Sample records for acculinna beam line

  1. First radioactive beams at ACCULINNA-2 facility and first proposed experiment

    NASA Astrophysics Data System (ADS)

    Bezbakh, A. A.; Beekman, W.; Chudoba, V.; Fomichev, A. S.; Golovkov, M. S.; Gorshkov, A. V.; Grigorenko, L. V.; Kaminski, G.; Krupko, S. A.; Mentel, M.; Nikolskii, E. Yu.; Parfenova, Yu. L.; Plucinski, P.; Sidorchuk, S. I.; Slepnev, R. S.; Sharov, P. G.; Ter-Akopian, G. M.; Zalewski, B.

    2018-04-01

    New fragment separator ACCULINNA-2 was installed at the primary beam line of the U-400M cyclotron in 2016. Recently, first radioactive ion beams were obtained. The design parameters of new facility were experimentally confirmed. Intensity, purity and transverse profile of several secondary beams at the final focal plane were studied. The intensities obtained for the secondary beams of 14B, 12Be, 9;11Li, 6;8He in the fragmentation reaction 15N (49.7 AMeV) + Be (2 mm) are in average 15 times higher in comparison to the ones produced at its forerunner ACCULINNA separator. The ACCULINNA-2 separator will become a backbone facility at the FLNR for the research in the field of light exotic nuclei in the vicinity of the nuclear drip lines. The planned first experiment, aimed for the observation of the 7H nucleus at ACCULINNA-2, is outlined.

  2. A specialized bioengineering ion beam line

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I. G.; Wiedemann, H.

    2007-04-01

    A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology.

  3. BEAM TRANSPORT LINES FOR THE BSNS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEI, J.

    2006-06-26

    This paper presents the design of two beam transport lines at the BSNS: one is the injection line from the Linac to the RCS and the other is the target line from the RCS to the target station. In the injection beam line, space charge effects, transverse halo collimation, momentum tail collimation and debunching are the main concerned topics. A new method of using triplet cells and stripping foils is used to collimate transverse halo. A long straight section is reserved for the future upgrading linac and debuncher. In the target beam line, large halo emittance, beam stability at themore » target due to kicker failures and beam jitters, shielding of back-scattering neutrons from the target are main concerned topics. Special bi-gap magnets will be used to reduce beam losses in the collimators in front of the target.« less

  4. Development of the PEFP's beam line BPM

    NASA Astrophysics Data System (ADS)

    Ryu, Jin-Yeong; Kwon, Hyeok-Jung; Jang, Ji-Ho; Kim, Han-Sung; Seol, Kyung-Tae; Cho, Yong-Sub

    2013-01-01

    The Proton Engineering Frontier Project (PEFP) has 20-MeV and 100-MeV beam lines to supply proton beams to users. A stripline-type Beam Position Monitor (BPM) was designed and fabricated in order to measure the beam's position in the beam line. The RF properties of the BPM were measured and compared with the simulation. After the sensitivity of the BPM at a test stand had been obtained, we performed a beam test in a test beam line of the PEFP 20-MeV proton linac.

  5. Shielding Analyses for VISION Beam Line at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Irina; Gallmeier, Franz X

    2014-01-01

    Full-scale neutron and gamma transport analyses were performed to design shielding around the VISION beam line, instrument shielding enclosure, beam stop, secondary shutter including a temporary beam stop for the still closed neighboring beam line to meet requirement is to achieve dose rates below 0.25 mrem/h at 30 cm from the shielding surface. The beam stop and the temporary beam stop analyses were performed with the discrete ordinate code DORT additionally to Monte Carlo analyses with the MCNPX code. Comparison of the results is presented.

  6. Characterization of the Goubau line for testing beam diagnostic instruments

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.

    2017-12-01

    One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.

  7. In-line beam current monitor

    DOEpatents

    Ekdahl, Jr., Carl A.; Frost, Charles A.

    1986-01-01

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  8. In-line beam current monitor

    DOEpatents

    Ekdahl, C.A. Jr.; Frost, C.A.

    1984-11-13

    An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.

  9. Investigation of Beam Emittance and Beam Transport Line Optics on Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Andrew; Syphers, Michael

    2017-10-06

    Effects of beam emittance, energy spread, optical parameters and magnet misalignment on beam polarization through particle transport systems are investigated. Particular emphasis will be placed on the beam lines being used at Fermilab for the development of the muon beam for the Muon g-2 experiment, including comparisons with the natural polarization resulting from pion decay, and comments on the development of systematic correlations among phase space variables.

  10. Laser-accelerated ion beam diagnostics with TOF detectors for the ELIMED beam line

    NASA Astrophysics Data System (ADS)

    Milluzzo, G.; Scuderi, V.; Amico, A. G.; Borghesi, M.; Cirrone, G. A. P.; Cuttone, G.; De Napoli, M.; Doria, D.; Dostal, J.; Larosa, G.; Leanza, R.; Margarone, D.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Velyhan, A.

    2017-02-01

    Laser-accelerated ion beams could represent the future of particle acceleration in several multidisciplinary applications, as for instance medical physics, hadrontherapy and imaging field, being a concrete alternative to old paradigm of acceleration, characterized by huge and complex machines. In this framework, following on from the ELIMED collaboration, launched in 2012 between INFN-LNS and ELI-Beamlines, in 2014 a three-years contract has been signed between the two institutions for the design and the development of a complete transport beam-line for high-energy ion beams (up to 60 MeV) coupled with innovative diagnostics and in-air dosimetry devices. The beam-line will be installed at the ELI-Beamlines facility and will be available for users. The measurement of the beam characteristics, such as energy spectra, angular distributions and dose-rate is mandatory to optimize the transport as well as the beam delivery at the irradiation point. In order to achieve this purpose, the development of appropriate on-line diagnostics devices capable to detect high-pulsed beams with high accuracy, represents a crucial point in the ELIMED beamline development. The diagnostics solution, based on the use of silicon carbide (SiC) and diamond detectors using TOF technique, will be presented together with the preliminary results obtained with laser-accelerated proton beams.

  11. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    PubMed Central

    Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

    2012-01-01

    Abstract Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) PMID:22930653

  12. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOERSTER,C.

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas aftermore » a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream

  13. Neutron skyshine calculations with the integral line-beam method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gui, A.A.; Shultis, J.K.; Faw, R.E.

    1997-10-01

    Recently developed line- and conical-beam response functions are used to calculate neutron skyshine doses for four idealized source geometries. These calculations, which can serve as benchmarks, are compared with MCNP calculations, and the excellent agreement indicates that the integral conical- and line-beam method is an effective alternative to more computationally expensive transport calculations.

  14. Development of slow positron beam lines and applications

    NASA Astrophysics Data System (ADS)

    Mondal, Nagendra Nath

    2018-05-01

    A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.

  15. Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.

    DTIC Science & Technology

    1982-07-01

    of my research to the mainstream of technology. The techniques used for beam processing are distinguished by their * ~.* beam source and method by...raster scanned CW lasers (CWL), pulsed ion beams (PI), area pulsed electron beams (PEE), raster scanned (RSEB) or multi - scanned electron beams (MSEB...where high quality or tailored profiles are required. Continuous wave lasers and multi -scanned or swept-line electron beams are the most likely candidates

  16. The integral line-beam method for gamma skyshine analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J.K.; Faw, R.E.; Bassett, M.S.

    1991-03-01

    This paper presents a refinement of a simplified method, based on line-beam response functions, for performing skyshine calculations for shielded and collimated gamma-ray sources. New coefficients for an empirical fit to the line-beam response function are provided and a prescription for making the response function continuous in energy and emission direction is introduced. For a shielded source, exponential attenuation and a buildup factor correction for scattered photons in the shield are used. Results of the new integral line-beam method of calculation are compared to a variety of benchmark experimental data and calculations and are found to give generally excellent agreementmore » at a small fraction of the computational expense required by other skyshine methods.« less

  17. Development of a beam line for radio-isotope production at the KOMAC

    NASA Astrophysics Data System (ADS)

    Kim, Han-Sung

    2016-09-01

    A new beam line of the 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex), aiming for RI (radioisotope) production has been constructed reflecting the increasing demands for various RIs (radioisotopes), such as Sr-82 and Cu-67 for medical applications. Proton beam with beam energy of 100 MeV and an average current of 0.6 mA is directed to the 100-mm-diameter production target through a beam window made of aluminum-beryllium alloy. Major components of the newly-installed beam line include electromagnets for bending and focusing, beam diagnostic systems such as a BPM (beam position monitor) and a BCM (beam current monitor), and a vacuum pumping system based on an ion pump. In this paper, the design features and the installation of the RI-production beam line at the KOMAC are given.

  18. Beam line BL11 for LIGA process at the NewSUBARU

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Utsumi, Yuichi; Hattori, Tadashi

    2001-07-01

    A beam line BL11 is constructed for exposure Hard X-ray Lithography (HXL) in the LIGA (German acronym for Lithographite Galvanoformung and Abformung) process at the synchrotron radiation (SR) facility NewSUBARU of the Laboratory of Advanced Science and Technology for Industry (LASTI) in Himeji Institute of Technology (HIT). This beam line was designed by the criteria; photon energy range 4-6 keV, a beam spot size on the exposure stage ⩾60×5 mm 2, a density of total irradiated photons ⩾10 11 photons/cm 2. The PMMA sheet etching was successfully demonstrated by using the output beam. We conclude that this beam line performs sufficiently well to study the exposure of HXL in the LIGA process.

  19. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report themore » resulting neutron and photon dose fields.« less

  20. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O.

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  1. Fiber Optic Picosecond Laser Pulse Transmission Line for Hydrogen Ion Beam Profile Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Huang, Chunning; Aleksandrov, Alexander V

    2013-01-01

    We present a fiber optic laser pulse transmission line for non-intrusive longitudinal profile measurement of the hydrogen ion (H-) beam at the front-end of the Spallation Neutron Source (SNS) accelerator. The 80.5 MHz, 2.5 ps, multi-killowatt optical pulses are delivered to the accelerator beam line through a large mode area polarization maintaining optical fiber to ensure a high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter and pulse width broadening over a 100-ft fiber line are experimentally investigated. A successful measurement of the H- beam microbunch (~130 ps) profile is obtained. Our experiment is the first demonstrationmore » of particle beam profile diagnostics using fiber optic laser pulse transmission line.« less

  2. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    DOE PAGES

    Friedman, Alex

    2013-10-19

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, which each have unique arrival times and may have unique kinetic energies. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: thatmore » the path lengths of the beams in a group must be equal, and that any delay of \\main-pulse" beams relative to \\foot-pulse" beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying \\di erential acceleration" to individual beams or sets of beam at strategic stages of the transport lines. That is, by accelerating some beams \\sooner" and others \\later," it is possible to simplify the beam line con guration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use di erential acceleration to e ect the simultaneous arrival on target of a set of beams ( e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model con gurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.« less

  3. New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE.

    PubMed

    Seo, P-N; Bowman, J D; Gericke, M; Gillis, R C; Greene, G L; Leuschner, M B; Long, J; Mahurin, R; Mitchell, G S; Penttila, S I; Peralta, G; Sharapov, E I; Wilburn, W S

    2005-01-01

    The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world.

