sky Survey has, however, shown that such accreting isolated NSs are very elusive: only a few tentative candidates have been identified, contrary to theoretical predictions that up to several thousand should be seen. We suggest that the fundamental reason for this discrepancy lies in the use of the standard Bondi formula to estimate the accretion rates. We compute the expected source counts using updated estimates of the pulsar velocity distribution, realistic hydrogen atmosphere spectra, and a modified expression for the Bondi accretion rate, as suggested by recent MHD simulations and supported by direct observations in the case of accretion around supermassive black holes in nearby galaxies and in our own. We find that, whereas the inclusion of atmospheric spectra partly compensates for the reduction in the counts due to the higher mean velocities of the new distribution, the modified Bondi formula dramatically suppresses the source counts. The new predictions are consistent with a null detection at the ROSAT sensitivity.

  19. The early thermal evolution of Mars

    NASA Astrophysics Data System (ADS)

    Bhatia, G. K.; Sahijpal, S.

    2016-01-01

    Hf-W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short-lived radio-nuclides 26Al, 60Fe, and the long-lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core-mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core-mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.

  20. Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation.

    PubMed

    Persad, Aaron H; Ward, Charles A

    2016-07-27

    Although the Hertz-Knudsen (HK) relation is often used to correlate evaporation data, the relation contains two empirical parameters (the evaporation and condensation coefficients) that have inexplicably been found to span 3 orders of magnitude. Explicit expressions for these coefficients have yet to be determined. This review will examine sources of error in the HK relation that have led to the coefficients' scatter. Through an examination of theoretical, experimental, and molecular dynamics simulation studies of evaporation, this review will show that the HK relation is incomplete, since it is missing an important physical concept: the coupling between the vapor and liquid phases during evaporation. The review also examines a modified HK relation, obtained from the quantum-mechanically based statistical rate theory (SRT) expression for the evaporation flux and applying a limit to it in which the thermal energy is dominant. Explicit expressions for the evaporation and condensation coefficients are defined in this limit, with the surprising result that the coefficients are not bounded by unity. An examination is made with 127 reported evaporation experiments of water and of ethanol, leading to a new physical interpretation of the coefficients. The review concludes by showing how seemingly small simplifications, such as assuming thermal equilibrium across the liquid-vapor interface during evaporation, can lead to the erroneous predictions from the HK relation that have been reported in the literature.

  1. Direct synthesis of Cu{sub 2}O-RGO nanocomposite on Cu foil by thermal evaporation method and its field emission study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansode, Sanjeewani; Khare, Ruchita; Harpale, Kashmira

    2015-06-24

    In this work, a facile one step thermal evaporation method for deposition of Cu{sub 2}O nanoparticles on RGO sheets to form Cu{sub 2}O-RGO nanocomposite is discussed. To the best of our knowledge, this is the first report on Cu{sub 2}O-RGO nanocomposite, directly grown on Cu foil by a simple thermal evaporation route. The as –prepared nanocomposite exhibits well dispersed Cu{sub 2}O nanoparticles distributed all over the graphene sheet. Field emission properties of the nanocomposite were investigated at a base pressure of 1*10{sup −8} torr. The turn on field, required to draw emission current density of 0.1µA/cm2, was found to bemore » 3.8V/µm with a maximum emission current density of 80 µA/cm2 at an applied field of 6.8 V/µm. Moreover, the nanocomposite shows fairly good emission stability without significant degradation of emission current. The FE results seem to be encouraging, indicative of potential candidature of the Cu{sub 2}O-RGO nanocomposite emitter as an electron source for practical applications in vacuum nanoelectronic devices.« less

  2. BaSi2 formation mechanism in thermally evaporated films and its application to reducing oxygen impurity concentration

    NASA Astrophysics Data System (ADS)

    Hara, Kosuke O.; Yamamoto, Chiaya; Yamanaka, Junji; Arimoto, Keisuke; Nakagawa, Kiyokazu; Usami, Noritaka

    2018-04-01

    Thermal evaporation is a simple and rapid method to fabricate semiconducting BaSi2 films. In this study, to elucidate the BaSi2 formation mechanism, the microstructure of a BaSi2 epitaxial film fabricated by thermal evaporation has been investigated by transmission electron microscopy. The BaSi2 film is found to consist of three layers with different microstructural characteristics, which is well explained by assuming two stages of film deposition. In the first stage, BaSi2 forms through the diffusion of Ba atoms from the deposited Ba-rich film to the Si substrate while in the second stage, the mutual diffusion of Ba and Si atoms in the film leads to BaSi2 formation. On the basis of the BaSi2 formation mechanism, two issues are addressed. One is the as-yet unclarified reason for epitaxial growth. It is found important to quickly form BaSi2 in the first stage for the epitaxial growth of upper layers. The other issue is the high oxygen concentration in BaSi2 films around the BaSi2-Si interface. Two routes of oxygen incorporation, i.e., oxidation of the Si substrate surface and initially deposited Ba-rich layer by the residual gas, are identified. On the basis of this knowledge, oxygen concentration is decreased by reducing the holding time of the substrate at high temperatures and by premelting of the source. In addition, X-ray diffraction results show that the decrease in oxygen concentration can lead to an increased proportion of a-axis-oriented grains.

  3. Evaporating Spray in Supersonic Streams Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.

    2006-01-01

    Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.

  4. An optimal thermal evaporation synthesis of c-axis oriented ZnO nanowires with excellent UV sensing and emission characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Tridib, E-mail: tridib.saha@monash.edu; Achath Mohanan, Ajay, E-mail: ajay.mohanan@monash.edu; Swamy, Varghese, E-mail: varghese.swamy@monash.edu

    Highlights: • c-Axis alignment of ZnO nanowires was optimized using self-seeding thermal evaporation method. • Influence of purified air on the morphology and optoelectronic properties were studied. • Nanowires grown under optimal conditions exhibit strong UV emission peak in PL spectrum. • Optimized growth condition establish nanowires of excellent UV sensing characteristics - Abstract: Well-aligned (c-axis oriented) ZnO nanowire arrays were successfully synthesized on Si (1 0 0) substrates through an optimized self-seeding thermal evaporation method. An open-ended chemical vapor deposition (CVD) setup was used in the experiment, with argon and purified air as reaction gases. Epitaxial growth of c-axismore » oriented ZnO nanowires was observed for 5 sccm flow rate of purified air, whereas Zn/Zn suboxide layers and multiple polycrystalline layers of ZnO were obtained for absence and excess of purified air, respectively. Ultraviolet (UV) sensing and emission properties of the as-grown ZnO nanostructures were investigated through the current–voltage (I–V) characteristics of the nanowires under UV (λ = 365 nm) illumination of 8 mW/cm{sup 2} and using photoluminescence spectra. Nanowires grown under optimum flow of air emitted four times higher intensity of 380 nm UV light as well as exhibited 34 times higher UV radiation sensitivity compared to that of other nanostructures synthesized in this study.« less

  5. Radio outburst from a massive (proto)star. When accretion turns into ejection

    NASA Astrophysics Data System (ADS)

    Cesaroni, R.; Moscadelli, L.; Neri, R.; Sanna, A.; Caratti o Garatti, A.; Eisloffel, J.; Stecklum, B.; Ray, T.; Walmsley, C. M.

    2018-05-01

    Context. Recent observations of the massive young stellar object S255 NIRS 3 have revealed a large increase in both methanol maser flux density and IR emission, which have been interpreted as the result of an accretion outburst, possibly due to instabilities in a circumstellar disk. This indicates that this type of accretion event could be common in young/forming early-type stars and in their lower mass siblings, and supports the idea that accretion onto the star may occur in a non-continuous way. Aims: As accretion and ejection are believed to be tightly associated phenomena, we wanted to confirm the accretion interpretation of the outburst in S255 NIRS 3 by detecting the corresponding burst of the associated thermal jet. Methods: We monitored the radio continuum emission from S255 NIRS 3 at four bands using the Karl G. Jansky Very Large Array. The millimetre continuum emission was also observed with both the Northern Extended Millimeter Array of IRAM and the Atacama Large Millimeter/Submillimeter Array. Results: We have detected an exponential increase in the radio flux density from 6 to 45 GHz starting right after July 10, 2016, namely 13 months after the estimated onset of the IR outburst. This is the first ever detection of a radio burst associated with an IR accretion outburst from a young stellar object. The flux density at all observed centimetre bands can be reproduced with a simple expanding jet model. At millimetre wavelengths we infer a marginal flux increase with respect to the literature values and we show this is due to free-free emission from the radio jet. Conclusions: Our model fits indicate a significant increase in the jet opening angle and ionized mass loss rate with time. For the first time, we can estimate the ionization fraction in the jet and conclude that this must be low (<14%), lending strong support to the idea that the neutral component is dominant in thermal jets. Our findings strongly suggest that recurrent accretion + ejection

  6. General Relativistic Radiative Transfer and General Relativistic MHD Simulations of Accretion and Outflows of Black Holes

    NASA Technical Reports Server (NTRS)

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah

    2007-01-01

    We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  7. General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke

    2007-01-05

    We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observedmore » in black-hole X-ray binaries.« less

  8. Incompressible Wind Accretion

    NASA Astrophysics Data System (ADS)

    Tejeda, E.

    2018-04-01

    We present a simple, analytic model of an incompressible fluid accreting onto a moving gravitating object. This solution allows us to probe the highly subsonic regime of wind accretion. Moreover, it corresponds to the Newtonian limit of a previously known relativistic model of a stiff fluid accreting onto a black hole. Besides filling this blank in the literature, the new solution should be useful as a benchmark test for numerical hydrodynamics codes. Given its simplicity, it can also be used as an illustrative example in a gas dynamics course.

  9. Manifestations of dynamo driven large-scale magnetic field in accretion disks of compact objects

    NASA Technical Reports Server (NTRS)

    Chagelishvili, G. D.; Chanishvili, R. G.; Lominadze, J. G.; Sokhadze, Z. A.

    1991-01-01

    A turbulent dynamo nonlinear theory of turbulence was developed that shows that in the compact objects of accretion disks, the generated large-scale magnetic field (when the generation takes place) has a practically toroidal configuration. Its energy density can be much higher than turbulent pulsations energy density, and it becomes comparable with the thermal energy density of the medium. On this basis, the manifestations to which the large-scale magnetic field can lead at the accretion onto black holes and gravimagnetic rotators, respectively, are presented.

  10. Optimized evaporative cooling for sodium Bose-Einstein condensation against three-body loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shobu, Takahiko; Yamaoka, Hironobu; Imai, Hiromitsu

    2011-09-15

    We report on a highly efficient evaporative cooling optimized experimentally. We successfully created sodium Bose-Einstein condensates with 6.4x10{sup 7} atoms starting from 6.6x10{sup 9} thermal atoms trapped in a magnetic trap by employing a fast linear sweep of radio frequency at the final stage of evaporative cooling so as to overcome the serious three-body losses. The experimental results such as the cooling trajectory and the condensate growth quantitatively agree with the numerical simulations of evaporative cooling on the basis of the kinetic theory of a Bose gas carefully taking into account our specific experimental conditions. We further discuss theoretically amore » possibility of producing large condensates, more than 10{sup 8} sodium atoms, by simply increasing the number of initial thermal trapped atoms and the corresponding optimization of evaporative cooling.« less

  11. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  12. Observations of accreting pulsars

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Bildsten, Lars; Chakrabarty, Deepto; Wilson, Robert B.; Finger, Mark H.

    1994-01-01

    We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories.

  13. Accretion Processes in Cosmic Sources

    NASA Astrophysics Data System (ADS)

    2016-10-01

    Accretion is a universal phenomenon that takes place in the vast majority of astrophysical objects. The progress of ground-based and space-borne observational facilities has resulted in the great amount of information on various accreting astrophysical objects, collected within the last decades. The accretion is accompanied by the process of extensive energy release that takes place on the surface of an accreting object and in various gaseous envelopes, accretion disk, jets and other elements of the flow pattern. The results of observations inspired the intensive development of accretion theory, which, in turn, enabled us to study unique properties of accreting objects and physical conditions in the surrounding environment. One of the most interesting outcomes of this intensive study is the fact that accretion processes are, in a sense, self-similar on various spatial scales from planetary systems to galaxies. This fact gives us new opportunities to investigate objects that, by various reasons, are not available for direct study. Cataclysmic variable stars are unique natural laboratories where one can conduct the detailed observational study of accretion processes and accretion disks. This is the main reason why several participants and a few members of the Organizing Committee of the conference "The Golden Age of Cataclysmic Variables and Related Objects - III" (September 7-12, 2015, Palermo, Italy) have decided to hold a special conference, focused on accretion processes, as a branch of that series. Main topics: Young Stellar Objects, protoplanetary discs, exoplanets in binary stars Accretion on white dwarfs (Cataclysmic variables and related objects) Accretion on neutron stars (X-ray Binary Systems and related objects) Accretion on black holes (stellar BH and AGN) The workshop will include a few 35-minute general review talks to introduce the current problems, and 20-minute talks to discuss new experimental and theoretical results. A series of 15-minute talks

  14. A Strong Shallow Heat Source in the Accreting Neutron Star MAXI J0556-332

    NASA Astrophysics Data System (ADS)

    Deibel, Alex; Cumming, Andrew; Brown, Edward F.; Page, Dany

    2015-08-01

    An accretion outburst in an X-ray transient deposits material onto the neutron star primary; this accumulation of matter induces reactions in the neutron star’s crust. During the accretion outburst these reactions heat the crust out of thermal equilibrium with the core. When accretion halts, the crust cools to its long-term equilibrium temperature on observable timescales. Here we examine the accreting neutron star transient MAXI J0556-332, which is the hottest transient, at the start of quiescence, observed to date. Models of the quiescent light curve require a large deposition of heat in the shallow outer crust from an unknown source. The additional heat injected is ≈4-10 MeV per accreted nucleon; when the observed decline in accretion rate at the end of the outburst is accounted for, the required heating increases to ≈6-16 MeV. This shallow heating is still required to fit the light curve even after taking into account a second accretion episode, uncertainties in distance, and different surface gravities. The amount of shallow heating is larger than that inferred for other neutron star transients and is larger than can be supplied by nuclear reactions or compositionally driven convection; but it is consistent with stored mechanical energy in the accretion disk. The high crust temperature ({T}b≳ {10}9 {{K}}) makes its cooling behavior in quiescence largely independent of the crust composition and envelope properties, so that future observations will probe the gravity of the source. Fits to the light curve disfavor the presence of Urca cooling pairs in the crust.

  15. Modeling of surface roughness effects on glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark

    1990-01-01

    A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.

  16. Investigating performance of microchannel evaporators for automobile air conditioning with different port structures

    NASA Astrophysics Data System (ADS)

    Zhou, Guoliang; Su, Lin; Cheng, Qia; Wu, Longbing

    2017-08-01

    Microchannel evaporator has been widely applied in automobile air conditioning, while it faces the problem of refrigerant maldistribution which deteriorates the thermal performance of evaporator. In this study, the performances of microchannel evaporators with different port structures are experimentally investigated for purpose of reducing evaporator pressure drop. Four evaporator samples with different port number and hydraulic diameter are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant R-134A at a real automobile air conditioning. The results on the variations of the evaporator pressure drop and evaporator surface temperature distribution are presented and analyzed. By studying the performance of an evaporator, seeking proper port structure is an approach to reduce refrigerant pressure drop as well as improve refrigerant distribution.

  17. Sampling gaseous compounds from essential oils evaporation by solid phase microextraction devices

    NASA Astrophysics Data System (ADS)

    Cheng, Wen-Hsi; Lai, Chin-Hsing

    2014-12-01

    Needle trap samplers (NTS) are packed with 80-100 mesh divinylbenzene (DVB) particles to extract indoor volatile organic compounds (VOCs). This study compared extraction efficiency between an NTS and a commercially available 100 μm polydimethylsiloxane-solid phase microextration (PDMS-SPME) fiber sampler used to sample gaseous products in heated tea tree essential oil in different evaporation modes, which were evaporated respectively by free convection inside a glass evaporation dish at 27 °C, by evaporation diffuser at 60 °C, and by thermal ceramic wicks at 100 °C. The experimental results indicated that the NTS performed better than the SPME fiber samplers and that the NTS primarily adsorbed 5.7 ng ethylbenzene, 5.8 ng m/p-xylenes, 11.1 ng 1,2,3-trimethylbenzene, 12.4 ng 1,2,4-trimethylbenzene and 9.99 ng 1,4-diethylbenzene when thermal ceramic wicks were used to evaporate the tea tree essential oil during a 1-hr evaporation period. The experiment also indicated that the temperature used to heat the essential oils should be as low as possible to minimize irritant VOC by-products. If the evaporation temperature does not exceed 100 °C, the concentrations of main by-products trimethylbenzene and diethylbenzene are much lower than the threshold limit values recommended by the National Institute for Occupational Safety and Health (NIOSH).

  18. Synthesis and characterization of thermally evaporated Cu2SnSe3 ternary semiconductor

    NASA Astrophysics Data System (ADS)

    Hamdani, K.; Chaouche, M.; Benabdeslem, M.; Bechiri, L.; Benslim, N.; Amara, A.; Portier, X.; Bououdina, M.; Otmani, A.; Marie, P.

    2014-11-01

    Copper Tin Selenide (CuSnSe) powder was mechanically alloyed by high energy planetary ball milling, starting from elemental powders. Synthesis time and velocity have been optimized to produce Cu2SnSe3 materials. Thin films were prepared by thermal evaporation on Corning glass substrate at Ts = 300 °C. The structural, compositional, morphological and optical properties of the synthesized semiconductor have been analyzed by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy. The analyzed powder exhibited a cubic crystal structure, with the presence of Cu2Se as a secondary phase. On the other hand, the deposited films showed a cubic Cu2SnSe3 ternary phase and extra peaks belonging to some binary compounds. Furthermore, optical measurements showed that the deposited layers have a relatively high absorption coefficient of 105 cm-1 and present a band gap of 0.94 eV.

  19. The Emerging Paradigm of Pebble Accretion

    NASA Astrophysics Data System (ADS)

    Ormel, Chris W.

    Pebble accretion is the mechanism in which small particles ("pebbles") accrete onto big bodies big (planetesimals or planetary embryos) in gas-rich environments. In pebble accretion accretion , accretion occurs by settling and depends only on the mass of the gravitating body gravitating , not its radius. I give the conditions under which pebble accretion operates and show that the collisional cross section can become much larger than in the gas-free, ballistic, limit. In particular, pebble accretion requires the pre-existence of a massive planetesimal seed. When pebbles experience strong orbital decay by drift motions or are stirred by turbulence, the accretion efficiency is low and a great number of pebbles are needed to form Earth-mass cores. Pebble accretion is in many ways a more natural and versatile process than the classical, planetesimal-driven paradigm, opening up avenues to understand planet formation in solar and exoplanetary systems.

  20. Structural and optical properties of CuS thin films deposited by Thermal co-evaporation

    NASA Astrophysics Data System (ADS)

    Sahoo, A. K.; Mohanta, P.; Bhattacharyya, A. S.

    2015-02-01

    Copper sulfide (CuS) thin films with thickness 100, 150 and 200 nm have been deposited on glass substrates by thermal co-evaporation of Copper and Sulphur. The effect of CuS film thickness on the structural and optical properties have investigated and discussed. Structural and optical investigations of the films were carried out by X-ray diffraction, atomic force microscopy, high-resolution transmission electron microscopy and UV spectroscopy. XRD and selected area electron diffraction conforms that polycrystalline in nature with hexagonal crystal structure. AFM studies revealed a smooth surface morphology with root mean-square roughness values increases from 24 nm to 42 nm as the film thickness increase from 100 nm to 200 nm. AFM image showed that grain size increases with thickness of film increases and good agreement with the calculated from full width half maximum of the X-ray diffraction peak using Scherrer's formula and Williamson-Hall plot. The absorbance of the thin films were absorbed decreases with wavelength through UV-visible regions but showed a increasing in the near-infrared regions. The reflectance spectra also showed lower reflectance peak (25% to 32%) in visible region and high reflectance peak (49 % to 54 %) in near-infrared region. These high absorbance films made them for photo-thermal conversion of solar energy.

  1. The relationship between air layers and evaporative resistance of male Chinese ethnic clothing.

    PubMed

    Wang, Faming; Peng, Hui; Shi, Wen

    2016-09-01

    In this study, the air layer distribution and evaporative resistances of 39 sets of male Chinese ethnic clothing were investigated using a sweating thermal manikin and the three-dimensional (3D) body scanning technique. Relationships between the evaporative resistance and air layers (i.e., air gap thickness and air volume) were explored. The results demonstrated that the clothing total evaporative resistance increases with the increasing air gap size/air volume, but the rate of increase gradually decreases as the mean air gap size or the total air volume becomes larger. The clothing total evaporative resistance reaches its maximum when the average air gap size and the total air volume are 41.6 mm and 69.9 dm(3), respectively. Similar general trends were also found between local mean air gap size and clothing local evaporative resistance at different body parts. However, different body parts show varied rates of increase and decrease in the local evaporative resistance. The research findings provide a comprehensive database for predicting overall and local human thermal comfort while wearing male Chinese ethnic clothing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Synthesis of Tapered CdS Nanobelts and CdSe Nanowires with Good Optical Property by Hydrogen-Assisted Thermal Evaporation

    PubMed Central

    2009-01-01

    The tapered CdS nanobelts and CdSe nanowires were prepared by hydrogen-assisted thermal evaporation method. Different supersaturation leads to two different kinds of 1D nanostructures. The PL measurements recorded from the as-prepared tapered CdS nanobelts and CdSe nanowires show only a bandgap emission with relatively narrow full-width half maximum, which means that they possess good optical property. The as-synthesized high-quality tapered CdS nanobelts and CdSe nanowires may be excellent building blocks for photonic devices. PMID:20596418

  3. Modelling accretion disc and stellar wind interactions: the case of Sgr A.

    PubMed

    Christie, I M; Petropoulou, M; Mimica, P; Giannios, D

    2016-07-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disc, the ram and thermal pressures of the disc terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in ∼10 8  cm s -1 range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericentre passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly a month long X-ray flare with a peak luminosity of L ≈ 4 × 10 33  erg s -1 for a stellar mass-loss rate, disc number density, and thermal pressure strength of [Formula: see text], n d  = 10 5  cm -3 , and α = 0.1, respectively. This peak luminosity is comparable to the quiescent X-ray emission detected from Sgr A* and is within the detection capabilities of current X-ray observatories. Its detection could constrain the density and thickness of the disc at a distance of ∼3000 gravitational radii from the supermassive black hole.

  4. The Dynamics of Truncated Black Hole Accretion Disks. II. Magnetohydrodynamic Case

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2018-02-01

    We study a truncated accretion disk using a well-resolved, semi-global magnetohydrodynamic simulation that is evolved for many dynamical times (6096 inner disk orbits). The spectral properties of hard-state black hole binary systems and low-luminosity active galactic nuclei are regularly attributed to truncated accretion disks, but a detailed understanding of the flow dynamics is lacking. In these systems the truncation is expected to arise through thermal instability driven by sharp changes in the radiative efficiency. We emulate this behavior using a simple bistable cooling function with efficient and inefficient branches. The accretion flow takes on an arrangement where a “transition zone” exists in between hot gas in the innermost regions and a cold, Shakura & Sunyaev thin disk at larger radii. The thin disk is embedded in an atmosphere of hot gas that is fed by a gentle outflow originating from the transition zone. Despite the presence of hot gas in the inner disk, accretion is efficient. Our analysis focuses on the details of the angular momentum transport, energetics, and magnetic field properties. We find that the magnetic dynamo is suppressed in the hot, truncated inner region of the disk which lowers the effective α-parameter by 65%.

  5. Observations of Accreting Pulsars

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars; Chakrabarty, Deepto; Chiu, John; Finger, Mark H.; Koh, Danny T.; Nelson, Robert W.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Matthew; Stollberg, Mark; hide

    1997-01-01

    We summarize 5 years of continuous monitoring of accretion-powered pulsars with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Our 20-70 keV observations have determined or refined the orbital parameters of 13 binaries, discovered five new transient accreting pulsars, measured the pulsed flux history during outbursts of 12 transients (GRO J1744-28, 4U 0115+634, GRO J1750-27, GS 0834-430, 2S 1417-624, GRO J1948+32, EXO 2030+375, GRO J1008-57, A0535+26, GRO J2058+42, 4U 1145-619, and A1118-616), and also measured the accretion torque history during outbursts of six of those transients whose orbital param- eters were also known. We have also continuously measured the pulsed flux and spin frequency for eiaht persistently accreting pulsars (Her X-1, Cen X-3, Vela X-1, OAO 1657-415, GX 301-2, 4U 1626-67, 4U 1538-52, and GX 1+4). Because of their continuity and uniformity over a long baseline, BATSE observations have provided new insights into the long-term behavior of accreting magnetic neutron stars. We have found that all accreting pulsars show stochastic variations in their spin frequencies and luminosities, including those displaying secular spin-up or spin-down on long timescales, which blurs the con- ventional distinction between disk-fed and wind-fed binaries. Pulsed flux and accretion torque are strongly correlated in outbursts of transient accreting pulsars but are uncorrelated, or even anti- correlated, in persistent sources. We describe daily folded pulse profiles, frequency, and flux measurements that are available through the Compton Observatory Science Support Center at NASA/Goddard Space Flight Center.

  6. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    PubMed

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  7. Evolutionary Grids of Accreting White Dwarf Companions in Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Benjamin, J.; Jensen, M.; Nadeau, S.; Nelson, L. A.

    2003-12-01

    We analyze the evolution of accreting white dwarfs in binary systems for a wide range of initial conditions. Specifically, evolutionary tracks are calculated for CO white dwarfs with masses in the range of 0.6 - 1.3 solar masses and accreting H-rich gas at rates of between 10-6 to 10-10 solar masses per year. Since the white dwarfs in these binaries could be very young or very old at the onset of mass transfer we simulated this possibility by investigating the evolution for a large range of internal temperatures. Thus most of the sequences generated were not thermally relaxed at the onset of mass transfer (and the thermonuclear flashes were not cyclic). We discuss the temporal dependence of the interior properties (envelope readjustment on a thermal timescale and compressional heating) on the initial conditions. Particular attention is paid to the white dwarfs accretors that remained small (relative to the Roche lobe radius) during the shell flash event. Finally, we use the results of these models to comment on the observed properties of Supersoft X-ray sources. This research was supported in part by funds from the Natural Sciences and Engineering Research Council (Canada).

  8. Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors.

    PubMed

    Chen, Qi; Ding, Huaiyi; Wu, Yukun; Sui, Mengqiao; Lu, Wei; Wang, Bing; Su, Wenming; Cui, Zheng; Chen, Liwei

    2013-05-21

    The adsorption of O2/H2O molecules on the ZnO nanowire (NW) surface results in the long lifetime of photo-generated carriers and thus benefits ZnO NW-based ultraviolet photodetectors by suppressing the dark current and improving the photocurrent gain, but the slow adsorption process also leads to slow detector response time. Here we show that a thermally evaporated copper phthalocyanine film is effective in passivating surface trap states of ZnO NWs. As a result, the organic/inorganic hybrid photodetector devices exhibit simultaneously improved photosensitivity and response time. This work suggests that it could be an effective way in interfacial passivation using organic/inorganic hybrid structures.

  9. Water-evaporation-induced electricity with nanostructured carbon materials.

    PubMed

    Xue, Guobin; Xu, Ying; Ding, Tianpeng; Li, Jia; Yin, Jun; Fei, Wenwen; Cao, Yuanzhi; Yu, Jin; Yuan, Longyan; Gong, Li; Chen, Jian; Deng, Shaozhi; Zhou, Jun; Guo, Wanlin

    2017-05-01

    Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.

  10. Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient

    PubMed Central

    2012-01-01

    ZnO nanowires have been successfully fabricated on Si substrate by simple thermal evaporation of Zn powder under air ambient without any catalyst. Morphology and structure analyses indicated that ZnO nanowires had high purity and perfect crystallinity. The diameter of ZnO nanowires was 40 to 100 nm, and the length was about several tens of micrometers. The prepared ZnO nanowires exhibited a hexagonal wurtzite crystal structure. The growth of the ZnO nanostructure was explained by the vapor-solid mechanism. The simplicity, low cost and fewer necessary apparatuses of the process would suit the high-throughput fabrication of ZnO nanowires. The ZnO nanowires fabricated on Si substrate are compatible with state-of-the-art semiconductor industry. They are expected to have potential applications in functional nanodevices. PMID:22502639

  11. Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte (Dromiciops gliroides).

    PubMed

    Withers, Philip C; Cooper, Christine E; Nespolo, Roberto F

    2012-08-15

    We examine here evaporative water loss, economy and partitioning at ambient temperatures from 14 to 33°C for the monito del monte (Dromiciops gliroides), a microbiotheriid marsupial found only in temperate rainforests of Chile. The monito's standard evaporative water loss (2.58 mg g(-1) h(-1) at 30°C) was typical for a marsupial of its body mass and phylogenetic position. Evaporative water loss was independent of air temperature below thermoneutrality, but enhanced evaporative water loss and hyperthermia were the primary thermal responses above the thermoneutral zone. Non-invasive partitioning of total evaporative water loss indicated that respiratory loss accounted for 59-77% of the total, with no change in respiratory loss with ambient temperature, but a small change in cutaneous loss below thermoneutrality and an increase in cutaneous loss in and above thermoneutrality. Relative water economy (metabolic water production/evaporative water loss) increased at low ambient temperatures, with a point of relative water economy of 15.4°C. Thermolability had little effect on relative water economy, but conferred substantial energy savings at low ambient temperatures. Torpor reduced total evaporative water loss to as little as 21% of normothermic values, but relative water economy during torpor was poor even at low ambient temperatures because of the relatively greater reduction in metabolic water production than in evaporative water loss. The poor water economy of the monito during torpor suggests that negative water balance may explain why hibernators periodically arouse to normothermia, to obtain water by drinking or via an improved water economy.

  12. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study.

    PubMed

    Henriksson, Otto; Lundgren, Peter; Kuklane, Kalev; Holmér, Ingvar; Naredi, Peter; Bjornstig, Ulf

    2012-02-01

    In the prehospital care of a cold and wet person, early application of adequate insulation is of utmost importance to reduce cold stress, limit body core cooling, and prevent deterioration of the patient's condition. Most prehospital guidelines on protection against cold recommend the removal of wet clothing prior to insulation, and some also recommend the use of a waterproof vapor barrier to reduce evaporative heat loss. However, there is little scientific evidence of the effectiveness of these measures. Using a thermal manikin with wet clothing, this study was conducted to determine the effect of wet clothing removal or the addition of a vapor barrier on thermal insulation and evaporative heat loss using different amounts of insulation in both warm and cold ambient conditions. A thermal manikin dressed in wet clothing was set up in accordance with the European Standard for assessing requirements of sleeping bags, modified for wet heat loss determination, and the climatic chamber was set to -15 degrees Celsius (°C) for cold conditions and +10°C for warm conditions. Three different insulation ensembles, one, two or seven woollen blankets, were chosen to provide different levels of insulation. Five different test conditions were evaluated for all three levels of insulation ensembles: (1) dry underwear; (2) dry underwear with a vapor barrier; (3) wet underwear; (4) wet underwear with a vapor barrier; and (5) no underwear. Dry and wet heat loss and thermal resistance were determined from continuous monitoring of ambient air temperature, manikin surface temperature, heat flux and evaporative mass loss rate. Independent of insulation thickness or ambient temperature, the removal of wet clothing or the addition of a vapor barrier resulted in a reduction in total heat loss of 19-42%. The absolute heat loss reduction was greater, however, and thus clinically more important in cold environments when little insulation is available. A similar reduction in total heat loss

  13. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  14. Influence of multi-depositions on the final properties of thermally evaporated TlBr films

    NASA Astrophysics Data System (ADS)

    Destefano, N.; Mulato, M.

