Sample records for accretion-powered emission lines

  1. Steep Hard-X-ray Spectra Indicate Extremely High Accretion Rates in Weak Emission-Line Quasars

    NASA Astrophysics Data System (ADS)

    Marlar, Andrea; Shemmer, Ohad; Anderson, Scott F.; Brandt, W. Niel; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Luo, Bin; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Wu, Jianfeng

    2018-06-01

    We present XMM-Newton imaging spectroscopy of ten weak emission-line quasars (WLQs) at 0.928 ≤ z ≤ 3.767, six of which are radio quiet and four which are radio intermediate. The new X-ray data enabled us to measure the hard-X-ray power-law photon index (Γ) in each source with relatively high accuracy. These measurements allowed us to confirm previous reports that WLQs have steeper X-ray spectra, therefore indicating higher accretion rates with respect to "typical" quasars. A comparison between the Γ values of our radio-quiet WLQs and those of a carefully-selected, uniform sample of 84 quasars shows that the first are significantly higher, at the ≥ 3σ level. Collectively, the four radio-intermediate WLQs have lower Γ values with respect to the six radio-quiet WLQs, as may be expected if the spectra of the first group are contaminated by X-ray emission from a jet. These results suggest that, in the absence of significant jet emission along our line of sight, WLQs constitute the extreme high end of the accretion rate distribution in quasars. We detect soft excess emission in our lowest-redshift radio-quiet WLQ, in agreement with previous findings suggesting that the prominence of this feature is associated with a high accretion rate. We have not detected signatures of Compton reflection, Fe Kα lines, or strong variability between two X-ray epochs in any of our WLQs.

  2. DISSECTING THE POWER SOURCES OF LOW-LUMINOSITY EMISSION-LINE GALAXY NUCLEI VIA COMPARISON OF HST-STIS AND GROUND-BASED SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Anca; Castillo, Christopher A.; Shields, Joseph C.

    Using a sample of ∼100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of Hα and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which transition objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at ≲10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in themore » line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The transition objects show a threefold increase in the incidence of broad Hα emission in the high-resolution data, as well as the strongest density gradients, supporting the composite model for these systems as accreting sources surrounded by star-forming activity. The narrow-line LINERs appear to be the weaker counterparts of the Type 1 LINERs, where the low accretion rates cause the disappearance of the broad-line component. The enhanced sensitivity of the HST observations reveals a 30% increase in the incidence of accretion-powered systems at z ≈ 0. A comparison of the strength of the broad-line emission detected at different epochs implies potential broad-line variability on a decade-long timescale, with at least a factor of three in amplitude.« less

  3. The Intensity Modulation of the Fluorescent Line by a Finite Light Speed Effect in Accretion-powered X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Kitamoto, Shunji; Hoshino, Akio

    2017-11-01

    The X-ray line diagnostic method is a powerful tool for an investigation of plasma around accretion-powered X-ray pulsars. We point out an apparent intensity modulation of emission lines, with their rotation period of neutron stars, due to the finite speed of light (we call this effect the “finite light speed effect”) if the line emission mechanism is a kind of reprocessing, such as fluorescence or recombination after ionization by X-ray irradiation from pulsars. The modulation amplitude is determined by the size of the emission region, which is in competition with the smearing effect by the light crossing time in the emission region. This is efficient if the size of the emission region is roughly comparable to that of the rotation period multiplied by the speed of light. We apply this effect to a symbiotic X-ray pulsar, GX 1+4, where a spin modulation of the intense iron line of which has been reported. The finite light speed effect can explain the observed intensity modulation if its fluorescent region is the size of ˜ {10}12 cm.

  4. Impacts of fragmented accretion streams onto classical T Tauri stars: UV and X-ray emission lines

    NASA Astrophysics Data System (ADS)

    Colombo, S.; Orlando, S.; Peres, G.; Argiroffi, C.; Reale, F.

    2016-10-01

    Context. The accretion process in classical T Tauri stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV-band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims: We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams. We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods: We modeled the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through two-dimensional (2D) magnetohydrodynamic (MHD) simulations. We explored different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 Å) and O VIII (18.97 Å) line profiles. Results: The impacts of accreting blobs onto the stellar chromosphere produce reverse shocks propagating through the blobs and shocked upflows. These upflows, in turn, hit and shock the subsequent downfalling fragments. As a result, several plasma components differing for the downfalling velocity, density, and temperature are present altoghether. The profiles of C IV doublet are characterized by two main components: one narrow and redshifted to speed ≈ 50 km s-1 and the other broader and consisting of subcomponents with redshift to speed in the range 200-400 km s-1. The profiles of O VIII lines appear more symmetric than C IV and are redshifted to speed ≈ 150 km s-1. Conclusions: Our model predicts profiles of C IV line remarkably similar to those observed and explains their origin in a natural way as due to stream fragmentation. Movies are available at http://www.aanda.org

  5. On the Calculation of the Fe K-alpha Line Emissivity of Black Hole Accretion Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawczynski, H.; Beheshtipour, B., E-mail: krawcz@wustl.edu

    Observations of the fluorescent Fe K α emission line from the inner accretion flows of stellar mass black holes in X-ray binaries and supermassive black holes in active galactic nuclei have become an important tool to study the magnitude and inclination of the black hole spin, and the structure of the accretion flow close to the event horizon of the black hole. Modeling spectral, timing, and soon also X-ray polarimetric observations of the Fe K α emission requires the calculation of the specific intensity in the rest frame of the emitting plasma. We revisit the derivation of the equation usedmore » for calculating the illumination of the accretion disk by the corona. We present an alternative derivation leading to a simpler equation, and discuss the relation to previously published results.« less

  6. A Benchmark Experiment for Photoionized Plasma Emission from Accretion-Powered X-ray Sources

    NASA Astrophysics Data System (ADS)

    Loisel, G.; Bailey, J.; Nagayama, T.; Hansen, S.; Rochau, G.; Liedahl, D.; Fontes, C.; Kallman, T.; Mancini, R.

    2017-10-01

    Accretion-powered emission from X-ray binaries or black-hole accretion in Active Galactic Nuclei is a powerful diagnostic for their behavior and structure. Interpretation of x-ray emission from these objects requires a spectral synthesis model for photoionized plasma. Models must predict the photoionized charge state distribution, the photon emission processes, and the radiation transport influence on the observed emission. At the Z facility, we have measured simultaneously emission and absorption from a photoionized silicon plasma suitable to benchmark photoionization and spectrum formation models with +/-5% reproducibility and E/dE >2500 spectral resolution. Plasma density, temperature, and charge state distribution are determined with absorption spectroscopy. Self-emission measured at adjustable column densities tests radiation transport effects. Observation of 14 transitions in He-like silicon will help understand population mechanisms in a photoionized plasma. First observation of radiative recombination continuum in a photoionized plasma will be presented. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  7. Ultraviolet line diagnostics of accretion disk winds in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Vitello, Peter; Shlosman, Isaac

    1993-01-01

    The IUE data base is used to analyze the UV line shapes of the cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating biconical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low-inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they: (1) require a much lower ratio of mass-loss rate to accretion rate and are therefore more plausible energetically; (2) provide a natural source for a biconical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low-inclination systems and pure line emission profiles at high inclination with the absence of eclipses in UV lines; and (3) produce rotation-broadened pure emission lines at high inclination.

  8. UV line diagnostics of accretion disk winds in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Vitello, Peter; Shlosman, Isaac

    1992-01-01

    The IUE data base is used to analyze the UV line shapes of cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating bi-conical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3-D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they (1) require a much lower ratio of mass loss rate to accretion rate and are therefore more plausible energetically, (2) provide a natural source for a bi-conical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low inclination systems, and pure line emission profiles at high inclination with the absence of eclipses in UV lines, and (3) produce rotation broadened pure emission lines at high inclination.

  9. Probing Stellar Accretion with Mid-infrared Hydrogen Lines

    NASA Astrophysics Data System (ADS)

    Rigliaco, Elisabetta; Pascucci, I.; Duchene, G.; Edwards, S.; Ardila, D. R.; Grady, C.; Mendigutía, I.; Montesinos, B.; Mulders, G. D.; Najita, J. R.; Carpenter, J.; Furlan, E.; Gorti, U.; Meijerink, R.; Meyer, M. R.

    2015-03-01

    In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81 μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 1010-1011 cm-3. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10-10 M ⊙ yr-1. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.

  10. Pulse-phase dependence of emission lines in the X-ray pulsar 4U 1626-67

    NASA Astrophysics Data System (ADS)

    Beri, Aru; Paul, Biswajit; Dewangan, Gulab C.

    2015-07-01

    We present results from a pulse-phase-resolved spectroscopy of the complex emission lines around 1 keV in the unique accretion-powered X-ray pulsar 4U 1626-67, using the observation made with XMM-Newton in 2003. In this source, the redshifted and blueshifted emission lines and the linewidths measured earlier with Chandra suggest their accretion-disc origin. Another possible signature of lines produced in the accretion disc can be a modulation of the line strength with the pulse phase. We have found that the line fluxes have pulse-phase dependence, making 4U 1626-67 only the second pulsar after Hercules X-1 to show such variability. The O VII line at 0.568 keV from 4U 1626-67 varied by a factor of ˜4, stronger than the continuum variability, which supports the accretion-disc origin. The line flux variability can appear due to variable illumination of the accretion disc by the pulsar or, more likely, a warp-like structure in the accretion disc. We also discuss some further possible diagnostics of the accretion disc in 4U 1626-67 with pulse-phase-resolved emission-line spectroscopy.

  11. EMISSION SIGNATURES FROM SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES. I. DIAGNOSTIC POWER OF BROAD EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Khai; Bogdanović, Tamara

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks thatmore » are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.« less

  12. Accretion, winds and jets: High-energy emission from young stellar objects

    NASA Astrophysics Data System (ADS)

    Günther, Hans Moritz

    2009-03-01

    Stars form by gravitational collapse from giant molecular clouds. Due to the conservation of angular momentum this collapse does not happen radially, but the matter forms circumstellar disk first and is consequently accreted from the disk onto the star. This thesis deals with the high-energy emission from young stellar objects, which are on the one hand still actively accreting from their disk, and on the other hand are no longer deeply obscured by their natal cloud. Stars of spectral type B and A are called Herbig Ae/Be (HAeBe) stars in this stage, all stars of later spectral type are termed classical T Tauri stars (CTTS); strictly speaking both types are defined by spectroscopic signatures, which are equivalent to the evolutionary stage described above. In this thesis CTTS and HAeBes are studied through high-resolution X-ray and UV spectroscopy and through detailed physical simulations. Spectroscopic X-ray data is reduced and presented for two targets: The CTTS V4046 Sgr was observed with Chandra for 100 ks, using a high-resolution grating spectrometer. The lightcurve contains one flare and the He-like triplets of SiXIII, NeIX and OVII indicate high densities in the X-ray emitting regions. The second target is the HAeBe HD 163296, which was observed with XMM-Newton for 130 ks. The lightcurve shows only moderate variability, the elemental abundance follows a pattern, that is usual for active stars. The He-like triplet of OVII exhibits line ratios similar to coronal sources, indicating that neither a high density nor a strong UV-field is present in the region of the X-ray emission. Using these and similar observations, it can be concluded that at least three mechanisms contribute to the observed high-energy emission from CTTS: First, those stars have active coronae similar to main-sequence stars, second, the accreted material passes through a strong accretion shock at the stellar surface, which heats it to a few MK, and, third, some CTTS drive powerful outflows

  13. The Loopy Ultraviolet Line Profiles of RU Lupi: Accretion, Outflows, and Fluorescence

    NASA Astrophysics Data System (ADS)

    Herczeg, Gregory J.; Walter, Frederick M.; Linsky, Jeffrey L.; Gahm, Gösta F.; Ardila, David R.; Brown, Alexander; Johns-Krull, Christopher M.; Simon, Michal; Valenti, Jeff A.

    2005-06-01

    We present far-ultraviolet (FUV) spectra of the classical T Tauri star RU Lup covering the 912-1710 Å spectral range, as observed by the Hubble Space Telescope STIS and the Far Ultraviolet Spectroscopic Explorer satellite. We use these spectra, which are rich in emission and absorption lines, to probe both the accreting and outflowing gas. Absorption in the Lyα profile constrains the extinction to AV~0.07 mag, which we confirm with other diagnostics. We estimate a mass accretion rate of (5+/-2)×10-8 Msolar yr-1 using the optical-NUV accretion continuum. The accreting gas is also detected in bright, broad lines of C IV, Si IV, and N V, which all show complex structures across the line profile. Many other emission lines, including those of H2 and Fe II, are pumped by Lyα. RU Lup's spectrum varies significantly in the FUV; our STIS observations occurred when RU Lup was brighter than several other observations in the FUV, possibly because of a high mass accretion rate.

  14. Constraining the Accretion Mode in LINER 1.9s

    NASA Astrophysics Data System (ADS)

    Sabra, Bassem; Der Sahaguian, Elias; Badr, Elie

    2016-01-01

    The accretion mode and the dominant power source in low-ionization nuclear emission-line regions (LINERs), a class of active galactic nuclei (AGN), are still elusive. We focus on a sample of 22 LINER 1.9s (Ho et al. 1997), a subclass of LINERs that show broad Halpha lines, a signature of blackhole-powered accretion, to test the hypothesis that the ionizing continuum emitted by a radiatively inefficient accretion flow (RIAF) could lead to the LINER ultraviolet (UV) emission-line ratios. Optical line-ratio diagrams are a weak diagnostic tool in distinguishing between possible power sources (Sabra et al. 2003). We search the Mikulski Archive for Space Telescopes (MAST) for UV spectra of the objects in the above sample and also perform photoionization simulations using CLOUDY (Ferland et al. 2013). Unfortunately, only one object (NGC 1052; Gabel et al. 2000) of the 22 LINER 1.9s has UV spectra that cover many emission lines; the rest of the objects either do not have any UV spectra, the spectral coverage is in-adequate, or the spectra have very low signal-to-noise ratios. Our photoionization simulations set up two identical grids of clouds with a range of densities and ionization parameters. We illuminate one grid with radiation emitted by a thin accretion disk (AD) and we illuminate the other grid with radiation from a RIAF. We overplot the UV emission-line ratio predictions for AD and RIAF illumination, together with the available line ratios for NGC 1052. Initial results show that UV lines could be used as diagnostics for the accretion mode in AGN. More UV spectral coverage of LINER 1.9s is needed in order to more fully utilize the diagnostic powers of UV emission line ratios.

  15. Probing the accretion flow and emission-line regions of M81, the nearest broad-lined low-luminosity AGN

    NASA Astrophysics Data System (ADS)

    Barth, Aaron

    2017-08-01

    The nucleus of M81 is an object of singular importance as a template for low-luminosity accretion flows onto supermassive black holes. We propose to obtain a complete, small-aperture, high S/N STIS UV/optical spectrum of the M81 nucleus and multi-filter WFC3 imaging covering the UV through near-IR. Such data have never previously been obtained with HST; the only prior archival UV/optical spectra of M81 have low S/N, incomplete wavelength coverage, and are strongly contaminated by starlight. Combined with new Chandra X-ray data, our proposed observations will comprise the definitive reference dataset on the spectral energy distribution of this benchmark low-luminosity AGN. These data will provide unique new constraints on the possible contribution of a truncated thin accretion disk to the AGN emission spectrum, clarifying a fundamental property of low-luminosity accretion flows. The data will additionally provide new insights into broad-line region structure and black hole mass scaling relationships at the lowest AGN luminosities, and spatially resolved diagnostics of narrow-line region excitation conditions at unprecedented spatial resolution to assess the impact of the AGN on the ionization state of the gas in the host galaxy bulge.

  16. Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauche, C W; Liedahl, D A; Mathiesen, B F

    By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly{alpha}, He{alpha}, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux ofmore » the Ly{alpha} and He{alpha} emission lines of H- and He-like C and O escaping the disk atmosphere.« less

  17. Beyond the Standard Scheme for Relativistic Spectral Line Profiles from Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Karas, Vladimir; Sochora, V.; Svoboda, J.; Dovciak, M.

    2011-09-01

    Spectral features can arise by reflection of coronal X-rays on a black hole accretion disc. The resulting profile bears various imprints of strong gravitational field acting on the light emitting gas. We study if the currently discussed instruments on-board X-ray satellites will be able to reveal the departure of the line radial emissivity from a simple smooth power-law function, which is often assumed in data fitting and interpretation. Such a departure can be a result of excess emission occurring at a certain distance. This could be used to study variations with radius of the line production or to constrain the position of the inner edge of the accretion disc. By simulating artificial data from a bright active galactic nucleus we show that the required sensitivity and energy resolution could be reached with Large Area Detector of the proposed LOFT mission.

  18. The power of relativistic jets is larger than the luminosity of their accretion disks.

    PubMed

    Ghisellini, G; Tavecchio, F; Maraschi, L; Celotti, A; Sbarrato, T

    2014-11-20

    Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central supermassive black hole, as well as from the magnetic field near the event horizon. The physical mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous samples used prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power, as measured through the γ-ray luminosity, and accretion luminosity, as measured by the broad emission lines, with the jet power dominating the disk luminosity, in agreement with numerical simulations. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter.

  19. No Compton Reflection In a Chandra/RXTE Observation of Mkn 509: Implications for the Fe-K Line Emission From Accreting X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; Padmanabhan, Urmila; Kraemer, Steven B.; Crenshaw, D. Michael; Mckernan, Barry; George, Ian M.; Turner, T. Jane; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the results of simultaneous Chandra and RXTE observations of the Seyfert 1 galaxy Mkn 509. We deconvolve the broad and narrow Fe-K emission-line components for which we measure rest-frame equivalent widths of 119+/-18 eV and 57+/-13 eV respectively. The broad line has a FWHM of 57,600((sup 14,400)(sub -21,000)) km/s and the narrow line is unresolved, with an upper limit on the FWHM of 4,940 km/s. Both components must originate in cool matter since we measure rest-frame center energies of 6.36((sup +0.13)(sub -0.12)) keV and 6.42+/-0.01 keV for the broad and narrow line respectively. This rules out He-like and H-like Fe for the origin of both the broad and narrow lines. If, as is widely accepted, the broad Fe-K line originates in Thomson-thick matter (such as an accretion disk), then one expects to observe spectral curvature above approximately 10 keV, (commensurate with the observed broad line), characteristic of the Compton-reflection continuum. However our data sets very stringent limits on deviations of the observed continuum from a power law. Light travel-time delays cannot be invoked to explain anomalies in the relative strengths of the broad Ferry line and Compton-reflection continuum since they are supposed to originate in the same physical location. We are forced to conclude that both the broad and narrow Fe-K lines had to originate in Thomson-thin matter during our observation. This result, for a single observation of just one source, means that our understanding of Fe K line emission and Compton reflection from accreting X-ray sources in general needs to be re-examined. For example, if an irradiated accretion disk existed in Mkn 509 at the time of the observations, the lack of spectral curvature above approximately 10 keV suggests two possibilities. Either the disk was Thomson-thick and highly ionized, having negligible Fe-K line emission and photoelectric absorption or the disk was Thomson-thin producing some or all of the broad Fe-K line

  20. Line formation in the hot spot region of cataclysmic variable accretion disks

    NASA Technical Reports Server (NTRS)

    Elitzur, Moshe; Clarke, John T.; Kallman, T. R.

    1988-01-01

    The paper presents a theoretical analysis of the emission lines observed in the cataclysmic variable A0 Psc (=H2252-035), including detailed modeling of the hydrogen Balmer line emission. The analysis makes it possible to deduce the physical conditions in the so called 'hot spot', or 'bulge' region where the accretion column hits the rim of the accretion disk. It is concluded that the bulge is optically thick to the ionizing disk radiation. Consequently, its disk illuminated face is fully ionized whereas the side facing away from the disk is neutral, resulting in modulation of the observed emission lines with the orbital period. The density in the hot spot is about 5 x 10 to the 12th to 10 to the 13th/cu cm.

  1. On the illumination of neutron star accretion discs

    NASA Astrophysics Data System (ADS)

    Wilkins, D. R.

    2018-03-01

    The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.

  2. Variability of FUV Emission Line in Classical T Tauri Stars as a Diagnostic for Disc Accretion

    NASA Astrophysics Data System (ADS)

    Ramkumar, B.; Johns-Krull, C. M.

    2005-12-01

    We present our results of FUV emission line variability studies done on four classical T Tauri stars. We have used the IUE Final Archive spectra of pre-main sequence stars to analyze the sample of four stars BP Tau, DR Tau, RU Lup and RY Tau where each of these low-resolution (R ˜6 Å) spectra was observed in the IUE short-wavelength band pass (1150--1980Å). Given a broad time line of multiple observations being available from the IUE Final archive, an intrinsic variability study has been possible with this sample. Our results indicate that the transition region lines \\ion{Si}{4} and \\ion{C}{4}, produced near the accretion shocks at ˜105 K, have a strong correlation between them in all four stars except DR Tau. We also observe a strong correlation between \\ion{C}{4} & \\ion{He}{2} on our entire sample with a correlation coefficient of 0.549 (false alarm probability = 7.9 x 10-2) or higher. In addition, \\ion{He}{2} correlates with the molecular hydrogen (1503Å) line in all but RU Lup. If the \\ion{He}{2} lines are produced because of X-ray ionization then the observed molecular hydrogen emission is indeed controlled by X-ray ionization and therefore \\ion{He}{2} could serve as an X-ray proxy for future studies. Also, our correlation results strengthen the fact that \\ion{C}{4} is a good predictor of \\ion{Si}{4} and have a common origin i.e. in accretion shocks in the star formation process.

  3. Swings between rotation and accretion power in a binary millisecond pulsar.

    PubMed

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  4. Super-Eddington Mechanical Power of an Accreting Black Hole in M83

    NASA Technical Reports Server (NTRS)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.

    2014-01-01

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  5. Super-Eddington mechanical power of an accreting black hole in M83.

    PubMed

    Soria, R; Long, K S; Blair, W P; Godfrey, L; Kuntz, K D; Lenc, E; Stockdale, C; Winkler, P F

    2014-03-21

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(40) erg second(-1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  6. UV And X-Ray Emission from Impacts of Fragmented Accretion Streams on Classical T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Colombo, Salvatore; Orlando, Salvatore; Peres, Giovanni; Argiroffi, Costanza; Reale, Fabio

    2016-07-01

    According to the magnetoshperic accretion scenario, during their evo- lution, Classical T Tauri stars accrete material from their circumstellar disk. The accretion process is regulated by the stellar magnetic eld and produces hot and dense post-shocks on the stellar surface as a result of impacts of the downfalling material. The impact regions are expected to strongly radiate in UV and X-rays. Several lines of evidence support the magnetospheric accretion scenario, especially in optical and infrared bands. However several points still remain unclear as, for instance,where the complex-pro le UV lines originate, or whether and how UV and X-ray emission is produced in the same shock region. The analysis of a large solar eruption has shown that EUV excesses might be e ectively produced by the impact of dense fragments onto the stellar surface. Since a steady accretion stream does not reprouce observations, in this work we investi- gate the e ects of a fragmented accretion stream on the uxes and pro les of C IV and O VIII emission lines. To this end we model the impact of a fragmented accretion stream onto the chromosphere of a CTTS with 2D axysimmetric magneto-hydrodynamic simulations. Our model takes into account of the gravity, the stellar magnetic eld, the thermal conduction and the radiative cooling from an optically thin plasma. From the model results, we synthesize the UV and X-ray emission including the e ect of Doppler shift along the line of sight. We nd that a fragmented accretion stream produces complex pro les of UV emission lines which consists of multiple components with di erent Doppler shifts. Our model predicts line pro les that are consistent with those observed and explain their origin as due to the stream fragmentation.

  7. Spectroscopic diagnostics of UV power and accretion in T Tauri stars

    NASA Astrophysics Data System (ADS)

    Brooks, D. H.; Costa, V. M.

    2003-02-01

    It is known that in the upper atmospheres of the Sun and some late-type stars there is a systematic relationship between the optically thin total radiated power and the power emitted by single spectral lines. Using recently derived emission-measure distributions from IUE spectra for BP Tau, CV Cha, RY Tau, RU Lupi and GW Ori, we demonstrate that this is also true for classical T Tauri stars (CTTSs). As in the solar case it is found that the CIV resonance doublet at 1548 Å is also the most accurate indicator of the total radiated power from the atmospheres of CTTSs. Since the total radiated-power density in CTTSs exceeds that of the Sun by over three orders of magnitude we derive new analytic expressions that can be used to estimate the values for these stars. We also discuss the implications of these results with regard to the influence or absence of accretion in this sample of stars and suggest that the method can be used to infer properties of the geometrical structure of the emission regions. As a demonstration case we also use archived HST-GHRS data to estimate the total radiative losses in the UV emitting region of BP Tau. We find values of 4.57 × 109 erg cm-2 s-1 and 5.11 × 1032 erg s-1 dependent on the geometry of the emission region. These results are several orders of magnitude larger than would be expected if the UV emission came primarily from an atmosphere covered in solar-like active regions and are closer to values associated with solar flares. They lead to luminosity estimates of 0.07 and 0.13 Lsolar, respectively, which are in broad agreement with results obtained from theoretical accretion shock models. Taken together they suggest that accretion may well be the dominant contributor to the UV emission in BP Tau.

  8. Pulsed Thermal Emission from the Accreting Pulsar XMMU J054134.7-682550

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonis; Walter, Roland; Audard, Marc; Lanz, Thierry

    2009-05-01

    XMMU J054134.7-682550, located in the LMC, featured a type II outburst in August 2007. We analyzed XMM-Newton (EPIC-MOS) and RXTE (PCA) data in order to derive the spectral and temporal characteristics of the system throughout the outburst. Spectral variability, spin period evolution, energy dependent pulse shape are discussed. The outburst (LX~3×1038 erg/s~LEDD) spectrum can be modeled using, cutoff power law, soft X-ray blackbody, disk emission, and cyclotron absorption line. The blackbody component shows a sinusoidal behavior, expected from hard X-ray reprocessing on the inner edge of the accretion disk. The thickness of the inner accretion disk (width of ~75 km) can be constrained. The spin-up of the pulsar during the outburst is the signature of a (huge) accretion rate. Simbol-X will provide similar capabilities as XMM-Newton and RXTE together, for such bright events.

  9. Magnetospheric accretion models for T Tauri stars. 1: Balmer line profiles without rotation

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Hewett, Robert; Calvet, Nuria

    1994-01-01

    We argue that the strong emission lines of T Tauri stars are generally produced in infalling envelopes. Simple models of infall constrained to a dipolar magnetic field geometry explain many peculiarities of observed line profiles that are difficult, if not impossible, to reproduce with wind models. Radiative transfer effects explain why certain lines can appear quite symmetric while other lines simultaneously exhibit inverse P Cygni profiles, without recourse to complicated velocity fields. The success of the infall models in accounting for qualitative features of observed line profiles supports the proposal that stellar magnetospheres disrupt disk accretion in T Tauri stars, that true boundary layers are not usually present in T Tauri stars, and that the observed 'blue veiling' emission arises from the base of the magnetospheric accretion column.

  10. HeI lambda 10830 line: a probe of the accretion/ejection activity in RU Lupi .

    NASA Astrophysics Data System (ADS)

    Podio, L.; Garcia, P. J. V.; Bacciotti, F.

    Most of the observed lines and continuum emission excesses from Classical T Tauri Stars (CTTSs) take place at the star-disk interface or in the inner disk region. These regions have a complex emission topology still largely unknown. The HeI lambda 10830 line showed to be a powerful instrument to trace both accreting matter, in emission, and outflowing gas via the frequently detected absorption features. To fully exploit the diagnostic potential of this line we performed a spectro-astrometric analysis of the spectra of the TTS RU Lupi, taken with ISAAC at the VLT. The analysis highlighted a displacement with respect to the source of the region where the absorption feature is generated. This indicates the presence of both an inner stellar wind and a collimated micro-jet in the circumstellar region of RU Lupi.

  11. Accretion dynamics of EX Lupi in quiescence. The star, the spot, and the accretion column

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Fang, Min; Roccatagliata, Veronica; Collier Cameron, Andrew; Kóspál, Ágnes; Henning, Thomas; Ábrahám, Peter; Sipos, Nikoletta

    2015-08-01

    Context. EX Lupi is a young, accreting M0 star and the prototype of EXor variable stars. Its spectrum is very rich in emission lines, including many metallic lines with narrow and broad components. The presence of a close companion has also been proposed, based on radial velocity signatures. Aims: We use the metallic emission lines to study the accretion structures and to test the companion hypothesis. Methods: We analyse 54 spectra obtained during five years of quiescence time. We study the line profile variability and the radial velocity of the narrow and broad metallic emission lines. We use the velocity signatures of different species with various excitation conditions and their time dependency to track the dynamics associated with accretion. Results: We observe periodic velocity variations in the broad and the narrow line components, consistent with rotational modulation. The modulation is stronger for lines with higher excitation potentials (e.g. He II), which are likely produced in a confined area very close to the accretion shock. Conclusions: We propose that the narrow line components are produced in the post-shock region, while the broad components originate in the more extended, pre-shock material in the accretion column. All the emission lines suffer velocity modulation due to the rotation of the star. The broad components are responsible for the line-dependent veiling observed in EX Lupi. We demonstrate that a rotationally modulated line-dependent veiling can explain the radial velocity signature of the photospheric absorption lines, making the close-in companion hypothesis unnecessary. The accretion structure is locked to the star and very stable during the five years of observations. Not all stars with similar spectral types and accretion rates show the same metallic emission lines, which could be related to differences in temperature and density in their accretion structure(s). The contamination of photospheric signatures by accretion

  12. Cosmic Evolution of Accretion Power and Fusion Power: AGN and Starbursts at High Redshifts

    NASA Astrophysics Data System (ADS)

    Arnold Malkan, Matthew

    2009-05-01

    Extragalactic astronomers have been working for decades on obtaining robust measures of the luminosities galaxies produce from stars, and from active galactic nuclei. Our ultimate goal is deriving the cosmic evolution of all radiation produced by fusion and by black hole accretion. The combined effects of dust reddening and redshift make it impossible to achieve this with optical observations alone. Fortunately, infrared thermal continuum and forbidden line emission--from warm dust grains and ionized gas, respectively--can now be measured with excellent sensitivity. However, when measuring entire galaxies, these dust and gas emissions are powered by both active galactic nuclei and starbursts, which may be hard to separate spatially. We must use the fact that the patterns of IR energy output from AGN and SBs differ, with AGN making more ionized gas and hotter dust grains. Low-resolution spectroscopy, or even narrow-band filters can sort out the line emission from both processes when they are mixed in the same galaxy. The hope is that these spectroscopic determinations of star formation rate, and mass accretion rate in relatively small samples of bright galaxies will allow a calibration of broadband continuum measures. The dust continuum emission will then be measured in enormous samples of galaxies spanning their full range of masses, metallicities, environments and redshifts. Along the way, we should learn the astrophysical basis of black hole/galaxy "co-evolution." I will summarize some of the first specific infrared steps of this ambitious agenda, taken with IRAS and ISO to 2MASS, Akari and Spitzer and other telescopes. Time permitting, some of the exciting upcoming observational prospects will be advertised.

  13. Near-ultraviolet Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission

    NASA Astrophysics Data System (ADS)

    Ingleby, Laura; Calvet, Nuria; Bergin, Edwin; Herczeg, Gregory; Brown, Alexander; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; France, Kevin; Gregory, Scott G.; Hillenbrand, Lynne; Roueff, Evelyne; Valenti, Jeff; Walter, Frederick; Johns-Krull, Christopher; Brown, Joanna; Linsky, Jeffrey; McClure, Melissa; Ardila, David; Abgrall, Hervé; Bethell, Thomas; Hussain, Gaitee; Yang, Hao

    2011-12-01

    Young stars surrounded by disks with very low mass accretion rates are likely in the final stages of inner disk evolution and therefore particularly interesting to study. We present ultraviolet (UV) observations of the ~5-9 Myr old stars RECX-1 and RECX-11, obtained with the Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph on the Hubble Space Telescope, as well as optical and near-infrared spectroscopic observations. The two stars have similar levels of near-UV emission, although spectroscopic evidence indicates that RECX-11 is accreting and RECX-1 is not. The line profiles of Hα and He I λ10830 in RECX-11 show both broad and narrow redshifted absorption components that vary with time, revealing the complexity of the accretion flows. We show that accretion indicators commonly used to measure mass accretion rates, e.g., U-band excess luminosity or the Ca II triplet line luminosity, are unreliable for low accretors, at least in the middle K spectral range. Using RECX-1 as a template for the intrinsic level of photospheric and chromospheric emission, we determine an upper limit of 3 × 10-10 M ⊙ yr-1 for RECX-11. At this low accretion rate, recent photoevaporation models predict that an inner hole should have developed in the disk. However, the spectral energy distribution of RECX-11 shows fluxes comparable to the median of Taurus in the near-infrared, indicating that substantial dust remains. Fluorescent H2 emission lines formed in the innermost disk are observed in RECX-11, showing that gas is present in the inner disk, along with the dust. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. Accretion Rate: An Axis Of Agn Unification

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, C. D.; Kelly, B. C.

    2011-01-01

    We show how accretion rate governs the physical properties of broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rate by using accurate accretion luminosities from well-sampled multiwavelength SEDs from the Cosmic Evolution Survey (COSMOS), and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L/L_Edd>0.01), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L/L_Edd<0.01) are unobscured and yet lack a broad line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L/L_Edd<0.01 narrow-line and lineless AGNs to be 10-100 times more radio-luminous than broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L/L_Edd<0.01 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together these results suggest that specific accretion rate is an important physical "axis" of AGN unification, described by a simple model.

  15. Transient Fe Emission features in AGN: A new diagnostic of Accreting Systems

    NASA Astrophysics Data System (ADS)

    Turner, T. J.; Reeves, J. R.; George, I. M.; Kraemer, S. B.

    2004-08-01

    Chandra and XMM data have revealed narrow and highly redshifted Fe K emission lines in a handful of AGN. Rapid flux variability and energy shifts of the lines have lead to speculations for their origin ranging from hotspots on the accretion disk to emission from decelerating ejected blobs of gas traveling close to the escape velocity. Whichever scenario proves true, these lines are invaluable in tracing gas close to the black hole, and arguably less subject to the ambiguities which have plagued interpretation of broad `disk lines'. I review observations of such lines to date and discuss progress possible with current and future instrumentation.

  16. Cyclotron Lines in Accreting Neutron Star Spectra

    NASA Astrophysics Data System (ADS)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  17. The profiles of Fe K α line from the inhomogeneous accretion flow

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Di; Ma, Ren-Yi; Li, Ya-Ping; Zhang, Hui; Fang, Tao-Tao

    2018-05-01

    The clumpy disc, or inhomogeneous accretion flow, has been proposed to explain the properties of accreting black hole systems. However, the observational evidence remains to be explored. In this work, we calculate the profiles of Fe K α lines emitted from the inhomogeneous accretion flow through the ray-tracing technique, in order to find possible observable signals of the clumps. Compared with the skewed double-peaked profile of the continuous standard accretion disc, the lines show a multipeak structure when the emissivity index is not very steep. The peaks and wings are affected by the position and size of the cold clumps. When the clump is small and is located in the innermost region, due to the significant gravitational redshift, the blue wing can overlap with the red wing of the outer cold disc/clump, forming a fake peak or greatly enhancing the red peak. Given high enough resolution, it is easier to constrain the clumps around the supermassive black holes than the clumps in stellar mass black holes due to the thermal Doppler effect.

  18. The influence of microlensing on spectral line shapes generated by a relativistic accretion disc

    NASA Astrophysics Data System (ADS)

    Popović, L. Č; Mediavilla, E. G.; Muñoz, J. A.

    2001-10-01

    We study the influence of gravitational microlensing on the spectral line profiles originating from a relativistic accretion disc. Using the Chen & Halpern model for the disc, we show the noticeable changes that microlensing can induce in the line shape when the Einstein radius associated with the microlens is of a size comparable to that of the accretion disc. Of special interest is the relative enhancement between the blue and red peaks of the line when an off-center microlens affects the approaching and receding parts of the accretion disc asymmetrically. In an AGN formed by a super-massive binary in which the accretion disc is located around one of the super-massive companions (the primary), we discuss the possibility of microlensing by the secondary. In this case the ratio between the blue and red peaks of the line profile would depend on the orbital phase. We have also considered the more standard configuration of microlensing by a star-sized object in an intervening galaxy and find that microlensing may also be detected in the broad emission lines of multiply imaged QSOs. The changes observed in the line profile of Arp 102 B are taken as a reference for exploring both scenarios.

  19. Analyzing the Spectra of Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  20. Line Emission from an Accretion Disk Around a Rotating Black Hole: Toward a Measurement of Frame Dragging

    NASA Technical Reports Server (NTRS)

    Bromley, Benjamin C.; Chen, Kaiyou; Miller, Warner A.

    1997-01-01

    Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/sq c. However, if the inner disk radius extends below this limit, as is Possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite,for Cosmology and Astrophysics mission from MCG --6-30-15 (Tanaka et al.) is approximately 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. The frequency-shift profile is a valuable measure of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/sq c if the inclination angle of the orbital plane is large. The light curve from a hot spot shows differences as well, although these too are pronounced only at large inclination angles.

  1. Self-consistent Black Hole Accretion Spectral Models and the Forgotten Role of Coronal Comptonization of Reflection Emission

    NASA Astrophysics Data System (ADS)

    Steiner, James F.; García, Javier A.; Eikmann, Wiebke; McClintock, Jeffrey E.; Brenneman, Laura W.; Dauser, Thomas; Fabian, Andrew C.

    2017-02-01

    Continuum and reflection spectral models have each been widely employed in measuring the spins of accreting black holes. However, the two approaches have not been implemented together in a photon-conserving, self-consistent framework. We develop such a framework using the black hole X-ray binary GX 339-4 as a touchstone source, and we demonstrate three important ramifications. (1) Compton scattering of reflection emission in the corona is routinely ignored, but is an essential consideration given that reflection is linked to the regimes with strongest Comptonization. Properly accounting for this causes the inferred reflection fraction to increase substantially, especially for the hard state. Another important impact of the Comptonization of reflection emission by the corona is the downscattered tail. Downscattering has the potential to mimic the relativistically broadened red wing of the Fe line associated with a spinning black hole. (2) Recent evidence for a reflection component with a harder spectral index than the power-law continuum is naturally explained as Compton-scattered reflection emission. (3) Photon conservation provides an important constraint on the hard state’s accretion rate. For bright hard states, we show that disk truncation to large scales R\\gg {R}{ISCO} is unlikely as this would require accretion rates far in excess of the observed \\dot{M} of the brightest soft states. Our principal conclusion is that when modeling relativistically broadened reflection, spectral models should allow for coronal Compton scattering of the reflection features, and when possible, take advantage of the additional constraining power from linking to the thermal disk component.

  2. BOOK REVIEW: Rotation and Accretion Powered Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, V. M.

    2008-03-01

    ever wanted to know about pulsars but were afraid to ask. Chapter 1 begins a brief and interesting account of the discovery of pulsars, followed by an overview of the rotation-powered and accretion-powered populations. The following four chapters are fairly detailed and reasonably quantitative descriptions of neutron star interiors. This is no easy feat, given that a description of the physics of neutron stars demands a deep understanding of all major physical forces, and must include general relativity as well as detailed particle physics. The historical notes at the beginning of Chapter 2 are particularly fascinating, recounting the path to today's understanding of neutron stars in very interesting detail. Chapter 7 presents rotation-powered pulsar radio properties, and a nice description of pulsar timing, including relativistic and non-relativistic binaries and GR tests. The remaining chapters tackle a variety of topics including binary evolution, superfluidity, accretion-powered pulsar properties, magnetospheres and emission mechanisms, magnetic fields, spin evolution and strange stars. The coverage is somewhat uneven, with the strange star chapter, for example, an obvious afterthought. The utility of an encyclopedia lies in its breadth and in how up-to-date it is. Although admirable in its intentions, the Ghosh book does omit some major pulsar topics. This book leaves the impression that rotation-powered pulsars produce only radio emission; hardly (if at all) mentioned is the vast literature on their infrared, optical, and even more importantly, x-ray and gamma-ray emission, the latter being far more relevant to the pulsar 'machine' than the energetically puny radio output. Also absent are pulsar winds; this is particularly puzzling given both the lovely wind nebula that graces the book's cover, and the central role the wind plays as primary sink of the rotation power. One of the most actively pursued topics in pulsar astrophysics in the past decade, magnetars

  3. Redshifted X-rays from the material accreting onto TW Hydrae: Evidence of a low-latitude accretion spot

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Drake, J. J.; Bonito, R.; Orlando, S.; Peres, G.; Miceli, M.

    2017-10-01

    Context. High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in classical T Tauri stars (CTTS). In particular, the accretion shock region, where the accreting material is heated to temperatures of a few million degrees as it continues its inward bulk motion, can be probed by X-ray spectroscopy. Aims: In an attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra High Energy Transmission Grating observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS and constrain the accretion stream geometry. Methods: We searched for a Doppler shift in the X-ray emission from TW Hya with two different methods: by measuring the position of a selected sample of emission lines and by fitting the whole TW Hya X-ray spectrum, allowing the line-of-sight velocity to vary. Results: We found that the plasma at T 2 - 4 MK has a line-of-sight velocity of 38.3 ± 5.1 km s-1 with respect to the stellar photosphere. This result definitively confirms that this X-ray-emitting material originates in the post-shock region, at the base of the accretion stream, and not in coronal structures. The comparison of the observed velocity along the line of sight, 38.3 ± 5.1 km s-1, with the inferred intrinsic velocity of the post shock of TW Hya, vpost ≈ 110 - 120 km s-1, indicates that the footpoints of the accretion streams on TW Hya are located at low latitudes on the stellar surface. Conclusions: Our results indicate that complex magnetic field geometries, such as those of TW Hya, permit low-latitude accretion spots. Moreover, since on TW Hya the redshift of the soft X-ray emission is very similar to that of the narrow component of the C iv resonance doublet at 1550 Å, then the plasma at 2 - 4 MK and that at 0.1 MK likely originate in the same post

  4. Toward a New Paradigm for the Unification of Radio Loud AGN and its Connection to Accretion

    NASA Technical Reports Server (NTRS)

    Georganpoulos, Markos; Meyer, Eileen T.; Fossati, Giovanni; Lister, Matthew L.

    2012-01-01

    We recently argued [21J that the collective properties. of radio loud active galactic nuclei point to the existence of two families of sources, one of powerful sources with single velocity jets and one of weaker jets with significant velocity gradients in the radiating plasma. These families also correspond to different accretion modes and therefore different thermal and emission line intrinsic properties: powerful sources have radiatively efficient accretion disks, while in weak sources accretion must be radiatively inefficient. Here, after we briefly review of our recent work, we present the following findings that support our unification scheme: (i) along the broken sequence of aligned objects, the jet kinetic power increases. (ii) in the powerful branch of the sequence of aligned objects the fraction of BLLs decreases with increasing jet power. (iii) for powerful sources, the fraction of BLLs increases for more un-aligned objects, as measured by the core to extended radio emission. Our results are also compatible with the possibility that a given accretion power produces jets of comparable kinetic power.

  5. Gamma-burst emission from neutron-star accretion

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  6. Black hole accretion rings revealed by future X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Sochora, V.; Karas, V.; Svoboda, J.; Dovčiak, M.

    2011-11-01

    Spectral features can arise by reflection of coronal X-rays on a black hole accretion disc. The resulting profile bears various imprints of a strong gravitational field acting on the light-emitting gas. The observed shape of the reflection line is formed by integrating contributions over a range of radii across the accretion disc plane, where the individual photons experience a different level of energy shifts, boosting and amplification by relativistic effects. These have to be convolved with the intrinsic emissivity of the line, which is a function of radius and the emission angle in the local frame. We study if the currently discussed instruments on-board X-ray satellites will be able to reveal the departure of the line radial emissivity from a simple smooth power-law function, which is often assumed in data fitting and its interpretation. Such a departure can be a result of excess emission occurring at a certain distance. This could be used to study variations with a radius of the line production or to constrain the position of the inner edge of the accretion disc. By simulating artificial data from a bright active galactic nucleus of a type 1 Seyfert galaxy (inclination ≃30°, X-ray flux ≃1-2 mCrab in a keV energy band) we show that the required sensitivity and energy resolution could be reached with a large area detector of the proposed Large Observatory for X-ray Timing mission. Galactic black holes will provide another category of potentially suitable targets if the relativistic spectral features are indeed produced by reflection from their accretion discs.

  7. Achieving EMC Emissions Compliance for an Aeronautics Power Line Communications System

    NASA Astrophysics Data System (ADS)

    Dominiak, S.; Vos, G.; ter Meer, T.; Widmer, H.

    2012-05-01

    Transmitting data over the power distribution network - Power Line Communications (PLC) -provides an interesting solution to reducing the weight and complexity of wiring networks in commercial aircraft. One of the potential roadblocks for the introduction of this technology is achieving EMC emissions compliance. In this article an overview of the EMC conducted and radiated emissions testing for PLC- enabled aeronautics equipment is presented. Anomalies resulting from chamber resonances leading to discrepancies between the conducted emissions tests and the measured radiated emissions are identified and described. Measurements made according to the current version of the civil aeronautical EMC standard, EUROCAE ED-14F (RTCA DO-160F), show that PLC equipment can achieve full EMC emissions compliance.

  8. Accretion Rate and the Physical Nature of Unobscured Active Galaxies

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Impey, Christopher D.; Kelly, Brandon C.; Civano, Francesca; Gabor, Jared M.; Diamond-Stanic, Aleksandar M.; Merloni, Andrea; Urry, C. Megan; Hao, Heng; Jahnke, Knud; Nagao, Tohru; Taniguchi, Yoshi; Koekemoer, Anton M.; Lanzuisi, Giorgio; Liu, Charles; Mainieri, Vincenzo; Salvato, Mara; Scoville, Nick Z.

    2011-05-01

    We show how accretion rate governs the physical properties of a sample of unobscured broad-line, narrow-line, and lineless active galactic nuclei (AGNs). We avoid the systematic errors plaguing previous studies of AGN accretion rates by using accurate intrinsic accretion luminosities (L int) from well-sampled multiwavelength spectral energy distributions from the Cosmic Evolution Survey, and accurate black hole masses derived from virial scaling relations (for broad-line AGNs) or host-AGN relations (for narrow-line and lineless AGNs). In general, broad emission lines are present only at the highest accretion rates (L int/L Edd > 10-2), and these rapidly accreting AGNs are observed as broad-line AGNs or possibly as obscured narrow-line AGNs. Narrow-line and lineless AGNs at lower specific accretion rates (L int/L Edd < 10-2) are unobscured and yet lack a broad-line region. The disappearance of the broad emission lines is caused by an expanding radiatively inefficient accretion flow (RIAF) at the inner radius of the accretion disk. The presence of the RIAF also drives L int/L Edd < 10-2 narrow-line and lineless AGNs to have ratios of radio-to-optical/UV emission that are 10 times higher than L int/L Edd > 10-2 broad-line AGNs, since the unbound nature of the RIAF means it is easier to form a radio outflow. The IR torus signature also tends to become weaker or disappear from L int/L Edd < 10-2 AGNs, although there may be additional mid-IR synchrotron emission associated with the RIAF. Together, these results suggest that specific accretion rate is an important physical "axis" of AGN unification, as described by a simple model. Based on observations with the XMM-Newton satellite, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA; the Magellan telescope, operated by the Carnegie Observatories; the ESO Very Large Telescope; and the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian

  9. The nature of the [O III] emission line system in the black hole hosting globular cluster RZ2109

    NASA Astrophysics Data System (ADS)

    Steele, Matthew M.

    > 30.2 and < -364. The measured [O III]lambda5007/Hbeta ratios are significantly higher than can be produced in radiative models of the emission line region with solar composition, and the confidence interval limits exclude all but the most extremely massive models. Therefore, we conclude that the region from which the [O III]lambda5007 emission originates must be hydrogen depleted relative to solar composition gas. This finding is consistent with emission from an accretion powered outflow driven by a hydrogen depleted donor star, such as a white dwarf, being accreted onto a black hole. In the third paper, we examine the variability of the [O III]lambdalambda4959,5007 emission line source in the NGC 4472 black hole hosting globular cluster RZ2109. Our continuing multi-facility monitoring program finds the strong emission line source had decreased 24+/-2 percent from the 2007-2010 mean levels in 2011 and 40+/-5 percent from the earlier mean in 2012. An analysis of the variability of the emission line velocity profile finds that the flux ratio of higher velocity 1600 km s-1 component to the lower velocity 300 km s-1 component has decreased 30 percent from 2009 to 2011, and the asymmetry between the red and blue wings of the profile has decreased 17 percent. We compare this variability to predictions of photoionized nova ejecta models of the emission line region, and discuss its implications for an accretion powered outflow from a CO WD-BH binary model.

  10. Accretion Disk and Dust Emission in Low-Luminosity AGN

    NASA Astrophysics Data System (ADS)

    Biddle, Lauren I.; Mason, Rachel; Alonso-Herrero, Almudena; Colina, Luis; Diaz, Ruben; Flohic, Helene; Gonzalez-Martin, Omaira; Ho, Luis C.; Lira, Paulina; Martins, Lucimara; McDermid, Richard; Perlman, Eric S.; Ramos Almeida, Christina; Riffel, Rogerio; Ardila, Alberto; Ruschel Dutra, Daniel; Schiavon, Ricardo; Thanjavur, Karun; Winge, Claudia

    2015-01-01

    Observations obtained in the near-infrared (near-IR; 0.8 - 2.5 μm) can assist our understanding of the physical and evolutionary processes of galaxies. Using a set of near-IR spectra of nearby galaxies obtained with the cross-dispersed mode of GNIRS on the Gemini North telescope, we investigate how the accretion disk and hot dust emission depend on the luminosity of the active nucleus. We recover faint AGN emission from the starlight-dominated nuclear regions of the galaxies, and measure properties such as the spectral shape and luminosity of the accretion disk and dust. The aim of this work is to establish whether the standard thin accretion disk may be truncated in low-accretion-rate AGN, as well as evaluate whether the torus of the AGN unified model still exists at low luminosities.

  11. Classical Accreting Pulsars with NICER

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2014-01-01

    Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.

  12. Winds from accretion disks - Ultraviolet line formation in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Vitello, Peter

    1993-01-01

    Winds from accretion disks in cataclysmic variable stars are ubiquitous. Observations by IUE reveal P Cygni-shaped profiles of high-ionization lines which are attributed to these winds. We have studied the formation of UV emission lines in cataclysmic variables by constructing kinematical models of biconical rotating outflows from disks around white dwarfs. The photoionization in the wind is calculated taking into account the radiation fields of the disk, the boundary layer, and the white dwarf. The 3D radiative transfer is solved in the Sobolev approximation. Effects on the line shapes of varying basic physical parameters of the wind are shown explicitly. We identify and map the resonant scattering regions in the wind which have strongly biconical character regardless of the assumed velocity and radiation fields. Rotation at the base of the wind introduces a radial shear which decreases the line optical depth and reduces the line core intensity. We find that it is possible to reproduce the observed P Cygni line shapes and make some predictions to be verified in high-resolution observations.

  13. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.

    PubMed

    Neilsen, Joseph; Lee, Julia C

    2009-03-26

    Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet.

  14. Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR

    DOE PAGES

    Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.; ...

    2016-07-18

    Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less

  15. Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.

    Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less

  16. A Link between X-Ray Emission Lines and Radio Jets in 4U 1630-47?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.; Broderick, Jess W.

    2014-03-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ~5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is >~ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  17. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495.

    PubMed

    Fabian, A C; Zoghbi, A; Ross, R R; Uttley, P; Gallo, L C; Brandt, W N; Blustin, A J; Boller, T; Caballero-Garcia, M D; Larsson, J; Miller, J M; Miniutti, G; Ponti, G; Reis, R C; Reynolds, C S; Tanaka, Y; Young, A J

    2009-05-28

    Since the 1995 discovery of the broad iron K-line emission from the Seyfert galaxy MCG-6-30-15 (ref. 1), broad iron K lines have been found in emission from several other Seyfert galaxies, from accreting stellar-mass black holes and even from accreting neutron stars. The iron K line is prominent in the reflection spectrum created by the hard-X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron L-line emission should be detectable when the iron abundance is high. Here we report the presence of both iron K and iron L emission in the spectrum of the narrow-line Seyfert 1 galaxy 1H 0707-495. The bright iron L emission has enabled us to detect a reverberation lag of about 30 s between the direct X-ray continuum and its reflection from matter falling into the black hole. The observed reverberation timescale is comparable to the light-crossing time of the innermost radii around a supermassive black hole. The combination of spectral and timing data on 1H 0707-495 provides strong evidence that we are witnessing emission from matter within a gravitational radius, or a fraction of a light minute, from the event horizon of a rapidly spinning, massive black hole.

  18. A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess

    2014-06-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.

  19. Self-shadowing effects of slim accretion disks in active galactic nuclei: the diverse appearance of the broad-line region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian-Min; Qiu, Jie; Du, Pu

    2014-12-10

    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR) from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energymore » distributions depending on their location relative to the disk, resulting in the diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected to reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ and other broad emission lines (e.g., Fe II), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.« less

  20. Lessons from accretion disks in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    1998-04-01

    We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular

  1. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources.

    PubMed

    Pinto, Ciro; Middleton, Matthew J; Fabian, Andrew C

    2016-05-05

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 10(39) ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (10(3)-10(5) solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  2. Possible Accretion Disk Origin of the Emission Variability of a Blazar Jet

    NASA Astrophysics Data System (ADS)

    Chatterjee, Ritaban; Roychowdhury, Agniva; Chandra, Sunil; Sinha, Atreyee

    2018-06-01

    We analyze X-ray light curves of the blazar Mrk 421 obtained from the Soft X-ray Imaging Telescope (SXT) and the Large Area X-ray Proportional Counter (LAXPC) instrument on board the Indian space telescope AstroSat and archival observations from Swift. We show that the X-ray power spectral density (PSD) is a piece-wise power-law with a break; i.e., the index becomes more negative below a characteristic “break timescale.” Galactic black hole (BH) X-ray binaries and Seyfert galaxies exhibit a similar characteristic timescale in their X-ray variability that is proportional to their respective BH mass. X-rays in these objects are produced in the accretion disk or corona. Hence, such a timescale is believed to be linked to the properties of the accretion flow. Any relation observed between events in the accretion disk and those in the jet can be used to characterize the disk–jet connection. However, evidence of such a link has been scarce and indirect. Mrk 421 is a BL Lac object that has a prominent jet pointed toward us and a weak disk emission, and it is assumed that most of its X-rays are generated in the jet. Hence, the existence of the break in its X-ray PSD may indicate that changes in the accretion disk, which may be the source of the break timescale, are translating into the jet where the X-rays are produced.

  3. The Suzaku Observation of the Nucleus of the Radio Loud Active Galaxy Centaurus A: Constraints on Abundances in the Accreting Material

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Takahashi, T.A; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.; hide

    2007-01-01

    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The hard X-rays are fit by two power laws, absorbed by columns of 1.5 and 7 x 10(exp 23) per square centimeter. The dual power-laws are consistent with previous suggestions that the powerlaw components are X-ray emission from the sub-pc VLBI jet and from Bondi accretion at the core, or are consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature VAPEC model, plus a third power-law component to account for scattered nuclear emission, kpc-scale jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The width of the Fe Ka line yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. K-shell absorption edges due to Fe, Ca, and S are detected. Elemental abundances are constrained via the fluorescent lines strengths, absorption edge depths and the diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.l) of the circumnuclear material compared to that in the metal-poor outer halo suggests that the accreting material could not have originated in the outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.

  4. OGLE-2014-SN-073 as a fallback accretion powered supernova

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Terreran, Giacomo; Blinnikov, Sergei I.

    2018-03-01

    We investigate the possibility that the energetic Type II supernova OGLE-2014-SN-073 is powered by a fallback accretion following the failed explosion of a massive star. Taking massive hydrogen-rich supernova progenitor models, we estimate the fallback accretion rate and calculate the light-curve evolution of supernovae powered by the fallback accretion. We find that such fallback accretion powered models can reproduce the overall observational properties of OGLE-2014-SN-073. It may imply that some failed explosions could be observed as energetic supernovae like OGLE-2014-SN-073 instead of faint supernovae as previously proposed.

  5. Disc origin of broad optical emission lines of the TDE candidate PTF09djl

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Zhou, Z. Q.; Cao, R.; Ho, L. C.; Komossa, S.

    2017-11-01

    An otherwise dormant supermassive black hole (SMBH) in a galactic nucleus flares up when it tidally disrupts a star passing by. Most of the tidal disruption events (TDEs) and candidates discovered in the optical/UV have broad optical emission lines with complex and diverse profiles of puzzling origin. In this Letter, we show that the double-peaked broad H α line of the TDE candidate PTF09djl can be well modelled with a relativistic elliptical accretion disc and the peculiar substructures with one peak at the line rest wavelength and the other redshifted to about 3.5 × 104 km s-1 are mainly due to the orbital motion of the emitting matter within the disc plane of large inclination 88° and pericentre orientation nearly vertical to the observer. The accretion disc has an extreme eccentricity 0.966 and semimajor axis of 340 BH Schwarzschild radii. The viewing angle effects of large disc inclination lead to significant attenuation of He emission lines originally produced at large electron scattering optical depth and to the absence/weakness of He emission lines in the spectra of PTF09djl. Our results suggest that the diversities of line intensity ratios among the line species in optical TDEs are probably due to the differences of disc inclinations.

  6. Observational diagnostics of accretion on young stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  7. Microlensing and Intrinsic Variability of the Broad Emission Lines of Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Fian, C.; Guerras, Eduardo; Mediavilla, E.; Jiménez-Vicente, J.; Muñoz, J. A.; Falco, E. E.; Motta, V.; Hanslmeier, A.

    2018-05-01

    We study the broad emission lines in a sample of 11 gravitationally lensed quasars with at least two epochs of observation to identify intrinsic variability and to disentangle it from microlensing. To improve our statistical significance and emphasize trends, we also include 15 lens systems with single-epoch spectra. Mg II and C III] emission lines are only weakly affected by microlensing, but C IV shows strong microlensing in some cases, even for regions of the line core, presumably associated with small projected velocities. However, excluding the strongly microlensed cases, there is a strikingly good match, on average, between the red wings of the C IV and C III] profiles. Analysis of these results supports the existence of two regions in the broad-line region (BLR), one that is insensitive to microlensing (of size ≳50 lt-day and kinematics not confined to a plane) and another that shows up only when it is magnified by microlensing (of size of a few light-days, comparable to the accretion disk). Both regions can contribute in different proportions to the emission lines of different species and, within each line profile, to different velocity bins, all of which complicates detailed studies of the BLR based on microlensing size estimates. The strength of the microlensing indicates that some spectral features that make up the pseudo-continuum, such as the shelf-like feature at λ1610 or several Fe III blends, may in part arise from an inner region of the accretion disk. In the case of Fe II, microlensing is strong in some blends but not in others. This opens up interesting possibilities to study quasar accretion disk kinematics. Intrinsic variability seems to affect the same features prone to microlensing, with similar frequency and amplitude, but does not induce outstanding profile asymmetries. We measure intrinsic variability (≲20%) of the wings with respect to the cores in the C IV, C III], and Mg II lines consistent with reverberation mapping studies.