  4. Beam Transport of 4 GeV Protons from AGS to the Proton Interrogation Target of the Neutrino Line (Z_line) and Effect of the Air on the Transported Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoupas,N.; Ahrens, L.; Pile, P.

    2008-10-01

    As part of the preparation for the Proton Interrogation Experiment, we have calculated the beam optics for the transport of 4 GeV protons, from the AGS extraction point, to the 'Cross-Section Target Wheel 1' and to the 'Proton Interrogation Target'. In this technical note we present three possible beam-transports each corresponding to a particular Fast Extracted Beam W B setup of the AGS. In addition we present results on the effect of the atmospheric air, (which fills the drift space of the last 100 [m] of the transport line), on the size of the beam, at two locations along themore » drift space, one location at the middle of the drift space and the other at the end where the 'Proton Interrogation Target' is placed. All the beam transports mentioned above require the removal of the WD1 dipole magnet, which is the first magnet of the W-line, because it acts as a limiting beam aperture, and the magnet is not used in the beam transport. An alternative solution of a beam transport, which does not require the removal of the WD1 magnet, is also presented. In this solution, which models the transport line using the TURTLE computer code[7], the vertical beam sizes at the location of the WD1 magnet is minimized to allow 'lossless' beam transport at the location of the WD1 magnet. A similar solution, but using a MAD model of the line, is also presented.« less

  5. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will bemore » installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.« less

  6. BEAM EXTRACTION FROM THE RECYCLER RING TO P1 LINE AT FERMILAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, M.; Capista, D.; Adams, P.

    The transfer line for beam extraction from the Recycler ring to P1 line provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. It was designed in 2012. The kicker magnets at RR520 and the lambertson magnet at RR522 in the RR were installed in 2014 Summer Shutdown, the elements of RR to P1 Stub (permanent quads, trim quads, correctors, BPMs, the toroid at 703 and vertical bending dipole at V703 (ADCW) were installed in 2015 Summermore » Shutdown. On Tuesday, June 21, 2016, beam line from the Recycler Ring to P1 line was commissioned. The detailed results will be presented in this report.« less

  7. Skyshine line-beam response functions for 20- to 100-MeV photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brockhoff, R.C.; Shultis, J.K.; Faw, R.E.

    1996-06-01

    The line-beam response function, needed for skyshine analyses based on the integral line-beam method, was evaluated with the MCNP Monte Carlo code for photon energies from 20 to 100 MeV and for source-to-detector distances out to 1,000 m. These results are compared with point-kernel results, and the effects of bremsstrahlung and positron transport in the air are found to be important in this energy range. The three-parameter empirical formula used in the integral line-beam skyshine method was fit to the MCNP results, and values of these parameters are reported for various source energies and angles.

  8. Optimization of solenoid based low energy beam transport line for high current H+ beams

    NASA Astrophysics Data System (ADS)

    Pande, R.; Singh, P.; Rao, S. V. L. S.; Roy, S.; Krishnagopal, S.

    2015-02-01

    A 20 MeV, 30 mA CW proton linac is being developed at BARC, Mumbai. This linac will consist of an ECR ion source followed by a Radio Frequency Quadrupole (RFQ) and Drift tube Linac (DTL). The low energy beam transport (LEBT) line is used to match the beam from the ion source to the RFQ with minimum beam loss and increase in emittance. The LEBT is also used to eliminate the unwanted ions like H2+ and H3+ from entering the RFQ. In addition, space charge compensation is required for transportation of such high beam currents. All this requires careful design and optimization. Detailed beam dynamics simulations have been done to optimize the design of the LEBT using the Particle-in-cell code TRACEWIN. We find that with careful optimization it is possible to transport a 30 mA CW proton beam through the LEBT with 100% transmission and minimal emittance blow up, while at the same time suppressing unwanted species H2+ and H3+ to less than 3.3% of the total beam current.

  9. Realization of compact tractor beams using acoustic delay-lines

    NASA Astrophysics Data System (ADS)

    Marzo, A.; Ghobrial, A.; Cox, L.; Caleap, M.; Croxford, A.; Drinkwater, B. W.

    2017-01-01

    A method for generating stable ultrasonic levitation of physical matter in air using single beams (also known as tractor beams) is demonstrated. The method encodes the required phase modulation in passive unit cells into which the ultrasonic sources are mounted. These unit cells use waveguides such as straight and coiled tubes to act as delay-lines. It is shown that a static tractor beam can be generated using a single electrical driving signal, and a tractor beam with one-dimensional movement along the propagation direction can be created with two signals. Acoustic tractor beams capable of holding millimeter-sized polymer particles of density 1.25 g/cm3 and fruit-flies (Drosophila) are demonstrated. Based on these design concepts, we show that portable tractor beams can be constructed with simple components that are readily available and easily assembled, enabling applications in industrial contactless manipulation and biophysics.

  10. Precision Control of the Electron Longitudinal Bunch Shape Using an Emittance-Exchange Beam Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Gwanghui; Cho, Moo -Hyun; Namkung, W.

    2017-03-09

    Here, we report on the experimental generation of relativistic electron bunches with a tunable longitudinal bunch shape. A longitudinal bunch-shaping (LBS) beam line, consisting of a transverse mask followed by a transverse-to-longitudinal emittance exchange (EEX) beam line, is used to tailor the longitudinal bunch shape (or current profile) of the electron bunch. The mask shapes the bunch’s horizontal profile, and the EEX beam line converts it to a corresponding longitudinal profile. The Argonne wakefield accelerator rf photoinjector delivers electron bunches into a LBS beam line to generate a variety of longitudinal bunch shapes. The quality of the longitudinal bunch shapemore » is limited by various perturbations in the exchange process. We develop a simple method, based on the incident slope of the bunch, to significantly suppress the perturbations.« less

  11. Note: Characteristic beam parameter for the line electron gun.

    PubMed

    Iqbal, M; Islam, G U; Zhou, Z; Chi, Y

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm(2) at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm(2)), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  12. Note: Characteristic beam parameter for the line electron gun

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm2 at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm2), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  13. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    NASA Astrophysics Data System (ADS)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  14. Note: Characteristic beam parameter for the line electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, M.; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049; Islam, G. U.

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm{sup 2} at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm{sup 2}), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  15. An after-market, five-port vertical beam line extension for the PETtrace

    NASA Astrophysics Data System (ADS)

    Barnhart, T. E.; Engle, J. W.; Severin, G. W.; Valdovinos, H. F.; Gagnon, K.; Nickles, R. J.

    2012-12-01

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port ♯2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.

  16. An after-market, five-port vertical beam line extension for the PETtrace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhart, T. E.; Engle, J. W.; Severin, G. W.

    2012-12-19

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port Music-Sharp-Sign 2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.

  17. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  18. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Adam K.; Gallagher, Molly; Usero, Antonio

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know themore » absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.« less

  19. In situ baking method for degassing of a kicker magnet in accelerator beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, Norio; Yanagibashi, Toru

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuummore » chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.« less

  20. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogomilov, M.; Karadzhov, Y.; Kolev, D.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In thismore » paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.« less

  1. Design of the low energy beam transport line for the China spallation neutron source

    NASA Astrophysics Data System (ADS)

    Li, Jin-Hai; Ouyang, Hua-Fu; Fu, Shi-Nian; Zhang, Hua-Shun; He, Wei

    2008-03-01

    The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper. The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.

  2. The High Resolution Powder Diffraction Beam Line at ESRF.

    PubMed

    Fitch, A N

    2004-01-01

    The optical design and performance of the high-resolution powder diffraction beam line BM16 at ESRF are discussed and illustrated. Some recent studies carried out on BM16 are described, including crystal structure solution and refinement, anomalous scattering, in situ measurements, residual strain in engineering components, investigation of microstructure, and grazing-incidence diffraction from surface layers. The beam line is built on a bending magnet, and operates in the energy range from 5 keV to 40 keV. After the move to an undulator source in 2002, it will benefit from an extented energy range up to 60 keV and increased flux and resolution. It is anticipated that enhancements to the data quality will be achieved, leading to the solution of larger crystal structures, and improvements in the accuracy of refined structures. The systematic exploitation of anisotropic thermal expansion will help reduce the effects of peak overlap in the analysis of powder diffraction data.

  3. A line scanned light-sheet microscope with phase shaped self-reconstructing beams.

    PubMed

    Fahrbach, Florian O; Rohrbach, Alexander

    2010-11-08

    We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.

  4. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  5. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scisciò, M.; Antici, P., E-mail: patrizio.antici@polytechnique.edu; INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2

    2016-03-07

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequencymore » (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.« less

  6. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths resultsmore » in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of

  7. Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boles, J L; Reyes, S; Ahle, L E

    Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

  8. The Imaging and Medical Beam Line at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  9. The Imaging and Medical Beam Line at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton

    2010-07-23

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the 'Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stemmore » cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1 - monochromatic and white - to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.« less

  10. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of threemore » used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).« less

  11. SU-C-207A-06: On-Line Beam Range Verification with Multiple Scanning Particle Beams: Initial Feasibility Study with Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Y; Sun, X; Lu, W

    Purpose: To investigate the feasibility and requirement for intra-fraction on-line multiple scanning particle beam range verifications (BRVs) with in-situ PET imaging, which is beyond the current single-beam BRV with extra factors that will affect the BR measurement accuracy, such as beam diameter, separation between beams, and different image counts at different BRV positions. Methods: We simulated a 110-MeV proton beam with 5-mm diameter irradiating a uniform PMMA phantom by GATE simulation, which generated nuclear interaction-induced positrons. In this preliminary study, we simply duplicated these positrons and placed them next to the initial protons to approximately mimic the two spatially separatedmore » positron distributions produced by two beams parallel to each other but with different beam ranges. These positrons were then imaged by a PET (∼2-mm resolution, 10% sensitivity, 320×320×128 mm^3 FOV) with different acquisition times. We calculated the positron activity ranges (ARs) from reconstructed PET images and compared them with the corresponding ARs of original positron distributions. Results: Without further image data processing and correction, the preliminary study show the errors between the measured and original ARs varied from 0.2 mm to 2.3 mm as center-to-center separations and range differences were in the range of 8–12 mm and 2–8 mm respectively, indicating the accuracy of AR measurement strongly depends on the beam separations and range differences. In addition, it is feasible to achieve ≤ 1.0-mm accuracy for both beams with 1-min PET acquisition and 12 mm beam separation. Conclusion: This study shows that the overlap between the positron distributions from multiple scanning beams can significantly impact the accuracy of BRVs of distributed particle beams and need to be further addressed beyond the established method of single-beam BRV, but it also indicates the feasibility to achieve accurate on-line multi-beam BRV with further

  12. Operation of the intensity monitors in beam transport lines at Fermilab during Run II¹

    DOE PAGES

    Crisp, J.; Fellenz, B.; Fitzgerald, J.; ...