    2010-12-01

    Thallium bromide is a promising candidate material for photodetectors in medical imaging systems. This work investigates the structural, optical and electrical properties of thermally evaporated TlBr films. The main fabrication parameter is the number of depositions. The use of sequential runs is aimed to increase the thickness of the films, as necessary, for technological applications. We deposited films using one-four runs, that led to maximum thickness of about 50 μm. Crystallographic and morphological changes were observed with varying deposition runs. Nevertheless, the optical gap and electrical resistivity in the dark remained constant at about 2.85 eV and 10 9 Ω cm, respectively. Thicker samples have a larger ratio of photo-to-dark signal under medical X-ray exposure, with a larger linear region as a function of applied voltage. The results are discussed aiming at future technological applications in medical imaging.

  15. Rethinking Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  16. Investigating evaporation of melting ice particles within a bin melting layer model

    NASA Astrophysics Data System (ADS)

    Neumann, Andrea J.

    Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the

  17. SPH Simulations of Spherical Bondi Accretion: First Step of Implementing AGN Feedback in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Barai, Paramita; Proga, D.; Nagamine, K.

    2011-01-01

    Our motivation is to numerically test the assumption of Black Hole (BH) accretion (that the central massive BH of a galaxy accretes mass at the Bondi-Hoyle accretion rate, with ad-hoc choice of parameters), made in many previous galaxy formation studies including AGN feedback. We perform simulations of a spherical distribution of gas, within the radius range 0.1 - 200 pc, accreting onto a central supermassive black hole (the Bondi problem), using the 3D Smoothed Particle Hydrodynamics code Gadget. In our simulations we study the radial distribution of various gas properties (density, velocity, temperature, Mach number). We compute the central mass inflow rate at the inner boundary (0.1 pc), and investigate how different gas properties (initial density and velocity profiles) and computational parameters (simulation outer boundary, particle number) affect the central inflow. Radiative processes (namely heating by a central X-ray corona and gas cooling) have been included in our simulations. We study the thermal history of accreting gas, and identify the contribution of radiative and adiabatic terms in shaping the gas properties. We find that the current implementation of artificial viscosity in the Gadget code causes unwanted extra heating near the inner radius.

  18. Evaporation of (quantum) black holes and energy conservation

    NASA Astrophysics Data System (ADS)

    Torres, R.; Fayos, F.; Lorente-Espín, O.

    2013-03-01

    We consider Hawking radiation as due to a tunneling process in a black hole were quantum corrections, derived from Quantum Einstein Gravity, are taken into account. The consequent derivation, satisfying conservation laws, leads to a deviation from an exact thermal spectrum. This has consequences for the information loss paradox since the non-thermal radiation is shown to carry information out of the black hole. Under the appropriate approximation, a quantum corrected temperature is assigned to the black hole. The evolution of the quantum black hole as it evaporates is then described by taking into account the full implications of energy conservation as well as the backscattered radiation. It is shown that, as a critical mass of the order of Planck's mass is reached, the evaporation process decelerates abruptly while the black hole mass decays towards this critical mass.

  19. Accretion rates of protoplanets

    NASA Astrophysics Data System (ADS)

    Greenzweig, Yuval

    The giant planets' solid cores must have formed prior to the dispersal of the primordial solar nebula, to allow the capture of their massive, gaseous envelopes from the nebula. Recent observations of disks of dust surrounding nearby solar-like stars lead to estimates of nebula lifetimes at 106 to 107 years. Thus, theories of solid particle accretion must explain how the solid cores of the giant planets may have formed within comparable timescales. Calculations are presented which support the sole currently hypothesized mechanism of planetary accretion in which the duration of the stage of growth from planetesimals (1 to 10 km size bodies) to moon- or planet-size bodies lies within the widely accepted time constraint mentioned above. It has been shown that under certain conditions a growth advantage is given to the larger bodies of a swarm of Sun-orbiting planetesimals, resulting in runaway growth of the largest body (or bodies) in the swarm. The gravitational cross section of the protoplanet (the largest body in the swarm) increases with its size, eventually requiring the inclusion of the effect of the solar tidal force on the interaction between it and a passing planetesimal. Thus, numerical integrations of the three-body problem (Sun, protoplanet and planetesimal) are needed to determine the accretion rates of protoplanets. Existing analytical formulas are refined for the two-body (no solar tidal force) accretion rates of planetesimals or small protoplanets, and numerically derives the three-body accretion rates of large protoplanets. The three-body accretion rates calculated span a wide range of protoplanetary orbital radii, masses, and densities, and a wide range of planetesimal orbital eccentricities and inclinations. The most useful numerical results are approximated by algebraic expressions, to facilitate their use in accretion calculations, particularly by numerical codes. Since planetary accretion rates depend strongly on planetesimal random velocities

  20. The multiwavelength spectrum of NGC 3115: hot accretion flow properties

    NASA Astrophysics Data System (ADS)

    Almeida, Ivan; Nemmen, Rodrigo; Wong, Ka-Wah; Wu, Qingwen; Irwin, Jimmy A.

    2018-04-01

    NGC 3115 is the nearest galaxy hosting a billion solar mass black hole and is also a low-luminosity active galactic nucleus (LLAGN). X-ray observations of this LLAGN are able to spatially resolve the hot gas within the sphere of gravitational influence of the supermassive black hole. These observations make NGC 3115 an important test bed for black hole accretion theory in galactic nuclei since they constrain the outer boundary conditions of the hot accretion flow. We present a compilation of the multiwavelength spectral energy distribution (SED) of the nucleus of NGC 3115 from radio to X-rays. We report the results from modelling the observed SED with radiatively inefficient accretion flow (RIAF) models. The radio emission can be well-explained by synchrotron emission from the RIAF without the need for contribution from a relativistic jet. We obtain a tight constraint on the RIAF density profile, ρ (r) ∝ r^{-0.73 _{-0.02} ^{+0.01}}, implying that mass-loss through subrelativistic outflows from the RIAF is significant. The lower frequency radio observation requires the synchrotron emission from a non-thermal electron population in the RIAF, similarly to Sgr A*.

  1. KEPLER PLANETS: A TALE OF EVAPORATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, James E.; Wu, Yanqin, E-mail: jowen@cita.utoronto.ca, E-mail: wu@astro.utoronto.ca

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. Wemore » construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above

  2. Accretion dynamics of EX Lupi in quiescence. The star, the spot, and the accretion column

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Fang, Min; Roccatagliata, Veronica; Collier Cameron, Andrew; Kóspál, Ágnes; Henning, Thomas; Ábrahám, Peter; Sipos, Nikoletta

    2015-08-01

    Context. EX Lupi is a young, accreting M0 star and the prototype of EXor variable stars. Its spectrum is very rich in emission lines, including many metallic lines with narrow and broad components. The presence of a close companion has also been proposed, based on radial velocity signatures. Aims: We use the metallic emission lines to study the accretion structures and to test the companion hypothesis. Methods: We analyse 54 spectra obtained during five years of quiescence time. We study the line profile variability and the radial velocity of the narrow and broad metallic emission lines. We use the velocity signatures of different species with various excitation conditions and their time dependency to track the dynamics associated with accretion. Results: We observe periodic velocity variations in the broad and the narrow line components, consistent with rotational modulation. The modulation is stronger for lines with higher excitation potentials (e.g. He II), which are likely produced in a confined area very close to the accretion shock. Conclusions: We propose that the narrow line components are produced in the post-shock region, while the broad components originate in the more extended, pre-shock material in the accretion column. All the emission lines suffer velocity modulation due to the rotation of the star. The broad components are responsible for the line-dependent veiling observed in EX Lupi. We demonstrate that a rotationally modulated line-dependent veiling can explain the radial velocity signature of the photospheric absorption lines, making the close-in companion hypothesis unnecessary. The accretion structure is locked to the star and very stable during the five years of observations. Not all stars with similar spectral types and accretion rates show the same metallic emission lines, which could be related to differences in temperature and density in their accretion structure(s). The contamination of photospheric signatures by accretion

  3. Instability, Turbulence, and Enhanced Transport in Collisionless Black-Hole Accretion Flows

    NASA Astrophysics Data System (ADS)

    Kunz, Matthew

    Many astrophysical plasmas are so hot and diffuse that the collisional mean free path is larger than the system size. Perhaps the best examples of such systems are lowluminosity accretion flows onto black holes such as Sgr A* at the center of our own Galaxy, or M87 in the Virgo cluster. To date, theoretical models of these accretion flows are based on magnetohydrodynamics (MHD), a collisional fluid theory, sometimes (but rarely) extended with non-MHD features such as anisotropic (i.e. magnetic-field-aligned) viscosity and thermal conduction. While these extensions have been recognized as crucial, they require ad hoc assumptions about the role of microscopic kinetic instabilities (namely, firehose and mirror) in regulating the transport properties. These assumptions strongly affect the outcome of the calculations, and yet they have never been tested using more fundamental (i.e. kinetic) models. This proposal outlines a comprehensive first-principles study of the plasma physics of collisionless accretion flows using both analytic and state-of-the-art numerical models. The latter will utilize a new hybrid-kinetic particle-in-cell code, Pegasus, developed by the PI and Co-I specifically to study this problem. A comprehensive kinetic study of the 3D saturation of the magnetorotational instability in a collisionless plasma will be performed, in order to understand the interplay between turbulence, transport, and Larmor-scale kinetic instabilities such as firehose and mirror. Whether such instabilities alter the macroscopic saturated state, for example by limiting the transport of angular momentum by anisotropic pressure, will be addressed. Using these results, an appropriate "fluid" closure will be developed that can capture the multi-scale effects of plasma kinetics on magnetorotational turbulence, for use by the astrophysics community in building evolutionary models of accretion disks. The PI has already successfully performed the first three-dimensional kinetic

  4. Synthesis of Novel Double-Layer Nanostructures of SiC–WOxby a Two Step Thermal Evaporation Process

    PubMed Central

    2009-01-01

    A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W18O49nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well crystalline. The growth of W18O49nanorods on SiC nanowires is explained on the basis of vapor–solid (VS) mechanism. The reasonably better turn-on field (5.4 V/μm) measured from the field emission measurements suggest that the synthesized nanostructures could be used as potential field emitters. PMID:20596292

  5. Black Hole Event Horizons and Advection-Dominated Accretion

    NASA Technical Reports Server (NTRS)

    McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)

    2001-01-01

    The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the

  6. Model 'zero-age' lunar thermal profiles resulting from electrical induction

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Sonett, C. P.; Wiskerchen, M. J.

    1977-01-01

    Thermal profiles for the moon are calculated under the assumption that a pre-main-sequence T-Tauri-like solar wind excites both transverse magnetic and transverse electric induction while the moon is accreting. A substantial initial temperature rise occurs, possibly of sufficient magnitude to cause subsequent early extensive melting throughout the moon in conjunction with nominal long-lived radioactives. In these models, accretion is an unimportant direct source of thermal energy but is important because even small temperature rises from accretion cause significant changes in bulk electrical conductivity. Induction depends upon the radius of the moon, which we take to be accumulating while it is being heated electrically. The 'zero-age' profiles calculated in this paper are proposed as initial conditions for long-term thermal evolution of the moon.

  7. Accretion onto CO White Dwarfs using MESA

    NASA Astrophysics Data System (ADS)

    Feng, Wanda; Starrfield, Sumner

    2018-06-01

    The nature of type Ia Supernovae (SNe Ia) progenitor systems and their underlying mechanism are not well understood. There are two competing progenitor scenarios: the single-degenerate scenario wherein a white dwarf (WD) star accretes material from a companion star, reaching the Chandrasekhar mass limit; and, the double-degenerate scenario wherein two WDs merge. In this study, we investigate the single-degenerate scenario by accretion onto carbon-oxygen (CO) WDs using the Modules for Experiments in Stellar Astrophysics (MESA). We vary the WD mass, composition of the accreting material, and accretion rate in our models. Mixing between the accreted material and the WD core is informed by multidimensional studies that suggest occurance after thermonuclear runaway (TNR) ensues. We compare the accretion of solar composition material onto CO WDs with the accretion of mixed solar and core material after TNR. As many of our models eject less material than accreted, our study supports that accretion onto CO WDs is a feasible channel for SNe I progenitors.

  8. Bimodal gas accretion in the Horizon-MareNostrum galaxy formation simulation

    NASA Astrophysics Data System (ADS)

    Ocvirk, P.; Pichon, C.; Teyssier, R.

    2008-11-01

    The physics of diffuse gas accretion and the properties of the cold and hot modes of accretion on to proto-galaxies between z = 2 and 5.4 is investigated using the large cosmological simulation performed with the RAMSES code on the MareNostrum supercomputing facility. Galactic winds, chemical enrichment, ultraviolet background heating and radiative cooling are taken into account in this very high resolution simulation. Using accretion-weighted temperature histograms, we have performed two different measurements of the thermal state of the gas accreted towards the central galaxy. The first measurement, performed using accretion-weighted histograms on a spherical surface of radius 0.2Rvir centred on the densest gas structure near the halo centre of mass, is a good indicator of the presence of an accretion shock in the vicinity of the galactic disc. We define the hot shock mass, Mshock, as the typical halo mass separating cold dominated from hot dominated accretion in the vicinity of the galaxy. The second measurement is performed by radially averaging histograms between 0.2Rvir and Rvir, in order to detect radially extended structures such as gas filaments: this is a good proxy for detecting cold streams feeding the central galaxy. We define Mstream as the transition mass separating cold dominated from hot dominated accretion in the outer halo, marking the disappearance of these cold streams. We find a hot shock transition mass of Mshock = 1011.6Msolar (dark matter), with no significant evolution with redshift. Conversely, we find that Mstream increases sharply with z. Our measurements are in agreement with the analytical predictions of Birnboim & Dekel and Dekel & Birnboim, if we correct their model by assuming low metallicity (<=10-3Zsolar) for the filaments, correspondingly to our measurements. Metal enrichment of the intergalactic medium is therefore a key ingredient in determining the transition mass from cold to hot dominated diffuse gas accretion. We find that

  9. Evaporation on/in Capillary Structures of High Heat Flux Two-Phase Devices

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Khrustalev, Dmitry

    1996-01-01

    Two-phase devices (heat pipes, capillary pumped loops, loop heat pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high heat flux and zero-g applications, to provide fluid transport and enhanced heat transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long heat pipe evaporators and high thermal resistance of loop heat pipe evaporators with high heat fluxes, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high heat fluxes. The present paper addresses some theoretical aspects of this investigation.

  10. Comparison of energy-budget evaporation losses from two morphometrically different Florida seepage lakes

    USGS Publications Warehouse

    Sacks, L.A.; Lee, T.M.; Radell, M.J.

    1994-01-01

    Evaporation was computed by the energy-budget method for two north Florida lakes with similar surface areas but different depths, for the period May 1989 to December 1990. Lake Barco, in north-central Florida, is shallow, with an average depth of 3 m; Lake Five-O, in the Florida panhandle, is considerably deeper, with an average depth of 9.5 m. As a result, the thermal regime and seasonal evaporation rates of the lakes are different. Evaporation from the shallower lake was higher than that from the deeper lake in the winter and spring. In the late summer and autumn, however, the situation is reversed. Evaporation from the shallow lake is directly related to the amount of incoming shortwave radiation because of its limited ability to store energy. The lag in evaporation at the deeper lake is a function of the greater amount of heat that it seasonally stores and releases. The difference in annual evaporation between Lake Barco (151 cm year-1) and Lake Five-O (128 cm year-1) is related to differences in regional climatic conditions between the two sites. Additionally, higher than normal evaporation rates at the two lakes are probably related to drought conditions experienced in north Florida during 1990, which resulted in higher temperatures and more incoming radiation. Monthly evaporation at Lake Barco could usually be estimated within 10% of the energy-budget evaporation using a constant pan coefficient. This lake may be representative of other shallow lakes that do not store considerable heat. Monthly evaporation at Lake Five-O, however, could not be estimated accurately by using an annual pan coefficient because of the large seasonal influence of change in stored heat. Monthly mass-transfer evaporation compared well with energy-budget evaporation at Lake Barco, but did not compare well at Lake Five-O. These errors may also be associated with changes in heat storage. Thus, the thermal regime of the lake must be considered to estimate accurately the seasonal

  11. The effect of induced strains on photoluminescence properties of ZnO nanostructures grown by thermal evaporation method

    NASA Astrophysics Data System (ADS)

    Arjmand, Yaser; Eshghi, Hosein

    2016-03-01

    In this paper, ZnO nanostructures have been synthesized by thermal evaporation process using metallic zinc powder in the presence of oxygen on p-Si (100) at different distances from the boat. The structural and optical characterizations have been carried out. The morphological study shows various shape nanostructures. XRD data indicate that all samples have a polycrystalline wurtzite hexagonal structure in such a way that the closer sample has a preferred orientation along (101) while the ones farther are grown along (002) direction. From the structural and optical data analysis, we found that the induced strains are the main parameter controlling the UV/green peaks ratios in the PL spectra of the studied samples.

  12. Upper stellar mass limit by radiative feedback at low-metallicities: metallicity and accretion rate dependence

    NASA Astrophysics Data System (ADS)

    Fukushima, Hajime; Omukai, Kazuyuki; Hosokawa, Takashi

    2018-02-01

    We investigate the upper stellar mass limit set by radiative feedback for a forming star with various accretion rates and metallicities. Thus, we numerically solve the structures of both a protostar and its surrounding accretion envelope assuming a spherical symmetric and steady flow. The optical depth of the dust cocoon, a dusty part of the accretion envelope, differs for direct light from the stellar photosphere and diffuse light re-emitted as dust thermal emission. As a result, varying the metallicity qualitatively changes the way that the radiative feedback suppresses the accretion flow. With a fixed accretion rate of 10-3 M⊙ yr-1, both direct and diffuse light jointly operate to prevent mass accretion at Z ≳ 10-1 Z⊙. At Z ≲ 10-1 Z⊙, the diffuse light is no longer effective and the direct light solely limits the mass accretion. At Z ≲ 10-3 Z⊙, formation of the H II region plays an important role in terminating the accretion. The resultant upper mass limit increases with decreasing metallicity, from a few × 10 M⊙ to ∼103 M⊙ over Z = 1 Z⊙-10-4 Z⊙. We also illustrate how the radiation spectrum of massive star-forming cores changes with decreasing metallicity. First, the peak wavelength of the spectrum, which is located around 30 μm at 1 Z⊙, shifts to < 3 μm at Z ≲ 0.1 Z⊙. Secondly, a characteristic feature at 10 μm due to the amorphous silicate band appears as a dip at 1 Z⊙, but changes to a bump at Z ≲ 0.1 Z⊙. Using these spectral signatures, we can search massive accreting protostars in nearby low-metallicity environments with upcoming observations.

  13. Flares, Magnetic Reconnections and Accretion Disk Viscosity

    NASA Astrophysics Data System (ADS)

    Welsh, William

    2001-07-01

    Accretion disks are invoked to explain a host of astrophysical phenomena, from protostellar objects to AGN. And yet the mechanism allowing accretion disks to operate are completely unknown. This proposal seeks to observe the ``smoking gun'' signature of magnetically-driven viscosity in accretion disks. Magnetically-induced viscosity is a plausible and generally accepted hypothesis {for esthetic reasons}, but it is completely untested. Determining the cause of accretion disk viscosity is of major significance to all accretion-disk powered systems {e.g. CVs, X-ray binaries, AGN and protostellar disks}. These data will also firmly establish the importance of magnetic fields in accretion disks. Because of its known flaring properites, we will observe the accretion disk in EM Cyg simulataneously with STIS/FUV and CHANDRA. The simultaneous X-rays are absolutely necessary for the unambiguous detection of accretion disk magnetic reconnection flares.

  14. Accretion onto a charged Kiselev black hole

    NASA Astrophysics Data System (ADS)

    Abbas, G.; Ditta, A.

    2018-04-01

    Accretion of matter onto a compact is one of the interesting astrophysical processes. Here, we study the accretion of matter onto a charged Kiselev black hole. The problem of static and spherically symmetric accretion of a polytropic fluid is explored for the analytic solution of equations of motion. We have investigated the necessary conditions for existence of the critical flow points and the mass accretion rate. Finally, we discuss the polytropic gas accretion in detail. It has been found that in the accretion process the quintessence and charge parameters play a dominant role.

  15. Apparatus for diffusion-gap thermal desalination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowenstein, Andrew

    A thermal distillation apparatus including evaporation surfaces that are wetted with a solution, and from which at least some of the volatile solvent contained in the solution evaporates, condensers having an external surface in close proximity to, but not touching, a corresponding one of the one or more evaporation surfaces, and on which vapors of the solvent condense, releasing thermal energy that heats a flow of the solution moving upward within the condensers, spacers that prevent contact between the evaporating surfaces and the condensers, wherein spaces between the evaporating surfaces and the condensers are filled with a gaseous mixture composedmore » of solvent vapor and one or more non-condensable gases, and except for diffusion of the solvent vapor relative to the non-condensable gases, the gaseous mixture is stationary.« less

  16. Ambient temperature thermoelectric performance of thermally evaporated p-type Bi-Sb-Te thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Singh, Janpreet; Tripathi, S. K.

    2018-04-01

    Bismuth antimony telluride (BST) compounds have shown a promising performance in low to medium temperature thermoelectric (TE) conversion. One such composition, Bi1.2Sb0.8Te3, was synthesized by melting elemental entities and thin films of the as-synthesized material were deposited by thermal evaporation. X-Ray Diffraction analysis was conducted to study the crystallographic phases and other structural properties. Electrical conductivity and Seebeck coefficient measurements of as-prepared thin films were conducted in the temperature range from 303-363 K with a view to study ambient temperature application of the synthesized material for power generation in which an increasing trend was observed in the Seebeck coefficient. Electrical conductivity displayed a maximum value of 0.22 × 104 Sm-1 that was comparable to other Bi-Sb-Te compositions whereas power factor had its peak at 323 K. These trends observed in electrical properties indicate that synthesized material can be used for room temperature TE module fabrication.

  17. Design and test of a prototype thermal bus evaporator reservoir aboard the KC-135 0-g aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Richard F.; Gustafson, Eric; Long, W. Russ

    1987-01-01

    The Thermal Bus Zero-G Reservoir Demonstration Experiment (RDE) has currently undergone two flights on the NASA-JSC KC-135 Reduced Gravity Aircraft. The objective of the experiment, which uses a smaller version of the evaporator reservoirs being designed for the Prototype Thermal Bus for Space Station, is to demonstrate proper 0-g operation of the reservoir in terms of fluid positioning, draining, and filling. The KC-135 was chosen to provide a cost-effective and timely evaluation of 0-g design issues that would be difficult to predict analytically. A total of fifty 0-g parabolas have been flown, each providing approximately 25-30 seconds of 0-g time. While problems have been encountered, the experiment has provided valuable design data on the 0-g operation of the reservoir. This paper documents the design of the experiment; the results of both flights, based on the high-speed movies taken during the flight and the visual observations of the experimenters; and the design modifications made as a result of the first flight and planned as a result of the second flight.

  18. Analytical Model for Diffusive Evaporation of Sessile Droplets Coupled with Interfacial Cooling Effect.

    PubMed

    Nguyen, Tuan A H; Biggs, Simon R; Nguyen, Anh V

    2018-05-30

    Current analytical models for sessile droplet evaporation do not consider the nonuniform temperature field within the droplet and can overpredict the evaporation by 20%. This deviation can be attributed to a significant temperature drop due to the release of the latent heat of evaporation along the air-liquid interface. We report, for the first time, an analytical solution of the sessile droplet evaporation coupled with this interfacial cooling effect. The two-way coupling model of the quasi-steady thermal diffusion within the droplet and the quasi-steady diffusion-controlled droplet evaporation is conveniently solved in the toroidal coordinate system by applying the method of separation of variables. Our new analytical model for the coupled vapor concentration and temperature fields is in the closed form and is applicable for a full range of spherical-cap shape droplets of different contact angles and types of fluids. Our analytical results are uniquely quantified by a dimensionless evaporative cooling number E o whose magnitude is determined only by the thermophysical properties of the liquid and the atmosphere. Accordingly, the larger the magnitude of E o , the more significant the effect of the evaporative cooling, which results in stronger suppression on the evaporation rate. The classical isothermal model is recovered if the temperature gradient along the air-liquid interface is negligible ( E o = 0). For substrates with very high thermal conductivities (isothermal substrates), our analytical model predicts a reversal of temperature gradient along the droplet-free surface at a contact angle of 119°. Our findings pose interesting challenges but also guidance for experimental investigations.

  19. Self-similar hot accretion flow onto a neutron star

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail V.

    2001-10-01

    We present analytical and numerical solutions which describe a hot, viscous, two-temperature accretion flow onto a neutron star or any other compact star with a surface. We assume Coulomb coupling between the protons and electrons, and free-free cooling from the electrons. Outside a thin boundary layer, where the accretion flow meets the star, we show that there is an extended settling region which is well-described by two self-similar solutions: (1) a two-temperature solution which is valid in an inner zone r<=102.5 (r is in Schwarzchild units), and (2) a one-temperature solution at larger radii. In both zones, ρ~r-2, Ω~r-3/2, v~r0, Tp~r-1 in the two-temperature zone, Te~r-1/2. The luminosity of the settling zone arises from the rotational energy of the star as the star is braked by viscosity; hence the luminosity is independent of Ṁ. The settling solution is convectively and viscously stable and is unlikely to have strong winds or outflows. The flow is thermally unstable, but the instability may be stabilized by thermal conduction. The settling solution described here is not advection-dominated, and is thus different from the self-similar ADAF found around black holes. When the spin of the star is small enough, however, the present solution transforms smoothly to a (settling) ADAF. .

  20. Gravity signatures of terrane accretion

    NASA Astrophysics Data System (ADS)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  1. Design and performance considerations of evaporative-pad, waste-heat greenhouses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M.

    1978-01-01

    Rising fuel costs and limited fuel availability have forced greenhouse operators to seek alternative means of heating their greenhouses in an effort to reduce production costs and conserve energy. One such alternative uses power plant reject heat, which is contained in the condenser cooling water, and a bank of evaporative pads to provide winter heating. The design technique used to size the evaporative pad system to meet both summer cooling and winter heating demands is described. Additionally, a computational scheme that simulates the system performance is presented. This analytical model is used to determine the greenhouse operating conditions that maintainmore » the vegetation in its thermal comfort zone. The evaporative pad model uses the Merkel total heat approximation and an experimentally derived transfer coefficient. Energy balance considerations on the vegetation provide a means of viewing optimal vegetation growth in terms of greenhouse environmental factors. In general, the results indicate that the vegetation can be maintained within its thermal comfort zone if sufficient warm water is available to the pads and the air stream flow is properly adjusted.« less

  2. A Three-dimensional Simulation of a Magnetized Accretion Disk: Fast Funnel Accretion onto a Weakly Magnetized Star

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru K.

    2018-04-01

    We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.

  3. On the formation of well-aligned ZnO nanowall networks by catalyst-free thermal evaporation method

    NASA Astrophysics Data System (ADS)

    Yin, Zhigang; Chen, Nuofu; Dai, Ruixuan; Liu, Lei; Zhang, Xingwang; Wang, Xiaohui; Wu, Jinliang; Chai, Chunlin

    2007-07-01

    Two-dimensional ZnO nanowall networks were grown on ZnO-coated silicon by thermal evaporation at low temperature without catalysts or additives. All of the results from scanning electronic spectroscope, X-ray diffraction and Raman scattering confirmed that the ZnO nanowalls were vertically aligned and c-axis oriented. The room-temperature photoluminescence spectra showed a dominated UV peak at 378 nm, and a much suppressed orange emission centered at ˜590 nm. This demonstrates fairly good crystal quality and optical properties of the product. A possible three-step, zinc vapor-controlled process was proposed to explain the growth of well-aligned ZnO nanowall networks. The pre-coated ZnO template layer plays a key role during the synthesis process, which guides the growth direction of the synthesized products.

  4. Pulse thermal energy transport/storage system

    DOEpatents

    Weislogel, Mark M.

    1992-07-07

    A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.

  5. Comparison of Total Evaporation (TE) and Direct Total Evaporation (DTE) methods in TIMS by using NBL CRMs

    NASA Astrophysics Data System (ADS)

    Hasözbek, Altug; Mathew, Kattathu; Wegener, Michael

    2013-04-01

    The total evaporation (TE) is a well-established analytical method for safeguards measurement of uranium and plutonium isotope-amount ratios using the thermal ionization mass spectrometry (TIMS). High accuracy and precision isotopic measurements find many applications in nuclear safeguards, for e.g. assay measurements using isotope dilution mass spectrometry. To achieve high accuracy and precision in TIMS measurements, mass dependent fractionation effects are minimized by either the measurement technique or changes in the hardware components that are used to control sample heating and evaporation process. At NBL, direct total evaporation (DTE) method on the modified MAT261 instrument, uses the data system to read the ion signal intensity and its difference from a pre-determined target intensity, is used to control the incremental step at which the evaporation filament is heated. The feedback and control is achieved by proprietary hardware from SPECTROMAT that uses an analog regulator in the filament power supply with direct feedback of the detector intensity. Compared to traditional TE method on this instrument, DTE provides better precision (relative standard deviation, expressed as a percent) and accuracy (relative difference, expressed as a percent) of 0.05 to 0.08 % for low enriched and high enriched NBL uranium certified reference materials.

  6. A numerical study of the stability of radiative shocks. [in accretion flows onto white dwarf stars

    NASA Technical Reports Server (NTRS)

    Imamura, J. N.; Wolff, M. T.; Durisen, R. H.

    1984-01-01

    Attention is given to the oscillatory instability of optically thin radiative shocks in time-dependent numerical calculations of accretion flows onto degenerate dwarfs. The present nonlinear calculations yield good quantitative agreement with the linear results obtained for oscillation frequencies, damping rates, and critical alpha-values. The fundamental mode and the first overtone in the shock radius and luminosity variations can be clearly identified, and evidence is sometimes seen for the second overtone. Time-dependent calculations are also performed which include additional physics relevant to degenerate dwarf accretion, such as electron thermal conduction, unequal electron and ion temperatures, Compton cooling, and relativistic corrections to the bremsstrahlung cooling law. All oscillatory modes are found to be damped, and hence stable, in the case of a 1-solar mass white dwarf accreting in spherical symmetry.

  7. Mixed ice accretion on aircraft wings

    NASA Astrophysics Data System (ADS)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  8. Evolutionary sequences of very hot, low-mass, accreting white dwarfs with application to symbiotic variables and ultrasoft/supersoft low-luminosity x-ray sources

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Starrfield, Sumner G.