  8. Accretion states in X-ray binaries and their connection to GeV emission

    NASA Astrophysics Data System (ADS)

    Koerding, Elmar

    Accretion onto compact objects is intrinsically a multi-wavelength phenomenon: it shows emis-sion components visible from the radio to GeV bands. In X-ray binaries one can well observe the evolution of a single source under changes of the accretion rate and thus study the interplay between the different emission components.I will introduce the phenomenology of X-ray bina-ries and their accretion states and present our current understanding of the interplay between the optically thin and optically thick part of the accretion flow and the jet.The recent detection of the Fermi Large Area Telescope of a variable high-energy source coinciding with the position of the x-ray binary Cygnus X-3 will be presented. Its identification with Cygnus X-3 has been secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. This will be interpreted in the context of the accretion states of the X-ray binary.

  9. Spectral Analysis of the Accretion Flow in NGC 1052 with Suzaku

    NASA Technical Reports Server (NTRS)

    Brenneman, L. W.; Weaver, K. A.; Kadler, M.; Tueller, J.; Marscher, A.; Ros, E.; Zensus,A.; Kovalev, Y. Y.; Aller, M.; Aller, H.; hide

    2008-01-01

    We present an analysis of the 101 ks, 2007 Suzaku spectrum of the LINER galaxy NGC 1052. The 0:3..10 keV continuum is well-modeled by a power-law continuum modified by Galactic and intrinsic absorption, and exhibits a soft, thermal emission component below 1 keV. Both a narrow core and a broader component of Fe-Ka emission are robustly detected at 6:4 keV. While the narrow line is consistent with an origin in material distant from the black hole, the broad line is best fit empirically by a model that describes fluorescent emission from the inner accretion disk around a rapidly rotating black hole. We find no direct evidence for Comptonized reflection of the hard X-ray source by the disk above 10 keV, however, which casts doubt on the hypothesis that the broad iron line is produced in a standard accretion disk. We explore other possible scenarios for producing this spectral feature and conclude that the high equivalent width and full width half maximum velocity of the broad iron line (v greater than or equals 0:37c) necessitate an origin within d approx. 8r(sub g) of the hard X-ray source. Based on the confirmed presence of a strong radio jet in this source, the broad iron line may be produced in dense plasma at the base of the jet, implying that emission mechanisms in the central-most portions of active galactic nuclei are more complex than previously thought.

  10. Intermediate-line Emission in AGNs: The Effect of Prescription of the Gas Density

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Hryniewicz, K.; Różańska, A.; Czerny, B.; Ferland, G. J.

    2018-03-01

    The requirement of an intermediate-line component in the recently observed spectra of several active galactic nuclei (AGNs) points to the possible existence of a physically separate region between the broad-line region (BLR) and narrow-line region (NLR). In this paper we explore the emission from the intermediate-line region (ILR) by using photoionization simulations of the gas clouds distributed radially from the center of the AGN. The gas clouds span distances typical for the BLR, ILR, and NLR, and the appearance of dust at the sublimation radius is fully taken into account in our model. The structure of a single cloud is calculated under the assumption of constant pressure. We show that the slope of the power-law radial profile of the cloud density does not affect the existence of the ILR in major types of AGNs. We found that the low-ionization iron line, Fe II, appears to be highly sensitive to the presence of dust and therefore becomes a potential tracer of dust content in line-emitting regions. We show that the use of a disk-like cloud density profile computed for the upper part of the atmosphere of the accretion disk reproduces the observed properties of the line emissivities. In particular, the distance of the Hβ line inferred from our model agrees with that obtained from reverberation mapping studies in the Sy1 galaxy NGC 5548.

  11. X-Ray Iron Line Constraints on the Inner Accretion Disk and Black Hole Spin

    NASA Technical Reports Server (NTRS)

    Reynolds, C. S.

    2000-01-01

    The broad iron line, seen in the X-ray spectra of many AGN, is thought to originate from the inner regions of the black hole accretion disk. I will summarize recent developments in using this line to probe the accretion disk structure, as well as the mass and spin of black holes n Seyfert galaxies. In particular, I will present observational evidence suggesting that the inner regions of the accretion disks in low-luminosity AGN (LLAGN) are distinctly different from those in higher-luminosity AGN. This tentative result lends support models of LLAGN based upon advective accretion disks.

  12. Magnetospheric Accretion in Close Pre-main-sequence Binaries

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Jonhs-Krull, Christopher; Herczeg, Gregory J.; Mathieu, Robert D.; Quijano-Vodniza, Alberto

    2015-10-01

    The transfer of matter between a circumbinary disk and a young binary system remains poorly understood, obscuring the interpretation of accretion indicators. To explore the behavior of these indicators in multiple systems, we have performed the first systematic time-domain study of young binaries in the ultraviolet. We obtained far- and near-ultraviolet HST/COS spectra of the young spectroscopic binaries DQ Tau and UZ Tau E. Here we focus on the continuum from 2800 to 3200 Å and on the C iv doublet (λλ1548.19, 1550.77 Å) as accretion diagnostics. Each system was observed over three or four consecutive binary orbits, at phases ∼0, 0.2, 0.5, and 0.7. Those observations are complemented by ground-based U-band measurements. Contrary to model predictions, we do not detect any clear correlation between accretion luminosity and phase. Further, we do not detect any correlation between C iv flux and phase. For both stars the appearance of the C iv line is similar to that of single Classical T Tauri Stars (CTTSs), despite the lack of stable long-lived circumstellar disks. However, unlike the case in single CTTSs, the narrow and broad components of the C iv lines are uncorrelated, and we argue that the narrow component is powered by processes other than accretion, such as flares in the stellar magnetospheres and/or enhanced activity in the upper atmosphere. We find that both stars contribute equally to the narrow component C iv flux in DQ Tau, but the primary dominates the narrow component C iv emission in UZ Tau E. The C iv broad component flux is correlated with other accretion indicators, suggesting an accretion origin. However, the line is blueshifted, which is inconsistent with its origin in an infall flow close to the star. It is possible that the complicated geometry of the region, as well as turbulence in the shock region, are responsible for the blueshifted line profiles.

  13. Soft X-Ray Emission Lines from a Relativistic Accretion Disk in MCG -6-30-15 and Mrk 766

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sako, M.; Kahn, S. M.; Brinkman, A. C.; Kaastra, J. S.; Page, M. J.

    2000-01-01

    XMM-Newton Reflection Grating Spectrometer (RGS) spectra of the Narrow Line Seyfert 1 galaxies MCG -6-30-15 and Mrk 766 are physically and spectroscopically inconsistent with standard models comprising a power-law continuum absorbed by either cold or ionized matter. We propose that the remarkably similar features detected in both objects in the 5 - 35 A band are H-like oxygen, nitrogen, and carbon emission lines, gravitation- ally redshifted and broadened by relativistic effects in the vicinity of a Kerr black hole. We discuss the implications of our interpretation, and demonstrate that the derived parameters can be physically self-consistent.

  14. A model for neutrino emission from nuclear accretion disks

    NASA Astrophysics Data System (ADS)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  15. Effects of Fallback Accretion on Protomagnetar Outflows in Gamma-Ray Bursts and Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Beniamini, Paz; Giannios, Dimitrios

    2018-04-01

    Rapidly spinning, strongly magnetized protoneutron stars (“millisecond protomagnetars”) are candidate central engines of long-duration gamma-ray bursts (GRBs), superluminous supernovae (SLSNe), and binary neutron star mergers. Magnetar birth may be accompanied by the fallback of stellar debris, lasting for seconds or longer following the explosion. Accretion alters the magnetar evolution by (1) providing an additional source of rotational energy (or a potential sink, if the propeller mechanism operates), (2) enhancing the spin-down luminosity above the dipole rate by compressing the magnetosphere and expanding the polar cap region of open magnetic field lines, and (3) supplying an additional accretion-powered neutrino luminosity that sustains the wind baryon loading, even after the magnetar’s internal neutrino luminosity has subsided. The more complex evolution of the jet power and magnetization of an accreting magnetar more readily accounts for the high 56Ni yields of GRB SNe and the irregular time evolution of some GRB light curves (e.g., bursts with precursors followed by a long quiescent interval before the main emission episode). Additional baryon loading from accretion-powered neutrino irradiation of the polar cap lengthens the time frame over which the jet magnetization is in the requisite range σ ≲ 103 for efficient gamma-ray emission, thereby accommodating GRBs with ultralong durations. Though accretion does not significantly raise the maximum energy budget from the limit of ≲ few × 1052 erg for an isolated magnetar, it greatly expands the range of magnetic field strengths and birth spin periods capable of powering GRB jets, reducing the differences between the magnetar properties normally invoked to explain GRBs versus SLSNe.

  16. Pulse Phase Dependence of Low Energy Emission Lines in an X-ray pulsar 4U 1626-67 during its spin-up and spin-down phase

    NASA Astrophysics Data System (ADS)

    Beri, Aru; Paul, Biswajit; Dewangan, Gulab Chand

    2016-07-01

    We will present the results obtained from the new observation of an ultra-compact X-ray binary pulsar 4U 1626-67, carried out with the XMM-Newton observatory. 4U 1626-67, a unique accretion powered pulsar underwent two torque reversals since its discovery in 1977. Pulse phase resolved spectroscopy of this source performed using the data from the XMM-Newton observatory during its spin-down phase revealed the dependence of the emission lines on the pulse phase. O VII emission line at 0.569 keV showed the maximum variation by factor of 4. These variations were interpreted due to warps in the accretion disk (Beri et al. 2015). Radiation pressure induced warping is also believed to be the cause for spin-down. In light of this possible explanation for spin-down torque reversal we expect different line variability during the spin-up phase. We will discuss the implications of the results obtained after performing pulse phase resolved spectroscopy using data from the EPIC-pn during the current spin-up phase. Detailed study of the prominent Neon and Oxygen line complexes with the high resolution Reflection Grating Spectrometer (RGS) on-board XMM-Newton will also be presented.

  17. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of the Hβ Line

    NASA Astrophysics Data System (ADS)

    Du, Pu; Lu, Kai-Xing; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Huang, Ying-Ke; Wang, Fang; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH Collaboration

    2016-03-01

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012-2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson-Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 and Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.

  18. SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE Hβ LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Pu; Lu, Kai-Xing; Hu, Chen

    In the sixth of a series of papers reporting on a large reverberation mapping (RM) campaign of active galactic nuclei (AGNs) with high accretion rates, we present velocity-resolved time lags of Hβ emission lines for nine objects observed in the campaign during 2012–2013. In order to correct the line broadening caused by seeing and instruments before analyzing the velocity-resolved RM, we adopt the Richardson–Lucy deconvolution to reconstruct their Hβ profiles. The validity and effectiveness of the deconvolution are checked using Monte Carlo simulation. Five among the nine objects show clear dependence of the time delay on velocity. Mrk 335 andmore » Mrk 486 show signatures of gas inflow whereas the clouds in the broad-line regions (BLRs) of Mrk 142 and MCG +06-26-012 tend to be radial outflowing. Mrk 1044 is consistent with having virialized motions. The lags of the remaining four are not velocity-resolvable. The velocity-resolved RM of super-Eddington accreting massive black holes (SEAMBHs) shows that they have diverse kinematics in their BLRs. Comparing with the AGNs with sub-Eddington accretion rates, we do not find significant differences in the BLR kinematics of SEAMBHs.« less

  19. Accretion Makes a Splash on TW Hydrae

    NASA Astrophysics Data System (ADS)

    Brickhouse, N. S.

    2011-12-01

    The Chandra Large Program on the Classical T Tauri star TW Hydrae (489 ksec, obtained over the course of one month) brings a wealth of spectral diagnostics to the study of X-ray emission from a young star. The emission measure distribution shows two components separated by a gap (i.e. no emission measure in between). Light curves for the two components can then be constructed from the summed light curves of the appropriate individual lines. The two light curves show uncorrelated variability, with one large flare occurring only in the hot component. We associate the hotter component with the corona, since its peak temperature is ˜10 MK. Ne IX line ratio diagnostics for temperature and density indicate that the source of the cooler component is indeed the accretion shock, as originally reported by Kastner et al. (2002). The temperature and density of the accretion shock are in excellent agreement with models using mass accretion rates derived from the optical. We require a third component, which we call the "post-shock region," from line ratio diagnostics of O VII. The density derived from O VII is lower than the density derived from Ne IX, contrary to standard one-dimensional model expectations and from hydrodynamics simulations to date. The column densities derived from the two ions are also significantly different, with the column density from O VII lower than that from Ne IX. This post-shock region cannot be the settling flow expected from the cooling of the shock column, since its mass is 30 times the mass of material that passes through the shock. Instead this region is the splash of stellar atmosphere that has been hit by the accretion stream and heated by the accretion process (Brickhouse et al. 2010).

  20. Accretion tori and cones of ionizing radiation in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Acosta-Pulido, Jose A.; Perez-Fournon, Ismael; Calvani, Massimo; Wilson, Andrew S.

    1990-01-01

    The photoionization of extended narrow-line regions in Seyfert galaxies by the radiation produced in a thick accretion disk is studied. The emission-line spectrum is calculated for a range of black hole masses, varying the values of the ionization parameter and the disk size. It is found that models with a million solar masses fit observations of very large accretion disk sizes, while models with 10 million solar masses fit them better with smaller disks. The latter models are preferable since they have lower super-Eddington accretion rates.

  1. Episodic Jet Power Extracted from a Spinning Black Hole Surrounded by a Neutrino-dominated Accretion Flow in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei

    2014-07-01

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number \\mathscr{P}_m=η /ν ˜ 1. The maximal BZ jet power can be ~1053-1054 erg s-1 for an extreme Kerr black hole, if an external magnetic field with 1014 Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  2. Highly Accreting Quasars at High Redshift

    NASA Astrophysics Data System (ADS)

    Martínez-Aldama, Mary L.; Del Olmo, Ascensión; Marziani, Paola; Sulentic, Jack W.; Negrete, C. Alenka; Dultzin, Deborah; Perea, Jaime; D'Onofrio, Mauro

    2017-12-01

    We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (LLedd>0.2) at high redshift, z 2-3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as AlIII, SiIII and CIII. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  3. Synthetic nebular emission from massive galaxies - I: origin of the cosmic evolution of optical emission-line ratios

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela; Charlot, Stephane; Feltre, Anna; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Somerville, Rachel S.

    2017-12-01

    Galaxies occupy different regions of the [O III]λ5007/H β-versus-[N II]λ6584/H α emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic giant branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the redshift evolution of the optical-line ratios [O III]λ5007/H β, [N II]λ6584/H α, [S II]λλ6717, 6731/H α and [O I]λ6300/H α. The line ratios of simulated galaxies agree well with observations of both star-forming and active local Sloan Digital Sky Survey galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [O III]/H β is predicted to increase and [N II]/H α, [S II]/H α and [O I]/H α to decrease - widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [O III]/H β and [N II]/H α. For [S II]/H α and [O I]/H α, this applies only to redshifts greater than z = 1.5, the evolution at lower redshift being driven in roughly equal parts by nebular emission from active galactic nuclei and post-AGB stellar populations. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.

  4. Exploring possible relations between optical variability time scales and broad emission line shapes in AGN

    NASA Astrophysics Data System (ADS)

    Bon, Edi; Jovanović, Predrag; Marziani, Paola; Bon, Nataša; Otašević, Aleksandar

    2018-06-01

    Here we investigate the connection of broad emission line shapes and continuum light curve variability time scales of type-1 Active Galactic Nuclei (AGN). We developed a new model to describe optical broad emission lines as an accretion disk model of a line profile with additional ring emission. We connect ring radii with orbital time scales derived from optical light curves, and using Kepler's third law, we calculate mass of central supermassive black hole (SMBH). The obtained results for central black hole masses are in a good agreement with other methods. This indicates that the variability time scales of AGN may not be stochastic, but rather connected to the orbital time scales which depend on the central SMBH mass.

  5. The variability of accretion on to Schwarzschild black holes from turbulent magnetized discs

    NASA Astrophysics Data System (ADS)

    Armitage, Philip J.; Reynolds, Christopher S.

    2003-05-01

    We use global magnetohydrodynamic simulations, in a pseudo-Newtonian potential, to investigate the temporal variability of accretion discs around Schwarzschild black holes. We use the vertically averaged magnetic stress in the simulated disc as a proxy for the rest-frame dissipation, and compute the observed emission by folding this through the transfer function describing the relativistic beaming, light bending and time delays near a non-rotating black hole. The temporal power spectrum of the predicted emission from individual annuli in the disc is described by a broken power law, with indices of ~-3.5 at high frequency and ~0 to -1 at low frequency. Integrated over the disc, the power spectrum is approximated by a single power law with an index of -2. Increasing inclination boosts the relative power at frequencies around ~0.3fms, where fms is the orbital frequency at the marginally stable orbit, but no evidence is found for sharp quasi-periodic oscillations in the light curve. Assuming that fluorescent iron line emission locally tracks the continuum flux, we compute simulated broad iron line profiles. We find that relativistic beaming of the non-axisymmetric emission profile, induced by turbulence, produces high-amplitude variability in the iron line profile. We show that this substructure within the broad iron line profile can survive averaging over a number of orbital periods, and discuss the origin of the anomalous X-ray spectral features, recently reported by Turner et al. for the Seyfert galaxy NGC 3516, in the context of turbulent disc models.

  6. On the X-ray spectra of luminous, inhomogeneous accretion flows

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Malzac, J.; Fabian, A. C.; Ross, R. R.

    2006-08-01

    We discuss the expected X-ray spectral and variability properties of black hole accretion discs at high luminosity, under the hypothesis that radiation-pressure-dominated discs are subject to violent clumping instabilities and, as a result, have a highly inhomogeneous two-phase structure. After deriving the full accretion disc solutions explicitly in terms of the parameters of the model, we study their radiative properties both with a simple two-zone model, treatable analytically, and with radiative transfer simulations which account simultaneously for energy balance and Comptonization in the hot phase, together with reflection, reprocessing, ionization and thermal balance in the cold phase. We show that, if not only the density, but also the heating rate within these flows is inhomogeneous, then complex reflection-dominated spectra can be obtained for a high enough covering fraction of the cold phase. In general, large reflection components in the observed X-ray spectra should be associated with strong soft excesses, resulting from the combined emission of ionized atomic emission lines. The variability properties of such systems are such that, even when contributing to a large fraction of the hard X-ray spectrum, the reflection component is less variable than the power-law-like emission originating from the hot Comptonizing phase, in agreement with what is observed in many Narrow Line Seyfert 1 galaxies and bright Seyfert 1. Our model falls within the family of those trying to explain the complex X-ray spectra of bright AGN with ionized reflection, but presents an alternative, specific, physically motivated, geometrical set-up for the complex multiphase structure of the inner regions of near-Eddington accretion flows.

  7. OBSERVATIONAL LIMITS ON TYPE 1 ACTIVE GALACTIC NUCLEUS ACCRETION RATE IN COSMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared

    2009-07-20

    We present black hole masses and accretion rates for 182 Type 1 active galactic nuclei (AGNs) in COSMOS. We estimate masses using the scaling relations for the broad H {beta}, Mg II, and C IV emission lines in the redshift ranges 0.16 < z < 0.88, 1 < z < 2.4, and 2.7 < z < 4.9. We estimate the accretion rate using an Eddington ratio L{sub I}/L{sub Edd} estimated from optical and X-ray data. We find that very few Type 1 AGNs accrete below L{sub I} /L{sub Edd} {approx} 0.01, despite simulations of synthetic spectra which show that themore » survey is sensitive to such Type 1 AGNs. At lower accretion rates the broad-line region may become obscured, diluted, or nonexistent. We find evidence that Type 1 AGNs at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGNs. However, the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGNs accrete at a narrow range of Eddington ratio, with L{sub I} /L{sub Edd} {approx} 0.1.« less

  8. Wet snow hazard for power lines: a forecast and alert system applied in Italy

    NASA Astrophysics Data System (ADS)

    Bonelli, P.; Lacavalla, M.; Marcacci, P.; Mariani, G.; Stella, G.

    2011-09-01

    Wet snow icing accretion on power lines is a real problem in Italy, causing failures on high and medium voltage power supplies during the cold season. The phenomenon is a process in which many large and local scale variables contribute in a complex way and not completely understood. A numerical weather forecast can be used to select areas where wet snow accretion has an high probability of occurring, but a specific accretion model must also be used to estimate the load of an ice sleeve and its hazard. All the information must be carefully selected and shown to the electric grid operator in order to warn him promptly. The authors describe a prototype of forecast and alert system, WOLF (Wet snow Overload aLert and Forecast), developed and applied in Italy. The prototype elaborates the output of a numerical weather prediction model, as temperature, precipitation, wind intensity and direction, to determine the areas of potential risk for the power lines. Then an accretion model computes the ice sleeves' load for different conductor diameters. The highest values are selected and displayed on a WEB-GIS application principally devoted to the electric operator, but also to more expert users. Some experimental field campaigns have been conducted to better parameterize the accretion model. Comparisons between real accidents and forecasted icing conditions are presented and discussed.

  9. COMPLEX VARIABILITY OF THE H{alpha} EMISSION LINE PROFILE OF THE T TAURI BINARY SYSTEM KH 15D: THE INFLUENCE OF ORBITAL PHASE, OCCULTATION BY THE CIRCUMBINARY DISK, AND ACCRETION PHENOMENA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Catrina M.; Johns-Krull, Christopher M.; Mundt, Reinhard

    2012-06-01

    We have obtained 48 high-resolution echelle spectra of the pre-main-sequence eclipsing binary system KH 15D (V582 Mon, P = 48.37 days, e {approx} 0.6, M{sub A} = 0.6 M{sub Sun }, M{sub B} = 0.7 M{sub Sun }). The eclipses are caused by a circumbinary disk (CBD) seen nearly edge on, which at the epoch of these observations completely obscured the orbit of star B and a large portion of the orbit of star A. The spectra were obtained over five contiguous observing seasons from 2001/2002 to 2005/2006 while star A was fully visible, fully occulted, and during several ingressmore » and egress events. The H{alpha} line profile shows dramatic changes in these time series data over timescales ranging from days to years. A fraction of the variations are due to 'edge effects' and depend only on the height of star A above or below the razor sharp edge of the occulting disk. Other observed variations depend on the orbital phase: the H{alpha} emission line profile changes from an inverse P-Cygni-type profile during ingress to an enhanced double-peaked profile, with both a blue and a red emission component, during egress. Each of these interpreted variations are complicated by the fact that there is also a chaotic, irregular component present in these profiles. We find that the complex data set can be largely understood in the context of accretion onto the stars from a CBD with gas flows as predicted by the models of eccentric T Tauri binaries put forward by Artymowicz and Lubow, Guenther and Kley, and de Val-Borro et al. In particular, our data provide strong support for the pulsed accretion phenomenon, in which enhanced accretion occurs during and after perihelion passage.« less

  10. A lower limit to the accretion disc radius in the low-luminosity AGNNGC 1052 derived from high-angular resolution data

    NASA Astrophysics Data System (ADS)

    Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus

    2018-07-01

    We investigate the central sub-arcsec region of the low-luminosity active galactic nucleusNGC 1052, using a high-angular resolution data set that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.

  11. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca

    2017-02-20

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H imore » (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10{sup −10}( R {sub *}/ R ){sup 3} g cm{sup −3} in the equatorial plane of a 25 R {sub *} (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10{sup −9} M {sub *}. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.« less

  12. Line-dependent veiling in very active classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Rei, A. C. S.; Petrov, P. P.; Gameiro, J. F.

    2018-02-01

    Context. The T Tauri stars with active accretion disks show veiled photospheric spectra. This is supposedly due to non-photospheric continuum radiated by hot spots beneath the accretion shocks at stellar surface and/or chromospheric emission lines radiated by the post-shocked gas. The amount of veiling is often considered as a measure of the mass-accretion rate. Aim. We analysed high-resolution photospheric spectra of accreting T Tauri stars LkHα 321, V1331 Cyg, and AS 353A with the aim of clarifying the nature of the line-dependent veiling. Each of these objects shows a strong emission line spectrum and powerful wind features indicating high rates of accretion and mass loss. Methods: Equivalent widths of hundreds of weak photospheric lines were measured in the observed spectra of high quality and compared with those in synthetic spectra of appropriate models of stellar atmospheres. Results: The photospheric spectra of the three T Tauri stars are highly veiled. We found that the veiling is strongly line-dependent: larger in stronger photospheric lines and weak or absent in the weakest ones. No dependence of veiling on excitation potential within 0 to 5 eV was found. Different physical processes responsible for these unusual veiling effects are discussed in the framework of the magnetospheric accretion model. Conclusions: The observed veiling has two origins: (1) an abnormal structure of stellar atmosphere heated up by the accreting matter, and (2) a non-photospheric continuum radiated by a hot spot with temperature lower than 10 000 K. The true level of the veiling continuum can be derived by measuring the weakest photospheric lines with equivalent widths down to ≈10 mÅ. A limited spectral resolution and/or low signal-to-noise ratio results in overestimation of the veiling continuum. In the three very active stars, the veiling continuum is a minor contributor to the observed veiling, while the major contribution comes from the line-dependent veiling.

  13. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  14. MASTER OT J132104.04+560957.8: A Polar with Absorption–Emission Line Reversals

    NASA Astrophysics Data System (ADS)

    Littlefield, Colin; Garnavich, Peter; Hoyt, Taylor J.; Kennedy, Mark

    2018-01-01

    We present time-resolved photometry and spectroscopy of the recently classified polar MASTER OT J132104.04+560957.8. The spectrum shows a smooth, nonthermal continuum at the time of maximum light, without any individually discernible cyclotron harmonics. Using homogenous cyclotron modeling, we interpret this as cyclotron radiation whose individual harmonics have blended together, and on this basis, we loosely constrain the magnetic-field strength to be less than ∼30 MG. In addition, for about one-tenth of the orbital period, the Balmer and He I emission lines transition into absorption features, with He II developing an absorption core. We use our observations of this phenomenon to test theoretical models of the accretion curtain and conclude that the H and He I lines are produced throughout the curtain, in contravention of theoretical predictions of separate H and He I line-forming regions. Moreover, a significant amount of He II emission originates within the accretion curtain, implying that the curtain is significantly hotter than expected from theory. Finally, we comment on the object’s long-term photometry, including evidence that it recently transitioned into a prolonged, exceptionally stable high state following a potentially decades-long low state.

  15. A lower limit to the accretion disc radius in the low-luminosity AGN NGC 1052 derived from high-angular resolution data

    NASA Astrophysics Data System (ADS)

    Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus

    2018-05-01

    We investigate the central sub-arcsec region of the low-luminosity active galactic nucleus NGC 1052, using a high-angular resolution dataset that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a truncated disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.

  16. Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds

    NASA Astrophysics Data System (ADS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  17. Structure and Dynamics of the Accretion Process and Wind in TW Hya

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Brickhouse, N. S.; Cranmer, S. R.; Berlind, P.; Strader, Jay; Smith, Graeme H.

    2014-07-01

    Time-domain spectroscopy of the classical accreting T Tauri star, TW Hya, covering a decade and spanning the far UV to the near-infrared spectral regions can identify the radiation sources, the atmospheric structure produced by accretion, and properties of the stellar wind. On timescales from days to years, substantial changes occur in emission line profiles and line strengths. Our extensive time-domain spectroscopy suggests that the broad near-IR, optical, and far-uv emission lines, centered on the star, originate in a turbulent post-shock region and can undergo scattering by the overlying stellar wind as well as some absorption from infalling material. Stable absorption features appear in Hα, apparently caused by an accreting column silhouetted in the stellar wind. Inflow of material onto the star is revealed by the near-IR He I 10830 Å line, and its free-fall velocity correlates inversely with the strength of the post-shock emission, consistent with a dipole accretion model. However, the predictions of hydrogen line profiles based on accretion stream models are not well-matched by these observations. Evidence of an accelerating warm to hot stellar wind is shown by the near-IR He I line, and emission profiles of C II, C III, C IV, N V, and O VI. The outflow of material changes substantially in both speed and opacity in the yearly sampling of the near-IR He I line over a decade. Terminal outflow velocities that range from 200 km s-1 to almost 400 km s-1 in He I appear to be directly related to the amount of post-shock emission, giving evidence for an accretion-driven stellar wind. Calculations of the emission from realistic post-shock regions are needed. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support

  18. Long-term monitoring of PKS0558­-504, a highly accreting AGN with a radio jet

    NASA Astrophysics Data System (ADS)

    Gliozzi, Mario

    Mario Gliozzi, mgliozzi@gmu.edu George Mason University, Fairfax, Virginia, United States The radio-loud Narrow-Line Seyfert 1 galaxy PKS 0558-504 is a highly variable, X-ray bright source with super-Eddington accretion rate and a powerful radio jet that does not dominate the emission beyond the radio band. Hence this source represents an ideal laboratory to study the link between accretion and ejection phenomena. Here we present the preliminary results from a 5-year monitoring campaign with RXTE as well as from a 1.5-year multi-wavelength campaign with Swift, complemented with radio observations from the ATCA and VLBI. We combine several pieces of information from different energy bands to shed some light on the energetics of accretion and ejection phenomena in this extreme black hole system.

  19. Jet launching radius in low-power radio-loud AGNs in advection-dominated accretion flows

    NASA Astrophysics Data System (ADS)

    Le, Truong; Newman, William; Edge, Brinkley

    2018-06-01

    Using our theory for the production of relativistic outflows, we estimate the jet launching radius and the inferred mass accretion rate for 52 low-power radio-loud AGNs based on the observed jet powers. Our analysis indicates that (1) a significant fraction of the accreted energy is required to convert the accreted mass to relativistic energy particles for the production of the jets near the event horizon, (2) the jet's launching radius moves radially towards the horizon as the mass accretion rate or jet's power increases, and (3) no jet/outflow formation is possible beyond 44 gravitational radii.

  20. Fermi/Large Area Telescope Discovery of Gamma-Ray Emission from a Relativistic Jet in the Narrow-Line Quasar PMN J0948+0022

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-06-17

    In this paper, we report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy γ-ray emission from the peculiar quasar PMN J0948+0022 (z = 0.5846). The optical spectrum of this object exhibits rather narrow Hβ (FWHM(Hβ) ~1500 km s –1), weak forbidden lines, and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at a high Eddington ratio. The radio loudness and variability of the compact radio core indicate the presence of a relativistic jet. Quasi-simultaneous radio/optical/X-raymore » and γ-ray observations are presented. Both radio and γ-ray emissions (observed over five months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broadband spectral energy distribution (SED) and, in particular, the γ-ray spectrum measured by Fermi are similar to those of more powerful Flat-Spectrum Radio Quasars (FSRQs). A comparison of the radio and γ-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and γ-ray power with respect to other FSRQs. The physical parameters obtained from modeling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini. Finally, we suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.« less

  1. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less

  2. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    NASA Astrophysics Data System (ADS)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D.

    2017-02-01

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H I (Hα and Hβ), He I, Ca II, and Fe II. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ˜10-10(R */R)3 g cm-3 in the equatorial plane of a 25 R * (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the Hα-emitting portion of the inner gaseous disk of ˜10-9 M *. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l”Univers of the Centre National de la Recherche Scientique of France, and the University of Hawaii.

  3. Where a Neutron Star's Accretion Disk Ends

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the

  4. Transitional millisecond pulsars in the low-level accretion state

    NASA Astrophysics Data System (ADS)

    Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand

    2018-01-01

    In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.

  5. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    PubMed

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  6. Accretion Structures in Algol-Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine

    The physics of mass transfer in interacting binaries of the Algol type will be investigated through an analysis of an extensive collection of FUV spectra from the FUSE spacecraft, Kepler photometry, and FUV spectra from IUE and ORFEUS-SPAS II. The Algols range from close direct impact systems to wider systems that contain prominent accretion disks. Several components of the circumstellar (CS) material have been identified, including the gas stream, splash/outflow domains, a high temperature accretion region (HTAR), accretion disk, and magnetically-controlled flows (cf. Peters 2001, 2007, Richards et al. 2010). Hot spots are sometimes seen at the site where the gas stream impacts the mass gainer's photosphere. Collectively we call these components of mass transfer "accretion structures". The CS material will be studied from an analysis of both line-of-sight FUV absorption features and emission lines. The emission line regions will be mapped in and above/below the orbital plane with 2D and 3D Doppler tomography techniques. We will look for the presence of hot accretion spots in both the Kepler photometry of Algols in the Kepler fields and phase-dependent flux variability in the FUSE spectra. We will also search for evidence of microflaring at the impact site of the gas stream. An abundance study of the mass gainer will reveal the extent to which CNO-processed material from the core of the mass loser is being deposited on the primary. Analysis codes that will be used include 2D and 3D tomography codes, SHELLSPEC, light curve analysis programs such as PHOEBE and Wilson-Devinney, and the NLTE codes TLUSTY/SYNSPEC. This project will transform our understanding of the mass transfer process from a generic to a hydrodynamical one and provide important information on the degree of mass loss from the system which is needed for calculations of the evolution of Algol binaries.

  7. Constraints on the outer radius of the broad emission line region of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Ward, Martin J.; Elvis, Martin; Karovska, Margarita

    2014-03-01

    Here we present observational evidence that the broad emission line region (BELR) of active galactic nuclei (AGN) generally has an outer boundary. This was already clear for sources with an obvious transition between the broad and narrow components of their emission lines. We show that the narrow component of the higher-order Paschen lines is absent in all sources, revealing a broad emission line profile with a broad, flat top. This indicates that the BELR is kinematically separate from the narrow emission line region. We use the virial theorem to estimate the BELR outer radius from the flat top width of the unblended profiles of the strongest Paschen lines, Paα and Paβ, and find that it scales with the ionizing continuum luminosity roughly as expected from photoionization theory. The value of the incident continuum photon flux resulting from this relationship corresponds to that required for dust sublimation. A flat-topped broad emission line profile is produced by both a spherical gas distribution in orbital motion and an accretion disc wind if the ratio between the BELR outer and inner radius is assumed to be less than ˜100-200. On the other hand, a pure Keplerian disc can be largely excluded, since for most orientations and radial extents of the disc the emission line profile is double-horned.

  8. Significant contribution of the Cerenkov line-like radiation to the broad emission lines of quasars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D. B.; You, J. H.; Chen, W. P.

    2014-01-01

    The Cerenkov line-like radiation in a dense gas (N {sub H} > 10{sup 13} cm{sup –3}) is potentially important in the exploration of the optical broad emission lines of quasars and Seyfert 1 galaxies. With this quasi-line emission mechanism, some long standing puzzles in the study of quasars could be resolved. In this paper, we calculate the power of the Cerenkov line-like radiation in dense gas and compare with the powers of other radiation mechanisms by a fast electron to confirm its importance. From the observed gamma-ray luminosity of 3C 279, we show that the total number of fast electronsmore » is sufficiently high to allow effective operation of the quasi-line emission. We present a model calculation for the luminosity of the Cerenkov Lyα line of 3C 279, which is high enough to compare with observations. We therefore conclude that the broad line of quasars may be a blend of the Cerenkov emission line with the real line produced by the bound-bound transition. A new approach to the absorption of the Cerenkov line is presented with the method of escape probability, which markedly simplifies the computation in the optically thick case. The revised set of formulae for the Cerenkov line-like radiation is more convenient in applications.« less

  9. Magnetically gated accretion in an accreting ‘non-magnetic’ white dwarf

    NASA Astrophysics Data System (ADS)

    Scaringi, S.; Maccarone, T. J.; D’Angelo, C.; Knigge, C.; Groot, P. J.

    2017-12-01

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 106 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as ‘non-magnetic’, because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the ‘non-magnetic’ accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 104 gauss and 1 × 105 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  10. X-shooter spectroscopy of young stellar objects. IV. Accretion in low-mass stars and substellar objects in Lupus

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Natta, A.; Manara, C. F.; Spezzi, L.; Stelzer, B.; Frasca, A.; Biazzo, K.; Covino, E.; Randich, S.; Rigliaco, E.; Testi, L.; Comerón, F.; Cupani, G.; D'Elia, V.

    2014-01-01

    We present VLT/X-shooter observations of a sample of 36 accreting low-mass stellar and substellar objects (YSOs) in the Lupus star-forming region, spanning a range in mass from ~0.03 to ~1.2 M⊙, but mostly with 0.1 M⊙line emission accretion diagnostics, and, secondly, to investigate the accretion properties in terms of the physical properties of the central object. The accretion luminosity (Lacc), and in turn the accretion rate (Ṁacc), was derived by modelling the excess emission from the UV to the near-infrared as the continuum emission of a slab of hydrogen. We computed the flux and luminosity (Lline) of many emission lines of H , He , and Ca ii, observed simultaneously in the range from ~330 nm to 2500 nm. The luminosity of all the lines is well correlated with Lacc. We provide empirical relationships between Lacc and the luminosity of 39 emission lines, which have a lower dispersion than relationships previously reported in the literature. Our measurements extend the Paβ and Brγ relationships to Lacc values about two orders of magnitude lower than those reported in previous studies. We confirm that different methodologies of measuring Lacc and Ṁacc yield significantly different results: Hα line profile modelling may underestimate Ṁacc by 0.6 to 0.8 dex with respect to Ṁacc derived from continuum-excess measures. These differences may explain the probably spurious bi-modal relationships between Ṁacc and other YSOs properties reported in the literature. We derived Ṁacc in the range 2 × 10-12-4 × 10-8 M⊙ yr-1 and conclude that Ṁacc ∝ M⋆1.8(±0.2), with a dispersion lower by a factor of about 2 than in previous studies. A number of properties indicate that the physical conditions of the accreting gas are similar over more than 5 orders of magnitude in Ṁacc, confirming previous suggestions that the geometry of the accretion flow

  11. Blinded by the light: on the relationship between CO first overtone emission and mass accretion rate in massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.

    2018-07-01

    To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects (MYSOs), but instead is only detected towards approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near-infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳10-4 M⊙ yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲10-6 M⊙ yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.

  12. Blinded by the light: on the relationship between CO first overtone emission and mass accretion rate in massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.

    2018-04-01

    To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects, but instead is only detected toward approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳ 10-4 M⊙yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲ 10-6 M⊙yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.

  13. Building a laboratory foundation for interpreting spectral emission from x-ray binary and black hole accretion disks

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume

    2016-10-01

    Emission from accretion powered objects accounts for a large fraction of all photons in the universe and is a powerful diagnostic for their behavior and structure. Quantitative interpretation of spectrum emission from these objects requires a spectral synthesis model for photoionized plasma, since the ionizing luminosity is so large that photon driven atomic processes dominate over collisions. This is a quandary because laboratory experiments capable of testing the spectral emission models are non-existent. The models must predict the photoionized charge state distribution, the photon emission processes, and the radiation transport influence on the observed emission. We have used a decade of research at the Z facility to achieve the first simultaneous measurements of emission and absorption from photoionized plasmas. The extraordinary spectra are reproducible to within +/-2% and the E/dE 500 spectral resolution has enabled unprecedented tests of atomic structure calculations. The absorption spectra enable determination of plasma density, temperature, and charge state distribution. The emission spectra then enable tests of spectral emission models. The emission has been measured from plasmas with varying size to elucidate the radiation transport effects. This combination of measurements will provide strong constraints on models used in astrophysics. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  14. Binarity and Accretion in AGB Stars: HST/STIS Observations of UV Flickering in Y Gem

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Sánchez Contreras, C.; Mangan, A. S.; Sanz-Forcada, J.; Muthumariappan, C.; Claussen, M. J.

    2018-06-01

    Binarity is believed to dramatically affect the history and geometry of mass loss in AGB and post-AGB stars, but observational evidence of binarity is sorely lacking. As part of a project to search for hot binary companions to cool AGB stars using the GALEX archive, we discovered a late-M star, Y Gem, to be a source of strong and variable UV and X-ray emission. Here we report UV spectroscopic observations of Y Gem obtained with the Hubble Space Telescope that show strong flickering in the UV continuum on timescales of ≲20 s, characteristic of an active accretion disk. Several UV lines with P-Cygni-type profiles from species such as Si IV and C IV are also observed, with emission and absorption features that are red- and blueshifted by velocities of ∼500 {km} {{{s}}}-1 from the systemic velocity. Our model for these (and previous) observations is that material from the primary star is gravitationally captured by a companion, producing a hot accretion disk. The latter powers a fast outflow that produces blueshifted features due to the absorption of UV continuum emitted by the disk, whereas the redshifted emission features arise in heated infalling material from the primary. The outflow velocities support a previous inference by Sahai et al. that Y Gem’s companion is a low-mass main-sequence star. Blackbody fitting of the UV continuum implies an accretion luminosity of about 13 L ⊙, and thus a mass-accretion rate >5 × 10‑7 M ⊙ yr‑1 we infer that Roche-lobe overflow is the most likely binary accretion mode for Y Gem.

  15. Interaction of the accretion flows in corona and disk near the black hole in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Meyer-Hofmeister, E.; Liu, B. F.; Qiao, E.

    2017-11-01

    Context. Accretion flows toward black holes can be of a quite different nature, described as an optically thick cool gas flow in a disk for high accretion rates or as a hot coronal optically thin gas flow for low accretion rates, possibly affected by outflowing gas. Aims: The detection of broad iron emission lines in active galactic nuclei (AGN) indicates the coexistence of corona and disk. The appearance and relative strength of such flows essentially depends on their interaction. Liu et al. suggested that condensation of gas from the corona to the disk allows to understand accretion flows of comparable strength of emission. Matter inflow due to gravitational capture of gas is important for the condensation process. We discuss observational features predicted by the model. Methods: Data from simultaneous observations of AGN with Swift's X-ray and UV-optical telescopes are compared with the theoretical predictions. Results: The frequent detection of broad iron Kα emission lines and the dependence of the emitted spectra on the Eddington ratio, described by the values of the photon index Γ and the two-point spectral index αox are in approximate agreement with the predictions of the condensation model; the latter, however, with a large scatter. The model further yields a coronal emission concentrated in a narrow inner region as is also deduced from the analysis of emissivity profiles. Conclusions: The accretion flows in bright AGN could be described by the accretion of stellar wind or interstellar medium and its condensation into a thin disk.

  16. An Extreme, Blueshifted Iron Line in the Narrow Line Seyfert 1 PG 1402+261

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Porquet, D.; Turner, T. J.

    2004-01-01

    We report on a short, XMM-Newton observation of the radio-quiet Narrow Line Seyfert 1 PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 - 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad energy at 7.3 keV appears blue-shifted with respect to the iron Kalpha emission band between 6.4 - 6.97 keV, whilst the blue-wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of greater than 60 degrees is required to model the extreme blue-wing of the line. Furthermore the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG1402+261 above 2 keV is dominated by the pure-reflection component from the disk, whilst little or none of the direct hard power-law is observed. Alternatively the spectrum above 2 keV may instead be explained by an ionized absorber, if the column density is sufficiently high (NH greater than 3 x 10(exp 23) per square centimeter) and if the matter is ionized enough to produce a deep (tau approximately equal to 1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high velocity outflow, perhaps similar to those which appear to be observed in several other high accretion rate AGN. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection or outflow scenarios.

  17. How young the accretion-powered pulsars could be?

    NASA Astrophysics Data System (ADS)

    Kostina, M. V.; Ikhsanov, N. R.

    2017-12-01

    A question about the age of accretion-powered X-ray pulsars has recently been reopened by a discovery of the X-ray pulsar SXP 1062 in the SMC. This High Mass X-ray Binary (HMXB) contains a neutron star rotating with the period of 1062 s and is associated with a supernova remnant of the age ∼ 104 yr. An attempt to explain the origin of this young long-period X-ray pulsar within the traditional scenario of three basic states (ejector, propeller and accretor) encounters difficulties. Even if this pulsar were born as a magnetar the spin-down time during the propeller stage would exceed 104 yr. Here we explore a more circuitous way of the pulsar spin evolution in HMXBs, in which the propeller stage in the evolutionary track is avoided. We find this way to be possible if the stellar wind of the massive companion to the neutron star is magnetized. The geometry of plasma flow captured by the neutron star in this case differs from spherically symmetrical and the magnetospheric radius of the neutron star is smaller than that evaluated in the convention accretion scenarios. We show that the age of an accretion-powered pulsar in this case can be as small as ∼ 104 years without the need of invoking initial magnetic field in excess of 1013 G.

  18. A Highly Doppler Blueshifted Fe-K Emission Line in the High-Redshift QSO PKS 2149-306.

    PubMed

    Yaqoob; George; Nandra; Turner; Zobair; Serlemitsos

    1999-11-01

    We report the results from an ASCA observation of the high-luminosity, radio-loud quasar PKS 2149-306 (redshift 2.345), covering the approximately 1.7-30 keV band in the quasar frame. We find the source to have a luminosity approximately 6x1047 ergs s-1 in the 2-10 keV band (quasar frame). We detect an emission line centered at approximately 17 keV in the quasar frame. Line emission at this energy has not been observed in any other active galaxy or quasar to date. We present evidence rejecting the possibility that this line is the result of instrumental artifacts or a serendipitous source. The most likely explanation is blueshifted Fe-K emission (the equivalent width is EW approximately 300+/-200 eV, quasar frame). Bulk velocities of the order of 0.75c are implied by the data. We show that Fe-K line photons originating in an accretion disk and Compton scattering off a leptonic jet aligned along the disk axis can account for the emission line. Curiously, if the emission-line feature recently discovered in another quasar (PKS 0637-752, z=0.654) at 1.6 keV in the quasar frame is due to blueshifted O vii emission, the Doppler blueshifting factor in both quasars is similar ( approximately 2.7-2.8).

  19. Chandra Imaging of the Outer Accretion Flow onto the Black Hole at the Center of the Perseus Cluster

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Bautz, M. W.; McNamara, B. R.

    2017-11-01

    Nowhere is black hole feedback seen in sharper relief than in the Perseus cluster of galaxies. Owing to a combination of astrophysical and instrumental challenges, however, it can be difficult to study the black hole accretion that powers feedback into clusters of galaxies. Recent observations with Hitomi have resolved the narrow Fe Kα line associated with accretion onto the black hole in NGC 1275 (3C 84), the active galaxy at the center of Perseus. The width of that line indicates that the fluorescing material is located 6-45 pc from the black hole. Here, we report on a specialized Chandra imaging observation of NGC 1275 that offers a complementary angle. Using a sub-array, sub-pixel event repositioning, and an X-ray “lucky imaging” technique, Chandra imaging suggests an upper limit of about 0.3 arcsec on the size of the Fe Kα emission region, corresponding to ˜98 pc. Both spectroscopy and direct imaging now point to an emission region consistent with an extended molecular torus or disk, potentially available to fuel the black hole. A low X-ray continuum flux was likely measured from NGC 1275; contemporaneously, radio flaring and record-high GeV fluxes were recorded. This may be an example of the correlation between X-ray flux dips and jet activity that is observed in other classes of accreting black holes across the mass scale.

  20. ACCRETION RATES OF RED QUASARS FROM THE HYDROGEN Pβ LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dohyeong; Im, Myungshin; Glikman, Eilat

    Red quasars are thought to be an intermediate population between merger-driven star-forming galaxies in dust-enshrouded phase and normal quasars. If so, they are expected to have high accretion ratios, but their intrinsic dust extinction hampers reliable determination of Eddington ratios. Here, we compare the accretion rates of 16 red quasars at z ∼ 0.7 to those of normal type 1 quasars at the same redshift range. The red quasars are selected by their red colors in optical through near-infrared (NIR) and radio detection. The accretion rates of the red quasars are derived from the Pβ line in NIR spectra, whichmore » is obtained by the SpeX on the Infrared Telescope Facility in order to avoid the effects of dust extinction. We find that the measured Eddington ratios (L{sub bol}/L{sub Edd} ≃ 0.69) of red quasars are significantly higher than those of normal type 1 quasars, which is consistent with a scenario in which red quasars are the intermediate population and the black holes of red quasars grow very rapidly during such a stage.« less

  1. Ubiquitous equatorial accretion disc winds in black hole soft states

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Fender, R. P.; Begelman, M. C.; Dunn, R. J. H.; Neilsen, J.; Coriat, M.

    2012-05-01

    High-resolution spectra of Galactic black holes (GBHs) reveal the presence of highly ionized absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are a ubiquitous component of the jet-free soft states of all GBHs. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV/Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionization and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds and their presence ubiquitously during the soft X-ray states suggest they are fundamental components of the accretion phenomenon.

  2. Hard X-ray emission from accretion shocks around galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kushnir, Doron; Waxman, Eli

    2010-02-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being lesssim0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed.

  3. X-shooter spectroscopy of young stellar objects. VI. H I line decrements

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; Nisini, B.; Giannini, T.; Rigliaco, E.; Alcalá, J. M.; Natta, A.; Stelzer, B.

    2017-03-01

    Context. Hydrogen recombination emission lines commonly observed in accreting young stellar objects represent a powerful tracer for the gas conditions in the circumstellar structures (accretion columns, and winds or jets). Aims: Here we perform a study of the H I decrements and line profiles, from the Balmer and Paschen H I lines detected in the X-shooter spectra of a homogeneous sample of 36 T Tauri objects in Lupus, the accretion and stellar properties of which were already derived in a previous work. We aim to obtain information on the H I gas physical conditions to delineate a consistent picture of the H I emission mechanisms in pre-main sequence low-mass stars (M∗< 2 M⊙). Methods: We have empirically classified the sources based on their H I line profiles and decrements. We identified four Balmer decrement types (which we classified as 1, 2, 3, and 4) and three Paschen decrement types (A, B, and C), characterised by different shapes. We first discussed the connection between the decrement types and the source properties and then compared the observed decrements with predictions from recently published local line excitation models. Results: We identify a few groups of sources that display similar H I properties. One third of the objects show lines with narrow symmetric profiles, and present similar Balmer and Paschen decrements (straight decrements, types 2 and A). Lines in these sources are consistent with optically thin emission from gas with hydrogen densities of order 109 cm-3 and 5000 < T < 15 000 K. These objects are associated with low mass accretion rates. Type 4 (L-shaped) Balmer and type B Paschen decrements are found in conjunction with very wide line profiles and are characteristic of strong accretors, with optically thick emission from high-density gas (log nH > 11 cm-3). Type 1 (curved) Balmer decrements are observed only in three sub-luminous sources viewed edge-on, so we speculate that these are actually type 2 decrements that are reddened

  4. X-Ray Reflected Spectra from Accretion Disk Models. II. Diagnostic Tools for X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Kallman, T. R.; Mushotzky, R. F.

    2011-01-01

    We present a comprehensive study of the emission spectra from accreting sources. We use our new reflection code to compute the reflected spectra from an accretion disk illuminated by X-rays. This set of models covers different values of ionization parameter, solar iron abundance and photon index for the illuminating spectrum. These models also include the most complete and recent atomic data for the inner-shell of the iron and oxygen isonuclear sequences. We concentrate our analysis to the 2 - 10 keV energy region, and in particular to the iron K-shell emission lines. We show the dependency of the equivalent width (EW) of the Fe Ka with the ionization parameter. The maximum value of the EW is approx. 800 eV for models with log Epsilon approx. 1.5, and decreases monotonically as Epsilon increases. For lower values of Epsilon the Fe K(alpha) EW decreases to a minimum near log Epsilon approx. 0.8. We produce simulated CCD observations based on our reflection models. For low ionized, reflection dominated cases, the 2 -10 keV energy region shows a very broad, curving continuum that cannot be represented by a simple power-law. We show that in addition to the Fe K-shell emission, there are other prominent features such as the Si and S L(alpha) lines, a blend of Ar VIII-XI lines, and the Ca x K(alpha) line. In some cases the S xv blends with the He-like Si RRC producing a broad feature that cannot be reproduced by a simple Gaussian profile. This could be used as a signature of reflection.

  5. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi

    2017-11-01

    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  6. The near-infrared broad emission line region of active galactic nuclei - II. The 1-μm continuum

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Elvis, Martin; Ward, Martin J.; Bentz, Misty C.; Korista, Kirk T.; Karovska, Margarita

    2011-06-01

    We use quasi-simultaneous near-infrared (near-IR) and optical spectroscopy from four observing runs to study the continuum around 1 μm in 23 well-known broad emission line active galactic nuclei (AGN). We show that, after correcting the optical spectra for host galaxy light, the AGN continuum around this wavelength can be approximated by the sum of mainly two emission components, a hot dust blackbody and an accretion disc. The accretion disc spectrum appears to dominate the flux at ˜ 1 μm, which allows us to derive a relation for estimating AGN black hole masses based on the near-IR virial product. This result also means that a near-IR reverberation programme can determine the AGN state independent of simultaneous optical spectroscopy. On average we derive hot dust blackbody temperatures of ˜1400 K, a value close to the sublimation temperature of silicate dust grains, and relatively low hot dust covering factors of ˜7 per cent. Our preliminary variability studies indicate that in most sources, the hot dust emission responds to changes in the accretion disc flux with the expected time lag; however, a few sources show a behaviour that can be attributed to dust destruction.

  7. The relativistic jet of the γ-ray emitting narrow-line Seyfert 1 galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Kynoch, Daniel; Landt, Hermine; Ward, Martin J.; Done, Chris; Gardner, Emma; Boisson, Catherine; Arrieta-Lobo, Maialen; Zech, Andreas; Steenbrugge, Katrien; Pereira Santaella, Miguel

    2018-03-01

    The detection of several radio-loud narrow-line Seyfert 1 (NLS1) galaxies by the Fermi Gamma-Ray Space Telescope hints at the existence of a rare, new class of γ-ray emitting active galactic nuclei with low black hole masses. Like flat spectrum radio quasars (FSRQs), their γ-ray emission is thought to be produced via the external Compton mechanism whereby relativistic jet electrons upscatter a photon field external to the jet, e.g. from the accretion disc, broad line region (BLR), and dusty torus, to higher energies. Here we study the origin of the γ-ray emission in the lowest-redshift candidate among the currently known γ-ray emitting NLS1s, 1H 0323+342, and take a new approach. We observationally constrain the external photon field using quasi-simultaneous near-infrared, optical, and X-ray spectroscopy. Applying a one-zone leptonic jet model, we simulate the range of jet parameters for which this photon field, when Compton scattered to higher energies, can explain the γ-ray emission. We find that the site of the γ-ray emission lies well within the BLR and that the seed photons mainly originate from the accretion disc. The jet power that we determine, 1.0 × 1045 erg s-1, is approximately half the accretion disc luminosity. We show that this object is not simply a low-mass FSRQ, its jet is intrinsically less powerful than predicted by scaling a typical FSRQ jet by black hole mass and accretion rate. That γ-ray-emitting NLS1s appear to host underpowered jets may go some way to explaining why so few have been detected to date.

  8. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    NASA Technical Reports Server (NTRS)

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (< or =3000 K), thus their fluxes falls off drastically for wavelengths 3000 Angstroms and shorter. Therefore, ultraviolet observations offer an important, new technique for detecting the binary companions and/or associated accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  9. Ngc7538 Irs1 - A Highly Collimated Ionized Wind Source Powered By Accretion

    NASA Astrophysics Data System (ADS)

    Sandell, Goran H. L.; Wright, M.; Goss, W.; Corder, S.

    2009-01-01

    Recent images show that NGC7538 IRS1 is not a conventional Ultracompact or Hypercompact HII region, but is completely wind-excited (other broad recombination line hypercompact HII regions may be similar to IRS1). NGC 7538 IRS1 is a well studied young high-mass star (L 2 10^5 L_Sun).VLA images at 6 and 2 cm (Cambell 1984; ApJ, 282, L27) showed a compact bipolar core (lobe separation 0.2") with more extended faint lobes. Recombination line observations (Gaume et al. 1995, ApJ, 438, 776) show extremely wide line profiles indicating substantial mass motion of the ionized gas. We re-analyzed high angular resolution VLA archive data from 6 cm to 7 mm, and measured the flux from the compact core and the extended (1.5 - 2") bipolar lobes. We find that the compact core has a spectral index, alpha 0.6, which could be explained by an optically thick hypercompact core with a density gradient. However, the size of the core shrinks with increasing frequency; from 0.24" at 6 cm to 0.1" at 7 mm, consistent with that expected for a collimated jet (Reynolds 1986, ApJ, 304, 713). If we do a crude size correction so that we compare emission from the optically thick inner part of the jet for a set of 2 cm and 7 mm observations we get alpha 1.6, i.e. close to the optically thick value. BIMA and CARMA continuum observations at 3 mm show some dust excess, while. HCO+ J=1-0 observations combined with FCRAO single dish data show a clear inverse P Cygni profile towards IRS1. These observations confirm that IRS1 is heavily accreting with an accretion rate 2 10^-4 M_Sun/year, sufficient to quench the formation of an HII region.

  10. Constraint on the black hole spin of M87 from the accretion-jet model

    NASA Astrophysics Data System (ADS)

    Feng, Jianchao; Wu, Qingwen

    2017-09-01

    The millimetre bump, as found in high-resolution multiwaveband observations of M87 by Prieto et al., most possibly comes from the synchrotron emission of thermal electrons in advection-dominated accretion flow (ADAF). It is possible to constrain the accretion rate near the horizon if both the nuclear millimetre emission and its polarization are produced by the hot plasma in the accretion flow. The jet power of M87 has been extensively explored, which is around 8_-3^{+7}× 10^{42} erg s-1 based on the analysis of the X-ray cavity. The black hole (BH) spin can be estimated if the jet power and the accretion rate near the horizon are known. We model the multiwavelength spectral energy distribution (SED) of M87 with a coupled ADAF-jet model surrounding a Kerr BH, where the full set of relativistic hydrodynamical equations of the ADAF are solved. The hybrid jet formation model, as a variant of the Blandford-Znajek model, is used to model the jet power. We find that the SMBH should be fast rotating with a dimensionless spin parameter a_{*}˜eq 0.98_-0.02^{+0.012}.

  11. Balmer line profiles for infalling T Tauri envelopes

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee

    1992-01-01

    The possibility that the Balmer emission lines of T Tauri stars arise in infalling envelopes rather than winds is considered. Line profiles for the upper Balmer lines are presented for models with cone geometry, intended to simulate the basic features of magnetospheric accretion from a circumstellar disk. An escape probability treatment is used to determine line source functions in nonspherically symmetric geometry. Thermalization effects are found to produce nearly symmetric H-alpha line profiles at the same time the higher Balmer series lines exhibit inverse P Cygni profiles. The infall models produce centrally peaked emission line wings, in good agreement with observations of many T Tauri stars. It is suggested that the Balmer emission of many T Tauri stars may be produced in an infalling envelope, with blue shifted absorption contributed by an overlying wind. Some of the observed narrow absorption components with small blueshifts may also arise in the accretion column.

  12. Evidence for Residual Material in Accretion Disk Gaps: CO Fundamental Emission from the T Tauri Spectroscopic Binary DQ Tauri

    DTIC Science & Technology

    2001-04-10

    for gas from the circumbinary disk to cross disk gaps in the...00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE Evidence for Residual Material in Accretion Disk Gaps : CO Fundamental Emission from the T Tauri...MATERIAL IN ACCRETION DISK GAPS 455 type of modulated, or pulsed, accretion predicted by Arty- mowicz & Lubow (1996) for an eccentric, equal mass

  13. The Peculiar Radio-loud Narrow Line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.; Anjum, Ayesha; Pandey, S. B.