    2011-10-06

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. With Run II, much effort was made to continually improve the resolution and accuracy of the system.

  13. Light-sheet microscopy by confocal line scanning of dual-Bessel beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengfei; Phipps, Mary Elizabeth; Goodwin, Peter Marvin

    Here, we have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as manymore » photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.« less

  14. Light-sheet microscopy by confocal line scanning of dual-Bessel beams

    DOE PAGES

    Zhang, Pengfei; Phipps, Mary Elizabeth; Goodwin, Peter Marvin; ...

    2016-10-25

    Here, we have developed a light-sheet microscope that uses confocal scanning of dual-Bessel beams for illumination. A digital micromirror device (DMD) is placed in the intermediate image plane of the objective used to collect fluorescence and is programmed with two lines of pixels in the “on” state such that the DMD functions as a spatial filter to reject the out-of-focus background generated by the side-lobes of the Bessel beams. The optical sectioning and out-of-focus background rejection capabilities of this microscope were demonstrated by imaging of fluorescently stained actin in human A431 cells. The dual-Bessel beam system enables twice as manymore » photons to be detected per imaging scan, which is useful for low light applications (e.g., single-molecule localization) or imaging at high speed with a superior signal to noise. While demonstrated for two Bessel beams, this approach is scalable to a larger number of beams.« less

  15. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  16. On- and off-line monitoring of ion beam treatment

    NASA Astrophysics Data System (ADS)

    Parodi, Katia

    2016-02-01

    Ion beam therapy is an emerging modality for high precision radiation treatment of cancer. In comparison to conventional radiation sources (photons, electrons), ion beams feature major dosimetric advantages due to their finite range with a localized dose deposition maximum, the Bragg peak, which can be selectively adjusted in depth. However, due to several sources of treatment uncertainties, full exploitation of these dosimetric advantages in clinical practice would require the possibility to visualize the stopping position of the ions in vivo, ideally in real-time. To this aim, different imaging methods have been proposed and investigated, either pre-clinically or even clinically, based on the detection of prompt or delayed radiation following nuclear interaction of the beam with the irradiated tissue. However, the chosen or ad-hoc developed instrumentation has often relied on technologies originally conceived for different applications, thus compromising on the achievable performances for the sake of cost-effectiveness. This contribution will review major examples of used instrumentation and related performances, identifying the most promising detector developments for next generation devices especially dedicated to on-line monitoring of ion beam treatment. Moreover, it will propose an original combination of different techniques in a hybrid detection scheme, aiming to make the most of complementary imaging methods and open new perspectives of image guidance for improved precision of ion beam therapy.

  17. Beam Line and Associated Work: Operational Phase 1985-1987

    DTIC Science & Technology

    1988-08-26

    WORK UNIT NUMBERS Stanford University Stanford, California 94305 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE U. S. Army Research Office August... Controlling Office) IS. SECURITY CLASS. (of this report) Office of Naval Research Unclassified 800 N. Quincy Street Arlington, VA 22217-5000 IS... groups actively doing or planning research in connection with Beam Line V: Profs. Lindau/Spicer, Stanford (interfacial chemistry and metallurgy of metal

  18. Cone-beam reconstruction for the two-circles-plus-one-line trajectory

    NASA Astrophysics Data System (ADS)

    Lu, Yanbin; Yang, Jiansheng; Emerson, John W.; Mao, Heng; Zhou, Tie; Si, Yuanzheng; Jiang, Ming

    2012-05-01

    The Kodak Image Station In-Vivo FX has an x-ray module with cone-beam configuration for radiographic imaging but lacks the functionality of tomography. To introduce x-ray tomography into the system, we choose the two-circles-plus-one-line trajectory by mounting one translation motor and one rotation motor. We establish a reconstruction algorithm by applying the M-line reconstruction method. Numerical studies and preliminary physical phantom experiment demonstrate the feasibility of the proposed design and reconstruction algorithm.

  19. High current nonlinear transmission line based electron beam driver

    NASA Astrophysics Data System (ADS)

    Hoff, B. W.; French, D. M.; Simon, D. S.; Lepell, P. D.; Montoya, T.; Heidger, S. L.

    2017-10-01

    A gigawatt-class nonlinear transmission line based electron beam driver is experimentally demonstrated. Four experimental series, each with a different Marx bank charge voltage (15, 20, 25, and 30 kV), were completed. Within each experimental series, shots at peak frequencies ranging from 950 MHz to 1.45 GHz were performed. Peak amplitude modulations of the NLTL output voltage signal were found to range between 18% and 35% for the lowest frequency shots and between 5% and 20% for the highest frequency shots (higher modulation at higher Marx charge voltage). Peak amplitude modulations of the electron beam current were found to range between 10% and 20% for the lowest frequency shots and between 2% and 7% for the highest frequency shots (higher modulation at higher Marx charge voltage).

  20. The EPICS-based remote control system for muon beam line devices at J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Ito, T. U.; Nakahara, K.; Kawase, M.; Fujimori, H.; Kobayashi, Y.; Higemoto, W.; Miyake, Y.

    2010-04-01

    The remote control system for muon beam line devices of J-PARC MUSE has been developed with the Experimental Physics and Industrial Control System (EPICS). The EPICS input/output controller was installed in standard Linux PCs for slow control of the devices. Power supplies for 21 magnetic elements and four slit controllers for the decay-surface muon beam line in the Materials and Life Science Experimental Facility are now accessible via Ethernet from a graphical user interface which has been composed using the Motif Editor and Display Manger.

  1. Ambient beam motion and its excitation by ghost lines in the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, V.; /Fermilab

    2011-03-01

    Transverse betatron motion of the Tevatron proton beam is measured and analyzed. It is shown that the motion is coherent and excited by external sources of unknown origins. Observations of the time-varying 'ghost lines' in the betatron spectrum are reported. The direct measurement of the rms betatron oscillations amplitude estimates it at about 110 nm at {beta}{sub y} {approx} 900 m. Correspondingly, at the amplitudes at the average beta function location with {beta}{sub y} {approx} 50 m is about 25 nm. Given that such direct measurements with clearly observable betatron peak were not repeatedly reproducible, one can conclude that wellmore » know 'ghost lines' are the reason for that - as they are come and go without any obvious regularity. Our analysis of these 'ghost lines' shows that (a) besides slow motion across frequencies, they also exhibit oscillatory movements with period varying from 15-20 min to few hours; (b) for the stores analysed, the lines add about factor of 2 to average - over colliding store duration - Schottky power in the betatron bands. The latter allows to estimate that they contribute about half to the previously determined the rms normalized emittance growth rate of some 0.06 {pi} mm mrad/hr. The Tevatron 'ghost lines' look very similar to infamous 'humps' recently observed in the LHC. Those 'humps' are unwanted oscillations seen repeatedly in the LHC beams (mostly in the vertical plane) and also believed to be caused by external excitations.« less

  2. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winklehner, D.; Leitner, D., E-mail: leitnerd@nscl.msu.edu; Cole, D.

    2014-02-15

    In this paper we describe the first systematic measurement of beam neutralization (space charge compensation) in the ECR low energy transport line with a retarding field analyzer, which can be used to measure the potential of the beam. Expected trends for the space charge compensation levels such as increase with residual gas pressure, beam current, and beam density could be observed. However, the overall levels of neutralization are consistently low (<60%). The results and the processes involved for neutralizing ion beams are discussed for conditions typical for ECR injector beam lines. The results are compared to a simple theoretical beammore » plasma model as well as simulations.« less

  3. A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac

    NASA Astrophysics Data System (ADS)

    Miura, A.; Tamura, J.; Kawane, Y.

    2017-07-01

    In the linac of the Japan Proton Accelerator Research Complex (J-PARC), the neutral hydrogen (H0) beam from the negative hydrogen ion (H-) beam is one of key issues in mitigating beam losses. To diagnose H0 particles, we installed a set of beam-bump magnets to generate a chicane orbit of the H- beam. The beam position monitors (BPMs) in the beam line are used for orbit correction to maintain the beam displacement within 2.0 mm from the duct center. To measure the beam displacement under different drive currents of the beam-bump magnets, a new wide-range BPM was designed and manufactured to evaluate the horizontal beam position by using a correction function to compensate for non-linearity. We also employed the beam profile monitor (WSM: wire scanner monitor) to measure the H- beam profile, which helped us to compare the beam position measurements. In this paper, the design and the performance of the wide-range BPM are described. In addition, we present a comparison of the beam position measured by the BPM and the WSM.

  4. Line plus arc source trajectories and their R-line coverage for long-object cone-beam imaging with a C-arm system

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Wunderlich, Adam; Dennerlein, Frank; Lauritsch, Günter; Noo, Frédéric

    2011-06-01

    Cone-beam imaging with C-arm systems has become a valuable tool in interventional radiology. Currently, a simple circular trajectory is used, but future applications should use more sophisticated source trajectories, not only to avoid cone-beam artifacts but also to allow extended volume imaging. One attractive strategy to achieve these two goals is to use a source trajectory that consists of two parallel circular arcs connected by a line segment, possibly with repetition. In this work, we address the question of R-line coverage for such a trajectory. More specifically, we examine to what extent R-lines for such a trajectory cover a central cylindrical region of interest (ROI). An R-line is a line segment connecting any two points on the source trajectory. Knowledge of R-line coverage is crucial because a general theory for theoretically exact and stable image reconstruction from axially truncated data is only known for the points in the scanned object that lie on R-lines. Our analysis starts by examining the R-line coverage for the elemental trajectories consisting of (i) two parallel circular arcs and (ii) a circular arc connected orthogonally to a line segment. Next, we utilize our understanding of the R-lines for the aforementioned elemental trajectories to determine the R-line coverage for the trajectory consisting of two parallel circular arcs connected by a tightly fit line segment. For this trajectory, we find that the R-line coverage is insufficient to completely cover any central ROI. Because extension of the line segment beyond the circular arcs helps to increase the R-line coverage, we subsequently propose a trajectory composed of two parallel circular arcs connected by an extended line. We show that the R-lines for this trajectory can fully cover a central ROI if the line extension is long enough. Our presentation includes a formula for the minimum line extension needed to achieve full R-line coverage of an ROI with a specified size, and also includes

  5. Electron stripping processes of H⁻ ion beam in the 80 kV high voltage extraction column and low energy beam transport line at LANSCE.