    1994-01-01

    We present the first detailed model results of quasi-static evolutionary sequences of very hot low-mass white dwarfs accreting hydrogen-rich material at rates between 1 x 10(exp -7) and 1 x 10(exp -9) solar mass/yr. Most of the sequences were generated from starting models whose core thermal structures were not thermally relaxed in the thermal pulse cycle-averaged sense of an asymptotic giant branch stellar core. Hence, the evolution at constant accretion rate was not invariably characterized by series of identical shell flashes. Sequences exhibiting stable steady state nuclear burning at the accretion supply rate as well as sequences exhibiting recurrent thermonuclear shell flashes are presented and discussed. In some cases, the white dwarf accretors remain small (less than 10(exp 11) cm) and very hot even during the shell flash episode. They then experience continued but reduced hydrogen shell burning during the longer quiescent intervals while their surface temperatures increase both because of compressional heating and envelope structure readjustment in response to accretion over thousands of years. Both accretion and continued hydrogen burning power these models with luminosities of a few times 10(exp 37) ergs/s. We suggest that the physical properties of these model sequences are of considerable relevance to the observed outburst and quiescent behavior of those symbiotic variables and symbiotic novae containing low-mass white dwarfs. We also suggest that our models are relevant to the observational characteristics of the growing class of low-luminosity, supersoft/ultrasoft X-ray sources in globular clusters, and the Magellanic Clouds.

  9. Dielectric Studies on Thermally Evaporated CEF3 Thin Film

    NASA Astrophysics Data System (ADS)

    Selvasekarapandian, S.; Gowtham, M.; Bhuvaneswari, M. S.

    In recent years rare earth compounds especially their fluorides have drawn particular attention as electrochemical gas sensors. Lanthanum and cerium fluoride based sensors have been investigated for sensing the fluorine, oxygen, and carbon monoxide because of their high chemical stability and high ionic conductivity. The fast response and good sensitivity of these sensors rely on the ion conduction properties of these thin films. In the present work Cerium Fluoride thin film has been prepared by vacuum thermal evaporation method. The electrical characterization is carried out using the Impedance spectroscopy method in the frequency range of 50 Hz to 5 MHz. The temperature dependence of ionic conductivity obeys the Arrhenius behavior and the activation energy Ea is found to be 0.3eV. The modulus and the dielectric spectra analysis reveal the non - Debye nature and the distribution of relaxation time due to the presence of grain and grain boundaries in the film. The relaxation energy Ed has been calculated from the dielectric spectra. The similar value of activation and relaxation energies suggests that the charge carriers that are responsible for bulk conductivity and relaxation process are the same. The optical measurement done in the wavelength range of 400-2500 nm confirms that the CeF3 thin film is highly transparent and the band gap energy is found to be 3.5 eV.

  10. Constraint on the black hole spin of M87 from the accretion-jet model

    NASA Astrophysics Data System (ADS)

    Feng, Jianchao; Wu, Qingwen

    2017-09-01

    The millimetre bump, as found in high-resolution multiwaveband observations of M87 by Prieto et al., most possibly comes from the synchrotron emission of thermal electrons in advection-dominated accretion flow (ADAF). It is possible to constrain the accretion rate near the horizon if both the nuclear millimetre emission and its polarization are produced by the hot plasma in the accretion flow. The jet power of M87 has been extensively explored, which is around 8_-3^{+7}× 10^{42} erg s-1 based on the analysis of the X-ray cavity. The black hole (BH) spin can be estimated if the jet power and the accretion rate near the horizon are known. We model the multiwavelength spectral energy distribution (SED) of M87 with a coupled ADAF-jet model surrounding a Kerr BH, where the full set of relativistic hydrodynamical equations of the ADAF are solved. The hybrid jet formation model, as a variant of the Blandford-Znajek model, is used to model the jet power. We find that the SMBH should be fast rotating with a dimensionless spin parameter a_{*}˜eq 0.98_-0.02^{+0.012}.

  11. Damping of prominence longitudinal oscillations due to mass accretion

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael S.; Luna, Manuel

    2016-06-01

    We study the damping of longitudinal oscillations of a prominence thread caused by the mass accretion. We suggested a simple model describing this phenomenon. In this model we considered a thin curved magnetic tube filled with the plasma. The prominence thread is in the central part of the tube and it consists of dense cold plasma. The parts of the tube at the two sides of the thread are filled with hot rarefied plasma. We assume that there are flows of rarefied plasma toward the thread caused by the plasma evaporation at the magnetic tube footpoints. Our main assumption is that the hot plasma is instantaneously accommodated by the thread when it arrives at the thread, and its temperature and density become equal to those of the thread. Then we derive the system of ordinary differential equations describing the thread dynamics. We solve this system of ordinary differential equations in two particular cases. In the first case we assume that the magnetic tube is composed of an arc of a circle with two straight lines attached to its ends such that the whole curve is smooth. A very important property of this model is that the equations describing the thread oscillations are linear for any oscillation amplitude. We obtain the analytical solution of the governing equations. Then we obtain the analytical expressions for the oscillation damping time and periods. We find that the damping time is inversely proportional to the accretion rate. The oscillation periods increase with time. We conclude that the oscillations can damp in a few periods if the inclination angle is sufficiently small, not larger that 10°, and the flow speed is sufficiently large, not less that 30 km s-1. In the second model we consider the tube with the shape of an arc of a circle. The thread oscillates with the pendulum frequency dependent exclusively on the radius of curvature of the arc. The damping depends on the mass accretion rate and the initial mass of the threads, that is the mass of the

  12. Migration of accreting giant planets

    NASA Astrophysics Data System (ADS)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  13. The pre- and post-accretion irradiation history of cometary ices

    NASA Technical Reports Server (NTRS)

    Chyba, Christopher; Sagan, Carl

    1989-01-01

    Comets Halley and Wilson exhibited similar 3.4 micron emission features at approx. 1 AU from the Sun. A simple model of thermal emission from organic grains fits the feature, provides optical depths in good agreement with spacecraft measurements, and explains the absence of longer-wavelength organic features as due to spectral heliocentric evolution (Chyba and Sagan, 1987). The model utilizes transmission spectra of organics synthesized in the laboratory by irradiation of candidate cometary ices; the authors have long noted that related gas-phase syntheses yield polycyclic aromatic hydrocarbons, among other organic residues (Sagan et al., 1967). The authors previously concluded (Chyba and Sagan, 1987) that Halley's loss of several meters' depth with each perihelion passage, combined with the good fit of the Halley 3.4 micron feature to that of comet Wilson (Allen and Wickramasinghe, 1987), argues for the primordial - but not necessarily interstellar - origin of cometary organics. The authors examine the relative importance to the formation of organics of the variety of radiation environments experienced by comets. They conclude that there is at present no compelling reason to choose any of three contributing mechanisms (pre-accretion UV, pre-accretion cosmic ray, and post-accretion radionuclide processing) as the most important.

  14. A dynamic experimental study on the evaporative cooling performance of porous building materials

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Lei; Meng, Qinglin; Feng, Yanshan; Chen, Yuanrui

    2017-08-01

    Conventional outdoor dynamic and indoor steady-state experiments have certain limitations in regard to investigating the evaporative cooling performance of porous building materials. The present study investigated the evaporative cooling performance of a porous building material using a special wind tunnel apparatus. First, the composition and control principles of the wind tunnel environment control system were elucidated. Then, the meteorological environment on a typical summer day in Guangzhou was reproduced in the wind tunnel and the evaporation process and thermal parameters of specimens composed of a porous building material were continuously measured. Finally, the experimental results were analysed to evaluate the accuracy of the wind tunnel environment control system, the heat budget of the external surface of the specimens and the total thermal resistance of the specimens and its uncertainty. The analysis results indicated that the normalized root-mean-square error between the measured value of each environmental parameter in the wind tunnel test section and the corresponding value input into the environment control system was <4%, indicating that the wind tunnel apparatus had relatively high accuracy in reproducing outdoor meteorological environments. In addition, the wet specimen could cumulatively consume approximately 80% of the shortwave radiation heat during the day, thereby reducing the temperature of the external surface and the heat flow on the internal surface of the specimen. Compared to the dry specimen, the total thermal resistance of the wet specimen was approximately doubled, indicating that the evaporation process of the porous building material could significantly improve the thermal insulation performance of the specimen.

  15. Foundations of Black Hole Accretion Disk Theory.

    PubMed

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  16. Pebble Accretion in Turbulent Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Xu, Ziyan; Bai, Xue-Ning; Murray-Clay, Ruth A.

    2017-09-01

    It has been realized in recent years that the accretion of pebble-sized dust particles onto planetary cores is an important mode of core growth, which enables the formation of giant planets at large distances and assists planet formation in general. The pebble accretion theory is built upon the orbit theory of dust particles in a laminar protoplanetary disk (PPD). For sufficiently large core mass (in the “Hill regime”), essentially all particles of appropriate sizes entering the Hill sphere can be captured. However, the outer regions of PPDs are expected to be weakly turbulent due to the magnetorotational instability (MRI), where turbulent stirring of particle orbits may affect the efficiency of pebble accretion. We conduct shearing-box simulations of pebble accretion with different levels of MRI turbulence (strongly turbulent assuming ideal magnetohydrodynamics, weakly turbulent in the presence of ambipolar diffusion, and laminar) and different core masses to test the efficiency of pebble accretion at a microphysical level. We find that accretion remains efficient for marginally coupled particles (dimensionless stopping time {τ }s˜ 0.1{--}1) even in the presence of strong MRI turbulence. Though more dust particles are brought toward the core by the turbulence, this effect is largely canceled by a reduction in accretion probability. As a result, the overall effect of turbulence on the accretion rate is mainly reflected in the changes in the thickness of the dust layer. On the other hand, we find that the efficiency of pebble accretion for strongly coupled particles (down to {τ }s˜ 0.01) can be modestly reduced by strong turbulence for low-mass cores.

  17. Desertification of the peritoneum by thin-film evaporation during laparoscopy.

    PubMed

    Ott, Douglas E

    2003-01-01

    To assess the effects of gas flow during insufflation on peritoneal fluid and peritoneal tissue regarding transient thermal behavior and thin-film evaporation. The effects of laparoscopic gas on peritoneal cell desiccation and peritoneal fluid thin-film evaporation were analyzed. Measurment of tissue and peritoneal fluid and analysis of gas flow dynamics during laparoscopy. High-velocity gas interface conditions during laparoscopic gas insufflation result in peritoneal surface temperature and decreases up to 20 degrees C/second due to rapid thin-film evaporation of the peritoneal fluid. Evaporation of the thin film of peritoneal fluid extends quickly to the peritoneal cell membrane, causing peritoneal cell desiccation, internal cytoplasmic stress, and disruption of the cell membrane, resulting in loss of peritoneal surface continuity and integrity. Changing the gas conditions to 35 degrees C and 95% humidity maintains normal peritoneal fluid thin-film characteristics, cellular integrity, and prevents evaporative losses. Cold, dry gas and the characteristics of the laparoscopic gas delivery apparatus cause local peritoneal damaging alterations by high-velocity gas flow with extremely dry gas, creating extreme arid surface conditions, rapid evaporative and hydrological changes, tissue desiccation, and peritoneal fluid alterations that contribute to the process of desertification and thin-film evaporation. Peritoneal desertification is preventable by preconditioning the gas to 35 degrees C and 95% humidity.

  18. Interpreting MAD within multiple accretion regimes

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Guo, Xinyi

    2015-02-01

    General relativistic magnetohydrodynamic (GRMHD) simulations of accreting black holes in the radiatively inefficient regime show that systems with sufficient magnetic poloidal flux become magnetically arrested disc (MAD) systems, with a well-defined relationship between the magnetic flux and the mass accretion rate. Recently, Zamaninasab et al. report that the jet magnetic flux and accretion disc luminosity are tightly correlated over 7 orders of magnitude for a sample of 76 radio-loud active galaxies, concluding that the data are explained by the MAD mode of accretion. Their analysis assumes radiatively efficient accretion, and their sample consists primarily of radiatively efficient sources, while GRMHD simulations of MAD thus far have been carried out in the radiatively inefficient regime. We propose a model to interpret MAD systems in the context of multiple accretion regimes, and apply it to the sample in Zamaninasab et al., along with additional radiatively inefficient sources from archival data. We show that most of the radiatively inefficient radio-loud galaxies are consistent with being MAD systems. Assuming the MAD relationship found in radiatively inefficient simulations holds at other accretion regimes, a significant fraction of our sample can be candidates for MAD systems. Future GRMHD simulations have yet to verify the validity of this assumption.

  19. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.

  20. NH3-free growth of GaN nanostructure on n-Si (1 1 1) substrate using a conventional thermal evaporation technique

    NASA Astrophysics Data System (ADS)

    Saron, K. M. A.; Hashim, M. R.; Farrukh, M. A.

    2012-06-01

    We have investigated the influence of carrier gas on grown gallium nitride (GaN) epitaxial layers deposited on n-Si (1 1 1) by a physical vapour deposition (PVD) via thermal evaporation of GaN powder at 1150 °C. The GaN nanostructures were grown at a temperature of 1050 °C for 60 min under various gases (N2, H2 mixed with N2, and Ar2) with absence of NH3. The morphology, structure, and optical properties (SEM) images showed that the morphology of GaN displayed various shapes of nanostructured depending on the type of carrier gas. X-ray diffraction (XRD) pattern showed that the GaN polycrystalline reveals a wurtzite-hexagonal structure with [0 0 1] crystal orientation. Raman spectra exhibited a red shift in peaks of E2 (high) as a result of tensile stress. Photoluminescence (PL) measurements showed two band emissions aside from the UV emission. The ultraviolet band gap of GaN nanostructure displayed a red shift as compared with the bulk GaN; this might be attributed to an increase in the defect and stress present in the GaN nanostructure. In addition, the observed blue and green-yellow emissions indicated defects due to the N vacancy and C impurity of the supplied gas. These results clearly indicated that the carrier gas, similar to the growth temperature, is one of the important parameters to control the quality of thermal evaporation (TE)-GaN epilayers.

  1. Numerical Modeling of Turbulence Effects within an Evaporating Droplet in Atomizing Sprays

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.; Trinh, H. P.

    2006-01-01

    A new approach to account for finite thermal conductivity and turbulence effects within atomizing liquid sprays is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen (2005). This finite conductivity model is based on the two-temperature film theory, where the turbulence characteristics of the droplet are used to estimate the effective thermal diffhsivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. The current evaporation model is incorporated into the T-blob atomization model of Trinh and Chen (2005) and implemented in an existing CFD Eulerian-Lagrangian two-way coupling numerical scheme. Validation studies were carried out by comparing with available evaporating atomization spray experimental data in terms of jet penetration, temperature field, and droplet SMD distribution within the spray. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating spray.

  2. Toward a New Paradigm for the Unification of Radio Loud AGN and its Connection to Accretion

    NASA Technical Reports Server (NTRS)

    Georganpoulos, Markos; Meyer, Eileen T.; Fossati, Giovanni; Lister, Matthew L.

    2012-01-01

    We recently argued [21J that the collective properties. of radio loud active galactic nuclei point to the existence of two families of sources, one of powerful sources with single velocity jets and one of weaker jets with significant velocity gradients in the radiating plasma. These families also correspond to different accretion modes and therefore different thermal and emission line intrinsic properties: powerful sources have radiatively efficient accretion disks, while in weak sources accretion must be radiatively inefficient. Here, after we briefly review of our recent work, we present the following findings that support our unification scheme: (i) along the broken sequence of aligned objects, the jet kinetic power increases. (ii) in the powerful branch of the sequence of aligned objects the fraction of BLLs decreases with increasing jet power. (iii) for powerful sources, the fraction of BLLs increases for more un-aligned objects, as measured by the core to extended radio emission. Our results are also compatible with the possibility that a given accretion power produces jets of comparable kinetic power.

  3. Micro thermal diode with glass thermal insulation structure embedded in a vapor chamber

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takashiro; Hirayanagi, Takashi; Tanaka, Shuji

    2017-04-01

    This paper reports a micro thermal diode based on one-way working fluid circulation driven by surface tension force. In forward mode, working fluid evaporates and condenses at a heated and cooled area, respectively, and the condensed liquid returns to the evaporation area due to the wettability difference. By this vapor-liquid phase change mechanism, the overall heat transfer coefficient becomes high. On the other hand, in reverse mode, no continuous evaporation-condensation cycle exists. The conductive heat loss in reverse mode was minimized by an embedded glass thermal isolation structure, which makes overall heat transfer coefficient low. The test device was made by a standard MEMS process combined with glass reflow and gold bump sealing. The overall heat transfer coefficients of 13 300 \\text{W}~{{\\text{m}}-2}~\\text{K} for forward mode and 4790 \\text{W}~{{\\text{m}}-2}~\\text{K} for reverse mode were measured. The performance index of the micro thermal diode was about 2.8.

  4. Super-Eddington Accretion in Tidal Disruption Events: the Impact of Realistic Fallback Rates on Accretion Rates

    NASA Astrophysics Data System (ADS)

    Wu, Samantha; Coughlin, Eric R.; Nixon, Chris

    2018-04-01

    After the tidal disruption of a star by a massive black hole, disrupted stellar debris can fall back to the hole at a rate significantly exceeding its Eddington limit. To understand how black hole mass affects the duration of super-Eddington accretion in tidal disruption events, we first run a suite of simulations of the disruption of a Solar-like star by a supermassive black hole of varying mass to directly measure the fallback rate onto the hole, and we compare these fallback rates to the analytic predictions of the "frozen-in" model. Then, adopting a Zero-Bernoulli Accretion flow as an analytic prescription for the accretion flow around the hole, we investigate how the accretion rate onto the black hole evolves with the more accurate fallback rates calculated from the simulations. We find that numerically-simulated fallback rates yield accretion rates onto the hole that can, depending on the black hole mass, be nearly an order of magnitude larger than those predicted by the frozen-in approximation. Our results place new limits on the maximum black hole mass for which super-Eddington accretion occurs in tidal disruption events.

  5. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds

    NASA Astrophysics Data System (ADS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  6. Testing of the Multi-Fluid Evaporator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; O'Connor, Ed; Riga, Ken; Anderson, Molly; Westheimer, David

    2007-01-01

    Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. The current Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. The MFE system combines both functions into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. The full scale MFE prototype will be constructed with four core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A sub-scale MFE engineering development unit (EDU) has been built, and is identical to one of the four sections of a full scale prototype. The EDU has completed testing at Hamilton Sundstrand. The overall test objective was to determine the thermal performance of the EDU. The first set of tests simulated how each of the four sections of the prototype would perform by varying the chamber pressure, evaporant flow rate, coolant flow rate and coolant temperature. A second set of tests was conducted with an outlet steam header in place to verify that the outlet steam orifices prevent freeze-up in the core while also allowing the desired thermal turn-down ratio. This paper discusses the EDU tests and results.

  7. Thermal Evaporation Loss Measurements on Quasicrystal (Ti-Zr-Ni) and Glass Forming (Vit 106 and Vit 106a) Liquids

    NASA Astrophysics Data System (ADS)

    Blodgett, M. E.; Gangopadhyay, A. K.; Kelton, K. F.

    2015-04-01

    Thermal evaporation loss measurements made using the electrostatic levitation (ESL) technique for one binary Ti-Zr, two ternary Ti-Zr-Ni, and two glass-forming (Vit 106 and Vit 106a) alloy liquids are reported. The containerless environment enables measurements not only for the equilibrium liquids but also for the metastable supercooled liquids. The data follow the Langmuir equation when the activity coefficient of the solute atoms, a measure for the deviation from the ideal solution behavior, is taken into account. An estimate for the activity coefficient of Ni in the Ti-Zr liquid is made from these data, demonstrating the effectiveness of ESL for such measurements.

  8. Dusty Gas Accretion onto Massive Black Holes and Infrared Diagnosis of the Eddington Ratio

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Ricotti, Massimo; Park, KwangHo; Sugimura, Kazuyuki

    2017-09-01

    Evidence for dust around supermassive black holes (SMBHs) in the early universe is strongly suggested by recent observations. However, the accretion mechanism of SMBHs in dusty gas is not well understood yet. We investigate the growth of intermediate-mass black holes (IMBHs) of ˜ {10}4{--}{10}6 {M}⊙ in dusty clouds by using one-dimensional radiative-hydrodynamics simulations. We find that the accretion of dusty gas onto IMBHs proceeds gently with small fluctuations of the accretion rate, whereas that of pristine gas causes more violent periodic bursts. At dust-to-gas mass ratios similar to the solar neighborhood, the time-averaged luminosity becomes smaller than that for primordial gas by one order of magnitude and the time-averaged Eddington ratio ranges from ˜ {10}-4 to ˜ {10}-2 in clouds with initial gas densities of {n}{{H}}=10{--}1000 {{cm}}-3. Our calculations show that the effect of dust opacity alone is secondary compared to the radiation pressure on dust in regulating the BH growth. We also derive spectral energy distributions at IR bands by calculating dust thermal emission and show that the flux ratio between λ ≲ 20 μ {{m}} and ≳ 100 μ {{m}} is closely related to the Eddington ratio. Thermal emission from hot dust near the BH dominates only during the phase of high accretion, producing higher flux density at ≲ 20 μ {{m}}. Therefore, we suggest that a combination of mid-IR observations by the James Webb Space Telescope and far-IR observations by ALMA or Spitzer can be used to estimate the Eddington ratio of massive BHs. We also extend our simple modeling to SMBHs of {10}8{--}{10}9 {M}⊙ and show that ALMA can detect SMBHs of ˜ {10}9 {M}⊙ at z≳ 5.

  9. THE STRUCTURE AND SPECTRAL FEATURES OF A THIN DISK AND EVAPORATION-FED CORONA IN HIGH-LUMINOSITY ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J. Y.; Liu, B. F.; Qiao, E. L.

    We investigate the accretion process in high-luminosity active galactic nuclei (HLAGNs) in the scenario of the disk evaporation model. Based on this model, the thin disk can extend down to the innermost stable circular orbit (ISCO) at accretion rates higher than 0.02 M-dot{sub Edd} while the corona is weak since part of the coronal gas is cooled by strong inverse Compton scattering of the disk photons. This implies that the corona cannot produce as strong X-ray radiation as observed in HLAGNs with large Eddington ratio. In addition to the viscous heating, other heating to the corona is necessary to interpretmore » HLAGN. In this paper, we assume that a part of accretion energy released in the disk is transported into the corona, heating up the electrons, and is thereby radiated away. For the first time, we compute the corona structure with additional heating, fully taking into account the mass supply to the corona, and find that the corona could indeed survive at higher accretion rates and that its radiation power increases. The spectra composed of bremsstrahlung and Compton radiation are also calculated. Our calculations show that the Compton-dominated spectrum becomes harder with the increase of energy fraction (f) liberating in the corona, and the photon index for hard X-ray (2-10 keV) is 2.2 < {Gamma} < 2.7. We discuss possible heating mechanisms for the corona. Combining the energy fraction transported to the corona with the accretion rate by magnetic heating, we find that the hard X-ray spectrum becomes steeper at a larger accretion rate and the bolometric correction factor (L{sub bol}/L{sub 2-10keV}) increases with increasing accretion rate for f < 8/35, which is roughly consistent with the observational results.« less

  10. Estimation of bare soil evaporation using multifrequency airborne SAR

    NASA Technical Reports Server (NTRS)

    Soares, Joao V.; Shi, Jiancheng; Van Zyl, Jakob; Engman, E. T.

    1992-01-01

    It is shown that for homogeneous areas soil moisture can be derived from synthetic aperture radar (SAR) measurements, so that the use of microwave remote sensing can given realistic estimates of energy fluxes if coupled to a simple two-layer model repesenting the soil. The model simulates volumetric water content (Wg) using classical meterological data, provided that some of the soil thermal and hydraulic properties are known. Only four parameters are necessary: mean water content, thermal conductivity and diffusitivity, and soil resistance to evaporation. They may be derived if a minimal number of measured values of Wg and surface layer temperature (Tg) are available together with independent measurements of energy flux to compare with the estimated values. The estimated evaporation is shown to be realistic and in good agreement with drying stage theory in which the transfer of water in the soil is in vapor form.

  11. A model for accretion of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1974-01-01

    One possible origin of the terrestrial planets involves their formation by gravitational accretion of particles originally in Keplerian orbits about the sun. Some implications of this theory are considered. A formal expression for the rate of mass accretion by a planet is developed. The formal singularity of the gravitational collision cross section for low relative velocities is shown to be without physical significance when the accreting bodies are in heliocentric orbits. The distribution of particle velocities relative to an accreting planet is considered; the mean velocity increases with time. The internal temperature of an accreting planet is shown to depend simply on the accretion rate. A simple and physically reasonable approximate expression for a planetary accretion rate is proposed.

  12. Detailed finite element method modeling of evaporating multi-component droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diddens, Christian, E-mail: C.Diddens@tue.nl

    The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet.more » Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.« less

  13. Evaporation determined by the energy-budget method for Mirror Lake, New Hampshire

    USGS Publications Warehouse

    Winter, T.C.; Buso, D.C.; Rosenberry, D.O.; Likens, G.E.; Sturrock, A.M.; Mau, D.P.

    2003-01-01

    Evaporation was determined by the energy-budget method for Mirror Lake during the open water periods of 1982-1987. For all years, evaporation rates were low in spring and fall and highest during the summer. However, the times of highest evaporation rates varied during the 6 yr. Evaporation reached maximum rates in July for three of the years, in June for two of the years, and in August for one of the years. The highest evaporation rate during the 6-yr study was 0.46 cm d-1 during 27 May-4 June 1986 and 15-21 July 1987. Solar radiation and atmospheric radiation input to the lake and long-wave radiation emitted from the lake were by far the largest energy fluxes to and from the lake and had the greatest effect on evaporation rates. Energy advected to and from the lake by precipitation, surface water, and ground water had little effect on evaporation rates. In the energy-budget method, average evaporation rates are determined for energy-budget periods, which are bounded by the dates of thermal surveys of the lake. Our study compared evaporation rates calculated for short periods, usually ???1 week, with evaporation rates calculated for longer periods, usually ???2 weeks. The results indicated that the shorter periods showed more variability in evaporation rates, but seasonal patterns, with few exceptions, were similar.

  14. Prediction of WBGT-based clothing adjustment values from evaporative resistance

    PubMed Central

    BERNARD, Thomas E.; ASHLEY, Candi D.; GARZON, Ximena P.; KIM, Jung-Hyun; COCA, Aitor

    2017-01-01

    Wet bulb globe temperature (WBGT) index is used by many professionals in combination with metabolic rate and clothing adjustments to assess whether a heat stress exposure is sustainable. The progressive heat stress protocol is a systematic method to prescribe a clothing adjustment value (CAV) from human wear trials, and it also provides an estimate of apparent total evaporative resistance (Re,T,a). It is clear that there is a direct relationship between the two descriptors of clothing thermal effects with diminishing increases in CAV at high Re,T,a. There were data to suggest an interaction of CAV and Re,T,a with relative humidity at high evaporative resistance. Because human trials are expensive, manikin data can reduce the cost by considering the static total evaporative resistance (Re,T,s). In fact, as the static evaporative resistance increases, the CAV increases in a similar fashion as Re,T,a. While the results look promising that Re,T,s can predict CAV, some validation remains, especially for high evaporative resistance. The data only supports air velocities near 0.5 m/s. PMID:29033404

  15. A Model to Assess the Risk of Ice Accretion Due to Ice Crystal Ingestion in a Turbofan Engine and its Effects on Performance

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to

  16. Influence of surface wettability on transport mechanisms governing water droplet evaporation.

    PubMed

    Pan, Zhenhai; Weibel, Justin A; Garimella, Suresh V

    2014-08-19

    Prediction and manipulation of the evaporation of small droplets is a fundamental problem with importance in a variety of microfluidic, microfabrication, and biomedical applications. A vapor-diffusion-based model has been widely employed to predict the interfacial evaporation rate; however, its scope of applicability is limited due to incorporation of a number of simplifying assumptions of the physical behavior. Two key transport mechanisms besides vapor diffusion-evaporative cooling and natural convection in the surrounding gas-are investigated here as a function of the substrate wettability using an augmented droplet evaporation model. Three regimes are distinguished by the instantaneous contact angle (CA). In Regime I (CA ≲ 60°), the flat droplet shape results in a small thermal resistance between the liquid-vapor interface and substrate, which mitigates the effect of evaporative cooling; upward gas-phase natural convection enhances evaporation. In Regime II (60 ≲ CA ≲ 90°), evaporative cooling at the interface suppresses evaporation with increasing contact angle and counterbalances the gas-phase convection enhancement. Because effects of the evaporative cooling and gas-phase convection mechanisms largely neutralize each other, the vapor-diffusion-based model can predict the overall evaporation rates in this regime. In Regime III (CA ≳ 90°), evaporative cooling suppresses the evaporation rate significantly and reverses entirely the direction of natural convection induced by vapor concentration gradients in the gas phase. Delineation of these counteracting mechanisms reconciles previous debate (founded on single-surface experiments or models that consider only a subset of the governing transport mechanisms) regarding the applicability of the classic vapor-diffusion model. The vapor diffusion-based model cannot predict the local evaporation flux along the interface for high contact angle (CA ≥ 90°) when evaporative cooling is strong and the

  17. A lower limit to the accretion disc radius in the low-luminosity AGNNGC 1052 derived from high-angular resolution data

    NASA Astrophysics Data System (ADS)

    Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus

    2018-07-01

    We investigate the central sub-arcsec region of the low-luminosity active galactic nucleusNGC 1052, using a high-angular resolution data set that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.

  18. How do accretion discs break?

    NASA Astrophysics Data System (ADS)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  19. Evaporation of pure liquid sessile and spherical suspended drops: a review.

    PubMed

    Erbil, H Yildirim

    2012-01-15

    A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by a contact line and characterized by contact angle, contact radius and drop height. Diffusion-controlled evaporation of a sessile drop in an ambient gas is an important topic of interest because it plays a crucial role in many scientific applications such as controlling the deposition of particles on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, drop wise cooling, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials in the last decades. This paper presents a review of the published articles for a period of approximately 120 years related to the evaporation of both sessile drops and nearly spherical droplets suspended from thin fibers. After presenting a brief history of the subject, we discuss the basic theory comprising evaporation of micrometer and millimeter sized spherical drops, self cooling on the drop surface and evaporation rate of sessile drops on solids. The effects of drop cooling, resultant lateral evaporative flux and Marangoni flows on evaporation rate are also discussed. This review also has some special topics such as drop evaporation on superhydrophobic surfaces, determination of the receding contact angle from drop evaporation, substrate thermal conductivity effect on drop evaporation and the rate evaporation of water in liquid marbles. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Annealing effects on room temperature thermoelectric performance of p-type thermally evaporated Bi-Sb-Te thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Singh, Janpreet; Tripathi, S. K.

    2018-05-01

    Bismuth antimony telluride (Bi-Sb-Te) compounds have been investigated for the past many decades for thermoelectric (TE) power generation and cooling purpose. We synthesized this compound with a stoichiometry Bi1.2Sb0.8Te3 through melt cool technique and thin films of as synthesized material were deposited by thermal evaporation. The prime focus of the present work is to study the influence of annealing temperature on the room temperature (RT) power factor of thin films. Electrical conductivity and Seebeck coefficient were studied and power factors were calculated which showed a peak value at 323 K. The compounds performance is comparable to some very efficient Bi-Sb-Te reported stoichiometries at RT scale. The values observed show that material has an enormous potential for energy production at ambient temperature scales.