    2014-07-01

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ~3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  14. Super-Eddington QSO RX J0439.6-5311 - II. Multiwavelength constraints on the global structure of the accretion flow

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Done, Chris; Ward, Martin; Gardner, Emma

    2017-10-01

    We present a detailed multiwavelength study of an unobscured, highly super-Eddington Type-1 QSO RX J0439.6-5311. We combine the latest XMM-Newton observation with all archival data from infrared to hard X-rays. The optical spectrum is very similar to that of 1H 0707-495 in having extremely weak [O III] and strong Fe II emission lines, although the black hole mass is probably slightly higher at 5-10 × 106 M⊙. The broad-band spectral energy distribution is uniquely well defined due to the extremely low Galactic and intrinsic absorption, so the bolometric luminosity is tightly constrained. The optical/UV accretion disc continuum is seen down to 900 Å, showing that there is a standard thin disc structure down to R ≥ 190-380 Rg and determining the mass accretion rate through the outer disc. This predicts a much higher bolometric luminosity than observed, indicating that there must be strong wind and/or advective energy losses from the inner disc, as expected for a highly super-Eddington accretion flow. Significant outflows are detected in both the narrow-line region (NLR) and broad-line region (BLR) emission lines, confirming the presence of a wind. We propose a global picture for the structure of a super-Eddington accretion flow where the inner disc puffs up, shielding much of the potential NLR material, and show how inclination angle with respect to this and the wind can explain very different X-ray properties of RX J0439.6-5311 and 1H 0707-495. Therefore, this source provides strong supporting evidence that 'simple' and 'complex' super-Eddington NLS1s can be unified within the same accretion flow scenario but with different inclination angles. We also propose that these extreme NLS1s could be the low-redshift analogues of weak emission-line quasars.

  15. Broadband spectral study of the jet-disc emission in the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Ghosh, Ritesh; Dewangan, Gulab C.; Mallick, Labani; Raychaudhuri, Biplab

    2018-06-01

    We present a broadband spectral study of the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342 based on multi-epoch observations performed with NuSTAR on 2014 March 15, and two simultaneous observations performed with Suzaku and Swift on 2009 July 26 and 2013 March 1. We found the presence of a strong soft X-ray excess emission, a broad but weak Fe line and hard X-ray excess emission. We used the blurred reflection (relxill) and the intrinsic disc Comptonization (optxagnf), two physically motivated models, to describe the broadband spectra and to disentangle the disk/corona and jet emission. The relxill model is mainly constrained by the strong soft X-ray excess although the model failed to predict this excess when fitted above 3{keV} and extrapolated to lower energies. The joint spectral analysis of the three datasets above 3{keV} with this model resulted in a high black hole spin (a > 0.9) and moderate reflection fraction R ˜ 0.5. The optxagnf model fitted to the two simultaneous datasets resulted in an excess emission in the UV band. The simultaneous UV-to-hard X-ray spectra of 1H 0323+342 are best described by a model consisting of a primary X-ray power-law continuum with Γ ˜ 1.8, a blurred reflection component with R ˜ 0.5, Comptonised disk emission as the soft X-ray excess, optical/UV emission from a standard accretion disk around a black hole of mass ˜107M⊙ and a steep power law (Γ ˜ 3 - 3.5) component, most likely the jet emission in the UV band. The fractional RMS variability spectra suggest that both the soft excess and the powerlaw component are variable in nature.

  16. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  17. Probing the Broad-Line Region and the Accretion Disk in the Lensed Quasars HE 0435-1223, WFI 2033-4723, and HE 2149-2745 Using Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Motta, V.; Mediavilla, E.; Rojas, K.; Falco, E. E.; Jiménez-Vicente, J.; Muñoz, J. A.

    2017-02-01

    We use single-epoch spectroscopy of three gravitationally lensed quasars, HE 0435-1223, WFI 2033-4723, and HE 2149-2745, to study their inner structure (broad-line region [BLR] and continuum source). We detect microlensing-induced magnification in the wings of the broad emission lines of two of the systems (HE 0435-1223 and WFI 2033-4723). In the case of WFI 2033-4723, microlensing affects two “bumps” in the spectra that are almost symmetrically arranged on the blue (coincident with an Al III emission line) and red wings of C III]. These match the typical double-peaked profile that follows from disk kinematics. The presence of microlensing in the wings of the emission lines indicates the existence of two different regions in the BLR: a relatively small one with kinematics possibly related to an accretion disk, and another one that is substantially more extended and insensitive to microlensing. There is good agreement between the estimated size of the region affected by microlensing in the emission lines, {r}s={10}-7+15\\sqrt{M/{M}⊙ } lt-day (red wing of C IV in HE 0435-1223) and {r}s={11}-7+28\\sqrt{M/{M}⊙ } lt-day (C III] bumps in WFI 2033-4723), and the sizes inferred from the continuum emission, {r}s={13}-4+5\\sqrt{M/{M}⊙ } lt-day (HE 0435-1223) and {r}s={10}-2+3\\sqrt{M/{M}⊙ } lt-day (WFI 2033-4723). For HE 2149-2745 we measure an accretion disk size {r}s={8}-5+11\\sqrt{M/{M}⊙ } lt-day. The estimates of p, the exponent of the size versus wavelength ({r}s\\propto {λ }p), are 1.2 ± 0.6, 0.8 ± 0.2, and 0.4 ± 0.3 for HE 0435-1223, WFI 2033-4723, and HE 2149-2745, respectively. In conclusion, the continuum microlensing amplitude in the three quasars and chromaticity in WFI 2033-4723 and HE 2149-2745 are below expectations for the thin-disk model. The disks are larger and their temperature gradients are flatter than predicted by this model.

  18. Magnetic jets from accretion disks : field structure and X-ray emission

    NASA Astrophysics Data System (ADS)

    Memola, Elisabetta

    2002-06-01

    Jets are highly collimated flows of matter. They are present in a large variety of astrophysical sources: young stars, stellar mass black holes (microquasars), galaxies with an active nucleus (AGN) and presumably also intense flashes of gamma-rays. In particular, the jets of microquasars, powered by accretion disks, are probably small-scale versions of the outflows from AGN. Beside observations of astrophysical jet sources, also theoretical considerations have shown that magnetic fields play an important role in jet formation, acceleration and collimation. Collimated jets seem to be systematically associated with the presence of an accretion disk around a star or a collapsed object. If the central object is a black hole, the surrounding accretion disk is the only possible location for a magnetic field generation. We are interested in the formation process of highly relativistic jets as observed from microquasars and AGN. We theoretically investigate the jet collimation region, whose physical dimensions are extremely tiny even compared to radio telescopes spatial resolution. Thus, for most of the jet sources, global theoretical models are, at the moment, the only possibility to gain information about the physical processes in the innermost jet region. For the first time, we determine the global two-dimensional field structure of stationary, axisymmetric, relativistic, strongly magnetized (force-free) jets collimating into an asymptotically cylindrical jet (taken as boundary condition) and anchored into a differentially rotating accretion disk. This approach allows for a direct connection between the accretion disk and the asymptotic collimated jet. Therefore, assuming that the foot points of the field lines are rotating with Keplerian speed, we are able to achieve a direct scaling of the jet magnetosphere in terms of the size of the central object. We find a close compatibility between the results of our model and radio observations of the M87 galaxy innermost jet

  19. General Relativistic Radiative Transfer and General Relativistic MHD Simulations of Accretion and Outflows of Black Holes

    NASA Technical Reports Server (NTRS)

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah

    2007-01-01

    We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  20. General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke

    2007-01-05

    We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observedmore » in black-hole X-ray binaries.« less

  1. Evidence for an Ionized Accretion Disk in the Seyfert 2 Galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Weaver, K. A.; Mulchaey, J. S.; Mushotzky, R. F.

    2000-10-01

    We present results from analyses of RXTE, ASCA and BeppoSAX X-ray spectral data from the archetypal Seyfert 2 galaxy NGC 1068. Simultaneous RXTE and ASCA data (spanning 4 - 100 keV) are best fit with a power-law continuum with photon index Γ ~ 1.7 (in agreement with the canonical value for type 1 Seyferts), plus reflection from ionized matter with ξ ~ 1000. Reflection from ionized matter is significantly preferred over reflection from cold matter (Δ χ2 ≈ 50 for 320 dof). When the Fe line complex is modelled with three narrow Gaussians at 6.4, 6.7 and 6.97 keV, we find that the 6.7 keV line flux increases by a factor of ≈ 2 in four months, between the RXTE/ASCA and BeppoSAX observations. Thus we argue that the 6.7 keV line emission comes to us directly from the accretion disk, and not from the electron scattering region further out from the nucleus. We find no evidence for variability in the line fluxes at 6.4 and 6.97 keV. Although ionized accretion disks are thought to be present in NLS1 nuclei, we are only now finding evidence for them in ``broad-line'' Seyfert nuclei (type 1: 1E 1615+061 and type 2: NGC 1068, this work). We shall discuss the implications of these results on the particular geometry required in NGC 1068.

  2. X-Ray Emissions from Accreting White Dwarfs: A Review

    NASA Technical Reports Server (NTRS)

    Mukai, K.

    2017-01-01

    Interacting binaries in which a white dwarf accretes material from a companion-cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant-are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.

  3. Excitation Mechanisms of Near-Infrared Emission Lines in LINER Galaxies

    NASA Astrophysics Data System (ADS)

    Boehle, Anna

    2017-01-01

    I will present high spatial resolution, integral field spectroscopic observations of the nearby LINER (low ionization nuclear emission line region) galaxy NGC 404. LINERs are found at the centers of ~1/3 of galaxies within 40 Mpc, but their physical nature is not well understood. Although NGC 404 is thought to host a intermediate mass black hole at its center, it is unclear whether accretion onto the black hole or another mechanism such as shock excitation drives its LINER emission. We use the OSIRIS near-infrared integral field spectrograph at Keck Observatory behind laser guide star adaptive optics to map the strength and kinematics of [FeII], H2, and hydrogen recombination lines in the nucleus of NGC 404. These observations have a spatial pixel sampling of 0.5 pc and span the central 30 pc of the galaxy. We find that the ionized and molecular gas show differences in their morphology and kinematics on parsec scales. In particular, there are regions with line ratios of [FeII]/Pa-β that are much higher than previously seen in spatially integrated spectra, significantly restricting the possible excitation mechanisms of the near-infrared emission lines in this source. We are also applying these analysis techniques to 10 additional nearby LINERs, a part of a larger sample of 14 sources, to understand what drives the emission lines in these active galaxies. As a part of this program, I worked on the upgrade of the detector in the OSIRIS spectrograph, which has allowed observations for this survey obtained since January 2016 to be taken with increased instrument sensitivity of a factor of ~2 at J-band wavelengths (1.2 - 1.4 microns) and ~1.6 at H- and K-band wavelengths (1.5 - 2.4 microns). I will present results from the LINER survey, the OSIRIS detector upgrade, and also touch on related work using stellar orbits around the Milky Way supermassive black hole Sgr A* to constrain the mass and distance to our own Galactic Center.

  4. A large sample of Kohonen-selected SDSS quasars with weak emission lines: selection effects and statistical properties

    NASA Astrophysics Data System (ADS)

    Meusinger, H.; Balafkan, N.

    2014-08-01

    Aims: A tiny fraction of the quasar population shows remarkably weak emission lines. Several hypotheses have been developed, but the weak line quasar (WLQ) phenomenon still remains puzzling. The aim of this study was to create a sizeable sample of WLQs and WLQ-like objects and to evaluate various properties of this sample. Methods: We performed a search for WLQs in the spectroscopic data from the Sloan Digital Sky Survey Data Release 7 based on Kohonen self-organising maps for nearly 105 quasar spectra. The final sample consists of 365 quasars in the redshift range z = 0.6 - 4.2 (z¯ = 1.50 ± 0.45) and includes in particular a subsample of 46 WLQs with equivalent widths WMg ii< 11 Å and WC iv< 4.8 Å. We compared the luminosities, black hole masses, Eddington ratios, accretion rates, variability, spectral slopes, and radio properties of the WLQs with those of control samples of ordinary quasars. Particular attention was paid to selection effects. Results: The WLQs have, on average, significantly higher luminosities, Eddington ratios, and accretion rates. About half of the excess comes from a selection bias, but an intrinsic excess remains probably caused primarily by higher accretion rates. The spectral energy distribution shows a bluer continuum at rest-frame wavelengths ≳1500 Å. The variability in the optical and UV is relatively low, even taking the variability-luminosity anti-correlation into account. The percentage of radio detected quasars and of core-dominant radio sources is significantly higher than for the control sample, whereas the mean radio-loudness is lower. Conclusions: The properties of our WLQ sample can be consistently understood assuming that it consists of a mix of quasars at the beginning of a stage of increased accretion activity and of beamed radio-quiet quasars. The higher luminosities and Eddington ratios in combination with a bluer spectral energy distribution can be explained by hotter continua, i.e. higher accretion rates. If

  5. Winds and accretion in delta Sagittae

    NASA Technical Reports Server (NTRS)

    Eaton, Joel A.; Hartkopf, William I.; Mcalister, Harold A.; Mason, Brian D.

    1995-01-01

    The ten-year binary delta Sge (M2 Ib-II+B9.5 V) is a zeta Aur binary containing an abnormally cool component. Combining our analysis of the system as a visual binary with Batten's radial-velocity solution leads to the following properties: i = 40 deg, a = 51 mas = 8.83 A.U. = 1893 solar radius, hence d = 173 pc; M(sub B) = 2.9 solar mass and M(sub M) = 3.8 solar mass; and R(sub B) = 2.6 solar radius and R(sub M) = 152 solar radius. This interpretation of the orbit places the M supergiant on the asymptotic giant branch. We have collected ultraviolet spectra throughout the star's 1980-90 orbit, concentrated around the conjuction of 1990. The wind of the M giant appears in these as narrow shell lines of singly ionized metals, chiefly Fe II, with P-Cyg profiles at many phases, which show the slow variation in strength expected for the orbit but no pronounced atmospheric eclipse. The terminal velocity of the wind is 16-18 km/s, and its excitation temperature is approximately 10,000 K. Most of the broadening of the wind lines is caused by differential expansion of the atmosphere, with (unmeasurably) low turbulent velocities. Nontheless, the mass loss rate (1.1 +/- 0.4 X 10 (exp -8) solar mas/yr) is almost the same as found previously by Reimers and Schroder for very different assumptions about the velocity structure. Also seen in the spectrum throughout the orbit are the effects of a variable, high-speed wind as well as evidence for accretion onto the B9.5 star. This high-speed wind absorbs in species of all ionization stages observed, e. g., C II, Mg II, Al III, SI IV, C IV, and has a terminaal velocity in the range 200-450 km/s. We presume this wind originates at the B dwarf, not the M supergiant, and speculate that it comes from an accretion disk, as suggested by recent models of magnetically moderated accretion. Evidence for accretion is redshifted absorption in the same transitions formed in the high-speed wind, as well as broad emission lines of singly ionized

  6. Thermal wind from hot accretion flows at large radii

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Yang, Xiao-Hong

    2018-06-01

    We study slowly rotating accretion flow at parsec and subparsec scales irradiated by low-luminosity active galactic nuclei. We take into account the Compton heating, photoionization heating by the central X-rays. The bremsstrahlung cooling, recombination, and line cooling are also included. We find that due to the Compton heating, wind can be thermally driven. The power of wind is in the range (10-6-10-3) LEdd, with LEdd being the Eddington luminosity. The mass flux of wind is in the range (0.01-1) \\dot{M}_Edd (\\dot{M}_Edd= L_Edd/0.1c^2 is the Eddington accretion rate, c is speed of light). We define the wind generation efficiency as ɛ = P_W/\\dot{M}_BHc^2, with PW being wind power, \\dot{M}_BH being the mass accretion rate on to the black hole. ɛ lies in the range 10-4-1.18. Wind production efficiency decreases with increasing mass accretion rate. The possible role of the thermally driven wind in the active galactic feedback is briefly discussed.

  7. The control of the magnetosphere by power line radiation

    NASA Technical Reports Server (NTRS)

    Luette, J. P.; Park, C. G.; Helliwell, R. A.

    1979-01-01

    Evidence is presented that radiated power line harmonics leak into high-altitude regions of the magnetosphere with sufficient intensity to control the starting frequencies of chorus emissions. OGO-3 data from three passes show that the starting frequencies of all measurable chorus emissions were within a few hertz of power line harmonics. It is also found that emissions detected over Western Europe were controlled by harmonics of 50 Hz; over the eastern United States and Canada by 60 Hz; and along the Alaska-New Zealand meridian by harmonics of both 50 and 60 Hz. These results indicate that man-made VLF noise plays an important role in the generation of chorus, one of the commonly observed forms of wave activity in the outer magnetosphere.

  8. Accreting, highly magnetized neutron stars at the Eddington limit: a study of the 2016 outburst of SMC X-3

    NASA Astrophysics Data System (ADS)

    Koliopanos, Filippos; Vasilopoulos, Georgios

    2018-06-01

    Aims: We study the temporal and spectral characteristics of SMC X-3 during its recent (2016) outburst to probe accretion onto highly magnetized neutron stars (NSs) at the Eddington limit. Methods: We obtained XMM-Newton observations of SMC X-3 and combined them with long-term observations by Swift. We performed a detailed analysis of the temporal and spectral behavior of the source, as well as its short- and long-term evolution. We have also constructed a simple toy-model (based on robust theoretical predictions) in order to gain insight into the complex emission pattern of SMC X-3. Results: We confirm the pulse period of the system that has been derived by previous works and note that the pulse has a complex three-peak shape. We find that the pulsed emission is dominated by hard photons, while at energies below 1 keV, the emission does not pulsate. We furthermore find that the shape of the pulse profile and the short- and long-term evolution of the source light-curve can be explained by invoking a combination of a "fan" and a "polar" beam. The results of our temporal study are supported by our spectroscopic analysis, which reveals a two-component emission, comprised of a hard power law and a soft thermal component. We find that the latter produces the bulk of the non-pulsating emission and is most likely the result of reprocessing the primary hard emission by optically thick material that partly obscures the central source. We also detect strong emission lines from highly ionized metals. The strength of the emission lines strongly depends on the phase. Conclusions: Our findings are in agreement with previous works. The energy and temporal evolution as well as the shape of the pulse profile and the long-term spectra evolution of the source are consistent with the expected emission pattern of the accretion column in the super-critical regime, while the large reprocessing region is consistent with the analysis of previously studied X-ray pulsars observed at high

  9. Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Fabian, A. C.; Ross, R. R.

    1983-01-01

    Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits.

  10. The Suzaku Observation of the Nucleus of theRadio-Loud Active Galaxy Centaurus A: Constraints on Abundances of the Accreting Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markowitz, A.; Takahashi, T.; Watanabe, S.

    2007-06-27

    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The net exposure times after screening were: 70 ks per X-ray Imaging Spectrometer (XIS) camera, 60.8 ks for the Hard X-ray Detector (HXD) PIN, and 17.1 ks for the HXD-GSO. The hard X-rays are fit by two power-laws of the same slope, absorbed by columns of 1.5 and 7 x 10{sup 23} cm{sup -2} respectively. The spectrum is consistent with previous suggestions that the power-law components are X-ray emission from the sub-pc VLBI jet and frommore » Bondi accretion at the core, but it is also consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature vapec model, plus a third power-law component to account for scattered nuclear emission, jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The Fe K{alpha} line width yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. Fe, Ca, and S K-shell absorption edges are detected. Elemental abundances are constrained via absorption edge depths and strengths of the fluorescent and diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.1) of the circumnuclear material suggests that it could not have originated in the relatively metal-poor outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.« less

  11. Radio emission from Sgr A*: pulsar transits through the accretion disc

    NASA Astrophysics Data System (ADS)

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2017-06-01

    Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at the shock front, are injected into the disc. The radio-emitting particles are long lived and remain within the disc long after the pulsar's transit. Periodic pulsar transits through the disc result in regular injection episodes of non-thermal particles. We show that for a pulsar with spin-down luminosity Lsd ˜ 3 × 1035 erg s-1 and a wind Lorentz factor of γw ˜ 104 a quasi-steady synchrotron emission is established with luminosities in the 1-10 GHz range comparable to the observed one.

  12. Accretion dynamics and polarized X-ray emission of magnetized neutron stars

    NASA Technical Reports Server (NTRS)

    Arons, Jonathan

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such a star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-raysfrom the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40 percent at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of 'photon bubbles', regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scale. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined.

  13. Evidence for Doppler-Shifted Iron Emission Lines in Black Hole Candidate 4U 1630-47

    NASA Technical Reports Server (NTRS)

    Cui, Wei; Chen, Wan; Zhang, Shuang Nan

    2000-01-01

    We report the first detection of a pair of correlated the X-ray spectrum of black hole candidate 4U 1630-47 outburst, based on Rossi X-Ray Timing Explorer (RXTE) emission lines in during its 1996 observations of the source. At the peak plateau of the outburst, the emission lines are detected, centered mostly at approx. 5.7 and approx. 7.7 keV, respectively, while the line energies exhibit random variability approx. 5%. Interestingly, the lines move in a concerted manner to keep their separation roughly constant. The lines also vary greatly in strength, but with the lower energy line always much stronger than the higher energy one. The measured equivalent width ranges from approx. 50 to approx. 270 eV for the former, and from insignificant detection to approx. 140 eV for the latter; the two are reasonably correlated. The correlation between the lines implies a causal connection; perhaps they share a common origin. Both lines may arise from a single K & alpha; line of highly ionized iron that is Doppler shifted either in a Keplerian accretion disk or in a bipolar outflow or even both. In both scenarios, a change in the line energy might simply reflect a change in the ionization state of line-emitting matter. We discuss the implication of the results and also raise some questions about such interpretations.

  14. Evaporation of Accretion Disks around Black Holes: The Disk-Corona Transition and the Connection to the Advection-dominated Accretion Flow.

    PubMed

    Liu; Yuan; Meyer; Meyer-Hofmeister; Xie

    1999-12-10

    We apply the disk-corona evaporation model (Meyer & Meyer-Hofmeister) originally derived for dwarf novae to black hole systems. This model describes the transition of a thin cool outer disk to a hot coronal flow. The mass accretion rate determines the location of this transition. For a number of well-studied black hole binaries, we take the mass flow rates derived from a fit of the advection-dominated accretion flow (ADAF) model to the observed spectra (for a review, see Narayan, Mahadevan, & Quataert) and determine where the transition of accretion via a cool disk to a coronal flow/ADAF would be located for these rates. We compare this with the observed location of the inner disk edge, as estimated from the maximum velocity of the Halpha emission line. We find that the transition caused by evaporation agrees with this determination in stellar disks. We also show that the ADAF and the "thin outer disk + corona" are compatible in terms of the physics in the transition region.

  15. Origin of Large and Highly Variable Changes in the Apparent Spin Frequencies of Accretion-Powered Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Lamb, Frederick K.; Dorris, D.; Clare, A.; Van Wassenhove, S.; Yu, W.; Miller, M. C.

    2006-09-01

    The spin-frequency behavior of accretion-powered millisecond pulsars is usually inferred by power spectral analysis of their X-ray waveforms. The reported behavior of the spin frequencies of several accretion-powered millisecond pulsars is puzzling in two respects. First, analysis of the waveforms of these pulsars indicates that their spin frequencies are changing faster than predicted by the standard model of accretion torques. Second, there are wild swings of both signs in their apparent spin frequencies that are not correlated with the mass accretion rates inferred from their X-ray fluxes. We have computed the expected X-ray waveforms of pulsars like these, including special and general relativistic effects, and find that the changes in their waveforms produced by physically plausible changes in the flow of accreting matter onto their surfaces can explain their apparently anomalous spin-frequency behavior. This research was supported in part by NASA grant NAG 5-12030, NSF grant AST 0098399, and funds of the Fortner Endowed Chair at Illinois, and NSF grant AST 0098436 at Maryland.

  16. Super-massive binary black holes and emission lines in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Popović, Luka Č.

    2012-02-01

    It is now agreed that mergers play an essential role in the evolution of galaxies and therefore that mergers of supermassive black holes (SMBHs) must have been common. We see the consequences of past supermassive binary black holes (SMBs) in the light profiles of so-called 'core ellipticals' and a small number of SMBs have been detected. However, the evolution of SMBs is poorly understood. Theory predicts that SMBs should spend a substantial amount of time orbiting at velocities of a few thousand kilometers per second. If the SMBs are surrounded by gas observational effects might be expected from accretion onto one or both of the SMBHs. This could result in a binary Active Galactic Nucleus (AGN) system. Like a single AGN, such a system would emit a broad band electromagnetic spectrum and broad and narrow emission lines. The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emit very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate an SMB system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be. We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarimetry, etc.) could be used for SMBs detection. Some narrow lines (e.g., [O III]) in some AGNs show a double-peaked profile. Such profiles can be caused by streams in the Narrow

  17. Iron K lines from low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; White, N. E.

    1989-01-01

    Models are presented for the 6-7 keV iron line emission from low-mass X-ray binaries. A simplified model for an accretion disk corona is used to examine the dependence of the observable line properties, line width and mean energy, on the radial distance of the emission region from the X-ray source, and on the fraction of the X-rays from the source which reach the disk surface. The effects of blending of multiple line components and of Comptonization of the line profile are included in numerical calculations of the emitted profile shape. The results of these calculations, when compared with the line properties observed from several low-mass X-ray binaries, suggest that the broadening is dominated either by rotation or by Compton scattering through a greater optical depth than is expected from an accretion disk corona.

  18. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Noble, Scott C.; Krolik, Julian H.

    2011-01-01

    We present new global calculations of X-ray spectra from fully relativistic magneto-hydrodynamic (MHO) simulations of black hole (BH) accretion disks. With a self consistent radiative transfer code including Compton scattering and returning radiation, we can reproduce the predominant spectral features seen in decades of X-ray observations of stellar-mass BHs: a broad thermal peak around 1 keV, power-law continuum up to >100 keV, and a relativistically broadened iron fluorescent line. By varying the mass accretion rate, different spectral states naturally emerge: thermal-dominant, steep power-law, and low/hard. In addition to the spectral features, we briefly discuss applications to X-ray timing and polarization.

  19. Multiwavelength study of accretion-powered pulsars

    NASA Astrophysics Data System (ADS)

    Nespoli, Elisa

    2010-11-01

    This thesis consists in a multi-frequency approach to High Mass X-ray Binaries (HMXBs), using infrared and X-ray data. On one side, the project aimed at the identification and characterization of IR counterparts to obscured HMXBs in the Scutum and Norma inner galactic arms. The identification of optical/IR counterparts to HMXBs is a necessary step to undertake detailed studies of these systems. With data limited to the high-energy range, the understanding of their complex structure and dynamics cannot be complete. In the last years, INTEGRAL has revealed the presence of an important population of heavily absorbed HMXBs in the Scutum and Norma regions, virtually unobservable below 4 keV. Optical counterparts to these obscured sources are hardly observable, due to the high interstellar extinction. Candidate counterparts to HMXBs were selected by means of a photometric search for emission-line stars in the error boxes of the X-ray sources detected by INTEGRAL. With this objective, I built up (Brγ-K)-(H-K) and (HeI-K)-(H-K) IR color-color diagrams, in which emission-line stars are expected to show up below the absorption-line stars sequence. I applied this technique to search for counterparts to Be/XRBs, whose transient nature prevents the counterpart identification with follow-up X-ray observations with high spatial resolution. For each field, one to four candidate counterparts were identified. I also took spectra of proposed counterparts. The confirmation and spectral classifications of the systems led to unveil the nature of nine INTEGRAL objects. On the other hand, this work intended to provide for the first time a systematic study of four Be/XRBs during giant (type II) outbursts. I employed RXTE data, applying the three techniques of color-color/hardness-intensity diagrams (CD/HID), spectral fitting and Fourier power-spectral analysis, simultaneously, and using the retrieved results and correlations to try to define and characterize spectral states for this class

  20. Applying a physical continuum model to describe the broadband X-ray spectra of accreting pulsars at high luminosity

    NASA Astrophysics Data System (ADS)

    Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern

    2018-01-01

    A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.

  1. Accretion-driven turbulence in filaments - I. Non-gravitational accretion

    NASA Astrophysics Data System (ADS)

    Heigl, S.; Burkert, A.; Gritschneder, M.

    2018-03-01

    We study accretion-driven turbulence for different inflow velocities in star-forming filaments using the code RAMSES. Filaments are rarely isolated objects and their gravitational potential will lead to radially dominated accretion. In the non-gravitational case, accretion by itself can already provoke non-isotropic, radially dominated turbulent motions responsible for the complex structure and non-thermal line widths observed in filaments. We find that there is a direct linear relation between the absolute value of the total density-weighted velocity dispersion and the infall velocity. The turbulent velocity dispersion in the filaments is independent of sound speed or any net flow along the filament. We show that the density-weighted velocity dispersion acts as an additional pressure term, supporting the filament in hydrostatic equilibrium. Comparing to observations, we find that the projected non-thermal line width variation is generally subsonic independent of inflow velocity.

  2. The evidence for clumpy accretion in the Herbig Ae star HR 5999

    NASA Technical Reports Server (NTRS)

    Perez, M. R.; Grady, C. A.; The, P. S.

    1993-01-01

    Analysis of IUE high- and low-dispersion spectra of the young Herbig Ae star HR 5999 (HD 144668) covering 1978-1992 revealed dramatic changes in the Mg II h and k (2795.5, 2802.7 A) emission profiles, changes in the column density and distribution in radial velocity of accreting gas, and flux in the Ly(alpha), O I, and C IV emission lines, which are correlated with the UV excess luminosity. Variability in the spectral type inferred from the UV spectral energy distribution, ranging from A5 IV-III in high state to A7 III in the low state, was also observed. The trend of earlier inferred spectral type with decreasing wavelength and with increasing UV continuum flux has previously been noted as a signature of accretion disks in lower mass pre-main sequence stars (PMS) and in systems undergoing FU Orionis-type outbursts. Our data represent the first detection of similar phenomena in an intermediate mass (M greater than or equal to 2 solar mass) PMS star. Recent IUE spectra show gas accreting toward the star with velocities as high as plus 300 km/s, much as is seen toward beta Pic, and suggest that we also view this system through the debris disk. The absence of UV lines with the rotational broadening expected given the optical data (A7 IV, V sini=180 plus or minus 20 km/s for this system) also suggests that most of the UV light originates in the disk, even in the low continuum state. The dramatic variability in the column density of accreting gas, is consistent with clumpy accretion, such as has been observed toward beta Pic, is a hallmark of accretion onto young stars, and is not restricted to the clearing phase, since detectable amounts of accretion are present for stars with 0.5 Myr less than t(sub age) less than 2.8 Myr. The implications for models of beta Pic and similar systems are briefly discussed.

  3. Broad Hβ Emission-line Variability in a Sample of 102 Local Active Galaxies

    NASA Astrophysics Data System (ADS)

    Runco, Jordan N.; Cosens, Maren; Bennert, Vardha N.; Scott, Bryan; Komossa, S.; Malkan, Matthew A.; Lazarova, Mariana S.; Auger, Matthew W.; Treu, Tommaso; Park, Daeseong

    2016-04-01

    A sample of 102 local (0.02 ≤ z ≤ 0.1) Seyfert galaxies with black hole masses MBH > 107M⊙ was selected from the Sloan Digital Sky Survey (SDSS) and observed using the Keck 10 m telescope to study the scaling relations between MBH and host galaxy properties. We study profile changes of the broad Hβ emission line within the three to nine year time frame between the two sets of spectra. The variability of the broad Hβ emission line is of particular interest, not only because it is used to estimate MBH, but also because its strength and width are used to classify Seyfert galaxies into different types. At least some form of broad-line variability (in either width or flux) is observed in the majority (∼66%) of the objects, resulting in a Seyfert-type change for ∼38% of the objects, likely driven by variable accretion and/or obscuration. The broad Hβ line virtually disappears in 3/102 (∼3%) extreme cases. We discuss potential causes for these changing look active galactic nuclei. While similar dramatic transitions have previously been reported in the literature, either on a case-by-case basis or in larger samples focusing on quasars at higher redshifts, our study provides statistical information on the frequency of Hβ line variability in a sample of low-redshift Seyfert galaxies.

  4. Constraining Accretion Signatures of Exoplanets in the TW Hya Transitional Disk

    NASA Astrophysics Data System (ADS)

    Uyama, Taichi; Tanigawa, Takayuki; Hashimoto, Jun; Tamura, Motohide; Aoyama, Yuhiko; Brandt, Timothy D.; Ishizuka, Masato

    2017-09-01

    We present a near-infrared direct imaging search for accretion signatures of possible protoplanets around the young stellar object (YSO) TW Hya, a multi-ring disk exhibiting evidence of planet formation. The Paβ line (1.282 μm) is an indication of accretion onto a protoplanet, and its intensity is much higher than that of blackbody radiation from the protoplanet. We focused on the Paβ line and performed Keck/OSIRIS spectroscopic observations. Although spectral differential imaging (SDI) reduction detected no accretion signatures, the results of the present study allowed us to set 5σ detection limits for Paβ emission of 5.8 × 10-18 and 1.5 × 10-18 erg-1 s-1 cm-2 at 0.″4 and 1.″6, respectively. We considered the mass of potential planets using theoretical simulations of circumplanetary disks and hydrogen emission. The resulting masses were 1.45 ± 0.04 M J and {2.29}-0.04+0.03 {M}{{J}} at 25 and 95 au, respectively, which agree with the detection limits obtained from previous broadband imaging. The detection limits should allow for the identification of protoplanets as small as ˜1 M J, which may assist in direct imaging searches around faint YSOs for which extreme adaptive optics instruments are unavailable.

  5. A high-density relativistic reflection origin for the soft and hard X-ray excess emission from Mrk 1044

    NASA Astrophysics Data System (ADS)

    Mallick, L.; Alston, W. N.; Parker, M. L.; Fabian, A. C.; Pinto, C.; Dewangan, G. C.; Markowitz, A.; Gandhi, P.; Kembhavi, A. K.; Misra, R.

    2018-06-01

    We present the first results from a detailed spectral-timing analysis of a long (˜130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ˜1.5 keV, iron Kα emission complex at ˜6 -7 keV and a `Compton hump' at ˜15 -30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2 - 6] × 10-5 Hz), the power-law continuum dominated 1.5-5 keV band lags behind the reflection dominated 0.3-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1 - 2] × 10-4 Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk 1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.

  6. Misaligned Accretion and Jet Production

    NASA Astrophysics Data System (ADS)

    King, Andrew; Nixon, Chris

    2018-04-01

    Disk accretion onto a black hole is often misaligned from its spin axis. If the disk maintains a significant magnetic field normal to its local plane, we show that dipole radiation from Lense–Thirring precessing disk annuli can extract a significant fraction of the accretion energy, sharply peaked toward small disk radii R (as R ‑17/2 for fields with constant equipartition ratio). This low-frequency emission is immediately absorbed by surrounding matter or refracted toward the regions of lowest density. The resultant mechanical pressure, dipole angular pattern, and much lower matter density toward the rotational poles create a strong tendency to drive jets along the black hole spin axis, similar to the spin-axis jets of radio pulsars, also strong dipole emitters. The coherent primary emission may explain the high brightness temperatures seen in jets. The intrinsic disk emission is modulated at Lense–Thirring frequencies near the inner edge, providing a physical mechanism for low-frequency quasi-periodic oscillations (QPOs). Dipole emission requires nonzero hole spin, but uses only disk accretion energy. No spin energy is extracted, unlike the Blandford–Znajek process. Magnetohydrodynamic/general-relativistic magnetohydrodynamic (MHD/GRMHD) formulations do not directly give radiation fields, but can be checked post-process for dipole emission and therefore self-consistency, given sufficient resolution. Jets driven by dipole radiation should be more common in active galactic nuclei (AGN) than in X-ray binaries, and in low accretion-rate states than high, agreeing with observation. In non-black hole accretion, misaligned disk annuli precess because of the accretor’s mass quadrupole moment, similarly producing jets and QPOs.

  7. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer Helen Seng; E-Nova Project

    2017-01-01

    In this dissertation, I use radio observations with the Karl G. Jansky Very Large Array (VLA) to reveal that colliding flows within the ejecta from nova explosions can lead to shocks that accelerate particles and produce radio synchrotron emission. In both novae V1723 Aql and V5589 Sgr, radio emission within the first one to two months deviated strongly from the classic thermal model for radio emission from novae. Three years of radio observations of V1723 Aql show that multiple outflows from the system collided to create non-thermal shocks with a brightness temperature of >106 K. After these shocks faded, the radio light curve became roughly consistent with an expanding thermal shell. However, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months. In the case of nova V5589 Sgr, I show that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. These findings have important implications for understanding how normal novae generate GeV gamma-rays.Additionally, I present VLA observations of the symbiotic star CH Cyg and two small surveys of symbiotic binaries. Radio observations of CH Cyg tie the ejection of a collimated jet to a change of state in the accretion disk, strengthening the link between bipolar outflows from accreting white dwarfs and other types of accreting compact objects. Next, I use a survey of eleven accretion-driven symbiotic binaries to determine that the radio brightness of a symbiotic system could potentially be used as an indicator of whether it is powered predominantly by shell burning on the surface of the white dwarf or by accretion. This survey also produces the first radio detections of seven of the target systems. In the second survey of seventeen symbiotic binaries, I spatially resolve extended radio emission in several systems for the first time. The results from these surveys provide some support for the

  8. Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-scale Molecular Outflow

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Bolatto, A.; Tombesi, F.; Meléndez, M.; Sturm, E.; González-Alfonso, E.; Fischer, J.; Rupke, D. S. N.

    2017-07-01

    In Tombesi et al., we reported the first direct evidence for a quasar accretion disk wind driving a massive (>100 M ⊙ yr-1) molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type 1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the mass outflow rate, momentum flux, and mechanical power of the outflowing molecular gas were estimated from the optically thick OH 119 μm transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of ˜±1000 km s-1 blue- and redshifted wings in the CO(1-0) emission line profile derived from deep ALMA observations obtained in the compact array configuration (˜2.″8 resolution). The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ˜7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) {R}7-1 M ⊙ yr-1, (1.5-3.0) {R}7-1 L AGN/c, and (0.15-0.40)% {R}7-1 {L}{AGN}, respectively, are inferred from these data, assuming a CO-to-H2 conversion factor appropriate for a ULIRG (R 7 is the radius of the outflow normalized to 7 kpc, and L AGN is the AGN luminosity). These rates are time-averaged over a flow timescale of 7 × 106 yr. They are similar to the OH-based rates time-averaged over a flow timescale of 4 × 105 yr, but about a factor of 4 smaller than the local (“instantaneous” ≲105 yr) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow

  9. Hydrodynamic modelling of accretion impacts in classical T Tauri stars: radiative heating of the pre-shock plasma

    NASA Astrophysics Data System (ADS)

    Costa, G.; Orlando, S.; Peres, G.; Argiroffi, C.; Bonito, R.

    2017-01-01

    Context. It is generally accepted that, in classical T Tauri stars, the plasma from the circumstellar disc accretes onto the stellar surface with free-fall velocity and the impact generates a shock. The impact region is expected to contribute to emission in different spectral bands; many studies have confirmed that the X-rays arise from the post-shock plasma but, otherwise, there are no studies in the literature investigating the origin of the observed UV emission which is apparently correlated to accretion. Aims: We investigated the effect of radiative heating of the infalling material by the post-shock plasma at the base of the accretion stream, with the aim to identify in which region a significant part of the UV emission originates. Methods: We developed a one-dimensional hydrodynamic model describing the impact of an accretion stream onto the stellar surface; the model takes into account the gravity, the radiative cooling of an optically thin plasma, the thermal conduction, and the heating due to absorption of X-ray radiation. The latter term represents the heating of the infalling plasma due to the absorption of X-rays emitted from the post-shock region. Results: We found that the radiative heating of the pre-shock plasma plays a non-negligible role in the accretion phenomenon. In particular, the dense and cold plasma of the pre-shock accretion column is gradually heated up to a few 105K due to irradiation of X-rays arising from the shocked plasma at the impact region. This heating mechanism does not affect significantly the dynamics of the post-shock plasma. On the other hand, a region of radiatively heated gas (that we consider a precursor) forms in the unshocked accretion column and contributes significantly to UV emission. Our model naturally reproduces the luminosity of UV emission lines correlated to accretion and shows that most of the UV emission originates from the precursor.

  10. Gas Cloud Accretion onto the SMBH SgrA* and Formation of Jet 4

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo

    2015-06-01

    A dense gas cloud was detected to be rapidly approaching the Galactic supermassive black hole (SMBH) Sgr A*, and was 1,600 Schwarzschild radii from the SMBH at the pericenter of its eccentric orbit in Mar 2014. Ongoing tidal disruption has been observed, and cloud fragments are expected to accrete onto the SMBH on dynamical timescales, suggesting a jet formation in the following years. So we are carrying out daily monitoring observations of Sgr A* in near-infrared and radio wavelengths, and we propose quick follow-up observations with Subaru/Gemini. Br-gamma line emission maps obtained with Gemini/NIFS will be used to fine tune our 3D simulation to estimate how much mass accretes, and when the fragments accrete onto the SMBH. Polarimetric and astrometric signals from a jet taken with Subaru/HiCIAO and KaVA will be compared with the finely tuned simulation to understand the timescale of jet formation, and to investigate the correlation between the accreted mass of the cloud fragments and a luminosity of the newly-formed jet. Spectroscopic and imaging observations from 1.6 - 11 mum (Subaru/IRCS, COMICS) will also be conducted to understand processes responsible for near to mid-infrared emission during the accretion event.

  11. Is an Accreting Binary Black Hole Precursor Driving the Ionisation Structure and its Kinematics in the Carafe?

    NASA Astrophysics Data System (ADS)

    Shastri, Prajval

    2017-09-01

    We seek to test the hypothesis that radiatively efficient accretion onto the central supermassive black holes (SMBHs) of two merging galaxies drive the emission-line structure and kinematics that we see in the ROSAT-detected Carafe. We have confirmed the presence of two compact sources with LINER-type spectra, which coincide with two compact radio sources that we detect. We have obtained the emission-line structure and kinematics of the Carafe with an optical IFU mosaic. We demonstrate that the proposed 35ksec ACIS imaging will yield both the soft and hard X-ray photons that we need to definitively distinguish between the following hypotheses: that the driver of the system is a pair of accreting SMBH, or that the hot extended gas in the Carafe is shock-excited by two compact star bursts.

  12. The nuclear region of low luminosity flat radio spectrum sources. II. Emission-line spectra

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Serote Roos, M.

    2004-01-01

    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marchã's et al. (\\cite{March96}) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. The fact that we observe a LINER-type spectrum in LL FRS sources supports the idea that some of these objects could be undergoing an ADAF phase; in addition, such a low ionization emission-line spectrum is in agreement with the black hole mass values and sub-Eddington accretion rates published for some FRS sources. Based on observations collected at the Multiple Mirror Telescope on Mt. Hopkins. Full Fig. 1 is only available in electronic form at http://www.edpsciences.org

  13. Hot Gas Lines in T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Herczeg, Gregory J.; Gregory, Scott G.; Ingleby, Laura; France, Kevin; Brown, Alexander; Edwards, Suzan; Johns-Krull, Christopher; Linsky, Jeffrey L.; Yang, Hao; Valenti, Jeff A.; Abgrall, Hervé; Alexander, Richard D.; Bergin, Edwin; Bethell, Thomas; Brown, Joanna M.; Calvet, Nuria; Espaillat, Catherine; Hillenbrand, Lynne A.; Hussain, Gaitee; Roueff, Evelyne; Schindhelm, Eric R.; Walter, Frederick M.

    2013-07-01

    For Classical T Tauri Stars (CTTSs), the resonance doublets of N V, Si IV, and C IV, as well as the He II 1640 Å line, trace hot gas flows and act as diagnostics of the accretion process. In this paper we assemble a large high-resolution, high-sensitivity data set of these lines in CTTSs and Weak T Tauri Stars (WTTSs). The sample comprises 35 stars: 1 Herbig Ae star, 28 CTTSs, and 6 WTTSs. We find that the C IV, Si IV, and N V lines in CTTSs all have similar shapes. We decompose the C IV and He II lines into broad and narrow Gaussian components (BC and NC). The most common (50%) C IV line morphology in CTTSs is that of a low-velocity NC together with a redshifted BC. For CTTSs, a strong BC is the result of the accretion process. The contribution fraction of the NC to the C IV line flux in CTTSs increases with accretion rate, from ~20% to up to ~80%. The velocity centroids of the BCs and NCs are such that V BC >~ 4 V NC, consistent with the predictions of the accretion shock model, in at most 12 out of 22 CTTSs. We do not find evidence of the post-shock becoming buried in the stellar photosphere due to the pressure of the accretion flow. The He II CTTSs lines are generally symmetric and narrow, with FWHM and redshifts comparable to those of WTTSs. They are less redshifted than the CTTSs C IV lines, by ~10 km s-1. The amount of flux in the BC of the He II line is small compared to that of the C IV line, and we show that this is consistent with models of the pre-shock column emission. Overall, the observations are consistent with the presence of multiple accretion columns with different densities or with accretion models that predict a slow-moving, low-density region in the periphery of the accretion column. For HN Tau A and RW Aur A, most of the C IV line is blueshifted suggesting that the C IV emission is produced by shocks within outflow jets. In our sample, the Herbig Ae star DX Cha is the only object for which we find a P-Cygni profile in the C IV line, which

  14. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    NASA Technical Reports Server (NTRS)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  15. Database of emission lines

    NASA Astrophysics Data System (ADS)

    Binette, L.; Ortiz, P.; Joguet, B.; Rola, C.

    1998-11-01

    A widely accessible data bank (available through Netscape) and consiting of all (or most) of the emission lines reported in the litterature is being built. It will comprise objects as diverse as HII regions, PN, AGN, HHO. One of its use will be to define/refine existing diagnostic emission line diagrams.

  16. An Accretion Model for Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Chatterjee, Pinaki; Hernquist, Lars; Narayan, Ramesh

    2000-05-01

    We present a model for the anomalous X-ray pulsars (AXPs) in which the emission is powered by accretion from a fossil disk, established from matter falling back onto the neutron star following its birth. The time-dependent accretion drives the neutron star toward a ``tracking'' solution in which the rotation period of the star increases slowly, in tandem with the declining accretion rate. For appropriate choices of disk mass, neutron star magnetic field strength, and initial spin period, we demonstrate that a rapidly rotating neutron star can be spun down to periods characteristic of AXPs on timescales comparable to the estimated ages of these sources. In other cases, accretion onto the neutron star switches off after a short time and the star becomes an ordinary radio pulsar. Thus, in our picture, radio pulsars and AXPs are drawn from the same underlying population, in contrast to the situation in models involving neutron stars with ultrastrong magnetic fields, which require a new population of stars with very different properties.

  17. Massive star formation by accretion. I. Disc accretion

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.

    2016-01-01

    Context. Massive stars likely form by accretion and the evolutionary track of an accreting forming star corresponds to what is called the birthline in the Hertzsprung-Russell (HR) diagram. The shape of this birthline is quite sensitive to the evolution of the entropy in the accreting star. Aims: We first study the reasons why some birthlines published in past years present different behaviours for a given accretion rate. We then revisit the question of the accretion rate, which allows us to understand the distribution of the observed pre-main-sequence (pre-MS) stars in the HR diagram. Finally, we identify the conditions needed to obtain a large inflation of the star along its pre-MS evolution that may push the birthline towards the Hayashi line in the upper part of the HR diagram. Methods: We present new pre-MS models including accretion at various rates and for different initial structures of the accreting core. We compare them with previously published equivalent models. From the observed upper envelope of pre-MS stars in the HR diagram, we deduce the accretion law that best matches the accretion history of most of the intermediate-mass stars. Results: In the numerical computation of the time derivative of the entropy, some treatment leads to an artificial loss of entropy and thus reduces the inflation that the accreting star undergoes along the birthline. In the case of cold disc accretion, the existence of a significant swelling during the accretion phase, which leads to radii ≳ 100 R⊙ and brings the star back to the red part of the HR diagram, depends sensitively on the initial conditions. For an accretion rate of 10-3M⊙ yr-1, only models starting from a core with a significant radiative region evolve back to the red part of the HR diagram. We also obtain that, in order to reproduce the observed upper envelope of pre-MS stars in the HR diagram with an accretion law deduced from the observed mass outflows in ultra-compact HII regions, the fraction of the

  18. The fight for accretion: discovery of intermittent mass transfer in BB Doradus in the low state

    NASA Astrophysics Data System (ADS)

    Rodríguez-Gil, P.; Schmidtobreick, L.; Long, K. S.; Gänsicke, B. T.; Torres, M. A. P.; Rubio-Díez, M. M.; Santander-García, M.

    2012-05-01

    Our long-term photometric monitoring of southern nova-like cataclysmic variables with the 1.3-m Small and Moderate Aperture Research Telescope System (SMARTS) telescope found BB Doradus fading from V˜ 14.3 towards a deep low state at V˜ 19.3 in 2008 April. Here we present time-resolved optical spectroscopy of BB Dor in this faint state in 2009. The optical spectrum in quiescence is a composite of a hot white dwarf with Teff= 30 000 ± 5000 K and a M3-M4 secondary star with narrow emission lines (mainly of the Balmer series and He I) superposed. We associate these narrow profiles with an origin on the donor star. An analysis of the radial velocity curve of the Hα emission from the donor star allowed the measurement of an orbital period of 0.154 095 ± 0.000 003 d (3.698 28 ± 0.000 07 h), different from all previous estimates. We detected episodic accretion events which veiled the spectra of both stars and radically changed the line profiles within a time-scale of tens of minutes. This shows that accretion is not completely quenched in the low state. During these accretion episodes the line wings are stronger and their radial velocity curve is delayed by ˜0.2 cycle, similar to that observed in SW Sex and AM Her stars in the high state, with respect to the motion of the white dwarf. Two scenarios are proposed to explain the extra emission: impact of the material on the outer edge of a cold, remnant accretion disc, or the combined action of a moderately magnetic white dwarf (B1≲ 5 MG) and the magnetic activity of the donor star.

  19. X-ray observations of the accreting Be/X-ray binary pulsar A 0535+26 in outburst

    NASA Astrophysics Data System (ADS)

    Caballero, I.

    2009-04-01

    Neutron stars are compact objects, characterized by R~10-14 km radius, M~1.4Msun and extremely high central densities ~10e15 g/cm^3. If they are part of a binary system, a flow of matter can take place from the companion star onto the neutron star. The accretion of matter onto neutron stars is one of the most powerful sources of energy in the universe. The accretion of matter takes place under extreme physical conditions, with magnetic fields in the range B~10^(8-15)G, which are impossible to reproduce on terrestrial laboratories. Therefore, accreting neutron stars are unique laboratories to study the matter under extreme conditions. In this thesis, X-ray observations of the accreting Be/X-ray binary A 0535+26 during a normal (type I) outburst are presented. In this system, the neutron star orbits around the optical companion HDE 245770 in an eccentric orbit, and sometimes presents X-ray outbursts (giant or normal) associated with the passage of the neutron star through the periastron. After more than eleven years of quiescence, A 0535+26 showed outbursting activity in 2005. The normal outburst analyzed in this work took place in August/September 2005, and reached a maximum X-ray flux of ~400 mCrab in the 5-100 kev range. The outburst, which lasted for ~30 days, was observed with the RXTE and INTEGRAL observatories. We have measured the spectrum of the source. In particular, two absorption-like features, interpreted as fundamental and first harmonic cyclotron resonant scattering features, have been detected at E~46 kev and E~102 kev with INTEGRAL and RXTE. Cyclotron lines are the only direct way to measure the magnetic field of a neutron star. Our observations have allowed to confirm the magnetic field of A 0535+26 at the site of the X-ray emission to be B~5x10^12 G. We studied the luminosity dependence of the cyclotron line in A 0535+26, and contrary to other sources, we found no significant variation of the cyclotron line energy with the luminosity. Changes of

  20. Tracking the Iron Kα line and the Ultra Fast Outflow in NGC 2992 at different accretion states

    NASA Astrophysics Data System (ADS)

    Marinucci, A.; Bianchi, S.; Braito, V.; Matt, G.; Nardini, E.; Reeves, J.

    2018-06-01

    The Seyfert 2 galaxy NGC 2992 has been monitored eight times by XMM-Newton in 2010 and then observed again in 2013, while in 2015 it was simultaneously targeted by Swift and NuSTAR. XMM-Newton always caught the source in a faint state (2-10 keV fluxes ranging from 0.3 to 1.6× 10-11 erg cm-2 s-1) but NuSTAR showed an increase in the 2-10 keV flux up to 6× 10-11 erg cm-2 s-1. We find possible evidence of an Ultra Fast Outflow with velocity v1 = 0.21 ± 0.01c (detected at about 99% confidence level) in such a flux state. The UFO in NGC 2992 is consistent with being ejected at a few tens of gravitational radii only at accretion rates greater than 2% of the Eddington luminosity. The analysis of the low flux 2010/2013 XMM data allowed us to determine that the Iron Kα emission line complex in this object is likely the sum of three distinct components: a constant, narrow one due to reflection from cold, distant material (likely the molecular torus); a narrow, but variable one which is more intense in brighter observations and a broad relativistic one emitted in the innermost regions of the accretion disk, which has been detected only in the 2003 XMM observation.

  1. ULXs from Accreting Neutron Stars: the Light Cylinder, the Stellar Surface, and Everything in Between

    NASA Astrophysics Data System (ADS)

    Parfrey, K.; Tchekhovskoy, A.

    2017-10-01

    I will present results from the first relativistic MHD simulations of accretion onto magnetized neutron stars, performed in general relativity in the Kerr spacetime. The accretion flow is geometrically thick with a relativistic-gas equation of state, appropriate for super-Eddington systems. Four regimes are recovered, in order of increasing stellar magnetic field strength (equivalently, decreasing mass accretion rate): (a) crushing of the stellar magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar's electromagnetic wind. A Poynting-flux-dominated relativistic jet, powered by stellar rotation, is produced when the intruding plasma succeeds in opening the pulsar's previously closed magnetic field lines. I will demonstrate the effect of changing the relative orientation of the stellar dipole and the large-scale magnetic field in the accreting plasma, and discuss our results in the context of the neutron-star-powered ULXs, as well as the transitional millisecond X-ray/radio pulsars and jet-launching neutron-star X-ray binaries.

  2. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    PubMed

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.

  3. Galaxy Formation through Filamentary Accretion at z = 6.1

    NASA Astrophysics Data System (ADS)

    Jones, G. C.; Willott, C. J.; Carilli, C. L.; Ferrara, A.; Wang, R.; Wagg, J.

    2017-08-01

    We present Atacama Large Millimeter/submillimeter Array observations of the dust continuum and [C II] 158 μm line emission from the z = 6.0695 Lyman-Break Galaxy (LBG) WMH5. These observations at 0.″3 spatial resolution show a compact (˜3 kpc) main galaxy in dust and [C II] emission, with a “tail” of emission extending to the east by about 5 kpc (in projection). The [C II] tail is comprised predominantly of two distinct sub-components in velocity, separated from the core by ˜100 and 250 km s-1, with narrow intrinsic widths of about 80 km s-1, which we call “sub-galaxies.” The sub-galaxies themselves are extended east-west by about 3 kpc in individual channel images. The [C II] tail joins smoothly into the main galaxy velocity field. The [C II] line to continuum ratios are comparable for the main and sub-galaxy positions, within a factor two. In addition, these ratios are comparable to z˜ 5.5 LBGs. We conjecture that the WMH5 system represents the early formation of a galaxy through the accretion of smaller satellite galaxies, embedded in a smoother gas distribution, along a possibly filamentary structure. The results are consistent with current cosmological simulations of early galaxy formation and support the idea of very early enrichment with dust and heavy elements of the accreting material.

  4. Clumpy wind accretion in Supergiant X-ray Binaries

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2017-12-01

    Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.

  5. An XMM-Newton Monitoring Campaign of the Accretion Flow in IGRJ16318-4848

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Nicastro, Fabrizio

    2005-01-01

    This grant is associated to a successful XMM-Newton-AO3 observational proposal to monitor the spectrum of the X-ray loud component of the recently discovered binary system IGR J16138-4848, to study the conditions of the accretion flows (and their evolution) in binary system. All four EPIC-PN and MOS observations of the target have now been performed (the last one of the 4, only 3 months ago). The four observations were logarithmically spaced, so to cover timescales from days to months. Data from all four pointings have now been reduced, using the XMM-Newton data reduction pipeline, and spectra and lightcurves from the target have been extracted. For the first three observations we have already performed the observation-by-observation data analysis, by fitting the single EPIC spectra with spectral models that include an intrinsic continuum power law (reduced at low energy by neutral absorption), a 6.4 keV iron emission line (detected in all spectra with varying intensity) and a Compton-reflection component. A Compton reflection component is also detected in all spectra, although at lower significance. The analysis of the fourth and last observation of our monitoring campaign has just recently begun. Next, we will (1) stack together the four observations of IGR J16138-4848, to obtain high-accuracy estimates of the average spectral parameters of this object; and then (2) proceed to the time-evolving analysis, of the three spectral parameters: (a) Gamma (the slope of the intrinsic continuum), (b) W(FeK), the equivalent width of the 6.4 keV Iron emission line, and (c) R, the relative amount of Compton reflection. Through this time-resolved spectroscopic analysis we hope to constrain (a) the physical state of the accreting matter and its relation with the X-ray output, and (b) the evolution of the accretion flow geometry, distribution and covering factor.

  6. BROAD Hβ EMISSION-LINE VARIABILITY IN A SAMPLE OF 102 LOCAL ACTIVE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runco, Jordan N.; Cosens, Maren; Bennert, Vardha N.

    2016-04-10

    A sample of 102 local (0.02 ≤ z ≤ 0.1) Seyfert galaxies with black hole masses M{sub BH} > 10{sup 7}M{sub ⊙} was selected from the Sloan Digital Sky Survey (SDSS) and observed using the Keck 10 m telescope to study the scaling relations between M{sub BH} and host galaxy properties. We study profile changes of the broad Hβ emission line within the three to nine year time frame between the two sets of spectra. The variability of the broad Hβ emission line is of particular interest, not only because it is used to estimate M{sub BH}, but also because its strengthmore » and width are used to classify Seyfert galaxies into different types. At least some form of broad-line variability (in either width or flux) is observed in the majority (∼66%) of the objects, resulting in a Seyfert-type change for ∼38% of the objects, likely driven by variable accretion and/or obscuration. The broad Hβ line virtually disappears in 3/102 (∼3%) extreme cases. We discuss potential causes for these changing look active galactic nuclei. While similar dramatic transitions have previously been reported in the literature, either on a case-by-case basis or in larger samples focusing on quasars at higher redshifts, our study provides statistical information on the frequency of Hβ line variability in a sample of low-redshift Seyfert galaxies.« less

  7. Powerful radiative jets in supercritical accretion discs around non-spinning black holes

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Narayan, Ramesh

    2015-11-01

    We describe a set of simulations of supercritical accretion on to a non-rotating supermassive black hole (BH). The accretion flow takes the form of a geometrically thick disc with twin low-density funnels around the rotation axis. For accretion rates {gtrsim } 10 dot{M}_Edd, there is sufficient gas in the funnel to make this region optically thick. Radiation from the disc first flows into the funnel, after which it accelerates the optically thick funnel gas along the axis. The resulting jet is baryon loaded and has a terminal density-weighted velocity ≈0.3c. Much of the radiative luminosity is converted into kinetic energy by the time the escaping gas becomes optically thin. These jets are not powered by BHrotation or magnetic driving, but purely by radiation. Their characteristic beaming angle is ˜0.2 rad. For an observer viewing down the axis, the isotropic equivalent luminosity of total energy is as much as 1048 erg s- 1 for a 107 M⊙ BH accreting at 103 Eddington. Therefore, energetically, the simulated jets are consistent with observations of the most powerful tidal disruption events, e.g. Swift J1644. The jet velocity is, however, too low to match the Lorentz factor γ > 2 inferred in J1644. There is no such conflict in the case of other tidal disruption events. Since favourably oriented observers see isotropic equivalent luminosities that are highly super-Eddington, the simulated models can explain observations of ultraluminous X-ray sources, at least in terms of luminosity and energetics, without requiring intermediate-mass BHs.