    PubMed

    Draganic, I N

    2016-02-01

    Basic vacuum calculations were performed for various operating conditions of the Los Alamos National Neutron Science H(-) Cockcroft-Walton (CW) injector and the Ion Source Test Stand (ISTS). The vacuum pressure was estimated for both the CW and ISTS at five different points: (1) inside the H(-) ion source, (2) in front of the Pierce electrode, (3) at the extraction electrode, (4) at the column electrode, and (5) at the ground electrode. A static vacuum analysis of residual gases and the working hydrogen gas was completed for the normal ion source working regime. Gas density and partial pressure were estimated for the injected hydrogen gas. The attenuation of H(-) beam current and generation of electron current in the high voltage acceleration columns and low energy beam transport lines were calculated. The interaction of H(-) ions on molecular hydrogen (H2) is discussed as a dominant collision process in describing electron stripping rates. These results are used to estimate the observed increase in the ratio of electrons to H(-) ion beam in the ISTS beam transport line.

  6. The effect of beamwidth on the analysis of electron-beam-induced current line scans

    NASA Astrophysics Data System (ADS)

    Luke, Keung L.

    1995-04-01

    A real electron beam has finite width, which has been almost universally ignored in electron-beam-induced current (EBIC) theories. Obvious examples are point-source-based EBIC analyses, which neglect both the finite volume of electron-hole carriers generated by an energetic electron beam of negligible width and the beamwidth when it is no longer negligible. Gaussian source-based analyses are more realistic but the beamwidth has not been included, partly because the generation volume is much larger than the beamwidth, but this is not always the case. In this article Donolato's Gaussian source-based EBIC equation is generalized to include the beamwidth of a Gaussian beam. This generalized equation is then used to study three problems: (1) the effect of beamwidth on EBIC line scans and on effective diffusion lengths and the results are applied to the analysis of the EBIC data of Dixon, Williams, Das, and Webb; (2) unresolved questions raised by others concerning the applicability of the Watanabe-Actor-Gatos method to real EBIC data to evaluate surface recombination velocity; (3) the effect of beamwidth on the methods proposed recently by the author to determine the surface recombination velocity and to discriminate between the Everhart-Hoff and Kanaya-Okayama ranges which is the correct one to use for analyzing EBIC line scans.

  7. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    NASA Astrophysics Data System (ADS)

    Thangaraj, J. C. T.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A. H.; Santucci, J.

    2012-11-01

    One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  8. Determining the wavelength spectrum of neutrons on the NG6 beam line at NCNR

    NASA Astrophysics Data System (ADS)

    Ivanov, Juliet

    2016-09-01

    Historically, in-beam experiments and bottle experiments have been performed to determine the lifetime of a free neutron. However, these two different experimental techniques have provided conflicting results. It is crucial to precisely and accurately elucidate the neutron lifetime for Big Bang Nucleosynthesis calculations and to investigate physics beyond the Standard Model. Therefore, we aimed to understand and minimize systematic errors present in the neutron beam experiment at the NIST Center for Neutron Research (NCNR). In order to reduce the uncertainty related to wavelength dependent corrections present in previous beam experiments, the wavelength spectrum of the NCNR reactor cold neutron beam must be known. We utilized a beam chopper and lithium detector to characterize the wavelength spectrum on the NG6 beam line at the NCNR. The experimental design and techniques employed will be discussed, and our results will be presented. Future plans to utilize our findings to improve the neutron lifetime measurement at NCNR will also be described.

  9. Excitation of terahertz radiation by an electron beam in a dielectric lined waveguide with rippled dielectric surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Deepak; Uma, R.; Tripathi, V. K.

    A relativistic electron beam propagating through a dielectric lined waveguide, with ripple on the dielectric surface, excites a free electron laser type instability where ripple acts as a wiggler. The spatial modulation of permittivity in the ripple region couples a terahertz radiation mode to a driven mode of lower phase velocity, where the beam is in Cerenkov resonance with the slow mode. Both the modes grow at the expanse of beam energy. The terahertz frequency increases as the beam velocity increases. The growth rate of the instability goes as one third power of beam density.

  10. Extended volume coverage in helical cone-beam CT by using PI-line based BPF algorithm

    NASA Astrophysics Data System (ADS)

    Cho, Seungryong; Pan, Xiaochuan

    2007-03-01

    We compared data requirements of filtered-backprojection (FBP) and backprojection-filtration (BPF) algorithms based on PI-lines in helical cone-beam CT. Since the filtration process in FBP algorithm needs all the projection data of PI-lines for each view, the required detector size should be bigger than the size that can cover Tam-Danielsson (T-D) window to avoid data truncation. BPF algorithm, however, requires the projection data only within the T-D window, which means smaller detector size can be used to reconstruct the same image than that in FBP. In other words, a longer helical pitch can be obtained by using BPF algorithm without any truncation artifacts when a fixed detector size is given. The purpose of the work is to demonstrate numerically that extended volume coverage in helical cone-beam CT by using PI-line-based BPF algorithm can be achieved.

  11. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldschmidt, G. J.

    1998-10-27

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1].

  12. Extensions to the integral line-beam method for gamma-ray skyshine analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J.K.; Faw, R.E.

    1995-08-01

    A computationally simple method for estimating gamma-ray skyshine dose rates has been developed on the basis of the line-beam response function. Both Monte Carlo and pointkernel calculations that account for both annihilation and bremsstrahlung were used in the generation of line beam response functions (LBRF) for gamma-ray energies between 10 and 100 MeV. The LBRF is approximated by a three-parameter formula. By combining results with those obtained in an earlier study for gamma energies below 10 MeV, LBRF values are readily and accurately evaluated for source energies between 0.02 and 100 MeV, for source-to-detector distances between 1 and 3000 m,more » and beam angles as great as 180 degrees. Tables of the parameters for the approximate LBRF are presented. The new response functions are then applied to three simple skyshine geometries, an open silo geometry, an infinite wall, and a rectangular four-wall building. Results are compared to those of previous calculations and to benchmark measurements. A new approach is introduced to account for overhead shielding of the skyshine source and compared to the simplistic exponential-attenuation method used in earlier studies. The effect of the air-ground interface, usually neglected in gamma skyshine studies, is also examined and an empirical correction factor is introduced. Finally, a revised code based on the improved LBRF approximations and the treatment of the overhead shielding is presented, and results shown for several benchmark problems.« less

  13. Design of general apochromatic drift-quadrupole beam lines

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.

    2016-07-01

    Chromatic errors are normally corrected using sextupoles in regions of large dispersion. In low emittance linear accelerators, use of sextupoles can be challenging. Apochromatic focusing is a lesser-known alternative approach, whereby chromatic errors of Twiss parameters are corrected without the use of sextupoles, and has consequently been subject to renewed interest in advanced linear accelerator research. Proof of principle designs were first established by Montague and Ruggiero and developed more recently by Balandin et al. We describe a general method for designing drift-quadrupole beam lines of arbitrary order in apochromatic correction, including analytic expressions for emittance growth and other merit functions. Worked examples are shown for plasma wakefield accelerator staging optics and for a simple final focus system.

  14. Working group session report: Neutron beam line shielding.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, G. J.; Ikedo, Y.

    2001-01-01

    We have examined the differences between a 2-D model and a 3-D model for designing the beam-line shield for the HIPPO instrument at the Lujan Center at the Los Alamos National Laboratory. We have calculated the total (neutron and gamma ray) dose equivalent rate coming out of the personal access ports from the HIPPO instrument experiment cave. In order to answer this question, we have investigated two possible worst-case scenarios: (a) failure of the T{sub 0}-chopper and no sample at the sample position; and (b) failure of the T{sub 0}-chopper with a thick sample (a piece of Inconel-718, 10 cmmore » diam by 30 cm long) at the sample position.« less

  15. Study on an azimuthal line cusp ion source for the KSTAR neutral beam injector.

    PubMed

    Jeong, Seung Ho; Chang, Doo-Hee; In, Sang Ryul; Lee, Kwang Won; Oh, Byung-Hoon; Yoon, Byung-Joo; Song, Woo Sob; Kim, Jinchoon; Kim, Tae Seong

    2008-02-01

    In this study it is found that the cusp magnetic field configuration of an anode bucket influences the primary electron behavior. An electron orbit code (ELEORBIT code) showed that an azimuthal line cusp (cusp lines run azimuthally with respect to the beam extraction direction) provides a longer primary electron confinement time than an axial line cusp configuration. Experimentally higher plasma densities were obtained under the same arc power when the azimuthal cusp chamber was used. The newly designed azimuthal cusp bucket has been investigated in an effort to increase the plasma density in its plasma generator per arc power.

  16. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-09-01

    The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

  17. Effects of carbon-ion beams on human pancreatic cancer cell lines that differ in genetic status.

    PubMed

    Matsui, Yoshifumi; Asano, Takehide; Kenmochi, Takashi; Iwakawa, Mayumi; Imai, Takashi; Ochiai, Takenori

    2004-02-01

    The relative biologic effectiveness (RBE) of carbon-ion beams at 3 different linear energy transfer (LET) values (13, 50, and 80 keV/microm) accelerated by the Heavy Ion Medical Accelerator in Chiba on human pancreatic cancer cell lines differing in genetic status was determined. The RBE values were calculated as D10, the dose (Gy) required to reduce the surviving fraction to 10%, relative to X-rays. We also investigated apoptosis and the relationship between D10 and the cell cycle checkpoint using morphologic examination and flow cytometry analysis, respectively. The RBE values calculated by the D10 values ranged from 1.16 to 1.77 for the 13-keV/microm beam and from 1.83 to 2.46 for the 80-keV/microm beam. A correlation between the D10 values of each cell line and intensity of G2/M arrest was observed. In contrast, LET values did not clearly correlate with induction of apoptosis. These results suggest that carbon-ion beam therapy is a promising modality. Elucidation of the mechanisms of G2/M arrest and apoptosis may provide clues to enhancing the effects of radiation on pancreatic cancer.

  18. A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Dragos E.; Fahrig, Rebecca; Keall, Paul J.

    Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approachmore » in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T

  19. A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators

    PubMed Central

    Constantin, Dragoş E.; Fahrig, Rebecca; Keall, Paul J.