  1. Optical and electrical properties of bismuth-sulfide (Bi2S3) thin films prepared by thermal evaporation.

    NASA Astrophysics Data System (ADS)

    Mahmoud, Siham; Sharaf, Fouad

    Thin films of Bi2S3, of thickness in the range 300 to 500 nm, were produced by thermal evaporation technique. The reaction consisted in depositing the two elements (bismuth and sulfur) from a boat source and allowing their atoms to interdiffuse to form the compound during the deposition on quartz substrates. The material has been characterized by X-ray studies, optical and electrical measurements. When these films were annealed at 353 K, 393 K and 453 K for 5 hours, a nearly amorphous to polycrystalline transition was observed. The absorption coefficient revealed the existence of an allowed direct transition with Eg = 1.56 eV. The activation energies for electrical conduction in low and high temperature regions are 0.28 eV and 0.73 eV, respectively.

  2. The energy balance within a bubble column evaporator

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2018-05-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (Δ H vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and Δ H vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining Δ H vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine Δ H vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air

  3. UV And X-Ray Emission from Impacts of Fragmented Accretion Streams on Classical T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Colombo, Salvatore; Orlando, Salvatore; Peres, Giovanni; Argiroffi, Costanza; Reale, Fabio

    2016-07-01

    According to the magnetoshperic accretion scenario, during their evo- lution, Classical T Tauri stars accrete material from their circumstellar disk. The accretion process is regulated by the stellar magnetic eld and produces hot and dense post-shocks on the stellar surface as a result of impacts of the downfalling material. The impact regions are expected to strongly radiate in UV and X-rays. Several lines of evidence support the magnetospheric accretion scenario, especially in optical and infrared bands. However several points still remain unclear as, for instance,where the complex-pro le UV lines originate, or whether and how UV and X-ray emission is produced in the same shock region. The analysis of a large solar eruption has shown that EUV excesses might be e ectively produced by the impact of dense fragments onto the stellar surface. Since a steady accretion stream does not reprouce observations, in this work we investi- gate the e ects of a fragmented accretion stream on the uxes and pro les of C IV and O VIII emission lines. To this end we model the impact of a fragmented accretion stream onto the chromosphere of a CTTS with 2D axysimmetric magneto-hydrodynamic simulations. Our model takes into account of the gravity, the stellar magnetic eld, the thermal conduction and the radiative cooling from an optically thin plasma. From the model results, we synthesize the UV and X-ray emission including the e ect of Doppler shift along the line of sight. We nd that a fragmented accretion stream produces complex pro les of UV emission lines which consists of multiple components with di erent Doppler shifts. Our model predicts line pro les that are consistent with those observed and explain their origin as due to the stream fragmentation.

  4. Evaporative cooling of the dipolar hydroxyl radical.

    PubMed

    Stuhl, Benjamin K; Hummon, Matthew T; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-12-20

    Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach.

  5. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less

  6. Electrical and optical properties of C46H22N8O4KM (M=Co, Fe, Pb) molecular-material thin films prepared by the vacuum thermal evaporation technique.

    PubMed

    Sánchez-Vergara, M E; Ruiz Farfán, M A; Alvarez, J R; Ponce Pedraza, A; Ortiz, A; Alvarez Toledano, C

    2007-03-01

    In this work, the synthesis of new materials formed from metallic phthalocyanines (Pcs) and double potassium salt from 1,8-dihydroxianthraquinone is reported. The newly synthesized materials were characterized by scanning electron microscope (SEM), atomic force microscopy (AFM), infrared (IR) and Ultraviolet-visible (UV-vis) spectroscopy. The powder and thin-film samples of the synthesized materials, deposited by vacuum thermal evaporation, show the same intra-molecular bonds as in the IR spectroscopy studies, which suggests that the thermal evaporation process does not alter these bonds. The effect of temperature on conductivity and electrical conduction mechanism was measured in the thin films (approximately 137 nm thickness). They showed a semiconductor-like behaviour with an optical activation energy arising from indirect transitions of 2.15, 2.13 and 3.6eV for the C(46)H(22)N(8)O(4)KFe, C(46)H(22)N(8)O(4)KPb and C(46)H(22)N(8)O(4)KCo thin films.

  7. A flux-limited treatment for the conductive evaporation of spherical interstellar gas clouds

    NASA Technical Reports Server (NTRS)

    Dalton, William W.; Balbus, Steven A.

    1993-01-01

    In this work, we present and analyze a new analytic solution for the saturated (flux-limited) thermal evaporation of a spherical cloud. This work is distinguished from earlier analytic studies by allowing the thermal conductivity to change continuously from a diffusive to a saturated form, in a manner usually employed only in numerical calculations. This closed form solution will be of interest as a computational benchmark. Using our calculated temperature profiles and mass-loss rates, we model the thermal evaporation of such a cloud under typical interstellar medium (ISM) conditions, with some restrictions. We examine the ionization structure of the cloud-ISM interface and evaluate column densities of carbon, nitrogen, oxygen, neon, and silicon ions toward the cloud. In accord with other investigations, we find that ionization equilibrium is far from satisfied under the assumed conditions. Since the inclusion of saturation effects in the heat flux narrows the thermal interface relative to its classical structure, we also find that saturation effects tend to lower predicted column densities.

  8. Performance of a Multifunctional Space Evaporator- Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Bue, Grant; Quinn, Gregory

    2013-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 sq ft prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable heat rejection from the LCAR.

  9. A scaling law for accretion zone sizes

    NASA Technical Reports Server (NTRS)

    Greenzweig, Yuval; Lissauer, Jack J.

    1987-01-01

    Current theories of runaway planetary accretion require small random velocities of the accreted particles. Two body gravitational accretion cross sections which ignore tidal perturbations of the Sun are not valid for the slow encounters which occur at low relative velocities. Wetherill and Cox have studied accretion cross sections for rocky protoplanets orbiting at 1 AU. Using analytic methods based on Hill's lunar theory, one can scale these results for protoplanets that occupy the same fraction of their Hill sphere as does a rocky body at 1 AU. Generalization to bodies of different sizes is achieved here by numerical integrations of the three-body problem. Starting at initial positions far from the accreting body, test particles are allowed to encounter the body once, and the cross section is computed. A power law is found relating the cross section to the radius of the accreting body (of fixed mass).

  10. Thermal management of metallic surfaces: evaporation of sessile water droplets on polished and patterned stainless steel

    NASA Astrophysics Data System (ADS)

    Czerwiec, T.; Tsareva, S.; Andrieux, A.; Bortolini, G. A.; Bolzan, P. H.; Castanet, G.; Gradeck, M.; Marcos, G.

    2017-10-01

    This communication focus on the evaporation of sessile water droplets on different states of austenitic stainless steel surfaces: mirror polished, mirror polished and aged and patterned by sputtering. The evolution of the contact angle and of the droplet diameter is presented as a function of time at room temperature. For all the surface states, a constant diameter regime (CCR) is observed. An important aging effect on the contact angle is measured on polished surfaces due to atmospheric contamination. The experimental observations are compared to a quasi-static evaporation model assuming spherical caps. The evolution of the droplet volume as a function of time is almost linear with the evaporation time for all the observed surfaces. This is in accordance with the model prediction for the CCR mode for small initial contact angles. In our experiments, the evaporation time is found to be linearly dependent on the initial contact angle. This dependence is not correctly described by the evaporation model

  11. Accretion Rate: An Axis Of Agn Unification

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, C. D.; Kelly, B. C.

    2011-01-01

    We show how accretion rate governs the physical properties of broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rate by using accurate accretion luminosities from well-sampled multiwavelength SEDs from the Cosmic Evolution Survey (COSMOS), and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L/L_Edd>0.01), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L/L_Edd<0.01) are unobscured and yet lack a broad line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L/L_Edd<0.01 narrow-line and lineless AGNs to be 10-100 times more radio-luminous than broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L/L_Edd<0.01 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together these results suggest that specific accretion rate is an important physical "axis" of AGN unification, described by a simple model.

  12. Numerical simulations of sessile droplet evaporating on heated substrate

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Chen, Paul G.; Ouazzani, Jalil; Liu, Qiusheng

    2017-04-01

    Motivated by the space project EFILE, a 2D axisymmetric numerical model in the framework of ALE method is developed to investigate the coupled physical mechanism during the evaporation of a pinned drop that partially wets on a heated substrate. The model accounts for mass transport in surrounding air, Marangoni convection inside the drop and heat conduction in the substrate as well as moving interface. Numerical results predict simple scaling laws for the evaporation rate which scales linearly with drop radius but follows a power-law with substrate temperature. It is highlighted that thermal effect of the substrate has a great impact on the temperature profile at the drop surface, which leads to a multicellular thermocapillary flow pattern. In particular, the structure of the multicellular flow behavior induced within a heated drop is mainly controlled by a geometric parameter (aspect ratio). A relationship between the number of thermal cells and the aspect ratio is proposed.

  13. Titan's Cold Accretion and its Internal Structure

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Mosqueira, I.

    2010-10-01

    Recent Cassini radio tracking data has provided a normalized moment of inertia for Titan of 0.34 (Iess et al. 2010). Given that the quadrupole field is consistent with hydrostatic equilibrium, a two-layer interior model implies incomplete differentiation with a 700 km water-ice shell and an undifferentiated ice and rock-metal interior. We investigate the accretional history of Titan in connection with its internal structure. Our formation model allows for a size distribution of impactors with upper size cut-off constrained by Hyperion's size and a variable power-law exponent (Mosqueira et al. 2010). The burial of impact energy takes place in a lengthscale of order of the impactor radius, as indicated by numerical simulations (e.g., Pierazzo et al. 1997) applied to our energy regime of interest. Our thermal model includes radiogenic heating due to short and long-lived radionuclides, latent heat of melting, gravitational energy release due to sinking rock, heat of accretion and radiative cooling. We find that melting in the interior takes place well before the satellite reaches its final size. As a result, we expect the formation of an ocean overlying a silicate carapace, which may spend a considerable amount of time in contact with the liquid layer. Such a framework not only facilitates the transport of heat from the interior, but also can help both in leaching Ar40 into the ocean and then releasing into the atmosphere. We consider a range of parameters such as the degree of hydration of the rock component, the fraction of the impact energy that is deposited at the surface of the satellite, and accretion times. But we do not yet consider the effects of small admixtures of contaminants. We argue that models that form Titan in a cold environment may have allowed for the interior to remain cold enough as to preclude complete differentiation.

  14. Calixarene-Mediated Synthesis of Cobalt Nanoparticles: An Accretion Model for Separate Control over Nucleation and Growth

    PubMed Central

    Chen, Zhenguo; Liu, Jie; Evans, Andrew J.; Alberch, Laura; Wei, Alexander

    2015-01-01

    The nucleation and growth of crystalline cobalt nanoparticles (Co NPs) under solvothermal conditions can be separated into distinct stages by using (i) polynuclear clusters with multivalent capping ligands to initiate nucleation, and (ii) thermolabile organometallic complexes with low autonucleation potential to promote crystalline growth. Both nucleation and growth take place within an amorphous accretion, formed in the presence of polyvalent surfactants. At the pre-nucleation stage, a calixarene complex with multiple Co2–alkyne ligands (Co16–calixarene 1) undergoes thermal decomposition above 130 °C to form “capped cluster” intermediates that coalesce into well-defined Co nanoclusters, but are resistant to further aggregation. At the post-nucleation stage, a monomer (pentyne–Co4(CO)10, or PTC) with a low thermal activation threshold but a high barrier to autonucleation is introduced, yielding ε-Co NPs with a linear relationship between particle volume and the Co mole ratio ([Cofinal]/[Coseed]). Co nanocrystals can be produced up to 40 nm with a 10–12% size dispersity within the accretion, but their growth rate depends on the activity of the supporting surfactant, with an octapropargyl calixarene derivative (OP-C11R) providing the most efficient transport of reactive Co species through the amorphous matrix. Post-growth digestion with oleic acid releases the Co NPs from the residual accretion, which can then self-assemble by magnetic dipolar interactions into flux-closure rings when stabilized by calixarene-based surfactants. These studies demonstrate that organometallic complexes can be designed to establish rational control over the nucleation and growth of crystalline NPs within an intermediate accretion phase. PMID:25960603

  15. Accretion Discs Around Black Holes: Developement of Theory

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.

    Standard accretion disk theory is formulated which is based on the local heat balance. The energy produced by a turbulent viscous heating is supposed to be emitted to the sides of the disc. Sources of turbulence in the accretion disc are connected with nonlinear hydrodynamic instability, convection, and magnetic field. In standard theory there are two branches of solution, optically thick, and optically thin. Advection in accretion disks is described by the differential equations what makes the theory nonlocal. Low-luminous optically thin accretion disc model with advection at some suggestions may become advectively dominated, carrying almost all the energy inside the black hole. The proper account of magnetic filed in the process of accretion limits the energy advected into a black hole, efficiency of accretion should exceed ˜ 1/4 of the standard accretion disk model efficiency.

  16. Radiation-stimulated explosive evaporation and burning of hydrogen droplets in hot aerosol mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, V. V.; Marchenko, M. P.; Khasin, M.

    2016-06-13

    We present results of analytical and numerical investigation of explosive evaporation and burning scenarios of hydrogen droplets in hydrogen/oxygen aerosols. The following two scenarios have been elucidated. The first scenario, corresponding to sufficiently large droplets, is characterized by three stages: (i) an essentially homogeneous heating of a droplet to a near-critical temperature by IR radiation from the hot gas; (ii) explosive evaporation; and (iii) burning of hydrogen cloud formed by evaporation. The second scenario, corresponding to small droplets, differs in that a droplet is heated mainly by thermal conduction from the hot gas. The heating is accompanied by evaporation whichmore » can become explosive at the final stage of evaporation. The crossover droplet size separating the two scenarios is calculated. Conservative finite-difference numerical analysis is used to explore the predicted scenarios and verify analytical estimates.« less

  17. Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N., E-mail: ramakrishnan@monash.edu

    Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use ofmore » a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.« less

  18. Accretion Disk Outflows from Compact Object Mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian

    Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed

  19. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  20. A lower limit to the accretion disc radius in the low-luminosity AGN NGC 1052 derived from high-angular resolution data

    NASA Astrophysics Data System (ADS)

    Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus

    2018-05-01

    We investigate the central sub-arcsec region of the low-luminosity active galactic nucleus NGC 1052, using a high-angular resolution dataset that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a truncated disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.

  1. Black Hole Disk Accretion in Supernovae

    NASA Astrophysics Data System (ADS)

    Nomura, H.; Mineshige, S.; Hirose, M.; Nomoto, K.; Suzuki, T.

    Hydrodynamical disk accretion flow onto a new-born black hole in a supernova is studied using the SPH (Smoothed Particle Hydrodynamics) method. It has been suggested that a mass of ~0.1Modot falls back to a black hole by a reverse shock. If the progenitor was rotating before the explosion, the accreting material should have a certain amount of angular momentum, thus forming an accretion disk. Disk material will eventually accrete towards the central object via viscosity with a supercritical accretion rate, dotM / dotMc > 106, for first several tens of days. (Here, dotMc is the Eddington luminosity divided by c2.) We then expect that such an accretion disk is optically thick and advection-dominated; that is, the disk is so hot that produced energy and photons are advected inward rather than being radiated away. Thus, the disk luminosity is much less than the Eddington luminosity (~1038erg s-1). The disk becomes hot and dense; for dotM / dotMc ~106 and the viscosity parameter alphavis ~0.01, for example, T ~109K and rho ~103gcm-3 in the vicinity of the central object. Efficient nucleosynthesis is hence expected even for reasonable viscosity magnitudes, although produced elements may be swallowed by the black hole.

  2. Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Fabian, A. C.; Ross, R. R.

    1983-01-01

    Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits.

  3. DIFFUSIVE PARTICLE ACCELERATION IN SHOCKED, VISCOUS ACCRETION DISKS: GREEN'S FUNCTION ENERGY DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Peter A.; Das, Santabrata; Le, Truong, E-mail: pbecker@gmu.edu, E-mail: sbdas@iitg.ernet.in, E-mail: truong.le@nhrec.org

    2011-12-10

    The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classicalmore » method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {approx}0.01 M-dot c{sup 2}, and the outflowing relativistic particles have a mean energy {approx}300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.« less

  4. Accretion onto a higher dimensional black hole

    NASA Astrophysics Data System (ADS)

    John, Anslyn J.; Ghosh, Sushant G.; Maharaj, Sunil D.

    2013-11-01

    We examine the steady-state spherically symmetric accretion of relativistic fluids, with a polytropic equation of state, onto a higher-dimensional Schwarzschild black hole. The mass accretion rate, critical radius, and flow parameters are determined and compared with results obtained in standard four dimensions. The accretion rate, M˙, is an explicit function of the black hole mass, M, as well as the gas boundary conditions and the dimensionality, D, of the spacetime. We also find the asymptotic compression ratios and temperature profiles below the accretion radius and at the event horizon. This analysis is a generalization of Michel’s solution to higher dimensions and of the Newtonian expressions of Giddings and Mangano, which consider the accretion of TeV black holes.

  5. Simulating X-ray bursts during a transient accretion event

    NASA Astrophysics Data System (ADS)

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  6. Prediction of Mass Evaporation of During Measurements of Thermophysical Properties Using an Electrostatic Levitator

    NASA Astrophysics Data System (ADS)

    Lee, J.; Matson, D. M.

    2014-10-01

    This paper describes the prediction of mass evaporation of at% alloys during thermophysical property measurements using the electrostatic levitator at NASA Marshall Space Flight Center in Huntsville, AL. The final mass, final composition, and activity of individual component are considered in the calculation of mass evaporation. The predicted reduction in mass and variation in composition are validated with six ESL samples which underwent different thermal cycles. The predicted mass evaporation and composition shift show good agreement with experiments with the maximum relative errors of 4.8 % and 1.7 %, respectively.

  7. Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets

    NASA Astrophysics Data System (ADS)

    Jaiswal, Vivek; Harikrishnan, A. R.; Khurana, Gargi; Dhar, Purbarun

    2018-01-01

    The presence of dispersed inclusions is known to modify the interfacial characteristics in liquids by adsorption-desorption of the ions at interfaces. The present article reports the influencing role of dissolved ions in a polar fluid on its evaporation dynamics. The evaporation dynamics of pendant droplets of aqueous solutions of variant simple salts and concentrations have been experimentally studied. The presence of salts is observed to enhance the evaporation rate (obeying the classical D2 law), and the enhancement has been found to hold a direct proportionality to the concentration of the dissolved salt. Furthermore, it is observed that the degree of enhancement in the evaporation rate is also directly proportional to the solubility of the salt in question. The phenomenon is explained based on the chemical kinetics and thermodynamics of hydration of the ionic species in the polar fluid. The classical evaporation rate constant formulation is found to be inadequate in modeling the enhanced species transport. Additional probing via particle image velocimetry reveals augmented internal circulation within the evaporating salt based drops compared to pure water. Mapping the dynamic surface tension reveals that a salt concentration gradient is generated between the bulk and periphery of the droplet and it could be responsible for the internal advection cells visualized. A thermo-solutal Marangoni and Rayleigh convection based mathematical formulation has been put forward, and it is shown that the enhanced solute-thermal convection could play a major role in enhanced evaporation. The internal circulation mapped from experiments is found to be in good quantitative agreement with the model predictions. Scaling analysis further reveals that the stability of the solutal Marangoni convection surpasses the thermal counterpart with higher salt concentration and solubility. The present article sheds insight into the possible domineering role of conjugate thermohydraulic and

  8. Prediction of WBGT-based clothing adjustment values from evaporative resistance.

    PubMed

    Bernard, Thomas E; Ashley, Candi D; Garzon, Ximena P; Kim, Jung-Hyun; Coca, Aitor

    2017-12-07

    Wet bulb globe temperature (WBGT) index is used by many professionals in combination with metabolic rate and clothing adjustments to assess whether a heat stress exposure is sustainable. The progressive heat stress protocol is a systematic method to prescribe a clothing adjustment value (CAV) from human wear trials, and it also provides an estimate of apparent total evaporative resistance (R e,T,a ). It is clear that there is a direct relationship between the two descriptors of clothing thermal effects with diminishing increases in CAV at high R e,T,a . There were data to suggest an interaction of CAV and R e,T,a with relative humidity at high evaporative resistance. Because human trials are expensive, manikin data can reduce the cost by considering the static total evaporative resistance (R e,T,s ). In fact, as the static evaporative resistance increases, the CAV increases in a similar fashion as R e,T,a . While the results look promising that R e,T,s can predict CAV, some validation remains, especially for high evaporative resistance. The data only supports air velocities near 0.5 m/s.

  9. Mass-loss from advective accretion disc around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata; Nandi, Anuj

    2015-11-01

    We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure-supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (E) and specific angular momentum (λ) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole (ak) plays an important role in deciding the outflow rate R_{dot{m}} (ratio of mass flux of outflow to inflow); in particular, R_{dot{m}} is directly correlated with ak for the same set of inflow parameters. It is found that a large range of the inflow parameters allows global accretion-ejection solutions, and the effective area of the parameter space (E, λ) with and without outflow decreases with black hole spin (ak). We compute the maximum outflow rate (R^{max}_{dot{m}}) as a function of black hole spin (ak) and observe that R^{max}_{dot{m}} weakly depends on ak that lies in the range ˜10-18 per cent of the inflow rate for the adiabatic index (γ) with 1.5 ≥ γ ≥ 4/3. We present the observational implication of our approach while studying the steady/persistent jet activities based on the accretion states of black holes. We discuss that our formalism seems to have the potential to explain the observed jet kinetic power for several Galactic black hole sources and active galactic nuclei.

  10. Extremal noncommutative black holes as dark matter furnaces

    NASA Astrophysics Data System (ADS)

    Kawamoto, Shoichi; Wei, Chun-Yu; Wen, Wen-Yu

    2017-09-01

    In this paper, we consider dark matter annihilation in the gravitational field of noncommutative black holes. Instead of a violent fate predicted in the usual Hawking radiation, we propose a thermal equilibrium state where a mildly burning black hole relic is fueled by dark matter accretion at the final stage of evaporation.

  11. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation and Condensation at a Liquid Vapor Interface

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.

    2017-01-01

    Evaporation and condensation at a liquidvapor interface is important for long-term, in-space cryogenic propellant storage. Yet the current understanding of interfacial physics does not predict behavior or evaporation condensation rates. The proposed paper will present a physical model, based on the 1-D Heat equation and Schrages equation which demonstrates thin thermal layers at the fluidvapor interface.

  12. Increases to Inferred Rates of Planetesimal Accretion due to Thermohaline Mixing in Metal-accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Bauer, Evan B.; Bildsten, Lars

    2018-06-01

    Many isolated, old white dwarfs (WDs) show surprising evidence of metals in their photospheres. Given that the timescale for gravitational sedimentation is astronomically short, this is taken as evidence for ongoing accretion, likely of tidally disrupted planetesimals. The rate of such accretion, {\\dot{M}}acc}, is important to constrain, and most modeling of this process relies on assuming an equilibrium between diffusive sedimentation and metal accretion supplied to the WD’s surface convective envelope. Building on the earlier work of Deal and collaborators, we show that high {\\dot{M}}acc} models with only diffusive sedimentation are unstable to thermohaline mixing and that models that account for the enhanced mixing from the active thermohaline instability require larger accretion rates, sometimes reaching {\\dot{M}}acc}≈ {10}13 {{g}} {{{s}}}-1 to explain observed calcium abundances. We present results from a grid of MESA models that include both diffusion and thermohaline mixing. These results demonstrate that both mechanisms are essential for understanding metal pollution across the range of polluted WDs with hydrogen atmospheres. Another consequence of active thermohaline mixing is that the observed metal abundance ratios are identical to accreted material.

  13. EVA space suit Evaporative Cooling/Heating Glove System (ECHGS)

    NASA Technical Reports Server (NTRS)

    Coss, F. A.

    1976-01-01

    A new astronaut glove, the Evaporative Cooling/Heating Glove System (ECHGS), was designed and developed to allow the handling of objects between -200 F and +200 F. Active heating elements, positioned at each finger pad, provide additional heat to the finger pads from the rest of the finger. A water evaporative cooling system provides cooling by the injection of water to the finger areas and the subsequent direct evaporation to space. Thin, flexible insulation has been developed for the finger areas to limit thermal conductivity. Component and full glove tests have shown that the glove meets and exceeds the requirements to hold a 11/2 inch diameter bar at + or - 200 F for three minutes within comfort limits. The ECHGS is flexible, lightweight and comfortable. Tactility is reasonable and small objects can be identified especially by the fingertips beyond the one half width active elements.

  14. A Global Three-Dimensional Radiation Hydrodynamic Simulation of a Self-Gravitating Accretion Disk

    NASA Astrophysics Data System (ADS)

    Phillipson, Rebecca; Vogeley, Michael S.; McMillan, Stephen; Boyd, Patricia

    2018-01-01

    We present three-dimensional, radiation hydrodynamic simulations of initially thin accretion disks with self-gravity using the grid-based code PLUTO. We produce simulated light curves and spectral energy distributions and compare to observational data of X-ray binary (XRB) and active galactic nuclei (AGN) variability. These simulations are of interest for modeling the role of radiation in accretion physics across decades of mass and frequency. In particular, the characteristics of the time variability in various bandwidths can probe the timescales over which different physical processes dominate the accretion flow. For example, in the case of some XRBs, superorbital periods much longer than the companion orbital period have been observed. Smoothed particle hydrodynamics (SPH) calculations have shown that irradiation-driven warping could be the mechanism underlying these long periods. In the case of AGN, irradiation-driven warping is also predicted to occur in addition to strong outflows originating from thermal and radiation pressure driving forces, which are important processes in understanding feedback and star formation in active galaxies. We compare our simulations to various toy models via traditional time series analysis of our synthetic and observed light curves.

  15. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  16. Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data

    USGS Publications Warehouse

    Jackson, R. D.; Moran, M.S.; Gay, L.W.; Raymond, L.H.

    1987-01-01

    Airborne measurements of reflected solar and emitted thermal radiation were combined with ground-based measurements of incoming solar radiation, air temperature, windspeed, and vapor pressure to calculate instantaneous evaporation (LE) rates using a form of the Penman equation. Estimates of evaporation over cotton, wheat, and alfalfa fields were obtained on 5 days during a one-year period. A Bowen ratio apparatus, employed simultaneously, provided ground-based measurements of evaporation. Comparison of the airborne and ground techniques showed good agreement, with the greatest difference being about 12% for the instantaneous values. Estimates of daily (24 h) evaporation were made from the instantaneous data. On three of the five days, the difference between the two techniques was less than 8%, with the greatest difference being 25%. The results demonstrate that airborne remote sensing techniques can be used to obtain spatially distributed values of evaporation over agricultural fields. ?? 1987 Springer-Verlag.

  17. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  18. Growth mechanism and optical properties of aligned hexagonal ZnO nanoprisms synthesized by noncatalytic thermal evaporation.

    PubMed

    Umar, Ahmad; Karunagaran, B; Kim, S H; Suh, E-K; Hahn, Y B

    2008-05-19

    Vertically aligned perfectly hexagonal-shaped ZnO nanoprisms have been grown on a Si(100) substrate via a noncatalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen gas. The as-grown nanoprisms consist of ultra smooth Zn-terminated (0001) facets bounded with the {0110} surfaces. The as-synthesized products are single-crystalline with the wurtzite hexagonal phase and grown along the [0001] direction, as confirmed from the detailed structural investigations. The presence of a sharp and strong nonpolar optical phonon high-E2 mode at 437 cm(-1) in the Raman scattering spectrum further confirms good crystallinity and wurtzite hexagonal phase for the as-grown products. The as-grown nanoprisms exhibit a strong near-band-edge emission with a very weak deep-level emission in the room-temperature and low-temperature photoluminescence measurements, confirming good optical properties for the deposited products. Moreover, systematic time-dependent experiments were also performed to determine the growth process of the grown vertically aligned nanoprisms.

  19. The structural properties of Sn-doped zinc oxide synthesized by hot-tube thermal evaporation

    NASA Astrophysics Data System (ADS)

    Suhaimi, Syahida; Sakrani, Samsudi; Yatim, Nadhrah Md.; Hashim, Mohd Azman

    2018-06-01

    The growth of Sn:ZnO nanowires on a silicon substrate using a low thermal evaporation method is reported. A horizontal quartz tube with controlled supply of O2 gas were used to fabricate the samples where Zn and Sn metal powders were previously mixed and heated at 500°C. This allows the reactant vapours to deposit onto the substrate, which placed at a certain distance from the source materials. The samples were characterized using FESEM, EDX and HRTEM measurements. Randomly oriented nanowires were formed with varying dopant concentrations from 3 to 15 at%. It was observed that from FESEM images, when the dopant concentrations were increased, a hexagonal rod with a wire extended at its end was clearly formed and the best images of nanowires were shown at the highest concentration of 15 at% measuring between 26 to 35 nm and roughly 500 nm in diameter and length respectively. The doping process played an important role in order to alter the morphological properties of Sn:ZnO nanowires. Sn:ZnO nanowires have large potential in many applications such as in selected sensor technology including gaseous sensors, liquid sensors and others.

  20. Deposition of Nanostructured CdS Thin Films by Thermal Evaporation Method: Effect of Substrate Temperature

    PubMed Central

    Memarian, Nafiseh; Rozati, Seyeed Mohammad; Concina, Isabella

    2017-01-01

    Nanocrystalline CdS thin films were grown on glass substrates by a thermal evaporation method in a vacuum of about 2 × 10−5 Torr at substrate temperatures ranging between 25 °C and 250 °C. The physical properties of the layers were analyzed by transmittance spectra, XRD, SEM, and four-point probe measurements, and exhibited strong dependence on substrate temperature. The XRD patterns of the films indicated the presence of single-phase hexagonal CdS with (002) orientation. The structural parameters of CdS thin films (namely crystallite size, number of grains per unit area, dislocation density and the strain of the deposited films) were also calculated. The resistivity of the as-deposited films were found to vary in the range 3.11–2.2 × 104 Ω·cm, depending on the substrate temperature. The low resistivity with reasonable transmittance suggest that this is a reliable way to fine-tune the functional properties of CdS films according to the specific application. PMID:28773133

  1. The effects of post-accretion sedimentation on the magnetization of oceanic crust

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Granot, R.

    2016-12-01

    The presence of marine magnetic anomalies related to seafloor spreading is often considered a key evidence to locate the continent-ocean boundary (COB) at passive margins. Conversely, thermal demagnetization is also advocated to explain the poor shape of such oceanic anomalies under thick sedimentary cover. To investigate the effects of post-accretion sedimentation on marine magnetic anomalies, we focus our study on two conjugate regions of the southern South Atlantic Ocean (Anomalies M4 to M0) that, although formed at the same time and along the same spreading segments, reveal contrasting characters. The anomalies exhibit strong amplitudes (>400 nT) and a well-marked shape off South Africa, where the sediments are less than 3 km-thick, but become weaker ( 200 nT) and much smoother off northern Argentina, where the sedimentary cover is thicker than 5 km. We interpret this observation as reflecting thermal demagnetization of the extrusive layer and its low Curie temperature titanomagnetite. We perform a series of thermo-magnetic models (Dyment and Arkani-Hamed, Geophys. J. Int., 1995, modified to include the sedimentary cover) to simulate the acquisition and loss of remanent magnetization in the oceanic lithosphere. We assume that most of the sediments accumulated shortly after crustal accretion. We investigate a range of possible thermal demagnetization temperatures for the extrusive layer and find that 200°C to 280ºC best explains the observations, in reasonable agreement with Curie temperatures of titanomagnetite, suggesting that most of the extrusive layer may be demagnetized under sediments thicker than 5 km. Thermal demagnetization should therefore be considered while interpreting marine magnetic anomalies for the age and nature of the crust (i.e., continental versus oceanic) in regions with thick sedimentary cover.