  8. X-ray Reflected Spectra from Accretion Disk Models. I. Constant Density Atmospheres

    NASA Technical Reports Server (NTRS)

    Garcia, Javier; Kallman, Timothy R.

    2009-01-01

    We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  9. Search for and follow-up imaging of subparsec accretion disks in AGN

    NASA Astrophysics Data System (ADS)

    Kondratko, Paul Thomas

    We report results of several large surveys for water maser emission among Active Galactic Nuclei with the 100-m Green Bank Telescope and the two NASA Deep Space Network 70-m antennas at Tidbinbilla, Australia and at Robledo, Spain. We detected 23 new sources, which resulted in a 60% increase in the number of then known nuclear water maser sources. Eight new detections show the characteristic spectral signature of emission from an edge-on accretion disk and therefore constitute good candidates for the determination of black hole mass and geometric distance. This increase in the number of known sources has enabled us to reconsider statistical properties of the resulting sample. For the 30 water maser sources with available hard X-ray data, we found a possible correlation between unabsorbed X-ray luminosity (2-10 keV) and total isotropic water maser luminosity of the form L 2-10 0([Special characters omitted.] , consistent with the model proposed by Neufeld et al. (1994) in which X-ray irradiation of molecular accretion disk gas by the central engine excites the maser emission. We mapped for the first time with Very Long Baseline Interferomatey (VLBI) the full extent of the pc-scale accretion disk in NGC 3079 as traced by water maser emission. Positions and line-of-sight velocities of maser emission are consistent with a nearly edge-on pc-scale disk and a central mass of ~ 2 x 10^6 [Special characters omitted.] enclosed within ~ 0.4 pc. Based on the kinematics of the system, we propose that the disk is geometrically-thick, massive, subject to gravitational instabilities, and hence most likely clumpy and star- forming. The accretion disk in NGC 3079 is thus markedly different from the compact, thin, warped, differentially rotating disk in the archetypal maser galaxy NGC 4258. We also detect maser emission at high latitudes above the disk and suggest that it traces an inward extension of the kpc-scale bipolar wide- angle outflow previously observed along the galactic

  10. Double-peaked broad line emission from the LINER nucleus of NGC 1097

    NASA Technical Reports Server (NTRS)

    Storchi-Bergmann, Thaisa; Baldwin, Jack A.; Wilson, Andrew S.

    1993-01-01

    We report the recent appearance of a very broad component in the H-alpha and H-beta emission lines of the weakly active nucleus of the Sersic-Pastoriza galaxy NGC 1097. The FWZI of the broad component is about 21,000 km/s, and its profile is double-peaked; the presence of a blue, featureless continuum in the nucleus is also suggested. The broad component was first observed in H-alpha in November 2, 1991, and confirmed 11 months later. The H-alpha profile and flux did not change in this time interval. Comparison with previously published spectral data indicates that the broad lines have only recently appeared. Together with the relatively high X-ray luminosity and the compact nuclear radio source, our results characterize the presence of a Seyfert 1 nucleus in a galaxy which had previously shown only LINER characteristics. Obscuring material along our line of sight to the nucleus appears to have recently cleared, permitting a direct view of the active nucleus. We discuss two possible structures for the broad line region, biconical outflow and an accretion disk, that could give rise to the observed profile.

  11. Detection of emission lines from z ˜ 3 DLAs towards the QSO J2358+0149

    NASA Astrophysics Data System (ADS)

    Srianand, Raghunathan; Hussain, Tanvir; Noterdaeme, Pasquier; Petitjean, Patrick; Krühler, Thomas; Japelj, Jure; Pâris, Isabelle; Kashikawa, Nobunari

    2016-07-01

    Using VLT/X-shooter, we searched for emission line galaxies associated with four damped Lyman α systems (DLAs) and one sub-DLA at 2.73 ≤z ≤3.25 towards QSO J2358+0149. We detect [O III] emission from a `low-cool' DLA at zabs = 2.9791 (having log N(H I) = 21.69 ± 0.10, [Zn/H] = -1.83 ± 0.18) at an impact parameter of, ρ ˜ 12 kpc. The associated galaxy is compact with a dynamical mass of (1-6) × 109 M⊙, very high excitation ([O III]/[O II] and [O III]/[Hβ] both greater than 10), 12+[O/H]≤8.5 and moderate star formation rate (SFR ≤2 M⊙ yr-1). Such properties are typically seen in the low-z extreme blue compact dwarf galaxies. The kinematics of the gas is inconsistent with that of an extended disc and the gas is part of either a large scale wind or cold accretion. We detect Lyα emission from the zabs = 3.2477 DLA [having log N(H I) = 21.12 ± 0.10 and [Zn/H] = -0.97 ± 0.13]. The Lyα emission is redshifted with respect to the metal absorption lines by 320 km s-1, consistent with the location of the red hump expected in radiative transport models. We derive SFR ˜0.2-1.7 M⊙ yr-1 and Lyα escape fraction of ≥10 per cent. No other emission line is detected from this system. Because the DLA has a small velocity separation from the quasar (˜500 km s-1) and the DLA emission is located within a small projected distance (ρ < 5 kpc), we also explore the possibility that the Lyα emission is being induced by the QSO itself. QSO-induced Lyα fluorescence is possible if the DLA is within a physical separation of 340 kpc to the QSO. Detection of stellar continuum light and/or the oxygen emission lines would disfavour this possibility. We do not detect any emission line from the remaining three systems.

  12. X-shooter study of accretion in Chamaeleon I. II. A steeper increase of accretion with stellar mass for very low-mass stars?

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Herczeg, G. J.; Pascucci, I.; Alcalá, J. M.; Natta, A.; Antoniucci, S.; Fedele, D.; Mulders, G. D.; Henning, T.; Mohanty, S.; Prusti, T.; Rigliaco, E.

    2017-08-01

    The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M⋆) 0.1 M⊙ for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 ± 0.1 and 2.3 ± 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than 0.45 L⊙ and for stellar masses lower than 0.3 M⊙ is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M⋆ 0.3 - 0.4 M⊙. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are 10-10M⊙/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk. This work is

  13. Nustar Reveals the Extreme Properties of the Super-Eddington Accreting Supermassive Black Hole in PG 1247+267

    NASA Technical Reports Server (NTRS)

    Lanzuisi, G.; Perna, M.; Comastri, A.; Cappi, M.; Dadina, M.; Marinucci, A.; Masini, A.; Matt, G.; Vagnetti, F.; Vignali, C.; hide

    2016-01-01

    PG1247+267 is one of the most luminous known quasars at z approximately 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law (gamma = 2.3 +/- 0.1); the weak ionized Fe emission line; and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Compton thick, partial covering absorber; and iii) a relativistic disk reflector in a lamp-post geometry, with low coronal height and high BH spin. The first model is able to explain the high reflection component in terms of variability. The second does not require any reflection to reproduce the hard emission, while a rather low high-energy cutoff of approximately 100 keV is detected for the first time in such a high redshift source. The third model require a face-on geometry, which may affect the SMBH mass and Eddington ratio measurements. Deeper X-ray broad-band data are required in order to distinguish between these possibilities.

  14. Molecular hydrogen fluorescence and accretion in far-ultraviolet spectra of classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Herczeg, Gregory J.

    2005-11-01

    Far-ultraviolet spectra of classical T Tauri stars reveal accretion, outflows, and H 2 fluorescence. The E140M echelle spectrograph on HST /STIS and the FUSE satellite offer high spectral resolution and broad wavelength coverage, and enables our unique and detailed analysis of the H 2 lines. A strong and broad Lya emission line excites warm H 2 into many levels of the B and C electronic states, from which we can detect as many as 200 H 2 emission lines. These H2 lines are narrow and often asymmetric, with excess blueshifted emission that can extend to 100 km s -1 from some sources. The fluorescent H 2 emission probes diverse environments around CTTSs. High spectral and spatial resolution are essential for identifying the location and studying the kinematics of the gas, which constrain the origin of the H 2 emission. Several other spectral characteristics, including absorption of H2 emission by the wind and H 2 absorption lines, also provide valuable diagnostics of the origin of this emission. The H 2 emission is most likely produced at the surface of a circumstellar disk in some sources, but is produced by outflows from other sources. DF Tau appears to show H 2 emission from both a disk and an outflow. The excitation of H 2 can be determined from relative line strengths by measuring self-absorption in lines with low-energy lower levels, or by reconstructing the Lya profile incident upon the warm H 2 using the total flux from a single upper level and the opacity in the pumping transition. Based on those diagnostics and the rich H 2 spectrum of TW Hya, the H 2 at the warm disk surface has a column density of log N (H 2 ) = [Special characters omitted.] , a temperature T = [Special characters omitted.] K, and a filling factor of H 2 , as seen by the source of Lya emission, of 0.25 +/- 0.08 (all 2s error bars). The total FUV luminosity from CTTSs ranges from 2 x 10 -3 to 3 x 10 -2 [Special characters omitted.] , much of which is in the Lya line. With the exception of

  15. CONNECTION BETWEEN THE ACCRETION DISK AND JET IN THE RADIO GALAXY 3C 111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Ritaban; Marscher, Alan P.; Jorstad, Svetlana G.

    2011-06-10

    We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 111 between 2004 and 2010 at X-ray (2.4-10 keV), optical (R band), and radio (14.5, 37, and 230 GHz) wave bands, as well as multi-epoch imaging with the Very Long Baseline Array (VLBA) at 43 GHz. Over the six years of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. This shows a clear connection between the radiative state near the black hole, where the X-rays are produced, and events in the jet. The X-ray continuummore » flux and Fe line intensity are strongly correlated, with a time lag shorter than 90 days and consistent with zero. This implies that the Fe line is generated within 90 lt-day of the source of the X-ray continuum. The power spectral density function of X-ray variations contains a break, with a steeper slope at shorter timescales. The break timescale of 13{sup +12}{sub -6} days is commensurate with scaling according to the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries (BHXRBs). The data are consistent with the standard paradigm, in which the X-rays are predominantly produced by inverse Compton scattering of thermal optical/UV seed photons from the accretion disk by a distribution of hot electrons-the corona-situated near the disk. Most of the optical emission is generated in the accretion disk due to reprocessing of the X-ray emission. The relationships that we have uncovered between the accretion disk and the jet in 3C 111, as well as in the Fanaroff-Riley class I radio galaxy 3C 120 in a previous paper, support the paradigm that active galactic nuclei and Galactic BHXRBs are fundamentally similar, with characteristic time and size scales proportional to the mass of the central black hole.« less

  16. Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Svirski, Gilad; Piran, Tsvi; Krolik, Julian

    2017-05-01

    Models for tidal disruption events (TDEs) in which a supermassive black hole disrupts a star commonly assume that the highly eccentric streams of bound stellar debris promptly form a circular accretion disc at the pericentre scale. However, the bolometric peak luminosity of most TDE candidates, ˜ 1044 erg s- 1, implies that we observe only ˜1 per cent of the energy expected from radiatively efficient accretion. Even the energy that must be lost to circularize the returning tidal flow is larger than the observed energy. Recently, Piran et al. suggested that the observed optical TDE emission is powered by shocks at the apocentre between freshly infalling material and earlier arriving matter. This model explains the small radiated energy, the low temperature and the large radius implied by the observations as well as the t-5/3 light curve. However the question of the system's low bolometric efficiency remains unanswered. We suggest that the high orbital energy and low angular momentum of the flow make it possible for magnetic stresses to reduce the matter's already small angular momentum to the point at which it can fall ballistically into the supermassive black hole before circularization. As a result, the efficiency is only ˜1-10 per cent of a standard accretion disc's efficiency. Thus, the intrinsically high eccentricity of the tidal debris naturally explains why most TDE candidates are fainter than expected.

  17. Doppler tomography of XTE J1118+480 revealing chromospheric emission from the secondary star

    NASA Astrophysics Data System (ADS)

    Zurita, C.; González Hernández, J. I.; Escorza, A.; Casares, J.

    2016-08-01

    Doppler tomography of emission lines in low-mass X-ray binaries allows us to investigate the structure and variability of the accretion discs as well as possible activity arising from the secondary stars. We present Doppler maps of the black hole binary XTE J1118+480 from spectra obtained using OSIRIS@GTC during quiescence on four different nights in 2011 and 2012. Doppler imaging of the Hα line shows, for the first time, a narrow component from the secondary star with observed equivalent widths varying in the range 1.2-2.9 Å but not correlated with the veiling of the accretion disc. The Hα flux of the secondary star is too large to be powered by X-ray irradiation, supporting chromospheric activity, possibly induced by rapid rotation, as the most likely origin of this feature in the black hole X-ray binary XTE J1118+480. In addition, we detect variations in the centroid of the Hα line on nightly basis. These are likely caused by a precessing accretion disc, although with a much lower amplitude (˜50 km s-1) than previously observed.

  18. Multi-time-scale X-ray reverberation mapping of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel

    2018-04-01

    Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.

  19. An XMM-Newton Study of the Bright Ultrasoft Narrow-Line Quasar NAB 0205+024

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2004-01-01

    The broad-band X-ray continuum of NAB 0205424 is well constrained due to the excellent photon statistics obtained (about 97,700 counts), and its impressive soft X-ray excess is clearly apparent. The hard X-ray power law has become notably steeper than when NAB 0205424 was observed with ASCA, attesting to the presence of significant X-ray spectral variability. A strong and broad emission feature is detected from about 5 to 6.4 keV, and we have modeled this as a relativistic line emitted close to the black hole from a narrow annulus of the accretion disk. Furthermore, a strong X-ray flare is detected with a hard X-ray spectrum; this flare may be responsible for illuminating the inner line-emitting part of the accretion disk. The combined observational results can be broadly interpreted in terms of the "thundercloud model proposed by Merloni & Fabian (2001).

  20. On the Brγ line emission of the Herbig Ae/Be star MWC 120

    NASA Astrophysics Data System (ADS)

    Kreplin, Alexander; Tambovtseva, Larisa; Grinin, Vladimir; Kraus, Stefan; Weigelt, Gerd; Wang, Yang

    2018-06-01

    The origin of the Br γ line in Herbig Ae/Be stars is still an open question. It has been proposed that a fraction of the 2.166-μm Br γ emission might emerge from a disc wind, the magnetosphere and other regions. Investigations of the Br γ line in young stellar objects are important to improve our understanding of the accretion-ejection process. Near-infrared long-baseline interferometry enables the investigation of the Br γ line-emitting region with high spatial and high spectral resolution. We observed the Herbig Ae/Be star MWC 120 with the Astronomical Multi-Beam Recombiner (AMBER) on the Very Large Telescope Interferometer (VLTI) in different spectral channels across the Br γ line with a spectral resolution of R ˜ 1500. Comparison of the visibilities, differential and closure phases in the continuum and the line-emitting region with geometric and radiative transfer disc-wind models leads to constraints on the origin and dynamics of the gas emitting the Br γ light. Geometric modelling of the visibilities reveals a line-emission region about two times smaller than the K-band continuum region, which indicates a scenario where the Br γ emission is dominated by an extended disc wind rather than by a much more compact magnetospheric origin. To compare our data with a physical model, we applied a state-of-the-art radiative transfer disc-wind model. We find that all measured visibilities, differential and closure phases of MWC 120 can be approximately reproduced by a disc-wind model. A comparison with other Herbig stars indicates a correlation of the modelled inner disc-wind radii with the corresponding Alfvén radii for late spectral type stars.

  1. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  2. Relativistic particle transport in hot accretion disks

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas; Maisack, Michael

    1994-01-01

    Accretion disks around rapidly rotating black holes provide one of the few plausible models for the production of intense radiation in Acitve Galactic Nuclei (AGNs) above energies of several hundred MeV. The rapid rotation of the hole increases the binding energy per nucleon in the last stable orbit relative to the Schwarzschild case, and naturally leads to ion temperatures in the range 10(exp 12) - 10(exp 13) K for sub-Eddington accretion rates. The protons in the hot inner region of a steady, two-temperature disk form a reservoir of energy that is sufficient to power the observed Energetic Gamma Ray Experiment Telescope (EGRET) outbursts if the black hole mass is 10(exp 10) solar mass. Moreover, the accretion timescale for the inner region is comparable to the observed transient timescale of approximately 1 week. Hence EGRET outbursts may be driven by instabilities in hot, two-temperature disks around supermassive black holes. In this paper we discuss turbulent (stochastic) acceleration in hot disks as a possible source of GeV particles and radiation. We constrain the model by assuming the turbulence is powered by a collective instability that drains energy from the hot protons. We also provide some ideas concerning new, high-energy Penrose processes that produce GeV emission be directly tapping the rotational energy of Kerr black holes.

  3. STABLE AND UNSTABLE REGIMES OF MASS ACCRETION ONTO RW AUR A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takami, Michihiro; Wei, Yu-Jie; Chou, Mei-Yin

    2016-04-01

    We present monitoring observations of the active T Tauri star RW Aur, from 2010 October to 2015 January, using optical high-resolution (R ≥ 10,000) spectroscopy with Canada–France–Hawaii Telescope/ESPaDOnS. Optical photometry in the literature shows bright, stable fluxes over most of this period, with lower fluxes (by 2–3 mag) in 2010 and 2014. In the bright period our spectra show clear photospheric absorption, complicated variation in the Ca ii λ8542 emission profile shapes, and a large variation in redshifted absorption in the O i λλ7772 and 8446 and He i λ5876 lines, suggesting unstable mass accretion during this period. In contrast, these line profiles are relativelymore » uniform during the faint periods, suggesting stable mass accretion. During the faint periods, the photospheric absorption lines are absent or marginal, and the averaged Li i profile shows redshifted absorption due to an inflow. We discuss (1) occultation by circumstellar material or a companion and (2) changes in the activity of mass accretion to explain the above results, together with near-infrared and X-ray observations from 2011 to 2015. Neither scenario can simply explain all the observed trends, and more theoretical work is needed to further investigate their feasibilities.« less

  4. A MODEL FOR TYPE 2 CORONAL LINE FOREST (CLiF) AGNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glidden, Ana; Rose, Marvin; Elvis, Martin

    2016-06-10

    We present a model for the classification of Coronal Line Forest Active Galactic Nuclei (CLiF AGNs). CLiF AGNs are of special interest due to their remarkably large number of emission lines, especially forbidden high-ionization lines (FHILs). Rose et al. suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGNs laboratories to test AGN-torus models. Modeling an AGN as an accreting supermassive black hole surrounded by a cylinder of dust and gas, we show a relationship between the viewing angle and the revealedmore » area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [Fe vii] λ 6087 emission for a number of intermediate angles (30°, 40°, and 50°) and compare the results with the luminosity of the observed emission line from six known CLiF AGNs. We find that there is good agreement between our model and the observational results. The model also enables us to determine the relationship between the type 2:type 1 AGN fraction vs the ratio of torus height to radius, h / r .« less

  5. Accretion and Outflow from a Magnetized, Neutrino Cooled Torus around the Gamma Ray Burst Central Engine

    NASA Astrophysics Data System (ADS)

    Janiuk, Agnieszka; Moscibrodzka, Monika

    Gamma Ray Bursts (GRB) are the extremely energetic transient events, visible from the most distant parts of the Universe. They are most likely powered by accretion on the hyper-Eddington rates that proceeds onto a newly born stellar mass black hole. This central engine gives rise to the most powerful, high Lorentz factor jets that are responsible for energetic gamma ray emission. We investigate the accretion flow evolution in GRB central engine, using the 2D MHD simulations in General Relativity. We compute the structure and evolution of the extremely hot and dense torus accreting onto the fast spinning black hole, which launches the magnetized jets. We calculate the chemical structure of the disk and account for neutrino cooling. Our preliminary runs apply to the short GRB case (remnant torus accreted after NS-NS or NS-BH merger). We estimate the neutrino luminosity of such an event for chosen disk and central BH mass.

  6. Spectral properties of X-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (<= 2e-15 ergs cm-2 s-1), thus suggesting that NELGs are important contributors to the residual soft (<2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (alpha~0.4, 1-10 keV) is harder than that of AGN (alpha~1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha~0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  7. Spectral properties of x-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero Colmenero, Encarnacion

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha ~ 1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for NH. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law spectral slope of the average NELG is S = 0.45 +/- 0.09, whilst that of the AGN is S = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (< 2 x 10-15erg cm-2 s -1), thus suggesting that NELGs are important contributors to the residual soft (< 2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (S ~ 0.4, 1-10 keV) is harder than that of AGN (S ~ 1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha ~ 0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  8. Determining the properties of accretion-gap neutron stars

    NASA Technical Reports Server (NTRS)

    Kluzniak, Wlodzimierz; Michelson, Peter; Wagoner, Robert V.

    1990-01-01

    If neutron stars have radii as small as has been argued by some, observations of accretion-powered X-rays could verify the existence of innermost stable circular orbits (predicted by general relativity) around weakly magnetized neutron stars. This may be done by detecting X-ray emission from clumps of matter before and after they cross the gap (where matter cannot be supported by rotation) between the inner accretion disk and the stellar surface. Assuming the validity of general relativity, it would then be possible to determine the masses of such neutron stars independently of any knowledge of binary orbital parameters. If an accurate mass determination were already available through any of the methods conventionally used, the new mass determination method proposed here could then be used to quantitatively test strong field effects of gravitational theory.

  9. Kinetic and radiative power from optically thin accretion flows

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Gaspari, Massimo

    2017-06-01

    We perform a set of general relativistic, radiative, magneto-hydrodynamical simulations (GR-RMHD) to study the transition from radiatively inefficient to efficient state of accretion on a non-rotating black hole. We study ion to electron temperature ratios ranging from TI/Te = 10 to 100, and simulate flows corresponding to accretion rates as low as 10^{-6}\\dot{M}_Edd, and as high as 10^{-2}\\dot{M}_Edd. We have found that the radiative output of accretion flows increases with accretion rate, and that the transition occurs earlier for hotter electrons (lower TI/Te ratio). At the same time, the mechanical efficiency hardly changes and accounts to ≈3 per cent of the accreted rest mass energy flux, even at the highest simulated accretion rates. This is particularly important for the mechanical active galactic nuclei (AGN) feedback regulating massive galaxies, groups and clusters. Comparison with recent observations of radiative and mechanical AGN luminosities suggests that the ion to electron temperature ratio in the inner, collisionless accretion flow should fall within 10 < TI/Te < 30, I.e. the electron temperature should be several percent of the ion temperature.

  10. Extraplanar H II Regions in Spiral Galaxies. I. Low-metallicity Gas Accreting through the Disk-halo Interface of NGC 4013

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.

    2018-04-01

    The interstellar thick disks of galaxies serve as the interface between the thin star-forming disk, where feedback-driven outflows originate, and the distant halo, the repository for accreted gas. We present optical emission line spectroscopy of a luminous, thick disk H II region located at z = 860 pc above the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double Spectrograph on the Large Binocular Telescope. This nebula, with an Hα luminosity ∼4–7 times that of the Orion nebula, surrounds a luminous cluster of young, hot stars that ionize the surrounding interstellar gas of the thick disk, providing a measure of the properties of that gas. We demonstrate that strong emission line methods can provide accurate measures of relative abundances between pairs of H II regions. From our emission line spectroscopy, we show that the metal content of the thick disk H II region is a factor of ≈2 lower than gas in H II regions at the midplane of this galaxy (with the relative abundance of O in the thick disk lower by ‑0.32 ± 0.09 dex). This implies incomplete mixing of material in the thick disk on small scales (hundreds of parsecs) and that there is accretion of low-metallicity gas through the thick disks of spirals. The inclusion of low-metallicity gas this close to the plane of NGC 4013 is reminiscent of the recently proposed “fountain-driven” accretion models.

  11. Inspiraling halo accretion mapped in Ly α emission around a z ˜ 3 quasar

    NASA Astrophysics Data System (ADS)

    Arrigoni Battaia, Fabrizio; Prochaska, J. Xavier; Hennawi, Joseph F.; Obreja, Aura; Buck, Tobias; Cantalupo, Sebastiano; Dutton, Aaron A.; Macciò, Andrea V.

    2018-01-01

    In an effort to search for Ly α emission from circum- and intergalactic gas on scales of hundreds of kpc around z ∼ 3 quasars, and thus characterize the physical properties of the gas in emission, we have initiated an extensive fast survey with the Multi-Unit Spectroscopic Explorer (MUSE): Quasar Snapshot Observations with MUse: Search for Extended Ultraviolet eMission (QSO MUSEUM). In this work, we report the discovery of an enormous Ly α nebula (ELAN) around the quasar SDSS J102009.99+104002.7 at z = 3.164, which we followed-up with deeper MUSE observations. This ELAN spans ∼297 projected kpc, has an average Ly α surface brightness SBLy α ∼ 6.04 × 10-18 erg s-1 cm-2 arcsec-2(within the 2σ isophote) and is associated with an additional four previously unknown embedded sources: two Ly α emitters and two faint active galactic nuclei (one type-1 and one type-2 quasar). By mapping at high significance, the line-of-sight velocity in the entirety of the observed structure, we unveiled a large-scale coherent rotation-like pattern spanning ∼300 km s-1 with a velocity dispersion of <270 km s-1, which we interpret as a signature of the inspiraling accretion of substructures within the quasar's host halo. Future multiwavelength data will complement our MUSE observations and are definitely needed to fully characterize such a complex system. None the less, our observations reveal the potential of new sensitive integral-field spectrographs to characterize the dynamical state of diffuse gas on large scales in the young Universe, and thereby witness the assembly of galaxies.

  12. Dust inflated accretion disc as the origin of the broad line region in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari

    2018-02-01

    The broad line region (BLR) in active galactic nuclei (AGNs) is composed of dense gas (˜1011 cm-3) on sub-pc scale, which absorbs about 30 per cent of the ionizing continuum. The outer size of the BLR is likely set by dust sublimation, and its density by the incident radiation pressure compression (RPC). But, what is the origin of this gas, and what sets its covering factor (CF)? Czerny & Hryniewicz (2011) suggested that the BLR is a failed dusty wind from the outer accretion disc. We explore the expected dust properties, and the implied BLR structure. We find that graphite grains sublimate only at T ≃ 2000 K at the predicted density of ˜1011 cm-3, and therefore large graphite grains (≥0.3 μm) survive down to the observed size of the BLR, RBLR. The dust opacity in the accretion disc atmosphere is ˜50 times larger than previously assumed, and leads to an inflated torus-like structure, with a predicted peak height at RBLR. The illuminated surface of this torus-like structure is a natural place for the BLR. The BLR CF is mostly set by the gas metallicity, the radiative accretion efficiency, a dynamic configuration and ablation by the incident optical-UV continuum. This model predicts that the BLR should extend inwards of RBLR to the disc radius where the surface temperature is ≃2000 K, which occurs at Rin ≃ 0.18RBLR. The value of Rin can be tested by reverberation mapping of the higher ionization lines, predicted by RPC to peak well inside RBLR. The dust inflated disc scenario can also be tested based on the predicted response of RBLR and the CF to changes in the AGN luminosity and accretion rate.

  13. High energy radiation from jets and accretion disks near rotating black holes

    NASA Astrophysics Data System (ADS)

    O'Riordan, Michael; Pe'er, Asaf; McKinney, Jonathan C.

    2017-01-01

    We model the low/hard state in X-ray binaries as a magnetically arrested accretion flow, and calculate the resulting radiation using a general-relativistic radiative transport code. Firstly, we investigate the origin of the high-energy emission. We find the following indications of a significant jet contribution at high energies: (i) a pronounced γ-ray peak at ˜ 1023 Hz, (ii) a break in the optical/UV band where the spectrum changes from disk to jet dominated, and (iii) a low-frequency synchrotron peak ≲ 1014 Hz implies that a significant fraction of any observed X-ray and γ-ray emission originates in the jet. Secondly, we investigate the effects of black hole spin on the high-energy emission. We find that the X-ray and γ-ray power depend strongly on spin and inclination angle. Surprisingly, this dependence is not a result of the Blandford-Znajek mechanism, but instead can be understood as a redshift effect. For rapidly rotating black holes, observers with large inclinations see deeper into the hot, dense, highly-magnetized inner regions of the accretion flow. Since the lower frequency emission originates at larger radii, it is not significantly affected by the spin. Therefore, the ratio of the X-ray to near-infrared power is an observational probe of black hole spin.

  14. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer H. S.

    2016-07-01

    be used as an indicator of w hether a symbiotic is powered predominantly by shell burning on the surface of the WD or by accretion. We additionally make the first ever radio detections of seven of the targets in our survey. Our survey of seventeen radio bright symbiotics, comparing observations before and after the upgrades to the VLA, shows the technological feasibility to resolve the nebulae of nearby symbiotic binaries, opening the door for new lines of research. We spatially resolve extended structure in several symbiotic systems in radio for the first time. Additionally, our observations reveal extreme radio variability in symbiotic BF Cyg before and after the production of a jet from the system. Our results from our surveys of symbiotics provide some support for the model of radio emission where the red giant wind is photoionized by the WD, and suggests that there may be a greater population of radio faint, accretion driven symbiotic systems. This work emphasizes the powerful nature of radio observations as a tool for understanding eruptive WD binaries and their outflows.

  15. Do some AGN lack X-ray emission?

    NASA Astrophysics Data System (ADS)

    Simmonds, C.; Bauer, F. E.; Thuan, T. X.; Izotov, Y. I.; Stern, D.; Harrison, F. A.

    2016-12-01

    Context. Intermediate-mass black holes (IMBHs) are thought to be the seeds of early supermassive black holes (SMBHs). While ≳100 IMBH and small SMBH candidates have been identified in recent years, few have been robustly confirmed to date, leaving their number density in considerable doubt. Placing firmer constraints both on the methods used to identify and confirm IMBHs/SMBHs, as well as characterizing the range of host environments that IMBHs/SMBHs likely inhabit is therefore of considerable interest and importance. Additionally, finding significant numbers of IMBHs in metal-poor systems would be particularly intriguing, since such systems may represent local analogs of primordial galaxies, and therefore could provide clues of early accretion processes. Aims: Here we study in detail several candidate active galactic nuclei (AGN) found in metal-poor hosts. Methods: We utilize new X-ray and optical observations to characterize these metal-poor AGN candidates and compare them against known AGN luminosity relations and well-characterized IMBH/SMBH samples. Results: Despite having clear broad optical emission lines that are long-lived (≳10-13 yr), these candidate AGN appear to lack associated strong X-ray and hard UV emission, lying at least 1-2 dex off the known AGN correlations. If they are IMBHs/SMBHs, our constraints imply that they either are not actively accreting, their accretion disks are fully obscured along our line-of-sight, or their accretion disks are not producing characteristic high energy emission. Alternatively, if they are not AGN, then their luminous broad emission lines imply production by extreme stellar processes. The latter would have profound implications on the applicability of broad lines for mass estimates of massive black holes. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A64

  16. Accretion Rates for T Tauri Stars Using Nearly Simultaneous Ultraviolet and Optical Spectra

    NASA Astrophysics Data System (ADS)

    Ingleby, Laura; Calvet, Nuria; Herczeg, Gregory; Blaty, Alex; Walter, Frederick; Ardila, David; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne; Brown, Alexander

    2013-04-01

    We analyze the accretion properties of 21 low-mass T Tauri stars using a data set of contemporaneous near-UV (NUV) through optical observations obtained with the Hubble Space Telescope Imaging Spectrograph and the ground-based Small and Medium Aperture Research Telescope System, a unique data set because of the nearly simultaneous broad wavelength coverage. Our data set includes accreting T Tauri stars in Taurus, Chamaeleon I, η Chamaeleon, and the TW Hydra Association. For each source we calculate the accretion rate (\\dot{M}) by fitting the NUV and optical excesses above the photosphere, produced in the accretion shock, introducing multiple accretion components characterized by a range in energy flux (or density) for the first time. This treatment is motivated by models of the magnetospheric geometry and accretion footprints, which predict that high-density, low filling factor accretion spots coexist with low-density, high filling factor spots. By fitting the UV and optical spectra with multiple accretion components, we can explain excesses which have been observed in the near-IR. Comparing our estimates of \\dot{M} to previous estimates, we find some discrepancies; however, they may be accounted for when considering assumptions for the amount of extinction and variability in optical spectra. Therefore, we confirm many previous estimates of the accretion rate. Finally, we measure emission line luminosities from the same spectra used for the \\dot{M} estimates, to produce correlations between accretion indicators (Hβ, Ca II K, C II], and Mg II) and accretion properties obtained simultaneously.

  17. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  18. Eddington-limited Accretion in z ∼ 2 WISE-selected Hot, Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Jingwen; Jun, Hyunsung D.; Assef, Roberto J.; Tsai, Chao-Wei; Wright, Edward L.; Eisenhardt, Peter R. M.; Blain, Andrew; Stern, Daniel; Díaz-Santos, Tanio; Denney, Kelly D.; Hayden, Brian T.; Perlmutter, Saul; Aldering, Greg; Boone, Kyle; Fagrelius, Parker

    2018-01-01

    Hot, dust-obscured galaxies, or “Hot DOGs,” are a rare, dusty, hyperluminous galaxy population discovered by the WISE mission. Predominantly at redshifts 2–3, they include the most luminous known galaxies in the universe. Their high luminosities likely come from accretion onto highly obscured supermassive black holes (SMBHs). We have conducted a pilot survey to measure the SMBH masses of five z∼ 2 Hot DOGs via broad Hα emission lines, using Keck/MOSFIRE and Gemini/FLAMINGOS-2. We detect broad Hα emission in all five Hot DOGs. We find substantial corresponding SMBH masses for these Hot DOGs (∼ {10}9 {M}ȯ ), and their derived Eddington ratios are close to unity. These z∼ 2 Hot DOGs are the most luminous active galactic nuclei for their BH masses, suggesting that they are accreting at the maximum rates for their BHs. A similar property is found for known z∼ 6 quasars. Our results are consistent with scenarios in which Hot DOGs represent a transitional, high-accretion phase between obscured and unobscured quasars. Hot DOGs may mark a special evolutionary stage before the red quasar and optical quasar phases, and they may be present at other cosmic epochs.

  19. Line Emission and X-ray Line Polarization of Multiply Ionized Mo Ions

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.; Stafford, A.; Safronova, U. I.; Shrestha, I. K.; Schultz, K. A.; Childers, R.; Cooper, M. C.; Beiersdorfer, P.; Hell, N.; Brown, G. V.

    2016-10-01

    We present a comprehensive experimental and theoretical study of the line emission from multiply ionized Mo ions produced by two different sets of experiments: at LLNL EBIT and the pulsed power generator Zebra at UNR. Mo line emission and polarization measurements were accomplished at EBIT for the first time. In particular, benchmarking experiments at the LLNL EBIT with Mo ions produced at electron beam energies from 2.75 keV up to 15 keV allowed us to break down these very complicated spectra into spectra with only few ionization stages and to select processes that influence them as well as to measure line polarization. The EBIT data were recorded using the EBIT Calorimeter Spectrometer and a crystal spectrometer with a Ge crystal. X-ray Mo spectra and pinhole images were collected from Z-pinch plasmas produced from various wire loads. Non-LTE modeling, high-precision relativistic atomic and polarization data were used to analyze L-shell Mo spectra. The influence of different plasma processes including electron beams on Mo line radiation is summarized. This work was supported by NNSA under DOE Grant DE-NA0002954. Experiments at the NTF/UNR were funded in part by DE-NA0002075. Work at LLNL was performed under the auspices of the U.S. DOE under contract DE-AC52-07NA27344.

  20. Cloudy 94 and Applications to Quasar Emission Line Regions

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    2000-01-01

    This review discusses the most recent developments of the plasma simulation code Cloudy and its application to the, emission-line regions of quasars. The longterm goal is to develop the tools needed to determine the chemical composition of the emitting gas and the luminosity of the central engine for any emission line source. Emission lines and the underlying thermal continuum are formed in plasmas that are far from thermodynamic equilibrium. Their thermal and ionization states are the result of a balance of a vast set of microphysical processes. Once produced, radiation must, propagate out of the (usually) optically thick source. No analytic solutions are possible, and recourse to numerical simulations is necessary. I am developing the large-scale plasma simulation code Cloudy as an investigative tool for this work, much as an observer might build a spectrometer. This review describes the current version of Cloudy, version 94. It describes improvements made since the, release of the previous version, C90. The major recent, application has been the development of the "Locally Optimally-Emitting Cloud" (LOC) model of AGN emission line regions. Powerful selection effects, introduced by the atomic physics and line formation process, permit individual lines to form most efficiently only near certain selected parameters. These selection effects, together with the presence of gas with a wide range of conditions, are enough to reproduce the spectrum of a typical quasar with little dependence on details. The spectrum actually carries little information to the identity of the emitters. I view this as a major step forward since it provides a method to handle accidental details at the source, so that we can concentrate on essential information such as the luminosity or chemical composition of the quasar.

  1. Problems for the standard black hole/accretion disk models in Cygnus X-1?

    NASA Technical Reports Server (NTRS)

    Done, C.; Mulchaey, J. S.; Mushotzky, R. F.; Arnaud, K. A.

    1992-01-01

    Archival EXOSAT and HEAO1-A2 data from Cyg X-1 show the 'high energy excess' above 10 keV seen in X-ray observations of AGN. Using a likelihood ratio test, we are for the first time able to distinguish conclusively in favor of Compton reflection rather than partial covering as the origin of the high energy excess. This supports the idea of an X-ray illuminated accretion disk in Cyg X-1, but the line equivalent width is smaller by a factor of 2-3 than that expected from such a disk. While the larger optical depth required for reflection as opposed to line emission admit the possibility of seeing line without reflection, the converse is not possible. To see a reflection spectrum, including the strong iron absorption edge, implies that strong iron emission must be observed as the line and edge are causally linked.

  2. Broad-line radio galaxies observed with Fermi-LAT: The origin of the GeV γ-ray emission

    DOE PAGES

    Kataoka, J.; Stawarz, Ł.; Takahashi, Y.; ...

    2011-09-22

    Here, we report on a detailed investigation of the γ-ray emission from 18 broad-line radio galaxies (BLRGs) based on two years of Fermi Large Area Telescope data. We confirm the previously reported detections of 3C 120 and 3C 111 in the GeV photon energy range; a detailed look at the temporal characteristics of the observed γ-ray emission reveals in addition possible flux variability in both sources. No statistically significant γ-ray detection of the other BLRGs was found, however, in the considered data set. Though the sample size studied is small, what appears to differentiate 3C 111 and 3C 120 frommore » the BLRGs not yet detected in γ-rays is the particularly strong nuclear radio flux. This finding, together with the indications of the γ-ray flux variability and a number of other arguments presented, indicates that the GeV emission of BLRGs is most likely dominated by the beamed radiation of relativistic jets observed at intermediate viewing angles. In this paper we also analyzed a comparison sample of high-accretion-rate Seyfert 1 galaxies, which can be considered radio-quiet counterparts of BLRGs, and found that none were detected in γ-rays. A simple phenomenological hybrid model applied for the broadband emission of the discussed radio-loud and radio-quiet type 1 active galaxies suggests that the relative contribution of the nuclear jets to the accreting matter is ≥ 1% on average for BLRGs, whereas it is ≤ 0.1% for Seyfert 1 galaxies.« less

  3. Investigating the Fraction of Radio-Loud Quasars with High Velocity Broad Emission LInes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anirban; Gilbert, Miranda; Brotherton, Michael S.

    2018-06-01

    Quasars show a bimodal distribution in their radio emission, with some having powerful radio-emitting jets (radio-loud), and most having weak or no jets (radio-quiet). Surveys have shown around 10% of of quasars have detectable radio emissions. These quasars are called radio-loud. Several multiwavelength studies have shown that radio-loud quasars have different properties than radio-quiet quasars. This fraction of radio-loud quasars to radio-quiet quasars has been assumed to be constant across all parameter space. In this study, we breakdown the parameter space with respect to the increasing velocity dispersion of broad emission lines. Our sample has been drawn from 2011 Shen et al. catalog of more than 100,000 quasars. In this study, we demonstrate that this fraction varies with respect to the increasing velocity dispersion (FWHM) of broad emission lines. We compare three different emission lines: H-Beta, MgII, and CIV. We observe with increasing FWHM of these three emission lines, fraction of radio-loud quasars within the subset increases. This poster presents our initial results into investigating whether the fraction of RL quasars remains 10% in different parameter space.

  4. A POWERFUL AGN OUTBURST IN RBS 797

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavagnolo, K. W.; McNamara, B. R.; Wise, M. W.

    2011-05-10

    Utilizing {approx}50 ks of Chandra X-Ray Observatory imaging, we present an analysis of the intracluster medium (ICM) and cavity system in the galaxy cluster RBS 797. In addition to the two previously known cavities in the cluster core, the new and deeper X-ray image has revealed additional structure associated with the active galactic nucleus (AGN). The surface brightness decrements of the two cavities are unusually large and are consistent with elongated cavities lying close to our line of sight. We estimate a total AGN outburst energy and mean jet power of {approx}(3-6) x 10{sup 60} erg and {approx}(3-6) x 10{supmore » 45} erg s{sup -1}, respectively, depending on the assumed geometrical configuration of the cavities. Thus, RBS 797 is apparently among the most powerful AGN outbursts known in a cluster. The average mass accretion rate needed to power the AGN by accretion alone is {approx}1 M{sub sun} yr{sup -1}. We show that accretion of cold gas onto the AGN at this level is plausible, but that Bondi accretion of the hot atmosphere is probably not. The brightest cluster galaxy (BCG) harbors an unresolved, non-thermal nuclear X-ray source with a bolometric luminosity of {approx}2 x 10{sup 44} erg s{sup -1}. The nuclear emission is probably associated with a rapidly accreting, radiatively inefficient accretion flow. We present tentative evidence that star formation in the BCG is being triggered by the radio jets and suggest that the cavities may be driving weak shocks (M {approx} 1.5) into the ICM, similar to the process in the galaxy cluster MS 0735.6+7421.« less

  5. INTERFERENCE AS AN ORIGIN OF THE PEAKED NOISE IN ACCRETING X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veledina, Alexandra, E-mail: alexandra.veledina@gmail.com

    2016-12-01

    We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the upscattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, themore » humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the frequency of peaked noise and further used to constrain the combination of the viscosity parameter and disk height-to-radius ratio α ( H / R ){sup 2} of the accretion flow. We model multi-peak power spectra of black hole X-ray binaries GX 339–4 and XTE J1748–288 to constrain these parameters.« less

  6. LAMP: the long-term accretion monitoring programme of T Tauri stars in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Costigan, G.; Scholz, A.; Stelzer, B.; Ray, T.; Vink, J. S.; Mohanty, S.

    2012-12-01

    We present the results of a variability study of accreting young stellar objects in the Chameleon I star-forming region, based on ˜300 high-resolution optical spectra from the Fibre Large Area Multi-Element Spectrograph (FLAMES) at the European Southern Observatory (ESO) Very Large Telescope (VLT). 25 objects with spectral types from G2-M5.75 were observed 12 times over the course of 15 months. Using the emission lines Hα (6562.81 Å) and Ca II (8662.1 Å) as accretion indicators, we found 10 accreting and 15 non-accreting objects. We derived accretion rates for all accretors in the sample using the Hα equivalent width, Hα 10 per cent width and Ca II (8662.1 Å) equivalent width. We found that the Hα equivalent widths of accretors varied by ˜7-100 Å over the 15-month period. This corresponds to a mean amplitude of variations in the derived accretion rate of ˜0.37 dex. The amplitudes of variations in the derived accretion rate from Ca II equivalent width were ˜0.83 dex and those from Hα 10 per cent width were ˜1.11 dex. Based on the large amplitudes of variations in accretion rate derived from the Hα 10 per cent width with respect to the other diagnostics, we do not consider it to be a reliable accretion rate estimator. Assuming the variations in Hα and Ca II equivalent width accretion rates to be closer to the true value, these suggest that the spread that was found around the accretion rate to stellar-mass relation is not due to the variability of individual objects on time-scales of weeks to ˜1 year. From these variations, we can also infer that the accretion rates are stable within <0.37 dex over time-scales of less than 15 months. A major portion of the accretion variability was found to occur over periods shorter than the shortest time-scales in our observations, 8-25 days, which are comparable with the rotation periods of these young stellar objects. This could be an indication that what we are probing is spatial structure in the accretion flows

  7. Accretion from a clumpy massive-star wind in supergiant X-ray binaries

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2018-04-01

    Supergiant X-ray binaries (SgXB) host a compact object, often a neutron star (NS), orbiting an evolved O/B star. Mass transfer proceeds through the intense line-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the NS. The subsequent accretion process on to the NS is responsible for the abundant X-ray emission from SgXB. They also display peak-to-peak variability of the X-ray flux by a factor of a few 10-100, along with changes in the hardness ratios possibly due to varying absorption along the line of sight. We use recent radiation-hydrodynamic simulations of inhomogeneities (a.k.a. clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. For this, we run 3D hydrodynamic simulations of the wind in the vicinity of the accretor to investigate the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the NS magnetosphere. In particular, we show that the impact of the wind clumps on the time variability of the intrinsic mass accretion rate is severely tempered by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line of sight and estimate the final effective variability of the column density and mass accretion rate for different orbital separations. Finally, we compare our results to the most recent analysis of the X-ray flux and the hardness ratio in Vela X-1.

  8. MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerras, E.; Mediavilla, E.; Jimenez-Vicente, J.

    2013-02-20

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s}more » = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.« less

  9. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31.

    PubMed

    Middleton, Matthew J; Miller-Jones, James C A; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John S; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith

    2013-01-10

    A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.

  10. The Redshifted Hydrogen Balmer and Metastable He 1 Absorption Line System in Mini-FeLoBAL Quasar SDSS J112526.12+002901.3: A Parsec-scale Accretion Inflow?

    NASA Astrophysics Data System (ADS)

    Shi, Xi-Heng; Jiang, Peng; Wang, Hui-Yuan; Zhang, Shao-Hua; Ji, Tuo; Liu, Wen-Juan; Zhou, Hong-Yan

    2016-10-01

    The accretion of the interstellar medium onto central super-massive black holes is widely accepted as the source of the gigantic energy released by the active galactic nuclei. However, few pieces of observational evidence have been confirmed directly demonstrating the existence of the inflows. The absorption line system in the spectra of quasar SDSS J112526.12+002901.3 presents an interesting example in which the rarely detected hydrogen Balmer and metastable He I absorption lines are found redshifted to the quasar's rest frame along with the low-ionization metal absorption lines Mg II, Fe II, etc. The repeated SDSS spectroscopic observations suggest a transverse velocity smaller than the radial velocity. The motion of the absorbing medium is thus dominated by infall. The He I* lines present a powerful probe to the strength of ionizing flux, while the Balmer lines imply a dense environment. With the help of photoionization simulations, we find that the absorbing medium is exposed to the radiation with ionization parameter U ≈ 10-1.8, and the density is n({{H}})≈ {10}9 {{cm}}-3. Thus the absorbing medium is located ˜4 pc away from the central engine. According to the similarity in the distance and physical conditions between the absorbing medium and the torus, we strongly propose the absorption line system as a candidate for the accretion inflow, which originates in the inner surface of the torus.

  11. Automatic 3D power line reconstruction of multi-angular imaging power line inspection system

    NASA Astrophysics Data System (ADS)

    Zhang, Wuming; Yan, Guangjian; Wang, Ning; Li, Qiaozhi; Zhao, Wei

    2007-06-01

    We develop a multi-angular imaging power line inspection system. Its main objective is to monitor the relative distance between high voltage power line and around objects, and alert if the warning threshold is exceeded. Our multi-angular imaging power line inspection system generates DSM of the power line passage, which comprises ground surface and ground objects, for example trees and houses, etc. For the purpose of revealing the dangerous regions, where ground objects are too close to the power line, 3D power line information should be extracted at the same time. In order to improve the automation level of extraction, reduce labour costs and human errors, an automatic 3D power line reconstruction method is proposed and implemented. It can be achieved by using epipolar constraint and prior knowledge of pole tower's height. After that, the proper 3D power line information can be obtained by space intersection using found homologous projections. The flight experiment result shows that the proposed method can successfully reconstruct 3D power line, and the measurement accuracy of the relative distance satisfies the user requirement of 0.5m.

  12. HST Spatially Resolved Spectra of the Accretion Disc and Gas Stream of the Nova-Like Variable UX Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Baptista, Raymundo; Horne, Keith; Wade, Richard A.; Hubeny, Ivan; Long, Knox S.; Rutten, Rene G. M.

    1998-01-01

    Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) on 1994 August and November is analysed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disk and gas stream as a function of distance from the disk centre. The inner accretion disk is characterized by a blue continuum filled with absorption bands and lines, which cross over to emission with increasing disk radius, similar to that reported at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disk emission at ultraviolet (UV) wavelengths, with the disk side closest to the secondary star showing pronounced absorption by an 'iron curtain' and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disk radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at the disk rim and continues along the stream trajectory, producing distinct emission down to 0.1 R(sub LI). The spectrum of the uneclipsed light shows prominent emission lines of Lyalpha, N v lambda1241, SiIV Lambda 1400, C IV Lambda 1550, HeII Lambda 1640, and MgII Lambda 2800, and a UV continuum rising towards longer wavelengths. The Balmer jump appears clearly in emission indicating that the uneclipsed light has an important contribution from optically thin gas. The lines and optically thin continuum emission are most probably emitted in a vertically extended disk chromosphere + wind. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disk regions (R greater than or equal to 0.3R(sub LI) ). There is evidence of an increase in the mass accretion rate from August to November

  13. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2011-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.

  14. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2009-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than approximately equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observation of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer (RXTE) that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35R(sub g) at i = 0 degrees and R(sub in) greater than 175R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically-dominated accretion flows.

  15. High-resolution X-ray spectroscopy of M87 with the Einstein observatory - The detection of an O VIII emission line

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Clark, G. W.; Markert, T. H.; Berg, C.; Smedira, M.; Bardas, D.; Schnopper, H.; Kalata, K.

    1979-01-01

    The paper deals with high-resolution X-ray spectroscopy performed to study the extended source surrounding the giant elliptical galaxy, M87, in the Virgo cluster. From observations carried out with a focal plane crystal spectrometer, L-alpha emission was detected from hydrogenic oxygen (O VIII). Upper limits could be set on lines from intermediate ionization states of iron. The presence of a quantity of cooler matter surrounding M87 was revealed, which has important implications for cluster models and favors a radiatively controlled accretion mechanism.

  16. The X-ray Spectra of Accreting Pulsars: Studies of Three Sources Using Empirical and Phenomenological Models

    NASA Astrophysics Data System (ADS)

    Hemphill, Paul Britton

    Accreting X-ray pulsars are a class of astrophysical objects consisting of a neutron star in a binary system with a stellar companion. Matter expelled by the companion star is captured by the neutron star's gravity; as this matter falls towards the neutron star's surface, is compressed and heated, giving off X-rays. As the matter falls the last few miles above the neutron star surface, a number of physical processes compete for dominance, resulting in a highly complex environment governed by the interplay of magnetic, hydrodynamical, and radiative processes. The resulting spectrum often shows broad absorption-like features called cyclotron lines, which provide the only direct measurement of the magnetic field of a neutron star and act as probes of the properties of the accretion column, and their behavior with respect to changes in the accretion rate onto the neutron star has been of interest in recent years. My work in this dissertation brings together nearly 20 years of data from three X-ray satellites to study the X-ray emission from accreting pulsars, with a focus on the hard X-ray continuum and cyclotron lines. I present results for the accreting pulsars 4U 1538-522 and 4U 1907+09, examining the behavior of their cyclotron lines with respect to their luminosity, finding evidence for a positive correlation between the line energy and luminosity in 4U 1907+09. A combined analysis of most of the available X-ray data for the accreting pulsar 4U 1538-522 shows no such correlation in this source, either positive or negative. However, I do present evidence that the cyclotron line energy in 4U 1538-522 has shifted upwards by ˜ 5% in recent years compared to measurements from 10-20 years ago. I additionally carry out an extensive analysis of the environment around 4U 1538-522 using the soft X-ray detectors aboard the satellite Suzaku. I finally present a set of new results from the transient X-ray pulsar V 0332+53, which I fit with a new physics-based model for the

  17. Tracing black hole accretion with SED decomposition and IR lines: from local galaxies to the high-z Universe

    NASA Astrophysics Data System (ADS)

    Gruppioni, C.; Berta, S.; Spinoglio, L.; Pereira-Santaella, M.; Pozzi, F.; Andreani, P.; Bonato, M.; De Zotti, G.; Malkan, M.; Negrello, M.; Vallini, L.; Vignali, C.

    2016-06-01

    We present new estimates of AGN accretion and star formation (SF) luminosity in galaxies obtained for the local 12 μm sample of Seyfert galaxies (12MGS), by performing a detailed broad-band spectral energy distribution (SED) decomposition including the emission of stars, dust heated by SF and a possible AGN dusty torus. Thanks to the availability of data from the X-rays to the sub-millimetre, we constrain and test the contribution of the stellar, AGN and SF components to the SEDs. The availability of Spitzer-InfraRed Spectrograph (IRS) low-resolution mid-infrared (mid-IR) spectra is crucial to constrain the dusty torus component at its peak wavelengths. The results of SED fitting are also tested against the available information in other bands: the reconstructed AGN bolometric luminosity is compared to those derived from X-rays and from the high excitation IR lines tracing AGN activity like [Ne V] and [O IV]. The IR luminosity due to SF and the intrinsic AGN bolometric luminosity are shown to be strongly related to the IR line luminosity. Variations of these relations with different AGN fractions are investigated, showing that the relation dispersions are mainly due to different AGN relative contribution within the galaxy. Extrapolating these local relations between line and SF or AGN luminosities to higher redshifts, by means of recent Herschel galaxy evolution results, we then obtain mid- and far-IR line luminosity functions useful to estimate how many star-forming galaxies and AGN we expect to detect in the different lines at different redshifts and luminosities with future IR facilities (e.g. JWST, SPICA).

  18. Probing the Jet Turnover Frequency Dependence on Mass and Mass Accretion Rate

    NASA Astrophysics Data System (ADS)

    Hammerstein, Erica; Gültekin, Kayhan; King, Ashley

    2018-01-01

    We have examined a sample of 15 sub-Eddington supermassive black holes (SMBHs) in a variety of galaxy classifications to further understand the proposed fundamental plane of black hole activity and scaling relations between black hole masses and their radio and X-ray luminosities. This plane describes black holes from stellar-mass to supermassive. The physics probed by these sub-Eddington systems is thought to be a radiatively inefficient, jet-dominated accretion flow. By studying black holes in this regime, we can learn important information on the disk-jet connection for accreting black holes.A key factor in studying the fundamental plane is the turnover frequency — the frequency at which emission transitions from optically thick at lower frequencies to optically thin at higher frequencies. This turnover point can be measured by observing the source in both radio and X-ray. Our project aims to test the dependence of the turnover frequency on mass and mass accretion rate.Radio observations of the sample were obtained using the Karl G. Jansky Very Large Array (VLA) in the range of 5-40 GHz across four different frequency bands in A configuration to give the highest spatial resolution to focus on the core emission. Our carefully chosen sample of SMBHs with dynamically measured masses consists of two sub-samples: those with approximately constant mass accretion rate (LX/LEdd ~ 10‑7) and those with approximately constant mass (MBH ~ 108 Msun). X-ray data were obtained from archival Chandra observations. To find the turnover frequency, we used Markov Chain Monte Carlo methods to fit two power laws to the radio data and the archival X-ray data. The intersection of the radio and X-ray fits is the turnover frequency.We present the results for both subsamples of SMBHs and their relationship between the turnover frequency and X-ray luminosity, which we take to scale with mass accretion rate, and jet power derived from both radio and X-ray properties.

  19. Fe K Line Profile in Low-Redshift Quasars: Average Shape and Eddington Ratio Dependence

    NASA Astrophysics Data System (ADS)

    Inoue, Hirohiko; Terashima, Yuichi; Ho, Luis C.

    2007-06-01

    We analyze X-ray spectra of 43 Palomar-Green quasars observed with XMM-Newton in order to investigate their mean Fe K line profile and its dependence on physical properties. The continuum spectra of 39 objects are well reproduced by a model consisting of a power law and a blackbody modified by Galactic absorption. The spectra of the remaining four objects require an additional power-law component absorbed with a column density of ~1023 cm-2. A feature resembling an emission line at 6.4 keV, identified with an Fe K line, is detected in 33 objects. Approximately half of the sample show an absorption feature around 0.65-0.95 keV, which is due to absorption lines and edges of O VII and O VIII. We fit the entire sample simultaneously to derive average Fe line parameters by assuming a common Fe line shape. The Fe line is relatively narrow (σ=0.36 keV), with a center energy of 6.48 keV and a mean equivalent width (EW) of 248 eV. By combining black hole masses estimated from the virial method and bolometric luminosities derived from full spectral energy distributions, we examine the dependence of the Fe K line profile on the Eddington ratio. As the Eddington ratio increases, the line becomes systematically stronger (EW=130-280 eV) and broader (σ=0.1-0.7 keV), and peaks at higher energies (6.4-6.8 keV). This result suggests that the accretion rate onto the black hole directly influences the geometrical structure and ionization state of the accretion disk.

  20. Low-radiative efficiency accretion: Microphysics and applications to low-luminosity AGN

    NASA Astrophysics Data System (ADS)

    Quataert, Eliot James Leo

    There is growing dynamical evidence that most nearby galaxies contain central ``massive dark objects,'' most likely supermassive black holes. Accretion onto a supermassive black hole may therefore be commonplace, and not just restricted to quasars and active galactic nuclei (AGN). This hypothesis is supported by observational surveys which show that the majority of nearby galaxies have nuclear emission properties reminiscent of AGN. Their emission-line and bolometric luminosities are, however, ~102 - 105 times smaller than typical AGN. In this thesis I explore several issues related to the physics of these low luminosity active galactic nuclei (LLAGN). In particular, it has been proposed that LLAGN are supermassive black holes accreting mass via a radiatively inefficient advection-dominated accretion flow, in which most of the energy dissipated by turbulence is carried with the gas through the event horizon rather than being radiated. This requires that turbulence dissipate most of its energy into the protons, rather than the electrons. I calculate the heating of electrons and protons by the collisionless dissipation of magneto-hydrodynamic turbulence and argue that preferential proton heating can only be achieved for relatively subthermal magnetic fields (roughly β >~ 10, where β is the average ratio of the gas pressure to the magnetic pressure in the accretion flow). For stronger, near equipartition, magnetic fields (β ~ 1), the electrons receive most of the turbulent energy. I give an independent argument, based on a fluid model for the radial evolution of the magnetic energy density in the accretion flow, that magnetic fields in advection- dominated accretion flows may be somewhat subthermal. An alternative explanation for LLAGN is that they accrete mass at very low rates. This is, however, inconsistent with accretion rate estimates (based on Bondi's method) in nearby massive elliptical galaxies and the center of our Galaxy. I give a detailed discussion of

  1. A New Class of Transients Marking Intensified Accretion onto Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, Benny; Arcavi, Iair; Ricci, Claudio; Horesh, Assaf; Tacchella, Sandro; Stern, Daniel

    2018-01-01

    Our understanding of the demographics and evolution of supermassive black holes (SMBHs) beyond the local universe is limited to actively growing SMBHs, where relatively stable accretion of gas persists over several hundreds of millions of years. A growing number of transient and/or variable phenomena in galaxy nuclei have recently begun to shed new light on SMBH demographics and the physics of gas accretion onto these objects, tracing events where this accretion has drastically intensified. We present such an event, identified in the nucleus of an early-type galaxy at z=0.064, in which a previously-active SMBH experienced a dramatic increase in ultraviolet-optical emission. The emerging optical spectrum exhibits a mix of emission features, some of which are typical of luminous, unobscured active galactic nuclei. Other observed emission features of high-ionization species are likely driven by Bowen fluorescence -- seen for the first time in high-velocity lines, with ~2000 km/s, in a galaxy nucleus -- originating in dense, metal-rich gas that is exposed to the recently intensified UV radiation. Our multiwavelength space- and ground-based monitoring campaign shows that the spectral features and elevated UV flux show little to no evolution, over a period of at least six months. This disfavours the tidal disruption of a star as the origin of the UV “flash”, but suggests a rather longer-term re-ignition event. This event joins two other recently reported transients with similar emission properties, forming a new class of transients which has important implications for the identification and understanding of tidal disruption events, as well as other drivers of SMBH re-ignition.