    2011-01-01

    Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the

  20. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  1. Automated Sample Exchange Robots for the Structural Biology Beam Lines at the Photon Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiraki, Masahiko; Watanabe, Shokei; Yamada, Yusuke

    2007-01-19

    We are now developing automated sample exchange robots for high-throughput protein crystallographic experiments for onsite use at synchrotron beam lines. It is part of the fully automated robotics systems being developed at the Photon Factory, for the purposes of protein crystallization, monitoring crystal growth, harvesting and freezing crystals, mounting the crystals inside a hutch and for data collection. We have already installed the sample exchange robots based on the SSRL automated mounting system at our insertion device beam lines BL-5A and AR-NW12A at the Photon Factory. In order to reduce the time required for sample exchange further, a prototype ofmore » a double-tonged system was developed. As a result of preliminary experiments with double-tonged robots, the sample exchange time was successfully reduced from 70 seconds to 10 seconds with the exception of the time required for pre-cooling and warming up the tongs.« less

  2. Electron stripping processes of H{sup −} ion beam in the 80 kV high voltage extraction column and low energy beam transport line at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draganic, I. N., E-mail: draganic@lanl.gov

    Basic vacuum calculations were performed for various operating conditions of the Los Alamos National Neutron Science H{sup −} Cockcroft-Walton (CW) injector and the Ion Source Test Stand (ISTS). The vacuum pressure was estimated for both the CW and ISTS at five different points: (1) inside the H{sup −} ion source, (2) in front of the Pierce electrode, (3) at the extraction electrode, (4) at the column electrode, and (5) at the ground electrode. A static vacuum analysis of residual gases and the working hydrogen gas was completed for the normal ion source working regime. Gas density and partial pressure weremore » estimated for the injected hydrogen gas. The attenuation of H{sup −} beam current and generation of electron current in the high voltage acceleration columns and low energy beam transport lines were calculated. The interaction of H{sup −} ions on molecular hydrogen (H{sub 2}) is discussed as a dominant collision process in describing electron stripping rates. These results are used to estimate the observed increase in the ratio of electrons to H{sup −} ion beam in the ISTS beam transport line.« less

  3. A new medium energy beam transport line for the proton injector of AGS-RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, M.; Briscoe, B.; Fite, J.

    2010-09-12

    In Brookhaven National Laboratory (BNL), a 750 keV medium energy beam transport line between the 201 MHz 750 keV proton RFQ and the 200 MeV Alvarez DTL is being modified to get a better transmission of the beam. Within a tight space, high field gradient quadrupoles (65 Tm) and newly designed steering magnets (6.5 mm in length) will be installed considering the cross-talk effects. Also a new half wave length 200 MHz buncher is being prepared. The beam commissioning will be done in this year. To enhance the performance of the proton linacs, the MEBT is being modified. New quadrupolemore » magnets, steering magnets and a half wave length buncher as shown in Figure 7 will be installed and be commissioned soon.« less

  4. Continuous Beam Steering Through Broadside Using Asymmetrically Modulated Goubau Line Leaky-Wave Antennas.

    PubMed

    Tang, Xiao-Lan; Zhang, Qingfeng; Hu, Sanming; Zhuang, Yaqiang; Kandwal, Abhishek; Zhang, Ge; Chen, Yifan

    2017-09-15

    Goubau line is a single-conductor transmission line, featuring easy integration and low-loss transmission properties. Here, we propose a periodic leaky-wave antenna (LWA) based on planar Goubau transmission line on a thin dielectric substrate. The leaky-wave radiations are generated by introducing periodic modulations along the Goubau line. In this way, the surface wave, which is slow-wave mode supported by the Goubau line, achieves an additional momentum and hence enters the fast-wave region for radiations. By employing the periodic modulations, the proposed Goubau line LWAs are able to continuously steer the main beam from backward to forward within the operational frequency range. However, the LWAs usually suffer from a low radiation efficiency at the broadside direction. To overcome this drawback, we explore both transversally and longitudinally asymmetrical modulations to the Goubau line. Theoretical analysis, numerical simulations and experimental results are given in comparison with the symmetrical LWAs. It is demonstrated that the asymmetrical modulations significantly improve the radiation efficiency of LWAs at the broadside. Furthermore, the measurement results agree well with the numerical ones, which experimentally validates the proposed LWA structures. These novel Goubau line LWAs, experimentally demonstrated and validated at microwave frequencies, show also great potential for millimeter-wave and terahertz systems.

  5. A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators.

    PubMed

    Constantin, Dragoş E; Fahrig, Rebecca; Keall, Paul J

    2011-07-01

    Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40

  6. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.

    PubMed

    Gierga, D P; Yanch, J C; Shefer, R E

    2000-01-01

    A potential application of the 10B(n, alpha)7Li nuclear reaction for the treatment of rheumatoid arthritis, termed Boron Neutron Capture Synovectomy (BNCS), is under investigation. In an arthritic joint, the synovial lining becomes inflamed and is a source of great pain and discomfort for the afflicted patient. The goal of BNCS is to ablate the synovium, thereby eliminating the symptoms of the arthritis. A BNCS treatment would consist of an intra-articular injection of boron followed by neutron irradiation of the joint. Monte Carlo radiation transport calculations have been used to develop an accelerator-based epithermal neutron beam line for BNCS treatments. The model includes a moderator/reflector assembly, neutron producing target, target cooling system, and arthritic joint phantom. Single and parallel opposed beam irradiations have been modeled for the human knee, human finger, and rabbit knee joints. Additional reflectors, placed to the side and back of the joint, have been added to the model and have been shown to improve treatment times and skin doses by about a factor of 2. Several neutron-producing charged particle reactions have been examined for BNCS, including the 9Be(p,n) reaction at proton energies of 4 and 3.7 MeV, the 9Be(d,n) reaction at deuteron energies of 1.5 and 2.6 MeV, and the 7Li(p,n) reaction at a proton energy of 2.5 MeV. For an accelerator beam current of 1 mA and synovial boron uptake of 1000 ppm, the time to deliver a therapy dose of 10,000 RBEcGy ranges from 3 to 48 min, depending on the treated joint and the neutron producing charged particle reaction. The whole-body effective dose that a human would incur during a knee treatment has been estimated to be 3.6 rem or 0.75 rem, for 1000 ppm or 19,000 ppm synovial boron uptake, respectively, although the shielding configuration has not yet been optimized. The Monte Carlo design process culminated in the construction, installation, and testing of a dedicated BNCS beam line on the high

  7. Radiation protection considerations along a radioactive ion beam transport line

    NASA Astrophysics Data System (ADS)

    Sarchiapone, Lucia; Zafiropoulos, Demetre

    2016-09-01

    The goal of the SPES project is to produce accelerated radioactive ion beams for Physics studies at “Laboratori Nazionali di Legnaro” (INFN, Italy). This accelerator complex is scheduled to be built by 2016 for an effective operation in 2017. Radioactive species are produced in a uranium carbide target, by the interaction of 200 μA of protons at 40 MeV. All of the ionized species in the 1+ state come out of the target (ISOL method), and pass through a Wien filter for a first selection and an HMRS (high mass resolution spectrometer). Then they are transported by an electrostatic beam line toward a charge state breeder (where the 1+ to n+ multi-ionization takes place) before selection and reacceleration at the already existing superconducting linac. The work concerning dose evaluations, activation calculation, and radiation protection constraints related to the transport of the radioactive ion beam (RIB) from the target to the mass separator will be described in this paper. The FLUKA code has been used as tool for those calculations needing Monte Carlo simulations, in particular for the evaluation of the dose rate due to the presence of the radioactive beam in the selection/interaction points. The time evolution of a radionuclide inventory can be computed online with FLUKA for arbitrary irradiation profiles and decay times. The activity evolution is analytically evaluated through the implementation of the Bateman equations. Furthermore, the generation and transport of decay radiation (limited to gamma, beta- and beta+ emissions) is possible, referring to a dedicated database of decay emissions using mostly information obtained from NNDC, sometimes supplemented with other data and checked for consistency. When the use of Monte Carlo simulations was not feasible, the Bateman equations, or possible simplifications, have been used directly.

  8. Improved design of proton source and low energy beam transport line for European Spallation Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). Themore » design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.« less

  9. Automatic sample Dewar for MX beam-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charignon, T.; Tanchon, J.; Trollier, T.

    2014-01-29

    It is very common for crystals of large biological macromolecules to show considerable variation in quality of their diffraction. In order to increase the number of samples that are tested for diffraction quality before any full data collections at the ESRF*, an automatic sample Dewar has been implemented. Conception and performances of the Dewar are reported in this paper. The automatic sample Dewar has 240 samples capability with automatic loading/unloading ports. The storing Dewar is capable to work with robots and it can be integrated in a full automatic MX** beam-line. The samples are positioned in the front of themore » loading/unloading ports with and automatic rotating plate. A view port has been implemented for data matrix camera reading on each sample loaded in the Dewar. At last, the Dewar is insulated with polyurethane foam that keeps the liquid nitrogen consumption below 1.6 L/h. At last, the static insulation also makes vacuum equipment and maintenance unnecessary. This Dewar will be useful for increasing the number of samples tested in synchrotrons.« less

  10. Target and orbit feedback simulations of a muSR beam line at BNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKay, W.; Blaskiewicz, M.; Fischer, W.

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ + should be about 40 kHz/mm 2. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss themore » desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.« less

  11. Use of a wire scanner for monitoring residual gas ionization in Soreq Applied Research Accelerator Facility 20 keV/u proton/deuteron low energy beam transport beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainas, B.; Eliyahu, I.; Weissman, L.

    2012-02-15

    The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton/deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, whichmore » is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.« less

  12. Emission intensities and line ratios from a fast neutral helium beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, J-W.; Craig, D.; Fiksel, G.

    2007-08-15

    The emission intensities and line ratios from a fast neutral helium beam is investigated in the Madison Symmetric Torus (MST) [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 1991]. Predicted He I line intensities and line ratios from a recently developed collisional-radiative model are compared with experiment. The intensity of singlet lines comes mostly (>95%) from the contribution of the ground state population and is very weakly dependent on the initial metastable fraction at the observation point in the plasma core. On the other hand, the intensity ofmore » triplet lines is strongly affected by the local metastable state (2{sup 1}S and 2{sup 3}S) populations and the initial metastable fraction plays an important role in determining line intensities. The fraction of local metastable states can only be estimated by making use of electron temperature (T{sub e}), electron density (n{sub e}), and effective ion charge (Z{sub eff}) profiles as inputs to the population balance equations. This leads triplet lines to be unusable for the investigation of their local plasma parameter dependence. The ratio of singlet lines at 667.8 nm and 492.2 nm (I{sub 667}/I{sub 492}) as well as the ratio of 667.8 nm and 501.6 nm lines (I{sub 667}/I{sub 501}) has been investigated for the dependence on T{sub e} and n{sub e} both theoretically and experimentally. I{sub 667}/I{sub 492} shows strong dependence on n{sub e} with weak sensitivity to T{sub e}. Measurements and predictions agree quantitatively within a factor of 2. There has been no ratio of singlet lines identified to have strong enough T{sub e} dependence yet. The ratios are expected to be reasonably insensitive to the variation of Z{sub eff}.« less

  13. Performance of a superconducting magnet system operated in the Super Omega Muon beam line at J-PARC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makida, Yasuhiro; Ikedo, Yutaka; Ogitsu, Toru

    A superconducting magnet system, which is composed of an 8 m long solenoid for transportation and 12 short solenoids for focusing, has been developed for Muon Science Establishment facility of J-PARC. The transport solenoid is composed of a 6 m straight section connected to a 45 degree curved section at each end. Muons of various momenta and of both electric charges are transported through the solenoid inner bore with an effective diameter of 0.3 m, where 2 T magnetic field is induced. There are 12 focusing solenoids with an effective bore diameter of 0.6 m and a length of 0.35more » m arranged on a straight line at suitable intervals. The maximum central field of each focusing solenoid is 0.66 T. All solenoid coils are cooled by GM cryocoolers through their own conductions. The magnet system has been installed into the beam line in the summer of 2012, and its performance has been checked. Beam commissioning has been carried out since October 2012. During beam operation, temperature rise over 6 K in the transport solenoid due to a nuclear heating from the muon production target is observed at beam intensity of about 300 kW.« less

  14. Evolution of a beam dynamics model for the transport line in a proton therapy facility

    NASA Astrophysics Data System (ADS)

    Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.