  2. Thermal evolution and core formation of planetesimals

    NASA Astrophysics Data System (ADS)

    Suwa, Taichi; Nagahara, Hiroko

    2017-04-01

    Planetesimals did not get an adequate thermal energy by accretion to form large scale magma ocean because of smaller radii, masses, gravity and accretion energy, however, there are various evidences for the presence of core in planetesimals: 4-Vesta has a core and non-magmatic iron meteorites were segregated metal in bodies that did not experience silicate melting. It has been pointed out that accretion time of planetesimals controls melting and differentiation, because short lived nuclides are plausible heat source. Other factors such as radiative cooling from the surface and thermal conductivity, would also affect thermal evolution of planetesimals. Furthermore, percolation of Fe-S melt through silicate matrix is controlled by the porosity and grain size of silicates and dihedral angle between the melt and silicates. Therefore, the interior structure of planetesimals should be considered by taking the accretion, growth, and thermal evolution of the interior simultaneously. We make a numerical simulation with a spherical 1D model on the basis of the model by Neuman, which is a non-stationary heat conduction equation. We specifically pay attention to the process at temperatures between eutectic temperature Fe-FeS (1213K) and silicate solidus (1425K) and the surface tension of the melt that governs percolation. The model contains three free parameters, formation time, accretion duration, and final size of the planetesimals. The results show that the interior structure can be divided to four types: Type A is undifferentiated, Type B is differentiated to core and mantle of which core was formed by Fe-S melt percolation, Type C is partially differentiated to FeS core and mantle, where mantle retains residual Fe metal, and Type D is differentiated to core and mantle by metal separation in silicate magma. Type A would correspond to the parent bodies of chondrites, and Type B (and Type C?) core would be the source of non-magmatic iron meteorites. Type D would be parent

  3. Mass Accretion Rate of Very Low Luminosity Objects

    NASA Astrophysics Data System (ADS)

    Sung, Ren-Shiang; Lai, Shih-Ping; Hsieh, Tien-Hao

    2013-08-01

    We propose to measure the mass accretion rate of six Very Low Luminosity Objects (VeLLOs) using Near-infrared Integral Spectrometer (NIFS). The extremely low luminosity of VeLLOs, L_int ≤ 0.1 L_⊙, was previously thought not existing in the nature because the typical accretion rate gives much larger accretion luminosity even for the lowest mass star (``Luminosity Problem''). The commonly accepted solution is that the accretion rate is not constant but episodic. Thus, VeLLOs could be interpreted as protostars being in the quiescent phase of accretion activities. However, there is no observational data directly measuring the mass accretion rate of VeLLOs. The main goal of this proposal is to examine such theory and directly measure the mass accretion rate of VeLLOs for the first time. We propose to measure the blue continuum excess (veiling) of the stellar spectrum, which is the most reliable method for measuring the accretion rate. The measurements have to be made in infrared due to the very high extinction for highly embedded protostars. Our proposal provide a first opportunity to explain the long time ``Luminosity Problem'' through the observational aspects, and Gemini is the only instrument that can provide accurate and high sensitivity infrared spectroscopy measurements within reasonably short time scale.

  4. Accretion of magnetized matter into a black hole.

    NASA Astrophysics Data System (ADS)

    Bisnovatyj-Kogan, G. S.

    1999-12-01

    Accretion is the main source of energy in binary X-ray sources inside the Galaxy, and most probably in active galactic nuclei, where numerous observational data for the existence of supermassive black holes have been obtained. Standard accretion disk theory is formulated which is based on local heat balance. The whole energy produced by turbulent viscous heating is supposed to be emitted to the sides of the disk. Sources of turbulence in the accretion disk are discussed, including nonlinear hydrodynamic turbulence, convection and magnetic field. In standard theory there are two branches of solution, optically thick, anti-optically thin, which are individually self-consistent. The choice between these solutions should be done on the basis of a stability analysis. Advection in the accretion disks is described by differential equations, which makes the theory nonlocal. The low-luminosity optically thin accretion disk model with advection under some conditions may become advectively dominated, carrying almost all the energy inside the black hole. A proper account for magnetic field in the process of accretion limits the energy advected into a black hole, and does not allow the radiative efficiency of accretion to become lower than about 1/4 of the standard accretion disk model efficiency.

  5. Modeling of Bulk Evaporation and Condensation

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Ding, Z.

    1996-01-01

    This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.

  6. Experimental Measurements of the Water Evaporation Rate of a Physical Model

    NASA Astrophysics Data System (ADS)

    Turza, Róbert; Füri, Belo B.

    2017-03-01

    As the number of indoor swimming pools and wellness centers are currently growing, it is necessary to concentrate on the parameters of indoor environments. These parameters are necessary for the design of the HVAC systems that operate these premises. In indoor swimming-pool facilities, the energy demand is large due to ventilation losses from exhaust air. Since water evaporates from a pool's surface, exhaust air has a high water content and specific enthalpy. In this paper the results of the water evaporation rate measured from swimming pool surfaces at higher thermal water temperatures are described.

  7. 3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination.

    PubMed

    Li, Yiju; Gao, Tingting; Yang, Zhi; Chen, Chaoji; Luo, Wei; Song, Jianwei; Hitz, Emily; Jia, Chao; Zhou, Yubing; Liu, Boyang; Yang, Bao; Hu, Liangbing

    2017-07-01

    Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy-to-manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all-in-one evaporator with a concave structure for high-efficiency solar steam generation under 1 sun illumination is used. The solar-steam-generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D-printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m -2 ), which is among the best compared with other reported evaporators. The all-in-one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high-efficiency steam generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Accretion of the terrestrial planets. II

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1976-01-01

    The theory of gravitational accretion of the terrestrial planets is examined. The concept of a 'closed feeding zone' is somewhat unrealistic, but provides a lower bound on the accretion time. A velocity relation for planetesimals which includes an initial velocity component is suggested. The orbital parameters of the planetesimals and the dimensions of the feeding zone are related to their relative velocities. The assumption of an initial velocity does not seriously change the accretion time. Mercury, Venus, and the earth have accretion times on the order of 100 million years. Mars requires well over one billion years to accrete by the same assumptions. The lunar cratering history makes a late formation of Mars unlikely. If Mars is as old as the earth, nongravitational forces or a violation of the feeding zone concept is required. One such possibility is the removal of matter from the zone of Mars by Jupiter's influence. The final sweeping up by Mars would result in the scattering of a considerable mass among the other terrestrial planets. The late postaccretional bombardments inferred for the moon and Mercury may have had this source.

  9. Evaporative CO2 microchannel cooling for the LHCb VELO pixel upgrade

    NASA Astrophysics Data System (ADS)

    de Aguiar Francisco, O. A.; Buytaert, J.; Collins, P.; Dumps, R.; John, M.; Mapelli, A.; Romagnoli, G.

    2015-05-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 to a lightweight pixel detector capable of 40 MHz readout and operation in very close proximity to the LHC beams. The thermal management of the system will be provided by evaporative CO2 circulating in microchannels embedded within thin silicon plates. This solution has been selected due to the excellent thermal efficiency, the absence of thermal expansion mismatch with silicon ASICs and sensors, the radiation hardness of CO2, and very low contribution to the material budget. Although microchannel cooling is gaining considerable attention for applications related to microelectronics, it is still a novel technology for particle physics experiments, in particular when combined with evaporative CO2 cooling. The R&D effort for LHCb is focused on the design and layout of the channels together with a fluidic connector and its attachment which must withstand pressures up to 170 bar. Even distribution of the coolant is ensured by means of the use of restrictions implemented before the entrance to a race track like layout of the main cooling channels. The coolant flow and pressure drop have been simulated as well as the thermal performance of the device. This proceeding describes the design and optimization of the cooling system for LHCb and the latest prototyping results.

  10. Observation and numerical modeling of chromospheric evaporation during the impulsive phase of a solar flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imada, Shinsuke, E-mail: shinimada@stelab.nagoya-u.ac.jp; Murakami, Izumi, E-mail: murakami.izumi@nifs.ac.jp; Department of Fusion Science, SOKENDAI

    2015-10-15

    We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EUV Imaging Spectrometer observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient κ{sub 0} = classical value) andmore » the enthalpy flux dominant regime (κ{sub 0} = 0.1 × classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases of flare. We also find that time-dependent ionization effect is important to reproduce the strong downflows in Fe XII and Fe XV.« less

  11. Gamma-burst emission from neutron-star accretion

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  12. Application of thermal model for pan evaporation to the hydrology of a defined medium, the sponge

    NASA Technical Reports Server (NTRS)

    Trenchard, M. H.; Artley, J. A. (Principal Investigator)

    1981-01-01

    A technique is presented which estimates pan evaporation from the commonly observed values of daily maximum and minimum air temperatures. These two variables are transformed to saturation vapor pressure equivalents which are used in a simple linear regression model. The model provides reasonably accurate estimates of pan evaporation rates over a large geographic area. The derived evaporation algorithm is combined with precipitation to obtain a simple moisture variable. A hypothetical medium with a capacity of 8 inches of water is initialized at 4 inches. The medium behaves like a sponge: it absorbs all incident precipitation, with runoff or drainage occurring only after it is saturated. Water is lost from this simple system through evaporation just as from a Class A pan, but at a rate proportional to its degree of saturation. The contents of the sponge is a moisture index calculated from only the maximum and minium temperatures and precipitation.

  13. Quasispherical subsonic accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short

  14. Effect of two sweating simulation methods on clothing evaporative resistance in a so-called isothermal condition.

    PubMed

    Lu, Yehu; Wang, Faming; Peng, Hui

    2016-07-01

    The effect of sweating simulation methods on clothing evaporative resistance was investigated in a so-called isothermal condition (T manikin  = T a  = T r ). Two sweating simulation methods, namely, the pre-wetted fabric "skin" (PW) and the water supplied sweating (WS), were applied to determine clothing evaporative resistance on a "Newton" thermal manikin. Results indicated that the clothing evaporative resistance determined by the WS method was significantly lower than that measured by the PW method. In addition, the evaporative resistances measured by the two methods were correlated and exhibited a linear relationship. Validation experiments demonstrated that the empirical regression equation showed highly acceptable estimations. The study contributes to improving the accuracy of measurements of clothing evaporative resistance by means of a sweating manikin.

  15. HEROIC: 3D general relativistic radiative post-processor with comptonization for black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Zhu, Yucong; Psaltis, Dimitrios; Saḑowski, Aleksander

    2016-03-01

    We describe Hybrid Evaluator for Radiative Objects Including Comptonization (HEROIC), an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in a short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic magnetohydrodynamics simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multidimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. Here, the multidimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than 10 times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.

  16. Towards efficient next generation light sources: combined solution processed and evaporated layers for OLEDs

    NASA Astrophysics Data System (ADS)

    Hartmann, D.; Sarfert, W.; Meier, S.; Bolink, H.; García Santamaría, S.; Wecker, J.

    2010-05-01

    Typically high efficient OLED device structures are based on a multitude of stacked thin organic layers prepared by thermal evaporation. For lighting applications these efficient device stacks have to be up-scaled to large areas which is clearly challenging in terms of high through-put processing at low-cost. One promising approach to meet cost-efficiency, high through-put and high light output is the combination of solution and evaporation processing. Moreover, the objective is to substitute as many thermally evaporated layers as possible by solution processing without sacrificing the device performance. Hence, starting from the anode side, evaporated layers of an efficient white light emitting OLED stack are stepwise replaced by solution processable polymer and small molecule layers. In doing so different solutionprocessable hole injection layers (= polymer HILs) are integrated into small molecule devices and evaluated with regard to their electro-optical performance as well as to their planarizing properties, meaning the ability to cover ITO spikes, defects and dust particles. Thereby two approaches are followed whereas in case of the "single HIL" approach only one polymer HIL is coated and in case of the "combined HIL" concept the coated polymer HIL is combined with a thin evaporated HIL. These HIL architectures are studied in unipolar as well as bipolar devices. As a result the combined HIL approach facilitates a better control over the hole current, an improved device stability as well as an improved current and power efficiency compared to a single HIL as well as pure small molecule based OLED stacks. Furthermore, emitting layers based on guest/host small molecules are fabricated from solution and integrated into a white hybrid stack (WHS). Up to three evaporated layers were successfully replaced by solution-processing showing comparable white light emission spectra like an evaporated small molecule reference stack and lifetime values of several 100 h.

  17. Stochastic events lead to accretion in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2010-05-01

    UVIS occultations indicate accretion is triggered at the B ring edge, in strong density waves in ring A and in the F ring. Moons may trigger accretion by streamline crowding (Lewis & Stewart); which enhances collisions, leading to accretion; increasing random velocities; leading to more collisions and more accretion. Cassini occultations of these strongly perturbed locations show not only accretion but also disaggregation, with time scales of hours to weeks. The collisions may lead to temporary aggregations via stochastic events: collisions can compress unconsolidated objects, trigger adhesion or bring small pieces into contact with larger or higher-density seeds. Disaggregation then can follow from disruptive collisions or tidal shedding. In the accretion/disruption balance, increased random motions could eventually give the upper hand to disruption… just as ‘irrational exuberance' can lead to financial panic in the economy; or the overpopulation of hares can lead to boom-and-bust in the population of foxes. This unstable equilibrium can similarly give rise to episodic cycles in accretion: explaining why the observable ring features that indicate embedded objects have been increasing since the beginning of Cassini's observations of Saturn in 2004.

  18. Fate of sulfur mustard on soil: Evaporation, degradation, and vapor emission.

    PubMed

    Jung, Hyunsook; Kah, Dongha; Chan Lim, Kyoung; Lee, Jin Young

    2017-01-01

    After application of sulfur mustard to the soil surface, its possible fate via evaporation, degradation following absorption, and vapor emission after decontamination was studied. We used a laboratory-sized wind tunnel, thermal desorber, gas chromatograph-mass spectrometry (GC-MS), and 13 C nuclear magnetic resonance ( 13 C NMR) for systematic analysis. When a drop of neat HD was deposited on the soil surface, it evaporated slowly while being absorbed immediately into the matrix. The initial evaporation or drying rates of the HD drop were found to be power-dependent on temperature and initial drop volume. Moreover, drops of neat HD, ranging in size from 1 to 6 μL, applied to soil, evaporated at different rates, with the smaller drops evaporating relatively quicker. HD absorbed into soil remained for a month, degrading eventually to nontoxic thiodiglycol via hydrolysis through the formation of sulfonium ions. Finally, a vapor emission test was performed for HD contaminant after a decontamination process, the results of which suggest potential risk from the release of trace chemical quantities of HD into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect.

    PubMed

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2016-12-15

    The evaporation along the surface of pinned, sessile droplets is investigated numerically by using the combined field approach. In the present model, the evaporative cooling at the droplet surface which leads to a reduction in the evaporation is taken into account. Simple, yet accurate analytical expressions for the local evaporation flux and for the total evaporation rate of sessile droplets are obtained. The theoretical analyses indicate that the reduction in the evaporation becomes more pronounced as the evaporative cooling number Ec increases. The results also reveal that the variation of total evaporation rate with contact angle will change its trend as the intensity of the evaporative cooling changes. For small values of Ec, the total evaporation rate increases with the contact angle, the same as predicted by Deegan et al. and by Hu and Larson in their isothermal models in which the evaporative cooling is neglected. Contrarily, when the evaporative cooling effect is strong enough, the total evaporation rate will decrease as the contact angle increases. The present theory is corroborated experimentally, and found in good agreement with the expressions proposed by Hu and Larson in the limiting isothermal case. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Thermal and Hydrologic Signatures of Soil Controls on Evaporation: A Combined Energy and Water Balance Approach with Implications for Remote Sensing of Evaporation

    NASA Technical Reports Server (NTRS)

    Salvucci, Guido D.

    2000-01-01

    The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or 'time to drying' (t(sub d)) is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage I drying (as water is removed from storage), and then become more or less constant during soil limited, or 'stage II' drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.

  1. Thermal and Hydrologic Signatures of Soil Controls on Evaporation: A Combined Energy and Water Balance Approach with Implications for Remote Sensing of Evaporation

    NASA Technical Reports Server (NTRS)

    Salvucci, Guido D.

    1997-01-01

    The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or "time to drying" (t(sub d)), is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage 1 drying (as water is removed from storage), and then become more or less constant during soil limited, or "stage 2" drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.

  2. Hard X-ray emission from accretion shocks around galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kushnir, Doron; Waxman, Eli

    2010-02-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being lesssim0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed.

  3. Gravitomagnetic acceleration from black hole accretion disks

    NASA Astrophysics Data System (ADS)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  4. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation and Condensation at a Liquid Vapor Interface

    NASA Technical Reports Server (NTRS)

    Stewart, Mark

    2017-01-01

    Evaporation and condensation at a liquid-vapor interface is important for long-term, in-space cryogenic propellant storage. Yet the current understanding of inter-facial physics does not consistently predict behavior of evaporation or condensation rates. The proposed paper will present a physical model, based on the 1-D Heat equation and Schrage's equation, which demonstrates thin thermal layers at the fluid vapor interface.

  5. Early Results from NICER Observations of Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  6. Counter-rotating accretion discs

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.

    2015-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.

  7. Hydrodynamic Simulations of the Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds

    NASA Astrophysics Data System (ADS)

    Ressler, S. M.; Quataert, E.; Stone, J. M.

    2018-05-01

    We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A* via the stellar winds of the ˜30 Wolf-Rayet stars within the central parsec of the galactic center. These simulations span ˜ 4 orders of magnitude in radius, reaching all the way down to 300 gravitational radii of the black hole, ˜32 times further in than in previous work. We reproduce reasonably well the diffuse thermal X-ray emission observed by Chandra in the central parsec. The resulting accretion flow at small radii is a superposition of two components: 1) a moderately unbound, sub-Keplerian, thick, pressure-supported disc that is at most (but not all) times aligned with the clockwise stellar disc, and 2) a bound, low-angular momentum inflow that proceeds primarily along the southern pole of the disc. We interpret this structure as a natural consequence of a few of the innermost stellar winds dominating accretion, which produces a flow with a broad distribution of angular momentum. Including the star S2 in the simulation has a negligible effect on the flow structure. Extrapolating our results from simulations with different inner radii, we find an accretion rate of ˜ a few × 10-8M⊙/yr at the horizon scale, consistent with constraints based on modeling the observed emission of Sgr A*. The flow structure found here can be used as more realistic initial conditions for horizon scale simulations of Sgr A*.

  8. Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.

    The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less

  9. Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types

    DOE PAGES

    Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.; ...

    2015-09-22

    The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less

  10. Spacesuit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Vogel, Matt R.; Peterson, Keith; Zapata, Felipe, III; Dillon, Paul; Trevino, Luis A.

    2008-01-01

    For future lunar extra-vehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using the Teflon membrane was tested successfully by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of the SWME development unit, which is being considered for service in the Constellation System Spacesuit Element (CSSE) Portable Life Support System (PLSS). Multiple PLSS SWME configurations were considered on the basis of thermal performance, mass, volume, and performance and manufacturing risk. All configurations were a variation of an alternating concentric water and vapor channel configuration or a stack of alternating rectangular water and vapor channels. Supporting thermal performance trades mapped maximum SWME heat rejection as a function of water channel thickness, vapor channel thickness, channel length, number of water channels, porosity of the membrane structural support, and backpressure valve throat area. Preliminary designs of each configuration were developed to determine total mass and volume as well as to understand manufacturing issues. Review of configurations led to the selection of a concentric annulus configuration that meets the requirements of 800 watts (W) of heat rejection. Detailed design of the SWME development unit will be followed by fabrication of a prototype test unit, with thermal testing expected to start in 2008.

  11. Hydrodynamic modelling of accretion impacts in classical T Tauri stars: radiative heating of the pre-shock plasma

    NASA Astrophysics Data System (ADS)

    Costa, G.; Orlando, S.; Peres, G.; Argiroffi, C.; Bonito, R.

    2017-01-01

    Context. It is generally accepted that, in classical T Tauri stars, the plasma from the circumstellar disc accretes onto the stellar surface with free-fall velocity and the impact generates a shock. The impact region is expected to contribute to emission in different spectral bands; many studies have confirmed that the X-rays arise from the post-shock plasma but, otherwise, there are no studies in the literature investigating the origin of the observed UV emission which is apparently correlated to accretion. Aims: We investigated the effect of radiative heating of the infalling material by the post-shock plasma at the base of the accretion stream, with the aim to identify in which region a significant part of the UV emission originates. Methods: We developed a one-dimensional hydrodynamic model describing the impact of an accretion stream onto the stellar surface; the model takes into account the gravity, the radiative cooling of an optically thin plasma, the thermal conduction, and the heating due to absorption of X-ray radiation. The latter term represents the heating of the infalling plasma due to the absorption of X-rays emitted from the post-shock region. Results: We found that the radiative heating of the pre-shock plasma plays a non-negligible role in the accretion phenomenon. In particular, the dense and cold plasma of the pre-shock accretion column is gradually heated up to a few 105K due to irradiation of X-rays arising from the shocked plasma at the impact region. This heating mechanism does not affect significantly the dynamics of the post-shock plasma. On the other hand, a region of radiatively heated gas (that we consider a precursor) forms in the unshocked accretion column and contributes significantly to UV emission. Our model naturally reproduces the luminosity of UV emission lines correlated to accretion and shows that most of the UV emission originates from the precursor.

  12. ULX spectra revisited: Accreting, highly magnetized neutron stars as the engines of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Koliopanos, Filippos; Vasilopoulos, Georgios; Godet, Olivier; Bachetti, Matteo; Webb, Natalie A.; Barret, Didier

    2017-12-01

    Aims: In light of recent discoveries of pulsating ultraluminous X-ray sources (ULXs) and recently introduced theoretical schemes that propose neutron stars (NSs) as the central engines of ULXs, we revisit the spectra of eighteen well known ULXs, in search of indications that favour this newly emerging hypothesis. Methods: We examine the spectra from high-quality XMM-Newton and NuSTAR observations. We use a combination of elementary black body and multicolour disk black body (MCD) models, to diagnose the predictions of classic and novel theoretical models of accretion onto NSs. We re-interpret the well established spectral characteristics of ULXs in terms of accretion onto lowly or highly magnetised NSs, and explore the resulting parameter space for consistency. Results: We confirm the previously noted presence of the low-energy (≲6 keV) spectral rollover and argue that it could be interpreted as due to thermal emission. The spectra are well described by a double thermal model consisting of a "hot" (≳1 keV) and a "cool" (≲0.7 keV) multicolour black body (MCB). Under the assumption that the "cool" MCD emission originates in a disk truncated at the neutron star magnetosphere, we find that all ULXs in our sample are consistent with accretion onto a highly magnetised (B ≳ 1012 G) neutron star. We note a strong correlation between the strength of the magnetic field, the temperature of the "hot" thermal component and the total unabsorbed luminosity. Examination of the NuSTAR data supports this interpretation and also confirms the presence of a weak, high-energy (≳15 keV) tail, most likely the result of modification of the MCB emission by inverse Compton scattering. We also note that the apparent high-energy tail, may simply be the result of mismodelling of MCB emission with an atypical temperature (T) versus radius (r) gradient, using a standard MCD model with a fixed gradient of T r-0.75. Conclusions: We have offered a new and robust physical interpretation for

  13. The radial-azimuthal stability of accretion disks - Gas pressure contributions

    NASA Technical Reports Server (NTRS)

    Mckee, M. R.

    1991-01-01

    A radial-azimuthal stability analysis of a thin, alpha disk accretion flow is presented. The proportion of radiation pressure, Pr, of the unperturbed flow is allowed to vary according to the parameter beta = Pr/P, where P is the total pressure. As is the case for a purely radial analysis, the disk is stable for beta equal to or less than 0.6. However, the coupling of radial and azimuthal perturbations eliminates the viscous instability for such nonradial modes for all values of beta. The group velocity of the retrograde thermal mode is calculated as a function of beta.

  14. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  15. A NICER View of the Accretion Disk in GX 339-4

    NASA Astrophysics Data System (ADS)

    Steiner, James Francis; Bulbul, Esra; Cackett, Ed; Fabian, Andy; Gendreau, Keith C.; Neilsen, Joseph; Ranga Reddy Pasham, Dheeraj; Remillard, Ron; Uttley, Phil; Wood, Kent S.

    2018-01-01

    The poster-child black hole transient GX 339-4 has gone into outburst once again. With no pileup, low-background, and high fidelity in the soft X-ray bandpass, NICER is uniquely positioned to detect emergent thermal disk emission from an optically thick accretion flow approaching the innermost-stable circular orbit. We present NICER's results on the 2017 outburst, and detail its implications for the disk-truncation controversy. We also investigate the X-ray state evolution, as seen in NICER's spectral range of 0.2 to 12 keV.

  16. Review of gravitomagnetic acceleration from accretion disks

    NASA Astrophysics Data System (ADS)

    Poirier, J.; Mathews, G. J.

    2015-11-01

    We review the development of the equations of gravitoelectromagnetism and summarize how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism to produce collimated jets, it is a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  17. Accretion onto a noncommutative geometry inspired black hole

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Ghosh, Sushant G.

    2017-09-01

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate \\dot{M}, sonic speed a_s and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that \\dot{M} ≈ {M^2} is still achievable but r_s seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process.

  18. Thermal evolution of a partially differentiated H chondrite parent body

    NASA Astrophysics Data System (ADS)

    Abrahams, J. N. H.; Bryson, J. F. J.; Weiss, B. P.; Nimmo, F.

    2016-12-01

    It has traditionally been assumed that planetesimals either melted entirely or remained completely undifferentiated as they accreted. The unmelted textures and cooling histories of chondrites have been used to argue that these meteorites originated from bodies that never differentiated. However, paleomagnetic measurements indicate that some chondrites (e.g., the H chondrite Portales Valley and several CV chondrites) were magnetized by a core dynamo magnetic field, implying that their parent bodies were partially differentiated. It has been unclear, however, whether planetesimal histories consistent with dynamo production can also be consistent with the diversity of chondrite cooling rates and ages. To address this, we modeled the thermal evolution of the H chondrite parent body, considering a variety of accretion histories and parent body radii. We considered partial differentiation using two-stage accretion involving the initial formation and differentiation of a small body, followed by the later addition of low thermal conductivity chondritic material that remains mostly unmelted. We were able to reproduce the measured thermal evolution of multiple H chondrites for a range of parent body parameters, including initial radii from 70-150 km, chondritic layer thicknesses from 50 km to over 100 km, and second stage accretion times of 2.5-3 Myr after solar system formation. Our predicted rates of core cooling and crystallization are consistent with dynamo generation by compositional convection beginning 60-200 Myr after solar system formation and lasting for at least tens of millions of years. This is consistent with magnetic studies of Portales Valley [Bryson et al., this meeting]. In summary, we find that thermal models of partial differentiation are consistent the radiometric ages, magnetization, and cooling rates of a diversity H chondrites.

  19. Helium shell flashes and evolution of accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Fujimoto, M. Y.; Sugimoto, D.

    1982-06-01

    The evolution of accreting white dwarfs is investigated from the onset of accretion through the helium shell flash. Properties of the helium shell flashes are studied by means of a generalized theory of shell flash and by numerical computations, and it is found that the shell flash grows up to the strength of a supernova explosion when the mass of the helium zone is large enough on a massive white dwarf. Although accretion onto a hot white dwarf causes a weaker shell flash than those onto cool ones, a strong tendency exists for the strength to be determined mainly by the accretion rate. For fast accretion, the shell flashes are weak and triggered recurrently, while for slow accretion the helium shell flash, once triggered, develops into a detonation supernova.

  20. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer H. S.

    2016-07-01

    This dissertation uses radio observations with the Karl G. Jansky Very Large Array (VLA) to investigate the mechanisms that power and shape accreting white dwarfs (WD) and their ejecta. We test the predictions of both simple spherical and steady-state radio emission models by examining nova V1723 Aql, nova V5589 Sgr, symbiotic CH Cyg, and two small surveys of symbiotic binaries. First, we highlight classical nova V1723 Aql with three years of radio observations alongside optical and X-ray observations. We use these observations to show that multiple outflows from the system collided to create early non-thermal shocks with a brightness temperature of ≥106 K. While the late-time radio light curve is roughly consistent an expanding thermal shell of mass 2x10-4 M⊙ solar masses, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months, much like what is seen in gamma-ray producing nova V959 Mon, suggesting similar structures in the two systems. Next, we examine nova V5589 Sgr, where we find that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. We additionally find roughly 10-5 M⊙ solar masses of thermal bremsstrahlung emitting material, all at a distance of ~4 kpc. The similarities in the evolution of both V1723 Aql and V5589 Sgr to that of nova V959 Mon suggest that these systems may all have dense equatorial tori shaping faster flows at their poles. Turning our focus to symbiotic binaries, we first use our radio observations of CH Cyg to link the ejection of a collimated jet to a change of state in the accretion disk. We additionally estimate the amount of mass ejected during this period (10-7 M⊙ masses), and improve measurements of the period of jet precession (P=12013 ± 74 days). We then use our survey of eleven accretion-driven symbiotic systems to determine that the radio brightness of a symbiotic system could potentially

  1. Super-Eddington accretion on to the neutron star NGC 7793 P13: Broad-band X-ray spectroscopy and ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Fürst, F.; Harrison, F. A.; Stern, D.; Bachetti, M.; Barret, D.; Brightman, M.; Fabian, A. C.; Middleton, M. J.; Ptak, A.; Tao, L.

    2018-02-01

    We present a detailed, broad-band X-ray spectral analysis of the ultraluminous X-ray source (ULX) pulsar NGC 7793 P13, a known super-Eddington source, utilizing data from the XMM-Newton, NuSTAR and Chandra observatories. The broad-band XMM-Newton+NuSTAR spectrum of P13 is qualitatively similar to the rest of the ULX sample with broad-band coverage, suggesting that additional ULXs in the known population may host neutron star accretors. Through time-averaged, phase-resolved and multi-epoch studies, we find that two non-pulsed thermal blackbody components with temperatures ∼0.5 and 1.5 keV are required to fit the data below 10 keV, in addition to a third continuum component which extends to higher energies and is associated with the pulsed emission from the accretion column. The characteristic radii of the thermal components appear to be comparable, and are too large to be associated with the neutron star itself, so the need for two components likely indicates the accretion flow outside the magnetosphere is complex. We suggest a scenario in which the thick inner disc expected for super-Eddington accretion begins to form, but is terminated by the neutron star's magnetic field soon after its onset, implying a limit of B ≲ 6 × 1012 G for the dipolar component of the central neutron star's magnetic field. Evidence of similar termination of the disc in other sources may offer a further means of identifying additional neutron star ULXs. Finally, we examine the spectrum exhibited by P13 during one of its unusual 'off' states. These data require both a hard power-law component, suggesting residual accretion on to the neutron star, and emission from a thermal plasma, which we argue is likely associated with the P13 system.

  2. Potential cooling of an accretion-heated neutron star crust in the low-mass X-ray binary 1RXS J180408.9-342058

    NASA Astrophysics Data System (ADS)

    Parikh, A. S.; Wijnands, R.; Degenaar, N.; Ootes, L. S.; Page, D.; Altamirano, D.; Cackett, E. M.; Deller, A. T.; Gusinskaia, N.; Hessels, J. W. T.; Homan, J.; Linares, M.; Miller, J. M.; Miller-Jones, J. C. A.