  2. Long Fading Mid-infrared Emission in Transient Coronal Line Emitters: Dust Echo of a Tidal Disruption Flare

    NASA Astrophysics Data System (ADS)

    Dou, Liming; Wang, Ting-gui; Jiang, Ning; Yang, Chenwei; Lyu, Jianwei; Zhou, Hongyan

    2016-12-01

    The sporadic accretion following the tidal disruption of a star by a super-massive black hole (TDE) leads to a bright UV and soft X-ray flare in the galactic nucleus. The gas and dust surrounding the black hole responses to such a flare with an echo in emission lines and infrared emission. In this paper, we report the detection of long fading mid-IR emission lasting up to 14 years after the flare in four TDE candidates with transient coronal lines using the WISE public data release. We estimate that the reprocessed mid-IR luminosities are in the range between 4× {10}42 and 2× {10}43 erg s-1 and dust temperature in the range of 570-800 K when WISE first detected these sources three to five years after the flare. Both luminosity and dust temperature decrease with time. We interpret the mid-IR emission as the infrared echo of the tidal disruption flare. We estimate the UV luminosity at the peak flare to be 1 to 30 times 1044 erg s-1 and that for warm dust masses to be in the range of 0.05-1.3 {M}⊙ within a few parsecs. Our results suggest that the mid-infrared echo is a general signature of TDE in the gas-rich environment.

  3. Detection of blueshifted emission and absorption and a relativistic iron line in the X-ray spectrum of ESO323-G077

    NASA Astrophysics Data System (ADS)

    Jiménez-Bailón, E.; Krongold, Y.; Bianchi, S.; Matt, G.; Santos-Lleó, M.; Piconcelli, E.; Schartel, N.

    2008-12-01

    We report on the X-ray observation of the Seyfert 1 galaxy ESO323-G077 performed with XMM-Newton. The EPIC spectra show a complex spectrum with conspicuous absorption and emission features. The continuum emission can be modelled with a power law with an index of 1.99 +/- 0.02 in the whole XMM-Newton energy band, marginally consistent with typical values of type I objects. An absorption component with an uncommonly high equivalent hydrogen column (nH = 5.82+0.12-0.11 × 1022cm-2) is affecting the soft part of the spectrum. Additionally, two warm absorption components are also present in the spectrum. The lower ionized one, mainly imprinting the soft band of the spectrum, has an ionization parameter of logU = 2.14+0.06-0.07 and an outflowing velocity of v = 3200+600-200kms-1. Two absorption lines located at ~6.7 and ~7.0keV can be modelled with the highly ionized absorber. The ionization parameter and outflowing velocity of the gas measured are logU = 3.26+0.19-0.15 and v = 1700+600-400kms-1, respectively. Four emission lines were also detected in the soft energy band. The most likely explanation for these emission lines is that they are associated with an outflowing gas with a velocity of ~2000kms-1. The data suggest that the same gas which is causing the absorption could also being responsible of these emission features. Finally, the XMM-Newton spectrum shows the presence of a relativistic iron emission line likely originated in the accretion disc of a Kerr black hole with an inclination of ~25°. We propose a model to explain the observed X-ray properties which invokes the presence of a two-phase outflow with cone-like structure and a velocity of the order of 2000- 4000kms-1. The inner layer of the cone would be less ionized, or even neutral, than the outer layer. The inclination angle of the source would be lower than the opening angle of the outflowing cone. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and

  4. 1H 1752 + 081: An eclipsing cataclysmic variable with a small accretion disk

    NASA Technical Reports Server (NTRS)

    Silber, Andrew D.; Remillard, Ronald A.; Horne, Keith; Bradt, Hale V.

    1994-01-01

    We announce the discovery of an eclipsing nova-like cataclysmic variable (CV) as the optical counterpart to the HEAO 1 X-ray source 1H1752 + 081. This CV has an orbital period of 1.882801 hr, a high equivalent width of H-beta, and an average m(sub v) of 16.4 out of the eclipse. A geometric model is constructed from observations of the eclipse ingress and egress in many optical bandpasses. The broad-band emission originates primarily in two regions; the disk/accretion stream 'hot spot' and a compact central component, which may be a spot on the white dwarf surface, the entire white dwarf surface or the boundary layer between the accretion disk and the white dwarf surface. Based on the durations and offsets of the two eclipses we determined the mass ratio q = 2.5 +/- 0.6 and the angle of inclination i = 77 deg +/- 2 deg. If the central component is the entire white dwarf surface the masses of the stars are M(sub 1) = 0.80 +/- 0.06 solar masses and M(sub 2) = 0.32 +/- 0.06 solar masses. The disk is faint and small (R(sub D) = 0.25 +/- 0.05 r(sub L1), where r(sub L1) is the distance from the primary to the L(sub 1) point), compared to other eclipsing CVs. The small disk may result from the removal of angular momentum from the accretion disk by the magnetic field of the white dwarf; this CV may be a DQ Her type with a slowly rotating white dwarf. The emission-line velocities do not show the 'Z-wave' expected from the eclipse of a Keplerian accretion disk, nor do they have the correct phasing to originate near the white dwarf. The most likely origin of the line emission is the hot spot. The secondary star is visible at wavelengths greater than or equal to 6000 A during eclipse. We estimate a spectral type approximately M6 which, together with the observed m(sub 1) = 16.94 during eclipse, results in a distance estimate of 150 +/- 27 pc.

  5. X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignace, R.; Waldron, W. L.; Cassinelli, J. P.

    2012-05-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles,more » a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.« less

  6. Accretion and Structure in the SW Sextantis Stars

    NASA Astrophysics Data System (ADS)

    Hoard, Donald Wayne

    1998-09-01

    The SW Sextantis stars are cataclysmic variables (CVs) sharing properties that set them apart from other CVs. These include: strong He II λ4686 emission, velocity curves implying asymmetric disk emission, and variable line profiles displaying a transient absorption feature at specific orbital phases. A number of mechanisms have been proposed to explain these characteristics including (non-disk) circumstellar material, a bipolar disk wind, a white dwarf magnetic field, and coherent accretion stream overflow across the disk, but none has been completely satisfying. I present the results of new photometric and spectroscopic observations of seven SW Sex stars, including Doppler tomogram mapping of emission regions in these systems. These observations, along with recent advances in simulations of accretion disks, suggest a scenario in which the accretion stream undergoes a violent impact with the disk edge. Depending on the mass transfer rate in the stream, the impact site will either cool efficiently (low M) and allow substantial material to flow directly over the disk, or will cool inefficiently (high M) and form a prominent bright spot at the impact site with hot stream material swept 'downstream' along the disk edge. In the former case, non-axisymmetric vertical structure develops in the disk at the terminus of the stream overflow (accounting for absorption seen at φapprox0.5), while in the latter case vertical structure is built up along the disk edge (accounting for absorption at φapprox0.8). The absorption feature phasing in different SW Sex stars implies M decreases as P orb decreases (as expected during CV evolution), but it is not clear whether normal CV evolution can drive changes in M rapidly enough to generate the onset of the SW Sex phenomenon in the narrow range of orbital period they occupy (P orb=3[-]4 hr). I present a gallery of new and archived IUE spectra of the SW Sex stars that display the typically strong UV resonant scattering lines seen in

  7. Super-Eddington Accretion in the Ultraluminous X-Ray Source NGC 1313 X-2: An Ephemeral Feast

    NASA Astrophysics Data System (ADS)

    Weng, Shan-Shan; Zhang, Shuang-Nan; Zhao, Hai-Hui

    2014-01-01

    We investigate the X-ray spectrum, variability, and the surrounding ionized bubble of NGC 1313 X-2 to explore the physics of super-Eddington accretion. Beyond the Eddington luminosity, the accretion disk of NGC 1313 X-2 is truncated at a large radius (~50 times the innermost stable circular orbit), and displays the similar evolution track with both luminous Galactic black-hole and neutron star X-ray binaries (XRBs). In super-critical accretion, the speed of radiatively driven outflows from the inner disk is mildly relativistic. Such ultra-fast outflows would be overionized and might produce weak Fe K absorption lines, which may be detected by the coming X-ray mission Astro-H. If NGC 1313 X-2 is a massive stellar XRB, the high luminosity indicates that an ephemeral feast is held in the source. That is, the source must be accreting at a hyper-Eddington mass rate to give the super-Eddington emission over ~104-105 yr. The expansion of the surrounding bubble nebula with a velocity of ~100 km s-1 might indicate that it has existed over ~106 yr and is inflated by the radiatively driven outflows from the transient with a duty cycle of activity of ~ a few percent. Alternatively, if the surrounding bubble nebula is produced by line-driven winds, less energy is required than the radiatively driven outflow scenario, and the radius of the Strömgren radius agrees with the nebula size. Our results are in favor of the line-driven winds scenario, which can avoid the conflict between the short accretion age and the apparently much longer bubble age inferred from the expansion velocity in the nebula.

  8. Exploring the physics of the accretion and jet in nearby narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Yao, Su; Qiao, Erlin; Wu, Xue-Bing; You, B.

    2018-06-01

    In this paper, we explore the physics of the accretion and jet in narrow-line Seyfert 1 (NLS1) galaxy. Specifically, we compile a sample composed of 16 nearby NLS1 with Lbol/LEdd ≳ 0.1. We investigate the mutual correlation between their radio luminosity LR, X-ray luminosity LX, optical luminosity L5100, and black hole mass MBH. By adopting partial correlation analysis, we find (1) a positive correlation between LX and MBH and (2) a weak positive correlation between LR and L5100. However, we don't find significant correlations between LR and LX or between LX and L5100 after considering the effect of the black hole mass, which leads to a finding that LX/LEdd is independent of L5100/LEdd. Interestingly, the findings that LX is correlated with MBH and LX/LEdd is not correlated with L5100/LEdd support that the X-ray emission is saturated with increasing \\dot{M} for Lbol/LEdd ≳ 0.1 in NLS1, which may be understood in the framework of slim disc scenario. Finally, we suggest that a larger NLS1 sample with high-quality radio and X-ray data is needed to further confirm this result in the future.

  9. Modelling the multiwavelength emission of Ultraluminous X-ray sources accreting above Eddington

    NASA Astrophysics Data System (ADS)

    Ambrosi, E.; Zampieri, L.

    2017-10-01

    Understanding ULXs requires a comprehensive modelling of their multiwavelength emission properties. We compute the optical-through-X-ray emission of ULXs assuming that they are binary systems with stellar-mass or massive-stellar Black Holes and considering the possibility that a non-standard disc sets in when the mass transfer rate (\\dot{M}) becomes highly super-Eddington. The emission model is applied to self-consistent simulations of ULX binaries. We compare our color-magnitude diagrams (CMDs) with those in the literature and find significant differences in the post main sequence evolution. When the donor is on the main-sequence and \\dot{M} is mildly super-Eddington, the behaviour of the system is similar to that found in previous investigations. However, when the donor star leaves the main-sequence and \\dot{M} becomes highly super-Eddington, the optical luminosity of the system is systematically larger and the colours show a markedly different evolution. The emission properties depend on the variable shielding of the outer disc and donor induced by the changing inner disc structure. We determine also the effects caused by the onset of a strong optically thick outflow. CMDs in various photometric systems are compared to the observed properties of the optical counterparts of several ULXs, obtaining updated constraints on their donor mass and accretion rate.

  10. Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies

    NASA Astrophysics Data System (ADS)

    Pinol, Lucas; Cahn, Robert N.; Hand, Nick; Seljak, Uroš; White, Martin

    2017-04-01

    The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky, the locations of the fiber positioners in the focal plane of the telescope, and an observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, with a typical variation of about 1.5 about the mean, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor. We show that this method reduces, but does not eliminate the effect. We next investigate the angular dependence of the contaminated signal, arguing that it is mostly localized to purely transverse modes. We demonstrate that the cleanest way to remove the contaminating signal is to perform an analysis of the anisotropic power spectrum P(k,μ) and remove the lowest μ bin, leaving μ > 0 modes accurate at the few-percent level. Here, μ is the cosine of the angle between the line-of-sight and the direction of vec k. We also investigate two alternative definitions of the random catalog and show that they are comparable but less effective than the coverage randoms method.

  11. Strongly Magnetized Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell

    Accretion disks likely provide the conduit for fueling active galactic nuclei (AGN), linking the black hole's immediate surroundings to the host galaxy's nuclear star cluster, and possibly beyond. Yet detailed AGN disk models fail to explain several of the most basic observational features of AGN: How do the outer regions of the disk avoid stalling as a result of wholesale gravitational fragmentation? What regulates the amount of star formation that is inferred to accompany accretion in some AGN? Why is the broad emission line region a ubiquitous feature of luminous AGN? What processes create and maintain the so-called "dusty torus"? Analytic work suggests that vertical pressure support of the disk primarily by a toroidal magnetic field, rather than by gas or radiation pressure, can readily resolve these problems. And recent numerical simulations have indicated that such a strong toroidal field is the inevitable consequence of the magnetorotational instability (MRI) when a disk accumulates a modest amount of net magnetic flux, thus providing a sound theoretical basis for strongly magnetized disks. We propose an analytic and computational study of such disks in the AGN context, focusing on: (1) The basic physical properties of strongly magnetized AGN disks. We will focus on the competition between field generation and buoyancy, improving on previous work by considering realistic equations of state, dissipative processes and radiative losses. We will use global simulations to test the limiting magnetic fields that can be produced by MRIdriven accretion disk dynamos and explore the driving mechanisms of disk winds and the resulting levels of mass, angular momentum and energy loss. (2) Gravitational fragmentation and star formation in strongly magnetized disks. We will determine how a strong field reduces and regulates gravitational fragmentation, by both lowering the disk density and creating a stratified structure in which star formation near the equator can co

  12. The Orbital Period of the SU Ursae Majoris Star EK Trianguli Australis and Evidence for Ring-Like Accretion Disks in Long-Supercycle Length SU Ursae Majoris Stars

    NASA Astrophysics Data System (ADS)

    Mennickent, Ronald E.; Arenas, Jose

    1998-06-01

    An orbital period of 0.06288(5) d has been found from a radial velocity study of the Hα emission line. In addition, we have detected an extra line emitting source located ~ 80(deg) apart from the vector joining the secondary--primary centers, as measured in the opposite sense to the binary rotational motion. This is not the expected location for the hotspot in dwarf novae. This anomaly could be removed by assuming a line emission lagging behind the white dwarf binary motion. In addition, we have estimated line emissivity (~ r(-alpha ) ) and disk radius (R equiv r_in/r_out) for 8 SU UMa stars. Most stars fit alpha = 1.8 +/- 0.1 but AK Cnc and WZ Sge strongly deviate from the mean; their emission line shapes can be explained assuming a post-outburst accretion disk mostly emitting close to the white dwarf (AK Cnc) and a ring-like disk (WZ Sge). In addition, we have found a tendency of long-supercycle length SU UMa stars to show very compact (large R; probably ring-like) accretion disks. If the supercycle length were basically controlled by the mass transfer rate (dot {M}), the inner disk radius would be a function of dot {M}. A white dwarf magnetic field ~ 5000 G is required to fit the truncation radius with the magnetosphere radius of SU UMa stars.

  13. Comparison of charged nanoparticle concentrations near busy roads and overhead high-voltage power lines.

    PubMed

    Jayaratne, E R; Ling, X; Morawska, L

    2015-09-01

    Overhead high-voltage power lines are known sources of corona ions. These ions rapidly attach to aerosols to form charged particles in the environment. Although the effect of ions and charged particles on human health is largely unknown, much attention has focused on the increasing exposure as a result of the expanding power network in urban residential areas. However, it is not widely known that a large number of charged particles in urban environments originate from motor vehicle emissions. In this study, for the first time, we compare the concentrations of charged nanoparticles near busy roads and overhead power lines. We show that large concentrations of both positive and negative charged nanoparticles are present near busy roadways and that these concentrations commonly exceed those under high-voltage power lines. We estimate that the concentration of charged nanoparticles found near two freeways carrying around 120 vehicles per minute exceeded the corresponding maximum concentrations under two corona-emitting overhead power lines by as much as a factor of 5. The difference was most pronounced when a significant fraction of traffic consisted of heavy-duty diesel vehicles which typically have high particle and charge emission rates. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. THE COVERING FACTOR OF WARM DUST IN WEAK EMISSION-LINE ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xudong; Liu, Yuan, E-mail: zhangxd@ihep.ac.cn, E-mail: liuyuan@ihep.ac.cn

    2016-10-20

    Weak emission-line active galactic nuclei (WLAGNs) are radio-quiet active galactic nuclei (AGNs) that have nearly featureless optical spectra. We investigate the ultraviolet to mid-infrared spectral energy distributions of 73 WLAGNs (0.4 < z < 3) and find that most of them are similar to normal AGNs. We also calculate the covering factor of warm dust of these 73 WLAGNs. No significant difference is indicated by a KS test between the covering factor of WLAGNs and normal AGNs in the common range of bolometric luminosity. The implication for several models of WLAGNs is discussed. The super-Eddington accretion is unlikely to bemore » the dominant reason for the featureless spectrum of a WLAGN. The present results are still consistent with the evolution scenario, i.e., WLAGNs are in a special stage of AGNs.« less

  15. Spectroscopy of an unusual emission line M star

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Greenstein, Jesse L.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    Moderate-resolution spectroscopy of an unusual late-type faint emission-line star, PC 0025 + 0047, is reported. A very strong (greater than 250 A equivalent width) an H-alpha emission line was detected by the present automated line search algorithm. The spectrum was found to have two unresolved emission lines (H-alpha and H-beta) near zero velocity, superposed on the absorption spectrum of a very red M dwarf which has strong K I, and relatively weak bands of TiO. From the weakness of the subordinate lines of Na I (8192 A) and other spectral features, it is inferred that it is definitely a cooler, and probably fainter, analog of LHS 2924. The strength of the emission lines indicates that PC 0025 + 0447 is very young and may be a fading predecessor brown drawf at an estimated M(bol) approaching 14m at a distance of about 60 pc.

  16. Revisiting Weak Emission-line Quasars with a Simple Approach to Deduce their Nature and the Tracers of X-ray Weakness

    NASA Astrophysics Data System (ADS)

    Ni, Qingling

    2018-01-01

    We present an X-ray and multi-wavelength study of 17 “bridge” weak emission-line quasars (WLQs) and 16 “extreme” WLQs naturally divided by their C IV rest equivalent widths (REWs), which constitute our clean WLQ sample together. New Chandra 3.1-4.8 ks observations were obtained for 14 objects while the other 19 have archival X-ray observations. 4 of the 17 bridge WLQs appear to be X-ray weak, while 9 of the 16 extreme WLQs appear to be X-ray weak. The X-ray weak fraction in the bridge sample (23.5%) is lower than in the extreme sample(56.3%), indicating the fraction of X-ray weak objects along with rising C IV REWs.X-ray stacking analysis is performed for the X-ray weak WLQs in the clean sample. We measured a relatively hard (Γeff=1.37) effective power-law photon index for a stack of the X-ray weak subsample, suggesting X-ray absorption due to shielding material inside the broad emission-line region (BELR). We proposed a geometrically and optically thick inner accretion disk as the natural shield, which could also explain the behavior of the X-ray weak fraction along with C IV REW.Futhermore, we ran Peto-Prentice tests to assess if the distributions of optical-UV spectral properties are different between X-ray weak WLQs and X-ray normal WLQs. We also examined correlations between △αOX and optical-UV spectral properties. The C IV REW, C IV blueshift, C IV FWHM, REWs of the Si IV, λ1900, Fe II, and Mg II emission features, and the relative SDSS color △(g - i) are examined in our study. △(g - i) turned out to be the most effective tracer of X-ray weakness.

  17. The structure and spectrum of the accretion shock in the atmospheres of young stars

    NASA Astrophysics Data System (ADS)

    Dodin, Alexandr

    2018-04-01

    The structure and spectrum of the accretion shock have been self-consistently simulated for a wide range of parameters typical for Classical T Tauri Stars (CTTS). Radiative cooling of the shocked gas was calculated, taking into account the self-absorption and non-equilibrium (time-dependent) effects in the level populations. These effects modify the standard cooling curve for an optically thin plasma in coronal equilibrium, however the shape of high-temperature (T > 3 × 105 K) part of the curve remains unchanged. The applied methods allow us to smoothly describe the transition from the cooling flow to the hydrostatic stellar atmosphere. Thanks to this approach, it has been found that the narrow component of He II lines is formed predominantly in the irradiated stationary atmosphere (hotspot), i.e. at velocities of the settling gas <2 km s-1. The structure of the pre-shock region is calculated simultaneously with the heated atmosphere. The simulation shows that the pre-shock gas produces a noticeable emission component in He II lines and practically does not manifest itself in He I lines (λλ 5876, 10830 Å). The ultraviolet spectrum of the hotspot is distorted by the pre-shock gas, namely numerous red-shifted emission and absorption lines overlap each other forming a pseudo-continuum. The spectrum of the accretion region at high pre-shock densities ˜1014 cm-3 is fully formed in the in-falling gas and can be qualitatively described as a spectrum of a star with an effective temperature derived from the Stefan-Boltzmann law via the full energy flux.

  18. Twenty-two emission-line AGNs from the HEAO-1 X-ray survey

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Bradt, H. V. D.; Brissenden, R. J. V.; Buckley, D. A. H.; Roberts, W.; Schwartz, D. A.; Stroozas, B. A.; Tuohy, I. R.

    1993-01-01

    We report 22 emission-line AGN as bright, hard X-ray sources. All of them appear to be new classifications with the exception of one peculiar IRAS source which is a known quasar and has no published spectrum. This sample exhibits a rich diversity in optical spectral properties and luminosities, ranging from a powerful broad-absorption-line quasar to a weak nucleus embedded in a nearby NGC galaxy. Two cases confer X-ray luminosities in excess of 10 exp 47 erg/s. However, there is a degree of uncertainty in the X-ray identification for the AGN fainter than V about 16.5. Optically, several AGN exhibit very strong Fe II emission. One Seyfert galaxy with substantial radio flux is an exception to the common association of strong Fe II emission and radio-quiet AGN. The previously recognized IRAS quasar shows extreme velocities in the profiles of the forbidden lines; the 0 III pair is broadened to the point that the lines are blended. Several of these AGN show evidence of intrinsic obscuration, illustrating the effectiveness of hard X-ray surveys in locating AGN through high column density.

  19. Laboratory unraveling of matter accretion in young stars

    PubMed Central

    Revet, Guilhem; Chen, Sophia N.; Bonito, Rosaria; Khiar, Benjamin; Filippov, Evgeny; Argiroffi, Costanza; Higginson, Drew P.; Orlando, Salvatore; Béard, Jérôme; Blecher, Marius; Borghesi, Marco; Burdonov, Konstantin; Khaghani, Dimitri; Naughton, Kealan; Pépin, Henri; Portugall, Oliver; Riquier, Raphael; Rodriguez, Rafael; Ryazantsev, Sergei N.; Yu. Skobelev, Igor; Soloviev, Alexander; Willi, Oswald; Pikuz, Sergey; Ciardi, Andrea; Fuchs, Julien

    2017-01-01

    Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell that envelops the shocked core, reducing escaped x-ray emission. This finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively. PMID:29109974

  20. Laboratory unraveling of matter accretion in young stars

    DOE PAGES

    Revet, Guilhem; Chen, Sophia N.; Bonito, Rosaria; ...

    2017-11-01

    Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. Here, we observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell thatmore » envelops the shocked core, reducing escaped x-ray emission. Our finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively.« less

  1. Laboratory unraveling of matter accretion in young stars.

    PubMed

    Revet, Guilhem; Chen, Sophia N; Bonito, Rosaria; Khiar, Benjamin; Filippov, Evgeny; Argiroffi, Costanza; Higginson, Drew P; Orlando, Salvatore; Béard, Jérôme; Blecher, Marius; Borghesi, Marco; Burdonov, Konstantin; Khaghani, Dimitri; Naughton, Kealan; Pépin, Henri; Portugall, Oliver; Riquier, Raphael; Rodriguez, Rafael; Ryazantsev, Sergei N; Yu Skobelev, Igor; Soloviev, Alexander; Willi, Oswald; Pikuz, Sergey; Ciardi, Andrea; Fuchs, Julien

    2017-11-01

    Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell that envelops the shocked core, reducing escaped x-ray emission. This finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively.

  2. Laboratory unraveling of matter accretion in young stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revet, Guilhem; Chen, Sophia N.; Bonito, Rosaria

    Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. Here, we observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell thatmore » envelops the shocked core, reducing escaped x-ray emission. Our finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively.« less

  3. Constraints on Black Hole Spin in a Sample of Broad Iron Line AGN

    NASA Technical Reports Server (NTRS)

    Brenneman, Laura W.; Reynolds, Christopher S.

    2008-01-01

    We present a uniform X-ray spectral analysis of nine type-1 active galactic nuclei (AGN) that have been previously found to harbor relativistically broadened iron emission lines. We show that the need for relativistic effects in the spectrum is robust even when one includes continuum "reflection" from the accretion disk. We then proceed to model these relativistic effects in order to constrain the spin of the supermassive black holes in these AGN. Our principal assumption, supported by recent simulations of geometrically-thin accretion disks, is that no iron line emission (or any associated Xray reflection features) can originate from the disk within the innermost stable circular orbit. Under this assumption, which tends to lead to constraints in the form of lower limits on the spin parameter, we obtain non-trivial spin constraints on five AGN. The spin parameters of these sources range from moderate (a approximates 0.6) to high (a > 0.96). Our results allow, for the first time, an observational constraint on the spin distribution function of local supermassive black holes. Parameterizing this as a power-law in dimensionless spin parameter (f(a) varies as absolute value of (a) exp zeta), we present the probability distribution for zeta implied by our results. Our results suggest 90% and 95% confidence limits of zeta > -0.09 and zeta > -0.3 respectively.

  4. Optical veiling, disk accretion, and the evolution of T Tauri stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, L.W.; Kenyon, S.J.

    1990-01-01

    High-resolution spectra of 31 K7-M1 T Tauri stars (TTs) in the Taurus-Auriga molecular cloud demonstrate that most of these objects exhibit substantial excess emission at 5200 A. Extrapolations of these data consistent with low-resolution spectrophotometry indicate that the extra emission is comparable to the stellar luminosity in many cases. If this continuum emission arises in the boundary layers of accreting disks, more than about 30 percent of all TTs may be accreting material at a rate which is sufficiently rapid to alter their evolution from standard Hayashi tracks. It is estimated that roughly 10 percent of the final stellar massmore » is accreted in the TT phase. This amount of material is comparable to the minimum gravitationally unstable disk mass estimated by Larson and it is speculated that the TT phase represents the final stages of disk accretion driven by gravitational instabilities. 40 refs.« less

  5. The SW Sextantis-type star 2MASS J01074282+4845188: an unusual bright accretion disk with non-steady emission and a hot white dwarf

    NASA Astrophysics Data System (ADS)

    Khruzina, T.; Dimitrov, D.; Kjurkchieva, D.

    2013-03-01

    Context. Cataclysmic variables (CVs) present a short evolutional stage of binary systems. The nova-like stars are rare objects, especially those with eclipses (only several tens). But precisely these allow to determine the global parameters of their configurations and to learn more about the late stage of stellar evolution. Aims: The light curve solution allows one to determine the global parameters of the newly discovered nova-like eclipsing star 2MASS J01074282+4845188 and to estimate the contribution of the different light sources. Methods: We present new photometric and spectral observations of 2MASS J01074282+4845188. To obtain a light curve solution we used a model of a nova-like star whose emission sources are a white dwarf surrounded by an accretion disk, a secondary star filling its Roche lobe, a hot spot and a hot line. The obtained global parameters are compared with those of the eclipsing nova-like UX UMa. Results: 2MASS J01074282+4845188 shows the deepest permanent eclipse among the known nova-like stars. It is reproduced by covering the very bright accretion disk by the secondary component. The luminosity of the disk is much bigger than that of the rest light sources. The determined high temperature of the disk is typical for that observed during the outbursts of CVs. The primary of 2MASS J01074282+4845188 is one of the hottest white dwarfs in CVs. The temperature of 5090 K of its secondary is also quite high and more appropriate for a long-period SW Sex star. It might be explained by the intense heating from the hot white dwarf and the hot accretion disk of the target. Conclusions: The high mass accretion rate Ṁ = 8 × 10-9 M⊙ yr-1, the broad and single-peaked Hα emission profile, and the presence of an S-wave are sure signs for the SW Sex classification of 2MASS J01074282+4845188. The obtained flat temperature distribution along the disk radius as well as the deviation of the energy distribution from the black-body law are evidence of the non

  6. Hot accretion flow with anisotropic viscosity

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Chun; Bu, De-Fu; Gan, Zhao-Ming; Yuan, Ye-Fei

    2017-12-01

    In extremely low accretion rate systems, the ion mean-free path can be much larger than the gyroradius. Therefore, gas pressure is anisotropic with respect to magnetic field lines. The effects of pressure anisotropy can be modeled by an anisotropic viscosity with respect to magnetic field lines. Angular momentum can be transferred by anisotropic viscosity. In this paper, we investigate hot accretion flow with anisotropic viscosity. We consider the case that anisotropic viscous stress is much larger than Maxwell stress. We find that the flow is convectively unstable. We also find that the mass inflow rate decreases towards a black hole. Wind is very weak; its mass flux is 10-15% of the mass inflow rate. The inward decrease of inflow rate is mainly due to convective motions. This result may be useful to understand the accretion flow in the Galactic Center Sgr A* and M 87 galaxy.

  7. 2D-model of oxygen emissions lines for Europa

    NASA Astrophysics Data System (ADS)

    Cessateur, Gaël; Barthelemy, Mathieu; Lilensten, Jean; Rubin, Martin; Maggiolo, Romain; De Keyser, Johan

    2017-04-01

    The Jovian moon Europa is an interesting case study as an archetype for icy satellites, and will be one of the primary targets of the ESA JUICE mission which should be launched in 2022. Hosting a thin neutral gas atmosphere mainly composed of O2 and H2O, Europa can be studied by its airglow and dayglow emissions. A 1D photochemistry model has first been developed to assess the impact of the solar UV flux on the visible emission, such as the red and green oxygen lines (Cessateur et al. 2016). For limb polar viewing, red line emissions can reach a few hundreds of Rayleigh close to the surface. The impact of the precipitating electrons has also been studied. The density and temperature of the electrons are first derived from the multifluid MHD model from Rubin et al. (2015). A 2D emission model has thus been developed to estimate the airglow emissions. When electrons are the major source of the visible emissions, the solar UV flux can be responsible for up to 15% of those emissions for some specific line of sight. Oxygen emission lines in the UV have also been considered, such as 130.5 and 135.6 nm. For the latter, we did estimate some significant line emissions reaching 700 Rayleigh for a polar limb viewing angle close to the surface. Oxygen emission lines are significant (higher than 10 R) for altitudes lower than 100 km for all lines, except for the red line emissions where emissions are still above 10 R up to 200 km from the surface. A sensitivity study has also been performed in order to assess the impact of the uncertainties relative to the dissociative-excitation cross sections. Cessateur G, Barthelemy M & Peinke I. Photochemistry-emission coupled model for Europa and Ganymede. J. Space Weather Space Clim., 6, A17, 2016 Rubin, M., et al. Self-consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere, J. Geophys. Res. Space Physics, 120, 3503-3524, 2015

  8. Emission lines in the long period Cepheid l Carinae

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Love, Stanley G.

    1991-01-01

    For the Cepheid (l) Carinae with a pulsation period of 35.5 days we have studied the emission line fluxes as a function of pulsational phase in order to find out whether we see chromosphere and transition layer emission or whether we see emission due to an outward moving shock. All emission lines show a steep increase in flux shortly before maximum light suggestive of a shock moving through the surface layers. The large ratio of the C IV to C II line fluxes shows that these are not transition layer lines. During maximum light the large ratio of the C IV to C II line fluxes also suggests that we see emission from a shock with velocities greater than 100 km/sec such that C IV emission can be excited. With such velocities mass outflow appears possible. The variations seen in the Mg II line profiles show that there is an internal absorption over a broad velocity band independent of the pulsational phase. We attribute this absorption to a circumstellar 'shell'. This 'shell' appears to be seen also as spatially extended emission in the O I line at 1300 angstrom, which is probably excited by resonance with Ly beta.

  9. Partial dust obscuration in active galactic nuclei as a cause of broad-line profile and lag variability, and apparent accretion disc inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gaskell, C. Martin; Harrington, Peter Z.

    2018-04-01

    The profiles of the broad emission lines of active galactic nuclei (AGNs) and the time delays in their response to changes in the ionizing continuum ("lags") give information about the structure and kinematics of the inner regions of AGNs. Line profiles are also our main way of estimating the masses of the supermassive black holes (SMBHs). However, the profiles often show ill-understood, asymmetric structure and velocity-dependent lags vary with time. Here we show that partial obscuration of the broad-line region (BLR) by outflowing, compact, dusty clumps produces asymmetries and velocity-dependent lags similar to those observed. Our model explains previously inexplicable changes in the ratios of the hydrogen lines with time and velocity, the lack of correlation of changes in line profiles with variability of the central engine, the velocity dependence of lags, and the change of lags with time. We propose that changes on timescales longer than the light-crossing time do not come from dynamical changes in the BLR, but are a natural result of the effect of outflowing dusty clumps driven by radiation pressure acting on the dust. The motion of these clumps offers an explanation of long-term changes in polarization. The effects of the dust complicate the study of the structure and kinematics of the BLR and the search for sub-parsec SMBH binaries. Partial obscuration of the accretion disc can also provide the local fluctuations in luminosity that can explain sizes deduced from microlensing.

  10. Numerical Simulations of Naturally Tilted, Retrogradely Precessing, Nodal Superhumping Accretion Disks

    NASA Astrophysics Data System (ADS)

    Montgomery, M. M.

    2012-02-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.

  11. Power line emission 50/60 Hz and Schumann resonances observed by microsatellite Chibis-M in the Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Dudkin, Denys; Pilipenko, Vyacheslav; Dudkin, Fedir; Pronenko, Vira; Klimov, Stanislav

    2015-04-01

    The overhead power lines are the sources of intense wideband electromagnetic (EM) emission, especially in ELF-VLF range, because of significant length (up to a few thousand kilometers) and strong 50/60 Hz currents with noticeable distortion. The radiation efficiency of the power line emission (PLE) increases with the harmonic order, so they are well observed by ground-based EM sensors. However their observations by low orbiting satellites (LEO) are very rare, particularly at basic harmonic 50/60 Hz, because of the ionospheric plasma opacity in ELF band. The Schumann resonance (SR) is the narrow-band EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity. The first five eigenmodes of the SR are 7.8, 14.3, 20.8, 27.3 and 33.8 Hz and, thus, SR harmonics are also strongly absorbed by the Earth ionosphere. The published numerical simulations show that the penetration depth of such an ELF emission into the Earth's ionosphere is limited to 50-70 km for electric field and 120-240 km for magnetic field. From this follows, that PLE and SR can hardly ever be detected by LEO satellites, i.e. above the F-layer of ionosphere. In spite of this fact, these emissions were recently observed with use of the electric field antennas placed on the satellites C/NOFS (USA) and Chibis-M (Russia). Microsatellite Chibis-M was launched on January 24, 2012, at 23:18:30 UTC from the cargo ship "Progress M-13M" to circular orbit with altitude ~500 km and inclination ~52° . Chibis-M mass is about 40 kg where one third is a scientific instrumentation. The dimensions of the microsatellite case are 0.26x0.26x0.54 m with the outside mounted solar panels, service and scientific instrumentation. The main scientific objective of Chibis-M is the theoretical model verification for the atmospheric gamma-ray bursts. It requires the study of the accompanying EM processes such as the plasma waves produced by the lightning discharges in the VLF band. Chibis-M decayed on 15

  12. Far-Infrared Line Emission from High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Cox, P.; Hunter, T. R.; Malhotra, S.; Phillips, T. G.; Yun, M. S.

    2002-01-01

    Recent millimeter and submillimeter detections of line emission in high redshift objects have yielded new information and constraints on star formation at early epochs. Only CO transitions and atomic carbon transitions have been detected from these objects, yet bright far-infrared lines such as C+ at 158 microns and N+ at 205 microns should be fairly readily detectable when redshifted into a submillimeter atmospheric window. We have obtained upper limits for C+ emission &om two high redshift quasars, BR1202-0725 at z=4.69 and BRI1335-0415 at z=4.41. These limits show that the ratio of the C+ line luminosity to the total far-infrared luminosity is less than 0.0l%, ten times smaller than has been observed locally. Additionally, we have searched for emission in the N+ 205 micron line from the Cloverleaf quasar, H1413+117, and detected emission in CO J=7-6. The N+ emission is found to be below the amount predicted based on comparison to the only previous detection of this line, in the starburst galaxy M82.

  13. Flares, Magnetic Reconnections and Accretion Disk Viscosity

    NASA Astrophysics Data System (ADS)

    Welsh, William

    2001-07-01

    Accretion disks are invoked to explain a host of astrophysical phenomena, from protostellar objects to AGN. And yet the mechanism allowing accretion disks to operate are completely unknown. This proposal seeks to observe the ``smoking gun'' signature of magnetically-driven viscosity in accretion disks. Magnetically-induced viscosity is a plausible and generally accepted hypothesis {for esthetic reasons}, but it is completely untested. Determining the cause of accretion disk viscosity is of major significance to all accretion-disk powered systems {e.g. CVs, X-ray binaries, AGN and protostellar disks}. These data will also firmly establish the importance of magnetic fields in accretion disks. Because of its known flaring properites, we will observe the accretion disk in EM Cyg simulataneously with STIS/FUV and CHANDRA. The simultaneous X-rays are absolutely necessary for the unambiguous detection of accretion disk magnetic reconnection flares.

  14. Accretion Flows in Magnetic White Dwarf Systems

    NASA Technical Reports Server (NTRS)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the

  15. General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle; Tchekhovskoy, Alexander

    2017-12-01

    Accreting neutron stars can power a wide range of astrophysical phenomena including short- and long-duration gamma-ray bursts, ultra-luminous X-ray sources, and X-ray binaries. Numerical simulations are a valuable tool for studying the accretion-disk–magnetosphere interaction that is central to these problems, most clearly for the recently discovered transitional millisecond pulsars. However, magnetohydrodynamic (MHD) methods, widely used for simulating accretion, have difficulty in highly magnetized stellar magnetospheres, while force-free methods, suitable for such regions, cannot include the accreting gas. We present an MHD method that can stably evolve essentially force-free, highly magnetized regions, and describe the first time-dependent relativistic simulations of magnetized accretion onto millisecond pulsars. Our axisymmetric general-relativistic MHD simulations for the first time demonstrate how the interaction of a turbulent accretion flow with a pulsar’s electromagnetic wind can lead to the transition of an isolated pulsar to the accreting state. This transition naturally leads to the formation of relativistic jets, whose power can greatly exceed the power of the isolated pulsar’s wind. If the accretion rate is below a critical value, the pulsar instead expels the accretion stream. More generally, our simulations produce for the first time the four possible accretion regimes, in order of decreasing mass accretion rate: (a) crushed magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar wind.

  16. Revealing the inner accretion flow around black holes using rapid variability

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2015-08-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564. We compare these to the time-averaged spectrum and the spectrum of the rapid (< 0.1s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, so that it is softer at larger radii closer to the truncated disc, and harder in the innermost parts of the flow where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole. We further show how the upcoming launch of ASTRO-H will allow even more specific regions in the accretion flow to be probed.

  17. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that ifmore » the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.« less

  18. CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264

    NASA Astrophysics Data System (ADS)

    Sousa, A. P.; Alencar, S. H. P.; Bouvier, J.; Stauffer, J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Guimarães, M. M.; McGinnis, P. T.; Rebull, L.; Flaccomio, E.; Fürész, G.; Micela, G.; Gameiro, J. F.

    2016-02-01

    Context. NGC 2264 is a young stellar cluster (~3 Myr) with hundreds of low-mass accreting stars that allow a detailed analysis of the accretion process taking place in the pre-main sequence. Aims: Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. Methods: NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and photometric and spectroscopic observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. Results: The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light curves correspond mostly to systems with a low mass-accretion rate and low mid-IR excess. About 30% of the classical T Tauri stars observed in the 2008 and 2011 CoRoT runs changed their light-curve morphology. Transitions from AA Tau-like and spot-like to aperiodic light curves and vice versa were common. The analysis of the Hα emission line variability of 58 accreting stars showed that 8 presented a periodicity that in a few cases was coincident with the photometric period. The blue and red wings of the Hα line profiles often do not correlate with each other, indicating that they are strongly influenced by different physical processes. Classical T Tauri stars have a dynamic stellar and circumstellar environment that can be explained by magnetospheric

  19. Discovery of a glitch in the accretion-powered pulsar SXP 1062

    NASA Astrophysics Data System (ADS)

    Serim, M. M.; Şahiner, Ş.; ćerri-Serim, D.; Inam, S. ć.; Baykal, A.

    2017-11-01

    We present timing analysis of the accretion-powered pulsar SXP 1062, based on the observations of Swift, XMM-Newton and Chandra satellites covering a time span of about 2 yr. We obtain a phase coherent timing solution that shows that SXP 1062 has been steadily spinning down with a rate -4.29(7) × 10-14 Hz s-1 leading to a surface magnetic field estimate of about 1.5 × 1014 G. We also resolve the binary orbital motion of the system from X-ray data that confirms an orbital period of 656(2) d. On MJD 56834.5, a sudden change in pulse frequency occurs with Δν = 1.28(5) × 10-6 Hz, which indicates a glitch event. The fractional size of the glitch is Δν/ν ˜ 1.37(6) × 10-3 and SXP 1062 continues to spin-down with a steady rate after the glitch. A short X-ray outburst 25 d prior to the glitch does not alter the spin-down of the source; therefore, the glitch should be associated with the internal structure of the neutron star. While glitch events are common for isolated pulsars, the glitch of SXP 1062 is the first confirmation of the observability of this type of events among accretion-powered pulsars. Furthermore, the value of the fractional change of pulse frequency ensures that we discover the largest glitch reported up to now.

  20. X-Ray Evidence for the Accretion Disc-Outflow Connection in 3C 111

    NASA Technical Reports Server (NTRS)

    Tombesi, Frank; Sambruna, R. M.; Reeves, J. N.; Reynolds, C. S.; Braito, V.

    2011-01-01

    We present the spectral analysis of three Suzaku X-ray Imaging Spectrometer observations of 3C III requested to monitor the predicted variability of its ultrafast outflow on approximately 7 d time-scales. We detect an ionized iron emission line in the first observation and a blueshifted absorption line in the second, when the flux is approximately 30 per cent higher. The location of the material is constrained at less than 0.006 pc from the variability. Detailed modelling supports an identification with ionized reflection off the accretion disc at approximately 20-100rg from the black hole and a highly ionized and massive ultrafast outflow with velocity approximately 0.1c, respectively. The outflow is most probably accelerated by radiation pressure, but additional magnetic thrust cannot be excluded. The measured high outflow rate and mechanical energy support the claims that disc outflows may have a significant feedback role. This work provides the first direct evidence for an accretion disc-outflow connection in a radio-loud active galactic nucleus, possibly linked also to the jet activity.

  1. FRB as products of accretion disc funnels

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2017-10-01

    The repeating FRB 121102, the only fast radio burst (FRB) with an accurately determined position, is associated with a variable persistent radio source. I suggest that an FRB originates in the accretion disc funnels of black holes. Narrowly collimated radiation is emitted along the wandering instantaneous angular momentum axis of accreted matter. This emission is observed as a fast radio burst when it sweeps across the direction to the observer. In this model, in contrast to neutron star (pulsar, RRAT or SGR) models, repeating FRBs do not have underlying periodicity and are co-located with persistent radio sources resulting from their off-axis emission. The model is analogous, on smaller spatial, lower mass and accretion rate and shorter temporal scales, to an active galactic nucleus (AGN), with FRB corresponding to blazars in which the jets point towards us. The small inferred black hole masses imply that FRBs are not associated with galactic nuclei.

  2. Accretion in Close Pre-Main-Sequence Binaries

    NASA Astrophysics Data System (ADS)

    Ardila, David

    2010-09-01

    We propose to use COS to observe the circumbinary accretion flow in pre-main sequence binaries as a function of orbital phase. These observations will help us understand how the magnetosphere captures circumbinary gas, test model predictions regarding the importance of the mass ratio in directing the accretion flows, and study the kinematics of the gas filling the circumbinary gap. We will observe UZ Tau E {mass ratio q=0.3, e=0.33} and DQ Tau {q=1, e=0.58} in four phases, over three orbital periods, using G160M and G230L. The targets are Classical T Tauri stars for which the circumstellar disks are severely truncated. Our primary observables will be the CIV {1550 A} lines, formed at the footpoints of the accretion flow onto the star. We expect to observe the ebb and flow of the line shape, centroid, and flux as a function of orbital phase. The low-resolution NUV continuum observations will provide an independent measurement of the total accretion rate.

  3. An accreting black hole model for Sagittarius A(*). 2: A detailed study

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio

    1994-01-01

    Sgr A(*) is a unique, compact radio source at the Galactic center whose characteristics suggest that it may be a massive (i.e., approximately 10(exp 6) solar mass) black hole accreting from an ambient wind in that region. Earlier (simplified) calculations suggested that its 10(exp 8) - 10(exp 20) Hz spectrum could be derived from bremsstrahlung and magnetic bremsstrahlung emission from plasma descending toward the event horizon at a rate of roughly 10(exp 22) g/s. Here, we introduce several significant improvements to the model, including (1) an exact treatment of the cyclotron/synchrotron emissivity that is valid for all temperatures, (2) the actual determination of the temperature distribution in the inflow, and (3) the effect on the spectrum should the accreting plasma have a residual angular momentum, possibly forming a disk at small radii. We find that the most likely value of the mass in this improved model is approximately equals 2 +/- 1 x 10(exp 6) solar mass, close to the range inferred earlier, but about a factor of 2 greater than the previous 'best-fit' number. The main reason for this difference is that the more realistic (new) formulation of the magnetic bremsstrahlung emissivity has fluctuations with frequency that decrease the overall line-of-sight intensity, thereby pointing to a slightly larger mass in order to account for the observed spectrum. We also find that a slight excess of angular momentum in the accreting gas may be necessary in order to account for the IR luminosity from this source. Such an excess is consistent with the results of ongoing three-dimensional simulations that will be reported elsewhere.

  4. Accretion and outflow activity on the late phases of pre-main-sequence evolution. The case of RZ Piscium

    NASA Astrophysics Data System (ADS)

    Potravnov, I. S.; Mkrtichian, D. E.; Grinin, V. P.; Ilyin, I. V.; Shakhovskoy, D. N.

    2017-03-01

    RZ Psc is an isolated high-latitude post-T Tauri star that demonstrates a UX Ori-type photometric activity. The star shows very weak spectroscopic signatures of accretion, but at the same time possesses the unusual footprints of the wind in Na I D lines. In the present work we investigate new spectroscopic observations of RZ Psc obtained in 2014 during two observation runs. We found variable blueshifted absorption components (BACs) in lines of the other alcali metals, K I 7699 Å and Ca II IR triplet. We also confirmed the presence of a weak emission component in the Hα line, which allowed us to estimate the mass accretion rate on the star as Ṁ ≤ 7 × 10-12M⊙ yr-1. We could not reveal any clear periodicity in the appearance of BACs in sodium lines. Nevertheless, the exact coincidence of the structure and velocities of the Na I D absorptions observed with the interval of about one year suggests that such a periodicity should exist.

  5. Iron lines in model disk spectra of Galactic black hole binaries

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Madej, J.; Konorski, P.; SaḐowski, A.

    2011-03-01

    Context. We present angle-dependent, broad-band intensity spectra from accretion disks around black holes of 10 M⊙. In our computations disks are assumed to be slim, which means that the radial advection is taken into account while computing the effective temperature of the disk. Aims: We attempt to reconstruct continuum and line spectra of X-ray binaries in soft state, i.e. dominated by the disk component of multitemperature shape. We follow how the iron-line complex depends on the external irradiation, an accretion rate, and a black hole spin. Methods: Full radiative transfer is solved including effects of Compton scattering, free-free and all important bound-free transitions of 10 main elements. We assume the LTE equation of state. Moreover, we include here the fundamental series of iron lines from helium-like and hydrogen-like ions, and fluorescent Kα and Kβ lines from low ionized iron. We consider two cases: nonrotating black hole, and black hole rotating with almost maximum spin a = 0.98, and obtain spectra for five accretion disks from hard X-rays to the infrared. Results: In nonirradiated disks, resonance lines from He-like and H-like iron appear mostly in absorption. Such disk spectra exhibit limb darkening in the whole energy range. External irradiation causes that iron resonance lines appear in emission. Furthermore, depending on disk effective temperature, fluorescent iron Kα and Kβ lines are present in disk emitting spectra. All models with irradiation exhibit limb brightening in their X-ray reflected continua. Conclusions: We show that the disk around stellar black hole itself is hot enough to produce strong-absorption resonance lines of iron. Emission lines can only be observed if heating by external X-rays dominates thermal processess in a hot disk atmosphere. Irradiated disks are usually brighter in X-ray continuum when seen edge on, and fainter when seen face on.

  6. Community-LINE Source Model (C-LINE) to estimate roadway emissions

    EPA Pesticide Factsheets

    C-LINE is a web-based model that estimates emissions and dispersion of toxic air pollutants for roadways in the U.S. This reduced-form air quality model examines what-if scenarios for changes in emissions such as traffic volume fleet mix and vehicle speed.

  7. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance

  8. Measuring 20-100 T B-fields using Zeeman splitting of sodium emission lines on a 500 kA pulsed power machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banasek, J. T., E-mail: jtb254@cornell.edu; Engelbrecht, J. T.; Pikuz, S. A.

    2016-11-15

    We have shown that Zeeman splitting of the sodium (Na) D-lines at 5890 and 5896 Å can be used to measure the magnetic field (B-field) produced in high current pulsed power experiments. We have measured the B-field next to a return current conductor in a hybrid X-pinch experiment near a peak current of about 500 kA. Na is deposited on the conductor and then is desorbed and excited by radiation from the hybrid X-pinch. The D-line emission spectrum implies B-fields of about 20 T with a return current post of 4 mm diameter or up to 120 T with amore » return current wire of 0.455 mm diameter. These measurements were consistent or lower than the expected B-field, thereby showing that basic Zeeman splitting can be used to measure the B-field in a pulsed-power-driven high-energy-density (HED) plasma experiment. We hope to extend these measurement techniques using suitable ionized species to measurements within HED plasmas.« less

  9. AN UNBIASED 1.3 mm EMISSION LINE SURVEY OF THE PROTOPLANETARY DISK ORBITING LkCa 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punzi, K. M.; Kastner, J. H.; Hily-Blant, P.

    2015-06-01

    The outer (>30 AU) regions of the dusty circumstellar disk orbiting the ∼2–5 Myr old, actively accreting solar analog LkCa 15 are known to be chemically rich, and the inner disk may host a young protoplanet within its central cavity. To obtain a complete census of the brightest molecular line emission emanating from the LkCa 15 disk over the 210–270 GHz (1.4–1.1 mm) range, we have conducted an unbiased radio spectroscopic survey with the Institute de Radioastronomie Millimétrique (IRAM) 30 m telescope. The survey demonstrates that in this spectral region, the most readily detectable lines are those of CO andmore » its isotopologues {sup 13}CO and C{sup 18}O, as well as HCO{sup +}, HCN, CN, C{sub 2}H, CS, and H{sub 2}CO. All of these species had been previously detected in the LkCa 15 disk; however, the present survey includes the first complete coverage of the CN (2–1) and C{sub 2}H (3–2) hyperfine complexes. Modeling of these emission complexes indicates that the CN and C{sub 2}H either reside in the coldest regions of the disk or are subthermally excited, and that their abundances are enhanced relative to molecular clouds and young stellar object environments. These results highlight the value of unbiased single-dish line surveys in guiding future high-resolution interferometric imaging of disks.« less

  10. Optical emission line monitor with background observation and cancellation

    DOEpatents

    Goff, D.R.; Notestein, J.E.

    1985-01-04

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interfering blackbody radiation by greater than 20 dB.

  11. Optical emission line monitor with background observation and cancellation

    DOEpatents

    Goff, David R.; Notestein, John E.

    1986-01-01

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interferring blackbody radiation by greater than 20 dB.

  12. Observations of emission lines in M supergiants

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.

    1979-01-01

    Copernicus observations of Mg 2 h and k emission lines from M giants and supergiants are described. Supergiants with extensive circumstellar gas shells show an asymmetric k line. The asymmetry is ascribed to superimposed lines of Fe 1 and Mn 1. The Mg 2 line width fit the Wilson-Bappu relation derived from observations of G and K Stars. Results of correlated ground-based observations include (1) the discovery of K 1 fluorescent emission from the Betelgeuse shell; (2) extimates of the mass-loss rates; and (3) the proposal that silicate dust grains must account for the major fraction of the Si atoms in the Betelgeuse shell.

  13. Power line detection system

    DOEpatents

    Latorre, Victor R.; Watwood, Donald B.

    1994-01-01

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  14. Power line detection system

    DOEpatents

    Latorre, V.R.; Watwood, D.B.

    1994-09-27

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  15. SDSS-IV MaNGA: A Serendipitous Observation of a Potential Gas Accretion Event

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Stark, David V.; Huang, Song; Rubin, Kate H. R.; Lin, Lihwai; Tremonti, Christy; Zhang, Kai; Yan, Renbin; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Drory, Niv; Gelfand, Joseph D.; Knapen, Johan H.; Maiolino, Roberto; Malanushenko, Olena; Masters, Karen L.; Merrifield, Michael R.; Pace, Zach; Pan, Kaike; Riffel, Rogemar A.; Roman-Lopes, Alexandre; Rujopakarn, Wiphu; Schneider, Donald P.; Stott, John P.; Thomas, Daniel; Weijmans, Anne-Marie

    2016-12-01

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric Hα complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This Hα extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this Hα extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.

  16. Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinol, Lucas; Cahn, Robert N.; Hand, Nick

    The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky, the locations of the fiber positioners in the focal plane of the telescope, and an observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, with amore » typical variation of about 1.5 about the mean, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor. We show that this method reduces, but does not eliminate the effect. We next investigate the angular dependence of the contaminated signal, arguing that it is mostly localized to purely transverse modes. We demonstrate that the cleanest way to remove the contaminating signal is to perform an analysis of the anisotropic power spectrum P ( k ,μ) and remove the lowest μ bin, leaving μ > 0 modes accurate at the few-percent level. Here, μ is the cosine of the angle between the line-of-sight and the direction of k-vector . We also investigate two alternative definitions of the random catalog and show that they are comparable but less effective than the coverage randoms method.« less

  17. Accretion powered X-ray pulsars

    NASA Technical Reports Server (NTRS)

    White, N. E.; Swank, J. H.; Holt, S. S.

    1982-01-01

    A unified description of the properties of 14 X-ray pulsars is presented and compared with the current theoretical understanding of these systems. The sample extends over six orders of magnitude in luminosity, with the only trend in the phase averaged spectra being that the lower luminosity systems appear to have less abrupt high energy cutoffs. There is no correlation of luminosity with power law index, high energy cutoff energy or iron line EW. Detailed pulse phase spectroscopy is given for five systems.

  18. On the 'flip-flop' instability of Bondi-Hoyle accretion flows

    NASA Technical Reports Server (NTRS)

    Livio, Mario; Soker, Noam; Matsuda, Takuya; Anzer, Ulrich

    1991-01-01

    A simple physical interpretation is advanced by means of an analysis of the shock cone in the accretion flows past a compact object and with an examination of the accretion-line stability analyses. The stability of the conical shock is examined against small angular deflections with attention given to several simplifying assumptions. A line instability is identified in the Bondi-Hoyle accretion flows that leads to the formation of a large opening-angle shock. When the opening angle becomes large the instability becomes irregular oscillation. The analytical methodology is compared to previous numerical configurations that demonstrate different shock morphologies. The Bondi-Hoyle accretion onto a compact object is concluded to generate a range of nonlinear instabilities in both homogeneous and inhomogeneous cases with a quasiperiodic oscillation in the linear regime.

  19. Relativistic iron lines in accretion disks: the contribution of higher order images in the strong deflection limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldi, Giulio Francesco; Bozza, Valerio, E-mail: giuliofrancesco.aldi@sa.infn.it, E-mail: valboz@sa.infn.it

    The shapes of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the disk created by gravitational lensing, with the direct and first-order images largely dominating the overall shapes. Higher order images created by photons tightly winding around the black holes are often neglected in the modeling of these lines, since they require a substantially higher computational effort. With the help of the strong deflection limit, we present the most accurate semi-analyticalmore » calculation of these higher order contributions to the iron lines for Schwarzschild black holes. We show that two regimes exist depending on the inclination of the disk with respect to the line of sight. Many useful analytical formulae can be also derived in this framework.« less

  20. GAME: GAlaxy Machine learning for Emission lines

    NASA Astrophysics Data System (ADS)

    Ucci, G.; Ferrara, A.; Pallottini, A.; Gallerani, S.

    2018-06-01

    We present an updated, optimized version of GAME (GAlaxy Machine learning for Emission lines), a code designed to infer key interstellar medium physical properties from emission line intensities of ultraviolet /optical/far-infrared galaxy spectra. The improvements concern (a) an enlarged spectral library including Pop III stars, (b) the inclusion of spectral noise in the training procedure, and (c) an accurate evaluation of uncertainties. We extensively validate the optimized code and compare its performance against empirical methods and other available emission line codes (PYQZ and HII-CHI-MISTRY) on a sample of 62 SDSS stacked galaxy spectra and 75 observed HII regions. Very good agreement is found for metallicity. However, ionization parameters derived by GAME tend to be higher. We show that this is due to the use of too limited libraries in the other codes. The main advantages of GAME are the simultaneous use of all the measured spectral lines and the extremely short computational times. We finally discuss the code potential and limitations.