    2017-12-01

    During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.

  15. TU-H-BRA-07: Design, Construction, and Installation of An Experimental Beam Line for the Development of MRI-Linac Compatible Electron Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, B; Keall, P; Holloway, L

    Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energiesmore » up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields

  16. Application of magnetically insulated transmission lines for high current, high voltage electron beam accelerators

    NASA Astrophysics Data System (ADS)

    Shope, S. L.; Mazarakis, M. G.; Frost, C. A.; Poukey, J. W.; Turman, B. N.

    Self Magnetically Insulated Transmission Lines (MITL) adders were used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r(sub rho) less than 2 cm), 11 - 15 MeV, 50 - 100-kA beams with a small transverse velocity v(perpendicular)/c = beta(perpendicular) less than or equal to 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30 - 50 ns FWHM output pulse.

  17. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    NASA Astrophysics Data System (ADS)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  18. Total Reaction Cross Section Excitation Function Studies for 6He Interaction with 181Ta, 59Co, natSi, 9Be Nuclei

    NASA Astrophysics Data System (ADS)

    Sobolev, Yu. G.; Penionzhkevich, Yu. E.; Borcea, C.; Demekhina, N. A.; Eshanov, A. G.; Ivanov, M. P.; Kabdrakhimova, G. D.; Kabyshev, A. M.; Kugler, A.; Kuterbekov, K. A.; Lukyanov, K. V.; Maj, A.; Maslov, V. A.; Negret, A.; Skobelev, N. K.; Testov, D.; Trzaska, W. H.; Voskobojnik, E. I.; Zemlyanaya, E. V.

    2015-06-01

    Total reaction cross section excitation functions σR(E) were measured for 6He secondary beam particles on 181Ta, 59Co, natSi and 9Be targets in a wide energy range by direct and model-independent method. This experimental method was based on prompt n-γ 4π-technique applied in event-by event mode. A high efficiency CsI(Tl) γ-spectrometer was used for the detection of reaction products (prompt γ-quanta and neutrons) accompanying each reaction event. Using the ACCULINNA fragment-separator 6He fragments (produced by 11B primary beam with 9Be target) are separated and transported to n-γ shielded experimental cave at FLNR JINR. The measured total reaction cross section data σR(E) for the above mentioned reactions are compared with a theoretical calculation based on the optical potential with the real part having the double-folding form.

  19. Beam/seam alignment control for electron beam welding

    DOEpatents

    Burkhardt, Jr., James H.; Henry, J. James; Davenport, Clyde M.

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  20. Design of the ILC RTML Extraction Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.; Tenenbaum, P.; Walz, D.

    2011-10-17

    The ILC [1] Damping Ring to the Main Linac beamline (RTML) contains three extraction lines (EL). Each EL can be used both for an emergency abort dumping of the beam and tune-up continual train-by-train extraction. Two of the extraction lines are located downstream of the first and second stages of the RTML bunch compressor, and must accept both compressed and uncompressed beam with energy spreads of 2.5% and 0.15%, respectively. In this paper we report on an optics design that allowed minimizing the length of the extraction lines while offsetting the beam dumps from the main line by the distancemore » required for acceptable radiation levels in the service tunnel. The proposed extraction lines can accommodate beams with different energy spreads while at the same time providing the beam size acceptable for the aluminum dump window. The RTML incorporates three extraction lines, which can be used for either an emergency beam abort or for a train-by-train extraction. The first EL is located downstream of the Damping Ring extraction arc. The other two extraction lines are located downstream of each stage of the two-stage bunch compressor. The first extraction line (EL1) receives 5GeV beam with an 0.15% energy spread. The extraction line located downstream of the first stage of bunch compressor (ELBC1) receives both compressed and uncompressed beam, and therefore must accept beam with both 5 and 4.88GeV energy, and 0.15% and 2.5% energy spread, respectively. The extraction line located after the second stage of the bunch compressor (ELBC2) receives 15GeV beam with either 0.15 or 1.8% energy spread. Each of the three extraction lines is equipped with the 220kW aluminum ball dump, which corresponds to the power of the continuously dumped beam with 5GeV energy, i.e., the beam trains must be delivered to the ELBC2 dump at reduced repetition rate.« less

  1. Determination of the sequence of intersecting lines using Focused Ion Beam/Scanning Electron Microscope.

    PubMed

    Kim, Jiye; Kim, MinJung; An, JinWook; Kim, Yunje

    2016-05-01

    The aim of this study was to verify that the combination of focused ion beam (FIB) and scanning electron microscope/energy-dispersive X-ray (SEM/EDX) could be applied to determine the sequence of line crossings. The samples were transferred into FIB/SEM for FIB milling and an imaging operation. EDX was able to explore the chemical components and the corresponding elemental distribution in the intersection. The technique was successful in determining the sequence of heterogeneous line intersections produced using gel pens and red sealing ink with highest success rate (100% correctness). These observations show that the FIB/SEM was the appropriate instrument for an overall examination of document. © 2016 American Academy of Forensic Sciences.

  2. Development of the TFTR neutral beam injection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prichard, Jr., B. A.

    1977-01-01

    The TFTR Neutral Beam Lines are designed to inject 20 MW of 120 keV neutral deuterium atoms into the plasma. This is accomplished using 12 sources, 65 amperes each, mounted in 4 beam lines. The 120 kV sources and a prototype beam line are being developed. The implementation of these beam lines has required the development of several associated pieces of hardware. 200 kV switch tubes for the power supplies are being developed for modulation and regulation of the accelerating supplies. A 90 cm metallic seal gate valve capable of sealing against atmosphere in either direction is being developed formore » separating the torus and beam line vacuum systems. A 70 x 80 cm fast shutter valve is also being developed to limit tritium migration from the torus into the beam line. Internal to the beam line a calorimeter, ion dump and deflection magnet have been designed to handle three beams, and optical diagnostics utilizing the doppler broadening and doppler shift of light emitted from the accelerated beam are being developed. The control and monitoring of the 12 sources will be done via the TFTR computer control system (CICADA) as will other parts of the machine, and software is being developed to condition and operate the sources automatically. The prototype beam line is scheduled to begin operation in the fall of 1978 and all four production beam lines on TFTR in 1982.« less

  3. Multiobjective optimizations of a novel cryocooled dc gun based ultrafast electron diffraction beam line

    NASA Astrophysics Data System (ADS)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan

    2016-09-01

    We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200 μ m , for two final bunch charges: 1 05 electrons (16 fC) and 1 06 electrons (160 fC). Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of Lc ,x/σx=0.27 nm /μ m was obtained for a final bunch charge of 1 05 electrons and final bunch length of σt≈100 fs . For a final charge of 1 06 electrons the cryogun produces Lc ,x/σx≈0.1 nm /μ m for σt≈100 - 200 fs and σx≥50 μ m . These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.

  4. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line.

    PubMed

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser

    2016-01-01

    Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Different dose components have been measured in a head phantom which has been designed and constructed for BNCT purpose in TRR. Different in-phantom beam quality factors have also been determined. This study demonstrates that the TRR BNCT beam line has potential for treatment of superficial tumors.

  5. Compact Feed Circuit with Quarter Wavelength Transmission Line Matrix Controlling Beams in Three Directions Including Boresight

    NASA Astrophysics Data System (ADS)

    Tsuji, Masatoshi

    A compact feed circuit with a λ/4 transmission line matrix circuit for use in array antennas to control beams in three directions, including boresight, is presented. The feed circuit antenna is composed of five switches and λ/4 transmission lines, and the feeding matrix circuit yields phase differences of ±90° and 0°. The feed circuit can obtain a reliable output signal, as there is only a small degree of deviation of output signal with variations in the line width. The feed circuit is simulated, fabricated, and evaluated for ISM band, and the measured characteristics agree well with the results of the simulation. The size of feed circuit is 45 (H) × 48 (W) × 3 (T) mm.

  6. SKYDOSE: A code for gamma skyshine calculations using the integral line-beam method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J.K.; Faw, R.E.; Brockhoff, R.C.

    1994-07-01

    SKYDOS evaluates skyshine dose from an isotropic, monoenergetic, point photon source collimated by three simple geometries: (1) a source in a silo; (2) a source behind an infinitely long, vertical, black wall; and (3) a source in a rectangular building. In all three geometries, an optical overhead shield may be specified. The source energy must be between 0.02 and 100 MeV (10 MeV for sources with an overhead shield). This is a user`s manual. Other references give more detail on the integral line-beam method used by SKYDOSE.

  7. High-power, high-brightness pseudospark-produced electron beam driven by improved pulse line accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junbino Zhu; Mingchang Wang; Zhijiang Wang

    1995-12-31

    A high power (200KV), intense current density, low emittance (71mmmrad), high brightness (8x10{sup 10}A/m rad) electron beam was generated in the 10cm long, high-voltage-resistive multi-gap hollow cathode pseudospark chamber filled with 15pa nitrogen and driven by an improved pulse line accelerator. The beam was ejected with the 1mm diameter, the 2.2KA beam current, and the 400ns pulse length, and could propagated 20cm in the drift tube. At a distance of 5cm from the anode it penetrated consecutively an acid-sensitive discoloring film and a 0.05mm-thick copper foil both stuck closely, left 0.6mm and 0.3mm holes on them, respectively. That 10 shotsmore » on an acid-sensitive film produced a hole of 1.6mm at 7cm downstream of anode showed its good repeatability. After 60 shots the pseudospark discharge chamber was disassembled and observed that almost no destructive damage traces left on the surfaces of its various electrodes and insulators. But on almost all the surfaces of changeable central hole parts installed on intermediate electrodes there are traces of electron emission from the sides facing the anode and of bombardment on the sides facing the cathode, in contrast with which on the front- and back-surfaces of hollow cathode no visible traces of electron emission from then was observed. In addition, there were different tints, strip-like regions on the side of anode facing the cathode. Another interesting phenomenon was that there were a set of concentric circular or elliptical ring pattern on the acid-sensitive discoloring film got at 5cm from the anode and observed tinder a metallograph. It seems that the pseudospark electron beam is Laminar beam i.e, being possessed of a multi-layer structure, at least in the case of multi-gap pseudospark discharge chamber. It was found experimentally that the quality of pseudospark electron beam is much better than that of the cold-cathode electron beam.« less

  8. Mjollnir Rotational Line Scan Diagnostics.

    DTIC Science & Technology

    1981-05-19

    using long cavity. M8 Removable Pellicle Beam Splitter for He-Ne Lineup Beam. Removed before HF or DF laser is turned on. 27 A 27 * A r of the chopper...three probe laser lines, however three lines were sequentially measured to verify the diagnostic equipment. Two of the three lines have been monitored

  9. H- beam transport experiments in a solenoid low energy beam transport.

    PubMed

    Gabor, C; Back, J J; Faircloth, D C; Izaola, Z; Lawrie, S R; Letchford, A P

    2012-02-01

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H(-) ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H(-) high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

  10. Beam transport program for FEL project

    NASA Astrophysics Data System (ADS)

    Sugimoto, Masayoshi; Takao, Masaru

    1992-07-01

    A beam transport program is developed to design the beam transport line of the free electron laser system at JAERI and to assist the beam diagnosis. The program traces a beam matrix through the elements in the beam transport line and the accelerators. The graphical user interface is employed to access the parameters and to represent the results. The basic computational method is based on the LANL-TRACE program and it is rewritten for personal computers in Pascal.