    2017-04-01

    We have monitored the transient neutron star low-mass X-ray binary 1RXS J180408.9-342058 in quiescence after its ˜4.5 month outburst in 2015. The source has been observed using Swift and XMM-Newton. Its X-ray spectra were dominated by a thermal component. The thermal evolution showed a gradual X-ray luminosity decay from ˜18 × 1032 to ˜4 × 1032 (D/5.8 kpc)2 erg s-1 between ˜8 and ˜379 d in quiescence, and the inferred neutron star surface temperature (for an observer at infinity; using a neutron star atmosphere model) decreased from ˜100 to ˜71 eV. This can be interpreted as cooling of an accretion-heated neutron star crust. Modelling the observed temperature curve (using nscool) indicated that the source required ˜1.9 MeV per accreted nucleon of shallow heating in addition to the standard deep crustal heating to explain its thermal evolution. Alternatively, the decay could also be modelled without the presence of deep crustal heating, only having a shallow heat source (again ˜1.9 MeV per accreted nucleon was required). However, the XMM-Newton data statistically required an additional power-law component. This component contributed ˜30 per cent of the total unabsorbed flux in 0.5-10 keV energy range. The physical origin of this component is unknown. One possibility is that it arises from low-level accretion. The presence of this component in the spectrum complicates our cooling crust interpretation because it might indicate that the smooth luminosity and temperature decay curves we observed may not be due to crust cooling but due to some other process.

  3. Pulsed Accretion in the T Tauri Binary TWA 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Herczeg, Gregory J.

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolvemore » over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.« less

  4. Evaporation Induced Oxygen Isotope Fractionation in Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Macris, C. A.; Young, E. D.; Kohl, I. E.; zur Loye, T. E.

    2017-12-01

    Tektites are natural glasses formed as quenched impact melt ejecta. Because they experienced extreme heating while entrained in a hot impact vapor plume, tektites allow insight into the nature of these ephemeral events, which play a critical role in planetary accretion and evolution. During tektite formation, the chemical and isotopic composition of parent materials may be modified by (1) vapor/liquid fractionation at high T in the plume, (2) incorporation of meteoric water at the target site, (3) isotope exchange with atmospheric oxygen (if present), or some combination of the three. Trends from O isotope studies reveal a dichotomy: some tektite δ18O values are 4.0-4.5‰ lower than their protoliths (Luft et al. 1987; Taylor & Epstein 1962), opposite in direction to a vaporization induced fractionation; increases in δ18O with decreasing SiO2 in tektites (Taylor & Epstein 1969) is consistent with vapor fractionation. Using an aerodynamic levitation laser furnace (e.g. Macris et al. 2016), we can experimentally determine the contributions of processes (1), (2) and (3) above to tektite compositions. We conducted a series of evaporation experiments to test process (1) using powdered tektite fused into 2 mm spheres and heated to 2423-2473 K for 50-90 s while levitated in Ar in the furnace. Mass losses were from 23 to 26%, reflecting evaporation of Si and O from the melt. The starting tektite had a δ18O value of 10.06‰ (±0.01 2se) and the residues ranged from 13.136‰ (±0.006) for the least evaporated residue to 14.30‰ (±0.02) for the most evaporated (measured by laser fluorination). The increase in δ18O with increasing mass loss is consistent with Rayleigh fractionation during evaporation, supporting the idea that O isotopes are fractionated due to vaporization at high T in an impact plume. Because atmospheric O2 and water each have distinctive Δ17O values, we should be able to use departures from our measured three-isotope fractionation law to evaluate

  5. General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Tchekhovskoy, Alexander

    2017-12-01

    Accreting neutron stars can power a wide range of astrophysical phenomena including short- and long-duration gamma-ray bursts, ultra-luminous X-ray sources, and X-ray binaries. Numerical simulations are a valuable tool for studying the accretion-disk–magnetosphere interaction that is central to these problems, most clearly for the recently discovered transitional millisecond pulsars. However, magnetohydrodynamic (MHD) methods, widely used for simulating accretion, have difficulty in highly magnetized stellar magnetospheres, while force-free methods, suitable for such regions, cannot include the accreting gas. We present an MHD method that can stably evolve essentially force-free, highly magnetized regions, and describe the first time-dependent relativistic simulations of magnetized accretion onto millisecond pulsars. Our axisymmetric general-relativistic MHD simulations for the first time demonstrate how the interaction of a turbulent accretion flow with a pulsar’s electromagnetic wind can lead to the transition of an isolated pulsar to the accreting state. This transition naturally leads to the formation of relativistic jets, whose power can greatly exceed the power of the isolated pulsar’s wind. If the accretion rate is below a critical value, the pulsar instead expels the accretion stream. More generally, our simulations produce for the first time the four possible accretion regimes, in order of decreasing mass accretion rate: (a) crushed magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar wind.

  6. Focused Wind Mass Accretion in Mira AB

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita; de Val-Borro, M.; Hack, W.; Raymond, J.; Sasselov, D.; Lee, N. P.

    2011-05-01

    At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.

  7. Experimental results and a self-consistent model of evaporation and high heat flux extraction by evaporating flow in a micro-grooved blade

    NASA Astrophysics Data System (ADS)

    Monazami, Reza; Saadat, Mehdi; Zhu, Jianzhong; Haj-Hariri, Hossein

    2015-11-01

    The problem of evaporation from a vertical micro-grooved blade heated from above is investigated. The required superheat to handle the incoming flux is calculated using the results of the study by Monazami and Haj-Hariri (2012). The relation between the applied heat flux, dry-out length and the maximum equilibrium temperature for several geometries and working fluids are studied. Furthermore, a computational study of the evaporating meniscus is conducted to evaluate the evaporation rates and dissipated heat flux at the liquid-vapor interface. The computational study accounts for the flow and heat transfer in both liquid and vapor phases. The results of this study indicate that the micro-grooved structure can dissipate heat fluxes as high as 10MW/m2 for superheats as low as 5 degrees Kelvin. Experiments are conducted to verify the computational and analytical results. The findings of this work are applicable to the design of thermal management systems for high heat flux applications. Partially supported by the MAXNET Energy Partnership (Max Planck Institute and UVA).

  8. Comparison of the properties of Pb thin films deposited on Nb substrate using thermal evaporation and pulsed laser deposition techniques

    NASA Astrophysics Data System (ADS)

    Perrone, A.; Gontad, F.; Lorusso, A.; Di Giulio, M.; Broitman, E.; Ferrario, M.

    2013-11-01

    Pb thin films were prepared at room temperature and in high vacuum by thermal evaporation and pulsed laser deposition techniques. Films deposited by both the techniques were investigated by scanning electron microscopy to determine their surface topology. The structure of the films was studied by X-ray diffraction in θ-2θ geometry. The photoelectron performances in terms of quantum efficiency were deduced by a high vacuum photodiode cell before and after laser cleaning procedures. Relatively high quantum efficiency (>10-5) was obtained for all the deposited films, comparable to that of corresponding bulk. Finally, film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Weak and strong points of these two competitive techniques are illustrated and discussed.

  9. Development of 3D Ice Accretion Measurement Method

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.

    2012-01-01

    Icing wind tunnels are designed to simulate in-flight icing environments. The chief product of such facilities is the ice accretion that forms on various test articles. Documentation of the resulting ice accretion key piece of data in icing-wind-tunnel tests. Number of currently used options for documenting ice accretion in icing-wind-tunnel testing.

  10. The multiplicity and anisotropy of galactic satellite accretion

    NASA Astrophysics Data System (ADS)

    Shao, Shi; Cautun, Marius; Frenk, Carlos S.; Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Simpson, Christine M.

    2018-05-01

    We study the incidence of group and filamentary dwarf galaxy accretion into Milky Way (MW) mass haloes using two types of hydrodynamical simulations: EAGLE, which resolves a large cosmological volume, and the AURIGA suite, which are very high resolution zoom-in simulations of individual MW-sized haloes. The present-day 11 most massive satellites are predominantly (75 per cent) accreted in single events, 14 per cent in pairs, and 6 per cent in triplets, with higher group multiplicities being unlikely. Group accretion becomes more common for fainter satellites, with 60 per cent of the top 50 satellites accreted singly, 12 per cent in pairs, and 28 per cent in richer groups. A group similar in stellar mass to the Large Magellanic Cloud would bring on average 15 members with stellar mass larger than 104 M⊙. Half of the top 11 satellites are accreted along the two richest filaments. The accretion of dwarf galaxies is highly anisotropic, taking place preferentially perpendicular to the halo minor axis, and, within this plane, preferentially along the halo major axis. The satellite entry points tend to be aligned with the present-day central galaxy disc and satellite plane, but to a lesser extent than with the halo shape. Dwarfs accreted in groups or along the richest filament have entry points that show an even larger degree of alignment with the host halo than the full satellite population. We also find that having most satellites accreted as a single group or along a single filament is unlikely to explain the MW disc of satellites.

  11. Evaporation of 2-dimensional black holes

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, Fethi M.

    We present a detailed analysis of results from a new study of the quantum evaporation of Callan-Giddings-Harvey-Strominger (CGHS) black holes within the mean-field approximation. The CGHS model is a two dimensional model of quantum gravity which has been extensively investigated in the last two decades. Moreover, Ashtekar, Taveras and Varadarajan have recently proposed a solution to the information loss paradox within the context of this model, which has rekindled the interest in it. However, many aspects of black hole evaporation in this model has been overlooked because of lack of a solution for black holes with macroscopic mass. We show that this was due to, in part, limited numerical precision and, in part, misinterpretation of certain properties and symmetries of the model. By addressing these issues, we were, for the first time, able to numerically evolve macroscopic-mass black hole spacetimes of the CGHS model within the mean-field approximation, up to the vicinity of the singularity. Our calculations show that, while some of the assumptions underlying the standard evaporation paradigm are borne out, several are not. One of the anticipated properties we confirm is that the semi-classical space-time is asymptotically flat at right future null infinity, I+R , yet incomplete in the sense that null observers reach a future Cauchy horizon in finite affine time. Unexpected behavior includes that the Bondi mass traditionally used in the literature can become negative even when the area of the horizon is macroscopic; an improved Bondi mass remains positive until the end of semi-classical evaporation, yet the final value can be arbitrarily large relative to the Planck mass; and the flux of the quantum radiation at I+R is non-thermal even when the horizon area is large compared to the Planck scale. Furthermore, if the black hole is initially macroscopic, the evaporation process exhibits remarkable universal properties, which offer problems to attack to the

  12. Accretion physics: It's not U, it's B

    NASA Astrophysics Data System (ADS)

    Miller, Jon

    2017-03-01

    Black holes grow by accreting mass, but the process is messy and redistributes gas and energy into their environments. New evidence shows that magnetic processes mediate both the accretion and ejection of matter.

  13. Misaligned Accretion and Jet Production

    NASA Astrophysics Data System (ADS)

    King, Andrew; Nixon, Chris

    2018-04-01

    Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.

  14. Structural and optical characterization of ZnO nanowires grown on alumina by thermal evaporation method.

    PubMed

    Mute, A; Peres, M; Peiris, T C; Lourenço, A C; Jensen, Lars R; Monteiro, T

    2010-04-01

    Zinc oxide nanowires have been grown on alumina substrate by thermal evaporation of zinc nanopowder in the presence of oxygen flow. The growth was performed under ambient pressure and without the use of foreign catalyst. Scanning electron microscopy (SEM) observation showed that the as-grown sample consists of bulk ZnO crystal on the substrate surface with nanowires growing from this base. Growth mechanism of the observed morphology is suggested to be governed by the change of zinc vapour supersaturation during the growth process. X-ray diffraction (XRD) measurement was used to identify the crystalline phase of the nanowires. Optical properties of the nanowires were investigated using Raman scattering and photoluminescence (PL). The appearance of dominant, Raman active E2 (high) phonon mode in the Raman spectrum has confirmed the wurtzite hexagonal phase of the nanowires. With above bandgap excitation the low temperature PL recombination is dominated by donor bound exciton luminescence at -3.37 eV with a narrow full width at half maximum. Free exciton emission is also seen at low temperature and can be observed up to room temperature. The optical data indicates that the grown nanowires have high optical quality.

  15. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    NASA Astrophysics Data System (ADS)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  16. Gas Accretion and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, Jorge

    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star formation are analyzed, specifically, the short gas-consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the α-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.

  17. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating themore » absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.« less

  18. Evaporation Source for Deposition of Protective Layers inside Tubes

    NASA Astrophysics Data System (ADS)

    Musa, Geavit; Mustata, Ion; Dinescu, Gheorghe; Bajeu, George; Raiciu, Elena

    1992-09-01

    A heated cathode arc can be ignited in vacuum in the vapours of the anode material due to the accelerated electron beam from the cathode. A small assembly, consisting of an electron gun as the cathode and a refractory metal crucible, containing the material to be evaporated, as the anode, can be moved along the axis of the tube whose inside wall is to be covered with a protective layer. The vacuum arc ignited between the electrodes in the vapours of the evaporating anode material ensures a high deposition rate with low thermal energy transport to the tube wall. This new method can be used for the deposition of various metal layers inside different kinds of tubes (metallic, glass, ceramics or plastics).

  19. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  20. Preparation of novel layer-stack hexagonal CdO micro-rods by a pre-oxidation and subsequent evaporation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan

    2014-12-15

    Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less

  1. Evaporation enhancement in soils: a critical review

    NASA Astrophysics Data System (ADS)

    Rutten, Martine; van de Giesen, Nick

    2015-04-01

    Temperature gradients in the top layer of the soil are, especially during the daytime, steeper than would be expected if thermal conduction was the primary heat transfer mechanism. Evaporation seems to have significant influence on the soil heat budget. Only part of the surface soil heat flux is conducted downwards, increasing the soil temperatures, and part is used for evaporation, acting as a sink to the soil heat budget. For moist soils, the evaporation is limited by the transport of water molecules to the surface. The classical view is that water vapor is transported from the evaporation front to the surface by diffusion. Diffusion is mixing due to the random movement of molecules resulting in flattening concentration gradients. In soil, the diffusive vapor flux and the resulting latent heat flux are generally small. We found that transport enhancement is necessary in order to sustain vapor fluxes that are large enough to sustain latent heat fluxes, as well as being large enough to explain the observed temperature gradients. Enhancement of vapor diffusion is a known phenomenon, subject to debate on the explanations of underlying mechanism. In an extensive literature review on vapor enhancement in soils, the plausibility of various mechanisms was assessed. We reviewed mechanisms based on (combinations of) diffusive, viscous, buoyant, capillary and external pressure forces including: thermodiffusion, dispersion, Stefan's flow, Knudsen diffusion, liquid island effect, hydraulic lift, free convection, double diffusive convection and forced convection. The analysis of the order of magnitude of the mechanisms based on first principles clearly distinguished between plausible and implausible mechanisms. Thermodiffusion, Stefan's flow, Knudsen effects, liquid islands do not significantly contribute to enhanced evaporation. Double diffusive convection seemed unlikely due to lack of experimental evidence, but could not be completely excluded from the list of potential

  2. Sensitivity of Spacebased Microwave Radiometer Observations to Ocean Surface Evaporation

    NASA Technical Reports Server (NTRS)

    Liu, Timothy W.; Li, Li

    2000-01-01

    Ocean surface evaporation and the latent heat it carries are the major components of the hydrologic and thermal forcing on the global oceans. However, there is practically no direct in situ measurements. Evaporation estimated from bulk parameterization methods depends on the quality and distribution of volunteer-ship reports which are far less than satisfactory. The only way to monitor evaporation with sufficient temporal and spatial resolutions to study global environment changes is by spaceborne sensors. The estimation of seasonal-to-interannual variation of ocean evaporation, using spacebased measurements of wind speed, sea surface temperature (SST), and integrated water vapor, through bulk parameterization method,s was achieved with reasonable success over most of the global ocean, in the past decade. Because all the three geophysical parameters can be retrieved from the radiance at the frequencies measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, the feasibility of retrieving evaporation directly from the measured radiance was suggested and demonstrated using coincident brightness temperatures observed by SMMR and latent heat flux computed from ship data, in the monthly time scale. However, the operational microwave radiometers that followed SMMR, the Special Sensor Microwave/Imager (SSM/I), lack the low frequency channels which are sensitive to SST. This low frequency channels are again included in the microwave imager (TMI) of the recently launched Tropical Rain Measuring Mission (TRMM). The radiance at the frequencies observed by both TMI and SSM/I were simulated through an atmospheric radiative transfer model using ocean surface parameters and atmospheric temperature and humidity profiles produced by the reanalysis of the European Center for Medium Range Weather Forecast (ECMWF). From the same ECMWF data set, coincident evaporation is computed using a surface layer turbulent transfer model. The sensitivity of the radiance to

  3. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  4. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bregman, Joel N.; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-01

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 1039 erg s-1. They could be intermediate-mass black holes (more than 100-1,000 solar masses, ) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 1039 erg s-1 and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5, and more probably a mass of 20-30, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  5. The accretion of migrating giant planets

    NASA Astrophysics Data System (ADS)

    Dürmann, Christoph; Kley, Wilhelm

    2017-02-01

    Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.

  6. Testing of a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers for Space Applications

    NASA Technical Reports Server (NTRS)

    Nagano, Hosei; Ku, Jentung

    2006-01-01

    Thermal performance of a miniature loop heat pipe (MLHP) with two evaporators and two condensers is described. A comprehensive test program, including start-up, high power, low power, power cycle, and sink temperature cycle tests, has been executed at NASA Goddard Space Flight Center for potential space applications. Experimental data showed that the loop could start with heat loads as low as 2W. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of l00W to 120W, and could recover from a dry-out by reducing the heat load to evaporators. Low power test results showed the loop could work stably for heat loads as low as 1 W to each evaporator. Excellent adaptability of the MLHP to rapid changes of evaporator power and sink temperature were also demonstrated.

  7. Initiation of continental accretion in the Betic-Rif domain

    NASA Astrophysics Data System (ADS)

    Maxime, Daudet; Frederic, Mouthereau; Stéphanie, Brichau; Ana, Crespo-Blanc; Arnaud, Vacherat

    2017-04-01

    The Betic - Rif cordillera in southern Spain and northern Morocco, respectively, form one of the tightest orogenic arc on Earth. The formation of this arcuate orogenic belt resulted from the westward migration of the Alboran crustal domain, constituted by the internal zone of the orogeny and the basement of the Alboran back-arc basin, that collided with the rifted margins of Iberia and Africa at least since the early Miocene. This collision is intimately linked to the post-35-30Ma regional slab roll-back and back-arc extension in the western Mediterranean region. The geodynamics of the Betic-Rif domain, which is of great importance for the paleogeographic reconstructions of the Tethys-Altantic and the Mediterranean sea, is still largely debated. Answers will come from a more detailed structural analyses, including refinement of the time-temperature paths and kinematics of the main structural units, which is one of the main objectives of the OROGEN research project, co-financed by BRGM, TOTAL & CNRS. In this study, we focus on the well-developed flysch-type sediments now accreted in the Betics-Rif but initially deposited in a basin, north of the african margin and on the iberian margin from the Early Cretaceous to the Early Miocene. Using low-temperature thermochronology (fission-track and (U-Th)/He analyses) combined with zircon U-Pb geochronology on the flyschs deposited on the most distal part of the margin, we aim to constrain the thermal history of both the source rocks and accreted thrust sheets at the earliest stages of continental accretion. Sample have been collected in flyschs series ranging from Mesozoic, Paleogene to Neogene ages. Additional samples have been collected in the Rif where Cretaceous series are more developed. Combined with a detailed structural analysis, LT thermochronological constraints will refine the kinematics of thrust units when continental accretion started before the final thrust emplacement occurred in the Early Miocene

  8. Chemical and dynamical perspectives on accretion and differentiation

    NASA Astrophysics Data System (ADS)

    Nimmo, F.

    2012-12-01

    The initial thermal and chemical state of a planet is largely determined by how it accreted. Although large bodies rapidly lose their memory of those initial conditions, smaller bodies do not: the Martian mantle has different isotopic reservoirs that were established early in its history and not subsequently homogenized [1], while the Martian dynamo may have been driven by an initially superheated core [2]. Accretion is also inefficient; impacts can modify planetary bulk compositions in subtle [3] or dramatic [4] ways. There are two main pathways for melting and differentiation of silicate bodies. Small rapidly-accreted bodies melt from the inside out due to 26Al decay, potentially leaving an unmelted carapace [5]. Large bodies melt due to release of gravitational energy via giant impacts. Both situations likely result in magma oceans, which may crystallize to yield unstable density structures [6]. The lifetime of magma oceans is highly uncertain and depends on whether a flotation crust develops, and whether a thick primordial atmosphere is present [7]. The Hf-W [8] and Pd-Ag [9] isotopic systems provide constraints on the timing and style of core formation. For instance, the rapid growth of planets in the ``Grand Tack'' model [10] may not be consistent with these constraints. The key uncertainty is the extent to which impactor cores equilibrate with the surrounding mantle during impacts. For example, the inferred rapid accretion of Mars [11] depends on an assumption of perfect re-equilibration. The physics of re-equilibration is imperfectly understood [12], and hard to model numerically [13]; laboratory experiments may provide a better approach [14]. Dynamical models suggest that the Earth's feeding zone moved outwards with time [15]. Isotopic [9] and element partitioning [16] models are consistent with this picture, suggesting that accreted material changed from volatile-poor and reduced to volatile-rich and oxidized as time progressed. [1] Halliday et al., SSR

  9. Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  10. Non-evaporative effects of a wet mid layer on heat transfer through protective clothing.

    PubMed

    Bröde, Peter; Havenith, George; Wang, Xiaoxin; Candas, Victor; den Hartog, Emiel A; Griefahn, Barbara; Holmér, Ingvar; Kuklane, Kalev; Meinander, Harriet; Nocker, Wolfgang; Richards, Mark

    2008-09-01

    In order to assess the non-evaporative components of the reduced thermal insulation of wet clothing, experiments were performed with a manikin and with human subjects in which two layers of underwear separated by an impermeable barrier were worn under an impermeable overgarment at 20 degrees C, 80% RH and 0.5 ms(-1) air velocity. By comparing manikin measurements with dry and wetted mid underwear layer, the increase in heat loss caused by a wet layer kept away from the skin was determined, which turned out to be small (5-6 W m(-2)), irrespective of the inner underwear layer being dry or wetted, and was only one third of the evaporative heat loss calculated from weight change, i.e. evaporative cooling efficiency was far below unity. In the experiments with eight males, each subject participated in two sessions with the mid underwear layer either dry or wetted, where they stood still for the first 30 min and then performed treadmill work for 60 min. Reduced heat strain due to lower insulation with the wetted mid layer was observed with decreased microclimate and skin temperatures, lowered sweat loss and cardiac strain. Accordingly, total clothing insulation calculated over the walking period from heat balance equations was reduced by 0.02 m(2) degrees C W(-1) (16%), while for the standing period the same decrease in insulation, representing 9% reduction only showed up after allowing for the lower evaporative cooling efficiency in the calculations. As evaporation to the environment and inside the clothing was restricted, the observed small alterations may be attributed to the wet mid layer's increased conductivity, which, however, appears to be of minor importance compared to the evaporative effects in the assessment of the thermal properties of wet clothing.

  11. A Systems-Level Perspective on Engine Ice Accretion

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  12. Quantification of Ice Accretions for Icing Scaling Evaluations

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Anderson, David N.

    2003-01-01

    The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.

  13. Characteristics of wettedness and equi-skin temperature line in the evaporative regulation region

    NASA Astrophysics Data System (ADS)

    Mochida, T.

    1983-07-01

    As a result of the analysis of physiological experimental data, the characteristics of the wettedness were clarified, i.e., the value of the wettedness is not constant but differs in accordance with the environmental humidity even when the skin temperature is the same, and it was shown that the evaporative heat loss from the skin surface is inversely proportional to the wetttedness. Based on the properties of the wetedness observed, a new thermal sensation chart in the evaporative regulation region was proposed as an index for evaluating the warmth or the coldness in the environment. The feature of the present chart is that the locus of the equal skin temperature appears as a curved line on the psychrometric chart and that the wettedness on the equi-skin temperature line is not constant but takes varying values. The curved equal skin temperature line means that the influence of the environmental humidity on thermal sensation becomes smaller as the humidity of the environmental humidity on thermal sensation becomes smaller as the humidity of the environment is lowered.

  14. Igneous Cooling Rate constraints on the Accretion of the lower Oceanic Crust in Mid-ocean Ridges: Insights from a new Thermo-mechanical Model

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Machetel, P.

    2005-12-01

    We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual

  15. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that ifmore » the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.« less

  16. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon

    PubMed Central

    Day, James M. D.; Moynier, Frederic

    2014-01-01

    The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ (238U/204Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss. PMID:25114311

  17. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon.

    PubMed

    Day, James M D; Moynier, Frederic

    2014-09-13

    The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ ((238)U/(204)Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Self-similar Hot Accretion Flow onto a Neutron Star

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail V.; Narayan, Ramesh

    2001-06-01

    We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling between the protons and electrons, as well as free-free cooling from the electrons. We show that the accretion flow has an extended settling region that can be described by means of two analytical self-similar solutions: a two-temperature solution that is valid in an inner zone, r<~102.5, where r is the radius in Schwarzschild units; and a one-temperature solution that is valid in an outer zone, r>~102.5. In both zones the density varies as ρ~r-2 and the angular velocity as Ω~r-3/2. We solve the flow equations numerically and confirm that the analytical solutions are accurate. Except for the radial velocity, all gas properties in the self-similar settling zone, such as density, angular velocity, temperature, luminosity, and angular momentum flux, are independent of the mass accretion rate; these quantities do depend sensitively on the spin of the neutron star. The angular momentum flux is outward under most conditions; therefore, the central star is nearly always spun down. The luminosity of the settling zone arises from the rotational energy that is released as the star is braked by viscosity, and the contribution from gravity is small; hence, the radiative efficiency, η=Lacc/Mc2, is arbitrarily large at low M. For reasonable values of the gas adiabatic index γ, the Bernoulli parameter is negative; therefore, in the absence of dynamically important magnetic fields, a strong outflow or wind is not expected. The flow is also convectively stable but may be thermally unstable. The described solution is not advection dominated; however, when the spin of the star is small enough, the flow transforms smoothly to an advection-dominated branch of solution.

  19. Stochastic events lead to accretion in Saturn’s rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2009-12-01

    UVIS occultations indicate accretion is triggered at the B ring edge, in strong density waves in ring A and in the F ring. Moons may trigger accretion by streamline crowding (Lewis & Stewart); which enhances collisions, leading to accretion; increasing random velocities; leading to more collisions and more accretion. Cassini occultations of these strongly perturbed locations show not only accretion but also disaggregation, with time scales of hours to weeks. The collisions may lead to temporary aggregations via stochastic events: they can compress unconsolidated objects, trigger adhesion or bring small pieces into contact with larger or higher-density seeds. Disaggregation then can follow from disruptive collisions or tidal shedding. In the accretion/disruption balance, increased random motions could eventually give the upper hand to disruption… just as ‘irrational exuberance’ can lead to financial panic in the economy; or the overpopulation of hares can lead to boom-and-bust in the population of foxes. This unstable equilibrium can similarly give rise to episodic cycles in accretion: explaining why the observable ring features that indicate embedded objects have been increasing since the beginning of Cassini’s observations of Saturn in 2004.

  20. Kinetic and radiative power from optically thin accretion flows

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Gaspari, Massimo

    2017-06-01

    We perform a set of general relativistic, radiative, magneto-hydrodynamical simulations (GR-RMHD) to study the transition from radiatively inefficient to efficient state of accretion on a non-rotating black hole. We study ion to electron temperature ratios ranging from TI/Te = 10 to 100, and simulate flows corresponding to accretion rates as low as 10^{-6}\\dot{M}_Edd, and as high as 10^{-2}\\dot{M}_Edd. We have found that the radiative output of accretion flows increases with accretion rate, and that the transition occurs earlier for hotter electrons (lower TI/Te ratio). At the same time, the mechanical efficiency hardly changes and accounts to ≈3 per cent of the accreted rest mass energy flux, even at the highest simulated accretion rates. This is particularly important for the mechanical active galactic nuclei (AGN) feedback regulating massive galaxies, groups and clusters. Comparison with recent observations of radiative and mechanical AGN luminosities suggests that the ion to electron temperature ratio in the inner, collisionless accretion flow should fall within 10 < TI/Te < 30, I.e. the electron temperature should be several percent of the ion temperature.

  1. Regimes of mini black hole abandoned to accretion

    NASA Astrophysics Data System (ADS)

    Paik, Biplab

    2018-01-01

    Being inspired by the Eddington’s idea, along with other auxiliary arguments, it is unveiled that there exist regimes of a black hole that would prohibit accretion of ordinary energy. In explicit words, there exists a lower bound to black hole mass below which matter accretion process does not run for black holes. Not merely the baryonic matter, but, in regimes, also the massless photons could get prohibited from rushing into a black hole. However, unlike the baryon accretion abandoned black hole regime, the mass-regime of a black hole prohibiting accretion of radiation could vary along with its ambient temperature. For example, we discuss that earlier to 10‑8 s after the big-bang, as the cosmological temperature of the Universe grew above ˜ 1014 K, the mass range of black hole designating the radiation accretion abandoned regime, had to be in varying state being connected with the instantaneous age of the evolving Universe by an “one half” power law. It happens to be a fact that a black hole holding regimes prohibiting accretion of energy is gigantic by its size in comparison to the Planck length-scale. Hence the emergence of these regimes demands mini black holes for not being viable as profound suckers of energy. Consideration of accretion abandoned regimes could be crucial for constraining or judging the evolution of primordial black holes over the age of the Universe.

  2. Geometric figure–ground cues override standard depth from accretion-deletion

    PubMed Central

    Tanrıkulu, Ömer Dağlar; Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2016-01-01

    Accretion-deletion is widely considered a decisive cue to surface depth ordering, with the accreting or deleting surface interpreted as behind an adjoining surface. However, Froyen, Feldman, and Singh (2013) have shown that when accretion-deletion occurs on both sides of a contour, accreting-deleting regions can also be perceived as in front and as self-occluding due to rotation in three dimensions. In this study we ask whether geometric figure–ground cues can override the traditional “depth from accretion-deletion” interpretation even when accretion-deletion takes place only on one side of a contour. We used two tasks: a relative-depth task (front/back), and a motion-classification task (translation/rotation). We conducted two experiments, in which texture in only one set of alternating regions was moving; the other set was static. Contrary to the traditional interpretation of accretion-deletion, the moving convex and symmetric regions were perceived as figural and rotating in three dimensions in roughly half of the trials. In the second experiment, giving different motion directions to the moving regions (thereby weakening motion-based grouping) further weakened the traditional accretion-deletion interpretation. Our results show that the standard “depth from accretion-deletion” interpretation is overridden by static geometric cues to figure–ground. Overall, the results demonstrate a rich interaction between accretion-deletion, figure–ground, and structure from motion that is not captured by existing models of depth from motion. PMID:26982528

  3. The Radio Jets and Accretion Disk in NGC 4261

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; Wehrle, Ann E.; Meier, David L.; Piner, B. Glenn

    2000-05-01

    .8 pc. Assuming that the accretion disk is geometrically and optically thin and composed of a uniform 104 K plasma, the average electron density in the inner 0.1 pc of the disk is 103-108 cm-3. The mass of ionized gas in the inner pc of the disk is 101-103 Msolar, sufficient to power the radio source for ~104-106 yr. Equating thermal gas pressure and magnetic field strength gives a disk magnetic field of ~10-4 to 10-2 gauss at 0.1 pc. We include an appendix containing expressions for a simple, optically thin, gas-pressure-dominated accretion disk model that may be applicable to other galaxies in addition to NGC 4261.