  1. Search for gravitational redshifted absorption lines in LMXB Serpens X-1

    NASA Astrophysics Data System (ADS)

    Yoneda, Hiroki; Done, Chris; Paerels, Frits; Takahashi, Tadayuki; Watanabe, Shin

    2018-04-01

    The equation of state for ultradense matter can be tested from observations of the ratio of mass to radius of neutron stars. This could be measured precisely from the redshift of a narrow line produced on the surface. X-rays bursts have been intensively searched for such features, but so far without detection. Here instead we search for redshifted lines in the persistent emission, where the accretion flow dominates over the surface emission. We discuss the requirements for narrow lines to be produced, and show that narrow absorption lines from highly ionized iron can potentially be observable in accreting low-mass X-ray binaries (LMXBs; low B field) that have either low spin or low inclination so that Doppler broadening is small. This selects Serpens X-1 as the only potential candidate persistent LMXB due to its low inclination. Including surface models in the broad-band accretion flow model predicts that the absorption line from He-like iron at 6.7 keV should be redshifted to ˜5.1-5.7 keV (10-15 km for 1.4 M⊙) and have an equivalent width of 0.8-8 eV for surface temperatures of 7-10 × 106 K. We use the high-resolution Chandra grating data to give a firm upper limit of 2-3 eV for an absorption line at ˜5 keV. We discuss possible reasons for this lack of detection (the surface temperature and the geometry of the boundary layer etc.). Future instruments with better sensitivity are required in order to explore the existence of such features.

  2. Powering of Hα Filaments by Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S.

    2018-05-01

    Cluster cool cores possess networks of line-emitting filaments. These filaments are thought to originate via uplift of cold gas from cluster centers by buoyant active galactic nuclei (AGNs) bubbles, or via local thermal instability in the hot intracluster medium (ICM). Therefore, the filaments are either the signatures of AGN feedback or feeding of supermassive black holes. Despite being characterized by very short cooling times, the filaments are significant Hα emitters, which suggests that some process continuously powers these structures. Many cool cores host diffuse radio mini halos and AGN injecting radio plasma, suggesting that cosmic rays (CRs) and magnetic fields are present in the ICM. We argue that the excitation of Alfvén waves by CR streaming, and the replenishment of CR energy via accretion onto the filaments of high-plasma-β ICM characterized by low CR pressure support, can provide the adequate amount of heating to power and sustain the emission from these filaments. This mechanism does not require the CRs to penetrate the filaments, even if the filaments are magnetically isolated from the ambient ICM, and it may operate irrespectively of whether the filaments are dredged up from the center or form in situ in the ICM. This picture is qualitatively consistent with non-thermal line ratios seen in the cold filaments. Future X-ray observations of the iron line complex with XARM, Lynx, or Athena could help to test this model by providing constraints on the amount of CRs in the hot plasma that is cooling and accreting onto the filaments.

  3. Gamma-ray activity of Seyfert galaxies and constraints on hot accretion flows

    NASA Astrophysics Data System (ADS)

    Wojaczyński, Rafał; Niedźwiecki, Andrzej; Xie, Fu-Guo; Szanecki, Michał

    2015-12-01

    Aims: We check how the Fermi/LAT data constrain the physics of hot accretion flows that are most likely present in low-luminosity AGNs. Methods: Using a precise model of emission from hot flows, we studied the flow γ-ray emission resulting from proton-proton interactions. We explored the dependence of the γ-ray luminosity on the accretion rate, the black hole spin, the magnetic field strength, the electron heating efficiency, and the particle distribution. Then, we compared the hadronic γ-ray luminosities predicted by the model for several nearby Seyfert 1 galaxies with the results of our analysis of 6.4 years of Fermi/LAT observations of these AGNs. Results: In agreement with previous studies, we find a significant γ-ray detection in NGC 6814. We were only able to derive upper limits for the remaining objects, although we report marginally significant (~3σ) signals at the positions of NGC 4151 and NGC 4258. The derived upper limits for the flux above 1 GeV allow us to constrain the proton acceleration efficiency in flows with heating of electrons dominated by Coulomb interactions, which case is favored by the X-ray spectral properties. In these flows, at most ~10% of the accretion power can be used for a relativistic acceleration of protons. Upper limits for the flux below 1 GeV can constrain the magnetic field strength and black hole spin value; we find these constraints for NGC 7213 and NGC 4151. We also note that the spectral component above ~4 GeV previously found in the Fermi/LAT data of Centaurus A may be due to hadronic emission from a flow within the above constraint. We rule out this origin of the γ-ray emission for NGC 6814. For models with a strong magnetohydrodynamic heating of electrons, the hadronic γ-ray fluxes are below the Fermi/LAT sensitivity even for the closest AGNs. In these models, nonthermal Compton radiation may dominate in the γ-ray range if electrons are efficiently accelerated and the acceleration index is hard; for the index

  4. The MagAO Giant Accreting Protoplanet Survey (GAPlanetS): Recent Results

    NASA Astrophysics Data System (ADS)

    Follette, Katherine; Close, Laird; Males, Jared; Morzinski, Katie; Leonard, Clare; MagAO

    2018-01-01

    I will summarize recent results of the MagAO Giant Accreting Protoplant Survey (GAPlanetS), a search for accreting protoplanets at H-alpha inside of transitional disk gaps. These young, centrally-cleared circumstellar disks are often hosted by stars that are still actively accreting, making it likely that any planets that lie in their central cavities will also be actively accreting. Through differential imaging at Hydrogen-alpha using Magellan's visible light adaptive optics system, we have completed the first systematic search for H-alpha emission from accreting protoplanets in fifteen bright Southern hemisphere transitional disks. I will present results from this survey, including a second epoch on the LkCa 15 system that shows several accreting protoplanet candidates.

  5. NuSTAR rules out a cyclotron line in the accreting magnetar candidate 4U2206+54.

    NASA Astrophysics Data System (ADS)

    Torrejón, J. M.; Reig, P.; Fürst, F.; Martinez-Chicharro, M.; Postnov, K.; Oskinova, L.

    2018-06-01

    Based on our new NuSTAR X-ray telescope data, we rule out any cyclotron line up to 60 keV in the spectra of the high mass X-ray binary 4U2206+54. In particular, we do not find any evidence of the previously claimed line around 30 keV, independently of the source flux, along the spin pulse. The spin period has increased significantly, since the last observation, up to 5750 ± 10 s, confirming the rapid spin down rate \\dot{ν }=-1.8× 10^{-14} Hz s-1. This behaviour might be explained by the presence of a strongly magnetized neutron star (Bs > several times 1013 G) accreting from the slow wind of its main sequence O9.5 companion.

  6. The Accreting Black Hole Swift J1753.5-0127 from Radio to Hard X-Ray

    NASA Astrophysics Data System (ADS)

    Tomsick, John A.; Rahoui, Farid; Kolehmainen, Mari; Miller-Jones, James; Fürst, Felix; Yamaoka, Kazutaka; Akitaya, Hiroshi; Corbel, Stéphane; Coriat, Mickael; Done, Chris; Gandhi, Poshak; Harrison, Fiona A.; Huang, Kuiyun; Kaaret, Philip; Kalemci, Emrah; Kanda, Yuka; Migliari, Simone; Miller, Jon M.; Moritani, Yuki; Stern, Daniel; Uemura, Makoto; Urata, Yuji

    2015-07-01

    We report on multiwavelength measurements of the accreting black hole Swift J1753.5-0127 in the hard state at low luminosity (L ˜ 2.7 × 1036 erg s-1 assuming a distance of d = 3 kpc) in 2014 April. The radio emission is optically thick synchrotron, presumably from a compact jet. We take advantage of the low extinction (E(B-V)=0.45 from earlier work) and model the near-IR to UV emission with a multitemperature disk model. Assuming a black hole mass of MBH = 5 M⊙ and a system inclination of i = 40°, the fits imply an inner radius for the disk of Rin/Rg > 212d3(MBH/5 M⊙)-1, where Rg is the gravitational radius of the black hole and d3 is the distance to the source in units of 3 kpc. The outer radius is Rout/Rg=90,000 d3(MBH/5 M⊙)-1, which corresponds to 6.6 × 1010 d3 cm, consistent with the expected size of the disk given previous measurements of the size of the companion's Roche lobe. The 0.5-240 keV energy spectrum measured by Swift/X-ray Telescope (XRT), Suzaku (XIS, PIN, and GSO), and Nuclear Spectroscopic Telescope Array is relatively well characterized by an absorbed power law with a photon index of Γ = 1.722 ± 0.003 (90% confidence error), but a significant improvement is seen when a second continuum component is added. Reflection is a possibility, but no iron line is detected, implying a low iron abundance. We are able to fit the entire (radio to 240 keV) spectral energy distribution (SED) with a multitemperature disk component, a Comptonization component, and a broken power law, representing the emission from the compact jet. The broken power law cannot significantly contribute to the soft X-ray emission, and this may be related to why Swift J1753.5-0127 is an outlier in the radio/X-ray correlation. The broken power law (i.e., the jet) might dominate above 20 keV, which would constrain the break frequency to be between 2.4 × 1010 and 3.6 × 1012 Hz. Although the fits to the full SED do not include significant thermal emission in the X-ray band

  7. Emission line galaxies and active galactic nuclei in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star-forming galaxies and classified employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  8. Suzaku Observation of Strong Fluorescent Iron Line Emission from the Young Stellar Object V1647 Ori during Its New X-ray Outburst

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael

    2009-01-01

    The Suzaku X-ray satellite observed the young stellar object V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in August 2008. During the 87 ksec observation with a net exposure of 40 ks, V1647 Ori showed a. high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other young stellar objects. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT approx.5 keV). It also shows a fluorescent iron Ka line with a remarkably large equivalent width of approx. 600 eV. Such a, large equivalent width indicates that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Ka line ; so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.

  9. VARIABILITY OF THE ACCRETION DISK OF V926 Sco INFERRED FROM TOMOGRAPHIC ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, S. D.; Peris, C. S.; Vrtilek, S. D., E-mail: sdc1g08@soton.ac.u, E-mail: peris.c@husky.neu.edu, E-mail: cperis@cfa.harvard.edu, E-mail: svrtilek@cfa.harvard.edu

    2013-11-10

    We present phase-resolved spectroscopic observations of the low-mass X-ray binary V926 Sco (4U 1735-44), covering the orbital period of 0.23 days, obtained with the Walter Baade 6.5 m Magellan Telescope at the Las Campanas Observatory in 2010 June and 2011 June. We use Hα radial velocities to derive a systemic velocity of –109 ± 4 km s{sup –1}. The FWHM of the lines observed in common with previous authors are significantly lower during our observations suggesting much reduced velocities in the system. The equivalent width of the Bowen fluorescence lines with respect to He II λ4686 are factors of twomore » or more lower during our observations in comparison to those previously reported for the system, suggesting reduced irradiation of the secondary. Doppler and modulation tomography of Hα and He II λ4686 show asymmetric emission that can be attributed to a bulge in the accretion disk, as inferred from He II observations by previous authors. The X-ray fluxes from the source at times concurrent with the optical observations are significantly lower during our observations than during optical observations taken in 2003. We suggest that the system is in a lower accretion state compared to earlier observations; this explains both the lower velocities observed from the disk and the reduction of emission due to Bowen fluorescence detected from the secondary.« less

  10. Probing the Inflow/Out-flow and Accretion Disk of Cyg X-1 in the High State with HETG/Chandra

    NASA Technical Reports Server (NTRS)

    Feng, Y. X.; Tennant, A. F.; Zhang, S. N.

    2003-01-01

    Cyg X- 1 was observed in the high state at the conjunction orbital phase (0) with HETG/Chandra. Strong and asymmetric absorption lines of highly ionized species were detected, such as Fe XXV, Fe XXIV, Fe XXIII, Si XIV, S XVI, Ne X, and etc. In the high state the profile of the absorption lines are composed of an extended red wing and a less extended blue wing. The red wings of higher ionized species are more extended than that of lower ionized species. The detection of these lines provides a way to probe the properties of the flow around the companion and the black hole in Cyg X-1 during the high state. A broad emission feature around 6.5 keV was significantly detected from the both spectra of HETG/Chandra and PCA/RXTE. This feature appears to be symmetric and can be fitted with a Gaussian function rather than the Laor disk line model of fluorescent Fe K$ \\alpha$ line from an accretion disk. The implications of these results on the structure of the accretion flow of Cyg X-1 in the high state are discussed.

  11. Reddening and He i{sup ∗} λ 10830 Absorption Lines in Three Narrow-line Seyfert 1 Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shaohua; Zhou, Hongyan; Shi, Xiheng

    We report the detection of heavy reddening and the He i* λ 10830 absorption lines at the active galactic nucleus (AGN) redshift in three narrow-line Seyfert 1 galaxies: SDSS J091848.61+211717.0, SDSS J111354.66+124439.0, and SDSS J122749.13+321458.9. They exhibit very red optical to near-infrared colors, narrow Balmer/Paschen broad emission lines and He i* λ 10830 absorption lines. The ultraviolet-optical-infrared nucleus continua are reddened by the SMC extinction law of E ( B − V ) ∼ 0.74, 1.17, and 1.24 mag for three objects, which are highly consistent with the values obtained from the broad-line Balmer decrements, but larger than those ofmore » narrow emission lines. The reddening analysis suggests that the extinction dust simultaneously obscures the accretion disk, the broad emission-line region, and the hot dust from the inner edge of the torus. It is possible that the dust obscuring the AGN structures is the dusty torus itself. Furthermore, the Cloudy analysis of the He i* λ 10830 absorption lines proposes the distance of the absorption materials to be the extend scale of the torus, which greatly increases probabilities of the obscure and absorption materials being the dusty torus.« less

  12. Hitomi observation of radio galaxy NGC 1275: The first X-ray microcalorimeter spectroscopy of Fe-Kα line emission from an active galactic nucleus

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Kawamuro, Taiki

    2018-03-01

    The origin of the narrow Fe-Kα fluorescence line at 6.4 keV from active galactic nuclei has long been under debate; some of the possible sites are the outer accretion disk, the broad line region, a molecular torus, or interstellar/intracluster media. In 2016 February-March, we performed the first X-ray microcalorimeter spectroscopy with the Soft X-ray Spectrometer (SXS) on board the Hitomi satellite of the Fanaroff-Riley type I radio galaxy NGC 1275 at the center of the Perseus cluster of galaxies. With the high-energy resolution of ˜5 eV at 6 keV achieved by Hitomi/SXS, we detected the Fe-Kα line with ˜5.4 σ significance. The velocity width is constrained to be 500-1600 km s-1 (FWHM for Gaussian models) at 90% confidence. The SXS also constrains the continuum level from the NGC 1275 nucleus up to ˜20 keV, giving an equivalent width of ˜20 eV for the 6.4 keV line. Because the velocity width is narrower than that of the broad Hα line of ˜2750 km s-1, we can exclude a large contribution to the line flux from the accretion disk and the broad line region. Furthermore, we performed pixel map analyses on the Hitomi/SXS data and image analyses on the Chandra archival data, and revealed that the Fe-Kα line comes from a region within ˜1.6 kpc of the NGC 1275 core, where an active galactic nucleus emission dominates, rather than that from intracluster media. Therefore, we suggest that the source of the Fe-Kα line from NGC 1275 is likely a low-covering-fraction molecular torus or a rotating molecular disk which probably extends from a parsec to hundreds of parsecs scale in the active galactic nucleus system.

  13. Simulations of polarization from accretion disks

    NASA Astrophysics Data System (ADS)

    Schultz, J.

    2000-12-01

    The Monte Carlo Method was used to estimate the level of polarization from axisymmetric accretion disks similar to those in low-mass X-ray binaries and some classes of cataclysmic variables. In low-mass X-ray binaries electron scattering is supposed to be the dominant opacity source in the inner disk, and most of the optical light is produced in the disk. Thompson scattering occuring in the disk corona produces linear polarization. Detailed theoretical models of accretion disks are numerous, but simple mathematical disk models were used, as the accuracy of polarization measurements does not allow distinction of the fine details of disk models. Stokes parameters were used for the radiative transfer. The simulations indicate that the vertical distribution of emissivity has the greatest effect on polarization, and variations of radial emissivity distribution have no detectable effect on polarization. Irregularities in the disk may reduce the degree of polarization. The polarization levels produced by simulations are detectable with modern instruments. Polarization measurements could be used to get rough constraints on the vertical emissivity distribution of an accretion disk, provided that a reasonably accurate disk model can be constructed from photometric or spectrosopic observations in optical and/or X-ray wavelengths. Mainly based on observations taken at the Observatoire de Haute-Provence, France, and on some observations obtained at the European Southern Observatory, Chile (ESO Prog. IDs: 57.C-0492, 59.C-0293, 61.C-0512).

  14. Relativistic Iron K Emission and Absorption in the Seyfert 1.9 Galaxy MCG-05-23-16

    NASA Technical Reports Server (NTRS)

    Braito, V.; Reeves, J. N.; Dewangan, G. C.; George, I.; Griffiths, R.; Markowitz, A.; Nandra, K.; Porquet, D.; Ptak, A.; Turner, T. J.; hide

    2007-01-01

    We present the results of the simultaneous deep XMM-Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG-5-23-16, which is thought to have one of the best known examples of a relativistically broadened iron Kalpha line. We detected a narrow sporadic absorption line at 7.7 keV which appears to be variable on a time-scale of 20 ksec. If associated with FeXXVI this absorption is indicative of a possible variable high ionization, high velocity outflow. The time averaged spectral analysis shows that the iron K-shell complex is best modeled with an unresolved narrow emission component (FWHM less than 5000 kilometers per second, EW approx. 60 eV) plus a broad component. This latter component has FWHM approx. 44000 kilometers per second, an EW approx. 50 eV and its profile is well described with an emission line originating from the accretion disk viewed with an inclination angle approx. 40 deg. and with the emission arising from within a few tens of gravitational radii of the central black hole. The time-resolved spectral analysis of the XMM-Newton EPIC-pn spectrum shows that both the narrow and broad components of the Fe K emission line appear to be constant within the errors. The analysis of the XMM-Newton/RGS spectrum reveals that the soft X-ray emission of MCG-5-23-16 is likely dominated by several emission lines superimposed on an unabsorbed scattered power-law continuum. The lack of strong Fe L shell emission together with the detection of a strong forbidden line in the O VII triplet supports a scenario where the soft X ray emission lines are produced in a plasma photoionized by the nuclear emission.

  15. Imaging Extended Emission-Line Regions of Obscured AGN with the Subaru Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei; Greene, Jenny E.; Zakamska, Nadia L.; Goulding, Andy; Strauss, Michael A.; Huang, Song; Johnson, Sean; Kawaguchi, Toshihiro; Matsuoka, Yoshiki; Marsteller, Alisabeth A.; Nagao, Tohru; Toba, Yoshiki

    2018-05-01

    Narrow-line regions excited by active galactic nuclei (AGN) are important for studying AGN photoionization and feedback. Their strong [O III] lines can be detected with broadband images, allowing morphological studies of these systems with large-area imaging surveys. We develop a new broad-band imaging technique to reconstruct the images of the [O III] line using the Subaru Hyper Suprime-Cam (HSC) Survey aided with spectra from the Sloan Digital Sky Survey (SDSS). The technique involves a careful subtraction of the galactic continuum to isolate emission from the [O III]λ5007 and [O III]λ4959 lines. Compared to traditional targeted observations, this technique is more efficient at covering larger samples without dedicated observational resources. We apply this technique to an SDSS spectroscopically selected sample of 300 obscured AGN at redshifts 0.1 - 0.7, uncovering extended emission-line region candidates with sizes up to tens of kpc. With the largest sample of uniformly derived narrow-line region sizes, we revisit the narrow-line region size - luminosity relation. The area and radii of the [O III] emission-line regions are strongly correlated with the AGN luminosity inferred from the mid-infrared (15 μm rest-frame) with a power-law slope of 0.62^{+0.05}_{-0.06}± 0.10 (statistical and systematic errors), consistent with previous spectroscopic findings. We discuss the implications for the physics of AGN emission-line regions and future applications of this technique, which should be useful for current and next-generation imaging surveys to study AGN photoionization and feedback with large statistical samples.

  16. Early Results from NICER Observations of Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  17. Steps Toward Unveiling the True Population of AGN: Photometric Selection of Broad-Line AGN

    NASA Astrophysics Data System (ADS)

    Schneider, Evan; Impey, C.

    2012-01-01

    We present an AGN selection technique that enables identification of broad-line AGN using only photometric data. An extension of infrared selection techniques, our method involves fitting a given spectral energy distribution with a model consisting of three physically motivated components: infrared power law emission, optical accretion disk emission, and host galaxy emission. Each component can be varied in intensity, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this model, both broad- and narrow-line AGN are seen to fall within discrete ranges of parameter space that have plausible bounds, allowing physical trends with luminosity and redshift to be determined. Based on a fiducial sample of AGN from the catalog of Trump et al. (2009), we find the region occupied by broad-line AGN to be distinct from that of quiescent or star-bursting galaxies. Because this technique relies only on photometry, it will allow us to find AGN at fainter magnitudes than are accessible in spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects. With the vast availability of photometric data in large surveys, this technique should have broad applicability and result in large samples that will complement X-ray AGN catalogs.

  18. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  19. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  20. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  1. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  2. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  3. PAH Emission From ULIRGs: Evidence For Unusual Grain Properties?

    NASA Astrophysics Data System (ADS)

    Marshall, Jason A.; Armus, L.; Spoon, H. W. W.

    2007-12-01

    The tremendous power emerging from ultraluminous infrared galaxies (ULIRGs) is driven both by high levels of star-formation activity and AGN-related accretion. Observations of star-forming regions in the Milky Way and external star-forming galaxies provide evidence that the first of these energy generation mechanisms often also gives rise to emission from PAH molecules in the form of characteristic mid-IR features. Given the composite nature of ULIRGs, it is not surprising that many also exhibit significant emission from PAHs. Perhaps more surprising, however, is that some ULIRGs believed to be powered primarily by AGNs also show emission from PAHs, although typically at lower levels relative to their total dust output. To investigate the nature of the PAH emission from galaxies powered either by star-formation or AGN accretion alone, as well as emission from composite systems such as ULIRGs powered by both mechanisms, we present a detailed study of the PAH emission spectra from galaxies of each type. We use the CAFE spectral energy distribution decomposition software we have developed to derive and extinction correct the spectra of PAH emission from a sample of 100 galaxies with Spitzer/IRS observations, and use the results of this analysis to calculate the ratios of the various mid-IR PAH feature luminosities. In particular, we investigate to what extent these relative feature strengths vary as a function of the optical classification of galaxies, and we inquire into whether or not the derived feature strength ratios provide evidence for unusual grain properties in the extreme conditions within ULIRGs.

  4. An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima

    We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.

  5. Photoionization Modelling of the Giant Broad-Line Region in NGC 3998.

    NASA Astrophysics Data System (ADS)

    Devereux, Nicholas

    2018-01-01

    Prior high angular resolution spectroscopic observations of the low-ionization nuclear emission-line region in NGC 3998 obtained with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ~ 7 pc in radius consisting of dust-free, low density ~ 104 cm-3, low metallicity ~ 0.01 Z/Z⊙ gas. Modelling the shape of the broad Hα emission line significantly discriminates between two independent measures of the black hole mass, favouring the estimate of de Francesco (2006). Interpreting the broad Hα emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 x 10-2 M⊙/yr, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the Hα emission line, the relative intensities and luminosities for the H Balmer, [OIII], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.

  6. A Non-thermal Pulsed X-Ray Emission of AR Scorpii

    NASA Astrophysics Data System (ADS)

    Takata, J.; Hu, C.-P.; Lin, L. C. C.; Tam, P. H. T.; Pal, P. S.; Hui, C. Y.; Kong, A. K. H.; Cheng, K. S.

    2018-02-01

    We report the analysis result of UV/X-ray emission from AR Scorpii, which is an intermediate polar (IP) composed of a magnetic white dwarf and an M-type star, with the XMM-Newton data. The X-ray/UV emission clearly shows a large variation over the orbit, and their intensity maximum (or minimum) is located at the superior conjunction (or inferior conjunction) of the M star orbit. The hardness ratio of the X-ray emission shows a small variation over the orbital phase and shows no indication of the absorption by an accretion column. These properties are naturally explained by the emission from the M star surface rather than that from the accretion column on the white dwarf’s (WD) star, which is similar to usual IPs. Additionally, the observed X-ray emission also modulates with the WD’s spin with a pulse fraction of ∼14%. The peak position is aligned in the optical/UV/X-ray band. This supports the hypothesis that the electrons in AR Scorpii are accelerated to a relativistic speed and emit non-thermal photons via the synchrotron radiation. In the X-ray bands, evidence of the power-law spectrum is found in the pulsed component, although the observed emission is dominated by the optically thin thermal plasma emissions with several different temperatures. It is considered that the magnetic dissipation/reconnection process on the M star surface heats up the plasma to a temperature of several keV and also accelerates the electrons to the relativistic speed. The relativistic electrons are trapped in the WD’s closed magnetic field lines by the magnetic mirror effect. In this model, the observed pulsed component is explained by the emissions from the first magnetic mirror point.

  7. Veiling and Accretion Around the Young Binary Stars S and VV Corona Australis

    NASA Astrophysics Data System (ADS)

    Sullivan, Kendall; Prato, Lisa; Avilez, Ian

    2018-01-01

    S CrA and VV CrA are two young binary star systems with separations of 170 AU and 250 AU, respectively, in the southern star-forming region Corona Australis. The spectral types of the four stars in these two systems are similar, approximately K7 to M1, hence the stellar masses are also similar. The study of young stars just emerging from their natal cloud cores at the very limits of observability allows us to probe the extreme environments in which planet formation begins to occur. Stars in this early evolutionary stage can have circumstellar or circumbinary disks, and sometimes remnants of the envelopes which surrounded them during the protostellar stage. Envelopes accrete onto disks and disks in turn accrete onto the central stars, triggering elevated continuum emission, line emission, outflows, and stellar winds. This violent stage marks the onset of the epoch of planet formation. Using high-resolution near-infrared, H-band spectroscopy from the Keck II telescope using the NIRSPEC instrument over 4-6 epochs, we are probing the chaotic environment surrounding the four stars in these systems. We determine the spectral types for VV CrA A and B for the first time, and examine the variable veiling and emission occurring around each of these stars. This research was supported in part by NSF grants AST-1461200 and AST-1313399.

  8. Observations of Accreting Pulsars

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars; Chakrabarty, Deepto; Chiu, John; Finger, Mark H.; Koh, Danny T.; Nelson, Robert W.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Matthew; Stollberg, Mark; hide

    1997-01-01

    We summarize 5 years of continuous monitoring of accretion-powered pulsars with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Our 20-70 keV observations have determined or refined the orbital parameters of 13 binaries, discovered five new transient accreting pulsars, measured the pulsed flux history during outbursts of 12 transients (GRO J1744-28, 4U 0115+634, GRO J1750-27, GS 0834-430, 2S 1417-624, GRO J1948+32, EXO 2030+375, GRO J1008-57, A0535+26, GRO J2058+42, 4U 1145-619, and A1118-616), and also measured the accretion torque history during outbursts of six of those transients whose orbital param- eters were also known. We have also continuously measured the pulsed flux and spin frequency for eiaht persistently accreting pulsars (Her X-1, Cen X-3, Vela X-1, OAO 1657-415, GX 301-2, 4U 1626-67, 4U 1538-52, and GX 1+4). Because of their continuity and uniformity over a long baseline, BATSE observations have provided new insights into the long-term behavior of accreting magnetic neutron stars. We have found that all accreting pulsars show stochastic variations in their spin frequencies and luminosities, including those displaying secular spin-up or spin-down on long timescales, which blurs the con- ventional distinction between disk-fed and wind-fed binaries. Pulsed flux and accretion torque are strongly correlated in outbursts of transient accreting pulsars but are uncorrelated, or even anti- correlated, in persistent sources. We describe daily folded pulse profiles, frequency, and flux measurements that are available through the Compton Observatory Science Support Center at NASA/Goddard Space Flight Center.

  9. SDSS-IV MaNGA: A SERENDIPITOUS OBSERVATION OF A POTENTIAL GAS ACCRETION EVENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Edmond; Stark, David V.; Huang, Song

    The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric H α complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This H α extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this H α extension could be diffuse ionized gas, a gas accretion event, or something else. We findmore » that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.« less

  10. A scaling law for accretion zone sizes

    NASA Technical Reports Server (NTRS)

    Greenzweig, Yuval; Lissauer, Jack J.

    1987-01-01

    Current theories of runaway planetary accretion require small random velocities of the accreted particles. Two body gravitational accretion cross sections which ignore tidal perturbations of the Sun are not valid for the slow encounters which occur at low relative velocities. Wetherill and Cox have studied accretion cross sections for rocky protoplanets orbiting at 1 AU. Using analytic methods based on Hill's lunar theory, one can scale these results for protoplanets that occupy the same fraction of their Hill sphere as does a rocky body at 1 AU. Generalization to bodies of different sizes is achieved here by numerical integrations of the three-body problem. Starting at initial positions far from the accreting body, test particles are allowed to encounter the body once, and the cross section is computed. A power law is found relating the cross section to the radius of the accreting body (of fixed mass).

  11. Detection of CI line emission towards the oxygen-rich AGB star omi Ceti

    NASA Astrophysics Data System (ADS)

    Saberi, M.; Vlemmings, W. H. T.; De Beck, E.; Montez, R.; Ramstedt, S.

    2018-05-01

    We present the detection of neutral atomic carbon CI(3P1-3P0) line emission towards omi Cet. This is the first time that CI is detected in the envelope around an oxygen-rich M-type asymptotic giant branch (AGB) star. We also confirm the previously tentative CI detection around V Hya, a carbon-rich AGB star. As one of the main photodissociation products of parent species in the circumstellar envelope (CSE) around evolved stars, CI can be used to trace sources of ultraviolet (UV) radiation in CSEs. The observed flux density towards omi Cet can be reproduced by a shell with a peak atomic fractional abundance of 2.4 × 10-5 predicted based on a simple chemical model where CO is dissociated by the interstellar radiation field. However, the CI emission is shifted by 4 km s-1 from the stellar velocity. Based on this velocity shift, we suggest that the detected CI emission towards omi Cet potentially arises from a compact region near its hot binary companion. The velocity shift could, therefore, be the result of the orbital velocity of the binary companion around omi Cet. In this case, the CI column density is estimated to be 1.1 × 1019 cm-2. This would imply that strong UV radiation from the companion and/or accretion of matter between two stars is most likely the origin of the CI enhancement. However, this hypothesis can be confirmed by high-angular resolution observations.

  12. The Orientation of Eta Carinae and the Powering Mechanism of Intermediate-luminosity Optical Transients (ILOTS)

    NASA Astrophysics Data System (ADS)

    Kashi, Amit; Soker, Noam

    2018-05-01

    Contrary to recent claims, we argue that the orientation of the massive binary system Eta Carinae is such that the secondary star is closer to us at periastron passage, and it is on the far side during most of the time of the eccentric orbit. The binary orientation we dispute is based on problematic interpretations of recent observations. Among these are the radial velocity of the absorption component of He I P-Cyg lines, of the He II λ4686 emission line, and of the Br γ line emitted by clumps close to the binary system. We also base our orientation on observations of asymmetric molecular clumps that were recently observed by ALMA around the binary system, and were claimed to compose a torus with a missing segment. The orientation has implications for the modeling of the binary interaction during the nineteenth century Great Eruption (GE) of Eta Carinae that occurred close to periastron passage. The orientation where the secondary is closer to us at periastron leads us to suggest that the mass-missing side of the molecular clumps is a result of accretion onto the secondary star during periastron passage when the clumps were ejected, probably during the GE. The secondary star accreted a few solar masses during the GE and the energy from the accretion process consists of the majority of the GE energy. This in turn strengthens the more general model according to which many intermediate-luminosity optical transients (ILOTS) are powered by accretion onto a secondary star.

  13. VizieR Online Data Catalog: Emission lines for SDSS Coronal-Line Forest AGNs (Rose+, 2015)

    NASA Astrophysics Data System (ADS)

    Rose, M.; Elvis, M.; Tadhunter, C. N.

    2017-11-01

    In this paper, we make use of SDSS spectra. The basic properties of the CLiF AGN sample studied in this paper are given in Table 1. Note that the outputs of the SDSS pipeline are used only for the sample selection. Detailed measurements of emission line parameters such as the flux and velocity widths are measured using our own methods (Section 4). The redshifts were determined using single Gaussian fits to the [O III] λ5007 emission line. This line was chosen because it is the most prominent emission line in the optical spectra of these and most other AGN. (5 data files).

  14. Planetary science: Iron fog of accretion

    DOE PAGES

    Anderson, William W.

    2015-03-02

    Here, pinpointing when Earth's core formed depends on the extent of metal–silicate equilibration in the mantle. Vaporization and recondensation of impacting planetesimal cores during accretion may reconcile disparate lines of evidence.

  15. The physical relation between disc and coronal emission in quasars

    NASA Astrophysics Data System (ADS)

    Lusso, Elisabeta; Risaliti, Guido

    2017-12-01

    We propose a modified version of the observed non-linear relation between the X-ray (2 keV) and the ultraviolet (2500 Å) emission in quasars (i.e. LX ∝ LUV^γ ) which involves the full width at half-maximum, FWHM, of the broad emission line, i.e. LX ∝ L_UV^γ FWHM^β. By analysing a sample of 550 optically selected non-jetted quasars in the redshift range of 0.36–2.23 from the Sloan Digital Sky Survey cross matched with the XMM-Newton catalogue 3XMM-DR6, we found that the additional dependence of the observed LX ‑ LUV correlation on the FWHM of the MgII broad emission line is statistically significant. Our statistical analysis leads to a much tighter relation with respect to the one neglecting FWHM, and it does not evolve with redshift. We interpret this new relation within an accretion disc corona scenario where reconnection and magnetic loops above the accretion disc can account for the production of the primary X-ray radiation. For a broad line region size depending on the disc luminosity as R_blr ∝ L^0.5 , we find that L_X ∝ L_UV^4/7 FWHM^4/7, which is in very good agreement with the observed correlation.

  16. Far-infrared line emission from the galaxy. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.

    1985-01-01

    The diffuse 157.74 micron (CII) emission from the Galaxy was sampled at several galactic longitudes near the galactic plane including complete scan across the plane at (II) = 2.16 deg and (II) = 7.28 deg. The observed (CII) emission profiles follow closely the nearby (12)CO (J=1to0) emission profiles. The (CII) emission probably arises in neutral photodissociation regions near the edges of giant moleclar clouds (GMC's). These regions have densities of approximately 350 cm(-3) and temperatures of approximately 300 K, and amount to 4x10(8) solar mass of hydrogen in the inner Galaxy. The total 157.74 micron luminosity of the Galaxy is estimated to be 6x10(7) solar luminosity. Estimates were also made of the galactic emission in other far-infrared (FIR) cooling lines. The (CII) line was found to be the dominant FIR emission line from the galaxy and the primary coolant for the warm neutral gas near the galactic plane. Other cooling lines predicted to be prominent in the galactic spectrum are discussed. The 145.53 micron (OI) emission line from the Orion nebula was also measured.

  17. Effects of Spin on High-energy Radiation from Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    O' Riordan, Michael; Pe'er, Asaf; McKinney, Jonathan C.

    2016-11-01

    Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford-Znajek (BZ) mechanism. We find that the X-ray and γ-ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power, but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.

  18. EFFECTS OF SPIN ON HIGH-ENERGY RADIATION FROM ACCRETING BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’ Riordan, Michael; Pe’er, Asaf; McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie

    Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford–Znajek (BZ) mechanism. We find that the X-ray and γ -ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power,more » but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.« less

  19. Observations of southern emission-line stars

    NASA Technical Reports Server (NTRS)

    Henize, K. G.

    1976-01-01

    A catalog of 1929 stars showing H-alpha emission on photographic plates is presented which covers the entire southern sky south of declination -25 deg to a red limiting magnitude of about 11.0. The catalog provides previous designations of known emission-line stars equatorial (1900) and galactic coordinates, visual and photographic magnitudes, H-alpha emission parameters, spectral types, and notes on unusual spectral features. The objects listed include 16 M stars, 25 S stars, 37 carbon stars, 20 symbiotic stars, 40 confirmed or suspected T Tauri stars, 16 novae, 14 planetary nebulae, 11 P Cygni stars, 9 Bep stars, 87 confirmed or suspected Wolf-Rayet stars, and 26 'peculiar' stars. Two new T associations are discovered, one in Lupus and one in Chamaeleon. Objects with variations in continuum or H-alpha intensity are noted, and the distribution by spectral type is analyzed. It is found that the sky distribution of these emission-line stars shows significant concentrations in the region of the small Sagittarius cloud and in the Carina region.

  20. The Radio Jets and Accretion Disk in NGC 4261

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; Wehrle, Ann E.; Meier, David L.; Piner, B. Glenn

    2000-05-01

    The structure of active galactic nucleus (AGN) accretion disks on subparsec scales can be probed through free-free absorption of synchrotron emission from the base of symmetric radio jets. For objects in which both jet and counterjet are detectable with very long baseline interferometry (VLBI), the accretion disk will cover part of the counterjet and produce diminished brightness whose angular size and depth as a function of frequency can reveal the radial distribution of free electrons in the disk. The nearby (41 Mpc, independent of H0) FR I radio galaxy NGC 4261 contains a pair of symmetric kiloparsec-scale jets. On parsec scales, radio emission from the nucleus is strong enough for detailed imaging with VLBI. We present new Very Long Baseline Array (VLBA) observations of NGC 4261 at 22 and 43 GHz, which we combine with previous observations at 1.6 and 8.4 GHz to map absorption caused by an inner accretion disk. The relative closeness of NGC 4261 combined with the high angular resolution provided by the VLBA at 43 GHz gives us a very high linear resolution, approximately 2×10-2 pc ~4000 AU ~400 Schwarzschild radii for a 5×108 Msolar black hole. The jets appear more symmetric at 1.6 GHz because of the low angular resolution available. The jets are also more symmetric at 22 and 43 GHz, presumably because the optical depth of free-free absorption is small at high frequencies. At 8.4 GHz, neither confusion effect is dominant and absorption of counterjet emission by the presumed disk is detectable. We find that the orientation of the radio jet axis is the same on parsec and kiloparsec scales, indicating that the spin axis of the inner accretion disk and black hole has remained unchanged for at least 106 (and more likely >107) yr. This suggests that a single merger event may be responsible for the supply of gas in the nucleus of NGC 4261. The jet opening angle is between 0.3d and 20° during the first 0.2 pc of the jet and must be less than 5° during the first 0

  1. Exploring the Accretion Model of M87 and 3C 84 with the Faraday Rotation Measure Observations

    NASA Astrophysics Data System (ADS)

    Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo

    2016-10-01

    Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emission originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.

  2. The peculiarities of power terrestrial ELF emission in the Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Dudkin, Fedir; Pronenko, Vira; Chvach, Valery

    2016-04-01

    The near-Earth space is saturated with electromagnetic (EM) waves of terrestrial origin in a wide frequency range. The most powerful natural sources of EM emission are thunderstorms and triggered by them Schumann resonance (SR) radiation which is the narrowband EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity in frequency range about 7-100 Hz. The considerable part of the terrestrial EM emission belongs to everyday human activity which increases year by year with unpredictable consequences. At the beginning of space exploration era it was considered that high frequency EM waves freely penetrate through the Earth's ionosphere, but the terrestrial EM emission below very low frequency range is limited by ionospheric F2 layer boundary due to great EM losses in plasma. About 40 years ago the power lines harmonic radiation (multiple of 50/60 Hz) was found at satellite observations in a few kilohertz range, nevertheless the ionosphere was considered fully opaque for extremely low frequency (ELF) EM emission. However recently, in spite of theoretical estimations, the SR harmonics and power line emission (PLE) 50/60 Hz were discovered during flights of low Earth orbiting satellites C/NOFS (Simões et al., 2011) and Chibis-M (Dudkin et al., 2015) at heights 400-800 km, i.e. over F2-layer. Last results are a great challenge to the theory of ELF EM emission propagation in the Earth's ionosphere as well as for study of long-term influence of constantly increasing electric energy consumption by human civilization in the Earth's environment. We present the analysis of the space and time distribution for observed PLE and SR harmonics, their connection with power terrestrial sources of ELF emission and possible relation between measured values and ionosphere conditions. Also some electromagnetic parameters have been estimated. Simões, F. A., R. F. Pfaff, and H. T. Freudenreich (2011), Satellite observations of Schumann resonances in the

  3. Mixed ice accretion on aircraft wings

    NASA Astrophysics Data System (ADS)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  4. The diversity of quasars unified by accretion and orientation.

    PubMed

    Shen, Yue; Ho, Luis C

    2014-09-11

    Quasars are rapidly accreting supermassive black holes at the centres of massive galaxies. They display a broad range of properties across all wavelengths, reflecting the diversity in the physical conditions of the regions close to the central engine. These properties, however, are not random, but form well-defined trends. The dominant trend is known as 'Eigenvector 1', in which many properties correlate with the strength of optical iron and [O III] emission. The main physical driver of Eigenvector 1 has long been suspected to be the quasar luminosity normalized by the mass of the hole (the 'Eddington ratio'), which is an important parameter of the black hole accretion process. But a definitive proof has been missing. Here we report an analysis of archival data that reveals that the Eddington ratio indeed drives Eigenvector 1. We also find that orientation plays a significant role in determining the observed kinematics of the gas in the broad-line region, implying a flattened, disk-like geometry for the fast-moving clouds close to the black hole. Our results show that most of the diversity of quasar phenomenology can be unified using two simple quantities: Eddington ratio and orientation.

  5. Transient jet formation and state transitions from large-scale magnetic reconnection in black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; McKinney, Jonathan C.; Markoff, Sera; Tchekhovskoy, Alexander

    2014-05-01

    Magnetically arrested accretion discs (MADs), where the magnetic pressure in the inner disc is dynamically important, provide an alternative mechanism for regulating accretion to what is commonly assumed in black hole systems. We show that a global magnetic field inversion in the MAD state can destroy the jet, significantly increase the accretion rate, and move the effective inner disc edge in to the marginally stable orbit. Reconnection of the MAD field in the inner radii launches a new type of transient outflow containing hot plasma generated by magnetic dissipation. This transient outflow can be as powerful as the steady magnetically dominated Blandford-Znajek jet in the MAD state. The field inversion qualitatively describes many of the observational features associated with the high-luminosity hard-to-soft state transition in black hole X-ray binaries: the jet line, the transient ballistic jet, and the drop in rms variability. These results demonstrate that the magnetic field configuration can influence the accretion state directly, and hence the magnetic field structure is an important second parameter in explaining observations of accreting black holes across the mass and luminosity scales.

  6. Optical Spectroscopy of SDSS J004054.65-0915268: Three Possible Scenarios for the Classification. A z ˜ 5 BL Lacertae, a Blue FSRQ, or a Weak Emission Line Quasar

    NASA Astrophysics Data System (ADS)

    Landoni, M.; Zanutta, A.; Bianco, A.; Tavecchio, F.; Bonnoli, G.; Ghisellini, G.

    2016-02-01

    The haunt of high-redshift BL Lacerate objects is day by day more compelling to firmly understand their intrinsic nature and evolution. SDSS J004054.65-0915268 is, at the moment, one of the most distant BL Lac candidates, at z ˜ 5. We present a new optical-near-IR spectrum obtained with ALFOSC-NOT with a new, custom designed dispersive grating aimed to detect broad emission lines that could disprove this classification. In the obtained spectra, we do not detect any emission features and we provide an upper limit to the luminosity of the C IV broad emission line. Therefore, the nature of the object is then discussed, building the overall spectral energy distribution (SED) and fitting it with three different models. Our fits, based on SED modeling with different possible scenarios, cannot rule out the possibility that this source is indeed a BL Lac object, though the absence of optical variability and the lack of strong radio flux seem to suggest that the observed optical emission originates from a thermalized accretion disk.

  7. Accretion and outflow in the proplyd-like objects near Cygnus OB2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarcello, M. G.; Drake, J. J.; Wright, N. J.

    2014-09-20

    Cygnus OB2 is the most massive association within 2 kpc from the Sun, hosting hundreds of massive stars, thousands of young low mass members, and some sights of active star formation in the surrounding cloud. Recently, 10 photoevaporating proplyd-like objects with tadpole-shaped morphology were discovered in the outskirts of the OB association, approximately 6-14 pc away from its center. The classification of these objects is ambiguous, being either evaporating residuals of the parental cloud that are hosting a protostar inside or disk-bearing stars with an evaporating disk, such as the evaporating proplyds observed in the Trapezium Cluster in Orion. Inmore » this paper, we present a study based on low-resolution optical spectroscopic observations made with the Optical System for Imaging and low Resolution Integrated Spectroscopy, mounted on the 10.4 m Gran Telescopio CANARIAS, of two of these protostars. The spectrum of one of the objects shows evidence of accretion but not of outflows. In the latter object, the spectra show several emission lines indicating the presence of an actively accreting disk with outflow. We present estimates of the mass loss rate and the accretion rate from the disk, showing that the former exceeds the latter as observed in other known objects with evaporating disks. We also show evidence of a strong variability in the integrated flux observed in these objects as well as in the accretion and outflow diagnostics.« less

  8. Cyclotron Line and Wind studies of Galactic High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Suchy, Slawomir

    High mass X-ray binaries are rotating neutron stars with very strong magnetic fields that channel accreting matter from their companion star onto the magnetic poles with subsequent collimated X-ray emission. The stars are fed either by a strong stellar wind of the optical companion or by an accretion disk, where material follows the magnetic field lines, emitting X-rays throughout this process either in the accretion column or directly from the neutron star surface. The fast rotation and the narrow collimation of the X-ray emission creates an observed pulsation, forming the concept of a pulsar. Some of the key questions of these thesis are the emission processes above the magnetic pole, including the influence of the magnetic field, the formation of the X-ray beam, and the structure of the stellar wind. An important process is the effect of the teraGauss magnetic field. Cyclotron resonance scattering creates spectral features similar to broad absorption lines (CRSFs or cyclotron lines) that are directly related to the magnetic field. The discovery of cyclotron lines ˜ 35 years ago allows for the only direct method to measure the magnetic field strength in neutron star systems. Variations in the line parameters throughout the pulse phase, and a dependence in the observed luminosity can also aid in the understanding of these processes. In this thesis I present the results of phase averaged and phase resolved analysis of the three high mass X-ray binaries CenX-3, 1A 1118--61, and GX301--2. The data used for this work were obtained with NASA's Rossi X-ray Timing Explorer and the Japanese Suzaku mission. Both satellites are ideal to cover the broad energy band, where CRSFs occur and are necessary for understanding the continuum as a whole. In the process of investigating the 3 sources, I discovered a CRSF at ˜ 55 keV in the transient binary 1A 1118--61, which indicates one of the strongest magnetic fields known in these objects. I used the variations of the CRSF in GX

  9. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (I.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  10. A UV-to-MIR monitoring of DR Tau: Exploring how water vapor in the planet formation region is affected by stellar accretion variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banzatti, A.; Meyer, M. R.; Manara, C. F.

    2014-01-01

    Young stars are known to show variability due to non-steady mass accretion rate from their circumstellar disks. Accretion flares can produce strong energetic irradiation and heating that may affect the disk in the planet formation region, close to the central star. During an extreme accretion outburst in the young star EX Lupi, the prototype of EXor variables, remarkable changes in molecular gas emission from ∼1 AU in the disk have recently been observed. Here, we focus on water vapor and explore how it is affected by variable accretion luminosity in T Tauri stars. We monitored a young highly variable solar-massmore » star, DR Tau, using simultaneously two high/medium-resolution spectrographs at the European Southern Observatory Very Large Telescope: VISIR at 12.4 μm to observe water lines from the disk and X-shooter covering from 0.3 to 2.5 μm to constrain the stellar accretion. Three epochs spanning timescales from several days to several weeks were obtained. The accretion luminosity was estimated to change within a factor of ∼2 and no change in water emission was detected at a significant level. In comparison with EX Lupi and EXor outbursts, DR Tau suggests that the less long-lived and weaker variability phenomena typical of T Tauri stars may leave water at planet-forming radii in the disk mostly unaffected. We propose that these systems may provide evidence for two processes that act over different timescales: ultraviolet photochemistry in the disk atmosphere (faster) and heating of the deeper disk layers (slower).« less

  11. Accretion and Diffusion in the DAZ White Dwarf GALEX J1931+0117

    NASA Astrophysics Data System (ADS)

    Vennes, Stéphane; Kawka, Adéla; Németh, Péter

    2011-03-01

    We present an analysis of high-dispersion and high signal-to-noise ratio spectra of the DAZ white dwarf GALEX J1931+0117. The spectra obtained with the VLT-Kueyen/UV-Visual Echelle Spectrograph show several well-resolved Si II spectral lines enabling a study of pressure effects on line profiles. We observed large Stark shifts in silicon lines in agreement with laboratory measurements. A model atmosphere analysis shows that the magnesium, silicon and iron abundances exceed solar abundances, while the oxygen and calcium abundances are below solar. Also, we compared the observed line profiles to synthetic spectra computed with variable accretion rates and vertical abundance distributions assuming diffusion steady-state. The inferred accretion rates vary from Ṁ = 2×106 for calcium to 2×109 g s-1 for oxygen and indicate that the accretion flow is dominated by oxygen, silicon and iron while being deficient in carbon, magnesium and calcium. The lack of radial velocity variations between two measurement epochs suggests that GALEX J1931+0117 is probably not in a close binary and that the source of the accreted material resides in a debris disc.

  12. Photoionization modelling of the giant broad-line region in NGC 3998

    NASA Astrophysics Data System (ADS)

    Devereux, Nick

    2018-01-01

    Prior high angular resolution spectroscopic observations of the Low-ionization nuclear emission-line region (Liner) in NGC 3998 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST) revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ∼ 7 pc in radius consisting of dust-free, low-density ∼ 104 cm-3, low-metallicity ∼ 0.01 Z/Z⊙ gas. Modelling the shape of the broad H α emission line significantly discriminates between two independent measures of the black hole (BH) mass, favouring the estimate of de Francesco, Capetti & Marconi (2006). Interpreting the broad H α emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 × 10-2 M⊙ yr-1, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the H α emission line, the relative intensities and luminosities for the H Balmer, [O III], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.

  13. Nuclear techniques for the on-line bulk analysis of carbon in coal-fired power stations.

    PubMed

    Sowerby, B D

    2009-09-01

    Carbon trading schemes usually require large emitters of CO(2), such as coal-fired power stations, to monitor, report and be audited on their CO(2) emissions. The emission price provides a significant additional incentive for power stations to improve efficiency. In the present paper, previous work on the bulk determination of carbon in coal is reviewed and assessed. The most favourable method is that based on neutron inelastic scattering. The potential role of on-line carbon analysers in improving boiler efficiency and in carbon accounting is discussed.

  14. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improvemore » estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H α , and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.« less

  15. POWERFUL HIGH-ENERGY EMISSION OF THE REMARKABLE BL Lac OBJECT S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vittorini, V.; Chen, A. W.; Ferrari, A.

    BL Lac objects of the intermediate subclass (IBLs) are known to emit a substantial fraction of their power in the energy range 0.1-10 GeV. Detecting gamma-ray emission from such sources provides therefore a direct probe of the emission mechanisms and of the underlying powerhouse. The gamma-ray satellite, AGILE, detected the remarkable IBL S5 0716+714 (z approx = 0.3) during a high state in the period from 2007 September-October, marked by two very intense flares reaching peak fluxes of 200 x 10{sup -8} photons cm{sup -2} s{sup -1} above 100 MeV, with simultaneous optical and X-ray observations. We present here amore » theoretical model for the two major flares and discuss the overall energetics of the source. We conclude that 0716+714 is among the brightest BL Lac's ever detected at gamma-ray energies. Because of its high power and lack of signs for ongoing accretion or surrounding gas, the source is an ideal candidate to test the maximal power extractable from a rotating supermassive black hole via the pure Blandford-Znajek (BZ) mechanism. We find that during the 2007 gamma-ray flares 0716+714 approached or just exceeded the upper limit set by BZ for a black hole of mass 10{sup 9} M{sub sun}.« less

  16. Accretion Disks and Coronae in the X-Ray Flashlight

    NASA Astrophysics Data System (ADS)

    Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan

    2018-02-01

    Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.

  17. The case for cases B and C: intrinsic hydrogen line ratios of the broad-line region of active galactic nuclei, reddenings, and accretion disc sizes

    NASA Astrophysics Data System (ADS)

    Gaskell, C. Martin

    2017-05-01

    Low-redshift active galactic nuclei (AGNs) with extremely blue optical spectral indices are shown to have a mean, velocity-averaged, broad-line Hα/Hβ ratio of ≈2.72 ± 0.04, consistent with a Baker-Menzel Case B value. Comparison of a wide range of properties of the very bluest AGNs with those of a luminosity-matched subset of the Dong et al. blue AGN sample indicates that the only difference is the internal reddening. Ultraviolet fluxes are brighter for the bluest AGNs by an amount consistent with the flat AGN reddening curve of Gaskell et al. The lack of a significant difference in the GALEX (far-ultraviolet-near-ultraviolet) colour index strongly rules out a steep Small Magellanic Cloud-like reddening curve and also argues against an intrinsically harder spectrum for the bluest AGNs. For very blue AGNs, the Ly α/Hβ ratio is also consistent with being the Case B value. The Case B ratios provide strong support for the self-shielded broad-line model of Gaskell, Klimek & Nazarova. It is proposed that the greatly enhanced Ly α/Hβ ratio at very high velocities is a consequence of continuum fluorescence in the Lyman lines (Case C). Reddenings of AGNs mean that the far-UV luminosity is often underestimated by up to an order of magnitude. This is a major factor causing the discrepancies between measured accretion disc sizes and the predictions of simple accretion disc theory. Dust covering fractions for most AGNs are lower than has been estimated. The total mass in lower mass supermassive black holes must be greater than hitherto estimated.

  18. Megamasers: Molecular Diagnostics of the Nuclear ISM

    NASA Astrophysics Data System (ADS)

    Baan, Willem A.; Klöckner, Hans-R.

    Molecular emissions are powerful tracers of intense heating and star-formation processes in galactic nuclei. In this paper we consider the characteristics of molecular Megamaser emission among the population of (Ultra-) Luminous Infrared Galaxies that are powered by intense star-formation or accretion onto a massive compact object. In addition, we consider the systematic behavior of the line emission of high-density tracer molecules. An evolutionary scenario is presented for ULIRGs that may explain the molecular line ratios observed in the population of FIR galaxies.

  19. Megamasers: Molecular Diagnostics of the Nuclear Ism

    NASA Astrophysics Data System (ADS)

    Baan, Willem A.; Klöckner, Hans-R.

    2005-01-01

    Molecular emissions are powerful tracers of intense heating and star-formation processes in galactic nuclei. In this paper we consider the characteristics of molecular Megamaser emission among the population of (Ultra-) Luminous Infrared Galaxies that are powered by intense star-formation or accretion onto a massive compact object. In addition, we consider the systematic behavior of the line emission of high-density tracer molecules. An evolutionary scenario is presented for ULIRGs that may explain the molecular line ratios observed in the population of FIR galaxies.

  20. The Effects of Accretion Disk Geometry on AGN Reflection Spectra

    NASA Astrophysics Data System (ADS)

    Taylor, Corbin James; Reynolds, Christopher S.

    2017-08-01

    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in approximating the disk as being infinitely thin when modeling reflection spectrum, potentially biasing determinations of black hole and corona properties.

  1. An accreting white dwarf near the Chandrasekhar limit in the Andromeda galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Sumin; Bildsten, Lars; Wolf, William M.

    The intermediate Palomar Transient Factory (iPTF) detection of the most recent outburst of the recurrent nova (RN) system RX J0045.4+4154 in the Andromeda galaxy has enabled the unprecedented study of a massive (M > 1.3 M {sub ☉}) accreting white dwarf (WD). We detected this nova as part of the near-daily iPTF monitoring of M31 to a depth of R ≈ 21 mag and triggered optical photometry, spectroscopy and soft X-ray monitoring of the outburst. Peaking at an absolute magnitude of M{sub R} = –6.6 mag, and with a decay time of 1 mag per day, it is a faintmore » and very fast nova. It shows optical emission lines of He/N and expansion velocities of 1900-2600 km s{sup –1} 1-4 days after the optical peak. The Swift monitoring of the X-ray evolution revealed a supersoft source (SSS) with kT {sub eff} ≈ 90-110 eV that appeared within 5 days after the optical peak, and lasted only 12 days. Most remarkably, this is not the first event from this system, rather it is an RN with a time between outbursts of approximately 1 yr, the shortest known. Recurrent X-ray emission from this binary was detected by ROSAT in 1992 and 1993, and the source was well characterized as a M > 1.3 M {sub ☉} WD SSS. Based on the observed recurrence time between different outbursts, the duration and effective temperature of the SS phase, MESA models of accreting WDs allow us to constrain the accretion rate to M-dot >1.7×10{sup −7} M{sub ⊙} yr{sup −1} and WD mass >1.30 M {sub ☉}. If the WD keeps 30% of the accreted material, it will take less than a Myr to reach core densities high enough for carbon ignition (if made of C/O) or electron capture (if made of O/Ne) to end the binary evolution.« less

  2. Locating the Accretion Footprint on a Herbig Ae Star: MWC 480

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Hamaguchi, K.; Schneider, G.; Stecklum, B.; Woodgate, B. E.; McCleary, J. E.; Williger, G. M.; Sitko, M. L.; Menard, F.; Henning, Th.; hide

    2011-01-01

    Accretion is a fundamental process which establishes the dynamics of the protoplanetary disk and the final properties of the forming star. In solar-type stars, the star-disk coupling is determined by the magnetic field structure, which is responsible for funneling material from the disk midplane to higher latitudes on the star. Here, we use pan-chromatic data for the Herbig Ae star MWC 480 to address whether similar processes occur in intermediate-mass stars. MWC 480 has X-ray emission typical of actively accreting Herbig Ae stars, but with 5-9 x more photoelectric absorption than expected from optical and FUV data. We consider 3 sources for the absorption: the disk absorption in a wind or jet, and accretion. While we detect the disk in scattered light in are-analysis of archival HST data. the data are consistent with grazing illumination of the dust disk. We find that MWC 480's disk is stratified, geometrically thin, and is not responsible for the observed photoelectric absorption. MWC 480 drives a bipolar jet, but with a mass loss rate which is low compared to other Herbig Ae stars, where the outflow is more favorably oriented and enhanced photoelectric absorption is not seen. This excludes a jet or wind origin for the enhanced photoelectric absorption. We compare MWC 480's 0 VI emission with other Herbig Ae stars. The distribution of the emission in inclination, and lack of a correlation of profile shape and system inclination excludes equatorially-confined accretion for the FUSE Herbig Ae stars. The photoelectric absorption data further suggest that the accretion footprint on MWC 480 and other Herbig Ae stars is located at high temperate, rather than polar, latitudes. These findings support the presence of funneled accretion in MWC 480 and Herbig Ae stars, strengthening the parallel to T Tauri stars.

  3. Outburst of GX304-1 Monitored with INTEGRAL: Positive Correlation Between the Cyclotron Line Energy and Flux

    NASA Technical Reports Server (NTRS)

    Klochkov, D.; Doroshenko, V.; Santangelo, A.; Staubert, R.; Ferrigno, C.; Kretschmar, P.; Caballero, I.; Wilms, J.; Kreykenbohm, I.; Pottschmidt, I.; hide

    2012-01-01

    Context. X-ray spectra of many accreting pulsars exhibit significant variations as a function of flux and thus of mass accretion rate. In some of these pulsars, the centroid energy of the cyclotron line(s), which characterizes the magnetic field strength at the site of the X-ray emission, has been found to vary systematically with flux. Aims. GX304-1 is a recently established cyclotron line source with a line energy around 50 keV. Since 2009, the pulsar shows regular outbursts with the peak flux exceeding one Crab. We analyze the INTEGRAL observations of the source during its outburst in January-February 2012. Methods. The observations covered almost the entire outburst, allowing us to measure the source's broad-band X-my spectrum at different flux levels. We report on the variations in the spectral parameters with luminosity and focus on the variations in the cyclotron line. Results. The centroid energy of the line is found to be positively correlated with the luminosity. We interpret this result as a manifestation of the local sub-Eddington (sub-critical) accretion regime operating in the source.