  11. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  12. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    PubMed

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  13. 100 years of elementary particles [Beam Line, vol. 27, issue 1, Spring 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pais, Abraham; Weinberg, Steven; Quigg, Chris

    1997-04-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.

  14. 100 years of Elementary Particles [Beam Line, vol. 27, issue 1, Spring 1997

    DOE R&D Accomplishments Database

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K. H.; Trimble, Virginia

    1997-04-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.

  15. Multiobjective optimization design of an rf gun based electron diffraction beam line

    NASA Astrophysics Data System (ADS)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan; Maxson, Jared

    2017-03-01

    Multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line comprised of a 100 MV /m 1.6-cell normal conducting rf (NCRF) gun, as well as a nine-cell 2 π /3 bunching cavity placed between two solenoids, have been performed. These include optimization of the normalized transverse emittance as a function of bunch charge, as well as optimization of the transverse coherence length as a function of the rms bunch length of the beam at the sample location for a fixed charge of 1 06 electrons. Analysis of the resulting solutions is discussed in terms of the relevant scaling laws, and a detailed description of one of the resulting solutions from the coherence length optimizations is given. For a charge of 1 06 electrons and final beam sizes of σx≥25 μ m and σt≈5 fs , we found a relative coherence length of Lc ,x/σx≈0.07 using direct optimization of the coherence length. Additionally, based on optimizations of the emittance as a function of final bunch length, we estimate the relative coherence length for bunch lengths of 30 and 100 fs to be roughly 0.1 and 0.2 nm /μ m , respectively. Finally, using the scaling of the optimal emittance with bunch charge, for a charge of 1 05 electrons, we estimate relative coherence lengths of 0.3, 0.5, and 0.92 nm /μ m for final bunch lengths of 5, 30 and 100 fs, respectively.

  16. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Raffaele, L.; Russo, G.; Guatelli, S.; Pia, M. G.

    2006-01-01

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility.

  17. A technique for transferring a patient's smile line to a cone beam computed tomography (CBCT) image.

    PubMed

    Bidra, Avinash S

    2014-08-01

    Fixed implant-supported prosthodontic treatment for patients requiring a gingival prosthesis often demands that bone and implant levels be apical to the patient's maximum smile line. This is to avoid the display of the prosthesis-tissue junction (the junction between the gingival prosthesis and natural soft tissues) and prevent esthetic failures. Recording a patient's lip position during maximum smile is invaluable for the treatment planning process. This article presents a simple technique for clinically recording and transferring the patient's maximum smile line to cone beam computed tomography (CBCT) images for analysis. The technique can help clinicians accurately determine the need for and amount of bone reduction required with respect to the maximum smile line and place implants in optimal positions. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viezzer, E., E-mail: eleonora.viezzer@ipp.mpg.de, E-mail: eviezzer@us.es; Department of Atomic, Molecular, and Nuclear Physics, University of Seville, Avda. Reina Mercedes, 41012 Seville; Dux, R.

    2016-11-15

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D{sub α}. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  19. Choice of range-energy relationship for the analysis of electron-beam-induced-current line scans

    NASA Astrophysics Data System (ADS)

    Luke, Keung, L.

    1994-07-01

    The electron range in a material is an important parameter in the analysis of electron-beam-induced-current (EBIC) line scans. Both the Kanaya-Okayama (KO) and Everhart-Hoff (EH) range-energy relationships have been widely used by investigators for this purpose. Although the KO range is significantly larer than the EH range, no study has been done to examine the effect of choosing one range over the other on the values of the surface recombination velocity S(sub T) and minority-carrier diffusion length L evaluated from EBICF line scans. Such a study has been carried out, focusing on two major questions: (1) When the KO range is used in different reported methods to evaluate either or both S(sub T) and L from EBIC line scans, how different are their values thus determined in comparison to those using the EH range?; (2) from EBIC line scans of a given material, is there a way to discriminate between the KO and the EH ranges which should be used to analyze these scans? Answers to these questions are presented to assist investigators in extracting more reliable values of either or both S(sub T) and L and in finding the right range to use in the analysis of these line scans.

  20. Upgrade to a programmable timing system for the KOMAC proton linac and multi-purpose beam lines

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi

    2016-09-01

    The KOMAC facility consists of low-energy components, including a 50-keV ion source, a lowenergy beam transport (LEBT), a 3-MeV radio-frequency quadrupole (RFQ), and a 20-MeV drift tube linac (DTL), as well as high-energy components, including seven DTL tanks for the 100-MeV proton beam. The KOMAC includes ten beam lines, five for 20-MeV beams and five for 100-MeV beams. The peak beam current and the maximum beam duty are 20 mA and 24% for the 20-MeV linac and 20 mA and 8% for the 100-MeV linac, respectively. Four high-voltage convertor modulators are used. Each modulator drives two or three klystrons. The peak output power is 5.8 MW, and the average power is 520 kW with a duty of 9%. The pulse width and repetition rate are 1.5 ms and 60 Hz, respectively. Each component of the pulsed operation mode has a timing trigger signal with precision synchronization. A timing system for beam extraction and for diagnostic components is required to provide precise pulse signals synchronized with a 300-MHz RF reference frequency. In addition, the timing parameters should be capable of real-time changes in accordance with the beam power. The KOMAC timing system has been upgraded to a programmable Micro Research Finland (MRF) event timing system that is synchronized with the RF, AC main frequency and with the global positioning system (GPS) 1-PPS signal. The event timing system consists of an event generator (EVG) and an event receiver (EVR). The event timing system is integrated with the KOMAC control system by using experimental physics and industrial control system (EPICS) software. For preliminary hardware and software testing, a long operation test with a synchronization of 300-MHz RF reference and 60-Hz AC has been completed successfully. In this paper, we will describe the software implementation, the testing, and the installation of the new timing system.

  1. A line fiducial method for geometric calibration of cone-beam CT systems with diverse scan trajectories

    NASA Astrophysics Data System (ADS)

    Jacobson, M. W.; Ketcha, M. D.; Capostagno, S.; Martin, A.; Uneri, A.; Goerres, J.; De Silva, T.; Reaungamornrat, S.; Han, R.; Manbachi, A.; Stayman, J. W.; Vogt, S.; Kleinszig, G.; Siewerdsen, J. H.

    2018-01-01

    Modern cone-beam CT systems, especially C-arms, are capable of diverse source-detector orbits. However, geometric calibration of these systems using conventional configurations of spherical fiducials (BBs) may be challenged for novel source-detector orbits and system geometries. In part, this is because the BB configurations are designed with careful forethought regarding the intended orbit so that BB marker projections do not overlap in projection views. Examples include helical arrangements of BBs (Rougee et al 1993 Proc. SPIE 1897 161-9) such that markers do not overlap in projections acquired from a circular orbit and circular arrangements of BBs (Cho et al 2005 Med. Phys. 32 968-83). As a more general alternative, this work proposes a calibration method based on an array of line-shaped, radio-opaque wire segments. With this method, geometric parameter estimation is accomplished by relating the 3D line equations representing the wires to the 2D line equations of their projections. The use of line fiducials simplifies many challenges with fiducial recognition and extraction in an orbit-independent manner. For example, their projections can overlap only mildly, for any gantry pose, as long as the wires are mutually non-coplanar in 3D. The method was tested in application to circular and non-circular trajectories in simulation and in real orbits executed using a mobile C-arm prototype for cone-beam CT. Results indicated high calibration accuracy, as measured by forward and backprojection/triangulation error metrics. Triangulation errors on the order of microns and backprojected ray deviations uniformly less than 0.2 mm were observed in both real and simulated orbits. Mean forward projection errors less than 0.1 mm were observed in a comprehensive sweep of different C-arm gantry angulations. Finally, successful integration of the method into a CT imaging chain was demonstrated in head phantom scans.

  2. Beam position monitor for energy recovered linac beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, Thomas; Evtushenko, Pavel

    A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.

  3. Demonstration of Current Profile Shaping using Double Dog-Leg Emittance Exchange Beam Line at Argonne Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Gwanghui; Cho, Moo-Hyun; Conde, Manoel

    Emittance exchange (EEX) based longitudinal current profile shaping is the one of the promising current profile shaping technique. This method can generate high quality arbitrary current profiles under the ideal conditions. The double dog-leg EEX beam line was recently installed at the Argonne Wakefield Accelerator (AWA) to explore the shaping capability and confirm the quality of this method. To demonstrate the arbitrary current profile generation, several different transverse masks are applied to generate different final current profiles. The phase space slopes and the charge of incoming beam are varied to observe and suppress the aberrations on the ideal profile. Wemore » present current profile shaping results, aberrations on the shaped profile, and its suppression.« less

  4. Recent Upgrades at the Fermilab Test Beam Facility

    NASA Astrophysics Data System (ADS)

    Rominsky, Mandy

    2016-03-01

    The Fermilab Test Beam Facility is a world class facility for testing and characterizing particle detectors. The facility has been in operation since 2005 and has undergone significant upgrades in the last two years. A second beam line with cryogenic support has been added and the facility has adopted the MIDAS data acquisition system. The facility also recently added a cosmic telescope test stand and improved tracking capabilities. With two operational beam lines, the facility can deliver a variety of particle types and momenta ranging from 120 GeV protons in the primary beam line down to 200 MeV particles in the tertiary beam line. In addition, recent work has focused on analyzing the beam structure to provide users with information on the data they are collecting. With these improvements, the Fermilab Test Beam facility is capable of supporting High Energy physics applications as well as industry users. The upgrades will be discussed along with plans for future improvements.