  4. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    PubMed Central

    Rusli, Nurul Izni; Tanikawa, Masahiro; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf

    2012-01-01

    The formation of high-density zinc oxide (ZnO) nanorods on porous silicon (PS) substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn) powder in the presence of oxygen (O2) gas was systematically investigated. The high-density growth of ZnO nanorods with (0002) orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  5. Quasi-spherical accretion in High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Postnov, Konstantin

    2016-07-01

    Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.

  6. Properties of vacuum-evaporated boron films

    NASA Technical Reports Server (NTRS)

    Feakes, F.

    1973-01-01

    The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.

  7. El Nino influence on Holocene reef accretion in Hawai'i

    USGS Publications Warehouse

    Rooney, J.; Fletcher, C.; Grossman, E.; Engels, M.; Field, M.

    2004-01-01

    New observations of reef accretion from several locations show that in Hawai'i accretion during early to middle Holocene time occurred in areas where today it is precluded by the wave regime, suggesting an increase in wave energy. Accretion of coral and coralline algae reefs in the Hawaiian Islands today is largely controlled by wave energy. Many coastal areas in the main Hawaiian Islands are periodically exposed to large waves, in particular from North Pacific swell and hurricanes. These are of sufficient intensity to prevent modern net accretion as evidenced by the antecedent nature of the seafloor. Only in areas sheltered from intense wave energy is active accretion observed. Analysis of reef cores reveals patterns of rapid early Holocene accretion in several locations that terminated by middle Holocene time, ca. 5000 yr ago. Previous analyses have suggested that changes in Holocene accretion were a result of reef growth "catching up" to sea level. New data and interpretations indicate that the end of reef accretion in the middle Holocene may be influenced by factors in addition to sea level. Reef accretion histories from the islands of Kaua'i, O'ahu, and Moloka'i may be interpreted to suggest that a change in wave energy contributed to the reduction or termination of Holocene accretion by 5000 yr ago in some areas. In these cases, the decrease in reef accretion occurred before the best estimates of the decrease in relative sea-level rise during the mid-Holocene high stand of sea level in the main Hawaiian Islands. However, reef accretion should decrease following the termination of relative sea-level rise (ca. 3000 yr ago) if reef growth were "catching up" to sea level. Evidence indicates that rapid accretion occurred at these sites in early Holocene time and that no permanent accretion is occurring at these sites today. This pattern persists despite the availability of hard substrate suitable for colonization at a wide range of depths between -30 m and the

  8. Accretional Heating by Periodic Dwarf Nova Outburst Events

    NASA Astrophysics Data System (ADS)

    Godon, P.; Sion, E. M.

    2001-12-01

    We carry out simulations of evolutionary models of accreting white dwarfs in dwarf novae to assess the combined effect of boundary layer irradiation and compressional heating on the accreting star. We focus on the behavior of the surface observables of the accreting white dwarf for different value of the mass accretion rate and accretor mass. Outburst of days to weeks are followed by a shut off of the radial infall during quiescences lasting weeks to months. Preliminary results indicate that after a long evolution time of many accretion cycles, the effective surface temperature of the white dwarf will increase substantially. The purpose of this work is to generate a grid of models that will then be used to compared with observations of white dwarf heating and cooling in dwarf nova systems. This work is supported by NASA HST grant GO-8139 and in part by NSF grant AST99-01955 and NASA grant NAG5-8388.

  9. Redshifted X-rays from the material accreting onto TW Hydrae: Evidence of a low-latitude accretion spot

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Drake, J. J.; Bonito, R.; Orlando, S.; Peres, G.; Miceli, M.

    2017-10-01

    Context. High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in classical T Tauri stars (CTTS). In particular, the accretion shock region, where the accreting material is heated to temperatures of a few million degrees as it continues its inward bulk motion, can be probed by X-ray spectroscopy. Aims: In an attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra High Energy Transmission Grating observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS and constrain the accretion stream geometry. Methods: We searched for a Doppler shift in the X-ray emission from TW Hya with two different methods: by measuring the position of a selected sample of emission lines and by fitting the whole TW Hya X-ray spectrum, allowing the line-of-sight velocity to vary. Results: We found that the plasma at T 2 - 4 MK has a line-of-sight velocity of 38.3 ± 5.1 km s-1 with respect to the stellar photosphere. This result definitively confirms that this X-ray-emitting material originates in the post-shock region, at the base of the accretion stream, and not in coronal structures. The comparison of the observed velocity along the line of sight, 38.3 ± 5.1 km s-1, with the inferred intrinsic velocity of the post shock of TW Hya, vpost ≈ 110 - 120 km s-1, indicates that the footpoints of the accretion streams on TW Hya are located at low latitudes on the stellar surface. Conclusions: Our results indicate that complex magnetic field geometries, such as those of TW Hya, permit low-latitude accretion spots. Moreover, since on TW Hya the redshift of the soft X-ray emission is very similar to that of the narrow component of the C iv resonance doublet at 1550 Å, then the plasma at 2 - 4 MK and that at 0.1 MK likely originate in the same post

  10. Effects of air velocity on laying hen production from 24 to 27 weeks under simulated evaporatively cooled conditions

    USDA-ARS?s Scientific Manuscript database

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  11. On the X-ray spectra of luminous, inhomogeneous accretion flows

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Malzac, J.; Fabian, A. C.; Ross, R. R.

    2006-08-01

    We discuss the expected X-ray spectral and variability properties of black hole accretion discs at high luminosity, under the hypothesis that radiation-pressure-dominated discs are subject to violent clumping instabilities and, as a result, have a highly inhomogeneous two-phase structure. After deriving the full accretion disc solutions explicitly in terms of the parameters of the model, we study their radiative properties both with a simple two-zone model, treatable analytically, and with radiative transfer simulations which account simultaneously for energy balance and Comptonization in the hot phase, together with reflection, reprocessing, ionization and thermal balance in the cold phase. We show that, if not only the density, but also the heating rate within these flows is inhomogeneous, then complex reflection-dominated spectra can be obtained for a high enough covering fraction of the cold phase. In general, large reflection components in the observed X-ray spectra should be associated with strong soft excesses, resulting from the combined emission of ionized atomic emission lines. The variability properties of such systems are such that, even when contributing to a large fraction of the hard X-ray spectrum, the reflection component is less variable than the power-law-like emission originating from the hot Comptonizing phase, in agreement with what is observed in many Narrow Line Seyfert 1 galaxies and bright Seyfert 1. Our model falls within the family of those trying to explain the complex X-ray spectra of bright AGN with ionized reflection, but presents an alternative, specific, physically motivated, geometrical set-up for the complex multiphase structure of the inner regions of near-Eddington accretion flows.

  12. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  13. X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-β values

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Sacco, G. G.; Argiroffi, C.; Reale, F.; Peres, G.; Maggio, A.

    2010-02-01

    Context. Plasma accreting onto classical T Tauri stars (CTTS) is believed to impact the stellar surface at free-fall velocities, generating a shock. Current time-dependent models describing accretion shocks in CTTSs are one-dimensional, assuming that the plasma moves and transports energy only along magnetic field lines (β ≪ 1). Aims: We investigate the stability and dynamics of accretion shocks in CTTSs, considering the case of β ⪆ 1 in the post-shock region. In these cases the 1D approximation is not valid and a multi-dimensional MHD approach is necessary. Methods: We model an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere by performing 2D axisymmetric MHD simulations. The model takes into account the stellar magnetic field, the gravity, the radiative cooling, and the thermal conduction (including the effects of heat flux saturation). Results: The dynamics and stability of the accretion shock strongly depend on the plasma β. In the case of shocks with β > 10, violent outflows of shock-heated material (and possibly MHD waves) are generated at the base of the accretion column and intensely perturb the surrounding stellar atmosphere and the accretion column itself (therefore modifying the dynamics of the shock). In shocks with β ≈ 1, the post-shock region is efficiently confined by the magnetic field. The shock oscillations induced by cooling instability are strongly influenced by β: for β > 10, the oscillations may be rapidly dumped by the magnetic field, approaching a quasi-stationary state, or may be chaotic with no obvious periodicity due to perturbation of the stream induced by the post-shock plasma itself; for β≈ 1 the oscillations are quasi-periodic, although their amplitude is smaller and the frequency higher than those predicted by 1D models. Three movies are only available in electronic form at http://www.aanda.org

  14. Convective instability of sludge storage under evaporation and solar radiation

    NASA Astrophysics Data System (ADS)

    Tsiberkin, Kirill; Tatyana, Lyubimova

    2014-05-01

    The sludge storages are an important part of production cycle at salt manufacturing, water supply, etc. A quality of water in the storage depends on mixing of pure water and settled sediment. One of the leading factors is thermal convection. There are two main mechanisms of the layer instability exist. First, it is instability of water due to evaporation from the free surface [1]. It cools the water from upside, increases the particles concentration and leads to the instability in the near-surface layer. Second, the sediment absorbs a solar radiation and heats the liquid from below making it unstable in the near-bottom area. We assume the initial state is the mechanical equilibrium. The water and sediment particles are motionless, the sediment forms a uniform sludge layer of thickness z0, there are no evaporation and heating by solar energy, and the temperature has a linear profile is determined by fixed upper and bottom temperatures of the layer. Taking into account the evaporation and solar radiation absorption, we obtain a non-stationary solution for the temperature using Fourier series method. The local temperature gradients increases rapidly with time, and local Rayleigh number can be estimated by thermal conduction length Lt: Raloc(z,t) = gβ(δT(z,t)/δz)L4t-/νΞ , Lt ~ √Ξt, (1) where g is gravity acceleration, β, ν and Ξ are thermal volume expansion coefficient, kinematic viscosity and thermal conductivity of the liquid, respectively. Raloc* reaches the critical value at finite time t* and water motion begins. The maximal power of solar radiation in visible band equals 230 Wt/m2 at the latitude of "Uralkalii" salt manufacturer (Berezniki, Perm Region, Russian Federation). We neglect IR and UV radiation because of its huge absorption by water [2]. The evaporation speed is found using results for shallow water reservoir [3] and meteorological data for Berezniki [4]. We get the t*~ 6 · 102 s (10 min) for the layer of 1 m depth and t*~ 2 · 103 s (40

  15. Reverberation Mapping of AGN Accretion Disks

    NASA Astrophysics Data System (ADS)

    Fausnaugh, Michael; AGN STORM Collaboration

    2017-01-01

    I will discuss new reverberation mapping results that allow us to investigate the temperature structure of AGN accretion disks. By measuring time-delays between broad-band continuum light curves, we can determine the size of the disk as a function of wavelength. I will discuss the detection of continuum lags in NGC 5548 reported by the AGN STORM project and implications for the accretion disk. I will also present evidence for continuum lags in two other AGN for which we recently measured black hole masses from continuum-Hbeta reverberations. The mass measurements allow us to compare the continuum lags to predictions from standard thin disk theory, and our results indicate that the accretion disks are larger than the simplest expectations.

  16. Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.

    2009-01-01

    Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.

  17. The disappearance and reformation of the accretion disc during a low state of FO Aquarii

    NASA Astrophysics Data System (ADS)

    Hameury, J.-M.; Lasota, J.-P.

    2017-09-01

    Context. FO Aquarii, an asynchronous magnetic cataclysmic variable (intermediate polar) went into a low state in 2016, from which it slowly and steadily recovered without showing dwarf nova outbursts. This requires explanation since in a low state, the mass-transfer rate is in principle too low for the disc to be fully ionised and the disc should be subject to the standard thermal and viscous instability observed in dwarf novae. Aims: We investigate the conditions under which an accretion disc in an intermediate polar could exhibit a luminosity drop of two magnitudes in the optical band without showing outbursts. Methods: We use our numerical code for the time evolution of accretion discs, including other light sources from the system (primary, secondary, hot spot). Results: We show that although it is marginally possible for the accretion disc in the low state to stay on the hot stable branch, the required mass-transfer rate in the normal state would then have to be extremely high, of the order of 1019 g s-1 or even larger. This would make the system so intrinsically bright that its distance should be much larger than allowed by all estimates. We show that observations of FO Aqr are well accounted for by the same mechanism that we have suggested as explaining the absence of outbursts during low states of VY Scl stars: during the decay, the magnetospheric radius exceeds the circularisation radius, so that the disc disappears before it enters the instability strip for dwarf nova outbursts. Conclusions: Our results are unaffected, and even reinforced, if accretion proceeds both via the accretion disc and directly via the stream during some intermediate stages; the detailed process through which the disc disappears still requires investigation.

  18. Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Ekejiuba, I. E.; Okeke, P. N.

    1993-05-01

    Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.

  19. Simulating a Thin Accretion Disk Using PLUTO

    NASA Astrophysics Data System (ADS)

    Phillipson, Rebecca; Vogeley, Michael S.; Boyd, Patricia T.

    2017-08-01

    Accreting black hole systems such as X-ray binaries and active galactic nuclei exhibit variability in their luminosity on many timescales ranging from milliseconds to tens of days, and even hundreds of days. The mechanism(s) driving this variability and the relationship between short- and long-term variability is poorly understood. Current studies on accretion disks seek to determine how the changes in black hole mass, the rate at which mass accretes onto the central black hole, and the external environment affect the variability on scales ranging from stellar-mass black holes to supermassive black holes. Traditionally, the fluid mechanics equations governing accretion disks have been simplified by considering only the kinematics of the disk, and perhaps magnetic fields, in order for their phenomenological behavior to be predicted analytically. We seek to employ numerical techniques to study accretion disks including more complicated physics traditionally ignored in order to more accurately understand their behavior over time. We present a proof-of-concept three dimensional, global simulation using the astrophysical hydrodynamic code PLUTO of a simplified thin disk model about a central black hole which will serve as the basis for development of more complicated models including external effects such as radiation and magnetic fields. We also develop a tool to generate a synthetic light curve that displays the variability in luminosity of the simulation over time. The preliminary simulation and accompanying synthetic light curve demonstrate that PLUTO is a reliable code to perform sophisticated simulations of accretion disk systems which can then be compared to observational results.

  20. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.

    PubMed

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-09-07

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.

  1. Synthesis, structural, optical and thermal properties of N-methyl-N-aryl benzamide organic single crystals grown by a slow evaporation technique

    NASA Astrophysics Data System (ADS)

    Prabukanthan, P.; Lakshmi, R.; Harichandran, G.; Kumar, C. Sudarsana

    2018-03-01

    The organic materials, N-methyl-N-aryl benzamides were synthesized from benzoylation of N-methyl-4-nitrobenzenamine (MNBA) using suitably substituted benzoyl chlorides. The products were purified by recrystallization and their single crystal were grown by a slow evaporation technique. The crystals were characterized by FTIR, UV-Vis-NIR, 1H &13C NMR, and single & powder X-ray diffraction. Thermal stability of the crystals was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric and NLO properties of MNPB, FMNPB and MMNPB crystals were studied. The second harmonic generation (SHG) has been confirmed by the Kurtz powder test for all these crystals and the SHG efficiency of MMNPB crystal was found to be 2.25 times higher than that of KDP crystal.

  2. Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M.; Hassan, Z.

    A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM),more » and UV-Vis spectrophotometer.« less

  3. Imaging accretion sources and circumbinary disks in young brown dwarfs

    NASA Astrophysics Data System (ADS)

    Reiners, Ansgar

    2010-09-01

    We propose to obtain deep WFC3/UVIS imaging observations of two accreting, nearby, young brown dwarf binaries. The first, 2M1207, is a brown dwarf with a planetary mass companion that became a benchmark in low-mass star formation and low-mass evolutionary models. The second, 2M0041, is a nearby young brown dwarf with clear evidence for accretion, but its space motion suggests a slightly higher age than the canonical accretion lifetime of 5-10 Myr. It has recently been discovered to be a binary and is likely to become a second benchmark object in this field. With narrow band images centered on the Halpha line that is indicative of accretion, we aim to determine the accretion ratio between the two components in each system. Halpha was observed in both systems but so far not spatially resolved. In particular, we want to search for accretion in the planetary mass companion of 2M1207. The evidence for accretion in 2M0041 and the possibility that it is in fact older than 10Myr suggests that the accretion lifetime is longer in brown dwarfs than in stars, and in particular that it is longer in brown dwarf binaries. Accretion could be sustained for a longer time if the accreting material is replenished by a circumbinary disk that might exist in both systems. We propose deep WFC/UVIS observations in the optical to search for circumbinary disks, similar to the famous disk around the binary TTauri system GG Tau.

  4. Cathode Formed by Thermal Evaporation of Ba:Al Alloy and Estimations of Barrier Height in an Organic LED

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Zhang, Fang-Hui

    2011-06-01

    It is demonstrated that barium and aluminum alloy synthesized by melting in a glass tube under low vacuum is applicable for organic laser emitting diodes (LEDs) as a thin film cathode. The alloy film obtained by the thermal evaporation of pre-synthesized alloy is used in a single-boat organic LED device with the structure: indium tin oxide (ITO)/4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl(NPB)/tris-(8-hydroxyquinoline) aluminum(Alq3)/barium:aluminum alloy. The experimental results show that devices with this alloy film cathode exhibit better current density-voltage-luminance characteristics than those with a conventional pure Al cathode, and more weight of barium in aluminum leads to better performance of the devices. Characteristics of current density versus voltage for the electron-only devices are fitted by the Richardson—Schottky emission model, indicating that the electron injection barrier has a decrease of about 0.3 eV by this alloy cathode.

  5. Doughnut strikes sandwich: the geometry of hot medium in accreting black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Poutanen, Juri; Veledina, Alexandra; Zdziarski, Andrzej A.

    2018-06-01

    We study the effects of the mutual interaction of hot plasma and cold medium in black hole binaries in their hard spectral state. We consider a number of different geometries. In contrast to previous theoretical studies, we use a modern energy-conserving code for reflection and reprocessing from cold media. We show that a static corona above an accretion disc extending to the innermost stable circular orbit produces spectra not compatible with those observed. They are either too soft or require a much higher disc ionization than that observed. This conclusion confirms a number of previous findings, but disproves a recent study claiming an agreement of that model with observations. We show that the cold disc has to be truncated in order to agree with the observed spectral hardness. However, a cold disc truncated at a large radius and replaced by a hot flow produces spectra which are too hard if the only source of seed photons for Comptonization is the accretion disc. Our favourable geometry is a truncated disc coexisting with a hot plasma either overlapping with the disc or containing some cold matter within it, also including seed photons arising from cyclo-synchrotron emission of hybrid electrons, i.e. containing both thermal and non-thermal parts.

  6. Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement.

    PubMed

    Dehbani, Maryam; Rahimi, Masoud

    2018-04-01

    In the present study, Ultrasonic Falling Film (USFF), as a novel technique has been proposed to increase the evaporation rate of moderate temperature liquid film. It is a proper method for some applications which cannot be performed at high temperature, such as foodstuff industry, due to their sensitivity to high temperatures. Evaporation rate of sodium chloride solution from an USFF on an inclined flat plate compared to that for Falling Film without ultrasonic irradiation (FF) at various temperatures was investigated. The results revealed that produced cavitation bubbles have different effects on evaporation rate at different temperatures. At lower temperatures, size fluctuation and collapse of bubbles and in consequence induced physical effects of cavitation bubbles resulted in more turbulency and evaporation rate enhancement. At higher temperatures, the behavior was different. Numerous created bubbles joined together and cover the plate surface, so not only decreased the ultrasound vibrations but also reduced the evaporation rate in comparison with FF. The highest evaporation rate enhancement of 353% was obtained at 40 °C at the lowest Reynolds number of 250. In addition, the results reveal that at temperature of 40 °C, USFF has the highest efficiency compared to FF. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation

    NASA Astrophysics Data System (ADS)

    Nogueira, Gabriel Leonardo; da Silva Ozório, Maiza; da Silva, Marcelo Marques; Morais, Rogério Miranda; Alves, Neri

    2018-05-01

    We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = - 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = - 10 V and ETH = 500 MV/m.

  8. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    NASA Technical Reports Server (NTRS)

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X

  9. An Experimental and Modeling Study of Evaporation from Bare Soils Subjected to Natural Boundary Conditions at the Land-Atmospheric Interface

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Ngo, V. V.; Cihan, A.; Sakaki, T.; Illangasekare, T. H.; kathleen m smits

    2011-12-01

    Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions. Because it is difficult to measure evaporation from soil,with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy and include, among others, a classical bulk aerodynamic formulation which requires knowledge of the relative humidity at the soil surface and a more non-traditional heat balance method which requires knowledge of soil temperature and soil thermal properties. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for evaporation rate estimates and to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for evaporation under dry soil conditions. This theory was used to compare estimates of evaporation based on different formulations of the bulk aerodynamic and heat balance methods. In order to experimentally validate the numerical formulations/code, we performed a series of two-dimensional physical model experiments under varying boundary conditions using test sand for which the

  10. Geometrically thin, hot accretion disks - Topology of the thermal equilibrium curves

    NASA Technical Reports Server (NTRS)

    Kusunose, Masaaki; Mineshige, Shin

    1992-01-01

    All the possible thermal equilibrium states of geometrically thin alpha-disks around stellar-mass black holes are presented. A (vertically) one-zone disk model is employed and it is assumed that a main energy source is viscous heating of protons and that cooling is due to bremsstrahlung and Compton scattering. There exist various branches of the thermal equilibrium solution, depending on whether disks are effectively optically thick or thin, radiation pressure-dominated or gas pressure-dominated, composed of one-temperature plasmas or of two-temperature plasmas, and with high concentration of e(+)e(-) pairs or without pairs. The thermal equilibrium curves at high temperatures (greater than or approximately equal to 10 exp 8 K) are substantially modified by the presence of e(+)e(-) pairs. The thermal stability of these branches are examined.

  11. X-shooter study of accretion in Chamaeleon I. II. A steeper increase of accretion with stellar mass for very low-mass stars?

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Herczeg, G. J.; Pascucci, I.; Alcalá, J. M.; Natta, A.; Antoniucci, S.; Fedele, D.; Mulders, G. D.; Henning, T.; Mohanty, S.; Prusti, T.; Rigliaco, E.

    2017-08-01

    The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M⋆) 0.1 M⊙ for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 ± 0.1 and 2.3 ± 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than 0.45 L⊙ and for stellar masses lower than 0.3 M⊙ is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M⋆ 0.3 - 0.4 M⊙. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are 10-10M⊙/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk. This work is

  12. Accretion Disks and Coronae in the X-Ray Flashlight

    NASA Astrophysics Data System (ADS)

    Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan

    2018-02-01

    Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.

  13. Thin Disks Gone MAD: Magnetically Arrested Accretion in the Thin Regime

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; McKinney, Jonathan C.; Reynolds, Christopher S.

    2015-01-01

    The collection and concentration of surrounding large scale magnetic fields by black hole accretion disks may be required for production of powerful, spin driven jets. So far, accretion disks have not been shown to grow sufficient poloidal flux via the turbulent dynamo alone to produce such persistent jets. Also, there have been conflicting answers as to how, or even if, an accretion disk can collect enough magnetic flux from the ambient environment. Extending prior numerical studies of magnetically arrested disks (MAD) in the thick (angular height, H/R~1) and intermediate (H/R~.2-.6) accretion regimes, we present our latest results from fully general relativistic MHD simulations of the thinnest BH (H/R~.1) accretion disks to date exhibiting the MAD mode of accretion. We explore the significant deviations of this accretion mode from the standard picture of thin, MRI-driven accretion, and demonstrate the accumulation of large-scale magnetic flux.

  14. Late accretion to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Brasser, Ramon; Mojzsis, Stephen; Werner, Stephanie; Matsumura, Soko; Ida, Shigeru

    2017-10-01

    IntroductionIt is generally accepted that silicate-metal (`rocky') planet formation relies on coagulation from a mixture of sub-Mars sized planetary embryos and (smaller) planetesimals that dynamically emerge from the evolving circum-solar disc in the first few million years of our Solar System. Once the planets have, for the most part, assembled after a giant impact phase, they continue to be bombarded by a multitude of planetesimals left over from accretion. Here we place limits on the mass and evolution of these planetesimals based on constraints from the highly siderophile element (HSE) budget of the Moon. The terrestrial and lunar HSE budgets indicate that Earth’s and Moon’s additions through late accretion were 0.7 wt% and 0.02 wt% respectively. The disproportionate high accretion between the Earth and Moon could be explained by stochastic accretion of a few remaining Ceres-sized bodies that preferentially targeted the Earth.ResultsFrom a combination of N-body and Monte Carlo simulations of planet formation we conclude:1) matching the terrestrial to lunar HSE ratio requires that late accretion on Earth mostly consisted of a single lunar-size impactor striking the Earth before 4.45 Ga2) the flux of terrestrial impactors must have been low avoid wholesale melting of Earth's crust after 4.4 Ga[6], and to simultaneously match the number of observed lunar basins3) after the terrestrial planets have fully formed, the mass in remnant planetesimals was ~0.001 Earth mass, lower than most previous models suggest.4) Mars' HSE budget also requires a colossal impact with a Ceres-sized object before 4.43 Ga, whose visible remnant could be the hemispherical dichotomy.These conclusions lead to an Hadean eon which is more clement than assumed previously. In addition, our dynamically and geochemically self-consistent scenario requires that future N-body simulations of rocky planet formation either directly incorporate collisional grinding or rely on pebble accretion.

  15. WIND-DRIVEN ACCRETION IN TRANSITIONAL PROTOSTELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lile; Goodman, Jeremy J.

    Transitional protostellar disks have inner cavities that are heavily depleted in dust and gas, yet most of them show signs of ongoing accretion, often at rates comparable to full disks. We show that recent constraints on the gas surface density in a few well-studied disk cavities suggest that the accretion speed is at least transsonic. We propose that this is the natural result of accretion driven by magnetized winds. Typical physical conditions of the gas inside these cavities are estimated for plausible X-ray and FUV radiation fields. The gas near the midplane is molecular and predominantly neutral, with a dimensionlessmore » ambipolar parameter in the right general range for wind solutions of the type developed by Königl, Wardle, and others. That is to say, the density of ions and electrons is sufficient for moderately good coupling to the magnetic field, but it is not so good that the magnetic flux needs to be dragged inward by the accreting neutrals.« less

  16. Neon isotopes show that Earth was accreted from irradiated material

    NASA Astrophysics Data System (ADS)

    Moreira, M. A.

    2015-12-01

    Since the 1980s, the notion that the Earth's mantle has a "solar" isotopic signature for neon has been favoured. Indeed, the 20Ne/22Ne ratio is above 12.5 in the mantle sources of OIB and MORB, close to the solar composition (13.4 for the Sun or 13.8 for the solar wind) and different from both atmospheric and chondritic compositions (Phase Q, Neon A). The most well accepted process invoked to explain this observed solar composition in the mantle is dissolution into a magma ocean of solar gases captured by gravity around the proto-Earth. However, Earth was accreted after gas from the proto-planetary disk had evaporated, suggesting that Earth itself could not have captured such a solar primordial atmosphere. Only planetary embryos were formed when the gas was still present in the disk. However, these planetary embryos with the mass of Mars are not massive enough to capture a solar dense atmosphere able to incorporate enough neon into the mantle. New estimates of the neon isotopic compositions of both the Earth's mantle and of the implanted solar wind into grains suggest that the origin of the neon on Earth is related to solar wind irradiation on μm grains before planetary accretion started and not dissolution. Although incorporation of solar ions by this process is only significant for very volatiles (depleted) elements, the irradiation by x-rays has important consequences for the bulk chemistry of irradiated grains as it has been demonstrated that it produces depletion in Mg and Si, relatively to O (e.g Bradley et al., 1994), a pattern also observed for the Bulk silicate Earth. References Bradley, J. (1994). "Chemically Anomalous, Preaccretionally irradiated Grains in Interplanetary fust from Comets." Science 265: 925-929.

  17. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, M. M.

    2009-11-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths'more » equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless

  18. Synthesis and characterisation of co-evaporated tin sulphide thin films

    NASA Astrophysics Data System (ADS)

    Koteeswara Reddy, N.; Ramesh, K.; Ganesan, R.; Ramakrishna Reddy, K. T.; Gunasekhar, K. R.; Gopal, E. S. R.

    2006-04-01

    Tin sulphide films were grown at different substrate temperatures by a thermal co-evaporation technique. The crystallinity of the films was evaluated from X-ray diffraction studies. Single-phase SnS films showed a strong (040) orientation with an orthorhombic crystal structure and a grain size of 0.12 μm. The films showed an electrical resistivity of 6.1 Ω cm with an activation energy of 0.26 eV. These films exhibited an optical band gap of 1.37 eV and had a high optical absorption coefficient (>104 cm-1) above the band-gap energy. The results obtained were analysed to evaluate the potentiality of the co-evaporated SnS films as an absorber layer in solar photovoltaic devices.

  19. On the evaporation of solar dark matter: spin-independent effective operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Zheng-Liang; Wu, Yue-Liang; Yang, Zi-Qing

    2016-09-13

    As a part of the effort to investigate the implications of dark matter (DM)-nucleon effective interactions on the solar DM detection, in this paper we focus on the evaporation of the solar DM for a set of the DM-nucleon spin-independent (SI) effective operators. In order to put the evaluation of the evaporation rate on a more reliable ground, we calculate the non-thermal distribution of the solar DM using the Monte Carlo methods, rather than adopting the Maxwellian approximation. We then specify relevant signal parameter spaces for the solar DM detection for various SI effective operators. Based on the analysis, wemore » determine the minimum DM masses for which the DM-nucleon coupling strengths can be probed from the solar neutrino observations. As an interesting application, our investigation also shows that evaporation effect can not be neglectd in a recent proposal aiming to solve the solar abundance problem by invoking the momentum-dependent asymmetric DM in the Sun.« less

  20. Stochastic events may lead to accretion in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    Stochastic events may lead to accretion in Saturn's rings Larry W. Esposito LASP, University of Colorado UVIS occultations indicate accretion is triggered at the B ring edge, in strong density waves in ring A and in the F ring. Moons may trigger accretion by streamline crowding (Lewis & Stewart); which enhances collisions, leading to accretion; increasing random velocities; leading to more collisions and more accretion. Cassini occultations of these strongly perturbed locations show not only accretion but also disaggregation, with time scales of hours to weeks. The collisions may lead to temporary aggregations via stochastic events: collisions can compress unconsolidated objects, trigger adhesion or bring small pieces into contact with larger or higher-density seeds. Disaggregation then can follow from disruptive collisions or tidal shedding. In the accretion/disruption balance, increased random motions could eventually give the upper hand to disruption. . . just as `irrational exuberance' can lead to financial panic in the economy; or the overpopulation of hares can lead to boom-and-bust in the population of foxes. I present a simple predator-prey model. This system's unstable equilibrium can similarly give rise to episodic cycles in accretion: explaining why the observable ring features that indicate embedded objects have been increasing since the beginning of Cassini's observations of Saturn in 2004. Unlike other interpretations of the peculiar events seen near Saturn Equinox, I emphasize the kinetic description of particle interactions rather than a fluid instability approach; and the dominance of stochastic events involving individual aggregates over free and/or driven modes in a flat disk.

  1. Transitional millisecond pulsars in the low-level accretion state

    NASA Astrophysics Data System (ADS)

    Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand

    2018-01-01

    In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.