  4. Probing the Inflow/Outflow and Accretion Disk of Cygnus X-1 in the High State with the Chandra High Energy Transmission Grating

    NASA Technical Reports Server (NTRS)

    Feng, Y. X.; Tennant, A. F.; Zhang, S. N.

    2003-01-01

    Cygnus X-1 was observed in the high state at the conjunction orbital phase (0) with Chandra High Energy Transmission Grating (HETG). Strong and asymmetric absorption lines of highly ionized species were detected, such as Fe xxv, Fe xxiv, Fe xxiii, Si xiv, S xvi, Ne x, etc. In the high state the profile of the absorption lines is composed of an extended red wing and a less extended blue wing. The red wings of higher ionized species are more extended than those of lower ionized species. The detection of these lines provides a way to probe the properties of the flow around the companion and the black hole in Cyg X-1 during the high state. A broad emission feature around 6.5 keV was significantly detected from the spectra of both the Chandra/HETG and the RXTE/Proportional Counter Array. This feature appears to be symmetric and can be fitted with a Gaussian function rather than the Laor disk line model of the fluorescent Fe K(alpha) line from an accretion disk. The implications of these results on the structure of the accretion flow of Cyg X-1 in the high state are discussed.

  5. Swift observations of V404 Cyg during the 2015 outburst: X-ray outflows from super-Eddington accretion

    NASA Astrophysics Data System (ADS)

    Motta, S. E.; Kajava, J. J. E.; Sánchez-Fernández, C.; Beardmore, A. P.; Sanna, A.; Page, K. L.; Fender, R.; Altamirano, D.; Charles, P.; Giustini, M.; Knigge, C.; Kuulkers, E.; Oates, S.; Osborne, J. P.

    2017-10-01

    The black hole (BH) binary V404 Cyg entered the outburst phase in 2015 June after 26 yr of X-ray quiescence, and with its behaviour broke the outburst evolution pattern typical of most BH binaries. We observed the entire outburst with the Swift satellite and performed time-resolved spectroscopy of its most active phase, obtaining over a thousand spectra with exposures from tens to hundreds of seconds. All the spectra can be fitted with an absorbed power-law model, which most of the time required the presence of a partial covering. A blueshifted iron-Kα line appears in 10 per cent of the spectra together with the signature of high column densities, and about 20 per cent of the spectra seem to show signatures of reflection. None of the spectra showed the unambiguous presence of soft disc-blackbody emission, while the observed bolometric flux exceeded the Eddington value in 3 per cent of the spectra. Our results can be explained assuming that the inner part of the accretion flow is inflated into a slim disc that both hides the innermost (and brightest) regions of the flow, and produces a cold, clumpy, high-density outflow that introduces the high absorption and fast spectral variability observed. We argue that the BH in V404 Cyg might have been accreting erratically or even continuously at Eddington/super-Eddington rates - thus sustaining a surrounding slim disc - while being partly or completely obscured by the inflated disc and its outflow. Hence, the largest flares produced by the source might not be accretion-driven events, but instead the effects of the unveiling of the extremely bright source hidden within the system.

  6. Emission-line galaxies in the third list of the Case Low-Dispersion Northern Sky Survey

    NASA Technical Reports Server (NTRS)

    Weistrop, Donna; Downes, Ronald A.

    1991-01-01

    Observations of 47 galaxies in the third Case list are reported. Thirty-five of the galaxies in the sample were selected for the presence of emission lines on the objective prism plates. At the higher spectral dispersion of the data, significant line emission was found in 46 of the 47 galaxies. Twenty-six galaxies are found to be undergoing significant bursts of star formation. Ten additional galaxies may be starburst galaxies with low-excitation spectra. Two galaxies are probably type Seyfert 2. The most distant object, CG 200, at a redshift of 0.144, has a strong broad H-alpha emission line, and is probably a Seyfert 1. Seventeen of the galaxies have been detected by IRAS. Eight of the IRAS galaxies have H-II-region-type spectra and eight have low-ionization starburst spectra. The galaxies represent a mixture of types, ranging from intrinsically faint dwarf galaxies with Mb equalling -16 mag, to powerful galaxies with MB equalling -23 mag. Galaxies CG 234 and CG 235 are interacting, as are galaxies CG 269 and CG 270.

  7. Centrally Concentrated X-Ray Radiation from an Extended Accreting Corona in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Liu, B. F.; Taam, Ronald E.; Qiao, Erlin; Yuan, Weimin

    2017-10-01

    The X-ray emission from bright active galactic nuclei (AGNs) is believed to originate in a hot corona lying above a cold, geometrically thin accretion disk. A highly concentrated corona located within ˜10 gravitational radii above the black hole is inferred from observations. Based on the accretion of interstellar medium/wind, a disk corona model has been proposed in which the corona is well coupled to the disk by radiation, thermal conduction, as well as by mass exchange. Such a model avoids artificial energy input to the corona and has been used to interpret the spectral features observed in AGN. In this work, it is shown that the bulk emission size of the corona is very small for the extended accretion flow in our model. More than 80% of the hard X-ray power is emitted from a small region confined within 10 Schwarzschild radii around a non-spinning black hole, which is expected to be even smaller accordingly for a spinning black hole. Here, the corona emission is more extended at higher Eddington ratios. The compactness parameter of the corona, l=\\tfrac{L}{R}\\tfrac{{σ }{{T}}}{{m}{{e}}{c}3}, is shown to be in the range of 1-33 for Eddington ratios of 0.02-0.1. Combined with the electron temperature in the corona, this indicates that electron-positron pair production is not dominant in this regime. A positive relation between the compactness parameter and photon index is also predicted. By comparing the above model predictions with observational features, we find that the model is in agreement with observations.

  8. The VIRUS Emission Line Detection Recipe

    NASA Astrophysics Data System (ADS)

    Gössl, C. A.; Hopp, U.; Köhler, R.; Grupp, F.; Relke, H.; Drory, N.; Gebhardt, K.; Hill, G.; MacQueen, P.

    2007-10-01

    HETDEX, the Hobby-Eberly Telescope Dark Energy Experiment, will measure the imprint of the baryonic acoustic oscillations on the galaxy population at redshifts of 1.8 < z < 3.7 to constrain the nature of dark energy. The survey will be performed over at least 200 deg^2. The tracer population for this blind search will be Ly-α emitting galaxies through their most prominent emission line. The data reduction pipeline will extract these emission line objects from ˜35,000 spectra per exposure (5 million per night, i.e. 500 million in total) while performing astrometric, photometric, and wavelength calibration fully automatically. Here we will present our ideas how to find and classify objects even at low signal-to-noise ratios.

  9. Observation of the 63 micron (0 1) emission line in the Orion and Omega Nebulae

    NASA Technical Reports Server (NTRS)

    Melnick, G.; Gull, G. E.; Harwit, M.

    1978-01-01

    The 63 micron fine structure transition P4 : 3Pl yields 3P2 for neutral atomic oxygen was obtained during a series of flights at an altitude of approximately 13.7 km. In the Orion Nebula (M42), the observed line strength was 8 x 10 to the minus 15 power watt cm/2 which is estimated to be approximately 0.3 o/o of the energy radiated at all wavelengths. For the Omega Nebulae (M17), the line strength was 2.4 x 10 to the minus 15 power watt cm/2, and the fraction of the total radiated power was slightly higher. These figures refer to a 4' x 6' field of view centered on the peak for infrared emission from each source. The uncertainty in the line strength is approximately 50% and is caused by variable water vapor absorption along the flight path of the airplane. The line position estimate is 63.2 micron (+0.1, -0.2) micron. The prime uncertainty is due to the uncertain position of the (0 I) emitting regions in the field of view.

  10. Rethinking Black Hole Accretion Discs

    NASA Astrophysics Data System (ADS)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  11. Molecular line emission models of Herbig-Haro objects. II - HCO(+) emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Koenigl, Arieh

    1993-01-01

    We present time-dependent models of the chemistry and temperature of interstellar molecular gas clumps that are exposed to the radiation from propagating stellar-jet shocks. The X-ray, EUV, and FUV radiation from the shock initiates ion chemistry and also heats the gas in the clumps. Using representative parameters, we show that, on the shock transit time between the clumps, the abundances of the ionized molecular species that are produced in the clumps can exceed the values determined from steady state models by several orders of magnitude. Collisional excitation by the heated gas can lead to measurable line emission from several ionized species; as in previous investigations of X-ray-irradiated molecular gas, we find that electron impacts contribute significantly to this process. We apply these results to the interpretation of the HCO(+) line emission that has already been detected in several Herbig-Haro objects. We demonstrate that this picture provides a natural explanation of the fact that the line intensity typically peaks ahead of the associated shock, as well as of the reported low line-center velocities and narrow line widths. We tabulate several diagnostic line intensities of HCO(+) and other molecular species that may be used to infer the physical conditions in the emitting gas.

  12. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, A. S., E-mail: alexis-belov@yandex.ru; Markov, G. A.; Ryabov, A. O.

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radiomore » transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.« less

  13. The multiwavelength spectrum of NGC 3115: hot accretion flow properties

    NASA Astrophysics Data System (ADS)

    Almeida, Ivan; Nemmen, Rodrigo; Wong, Ka-Wah; Wu, Qingwen; Irwin, Jimmy A.

    2018-04-01

    NGC 3115 is the nearest galaxy hosting a billion solar mass black hole and is also a low-luminosity active galactic nucleus (LLAGN). X-ray observations of this LLAGN are able to spatially resolve the hot gas within the sphere of gravitational influence of the supermassive black hole. These observations make NGC 3115 an important test bed for black hole accretion theory in galactic nuclei since they constrain the outer boundary conditions of the hot accretion flow. We present a compilation of the multiwavelength spectral energy distribution (SED) of the nucleus of NGC 3115 from radio to X-rays. We report the results from modelling the observed SED with radiatively inefficient accretion flow (RIAF) models. The radio emission can be well-explained by synchrotron emission from the RIAF without the need for contribution from a relativistic jet. We obtain a tight constraint on the RIAF density profile, ρ (r) ∝ r^{-0.73 _{-0.02} ^{+0.01}}, implying that mass-loss through subrelativistic outflows from the RIAF is significant. The lower frequency radio observation requires the synchrotron emission from a non-thermal electron population in the RIAF, similarly to Sgr A*.

  14. Clumpy wind accretion in supergiant neutron star high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.

    2016-05-01

    The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.

  15. OPTICAL SPECTROSCOPY OF SDSS J004054.65-0915268: THREE POSSIBLE SCENARIOS FOR THE CLASSIFICATION. A z ∼ 5 BL LACERTAE, A BLUE FSRQ, OR A WEAK EMISSION LINE QUASAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landoni, M.; Zanutta, A.; Bianco, A.

    2016-02-15

    The haunt of high-redshift BL Lacerate objects is day by day more compelling to firmly understand their intrinsic nature and evolution. SDSS J004054.65-0915268 is, at the moment, one of the most distant BL Lac candidates, at z ∼ 5. We present a new optical-near-IR spectrum obtained with ALFOSC-NOT with a new, custom designed dispersive grating aimed to detect broad emission lines that could disprove this classification. In the obtained spectra, we do not detect any emission features and we provide an upper limit to the luminosity of the C iv broad emission line. Therefore, the nature of the object is then discussed,more » building the overall spectral energy distribution (SED) and fitting it with three different models. Our fits, based on SED modeling with different possible scenarios, cannot rule out the possibility that this source is indeed a BL Lac object, though the absence of optical variability and the lack of strong radio flux seem to suggest that the observed optical emission originates from a thermalized accretion disk.« less

  16. 3C 159 - a double emission-line radio galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tytler, D.; Browne, I.

    1985-09-01

    An optical identification for 3C 159 is reported with a 19-mag emission-line radio galaxy at z = 0.482. Photometric measurements show it to be unusually bright and blue. The emission lines are of exceptionally high luminosity, and are split into two components separated by 598 + or - 13 km/s and 3 kpc along the spectrograph slit. A VLA may show that one of the radio lobes has two hot spots with tails of emission leading to both. 21 references.

  17. An ultraluminous X-ray source powered by an accreting neutron star.

    PubMed

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-09

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects.

  18. The Jet/Disk Connection in AGN: Chandra and XMM-Newton Observations of Three Powerful Radio-Loud Quasars

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita; Gliozzi, Mario; Tavecchio, F.; Maraschi, L.; Foschini, Luigi

    2007-01-01

    The connection between the accretion process that powers AGN and the formation of jets is still poorly understood. Here we tackle this issue using new, deep Chandra and XMM-Newton observations of tlie cores of three powerful radio loud quasars: 1136-135, 1150+497 (Chandra), and 0723+679 (XMM-Newton), in the redshift range z=0.3-0.8. These sources are known from our previous Chandra siiapsliot survey to liave kpc-scale X-ray jets. In 1136-135 and 1150-1+497; evidence is found for the presence of diffuse thermal X-ray emission around the cores; on scales of 40-50 kpc and with luminosity L(sub 0.3-2 kev approx. 10(sup 43) erg per second, suggesting thermal emission from the host galaxy or a galaxy group. The X-ray continua of the cores in the three sources are described by an upward-curved (concave) broken power law, with photon indices GAMMA (sub soft) approx. 1.8 - 2.1 and GAMMA (sub hard) approx. 1.7 below and above approx. equal to 2 keV, respectively. There is evidence for an uiiresolved Fe K alpha line with EW approx. 70 eV in the three quasars. The Spectral Energy Distributions of the sources can be well described by a mix of jet and disk emission, with the jet dominating the radio and hard X-rays (via synchrotron and external Compton) and the disk dominating the optical/UV through soft X-rays. The ratio of the jet-to-disk powers is approx. 1, consistent with those derived for a number of gamma ray emitting blazars. This indicates that near equality of accretion and jet power may be common in powerful radio-loud AGN.

  19. Emissions control for ground power gas turbines

    NASA Technical Reports Server (NTRS)

    Rudney, R. A.; Priem, R. J.; Juhasz, A. J.; Anderson, D. N.; Mroz, T. S.; Mularz, E. J.

    1977-01-01

    The similarities and differences of emissions reduction technology for aircraft and ground power gas turbines is described. The capability of this technology to reduce ground power emissions to meet existing and proposed emissions standards is presented and discussed. Those areas where the developing aircraft gas turbine technology may have direct application to ground power and those areas where the needed technology may be unique to the ground power mission are pointed out. Emissions reduction technology varying from simple combustor modifications to the use of advanced combustor concepts, such as catalysis, is described and discussed.

  20. New Constraints on the Geometry and Kinematics of Matter Surrounding the Accretion Flow in X-Ray Binaries from Chandra High-energy Transmission Grating X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tzanavaris, P.; Yaqoob, T.

    2018-03-01

    The narrow, neutral Fe Kα fluorescence emission line in X-ray binaries (XRBs) is a powerful probe of the geometry, kinematics, and Fe abundance of matter around the accretion flow. In a recent study it has been claimed, using Chandra High-Energy Transmission Grating (HETG) spectra for a sample of XRBs, that the circumnuclear material is consistent with a solar-abundance, uniform, spherical distribution. It was also claimed that the Fe Kα line was unresolved in all cases by the HETG. However, these conclusions were based on ad hoc models that did not attempt to relate the global column density to the Fe Kα line emission. We revisit the sample and test a self-consistent model of a uniform, spherical X-ray reprocessor against HETG spectra from 56 observations of 14 Galactic XRBs. We find that the model is ruled out in 13/14 sources because a variable Fe abundance is required. In two sources a spherical distribution is viable, but with nonsolar Fe abundance. We also applied a solar-abundance Compton-thick reflection model, which can account for the spectra that are inconsistent with a spherical model, but spectra with a broader bandpass are required to better constrain model parameters. We also robustly measured the velocity width of the Fe Kα line and found FWHM values of up to ∼5000 km s‑1. Only in some spectra was the Fe Kα line unresolved by the HETG.

  1. New Constraints on the Geometry and Kinematics of Matter Surrounding the Accretion Flow in X-Ray Binaries from Chandra High-Energy Transmission Grating X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Yaqoob, T.

    2018-01-01

    The narrow, neutral Fe Ka fluorescence emission line in X-ray binaries (XRBs) is a powerful probe of the geometry, kinematics, and Fe abundance of matter around the accretion flow. In a recent study it has been claimed, using Chandra High-Energy Transmission Grating (HETG) spectra for a sample of XRBs, that the circumnuclear material is consistent with a solar-abundance, uniform, spherical distribution. It was also claimed that the Fe Ka line was unresolved in all cases by the HETG. However, these conclusions were based on ad hoc models that did not attempt to relate the global column density to the Fe Ka line emission. We revisit the sample and test a self-consistent model of a uniform, spherical X-ray reprocessor against HETG spectra from 56 observations of 14 Galactic XRBs. We find that the model is ruled out in 13/14 sources because a variable Fe abundance is required. In two sources a spherical distribution is viable, but with nonsolar Fe abundance. We also applied a solar-abundance Compton-thick reflection model, which can account for the spectra that are inconsistent with a spherical model, but spectra with a broader bandpass are required to better constrain model parameters. We also robustly measured the velocity width of the Fe Ka line and found FWHM values of up to approx. 5000 km/s. Only in some spectra was the Fe Ka line unresolved by the HETG.

  2. Accretion Disk Outflows from Compact Object Mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian

    Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed

  3. The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2018-02-01

    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  4. The Effects of Accretion Disk Thickness on the Black Hole Reflection Spectrum

    NASA Astrophysics Data System (ADS)

    Taylor, Corbin; Reynolds, Christopher S.

    2018-01-01

    Despite being the gravitational engines that power galactic-scale winds and mega parsec-scale jets in active galaxies, black holes are remarkably simple objects, typically being fully described by their angular momenta (spin) and masses. The modelling of AGN X-ray reflection spectra has proven fruitful in estimating the spin of AGN, as well as giving insight into their accretion histories and into the properties of plasmas in the strong gravity regime. However, current models make simplifying assumptions about the geometry of the reflecting material in the accretion disk and the irradiating X-ray corona, approximating the disk as an optically thick, infinitely thin disk of material in the orbital plane. We present results from the new relativistic raytracing suite, Fenrir, that explore the effects that disk thickness may have on the reflection spectrum and the accompanying reverberation signatures. Approximating the accretion disk as an optically thick, geometrically thin, radiation pressure dominated disk (Shakura & Sunyaev 1973), one finds that the disk geometry is non-negligible in many cases, with significant changes in the broad Fe K line profile. Finally, we explore the systematic errors inherent in other contemporary models that approximate that disk as having negligible vertical extent.

  5. Constraints on Bygone Nucleosynthesis of Accreting Neutron Stars

    DOE PAGES

    Meisel, Zach; Deibel, Alex

    2017-03-06

    Nuclear burning near the surface of an accreting neutron star produces ashes that, when compressed deeper by further accretion, alter the star’s thermal and compositional structure. Bygone nucleosynthesis can be constrained by the impact of compressed ashes on the thermal relaxation of quiescent neutron star transients. In particular, Urca cooling nuclei pairs in nuclear burning ashes that cool the neutron star crust via neutrino emission from e --capture/β --decay cycles and provide signatures of prior nuclear burning over the ~century timescales it takes to accrete to the e --capture depth of the strongest cooling pairs. By using crust cooling modelsmore » of the accreting neutron star transient MAXI J0556-332, we show that this source likely lacked Type I X-ray bursts and superbursts ≳120 years ago. Reduced nuclear physics uncertainties in rp-process reaction rates and e --capture weak transition strengths for low-lying transitions will improve nucleosynthesis constraints using this technique.« less

  6. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    PubMed

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  7. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  8. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  9. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  10. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  11. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  12. THE X-RAY THROUGH OPTICAL FLUXES AND LINE STRENGTHS OF TIDAL DISRUPTION EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Nathaniel; Kasen, Daniel; Guillochon, James

    We study the emission from tidal disruption events (TDEs) produced as radiation from black hole accretion propagates through an extended, optically thick envelope formed from stellar debris. We analytically describe key physics controlling spectrum formation, and present detailed radiative transfer calculations that model the spectral energy distribution and optical line strengths of TDEs near peak brightness. The steady-state transfer is coupled to a solver for the excitation and ionization states of hydrogen, helium, and oxygen (as a representative metal), without assuming local thermodynamic equilibrium. Our calculations show how an extended envelope can reprocess a fraction of soft X-rays and producemore » the observed optical fluxes of the order of 10{sup 43} erg s{sup −1}, with an optical/UV continuum that is not described by a single blackbody. Variations in the mass or size of the envelope may help explain how the optical flux changes over time with roughly constant color. For high enough accretion luminosities, X-rays can escape to be observed simultaneously with the optical flux. Due to optical depth effects, hydrogen Balmer line emission is often strongly suppressed relative to helium line emission (with He ii-to-H line ratios of at least 5:1 in some cases) even in the disruption of a solar-composition star. We discuss the implications of our results to understanding the type of stars destroyed in TDEs and the physical processes responsible for producing the observed flares.« less

  13. The magnetic nature of disk accretion onto black holes.

    PubMed

    Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy

    2006-06-22

    Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.

  14. An accreting black hole model for Sagittarius A

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio

    1992-01-01

    Several observations, notably of broad He I, Br-alpha, and Br-gamma emission lines from the vicinity of IRS 16, indicate the presence of a strong circumnuclear wind near the dynamical center of the Galaxy. Sgr A, a hypothesized supermassive object situated about 0.06 pc to the west of IRS 16, should be accreting from this wind if it is not itself a source of gaseous outflow, for which there is currently no observational evidence. Here, the spectrum and flux of radiation resulting from this process are calculated, and it is shown that they are consistent with the data over at least 12 decades of frequency. Together with the kinematic studies of the stellar and gas distributions in this region, the model argues strongly in favor of Sgr A being a black hole with mass over a million solar masses.

  15. HIGHLY VARIABLE EXTINCTION AND ACCRETION IN THE JET-DRIVING CLASS I-TYPE YOUNG STAR PTF 10nvg (V2492 Cyg, IRAS 20496+4354)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillenbrand, Lynne A.; Carpenter, John M.; Muirhead, Philip S.

    2013-03-15

    We report extensive new photometry and spectroscopy of the highly variable young stellar object PTF 10nvg (also known as IRAS 20496+4354 and V2492 Cyg), including optical and near-infrared time-series data as well as mid-infrared and millimeter data. Following the previously reported 2010 rise to R{sub PTF} {approx}<13.{sup m}5 and subsequent fade, during 2011 and 2012 the source underwent additional episodes of brightening, followed by several magnitude dimming events including prolonged faint states at R{sub PTF} {approx}> 20{sup m}. The observed high-amplitude variations are largely consistent with extinction changes ({Delta}A{sub V} up to 30 mag) having a {approx}220 day quasi-periodic signal.more » However, photometry measured when the source was near maximum brightness in mid-2010 as well as in late-2012 does not phase well to this period. Spectral evolution includes not only changes in the spectral slope but also correlated variation in the prominence of TiO/VO/CO bands and atomic line emission, as well as anti-correlated variation in forbidden line emission which, along with H{sub 2}, dominates optical and infrared spectra at faint epochs. Notably, night-to-night variations in several forbidden doublet strengths and ratios are observed. High-dispersion spectra were obtained in a variety of photometric states and reveal time-variable line profiles. Neutral and singly ionized atomic species are likely formed in an accretion flow and/or impact while the origin of zero-velocity atomic Li I {lambda}6707 in emission is unknown. Forbidden lines, including several rare species, exhibit blueshifted emission profiles and likely arise from an outflow/jet. Several of these lines are also seen spatially offset from the continuum source position, presumably in a shocked region of an extended jet. Blueshifted absorption components of the Na I D doublet, K I {lambda}{lambda}7665, 7669 doublet, and the O I 7774 triplet, as well as blueshifted absorption components seen

  16. Fe XXV and Fe XXVI Diagnostics of the Black Hole and Accretion Disk in Active Galaxies: Chandra Time-Resolved Spectroscopy of NGC 7314

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; George, Ian M.; Kallman, Timothy R.; Padmanabhan, Urmila; Weaver, Kimberly A.; Turner, T. Jane

    2003-01-01

    We report the detection of Fe xxv and Fe XXVI Ka emission lines from a Chandra High Energy Grating Spectrometer (HETGS) observation of the narrow-line Seyfert 1 galaxy NGC 7314, made simultaneously with RXTE. The lines are redshifted (cz approximately 1500 kilometers per second) relative to the systemic velocity and unresolved by the gratings. We argue that the lines originate in a near face-on (less than 7 deg) disk having a radial line emissivity flatter than r(exp -2). Line emission from ionization states of Fe in the range approximately Fe I a up to Fe XXVI is observed. The ionization balance of Fe responds to continuum variations on timescales less than 12.5 ks, supporting an origin of the lines close to the X-ray source. We present additional, detailed diagnostics from this rich data set. These results identify NGC 7314 as a key source to study in the future if we are to pursue reverberation mapping of space-time near black-hole event horizons. This is because it is first necessary to understand the ionization structure of accretion disks and the relation between the X-ray continuum and Fe Ka line emission. However, we also describe how our results are suggestive of a means of measuring black-hole spin without a knowledge of the relation between the continuum and line emission. Finally, these data emphasize that one can study strong gravity with narrow (as opposed to very broad) disk lines. In fact narrow lines offer higher precision, given sufficient energy resolution.

  17. Accretion onto stellar mass black holes

    NASA Astrophysics Data System (ADS)

    Deegan, Patrick

    2009-12-01

    I present work on the accretion onto stellar mass black holes in several scenarios. Due to dynamical friction stellar mass black holes are expected to form high density cusps in the inner parsec of our Galaxy. These compact remnants may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. I build a simple but detailed time-dependent model of such emission. Future observations of the distribution and orbits of the gas in the inner parsec of Sgr A* will put tighter constraints on the cusp of compact remnants. GRS 1915+105 is an LMXB, whose large orbital period implies a very large accretion disc and explains the extraordinary duration of its current outburst. I present smoothed particle hydrodynamic simulations of the accretion disc. The models includes the thermo-viscous instability, irradiation from the central object and wind loss. I find that the outburst of GRS 1915+105 should last a minimum of 20 years and up to ˜ 100 years if the irradiation is playing a significant role in this system. The predicted recurrence times are of the order of 104 years, making the duty cycle of GRS 1915+105 to be a few 0.1%. I present a simple analytical method to describe the observable behaviour of long period black hole LMXBs, similar to GRS 1915+105. Constructing two simple models for the surface density in the disc, outburst and quiescence times are calculated as a function of orbital period. LMXBs are an important constituent of the X-ray light function (XLF) of giant elliptical galaxies. I find that the duty cycle can vary considerably with orbital period, with implications for modelling the XLF.

  18. Winds from T Tauri stars. II - Balmer line profiles for inner disk winds

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Hewett, Robert

    1992-01-01

    Results are presented of calculations of Balmer emission line profiles using escape probability methods for T Tauri wind models with nonspherically symmetric geometry. The wind is assumed to originate in the inner regions of an accretion disk surrounding the T Tauri star, and flows outward in a 'cone' geometry. Two types of wind models are considered, both with monotonically increasing expansion velocities as a function of radial distance. For flows with large turbulent velocities, such as the HF Alfven wave-driven wind models, the effect of cone geometry is to increase the blue wing emission, and to move the absorption reversal close to line center. Line profiles for a wind model rotating with the same angular velocity as the inner disk are also calculated. The Balmer lines of this model are significantly broader than observed in most objects, suggesting that the observed emission lines do not arise in a region rotating at Keplerian velocity.

  19. Bionic Vision-Based Intelligent Power Line Inspection System

    PubMed Central

    Ma, Yunpeng; He, Feijia; Xu, Jinxin

    2017-01-01

    Detecting the threats of the external obstacles to the power lines can ensure the stability of the power system. Inspired by the attention mechanism and binocular vision of human visual system, an intelligent power line inspection system is presented in this paper. Human visual attention mechanism in this intelligent inspection system is used to detect and track power lines in image sequences according to the shape information of power lines, and the binocular visual model is used to calculate the 3D coordinate information of obstacles and power lines. In order to improve the real time and accuracy of the system, we propose a new matching strategy based on the traditional SURF algorithm. The experimental results show that the system is able to accurately locate the position of the obstacles around power lines automatically, and the designed power line inspection system is effective in complex backgrounds, and there are no missing detection instances under different conditions. PMID:28203269

  20. 32 CFR 644.431 - Power transmission lines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Power transmission lines. 644.431 Section 644... Power transmission lines. (a) Authority. Pursuant to the provisions of section 13(d) of the Surplus... power transmission line and the right of way acquired for its construction is needed for or adaptable to...

  1. Simulating X-ray bursts during a transient accretion event

    NASA Astrophysics Data System (ADS)

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  2. Disk–Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.

    We study the disk–jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power (more » $${P}_{\\mathrm{jet}}$$), the bolometric disk luminosity ($${L}_{\\mathrm{disk}}$$), and the black hole mass ($${M}_{\\mathrm{BH}}$$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $$\\mathrm{log}{P}_{\\mathrm{jet}}=(0.96\\pm 0.012)\\mathrm{log}{L}_{\\mathrm{disk}}+(0.79\\pm 0.55)$$. This suggests the jet production efficiency of $${\\eta }_{\\mathrm{jet}}\\simeq {1.1}_{-0.76}^{+2.6}\\,\\times {10}^{-2}$$ assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios $$0.01\\lesssim \\lambda \\lesssim 0.3$$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among $${P}_{\\mathrm{jet}}$$, $${L}_{\\mathrm{disk}}$$, and $${M}_{\\mathrm{BH}}$$. In conclusion, we could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.« less

  3. Disk–Jet Connection in Active Supermassive Black Holes in the Standard Accretion Disk Regime

    DOE PAGES

    Inoue, Yoshiyuki; Doi, Akihiro; Tanaka, Yasuyuki T.; ...

    2017-05-04

    We study the disk–jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4 GHz and SDSS optical spectra. Using this radio-loud quasar sample, we investigate the correlation among the jet power (more » $${P}_{\\mathrm{jet}}$$), the bolometric disk luminosity ($${L}_{\\mathrm{disk}}$$), and the black hole mass ($${M}_{\\mathrm{BH}}$$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $$\\mathrm{log}{P}_{\\mathrm{jet}}=(0.96\\pm 0.012)\\mathrm{log}{L}_{\\mathrm{disk}}+(0.79\\pm 0.55)$$. This suggests the jet production efficiency of $${\\eta }_{\\mathrm{jet}}\\simeq {1.1}_{-0.76}^{+2.6}\\,\\times {10}^{-2}$$ assuming the disk radiative efficiency of 0.1, implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to the dependence of this efficiency on the geometrical thickness of the accretion flow, which is expected to be small for quasars accreting at the disk Eddington ratios $$0.01\\lesssim \\lambda \\lesssim 0.3$$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency to be 0.3. We also investigate the fundamental plane in our samples among $${P}_{\\mathrm{jet}}$$, $${L}_{\\mathrm{disk}}$$, and $${M}_{\\mathrm{BH}}$$. In conclusion, we could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime.« less

  4. OUTFLOW AND METALLICITY IN THE BROAD-LINE REGION OF LOW-REDSHIFT ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jaejin; Woo, Jong-Hak; Nagao, Tohru

    2017-01-20

    Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE , we investigate outflows in the broad-line region (BLR) in low-redshift AGNs ( z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which ismore » consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.« less

  5. Observations of 50/60 Hz Power Line Radiation in the Low Latitude Ionosphere Detected by the Electric Field Instrument on the C/NOFS Satellite

    NASA Astrophysics Data System (ADS)

    Pfaff, R. F., Jr.; Freudenreich, H. T.; Simoes, F. A.; Liebrecht, M. C.; Farrell, W.

    2017-12-01

    One of the most ubiquitous forms of EM radiation emanating from the earth's surface is that of power line radiation. Associated with AC electric power generation, such emissions are typically launched along conducting power lines that may travel hundreds, or even thousands of km, from generating stations. The fundamental frequencies of such emissions are characteristically 50 Hz or 60 Hz, depending on the regional standards for power generation/consumption. The frequency of this radiation is well below that of the plasma frequency of the ionosphere (typically several MHz) and hence is expected to reflect back to the earth and propagate in the waveguide formed by the earth's surface and the bottom ledge of the ionosphere, typically near 100 km. Given that such power lines are widespread on the exposed lithosphere, the leakage of some ELF emissions associated with electric power generation might nevertheless be expected in the ionosphere, in the same manner in which a small fraction of the power associated with ELF Schumann resonances and lightning sferics have been shown to penetrate into the ionosphere. We present direct measurements of 50/60 Hz power line radiation detected by in situ probes on an orbiting satellite in the earth's ionosphere. The data were gathered by the Vector Electric Field Investigation (VEFI) tri-axial double probe detector flown on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS was launched in April, 2008 into a low latitude (13 deg inclination) orbit with perigee and apogee of 400 km and 850 km, respectively. The electric field wave data were gathered by ELF receivers comprised of two orthogonal broadband channels sampled at 512 s/sec each, and digitized with 16 bit A/D converters. The data show distinct 60 Hz emissions while the satellite sampled within the Brazilian sector whereas distinct 50 Hz emissions were detected over India. Other, less distinct, emissions were observed over Africa and southeast Asia

  6. The Possible Submillimeter Bump and Accretion-jet in the Central Supermassive Black Hole of NGC 4993

    NASA Astrophysics Data System (ADS)

    Wu, Qingwen; Feng, Jianchao; Fan, Xuliang

    2018-03-01

    NGC 4993, as a host galaxy of the electromagnetic counterpart of the first gravitational-wave detection of a binary neutron-star merger, was observed by many powerful telescopes from radio to γ-ray wavebands. The weak nuclear activities of NGC 4993 suggest that it is a low-luminosity active galactic nuclei (LLAGNs). We build the multiwaveband spectral energy distributions (SEDs) of NGC 4993 from the literature. We find that the radio spectrum at ∼100–300 GHz is much steeper than that of the low-frequency waveband (e.g., 6–100 GHz), where this break was also found in the supermassive black holes (SMBHs) in our galaxy center (Sgr A*), and in some other nearby AGNs. The radio emission above and below this break may have different physical origins, which provide an opportunity to probe the accretion and jet properties. We model the multiwaveband SEDs of NGC 4993 with an advection-dominated accretion flow (ADAF) jet model. We find that the high-frequency steep radio emission at the millimeter waveband is consistent with the prediction of the ADAF, while the low-frequency flat radio spectrum is better fitted by the jet. Furthermore, the X-ray emission can also be simultaneously explained by the ADAF model. From the model fits, we estimate important parameters of the central engine (e.g., the accretion rate near the horizon of the black hole and the mass-loss rate in the jet) for NGC 4993. This result strengthens the theory that the millimeter, submillimeter, and deep X-ray observations are crucial to understanding the weak or quiescent activities in SMBH systems. Further simultaneous millimeter and X-ray monitoring of this kind of LLAGN will help us to better understand the physical origin of multiwaveband emission.

  7. Fe II emission lines. I - Chromospheric spectra of red giants

    NASA Technical Reports Server (NTRS)

    Judge, P. G.; Jordan, C.

    1991-01-01

    A 'difference filtering' algorithm developed by Ayers (1979) is used to construct high-quality high-dispersion long-wavelength IUE spectra of three giant stars. Measurements of all the emission lines seen between 2230 and 3100 A are tabulated. The emission spectrum of Fe II is discussed in comparison with other lines whose formation mechanisms are well understood. Systematic changes in the Fe II spectrum are related to the different physical conditions in the three stars, and examples are given of line profiles and ratios which can be used to determine conditions in the outer atomspheres of giants. It is concluded that most of the Fe II emission results from collisional excitation and/or absorption of photospheric photons at optical wavelengths, but some lines are formed by fluorescence, being photoexcited by other strong chromospheric lines. Between 10 and 20 percent of the radiative losses of Fe II arise from 10 eV levels radiatively excited by the strong chromospheric H Ly-alpha line.

  8. Does mass accretion lead to field decay in neutron stars

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Murakami, T.; Shaham, Jacob; Nomoto, K.

    1989-01-01

    The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars.

  9. The Dripping Handrail Model: Transient Chaos in Accretion Systems

    NASA Technical Reports Server (NTRS)

    Young, Karl; Scargle, Jeffrey D.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    We define and study a simple dynamical model for accretion systems, the "dripping handrail" (DHR). The time evolution of this spatially extended system is a mixture of periodic and apparently random (but actually deterministic) behavior. The nature of this mixture depends on the values of its physical parameters - the accretion rate, diffusion coefficient, and density threshold. The aperiodic component is a special kind of deterministic chaos called transient chaos. The model can simultaneously exhibit both the quasiperiodic oscillations (QPO) and very low frequency noise (VLFN) that characterize the power spectra of fluctuations of several classes of accretion systems in astronomy. For this reason, our model may be relevant to many such astrophysical systems, including binary stars with accretion onto a compact object - white dwarf, neutron star, or black hole - as well as active galactic nuclei. We describe the systematics of the DHR's temporal behavior, by exploring its physical parameter space using several diagnostics: power spectra, wavelet "scalegrams," and Lyapunov exponents. In addition, we note that for large accretion rates the DHR has periodic modes; the effective pulse shapes for these modes - evaluated by folding the time series at the known period - bear a resemblance to the similarly- determined shapes for some x-ray pulsars. The pulsing observed in some of these systems may be such periodic-mode accretion, and not due to pure rotation as in the standard pulsar model.

  10. Where is the X-ray emission coming from in RT Cru Symbiotic System?

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2014-11-01

    RT Cru is a member of a new sub-class of symbiotic interacting binaries with copious hard X-ray emission. It consists of a high-mass WD (>1.3 Ms) accreting from the wind of an M giant, and it is an important system to study in order to constrain precursor conditions for asymmetric PN and SN Ia. The Chandra HRC-I observation (Dec 2012), and an overlapping Swift observation, detected intermittent soft X-ray flaring, and we find evidence for a significant soft component in the spectrum. The flaring could be a consequence of clumped absorption columns moving in and out of the line of sight, or the variations could be due to changes at the accretion boundary layer. Further observations are needed to determine the origin of the soft emission and its relation to the hard emission.

  11. Properties of two-temperature dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Dihingia, Indu K.; Das, Santabrata; Mandal, Samir

    2018-04-01

    We study the properties of two-temperature accretion flow around a non-rotating black hole in presence of various dissipative processes where pseudo-Newtonian potential is adopted to mimic the effect of general relativity. The flow encounters energy loss by means of radiative processes acted on the electrons and at the same time, flow heats up as a consequence of viscous heating effective on ions. We assumed that the flow is exposed with the stochastic magnetic fields that leads to Synchrotron emission of electrons and these emissions are further strengthen by Compton scattering. We obtain the two-temperature global accretion solutions in terms of dissipation parameters, namely, viscosity (α) and accretion rate ({\\dot{m}}), and find for the first time in the literature that such solutions may contain standing shock waves. Solutions of this kind are multitransonic in nature, as they simultaneously pass through both inner critical point (xin) and outer critical point (xout) before crossing the black hole horizon. We calculate the properties of shock-induced global accretion solutions in terms of the flow parameters. We further show that two-temperature shocked accretion flow is not a discrete solution, instead such solution exists for wide range of flow parameters. We identify the effective domain of the parameter space for standing shock and observe that parameter space shrinks as the dissipation is increased. Since the post-shock region is hotter due to the effect of shock compression, it naturally emits hard X-rays, and therefore, the two-temperature shocked accretion solution has the potential to explain the spectral properties of the black hole sources.

  12. POWERFUL RADIO EMISSION FROM LOW-MASS SUPERMASSIVE BLACK HOLES FAVORS DISK-LIKE BULGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Xu, Y.; Xu, D. W.

    The origin of spin of low-mass supermassive black holes (SMBHs) is still a puzzle at present. We report here a study on the host galaxies of a sample of radio-selected nearby ( z < 0.05) Seyfert 2 galaxies with a BH mass of 10{sup 6–7} M{sub ⊙}. By modeling the SDSS r -band images of these galaxies through a two-dimensional bulge+disk decomposition, we identify a new dependence of SMBH's radio power on host bulge surface brightness profiles, in which more powerful radio emission comes from an SMBH associated with a more disk-like bulge. This result means low-mass and high-mass SMBHsmore » are spun up by two entirely different modes that correspond to two different evolutionary paths. A low-mass SMBH is spun up by a gas accretion with significant disk-like rotational dynamics of the host galaxy in the secular evolution, while a high-mass one by a BH–BH merger in the merger evolution.« less

  13. PEARS Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  14. The Extreme Ultraviolet Deficit and Magnetically Arrested Accretion in Radio-loud Quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian

    2014-12-01

    The Hubble Space Telescope composite quasar spectra presented in Telfer et al. show a significant deficit of emission in the extreme ultraviolet for the radio-loud component of the quasar population (RLQs) compared to the radio-quiet component of the quasar population. The composite quasar continuum emission between 1100 Å and ~580 Å is generally considered to be associated with the innermost regions of the accretion flow onto the central black hole. The deficit between 1100 Å and 580 Å in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. It is proposed that this can be the result of islands of large-scale magnetic flux in RLQs that are located close to the central black hole that remove energy from the accretion flow as Poynting flux (sometimes called magnetically arrested accretion). These magnetic islands are natural sites for launching relativistic jets. Based on the Telfer et al. data and the numerical simulations of accretion flows in Penna et al., the magnetic islands are concentrated between the event horizon and an outer boundary of <2.8 M (in geometrized units) for rapidly rotating black holes and <5.5 M for modestly rotating black holes.

  15. NuSTAR Discovery of a Cyclotron Line in the Accreting X-Ray Pulsar IGR J16393-4643

    NASA Technical Reports Server (NTRS)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca M.; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; hide

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by the Nuclear Spectroscope Telescope Array in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of -29.3(sup +1.1)(sub -1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5 +/- 0.1) x 10(exp 12) G. The known pulsation period is now observed at 904.0+/- 0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P= -2 x 10(exp -8) s s(exp -1) (-0.6 s per year, or a frequency derivative of v = 3 x 10(exp -14) Hz s(exp -1)). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2 x 10(exp 8) cm.

  16. Accretion in the wake of terrane collision: The Neogene accretionary wedge off Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Fruehn, J.; von Huene, Roland E.; Fisher, M.A.

    1999-01-01

    Subduction accretion and repeated terrane collision shaped the Alaskan convergent margin. The Yakutat Terrane is currently colliding with the continental margin below the central Gulf of Alaska. During the Neogene the terrane's western part was subducted after which a sediment wedge accreted along the northeast Aleutian Trench. This wedge incorporates sediment eroded from the continental margin and marine sediments carried into the subduction zone on the Pacific plate. Prestack depth migration was performed on six seismic reflection lines to resolve the structure within this accretionary wedge and its backstop. The lateral extent of the structures is constrained by high-resolution swath bathymetry and seismic lines collected along strike. Accretionary structure consists of variably sized thrust slices that were deformed against a backstop during frontal accretion and underplating. Toward the northeast the lower slope steepens, the wedge narrows, and the accreted volume decreases notwith-standing a doubling of sediments thickness in the trench. In the northeasternmost transect, near the area where the terrane's trailing edge subducts, no frontal accretion is observed and the slope is eroded. The structures imaged along the seismic lines discussed here most likely result from progressive evolution from erosion to accretion, as the trailing edge of the Yakutat Terrane is subducting.

  17. Ethylene line emission from the North Pole of Jupiter

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Espenak, F.; Romani, P.; Goldstein, J.

    1991-01-01

    A significant enhancement in infrared emission from hydrocarbon constituents of Jupiter's stratosphere was observed at a north polar hot spot (60 degrees latitude, 180 degrees longitude). A unique probe of this phenomena is ethylene (C2H4), which has not been observed previously from the ground. The profile of the emission line from ethylene at 951.742 cm-1, measured near the north pole of Jupiter, was analyzed to determine the morphology of the enhancement, the increase in C2H4 abundance and local temperature, as well as possible information on the altitude (pressure regions) where the increased emission is formed. Measurements were made using infrared heterodyne spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii in December 1989. At 181 degrees longitude a very strong emission line was seen, which corresponds to a 13-fold increase in C2H4 abundance or a 115K increase in temperature in the upper stratosphere, compared to values outside the hot spot. The hot spot was found to be localized to approx. 10 degrees in longitude; the line shape (width) implied that the enhanced emission originated very high in the stratosphere.

  18. X-Shooter study of accretion in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Fedele, D.; Herczeg, G. J.; Teixeira, P. S.

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star-forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to ~700 nm. The dependence of accretion on stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are not influenced by sample selection. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 084.C-1095 and 094.C-0913.

  19. Rapid variability as a probe of warped space-time around accreting black holes

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2016-07-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564, and compare these to the time-averaged spectrum and the spectrum of the rapid (<0.1 s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, softer at larger radii closer to the truncated disc and harder in the innermost parts where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole.

  20. Studying the accretion geometry of EXO 2030+375 at luminosities close to the propeller regime

    NASA Astrophysics Data System (ADS)

    Fürst, F.; Kretschmar, P.; Kajava, J. J. E.; Alfonso-Garzón, J.; Kühnel, M.; Sanchez-Fernandez, C.; Blay, P.; Wilson-Hodge, C. A.; Jenke, P.; Kreykenbohm, I.; Pottschmidt, K.; Wilms, J.; Rothschild, R. E.

    2017-10-01

    The Be X-ray binary EXO 2030+375was in an extended low-luminosity state during most of 2016. We observed this state with NuSTARand Swift, supported by INTEGRALobservations and optical spectroscopy with the Nordic Optical Telescope (NOT). We present a comprehensive spectral and timing analysis of these data here to study the accretion geometry and investigate a possible onset of the propeller effect. The Hα data show that the circumstellar disk of the Be-star is still present. We measure equivalent widths similar to values found during more active phases in the past, indicating that the low-luminosity state is not simply triggered by a smaller Be disk. The NuSTARdata, taken at a 3-78 keV luminosity of 6.8 × 1035 erg s-1 (for a distance of 7.1 kpc), are nicely described by standard accreting pulsar models such as an absorbed power law with a high-energy cutoff. We find that pulsations are still clearly visible at these luminosities, indicating that accretion is continuing despite the very low mass transfer rate. In phase-resolved spectroscopy we find a peculiar variation of the photon index from 1.5 to 2.5 over only about 3% of the rotational period. This variation is similar to that observed with XMM-Newtonat much higher luminosities. It may be connected to the accretion column passing through our line of sight. With Swift/XRT we observe luminosities as low as 1034 erg s-1 where the data quality did not allow us to search for pulsations, but the spectrum is much softer and well described by either a blackbody or soft power-law continuum. This softer spectrum might be due to the accretion being stopped by the propeller effect and we only observe the neutron star surface cooling.

  1. AGN jet-driven stochastic cold accretion in cluster cores

    NASA Astrophysics Data System (ADS)

    Prasad, Deovrat; Sharma, Prateek; Babul, Arif

    2017-10-01

    Several arguments suggest that stochastic condensation of cold gas and its accretion on to the central supermassive black hole (SMBH) is essential for active galactic nuclei (AGNs) feedback to work in the most massive galaxies that lie at the centres of galaxy clusters. Our 3-D hydrodynamic AGN jet-ICM (intracluster medium) simulations, looking at the detailed angular momentum distribution of cold gas and its time variability for the first time, show that the angular momentum of the cold gas crossing ≲1 kpc is essentially isotropic. With almost equal mass in clockwise and counterclockwise orientations, we expect a cancellation of the angular momentum on roughly the dynamical time. This means that a compact accretion flow with a short viscous time ought to form, through which enough accretion power can be channeled into jet mechanical energy sufficiently quickly to prevent a cooling flow. The inherent stochasticity, expected in feedback cycles driven by cold gas condensation, gives rise to a large variation in the cold gas mass at the centres of galaxy clusters, for similar cluster and SMBH masses, in agreement with the observations. Such correlations are expected to be much tighter for the smoother hot/Bondi accretion. The weak correlation between cavity power and Bondi power obtained from our simulations also matches observations.

  2. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags

    NASA Astrophysics Data System (ADS)

    Du, Pu; Zhang, Zhi-Xiang; Wang, Kai; Huang, Ying-Ke; Zhang, Yue; Lu, Kai-Xing; Hu, Chen; Li, Yan-Rong; Bai, Jin-Ming; Bian, Wei-Hao; Yuan, Ye-Fei; Ho, Luis C.; Wang, Jian-Min; SEAMBH collaboration

    2018-03-01

    As one paper in a series reporting on a large reverberation mapping campaign of super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs), we present the results of 10 SEAMBHs monitored spectroscopically during 2015–2017. Six of them are observed for the first time, and have generally higher 5100 Å luminosities than the SEAMBHs monitored in our campaign from 2012 to 2015; the remaining four are repeat observations to check if their previous lags change. Similar to the previous SEAMBHs, the Hβ time lags of the newly observed objects are shorter than the values predicted by the canonical R Hβ –L 5100 relation of sub-Eddington AGNs, by factors of ∼2–6, depending on the accretion rate. The four previously observed objects have lags consistent with previous measurements. We provide linear regressions for the R Hβ –L 5100 relation, solely for the SEAMBH sample and for low-accretion AGNs. We find that the relative strength of Fe II and the profile of the Hβ emission line can be used as proxies of accretion rate, showing that the shortening of Hβ lags depends on accretion rates. The recent SDSS-RM discovery of shortened Hβ lags in AGNs with low accretion rates provides compelling evidence for retrograde accretion onto the black hole. These evidences show that the canonical R Hβ –L 5100 relation holds only in AGNs with moderate accretion rates. At low accretion rates, it should be revised to include the effects of black hole spin, whereas the accretion rate itself becomes a key factor in the regime of high accretion rates.

  3. Effect of nuclear power on CO₂ emission from power plant sector in Iran.

    PubMed

    Kargari, Nargess; Mastouri, Reza

    2011-01-01

    It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.

  4. X-ray Emission Line Spectroscopy of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various

  5. Interferometric investigation of emission lines from the solar corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, P.M.; Henderson, G.

    1973-11-01

    The profiles of the Fe XN, lambda 5303, and Fe X, lambda 6374, emission lines of the solar corona were observed at different posttions using a photoelectric scanning Fabry -- Perot interferometer. These profiles were obtained during the eclipse of 7th March 1970, in Mexico and at the Pic-du-Midi coronagraph in October, 1970. The half-widths of these profiles were determined for both the coronal lines and temperatures were derived from these widths. No systematic temperature variation was discovered, however there was some suggestion of the existence of a fluctuation with time in the width of the emission lines. (auth)

  6. Radio outburst from a massive (proto)star. When accretion turns into ejection

    NASA Astrophysics Data System (ADS)

    Cesaroni, R.; Moscadelli, L.; Neri, R.; Sanna, A.; Caratti o Garatti, A.; Eisloffel, J.; Stecklum, B.; Ray, T.; Walmsley, C. M.

    2018-05-01

    Context. Recent observations of the massive young stellar object S255 NIRS 3 have revealed a large increase in both methanol maser flux density and IR emission, which have been interpreted as the result of an accretion outburst, possibly due to instabilities in a circumstellar disk. This indicates that this type of accretion event could be common in young/forming early-type stars and in their lower mass siblings, and supports the idea that accretion onto the star may occur in a non-continuous way. Aims: As accretion and ejection are believed to be tightly associated phenomena, we wanted to confirm the accretion interpretation of the outburst in S255 NIRS 3 by detecting the corresponding burst of the associated thermal jet. Methods: We monitored the radio continuum emission from S255 NIRS 3 at four bands using the Karl G. Jansky Very Large Array. The millimetre continuum emission was also observed with both the Northern Extended Millimeter Array of IRAM and the Atacama Large Millimeter/Submillimeter Array. Results: We have detected an exponential increase in the radio flux density from 6 to 45 GHz starting right after July 10, 2016, namely 13 months after the estimated onset of the IR outburst. This is the first ever detection of a radio burst associated with an IR accretion outburst from a young stellar object. The flux density at all observed centimetre bands can be reproduced with a simple expanding jet model. At millimetre wavelengths we infer a marginal flux increase with respect to the literature values and we show this is due to free-free emission from the radio jet. Conclusions: Our model fits indicate a significant increase in the jet opening angle and ionized mass loss rate with time. For the first time, we can estimate the ionization fraction in the jet and conclude that this must be low (<14%), lending strong support to the idea that the neutral component is dominant in thermal jets. Our findings strongly suggest that recurrent accretion + ejection

  7. STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, James F.; Remillard, Ronald A.; García, Javier A.

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction ofmore » our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.« less

  8. EXPLORING THE ACCRETION MODEL OF M87 AND 3C 84 WITH THE FARADAY ROTATION MEASURE OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ya-Ping; Yuan, Feng; Xie, Fu-Guo, E-mail: fyuan@shao.ac.cn

    2016-10-20

    Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet; however, model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or the jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emissionmore » originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed external origin of the RM and why the RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.« less

  9. System-wide emissions implications of increased wind power penetration.

    PubMed

    Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter

    2012-04-03

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  10. Laboratory simulation of photoionized plasma among astronomical compact objects

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke; Yamamoto, Norimasa; Wang, Feilu; Salzmann, David; Li, Yutong; Rhee, Yong-Joo; Nishimura, Hiroaki; Takabe, Hideaki; Mima, Kunioki

    2008-11-01

    X-ray line emission with several-keV of photon energy was observed from photoionized accreting clouds, for example CYGNUS X-3 and VELA X-1, those are exposed by hard x-ray continuum from the compact objects, such as neutron stars, black holes, or white dwarfs, although accreting clouds are thermally cold. The x-ray continuum-induced line emission gives a good insight to the accreting clouds. We will present a novel laboratory simulation of the photoionized plasma under well-characterized conditions by using high-power laser facility. Blackbody radiator with 500-eV of temperature, as a miniature of a hot compact object, was created.Silicon (Si) plasma with 30-eV of electron temperature was produced in the vicinity of the 0.5-keV blackbody radiator. Line emissions of lithium- and helium-like Si ions was clearly observed around 2-keV of photon-energy from the thermally cold Si plasma, this result is hardly interpreted without consideration of the photoionization. Atomic kinetics code reveals importance of inner-shell ionization directly caused by incoming hard x-rays.

  11. Near-Infrared Emission Lines of Nova Cassiopeiae 1995

    NASA Astrophysics Data System (ADS)

    Rudy, R. J.; Lynch, D. K.; Mazuk, S. M.; Venturini, C. C.; Puetter, R. C.

    2000-12-01

    The slow nova V 723 Cas (Nova Cas 1995) exhibits comparatively narrow emission features (FWHM 500 km sec-1) that make it ideal for classifying weak lines and lines blended with stronger features. We present spectra from 0.8-2.5 microns that track the gradual incrase in excitation of Nova Cas and discuss the emission lines that were present. During the period encompassed by these observations Nova Cas reached only moderate excitation-the most energetic coronal lines were [S VIII] 9913 and [Al IX] 20444; lines such as [S IX] 12523 that are prominent in some novae were not detected. Additional coronal lines present include [Si VI] 19641, [Ca VIII] 23205, and [Si VII] 24807. New lines identified include features of [Fe V], [Fe VI]. These iron features are not coronal lines, arising from transitions among low-lying terms rather than within the ground term itself. Also detected was [Ti VI] 17151 that was first identified in V1974 Cygni (Nova Cyg 1992), and possibly [Ti VII] 22050. Accurate wavelengths for a number of unidentified lines are also presented. These unidentified features are discussed with regard to their likely level of excitation and their presence in other novae. This work was supported by the IR&D program of the Aerospace Corporation. RCP acknowledges support from NASA.

  12. A Suzaku Observation of the Neutral Fe-line Emission from RCW 86

    NASA Technical Reports Server (NTRS)

    Ueno, Masaru; Sato, Rie; Kataoka, Jun; Bamba, Aya; Harrus, Ilana; Hiraga, Junko; Hughes, John P.; Kilbourne, Caroline A.; Koyama, Katsuji; Kokubun, Motohide; hide

    2007-01-01

    The newly operational X-ray satellite Suzaku observed the supernova remnant (SNR) RCW 86 in February 2006 to study the nature of the 6.4 keV emission line first detected with the Advanced Satellite for Cosmology and Astronomy (ASCA). The new data confirms the existence of the line, localizing it for the first time inside a low temperature emission region and not at the locus of the continuum hard X-ray emission. We also report the first detection of a 7.1 keV line that we interpret as the K(beta) emission from neutral or low-ionized iron. The Fe-K line features are consistent with a non-equilibrium plasma of Fe-rich ejecta with n(sub e) less than or approx. equal to 10(exp 9)/cu cm s and kT(sub e) > 1 keV. We found a sign that Fe K(alpha) line is intrinsically broadened 47 (35-57) eV (99% error region). Cr-K line is also marginally detected, which is supporting the ejecta origin for the Fe-K line. By showing that the hard continuum above 3 keV has different spatial distribution from the Fe-K line, we confirmed it to be synchrotron X-ray emission.

  13. Tracing Slow Winds from T Tauri Stars via Low Velocity Forbidden Line Emission

    NASA Astrophysics Data System (ADS)

    Simon, Molly; Pascucci, Ilaria; Edwards, Suzan; Feng, Wanda; Rigliaco, Elisabetta; Gorti, Uma; Hollenbach, David J.; Tuttle Keane, James

    2016-06-01

    Protoplanetary disks are a natural result of star formation, and they provide the material from which planets form. The evolutional and eventual dispersal of protoplanetary disks play critical roles in determining the final architecture of planetary systems. Models of protoplanetary disk evolution suggest that viscous accretion of disk gas onto the central star and photoevaporation driven by high-energy photons from the central star are the main mechanisms that drive disk dispersal. Understanding when photoevaporation begins to dominate over viscous accretion is critically important for models of planet formation and planetary migration. Using Keck/HIRES (resolution of ~ 7 km/s) we analyze three low excitation forbidden lines ([O I] 6300 Å, [O I] 5577 Å, and [S II] 6731 Å) previously determined to trace winds (including photoevaporative winds). These winds can be separated into two components, a high velocity component (HVC) with blueshifts between ~30 - 150 km/s, and a low velocity component (LVC) with blueshifts on the order of ~5 km/s (Hartigan et al. 1995). We selected a sample of 32 pre-main sequence T Tauri stars in the Taurus-Auriga star-forming region (plus TW Hya) with disks that span a range of evolutionary stages. We focus on the origin of the LVC specifically, which we are able to separate into a broad component (BC) and a narrow component (NC) due to the high resolution of our optical spectra. We focus our analysis on the [O I] 6300 Å emission feature, which is detected in 30/33 of our targets. Interestingly, we find wind diagnostics consistent with photoevaporation for only 21% of our sample. We can, however, conclude that a specific component of the LVC is tracing a magnetohydrodynamic (MHD) wind rather than a photoevaporative wind. We will present the details behind these findings and the implications they have for planet formation more generally.