  2. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    USGS Publications Warehouse

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  3. Relativistic dust accretion of charged particles in Kerr-Newman spacetime

    NASA Astrophysics Data System (ADS)

    Schroven, Kris; Hackmann, Eva; Lämmerzahl, Claus

    2017-09-01

    We describe a new analytical model for the accretion of particles from a rotating and charged spherical shell of dilute collisionless plasma onto a rotating and charged black hole. By assuming a continuous injection of particles at the spherical shell and by treating the black hole and a featureless accretion disk located in the equatorial plane as passive sinks of particles, we build a stationary accretion model. This may then serve as a toy model for plasma feeding an accretion disk around a charged and rotating black hole. Therefore, our new model is a direct generalization of the analytical accretion model introduced by E. Tejeda, P. A. Taylor, and J. C. Miller [Mon. Not. R. Astron. Soc. 429, 925 (2013), 10.1093/mnras/sts316]. We use our generalized model to analyze the influence of a net charge of the black hole, which will in general be very small, on the accretion of plasma. Within the assumptions of our model we demonstrate that already a vanishingly small charge of the black hole may in general still have a non-negligible effect on the motion of the plasma, as long as the electromagnetic field of the plasma is still negligible. Furthermore, we argue that the inner and outer edges of the forming accretion disk strongly depend on the charge of the accreted plasma. The resulting possible configurations of accretion disks are analyzed in detail.

  4. Molecular characterization and volatility evolution of α-pinene ozonolysis SOA during isothermal evaporations

    NASA Astrophysics Data System (ADS)

    D'Ambro, E.; Schobesberger, S.; Lopez-Hilfiker, F.; Shilling, J. E.; Lee, B. H.; Thornton, J. A.

    2017-12-01

    α-Pinene (C10H16), the most abundantly emitted monoterpene, is a large contributor to global biogenic secondary organic aerosol (SOA) budgets due to its high SOA yields upon oxidation. We probe the volatility and evaporation behavior upon dilution of α-pinene SOA to further our understanding of the nascent volatility distribution, viscosity, and how these evolve in time absent photochemical oxidation. We present molecular composition measurements of the gas and particle phases of α-pinene ozonolysis SOA formed at 0% and 50% relative humidity (RH), followed by room-temperature evaporation in ultra-high purity N2 humidified to 20-90% RH. Experiments were performed in the Pacific Northwest National Laboratory 10.6 m3 and the University of Washington 0.7 m3 environmental chambers utilizing a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time of flight chemical ionization mass spectrometer utilizing iodide adduct ionization. We present novel insights into the total mass that evaporates as a function of time from 10 min to 24 hours without heating, the molecular speciation of the evaporate, as well as the effective volatility and composition of the SOA mass remaining. Consistent with previous studies, we find two stages of evaporation: a rapid loss of a large portion of the total signal over the course of ≤3 hours, followed by a stage of much slower evaporation over the proceeding 21 hours. Varying the RH of formation effects evaporation rate on timescales ≤3 hours, however the mass fraction remaining after 24 hours converges to 30-50% under all formation and evaporation RHs. We simulate the evaporation behavior and remaining fractions desorbed via temperature programmed thermal desorption to derive effective saturation vapor concentrations, mass accommodation coefficients, and rates of chemical evolution producing both higher and lower volatility components during the evaporation time period.

  5. Evaporation and scattering of momentum- and velocity-dependent dark matter in the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busoni, Giorgio; Simone, Andrea De; Scott, Pat

    Dark matter with momentum- or velocity-dependent interactions with nuclei has shown significant promise for explaining the so-called Solar Abundance Problem, a longstanding discrepancy between solar spectroscopy and helioseismology. The best-fit models are all rather light, typically with masses in the range of 3–5 GeV. This is exactly the mass range where dark matter evaporation from the Sun can be important, but to date no detailed calculation of the evaporation of such models has been performed. Here we carry out this calculation, for the first time including arbitrary velocity- and momentum-dependent interactions, thermal effects, and a completely general treatment valid frommore » the optically thin limit all the way through to the optically thick regime. We find that depending on the dark matter mass, interaction strength and type, the mass below which evaporation is relevant can vary from 1 to 4 GeV. This has the effect of weakening some of the better-fitting solutions to the Solar Abundance Problem, but also improving a number of others. As a by-product, we also provide an improved derivation of the capture rate that takes into account thermal and optical depth effects, allowing the standard result to be smoothly matched to the well-known saturation limit.« less

  6. Measurements of evaporation from a mine void lake and testing of modelling approaches

    NASA Astrophysics Data System (ADS)

    McJannet, David; Hawdon, Aaron; Van Niel, Tom; Boadle, Dave; Baker, Brett; Trefry, Mike; Rea, Iain

    2017-12-01

    Pit lakes often form in the void that remains after open cut mining operations cease. As pit lakes fill, hydrological and geochemical processes interact and these need to be understood for appropriate management actions to be implemented. Evaporation is important in the evolution of pit lakes as it acts to concentrate various constituents, controls water level and changes the thermal characteristics of the water body. Despite its importance, evaporation from pit lakes is poorly understood. To address this, we used an automated floating evaporation pan and undertook measurements at a pit lake over a 12 month period. We also developed a new procedure for correcting floating pan evaporation estimates to lake evaporation estimates based on surface temperature differences. Total annual evaporation was 2690 mm and reflected the strong radiation inputs, high temperatures and low humidity experienced in this region. Measurements were used to test the performance of evaporation estimates derived using both pan coefficient and aerodynamic modelling techniques. Daily and monthly evaporation estimates were poorly reproduced using pan coefficient techniques and their use is not recommended for such environments. Aerodynamic modelling was undertaken using a range of input datasets that may be available to those who manage pit lake systems. Excellent model performance was achieved using over-water or local over-land meteorological observations, particularly when the sheltering effects of the pit were considered. Model performance was reduced when off-site data were utilised and differences between local and off-site vapor pressure and wind speed were found to be the major cause.

  7. Monitoring Accreting X-ray Pulsars with the GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Patel, Sandeep K.; Bhat, P. Narayana; Preece, Robert D.; Meegan, Charles A.

    2007-01-01

    Accreting pulsars are exceptionally good laboratories for probing the detailed physics of accretion onto magnetic stars. While similar accretion flows also occur in other types of astrophysical systems, e.g. magnetic CVs, only neutron stars have a small enough moment of inertia for the accretion of angular momentum to result in measurable changes in spin-frequency in a timescale of days. Long-term monitoring of accreting pulsar spin-frequencies and fluxes was demonstrated with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Here we present sample results from BATSE, discuss measurement techniques appropriate for GBM, and estimate the expected GBM sensitivity.

  8. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples

    NASA Astrophysics Data System (ADS)

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; Spencer, Khalil J.

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10-6) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.

  9. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples.

    PubMed

    Stanley, F E; Byerly, Benjamin L; Thomas, Mariam R; Spencer, Khalil J

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10(-6)) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods. Graphical Abstract ᅟ.

  10. INTEGRAL results on supergiant fast X-ray transients and accretion mechanism interpretation: ionization effect and formation of transient accretion discs

    NASA Astrophysics Data System (ADS)

    Ducci, L.; Sidoli, L.; Paizis, A.

    2010-11-01

    We performed a systematic analysis of all INTEGRAL observations from 2003 to 2009 of 14 supergiant fast X-ray transients (SFXTs), implying a net exposure time of about 30 Ms. For each source we obtained light curves and spectra (3-100 keV), discovering several new outbursts. We discuss the X-ray behaviour of SFXTs emerging from our analysis in the framework of the clumpy wind accretion mechanism we proposed. We discuss the effect of X-ray photoionization on accretion in close binary systems such as IGR J16479-4514 and IGR J17544-2619. We show that, because of X-ray photoionization, there is a high probability of an accretion disc forming from the capture of angular momentum in IGR J16479-4514, and we suggest that the formation of transient accretion discs could be partly responsible for the flaring activity in SFXTs with narrow orbits. We also propose an alternative way to explain the origin of flares with peculiar shapes observed in our analysis applying the model of Lamb et al., which is based on accretion via the Rayleigh-Taylor instability and was originally proposed to explain Type II bursts.

  11. A magnetic accretion switch in pre-cataclysmic binaries

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Garraffo, Cecilia; Takei, Dai; Gaensicke, Boris

    2014-02-01

    We have investigated the mass accretion rate implied by published surface abundances of Si and C in the white dwarf component of the 3.62 h period pre-cataclysmic binary and planet host candidate QS Vir (DA+M2-4). Diffusion time-scales for gravitational settling imply dot{M} ˜ 10^{-16} M_{odot } yr-1 for the 1999 epoch of the observations, which is three orders of magnitude lower than measured from a 2006 XMM-Newton observation. This is the first time that large accretion rate variations have been seen in a detached pre-cataclysmic variable (pre-CV). A third body in a 14 yr eccentric orbit suggested in a recent eclipse timing study is too distant to perturb the central binary sufficiently to influence accretion. A hypothetical coronal mass ejection just prior to the XMM-Newton observation might explain the higher accretion rate, but the implied size and frequency of such events appear too great. We suggest accretion is most likely modulated by a magnetic cycle on the secondary acting as a wind `accretion switch', a mechanism that can be tested by X-ray and ultraviolet monitoring. If so, QS Vir and similar pre-CVs could provide powerful insights into hitherto inscrutable CV and M dwarf magnetospheres, and mass- and angular-momentum-loss rates.

  12. X-Shooter study of accretion in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Fedele, D.; Herczeg, G. J.; Teixeira, P. S.

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star-forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to ~700 nm. The dependence of accretion on stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are not influenced by sample selection. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 084.C-1095 and 094.C-0913.

  13. Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR

    DOE PAGES

    Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.; ...

    2016-07-18

    Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less

  14. Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.

    Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less

  15. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  16. Where a Neutron Star's Accretion Disk Ends

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the

  17. The thermal environment effect on the comfort of electronic factory worker

    NASA Astrophysics Data System (ADS)

    Nurul Huda, Listiani

    2018-03-01

    In this paper, thermal comfort issues of the operators working on one of the electronics companies in the evaporator area are observed. The objective of this study is to reduce Percentage of Dissatisfied (PD) of operators in an effort to improve the work productivity. PD is predicted using CBE Thermal Comfort Tool by measuring the thermal variables around the evaporator area and by calculating the Heat Stress Index (HSI). The operator productivity is analyzed by Wet Bulb Globe Thermometer (WBGT) Work-Rest Chart. The PD of operators before and after improvement is compared. The results showed that the average temperature around the operators area at evaporator station is high with average WBGT of 33,6°C. HSI value is 51.95 indicating that the effect of 8-h exposure is severe strain with work impact is health threat for unit operators and acclimatization is necessary. The PD value is 96% indicating that almost all operators feel uncomfortable at work. These indicate that the thermal environment should be improved. The proposed improvement is by installing water cooled and sprayed into the evaporator area. This installation is able to reduce HSI and PD by more 70% and more 60%, respectively. These findings indicate that improving the thermal environment will be able to improve working comfort which will further affect the level of work productivity.

  18. Lubrication model for evaporation of binary sessile drops

    NASA Astrophysics Data System (ADS)

    Williams, Adam; Sáenz, Pedro; Karapetsas, George; Matar, Omar; Sefiane, Khellil; Valluri, Prashant

    2017-11-01

    Evaporation of a binary mixture sessile drop from a solid substrate is a highly dynamic and complex process with flow driven both thermal and solutal Marangoni stresses. Experiments on ethanol/water drops have identified chaotic regimes on both the surface and interior of the droplet, while mixture composition has also been seen to govern drop wettability. Using a lubrication-type approach, we present a finite element model for the evaporation of an axisymmetric binary drop deposited on a heated substrate. We consider a thin drop with a moving contact line, taking also into account the commonly ignored effects of inertia which drives interfacial instability. We derive evolution equations for the film height, the temperature and the concentration field considering that the mixture comprises two ideally mixed volatile components with a surface tension linearly dependent on both temperature and concentration. The properties of the mixture such as viscosity also vary locally with concentration. We explore the parameter space to examine the resultant effects on wetting and evaporation where we find qualitative agreement with experiments in both these areas. This enables us to understand the nature of the instabilities that spontaneously emerge over the drop lifetime. EPSRC - EP/K00963X/1.

  19. Cyclotron Lines in Accreting Neutron Star Spectra

    NASA Astrophysics Data System (ADS)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  20. Accretion Flows in Magnetic White Dwarf Systems

    NASA Technical Reports Server (NTRS)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the

  1. Example of a Fluid-Phase Change Examined with MD Simulation: Evaporative Cooling of a Nanoscale Droplet.

    PubMed

    Ao, Takashi; Matsumoto, Mitsuhiro

    2017-10-24

    We carried out a series of molecular dynamics simulations in order to examine the evaporative cooling of a nanoscale droplet of a Lennard-Jones liquid. After thermally equilibrating a droplet at a temperature T ini /T t ≃ 1.2 (T t is the triple-point temperature), we started the evaporation into vacuum by removing vaporized particles and monitoring the change in droplet size and the temperature inside. As free evaporation proceeds, the droplet reaches a deep supercooled liquid state of T/T t ≃ 0.7. The temperature was found to be uniform in spite of the fast evaporative cooling on the surface. The time evolution of the evaporating droplet properties was satisfactorily explained with a simple one-dimensional phase-change model. After a sufficiently long run, the supercooled droplet was crystallized into a polycrystalline fcc structure. The crystallization is a stochastic nucleation process. The time and the temperature of inception were evaluated over 42 samples, which indicate the existence of a stability limit.

  2. On the link between potential evaporation and regional evaporation from a CBL perspective

    NASA Astrophysics Data System (ADS)

    Lhomme, J. P.; Guilioni, L.

    2010-07-01

    The relationship between potential evaporation and actual evaporation was first examined by Bouchet (Proc Berkeley Calif Symp IAHS Publ, 62:134-142, 1963) who considered potential evaporation as the consequence of regional evaporation due to atmospheric feedbacks. Using a heuristic approach, he derived a complementary relationship which, despite no real theoretical background, has proven to be very useful in interpreting many experimental data under various climatic conditions. Here, the relationship between actual and potential evaporation is reinterpreted in the context of the development of the convective boundary layer (CBL): first, with a closed-box approach, where the CBL has an impermeable lid; and then with an open system, where air is exchanged between the CBL and its external environment. By applying steady forcing to these systems, it is shown that an equilibrium state is reached, where potential evaporation has a specific equilibrium formulation as a function of two parameters: one representing large-scale advection and the other the feedback effect of regional evaporation on potential evaporation, i.e. a kind of “medium-scale advection”. It is also shown that the original form of Bouchet’s complementary relationship is not verified in the equilibrium state. This analysis leads us to propose a new and more rational approach of the relationship between potential and actual evaporation through the effective surface resistance of the region.

  3. Evaporation in the young solar nebula as the origin of 'just-right' melting of chondrules

    PubMed

    Cohen; Hewins; Yu

    2000-08-10

    Chondrules are millimetre-sized, solidified melt spherules formed in the solar nebula by an early widespread heating event of uncertain nature. They were accreted into chondritic asteroids, which formed about 4.56 billion years ago and have not experienced melting or differentiation since that time. Chondrules have diverse chemical compositions, corresponding to liquidus temperatures in the range 1,350-1,800 degrees C. Most chondrules, however, show porphyritic textures (consisting of large crystals in a distinctly finer grained or glassy matrix), indicative of melting within the narrow range 0-50 degrees C below the liquidus. This suggests an unusual heating mechanism for chondrule precursors, which would raise each individual chondrule to just the right temperature (particular to individual bulk composition) in order to form porphyritic textures. Here we report the results of isothermal melting of a chondritic composition at nebular pressures. Our results suggest that evaporation stabilizes porphyritic textures over a wider range of temperatures below the liquidus (about 200 degrees C) than previously believed, thus removing the need for individual chondrule temperature buffering. In addition, we show that evaporation explains many chondrule bulk and mineral compositions that have hitherto been difficult to understand.

  4. Kinetic effects on turbulence driven by the magnetorotational instability in black hole accretion

    NASA Astrophysics Data System (ADS)

    Sharma, Prateek

    Many astrophysical objects (e.g., spiral galaxies, the solar system, Saturn's rings, and luminous disks around compact objects) occur in the form of a disk. One of the important astrophysical problems is to understand how rotationally supported disks lose angular momentum, and accrete towards the bottom of the gravitational potential, converting gravitational energy into thermal (and radiation) energy. The magnetorotational instability (MRI), an instability causing turbulent transport in ionized accretion disks, is studied in the kinetic regime. Kinetic effects are important because radiatively inefficient accretion flows (RIAFs), like the one around the supermassive black hole in the center of our Galaxy, are collisionless. The ion Larmor radius is tiny compared to the scale of MHD turbulence so that the drift kinetic equation (DKE), obtained by averaging the Vlasov equation over the fast gyromotion, is appropriate for evolving the distribution function. The kinetic MHD formalism, based on the moments of the DKE, is used for linear and nonlinear studies. A Landau fluid closure for parallel heat flux, which models kinetic effects like collisionless damping, is used to close the moment hierarchy. We show, that the kinetic MHD and drift kinetic formalisms give the same set of linear modes for a Keplerian disk. The BGK collision operator is used to study the transition of the MRI from kinetic to the MHD regime. The ZEUS MHD code is modified to include the key kinetic MHD terms: anisotropy, pressure tensor and anisotropic thermal conduction. The modified code is used to simulate the collisionless MRI in a local shearing box. As magnetic field is amplified by the MRI, pressure anisotropy ( p [perpendicular] > p || ) is created because of the adiabatic invariance (m 0( p [perpendicular] / B ). Larmor radius scale instabilities---mirror, ion-cyclotron, and firehose---are excited even at small pressure anisotropies (D p/p ~ 1/b). Pressure isotropization due to pitch angle

  5. Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations

    NASA Astrophysics Data System (ADS)

    Hołyst, R.; Litniewski, M.; Jakubczyk, D.; Kolwas, K.; Kolwas, M.; Kowalski, K.; Migacz, S.; Palesa, S.; Zientara, M.

    2013-03-01

    Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms accompanying evaporation: temperature discontinuity at the liquid-vapour interface during evaporation and equilibration of pressures in the whole system during evaporation. None of these effects has been predicted previously by existing theories despite the fact that after 130 years of investigation the theory of evaporation was believed to be mature. These two effects call for reanalysis of existing experimental data and such is the goal of this review. In this article we analyse the experimental and the computational simulation data on the droplet evaporation of several different systems: water into its own vapour, water into the air, diethylene glycol into nitrogen and argon into its own vapour. We show that the temperature discontinuity at the liquid-vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417-28) is a rule rather than an exception. We show in computer simulations for a single-component system (argon) that this discontinuity is due to the constraint of momentum/pressure equilibrium during evaporation. For high vapour pressure the temperature is continuous across the liquid-vapour interface, while for small vapour pressures the temperature is discontinuous. The temperature jump at the interface is inversely proportional to the vapour density close to the interface. We have also found that all analysed data are described by the following equation: da/dt = P1/(a + P2), where a is the radius of the evaporating droplet, t is time and P1 and P2 are two parameters. P1 = -λΔT/(qeffρL), where λ is the thermal conductivity coefficient in the vapour at the interface, ΔT is the temperature difference between the liquid droplet and the vapour far

  6. Influence of accretion on lead in the Earth

    NASA Astrophysics Data System (ADS)

    Galer, Stephen J. G.; Goldstein, Steven L.

    The Pb abundance and isotope composition of the Earth is fundamentally altered from bulk solar system values by the processes occurring during accretion. The most important of the possible processes are volatile element loss and core formation, or some form of inhomogeneous accretion/condensation. The final result is an Earth highly impoverished in 204Pb and other Pb isotopes in primordial abundance. Depending on the exact timing, some radiogenic Pb is also lost either to space or to the core; the degree of loss occurs in the same order as the parent decay constants, namely 207Pb > 206Pb > 208Pb. In this contribution, we explore the likely effects accretion had on the Pb isotope composition of the present day bulk silicate Earth and its secular isotope evolution. This is used to address a number of questions: (1) What can be learned about accretion from the Pb isotope composition of the bulk silicate Earth? (2) Can effects of accretion reconcile the classical "Pb paradox" of a 206Pb-rich bulk silicate Earth? (3) What exactly is the meaning of the "age of the Earth" within the context of Pb isotopes? By consideration of a number of accretion scenarios it is demonstrated that Pb isotopes yield information only on the following two coupled quantities: Firstly, the accretion interval Δ T, the time between initial condensation of the solar nebula (at 4.566Ga) and when accretion-produced U/Pb fractionation (whether loss of Pb to the core or to space) in the silicate Earth ceased. Secondly, the mean 238U/204 Pb ratio μ during accretion—no details of changes in μ during the accretion interval can be resolved. The effects of accretion are thus adequately considered in terms of a simple two-stage model described by μ over ΔT followed by a postaccretion μ. The systematics of μ and ΔT are then examined for the cases of present day terrestrial reservoirs and Archean leads. These estimates of μ and ΔT for the present and past silicate Earth are not compatible with

  7. Technical Performance and Economic Evaluation of Evaporative and Membrane-Based Concentration for Biomass-Derived Sugars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, David A.; Stickel, Jonathan J.; Grundl, Nicholas J.

    Several conversion pathways of lignocellulosic biomass to advanced biofuels require or benefit from using concentrated sugar syrups of 600 g/L or greater. And while concentration may seem straightforward, thermal sugar degradation and energy efficiency remain major concerns. This study evaluated the trade-offs in product recovery, energy consumption, and economics between evaporative and membrane-based concentration methods. The degradation kinetics of xylose and glucose were characterized and applied to an evaporator process simulation. Though significant sugar loss was predicted for certain scenarios due to the Maillard reaction, industrially common falling-film plate evaporators offer short residence times (<5 min) and are expected tomore » limit sugar losses. Membrane concentration experiments characterized flux and sugar rejection, but diminished flux occurred at >100 g/L. A second step using evaporation is necessary to achieve target concentrations. Techno-economic process model simulations evaluated the overall economics of concentrating a 35 g/L sugar stream to 600 g/L in a full-scale biorefinery. A two-step approach of preconcentrating using membranes and finishing with an evaporator consumed less energy than evaporation alone but was more expensive because of high capital expenses of the membrane units.« less

  8. Technical Performance and Economic Evaluation of Evaporative and Membrane-Based Concentration for Biomass-Derived Sugars

    DOE PAGES

    Sievers, David A.; Stickel, Jonathan J.; Grundl, Nicholas J.; ...

    2017-09-18

    Several conversion pathways of lignocellulosic biomass to advanced biofuels require or benefit from using concentrated sugar syrups of 600 g/L or greater. And while concentration may seem straightforward, thermal sugar degradation and energy efficiency remain major concerns. This study evaluated the trade-offs in product recovery, energy consumption, and economics between evaporative and membrane-based concentration methods. The degradation kinetics of xylose and glucose were characterized and applied to an evaporator process simulation. Though significant sugar loss was predicted for certain scenarios due to the Maillard reaction, industrially common falling-film plate evaporators offer short residence times (<5 min) and are expected tomore » limit sugar losses. Membrane concentration experiments characterized flux and sugar rejection, but diminished flux occurred at >100 g/L. A second step using evaporation is necessary to achieve target concentrations. Techno-economic process model simulations evaluated the overall economics of concentrating a 35 g/L sugar stream to 600 g/L in a full-scale biorefinery. A two-step approach of preconcentrating using membranes and finishing with an evaporator consumed less energy than evaporation alone but was more expensive because of high capital expenses of the membrane units.« less

  9. Suppression of Electron Thermal Conduction by Whistler Turbulence in a Sustained Thermal Gradient

    NASA Astrophysics Data System (ADS)

    Roberg-Clark, G. T.; Drake, J. F.; Reynolds, C. S.; Swisdak, M.

    2018-01-01

    The dynamics of weakly magnetized collisionless plasmas in the presence of an imposed temperature gradient along an ambient magnetic field is explored with particle-in-cell simulations and modeling. Two thermal reservoirs at different temperatures drive an electron heat flux that destabilizes off-angle whistler-type modes. The whistlers grow to large amplitude, δ B /B0≃1 , and resonantly scatter the electrons, significantly reducing the heat flux. Surprisingly, the resulting steady-state heat flux is largely independent of the thermal gradient. The rate of thermal conduction is instead controlled by the finite propagation speed of the whistlers, which act as mobile scattering centers that convect the thermal energy of the hot reservoir. The results are relevant to thermal transport in high-β astrophysical plasmas such as hot accretion flows and the intracluster medium of galaxy clusters.

  10. Aerodynamic Simulation of Ice Accretion on Airfoils

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  11. The Evolution of Gas Giant Entropy During Formation by Runaway Accretion

    NASA Astrophysics Data System (ADS)

    Berardo, David; Cumming, Andrew; Marleau, Gabriel-Dominique

    2017-01-01

    We calculate the evolution of gas giant planets during the runaway gas accretion phase of formation, to understand how the luminosity of young giant planets depends on the accretion conditions. We construct steady-state envelope models, and run time-dependent simulations of accreting planets with the code Modules for Experiments in Stellar Astrophysics. We show that the evolution of the internal entropy depends on the contrast between the internal adiabat and the entropy of the accreted material, parametrized by the shock temperature T 0 and pressure P 0. At low temperatures ({T}0≲ 300-1000 {{K}}, depending on model parameters), the accreted material has a lower entropy than the interior. The convection zone extends to the surface and can drive a high luminosity, leading to rapid cooling and cold starts. For higher temperatures, the accreted material has a higher entropy than the interior, giving a radiative zone that stalls cooling. For {T}0≳ 2000 {{K}}, the surface-interior entropy contrast cannot be accommodated by the radiative envelope, and the accreted matter accumulates with high entropy, forming a hot start. The final state of the planet depends on the shock temperature, accretion rate, and starting entropy at the onset of runaway accretion. Cold starts with L≲ 5× {10}-6 {L}⊙ require low accretion rates and starting entropy, and the temperature of the accreting material needs to be maintained close to the nebula temperature. If instead the temperature is near the value required to radiate the accretion luminosity, 4π {R}2σ {T}04˜ ({GM}\\dot{M}/R), as suggested by previous work on radiative shocks in the context of star formation, gas giant planets form in a hot start with L˜ {10}-4 {L}⊙ .

  12. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. Themore » Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  13. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  14. The MagAO Giant Accreting Protoplanet Survey (GAPlanetS): Recent Results

    NASA Astrophysics Data System (ADS)

    Follette, Katherine; Close, Laird; Males, Jared; Morzinski, Katie; Leonard, Clare; MagAO

    2018-01-01

    I will summarize recent results of the MagAO Giant Accreting Protoplant Survey (GAPlanetS), a search for accreting protoplanets at H-alpha inside of transitional disk gaps. These young, centrally-cleared circumstellar disks are often hosted by stars that are still actively accreting, making it likely that any planets that lie in their central cavities will also be actively accreting. Through differential imaging at Hydrogen-alpha using Magellan's visible light adaptive optics system, we have completed the first systematic search for H-alpha emission from accreting protoplanets in fifteen bright Southern hemisphere transitional disks. I will present results from this survey, including a second epoch on the LkCa 15 system that shows several accreting protoplanet candidates.

  15. Physics-Based Spectra of Accretion Disks around Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2005-01-01

    The purpose of this grant was to begin the process of deriving the light output of accretion disks around black holes directly from the actual processes that inject heat into the accreting matter, rather than from guessed dependences of heating rate on physical parameters. At JHU, the effort has focussed so far on models of accretion onto "intermediate mass black holes", a possible class of black holes, examples of which may have recently been discovered in nearby galaxies. There, Krolik and his student (Yawei Hui) have computed stellar atmospheres for uniformly-heated disks around this class of black holes. Their models serve two purposes: they are the very first serious attempts to compute the spectrum from accreting black holes in this mass range; and a library of such models can be used later in this program as contrasts for those computed on the basis of real disk dynamics. The output from these local disk calculations has also been successfully coupled to a program that applies the appropriate relativistic transformations and computes photon trajectories in order to predict the spectrum received by observers located at different polar angles. The principal new result of these calculations is the discovery of potentially observable ionization edges of H-like C and O at frequencies near the peak in flux from these objects. Most of the grant money at UCSB was spent on supporting graduate student Shane Davis. In addition. some money was spent on supporting two other students: Ari Socrates (now a Hubble Fellow at Princeton), and Laura Melling. Davis spent the year constructing stellar atmosphere models of accretion disks appropriate for the high/soft (thermal) state of black hole X-ray binaries. As with AGN models published previously by our collaboration with NASA support. our models include a complete general relativistic treatment of both the disk structure and the propagation of photons from the disk to a distant observer. They also include all important

  16. Non-thermal X-ray emission from tidal disruption flares

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas

    2016-09-01

    A star that passes too close to a supermassive black hole will be disrupted by the black hole's tidal gravity. The result is a flare of thermal emission at optical and X-ray frequencies. The return rate of stellar debris decreases from highly super-Eddington to sub-Eddington in a few years, making stellar tidal disruptions flares (TDFs) a unique laboratory to study accretion physics. In one class of models, the optical emission is due to reprocessing of the X-ray photons, thus explaining the lack of X-ray detections from optically selected TDFs. After a few years, the outer reprocessing regions will dilute, allowing us to observe any non-thermal emission from the inner disk. Here we propose Chandra observations to measure the luminosity of newly formed accretion disks in two known TDFs.

  17. Evaporation from soils subjected to natural boundary conditions at the land-atmospheric interface

    NASA Astrophysics Data System (ADS)

    Smits, K.; Illngasekare, T.; Ngo, V.; Cihan, A.

    2012-04-01

    Bare soil evaporation is a key process for water exchange between the land and the atmosphere and an important component of the water balance in semiarid and arid regions. However, there is no agreement on the best methodology to determine evaporation under different boundary conditions at the land surface. This becomes critical in developing models that couples land to the atmosphere. Because it is difficult to measure evaporation from soil, with the exception of using lysimeters, numerous formulations have been proposed to establish a relationship between the rate of evaporation and soil moisture and/or soil temperature and thermal properties. Different formulations vary in how they partition available energy. A need exists to systematically compare existing methods to experimental data under highly controlled conditions not achievable in the field. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmospheric interface to test different conceptual and mathematical formulations for the soil surface boundary conditions to develop appropriate numerical models to be used in simulations. In this study, to better understand the coupled water-vapor-heat flow processes in the shallow subsurface near the land surface, we modified a previously developed theory by Smits et al. [2011] that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion to better account for dry soil conditions. The model did not implement fitting parameters such as a vapor enhancement factor that is commonly introduced into the vapor diffusion coefficient as an arbitrary multiplication factor. In order to experimentally test the numerical formulations/code, we performed a two-dimensional physical model experiment under varying boundary conditions using test sand for which the hydraulic and thermal properties were well characterized. Precision data under well-controlled transient heat and

  18. Development of flat-plate solar plate collector: Evaporator

    NASA Astrophysics Data System (ADS)

    Abramzon, B.; Yaron, I.

    1981-11-01

    In the present study the thermal performance of a flat plate solar collector is analyzed theoretically for the case in which the working fluid may undergo a phase change within the tubes of the collector. In addition to the common domestic applications, such a collector - evaporator may be used as a generator of vapors for the production of mechanical or electrical energy, e.g., solar water pumps, solar power stations, etc., as well as for solar - powered absorption refrigeration machines, distillation installations, etc.

  19. Observational diagnostics of accretion on young stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  20. On the illumination of neutron star accretion discs

    NASA Astrophysics Data System (ADS)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.