  14. Radiatively-suppressed spherical accretion under relativistic radiative transfer

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2018-03-01

    We numerically examine radiatively-suppressed relativistic spherical accretion flows on to a central object with mass M under Newtonian gravity and special relativity. We simultaneously solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double iteration process in the case of the intermediate optical depth. We find that the accretion flow is suppressed, compared with the freefall case in the nonrelativistic regime. For example, in the case of accretion on to a luminous core with accretion luminosity L*, the freefall velocity v normalized by the speed of light c under the radiative force in the nonrelativistic regime is β (\\hat{r}) = v/c = -√{(1-Γ _*)/(\\hat{r}+1-Γ _*)}, where Γ* (≡ L*/LE, LE being the Eddington luminosity) is the Eddington parameter and \\hat{r} (= r/rS, rS being the Schwarzschild radius) the normalized radius, whereas the infall speed at the central core is ˜0.7β(1), irrespective of the mass-accretion rate. This is due to the relativistic effect; the comoving flux is enhanced by the advective flux. We briefly examine and discuss an isothermal case, where the emission takes place in the entire space.

  15. Magnetospheric Gamma-Ray Emission in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Katsoulakos, Grigorios; Rieger, Frank M.

    2018-01-01

    The rapidly variable, very high-energy (VHE) gamma-ray emission from active galactic nuclei (AGNs) has been frequently associated with non-thermal processes occurring in the magnetospheres of their supermassive black holes. The present work aims to explore the adequacy of different gap-type (unscreened electric field) models to account for the observed characteristics. Based on a phenomenological description of the gap potential, we estimate the maximum extractable gap power L gap for different magnetospheric setups, and study its dependence on the accretion state of the source. L gap is found in general to be proportional to the Blandford–Znajek jet power L BZ and a sensitive function of gap size h, i.e., {L}{gap}∼ {L}{BZ}{(h/{r}g)}β , where the power index β ≥slant 1 is dependent on the respective gap setup. The transparency of the vicinity of the black hole to VHE photons generally requires a radiatively inefficient accretion environment and thereby imposes constraints on possible accretion rates, and correspondingly on L BZ. Similarly, rapid variability, if observed, may allow one to constrain the gap size h∼ c{{Δ }}t. Combining these constraints, we provide a general classification to assess the likelihood that the VHE gamma-ray emission observed from an AGN can be attributed to a magnetospheric origin. When applied to prominent candidate sources these considerations suggest that the variable (day-scale) VHE activity seen in the radio galaxy M87 could be compatible with a magnetospheric origin, while such an origin appears less likely for the (minute-scale) VHE activity in IC 310.

  16. TESTING THE PROPAGATING FLUCTUATIONS MODEL WITH A LONG, GLOBAL ACCRETION DISK SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, J Drew; Reynolds, Christopher S.

    2016-07-20

    The broadband variability of many accreting systems displays characteristic structures; log-normal flux distributions, root-mean square (rms)-flux relations, and long inter-band lags. These characteristics are usually interpreted as inward propagating fluctuations of the mass accretion rate in an accretion disk driven by stochasticity of the angular momentum transport mechanism. We present the first analysis of propagating fluctuations in a long-duration, high-resolution, global three-dimensional magnetohydrodynamic (MHD) simulation of a geometrically thin ( h / r ≈ 0.1) accretion disk around a black hole. While the dynamical-timescale turbulent fluctuations in the Maxwell stresses are too rapid to drive radially coherent fluctuations in themore » accretion rate, we find that the low-frequency quasi-periodic dynamo action introduces low-frequency fluctuations in the Maxwell stresses, which then drive the propagating fluctuations. Examining both the mass accretion rate and emission proxies, we recover log-normality, linear rms-flux relations, and radial coherence that would produce inter-band lags. Hence, we successfully relate and connect the phenomenology of propagating fluctuations to modern MHD accretion disk theory.« less

  17. Apparatus and Method for Communication over Power Lines

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor); Greer, III, Lawrence C. (Inventor); Nappier, Jennifer M. (Inventor)

    2017-01-01

    An apparatus and method are provided for communicating over power lines. The apparatus includes a coupling modem that is situated between a power line and a device. The coupling modem is configured to demodulate a signal received from the power line into a sine signal and a cosine signal. The coupling modem is also configured to modulate a communicated bit stream received from the device into a transmitted signal in order to impose the transmitted signal onto the power line.

  18. Apparatus and Method for Communication over Power Lines

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor); Greer, Lawrence C., III (Inventor); Nappier, Jennifer M. (Inventor)

    2015-01-01

    An apparatus and method are provided for communicating over power lines. The apparatus includes a coupling modem that is situated between a power line and a device. The coupling modem is configured to demodulate a signal received from the power line into a sine signal and a cosine signal. The coupling modem is also configured to modulate a communicated bit stream received from the device into a transmitted signal in order to impose the transmitted signal onto the power line.

  19. 3D Power Line Extraction from Multiple Aerial Images.

    PubMed

    Oh, Jaehong; Lee, Changno

    2017-09-29

    Power lines are cables that carry electrical power from a power plant to an electrical substation. They must be connected between the tower structures in such a way that ensures minimum tension and sufficient clearance from the ground. Power lines can stretch and sag with the changing weather, eventually exceeding the planned tolerances. The excessive sags can then cause serious accidents, while hindering the durability of the power lines. We used photogrammetric techniques with a low-cost drone to achieve efficient 3D mapping of power lines that are often difficult to approach. Unlike the conventional image-to-object space approach, we used the object-to-image space approach using cubic grid points. We processed four strips of aerial images to automatically extract the power line points in the object space. Experimental results showed that the approach could successfully extract the positions of the power line points for power line generation and sag measurement with the elevation accuracy of a few centimeters.

  20. 3D Power Line Extraction from Multiple Aerial Images

    PubMed Central

    Lee, Changno

    2017-01-01

    Power lines are cables that carry electrical power from a power plant to an electrical substation. They must be connected between the tower structures in such a way that ensures minimum tension and sufficient clearance from the ground. Power lines can stretch and sag with the changing weather, eventually exceeding the planned tolerances. The excessive sags can then cause serious accidents, while hindering the durability of the power lines. We used photogrammetric techniques with a low-cost drone to achieve efficient 3D mapping of power lines that are often difficult to approach. Unlike the conventional image-to-object space approach, we used the object-to-image space approach using cubic grid points. We processed four strips of aerial images to automatically extract the power line points in the object space. Experimental results showed that the approach could successfully extract the positions of the power line points for power line generation and sag measurement with the elevation accuracy of a few centimeters. PMID:28961204

  1. An Accreting White Dwarf near the Chandrasekhar Limit in the Andromeda Galaxy

    NASA Technical Reports Server (NTRS)

    Tang, Sumin; Bildsten, Lars; Wolf, William M.; Li, K. L.; Kong, Albert K. H.; Cao, Yi; Cenko, S. Bradley; De Cia, Annalisa; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; hide

    2014-01-01

    The iPTF (Intermediate Palomar Transient Factory) detection of the most recent outburst of the recurrent nova system RX J0045.4+4154 in the Andromeda Galaxy has enabled the unprecedented study of a massive (mass is greater than 1.3 solar masses) accreting white dwarf (WD). We detected this nova as part of the near daily iPTF monitoring of M31 to a depth of R (red band-pass filter) approximately equal to magnitude 21 and triggered optical photometry, spectroscopy and soft X-ray monitoring of the outburst. Peaking at an absolute magnitude of MR (red, mid-infrared band-pass filter) equals magnitude -6.6, and with a decay time of 1 magnitude per day, it is a faint and very fast nova. It shows optical emission lines of He/N and expansion velocities of 1900 to 2600 kilometers per second 1-4 days after the optical peak. The Swift monitoring of the X-ray evolution revealed a supersoft source (SSS) with kT (energy: Boltzmann constant times temperature) (sub eff (effective)) approximately equal to 90-110 electronvolts that appeared within 5 days after the optical peak, and lasted only 12 days. Most remarkably, this is not the first event from this system, rather it is a recurrent nova with a time between outbursts of approximately 1 year, the shortest known. Recurrent X-ray emission from this binary was detected by ROSAT in 1992 and 1993, and the source was well characterized as a mass greater than 1.3 solar masses WD SSS. Based on the observed recurrence time between different outbursts, the duration and effective temperature of the SS phase, MESA models of accreting WDs allow us to constrain the accretion rate to mass greater than 1.7x10 (sup -7) solar masses per year and WD mass greater than 1.30 solar masses. If the WD keeps 30 percent of the accreted material, it will take less than a million years to reach core densities high enough for carbon ignition (if made of C/O) or electron capture (if made of O/Ne) to end the binary evolution.

  2. Hard X-ray Emission from the M87 AGN Detected with NuSTAR

    NASA Astrophysics Data System (ADS)

    Wong, Ka-Wah; Nemmen, Rodrigo; Irwin, Jimmy; Lin, Dacheng

    2018-01-01

    M87 hosts a 3–6 billion solar mass black hole with a remarkable relativistic jet that has been regularly monitored in radio to TeV bands. However, hard X-ray emission above 10keV expected to primarily come from the jet or the accretion flow had never been detected from its unresolved X-ray core. We report NuSTAR detection up to 40 keV from the the central regions of M87. Together with simultaneous Chandra observations, we have constrained the dominant hard X-ray emission to be from its unresolved X-ray core, presumably in its quiescent state. The core spectrum is well fitted by a power-law. The measured flux density at 40keV is consistent with a jet origin, although emission from the advection-dominated accretion flow cannot be completely ruled out. The detected hard X-ray emission is significantly lower than that predicted by synchrotron self-Compton models introduced to explain emission above a GeV.

  3. IUE observations of long period eclipsing binaries - A study of accretion onto non-degenerate stars

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1980-01-01

    IUE observations made in 1978-1979 recorded a whole class of interacting long-period binaries similar to beta Lyrae, which includes RX Cas, SX Cas, V 367 Cyg, W Cru, beta Lyr, and W Ser, called the W Serpentis stars. These mass-transferring binaries with relatively high mass transfer rate show two prominent features in the far ultraviolet: a continuum with a color temperature higher than the one observed in the optical region (about 12,000 K), and a strong emission line spectrum with the N V doublet at 1240 A, C IV doublet at 1550 A and lines of Si II, Si III, Si IV, C II, Fe III, AI III, etc. These phenomena are discussed on the assumption that they are due to accretion onto non-degenerate stars.

  4. High-resolution soft X-ray spectra of Scorpius X-1 - The structure of circumsource accreting material

    NASA Technical Reports Server (NTRS)

    Kahn, S. M.; Seward, F. D.; Chlebowski, T.

    1984-01-01

    Four observations of Scorpius X-1 with the Objective Grating Spectrometer of the Einstein Observatory have provided high-resolution spectra (lambda/Delta lambda = approximately 20-50) in the wavelength range 7-46 A. The spectra reveal the presence of absorption structure due to oxygen, nitrogen, and iron, and variable emission structure associated with ionized iron and nitrogen. The strengths of these features suggest that the N/O abundance ratio in the absorbing and line emitting gas is anomalously high, which might indicate that these spectral components are associated with processed material, probably accreting matter transferred from the surface of an evolved companion. Constraints on the inclination of the system, however, imply that this cool, dense, accreting material must be well out of the plane of the binary system. Possible models for the origin and nature of this circumsource medium are discussed. An extensive discussion of the calibration of the Objective Grating Spectrometer and of the analysis of spectra acquired by that instrument is also provided.

  5. Irradiation of an Accretion Disc by a Jet: General Properties and Implications for Spin Measurements of Black Holes

    NASA Technical Reports Server (NTRS)

    T.Dauser; Garcia, J.; Wilms, J.; Boeck, M.; Brenneman, L. W.; Falanga, M.; Fukumura, Keigo; Reynolds, C. S.

    2013-01-01

    X-ray irradiation of the accretion disc leads to strong reflection features, which are then broadened and distorted by relativistic effects. We present a detailed, general relativistic approach to model this irradiation for different geometries of the primary X-ray source. These geometries include the standard point source on the rotational axis as well as more jet-like sources, which are radially elongated and accelerating. Incorporating this code in the RELLINE model for relativistic line emission, the line shape for any configuration can be predicted. We study how different irradiation geometries affect the determination of the spin of the black hole. Broad emission lines are produced only for compact irradiating sources situated close to the black hole. This is the only case where the black hole spin can be unambiguously determined. In all other cases the line shape is narrower, which could either be explained by a low spin or an elongated source. We conclude that for those cases and independent of the quality of the data, no unique solution for the spin exists and therefore only a lower limit of the spin value can be given

  6. Thin Disks Gone MAD: Magnetically Arrested Accretion in the Thin Regime

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; McKinney, Jonathan C.; Reynolds, Christopher S.

    2015-01-01

    The collection and concentration of surrounding large scale magnetic fields by black hole accretion disks may be required for production of powerful, spin driven jets. So far, accretion disks have not been shown to grow sufficient poloidal flux via the turbulent dynamo alone to produce such persistent jets. Also, there have been conflicting answers as to how, or even if, an accretion disk can collect enough magnetic flux from the ambient environment. Extending prior numerical studies of magnetically arrested disks (MAD) in the thick (angular height, H/R~1) and intermediate (H/R~.2-.6) accretion regimes, we present our latest results from fully general relativistic MHD simulations of the thinnest BH (H/R~.1) accretion disks to date exhibiting the MAD mode of accretion. We explore the significant deviations of this accretion mode from the standard picture of thin, MRI-driven accretion, and demonstrate the accumulation of large-scale magnetic flux.

  7. Quasispherical subsonic accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short

  8. A Systems-Level Perspective on Engine Ice Accretion

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Simon, Donald L.

    2013-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation sector. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. This work focuses on developing an accurate and reliable algorithm for detecting the accretion of ice in the low pressure compressor of a generic 40,000 lbf thrust class engine. The algorithm uses only the two shaft speed sensors and works regardless of engine age, operating condition, and power level. In a 10,000-case Monte Carlo simulation, the detection approach was found to have excellent capability at determining ice accretion from sensor noise with detection occurring when ice blocks an average of 6.8% of the low pressure compressor area. Finally, an initial study highlights a potential mitigation strategy that uses the existing engine actuators to raise the temperature in the low pressure compressor in an effort to reduce the rate at which ice accretes.

  9. Cross-Correlations in Quasar Radio Emission

    NASA Astrophysics Data System (ADS)

    Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey

    The main factors forming the complex evolution of the accretive astrophysical systems are nonlinearity, intermittency, nonstationarity and also collective phenomena. To discover the dynamic processes in these objects and to detain understanding their properties we need to use all the applicable analyzing methods. Here we use the Flicker-Noise Spectroscopy (FNS) as a phenomenological approach to analyzing and parameterizing the auto- and cross-correlations in time series of astrophysical objects dynamics. As an example we consider the quasar flux radio spectral density at frequencies 2.7 GHz and 8.1 GHz. Data have been observed by Dr. N. Tanizuka (Laboratory for Complex Systems Analysis, Osaka Prefecture University) in a period of 1979 to 1988 (3 309 days). According to mental habits quasar is a very energetic and distant active galactic nucleus containing a supermassive black hole by size 10-10,000 times the Schwarzschild radius. The quasar is powered by an accretion disc around the black hole. The accretion disc material layers, moving around the black hole, are under the influence of gravitational and frictional forces. It results in raising the high temperature and arising the resonant and collective phenomena reflected in quasar emission dynamics. Radio emission dynamics of the quasar 0215p015 is characterized by three quasi-periodic processes, which are prevalent in considering dynamics. By contrast the 1641p399's emission dynamics have not any distinguish processes. It means the presence of high intermittency in accretive modes. The second difference moment allows comparing the degree of manifesting of resonant and chaotic components in initial time series of the quasar radio emission. The comparative analysis shows the dominating of chaotic part of 1641p399's dynamics whereas the radio emission of 0215p015 has the predominance of resonant component. Analyzing the collective features of the quasar radio emission intensity demonstrates the significant

  10. Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Ekejiuba, I. E.; Okeke, P. N.

    1993-05-01

    Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.

  11. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2000-01-01

    The aim of this project was to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we: (1) Developed detailed calculations of disk structure to study physical conditions and investigate the observational effects of grain growth in T Tauri disks; (2) Studied the dusty emission and accretion rates in older disk systems, with ages closer to the expected epoch of (giant) planet formation at 3-10 Myr, and (3) Began a project to develop much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution.

  12. A New Gravitational-wave Signature from Standing Accretion Shock Instability in Supernovae

    NASA Astrophysics Data System (ADS)

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2016-09-01

    We present results from fully relativistic three-dimensional core-collapse supernova simulations of a non-rotating 15{M}⊙ star using three different nuclear equations of state (EoSs). From our simulations covering up to ˜350 ms after bounce, we show that the development of the standing accretion shock instability (SASI) differs significantly depending on the stiffness of nuclear EoS. Generally, the SASI activity occurs more vigorously in models with softer EoS. By evaluating the gravitational-wave (GW) emission, we find a new GW signature on top of the previously identified one, in which the typical GW frequency increases with time due to an accumulating accretion to the proto-neutron star (PNS). The newly observed quasi-periodic signal appears in the frequency range from ˜100 to 200 Hz and persists for ˜150 ms before neutrino-driven convection dominates over the SASI. By analyzing the cycle frequency of the SASI sloshing and spiral modes as well as the mass accretion rate to the emission region, we show that the SASI frequency is correlated with the GW frequency. This is because the SASI-induced temporary perturbed mass accretion strikes the PNS surface, leading to the quasi-periodic GW emission. Our results show that the GW signal, which could be a smoking-gun signature of the SASI, is within the detection limits of LIGO, advanced Virgo, and KAGRA for Galactic events.

  13. UV Spectroscopy of face-on accretion disks

    NASA Astrophysics Data System (ADS)

    Wade, Richard

    1996-07-01

    We will obtain GHRS spectra at 1 Angstrom resolution of three novalike variables that have low orbital inclinations, BD-7D3007 {= RW Sex}, HD174107 {= V603 Aql}, and MV-LYR. The blending and broadening of absorption lines from the accretion disk will not be as severe in these objects as in more edge-on systems, and we expect to see individual lines or blends that are distinctively characteristic of the varying projected velocities at different temperatures { i.e. radii} in the disk. These aspects of the UV disk spectrum have not previously been used as a tool to study accretion disk physics. Comparison of line strengths with our detailed models will indicate whether it is necessary to consider irradiated or NLTE disks, and test in a new way whether the disks are in steady state. The shapes of lines that would be formed in the inner disk will tell whether the inner disk is actually present, an important check on observational and theoretical suggestions that the inner disk is missing in some cataclysmic variables. The improved understanding and characterization of the photospheric spectrum will aid in the analysis of the wind-formed P Cygni lines that are seen in these objects. We will use grating G140L, covering much of the mid-UV spectrum with S/N up to 200.

  14. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  15. Motor run-up system. [power lines

    NASA Technical Reports Server (NTRS)

    Daeges, J. J. (Inventor)

    1975-01-01

    A starting system is described for bringing a large synchronous motor up to speed to prevent large power line disturbances at the moment the motor is connected to the power line. The system includes (1) a digital counter which generates a count determined by the difference in frequency between the power line and a small current generated by the synchronous motor; (2) a latch which stores the count; and (3) a comparator which compares the stored count with a newly generated count to determine whether the synchronous motor is accelerating or decelerating. Signals generated by the counter and comparator control the current to a clutch that couples a starting motor to the large synchronous motor.

  16. Water Masers and Accretion Disks in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Greenhill, L. J.

    2005-12-01

    There are over 50 sources of H2O maser emission in type-2 active galactic nuclei, a large fraction discovered in the last two years. Interferometer maps of water masers are presently the only means by which structures ⪉ 1 pc from massive black holes can be mapped directly, which is particularly important for type-2 systems because edge-on orientation and obscuration complicate study by other means. Investigations of several sources have demonstrated convincingly that the maser emission traces warped accretion disks 0.1 to 1 pc from central engines of order 106-108 M⊙. The same may be true for almost half the known (but unmapped) sources, based on spectral characteristics consistent with emission from edge-on accretion disks. Mapping these sources is a high priority. Study of most recently discovered masers requires long baseline arrays that include 100-m class apertures and would benefit from aggregate bit rates on the order of 1 gigabit per second. The Square Kilometer Array should provide an order of magnitude boost in mapping sensitivity, but outrigger antennas will be needed to achieve necesssary angular resolutions, as may be space-borne antennas.

  17. RX GEMINORUM: PHOTOMETRIC SOLUTIONS, (NEARLY UNIFORM) GAINER ROTATION, DONOR RADIAL VELOCITY SOLUTION, NON-LTE ACCRETION DISK MODELS OF Hα EMISSION PROFILES, AND SECULAR LIGHT CURVE CHANGES IN THE 20TH CENTURY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Edward C.; Etzel, Paul B., E-mail: olsoneco@aol.com, E-mail: pbetzel@mail.sdsu.edu

    We obtained full-orbit Iybvu intermediate-band photometry and CCD spectroscopy of the long-period Algol eclipsing binary RX Geminorum. Photometric solutions using the Wilson–Devinney code give a gainer rotation (hotter, mass-accreting component) about 15 times the synchronous rate. We describe a simple technique to detect departures from uniform rotation of the hotter component. These binaries radiate double-peaked Hα emission from a low-mass accretion disk around the gainer. We used an approximate non-LTE disk code to predict models in fair agreement with observations, except in the far wings of the emission profile, where the star–inner disk boundary layer emits extra radiation. Variations inmore » Hα emission derive from modulations in the transfer rate. A study of times of minima during the 20th century suggests that a perturbing third body is present near RX Gem.« less

  18. Constraining Accreting Binary Populations in Normal Galaxies

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.

    2011-01-01

    X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.

  19. Dynamo magnetic-field generation in turbulent accretion disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1991-01-01

    Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.

  20. Kinematical line broadening and spatially resolved line profiles from AGN.

    NASA Astrophysics Data System (ADS)

    Schulz, H.; Muecke, A.; Boer, B.; Dresen, M.; Schmidt-Kaler, T.

    1995-03-01

    We study geometrical effects for emission-line broadening in the optically thin limit by integrating the projected line emissivity along prespecified lines of sight that intersect rotating or expanding disks or cone-like configurations. Analytical expressions are given for the case that emissivity and velocity follow power laws of the radial distance. The results help to interpret spatially resolved spectra and to check the reliability of numerical computations. In the second part we describe a numerical code applicable to any geometrical configuration. Turbulent motions, atmospheric seeing and effects induced by the size of the observing aperture are simulated with appropriate convolution procedures. An application to narrow-line Hα profiles from the central region of the Seyfert galaxy NGC 7469 is presented. The shapes and asymmetries as well as the relative strengths of the Hα lines from different spatial positions can be explained by emission from a nuclear rotating disk of ionized gas, for which the distribution of Hα line emissivity and the rotation curve are derived. Appreciable turbulent line broadening with a Gaussian σ of ~40% of the rotational velocity has to be included to obtain a satisfactory fit.

  1. Faint AGN in z ≳ 6 Lyman-break galaxies powered by cold accretion and rapid angular momentum transport

    NASA Astrophysics Data System (ADS)

    Muñoz, Joseph A.; Furlanetto, Steven

    2012-11-01

    We develop a radiation pressure-balanced model for the interstellar medium of high-redshift galaxies that describes many facets of galaxy formation at z ≳ 6, including star formation rates and distributions and gas accretion on to central black holes. We first show that the vertical gravitational force in the disc of such a model is dominated by the disc self-gravity supported by the radiation pressure of ionizing starlight on gas. Constraining our model to reproduce the UV luminosity function of Lyman-break galaxies (LBGs), we limit the available parameter space to wind mass-loading factors one to four times the canonical value for momentum-driven winds. We then focus our study by exploring the effects of different angular momentum transport mechanisms in the galactic disc and find that accretion driven by gravitational torques, such as from linear spiral waves or non-linear orbit crossings, can build up black hole masses by z = 6 consistent with the canonical M-σ relation with a duty cycle of unity, while accretion mediated by a local viscosity such as in an α-disc results in negligible black hole (BH) accretion. Both gravitational torque models produce X-ray emission from active galactic nuclei (AGN) in high-redshift LBGs in excess of the estimated contribution from high-mass X-ray binaries. Using a recent analysis of deep Chandra observations by Cowie et al., we can already begin to rule out the most extreme regions of our parameter space: the inflow velocity of gas through the disc must either be less than one per cent of the disc circular velocity or the X-ray luminosity of the AGN must be substantially obscured. Moderately deeper future observations or larger sample sizes will be able to probe the more reasonable range of angular momentum transport models and obscuring geometries.

  2. Hyper-Eddington accretion in GRB

    NASA Astrophysics Data System (ADS)

    Janiuk, A.; Czerny, B.; Perna, R.; Di Matteo, T.

    2005-05-01

    Popular models of the GRB origin associate this event with a cosmic explosion, birth of a stellar mass black hole and jet ejection. Due to the shock collisions that happen in the jet, the gamma rays are produced and we detect a burst of duration up to several tens of seconds. This burst duration is determined by the lifetime of the central engine, which may be different in various scenarios. Characteristically, the observed bursts have a bimodal distribution and constitute the two classes: short (t < 2s) and long bursts. Theoretical models invoke the mergers of two neutron stars or a neutron star with a black hole, or, on the other hand, a massive star explosion (collapsar). In any of these models we have a phase of disc accretion onto a newly born black hole: the disc is formed from the disrupted neutron star or fed by the material fallback from the ejected collapsar envelope. The disc is extremely hot and dense, and the accretion rate is orders of magnitude higher than the Eddington rate. In such physical conditions the main cooling mechanism is neutrino emission, and one of possible ways of energy extraction from the accretion disc is the neutrino-antineutrino annihilation.

  3. Air emissions due to wind and solar power.

    PubMed

    Katzenstein, Warren; Apt, Jay

    2009-01-15

    Renewables portfolio standards (RPS) encourage large-scale deployment of wind and solar electric power. Their power output varies rapidly, even when several sites are added together. In many locations, natural gas generators are the lowest cost resource available to compensate for this variability, and must ramp up and down quickly to keep the grid stable, affecting their emissions of NOx and CO2. We model a wind or solar photovoltaic plus gas system using measured 1-min time-resolved emissions and heat rate data from two types of natural gas generators, and power data from four wind plants and one solar plant. Over a wide range of renewable penetration, we find CO2 emissions achieve approximately 80% of the emissions reductions expected if the power fluctuations caused no additional emissions. Using steam injection, gas generators achieve only 30-50% of expected NOx emissions reductions, and with dry control NOx emissions increase substantially. We quantify the interaction between state RPSs and NOx constraints, finding that states with substantial RPSs could see significant upward pressure on NOx permit prices, if the gas turbines we modeled are representative of the plants used to mitigate wind and solar power variability.

  4. ACCRETION DISK SIGNATURES IN TYPE I X-RAY BURSTS: PROSPECTS FOR FUTURE MISSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keek, L.; Wolf, Z.; Ballantyne, D. R., E-mail: laurens.keek@nasa.gov

    2016-07-20

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst–disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi , Neutron Star Interior Composition Explorer ( NICER ), Athena , and Large Observatory For X-ray Timing ( LOFT ). Burstmore » spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi -like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10{sup 7.5} erg cm{sup 2} s{sup 1} and also effectively constrain the reflection parameters for bright bursts with fluxes of ∼10{sup 7} erg cm{sup 2} s{sup 1} in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.« less

  5. Imaging accretion sources and circumbinary disks in young brown dwarfs

    NASA Astrophysics Data System (ADS)

    Reiners, Ansgar

    2010-09-01

    We propose to obtain deep WFC3/UVIS imaging observations of two accreting, nearby, young brown dwarf binaries. The first, 2M1207, is a brown dwarf with a planetary mass companion that became a benchmark in low-mass star formation and low-mass evolutionary models. The second, 2M0041, is a nearby young brown dwarf with clear evidence for accretion, but its space motion suggests a slightly higher age than the canonical accretion lifetime of 5-10 Myr. It has recently been discovered to be a binary and is likely to become a second benchmark object in this field. With narrow band images centered on the Halpha line that is indicative of accretion, we aim to determine the accretion ratio between the two components in each system. Halpha was observed in both systems but so far not spatially resolved. In particular, we want to search for accretion in the planetary mass companion of 2M1207. The evidence for accretion in 2M0041 and the possibility that it is in fact older than 10Myr suggests that the accretion lifetime is longer in brown dwarfs than in stars, and in particular that it is longer in brown dwarf binaries. Accretion could be sustained for a longer time if the accreting material is replenished by a circumbinary disk that might exist in both systems. We propose deep WFC/UVIS observations in the optical to search for circumbinary disks, similar to the famous disk around the binary TTauri system GG Tau.

  6. A Calibrated H-alpha Index to Monitor Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, M. D.

    2013-06-01

    Over an 8 year period we have developed a calibrated H-alpha index, similar to the more traditional H-beta index, based on spectrophotometric observations (Joner & Hintz, 2013) from the DAO 1.2-m Telescope. While developing the calibration for this filter set we also obtained spectra of a number of emission line systems such as high mass x-ray binaries (HMXB), Be stars, and young stellar objects. From this work we find that the main sequence stars fill a very tight relation in the H-alpha/H-beta plane and that the emission line objects are easily detected. We will present the overall location of these emission line objects. We will also present the changes experiences by these objects over the course of the years of the project.

  7. Linear Polarization Measurements of Chromospheric Emission Lines

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Keller, C. U.

    2003-01-01

    We have used the Zurich Imaging Stokes Polarimeter (ZIMPOL I) with the McMath-Pierce 1.5 m main telescope on Kitt Peak to obtain linear polarization measurements of the off-limb chromosphere with a sensitivity better than 1 x 10(exp -5). We found that the off-disk observations require a combination of good seeing (to show the emission lines) and a clean heliostat (to avoid contamination by scattered light from the Sun's disk). When these conditions were met, we obtained the following principal results: 1. Sometimes self-reversed emission lines of neutral and singly ionized metals showed linear polarization caused by the transverse Zeeman effect or by instrumental cross talk from the longitudinal Zeeman effect in chromospheric magnetic fields. Otherwise, these lines tended to depolarize the scattered continuum radiation by amounts that ranged up to 0.2%. 2. Lines previously known to show scattering polarization just inside the limb (such as the Na I lambda5889 D2 and the He I lambda5876 D3 lines) showed even more polarization above the Sun's limb, with values approaching 0.7%. 3. The O I triplet at lambda7772, lambda7774, and lambda7775 showed a range of polarizations. The lambda7775 line, whose maximum intrinsic polarizability, P(sub max), is less than 1%, revealed mainly Zeeman contributions from chromospheric magnetic fields. However, the more sensitive lambda7772 (P(sub max) = 19%) and lambda7774 (P(sub max) = 29%) lines had relatively strong scattering polarizations of approximately 0.3% in addition to their Zeeman polarizations. At times of good seeing, the polarization spectra resolve into fine structures that seem to be chromospheric spicules.

  8. Mapping accretion and its variability in the young open cluster NGC 2264: a study based on u-band photometry

    NASA Astrophysics Data System (ADS)

    Venuti, L.; Bouvier, J.; Flaccomio, E.; Alencar, S. H. P.; Irwin, J.; Stauffer, J. R.; Cody, A. M.; Teixeira, P. S.; Sousa, A. P.; Micela, G.; Cuillandre, J.-C.; Peres, G.

    2014-10-01

    Context. The accretion process has a central role in the formation of stars and planets. Aims: We aim at characterizing the accretion properties of several hundred members of the star-forming cluster NGC 2264 (3 Myr). Methods: We performed a deep ugri mapping as well as a simultaneous u-band+r-band monitoring of the star-forming region with CFHT/MegaCam in order to directly probe the accretion process onto the star from UV excess measurements. Photometric properties and stellar parameters are determined homogeneously for about 750 monitored young objects, spanning the mass range ~0.1-2 M⊙. About 40% of the sample are classical (accreting) T Tauri stars, based on various diagnostics (Hα, UV and IR excesses). The remaining non-accreting members define the (photospheric + chromospheric) reference UV emission level over which flux excess is detected and measured. Results: We revise the membership status of cluster members based on UV accretion signatures, and report a new population of 50 classical T Tauri star (CTTS) candidates. A large range of UV excess is measured for the CTTS population, varying from a few times 0.1 to ~3 mag. We convert these values to accretion luminosities and accretion rates, via a phenomenological description of the accretion shock emission. We thus obtain mass accretion rates ranging from a few 10-10 to ~10-7 M⊙/yr. Taking into account a mass-dependent detection threshold for weakly accreting objects, we find a >6σ correlation between mass accretion rate and stellar mass. A power-law fit, properly accounting for censored data (upper limits), yields Ṁacc ∝ M*1.4±0.3. At any given stellar mass, we find a large spread of accretion rates, extending over about 2 orders of magnitude. The monitoring of the UV excess on a timescale of a couple of weeks indicates that its variability typically amounts to 0.5 dex, i.e., much smaller than the observed spread in accretion rates. We suggest that a non-negligible age spread across the star

  9. Emission-line maps with OSIRIS-TF: The case of M101

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.

    2013-05-01

    We investigate the suitability of GTC/OSIRIS Tunable Filters (TFs) for obtaining emission-line maps of extended objects. We developed a technique to reconstruct an emission-line image from a set of images taken at consecutive central wavelengths. We demonstrate the feasibility of the reconstruction method by generating a flux calibrated Hα image of the well-known spiral galaxy M101. We tested our emission-line fluxes and ratios by using data present in the literature. We found that the differences in both Hα fluxes and N II/Hα line ratios are ~15% and ~50%, respectively. These results are fully in agreement with the expected values for our observational setup. The proposed methodology will allow us to use OSIRIS/GTC to perform accurate spectrophotometric studies of extended galaxies in the local Universe.

  10. Corona accretion in active galactic nuclei and the observational test

    NASA Astrophysics Data System (ADS)

    Qiao, E.; Liu, B.; Taam, R.; Yuan, W.

    2017-10-01

    In this talk, we propose a new accretion model, in which the matter is accreted initially in the form of a vertically extended, hot gas (corona) to the central supermassive black hole by capturing the interstellar medium or the stellar wind in active galactic nuclei (AGNs). In this scenario, when the initial mass accretion rate is greater than about 0.01 \\dot M_{Edd}, at a critical radius r_{d}, part of the hot gas begins to condense on to the equatorial disc plane of the black hole, forming an inner cold accretion disc. Then, the matter is accreted in the form of a disc-corona structure extending down to the ISCO of the black hole. We calculate the theoretical structure and the corresponding emergent spectra of the model. It is shown that the model can naturally explain the origin of the X-ray emission in AGNs. Meanwhile the model predicts a new geometry of the accretion flow, which can very well explain some observations, such as the correlation between the hard X-ray slope Γ and the reflection scaling factor R found in AGNs. Finally, we discuss the potential applications of the model to high mass X-ray binaries.

  11. DIBS independent of accretion in T Tauri stars

    NASA Technical Reports Server (NTRS)

    Ghandour, Louma; Jenniskens, Peter; Hartigan, P.

    1994-01-01

    The examination of high resolution spectra (5200 - 7000 Angstroms) of 36 T Tauri stars ranging in accretion rates was performed. Only the lambda lambda 5780, 5797, and 6613 bands were found detectable to within an equivalent width of 10 micro Angstroms. They are strongest in DG Tau, DR Tau, Dl Tau, and AS 353A. DR Tau was monitored over the course of four years; during this time, the accretion rate varied by a factor of five, but the equivalent widths of the DIB's (Diffuse Interstellar Bands) remained constant. The lack of correlation of the strength of the bands with the accretion rates implies that the bands are not directly produced by UV radiation from the accretion process. The bands have line strengths and ratios characteristic of the diffuse interstellar medium, from which we conclude that the diffuse interstellar bands seen in the spectra of T Tauri stars do not originate in the stars' immediate environment. Instead, they are part of a foreground extinction, probably due to the parent molecular cloud.

  12. The X-ray spectrum and time variability of narrow emission line galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1981-01-01

    X-ray spectral and temporal observations are reported for six narrow emission line galaxies (NELGs), all of which are fitted by power-law X-ray spectra of energy slope 0.8 and have column densities in the line of sight greater than 1 x 10 to the 22nd atoms/sq cm. Three of the objects, NGC 526a, NGC 2110 and MCG-5-23-16 are variable in their X-ray flux, and the latter two, along with NGC 5506 and NGC 7582, showed detectable variability in at least one observation. The measured X-ray properties of these NELGs, which also included NGC 2992, strongly resemble those of previously-measured type 1 Seyferts of the same X-ray luminosity and lead to the conclusion of great similarity between the NELGs and low-luminosity type 1 Seyferts. The implications of these observations for the optical line-emitting region structure of these galaxies are discussed.

  13. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk

    NASA Technical Reports Server (NTRS)

    Cannizzo, John; Gehrels, Neil

    2009-01-01

    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  14. Measurement of CO 2, CO, SO 2, and NO emissions from coal-based thermal power plants in India

    NASA Astrophysics Data System (ADS)

    Chakraborty, N.; Mukherjee, I.; Santra, A. K.; Chowdhury, S.; Chakraborty, S.; Bhattacharya, S.; Mitra, A. P.; Sharma, C.

    Measurements of CO 2 (direct GHG) and CO, SO 2, NO (indirect GHGs) were conducted on-line at some of the coal-based thermal power plants in India. The objective of the study was three-fold: to quantify the measured emissions in terms of emission coefficient per kg of coal and per kWh of electricity, to calculate the total possible emission from Indian thermal power plants, and subsequently to compare them with some previous studies. Instrument IMR 2800P Flue Gas Analyzer was used on-line to measure the emission rates of CO 2, CO, SO 2, and NO at 11 numbers of generating units of different ratings. Certain quality assurance (QA) and quality control (QC) techniques were also adopted to gather the data so as to avoid any ambiguity in subsequent data interpretation. For the betterment of data interpretation, the requisite statistical parameters (standard deviation and arithmetic mean) for the measured emissions have been also calculated. The emission coefficients determined for CO 2, CO, SO 2, and NO have been compared with their corresponding values as obtained in the studies conducted by other groups. The total emissions of CO 2, CO, SO 2, and NO calculated on the basis of the emission coefficients for the year 2003-2004 have been found to be 465.667, 1.583, 4.058, and 1.129 Tg, respectively.

  15. Molecular line emission models of Herbig-Haro objects. I - H2 emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Konigl, Arieh

    1991-01-01

    A comprehensive model for molecular hydrogen emssion in Herbig-Haro objects that are associated with the heads of radiative stellar jets is presented by using a simple representation of the jet head as a comprising a leading bow shock and a trailing jet shock, separated by a dense layer of cool shocked gas. Attention is given to collisional excitation in a nondissociative shock and formation pumping in the molecular reformation zone behind a dissociative shock, employing detailed shock and photodissociation-region emission models that incorporate most of the relevant atomic physics and chemistry. The conditions under which each of these excitation mechanisms may be expected to contribute to the observed emission are discussed, and a general diagnostic scheme for discriminating among them is constructed. Applying this scheme to the HH 1-2 system, strong evidence for excitation by the radiation field of a fast shock is found. It is inferred that FUV pumping contributes a significant fraction of the H2 line emission, and it is shown that this can occur only if the UV pump lines are not strongly self-shielded.

  16. Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Natta, A.; Rosotti, G.; Benisty, M.; Ercolano, B.; Ricci, L.

    2014-08-01

    Context. Transitional disks are thought to be a late evolutionary stage of protoplanetary disks whose inner regions have been depleted of dust. The mechanism responsible for this depletion is still under debate. To constrain the various models it is mandatory to have a good understanding of the properties of the gas content in the inner part of the disk. Aims: Using X-Shooter broad band - UV to near-infrared - medium-resolution spectroscopy, we derive the stellar, accretion, and wind properties of a sample of 22 transitional disks. The analysis of these properties allows us to place strong constraints on the gas content in a region very close to the star (≲0.2 AU) that is not accessible with any other observational technique. Methods: We fitted the spectra with a self-consistent procedure to simultaneously derive spectral type, extinction, and accretion properties of the targets. From the continuum excess at near-infrared wavelength we distinguished whether our targets have dust free inner holes. By analyzing forbidden emission lines, we derived the wind properties of the targets. We then compared our findings with results for classical T Tauri stars. Results: The accretion rates and wind properties of 80% of the transitional disks in our sample, which is strongly biased toward stongly accreting objects, are comparable to those of classical T Tauri stars. Thus, there are (at least) some transitional disks with accretion properties compatible with those of classical T Tauri stars, irrespective of the size of the dust inner hole. Only in two cases are the mass accretion rates much lower, while the wind properties remain similar. We detected no strong trend of the mass accretion rates with the size of the dust-depleted cavity or with the presence of a dusty optically thick disk very close to the star. These results suggest that, close to the central star, there is a gas-rich inner disk with a density similar to that of classical T Tauri star disks. Conclusions: The

  17. XMM-Newton spectroscopy of the accreting magnetar candidate 4U0114+65

    NASA Astrophysics Data System (ADS)

    Sanjurjo-Ferrrín, G.; Torrejón, J. M.; Postnov, K.; Oskinova, L.; Rodes-Roca, J. J.; Bernabeu, G.

    2017-10-01

    Aims: 4U0114+65 is one of the slowest known X-ray pulsars. We present an analysis of a pointed observation by the XMM-Newton X-ray telescope in order to study the nature of the X-ray pulsations and the accretion process, and to diagnose the physical properties of the donor's stellar wind. Methods: We analysed the energy-resolved light curve and the time-resolved X-ray spectra provided by the EPIC cameras on board XMM-Newton. We also analysed the first high-resolution spectrum of this source provided by the Reflection Grating Spectrometer. Results: An X-ray pulse of 9350 ± 160 s was measured. Comparison with previous measurements confirms the secular spin up of this source. We successfully fit the pulse-phase-resolved spectra with Comptonisation models. These models imply a very small (r 3 km) and hot (kT 2 - 3 keV) emitting region and therefore point to a hot spot over the neutron star (NS) surface as the most reliable explanation for the X-ray pulse. The long NS spin period, the spin-up rate, and persistent X-ray emission can be explained within the theory of quasi-spherical settling accretion, which may indicate that the magnetic field is in the magnetar range. Thus, 4U 0114+65 could be a wind-accreting magnetar. We also observed two episodes of low luminosity. The first was only observed in the low-energy light curve and can be explained as an absorption by a large over-dense structure in the wind of the B1 supergiant donor. The second episode, which was deeper and affected all energies, may be due to temporal cessation of accretion onto one magnetic pole caused by non-spherical matter capture from the structured stellar wind. The light curve displays two types of dips that are clearly seen during the high-flux intervals. The short dips, with durations of tens of seconds, are produced through absorption by wind clumps. The long dips, in turn, seem to be associated with the rarefied interclump medium. From the analysis of the X-ray spectra, we found evidence of

  18. Calibration of H-alpha/H-beta Indexes for Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, Michael D.

    2016-01-01

    In Joner and Hintz (2015) they report on a standard star system for calibration of H-alpha and H-beta observations. This work was based on data obtained with the Dominion Astrophysical Observatory 1.2-m telescope. As part of the data acquisition for that project, a large number of emission line objects were also observed. We will report on the preliminary results for the emission line data set. This will include a comparison of equivalent width measurements of each line with the matching index. We will also examine the relation between the absorption line objects previously published and the emission line objects, along with a discussion of the transition point. Object types included are Be stars, high mass x-ray binaries, one low mass x-ray binary, Herbig Ae/Be stars, pre-main sequence stars, T Tauri stars, young stellar objects, and one BY Draconis star. Some of these objects come from Cygnus OB-2, NGC 659, NGC 663, NGC 869 and NGC 884.

  19. JET PROPERTIES OF GeV-SELECTED RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES AND POSSIBLE CONNECTION TO THEIR DISK AND CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Na; Lin, Da-Bin; Liang, En-Wei

    The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlatedmore » with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.« less

  20. On the impact of CO{sub 2} emission-trading on power generation emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chappin, E.J.L.; Dijkema, G.P.J.

    2009-03-15

    In Europe one of the main policy instruments to meet the Kyoto reduction targets is CO{sub 2} emission-trading (CET), which was implemented as of January 2005. In this system, companies active in specific sectors must be in the possession of CO{sub 2} emission rights to an amount equal to their CO{sub 2} emission. In Europe, electricity generation accounts for one-third of CO{sub 2} emissions. Since the power generation sector has been liberalized, reregulated and privatized in the last decade, around Europe autonomous companies determine the sectors' CO{sub 2} emission. Short-term they adjust their operation, long-term they decide on (dis) investmentmore » in power generation facilities and technology selection. An agent-based model is presented to elucidate the effect of CET on the decisions of power companies in an oligopolistic market. Simulations over an extensive scenario-space show that there CET does have an impact. A long-term portfolio shift towards less-CO{sub 2} intensive power generation is observed. However, the effect of CET is relatively small and materializes late. The absolute emissions from power generation rise under most scenarios. This corresponds to the dominant character of current capacity expansion planned in the Netherlands (50%) and in Germany (68%), where companies have announced many new coal based power plants. Coal is the most CO{sub 2} intensive option available and it seems surprising that even after the introduction of CET these capacity expansion plans indicate a preference for coal. Apparently in power generation the economic effect of CO{sub 2} emission-trading is not sufficient to outweigh the economic incentives to choose for coal.« less

  1. Evolution of Pre-Main Sequence Accretion Disks

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2002-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we plan to: (1) Develop much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; (2) Study the dusty emission and accretion rates in these systems, with ages closer to the expected epoch of (giant) planet formation at 3-10 Myr; and (3) Develop detailed model disk structures consistent with observations to infer physical conditions in protoplanetary disks and to constrain possible grain growth as the first stage of planetesimal formation.

  2. Economical Emission-Line Mapping: ISM Properties of Nearby Protogalaxy Analogs

    NASA Astrophysics Data System (ADS)

    Monkiewicz, Jacqueline A.

    2017-01-01

    Optical emission line imaging can produce a wealth of information about the conditions of the interstellar medium, but a full set of custom emission-line filters for a professional-grade telescope camera can cost many thousands of dollars. A cheaper alternative is to use commercially-produced 2-inch narrow-band astrophotography filters. In order to use these standardized filters with professional-grade telescope cameras, custom filter mounts must be manufactured for each individual filter wheel. These custom filter adaptors are produced by 3-D printing rather than standard machining, which further lowers the total cost.I demonstrate the feasibility of this technique with H-alpha, H-beta, and [OIII] emission line mapping of the low metallicity star-forming galaxies IC10 and NGC 1569, taken with my astrophotography filter set on three different 2-meter class telescopes in Southern Arizona.

  3. Mini-Uav LIDAR for Power Line Inspection

    NASA Astrophysics Data System (ADS)

    Teng, G. E.; Zhou, M.; Li, C. R.; Wu, H. H.; Li, W.; Meng, F. R.; Zhou, C. C.; Ma, L.

    2017-09-01

    Light detection and ranging (LIDAR) system based on unmanned aerial vehicles (UAVs) recently are in rapid advancement, meanwhile portable and flexible mini-UAV-borne laser scanners have been a hot research field, especially for the complex terrain survey in the mountains and other areas. This study proposes a power line inspection system solution based on mini-UAV-borne LIDAR system-AOEagle, developed by Academy of Opto-Electronics, Chinese Academy of Sciences, which mounted on a Multi-rotor unmanned aerial vehicle for complex terrain survey according to real test. Furthermore, the point cloud data was explored to validate its applicability for power line inspection, in terms of corridor and line laser point clouds; deformation detection of power towers, etc. The feasibility and advantages of AOEagle have been demonstrated by the promising results based on the real-measured data in the field of power line inspection.

  4. Accretion geometry in the persistent Be/X-ray binary RXJ0440.9+4431

    NASA Astrophysics Data System (ADS)

    Ferrigno, C.; Farinelli, R.; Bozzo, E.; Pottschmidt, K.; Klochkov, D.; Kretschmar, P.

    2014-01-01

    The persistent Be/X-ray binary RXJ0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities (Swift, RXTE, XMM-Newton, and INTEGRAL). We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of ~ 2 × 1036 erg s-1. The luminosity dependency of the size of the black body emission region is found to be rBB ∝ LX0.39±0.02. This suggests that either matter accreting onto the neutron star hosted in RXJ0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the size of the black-body emitting hotspot is larger than the footprint of the accretion column. This phenomenon can be due to illumination of the surface by a growing column or by a a structure of the neutron star magnetic field more complicated than a simple dipole at least close to the surface.

  5. Double-peaked Emission Lines Due to a Radio Outflow in KISSR 1219

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharb, P.; Vaddi, S.; Subramanian, S.

    We present the results from 1.5 and 5 GHz phase-referenced VLBA and 1.5 GHz Karl G. Jansky Very Large Array (VLA) observations of the Seyfert 2 galaxy KISSR 1219, which exhibits double-peaked emission lines in its optical spectrum. The VLA and VLBA data reveal a one-sided core-jet structure at roughly the same position angles, providing evidence of an active galactic nucleus outflow. The absence of dual parsec-scale radio cores puts the binary black-hole picture in doubt for the case of KISSR 1219. The high brightness temperatures of the parsec-scale core and jet components (>10{sup 6} K) are consistent with thismore » interpretation. Doppler boosting with jet speeds of ≳0.55 c to ≳0.25 c , going from parsec to kiloparsec scales, at a jet inclination ≳50° can explain the jet one-sidedness in this Seyfert 2 galaxy. A blueshifted broad emission line component in [O iii] is also indicative of an outflow in the emission line gas at a velocity of ∼350 km s{sup −1}, while the [O i] doublet lines suggest the presence of shock-heated gas. A detailed line ratio study using the MAPPINGS III code further suggests that a shock+precursor model can explain the line ionization data well. Overall, our data suggest that the radio outflow in KISSR 1219 is pushing the emission line clouds, both ahead of the jet and in a lateral direction, giving rise to the double peak emission line spectra.« less

  6. Relativistic Jets on all Scales in Accreting Black Holes: Contributions from Simbol-X

    NASA Astrophysics Data System (ADS)

    Corbel, Stéphane

    2009-05-01

    In the last several years, multiwavelength observations of accreting black holes have allowed a general characterisation of black holes properties as they evolve along the course of their outburst cycles. Relativistic jets, in their multiple forms, have profoundly impacted our perception and understanding of emission processes in these systems. In these Proceedings, I will highlight some possible contributions from Simbol-X related to jets in accreting sources.

  7. QSO Broad Emission Line Asymmetries: Evidence of Gravitational Redshift?

    NASA Astrophysics Data System (ADS)

    Corbin, Michael R.

    1995-07-01

    The broad optical and ultraviolet emission lines of QSOs and active galactic nuclei (AGNs) display both redward and blueward asymmetries. This result is particularly well established for Hβ and C IV λ1549, and it has been found that Hβ becomes increasingly redward asymmetric with increasing soft X-ray luminosity. Two models for the origin of these asymmetries are investigated: (1) Anisotropic line emission from an ensemble of radially moving clouds, and (2) Two-component profiles consisting of a core of intermediate (˜1000-4000 km s-1) velocity width and a very broad (˜5000-20,000 km s-1) base, in which the asymmetries arise due to a velocity difference between the centroids of the components. The second model is motivated by the evidence that the traditional broad-line region is actually composed of an intermediate-line region (ILR) of optically thick clouds and a very broad line region (VBLR) of optically thin clouds lying closer to the central continuum source. Line profiles produced by model (1) are found to be inconsistent with those observed, being asymmetric mainly in their cores, whereas the asymmetries of actual profiles arise mainly from excess emission in their wings. By contrast, numerical fitting to actual Hβ and C IV λ1549 line profiles reveals that the majority can be accurately modeled by two components, either two Gaussians or the combination of a Gaussian base and a logarithmic core. The profile asymmetries in Hβ can be interpreted as arising from a shift of the base component over a range ˜6300 km s-1 relative to systemic velocity as defined by the position of the [O III] λ5007 line. A similar model appears to apply to C IV λ1549. The correlation between Hβ asymmetry and X-ray luminosity may thus be interpreted as a progressive red- shift of the VBLR velocity centroid relative to systemic velocity with increasing X-ray luminosity. This in turn suggests that the underlying effect is gravitational red shift, as soft X-ray emission

  8. The disc-jet symbiosis emerges: modelling the emission of Sagittarius A* with electron thermodynamics

    NASA Astrophysics Data System (ADS)

    Ressler, S. M.; Tchekhovskoy, A.; Quataert, E.; Gammie, C. F.

    2017-05-01

    We calculate the radiative properties of Sagittarius A* - spectral energy distribution, variability and radio-infrared images - using the first 3D, physically motivated black hole accretion models that directly evolve the electron thermodynamics in general relativistic MHD simulations. These models reproduce the coupled disc-jet structure for the emission favoured by previous phenomenological analytic and numerical works. More specifically, we find that the low frequency radio emission is dominated by emission from a polar outflow while the emission above 100 GHz is dominated by the inner region of the accretion disc. The latter produces time variable near-infrared (NIR) and X-ray emission, with frequent flaring events (including IR flares without corresponding X-ray flares and IR flares with weak X-ray flares). The photon ring is clearly visible at 230 GHz and 2 μm, which is encouraging for future horizon-scale observations. We also show that anisotropic electron thermal conduction along magnetic field lines has a negligible effect on the radiative properties of our model. We conclude by noting limitations of our current generation of first-principles models, particularly that the outflow is closer to adiabatic than isothermal and thus underpredicts the low frequency radio emission.

  9. Supermassive blackholes without super Eddington accretion

    NASA Astrophysics Data System (ADS)

    Christian, Damian Joseph; Kim, Matt I.; Garofalo, David; D'Avanzo, Jaclyn; Torres, John

    2017-08-01

    We explore the X-ray luminosity function at high redshift for active galactic nuclei using an albeit simplified model for mass build-up using a combination of mergers and mass accretion in the gap paradigm (Garofalo et al. 2010). Using a retrograde-dominated configuration we find an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion (Kim et al. 2016). This result is made more compelling by the connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. We will discuss our connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs that will help further understand their properties and evolution.

  10. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. I: Properties of the Corona and the Spectrum of Escaping Radiation

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Jorn; Begelman, Mitchell C.

    1997-01-01

    We present the properties of accretion disk corona (ADC) models in which the radiation field, the temperature, and the total opacity of the corona are determined self-consistently. We use a nonlinear Monte Carlo code to perform the calculations. As an example, we discuss models in which the corona is situated above and below a cold accretion disk with a plane-parallel (slab) geometry, similar to the model of Haardt & Maraschi. By Comptonizing the soft radiation emitted by the accretion disk, the corona is responsible for producing the high-energy component of the escaping radiation. Our models include the reprocessing of radiation in the accretion disk. Here the photons either are Compton-reflected or photoabsorbed, giving rise to fluorescent line emission and thermal emission. The self- consistent coronal temperature is determined by balancing heating (due to viscous energy dissipation) with Compton cooling, determined using the fully relativistic, angle-dependent cross sections. The total opacity is found by balancing pair productions with annihilations. We find that, for a disk temperature kT(sub BB) approx. less than 200 eV, these coronae are unable to have a self-consistent temperature higher than approx. 140 keV if the total optical depth is approx. less than 0.2, regardless of the compactness parameter of the corona and the seed opacity. This limitation corresponds to the angle-averaged spectrum of escaping radiation having a photon index approx. greater than 1.8 within the 5-30 keV band. Finally, all models that have reprocessing features also predict a large thermal excess at lower energies. These constraints make explaining the X-ray spectra of persistent black hole candidates with ADC models very problematic.

  11. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    PubMed Central

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  12. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    NASA Astrophysics Data System (ADS)

    Johansen, Anders; Mac Low, Mordecai-Mark; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.

  13. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.

  14. Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion

    NASA Technical Reports Server (NTRS)

    Kenyon, S. J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution.

  15. LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi

    2012-10-20

    Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon ismore » quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.« less

  16. A Deep Chandra ACIS Study of NGC 4151. II. The Innermost Emission Line Region and Strong Evidence for Radio Jet-NLR Cloud Collision

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Mundell, Carole G.; Karovska, Margarita; Zezas, Andreas

    2011-07-01

    We have studied the X-ray emission within the inner ~150 pc radius of NGC 4151 by constructing high spatial resolution emission line images of blended O VII, O VIII, and Ne IX. These maps show extended structures that are spatially correlated with the radio outflow and optical [O III] emission. We find strong evidence for jet-gas cloud interaction, including morphological correspondences with regions of X-ray enhancement, peaks of near-infrared [Fe II] emission, and optical clouds. In these regions, moreover, we find evidence of elevated Ne IX/O VII ratios; the X-ray emission of these regions also exceeds that expected from nuclear photoionization. Spectral fitting reveals the presence of a collisionally ionized component. The thermal energy of the hot gas suggests that >~ 0.1% of the estimated jet power is deposited into the host interstellar medium through interaction between the radio jet and the dense medium of the circumnuclear region. We find possible pressure equilibrium between the collisionally ionized hot gas and the photoionized line-emitting cool clouds. We also obtain constraints on the extended iron and silicon fluorescent emission. Both lines are spatially unresolved. The upper limit on the contribution of an extended emission region to the Fe Kα emission is <~ 5% of the total, in disagreement with a previous claim that 65% of the Fe Kα emission originates in the extended narrow line region.

  17. Regimes of mini black hole abandoned to accretion

    NASA Astrophysics Data System (ADS)

    Paik, Biplab

    2018-01-01

    Being inspired by the Eddington’s idea, along with other auxiliary arguments, it is unveiled that there exist regimes of a black hole that would prohibit accretion of ordinary energy. In explicit words, there exists a lower bound to black hole mass below which matter accretion process does not run for black holes. Not merely the baryonic matter, but, in regimes, also the massless photons could get prohibited from rushing into a black hole. However, unlike the baryon accretion abandoned black hole regime, the mass-regime of a black hole prohibiting accretion of radiation could vary along with its ambient temperature. For example, we discuss that earlier to 10‑8 s after the big-bang, as the cosmological temperature of the Universe grew above ˜ 1014 K, the mass range of black hole designating the radiation accretion abandoned regime, had to be in varying state being connected with the instantaneous age of the evolving Universe by an “one half” power law. It happens to be a fact that a black hole holding regimes prohibiting accretion of energy is gigantic by its size in comparison to the Planck length-scale. Hence the emergence of these regimes demands mini black holes for not being viable as profound suckers of energy. Consideration of accretion abandoned regimes could be crucial for constraining or judging the evolution of primordial black holes over the age of the Universe.

  18. Long-orbital-period Prepolars Containing Early K-type Donor Stars. Bottleneck Accretion Mechanism in Action

    NASA Astrophysics Data System (ADS)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.; Miroshnichenko, A. S.

    2016-03-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.

  19. THE NATURE OF ACTIVE GALACTIC NUCLEI WITH VELOCITY OFFSET EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller-Sánchez, F.; Comerford, J.; Stern, D.

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ∼0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offsetmore » of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Pa α emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Pa α emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1–0.″4 (0.1–0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies.« less

  20. Emissions of mercury from the power sector in Poland

    NASA Astrophysics Data System (ADS)

    Zyśk, J.; Wyrwa, A.; Pluta, M.

    2011-01-01

    Poland belongs to the European Union countries with the highest mercury emissions. This is mainly related to coal combustion. This paper presents estimates of mercury emissions from power sector in Poland. In this work, the bottom-up approach was applied and over 160 emission point sources were analysed. For each, the characteristics of the whole technological chain starting from fuel quality, boiler type as well as emission controls were taken into account. Our results show that emissions of mercury from brown coal power plants in 2005 were nearly four times greater than those of hard coal power plants. These estimates differ significantly from national statistics and some possible reasons are discussed. For the first time total mercury emissions from the Polish power sector were differentiated into its main atmospheric forms: gaseous elemental (GEM), reactive gaseous (RGM) and particulate-bound mercury. Information on emission source location and the likely vertical distribution of mercury emissions, which can be used in modelling of atmospheric dispersion of mercury is also provided.