  5. Electron-Beam Produced Air Plasma: Optical Measurement of Beam Current

    NASA Astrophysics Data System (ADS)

    Vidmar, Robert; Stalder, Kenneth; Seeley, Megan

    2006-10-01

    Experiments to quantify the electron beam current and distribution of beam current in air plasma are discussed. The air plasma is produced by a 100-keV 10-mA electron beam source that traverses a transmission window into a chamber with air as a target gas. Air pressure is between 1 mTorr and 760 Torr. Strong optical emissions due to electron impact ionization are observed for the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm. Calibration of optical emissions using signals from the isolated transmission window and a Faraday plate are discussed. The calibrated optical system is then used to quantify the electron distribution in the air plasma.

  6. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter.

    PubMed

    Harty, P D; Lye, J E; Ramanathan, G; Butler, D J; Hall, C J; Stevenson, A W; Johnston, P N

    2014-05-01

    The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3.9%. The good agreement of

  7. Improving the output voltage waveform of an intense electron-beam accelerator based on helical type Blumlein pulse forming line

    NASA Astrophysics Data System (ADS)

    Cheng, Xin-Bing; Liu, Jin-Liang; Zhang, Hong-Bo; Feng, Jia-Huai; Qian, Bao-Liang

    2010-07-01

    The Blumlein pulse forming line (BPFL) consisting of an inner coaxial pulse forming line (PFL) and an outer coaxial PFL is widely used in the field of pulsed power, especially for intense electron-beam accelerators (IEBA). The output voltage waveform determines the quality and characteristics of the output beam current of the IEBA. Comparing with the conventional BPFL, an IEBA based on a helical type BPFL can increase the duration of the output voltage in the same geometrical volume. However, for the helical type BPFL, the voltage waveform on a matched load may be distorted which influences the electron-beam quality. In this paper, an IEBA based on helical type BPFL is studied theoretically. Based on telegrapher equations of the BPFL, a formula for the output voltage of IEBA is obtained when the transition section is taken into account, where the transition section is between the middle cylinder of BPFL and the load. From the theoretical analysis, it is found that the wave impedance and transit time of the transition section influence considerably the main pulse voltage waveform at the load, a step is formed in front of the main pulse, and a sharp spike is also formed at the end of the main pulse. In order to get a well-shaped square waveform at the load and to improve the electron-beam quality of such an accelerator, the wave impedance of the transition section should be equal to that of the inner PFL of helical type BPFL and the transit time of the transition section should be designed as short as possible. Experiments performed on an IEBA with the helical type BPFL show reasonable agreement with theoretical analysis.

  8. Gaussian-Beam/Physical-Optics Design Of Beam Waveguide

    NASA Technical Reports Server (NTRS)

    Veruttipong, Watt; Chen, Jacqueline C.; Bathker, Dan A.

    1993-01-01

    In iterative method of designing wideband beam-waveguide feed for paraboloidal-reflector antenna, Gaussian-beam approximation alternated with more nearly exact physical-optics analysis of diffraction. Includes curved and straight reflectors guiding radiation from feed horn to subreflector. For iterative design calculations, curved mirrors mathematically modeled as thin lenses. Each distance Li is combined length of two straight-line segments intersecting at one of flat mirrors. Method useful for designing beam-waveguide reflectors or mirrors required to have diameters approximately less than 30 wavelengths at one or more intended operating frequencies.

  9. Broad-band beam buncher

    DOEpatents

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1984-03-20

    A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

  10. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    PubMed

    Sheftman, D; Gupta, D; Roche, T; Thompson, M C; Giammanco, F; Conti, F; Marsili, P; Moreno, C D

    2016-11-01

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  11. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheftman, D., E-mail: dsheftman@trialphaenergy.com; Gupta, D.; Roche, T.

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  12. Picosecond beam monitor

    DOEpatents

    Schutt, D.W.; Beck, G.O.

    1974-01-01

    The current in the beam of a particle accelerator is monitored with picosecond resolution by causing the beam to impinge upon the center conductor of a coaxial line, generating a pulse of electromagnetic energy in response thereto. This pulse is detected by means such as a sampling oscilloscope. (Official Gazette)

  13. Measurement of two-photon-absorption spectra through nonlinear fluorescence produced by a line-shaped excitation beam.

    PubMed

    Hasani, E; Parravicini, J; Tartara, L; Tomaselli, A; Tomassini, D

    2018-05-01

    We propose an innovative experimental approach to estimate the two-photon absorption (TPA) spectrum of a fluorescent material. Our method develops the standard indirect fluorescence-based method for the TPA measurement by employing a line-shaped excitation beam, generating a line-shaped fluorescence emission. Such a configuration, which requires a relatively high amount of optical power, permits to have a greatly increased fluorescence signal, thus avoiding the photon counterdetection devices usually used in these measurements, and allowing to employ detectors such as charge-coupled device (CCD) cameras. The method is finally tested on a fluorescent isothiocyanate sample, whose TPA spectrum, which is measured with the proposed technique, is compared with the TPA spectra reported in the literature, confirming the validity of our experimental approach. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  14. Extended ellipse-line-ellipse trajectory for long-object cone-beam imaging with a mounted C-arm system

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Lauritsch, Günter; Dennerlein, Frank; Mao, Yanfei; Hornegger, Joachim; Noo, Frédéric

    2016-02-01

    Recent reports show that three-dimensional cone-beam (CB) imaging with a floor-mounted (or ceiling-mounted) C-arm system has become a valuable tool in interventional radiology. Currently, a circular short scan is used for data acquisition, which inevitably yields CB artifacts and a short coverage in the direction of the patient table. To overcome these two limitations, a more sophisticated data acquisition geometry is needed. This geometry should be complete in terms of Tuy’s condition and should allow continuous scanning, while being compatible with the mechanical constraints of mounted C-arm systems. Additionally, the geometry should allow accurate image reconstruction from truncated data. One way to ensure such a feature is to adopt a trajectory that provides full R-line coverage within the field-of-view (FOV). An R-line is any segment of line that connects two points on a source trajectory, and the R-line coverage is the set of points that belong to an R-line. In this work, we propose a novel geometry called the extended ellipse-line-ellipse (ELE) for long-object imaging with a mounted C-arm system. This trajectory is built from modules consisting of two elliptical arcs connected by a line. We demonstrate that the extended ELE can be configured in many ways so that full R-line coverage is guaranteed. Both tight and relaxed parametric settings are presented. All results are supported by extensive mathematical proofs provided in appendices. Our findings make the extended ELE trajectory attractive for axially-extended FOV imaging in interventional radiology.

  15. Walking-Beam Solar-Cell Conveyor

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Microprocessor-controlled walking-beam conveyor moves cells between work stations in automated assembly line. Conveyor has arm at each work station. In unison arms pick up all solar cells and advance them one station; then beam retracks to be in position for next step. Microprocessor sets beam stroke, speed, and position.

  16. Electron beam-generated Ar/N{sub 2} plasmas: The effect of nitrogen addition on the brightest argon emission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lock, E. H., E-mail: evgeniya.lock@nrl.navy.mil, E-mail: scott.walton@nrl.navy.mil; Petrova, Tz. B.; Petrov, G. M.

    2016-04-15

    The effect of nitrogen addition on the emission intensities of the brightest argon lines produced in a low pressure argon/nitrogen electron beam-generated plasmas is characterized using optical emission spectroscopy. In particular, a decrease in the intensities of the 811.5 nm and 763.5 nm lines is observed, while the intensity of the 750.4 nm line remains unchanged as nitrogen is added. To explain this phenomenon, a non-equilibrium collisional-radiative model is developed and used to compute the population of argon excited states and line intensities as a function of gas composition. The results show that the addition of nitrogen to argon modifies the electron energymore » distribution function, reduces the electron temperature, and depopulates Ar metastables in exchange reactions with electrons and N{sub 2} molecules, all of which lead to changes in argon excited states population and thus the emission originating from the Ar 4p levels.« less

  17. Broad-band beam buncher

    DOEpatents

    Goldberg, David A.; Flood, William S.; Arthur, Allan A.; Voelker, Ferdinand

    1986-01-01

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  18. Evaluation of beam divergence of a negative hydrogen ion beam using Doppler shift spectroscopy diagnostics

    NASA Astrophysics Data System (ADS)

    Deka, A. J.; Bharathi, P.; Pandya, K.; Bandyopadhyay, M.; Bhuyan, M.; Yadav, R. K.; Tyagi, H.; Gahlaut, A.; Chakraborty, A.

    2018-01-01

    The Doppler Shift Spectroscopy (DSS) diagnostic is in the conceptual stage to estimate beam divergence, stripping losses, and beam uniformity of the 100 keV hydrogen Diagnostics Neutral Beam of International Thermonuclear Experimental Reactor. This DSS diagnostic is used to measure the above-mentioned parameters with an error of less than 10%. To aid the design calculations and to establish a methodology for estimation of the beam divergence, DSS measurements were carried out on the existing prototype ion source RF Operated Beam Source in India for Negative ion Research. Emissions of the fast-excited neutrals that are generated from the extracted negative ions were collected in the target tank, and the line broadening of these emissions were used for estimating beam divergence. The observed broadening is a convolution of broadenings due to beam divergence, collection optics, voltage ripple, beam focusing, and instrumental broadening. Hence, for estimating the beam divergence from the observed line broadening, a systematic line profile analysis was performed. To minimize the error in the divergence measurements, a study on error propagation in the beam divergence measurements was carried out and the error was estimated. The measurements of beam divergence were done at a constant RF power of 50 kW and a source pressure of 0.6 Pa by varying the extraction voltage from 4 kV to10 kV and the acceleration voltage from 10 kV to 15 kV. These measurements were then compared with the calorimetric divergence, and the results seemed to agree within 10%. A minimum beam divergence of ˜3° was obtained when the source was operated at an extraction voltage of ˜5 kV and at a ˜10 kV acceleration voltage, i.e., at a total applied voltage of 15 kV. This is in agreement with the values reported in experiments carried out on similar sources elsewhere.

  19. Refurbishing of carbon contaminated pre-mirror of reflectivity beam line at Indus-1

    NASA Astrophysics Data System (ADS)

    Yadav, P. K.; Kumar, M.; Gupta, R. K.; Sinha, M.; Patel, H. S.; Modi, M. H.

    2018-04-01

    In recent days optics contamination and its refurbishing is a serious issue for synchrotron radiation beam line community. Here we refurbished a carbon contaminated mirror by Ar and O2 gas mixed (1:1) radio frequency plasma. For structural analysis pre and post characterization of the mirror was done by Soft X-ray reflectivity (SXRR), Raman Spectroscopy (RS) and Atomic force microscopy (AFM). Before refurbishing mirror, a low density graphitic carbon layer of thickness 400 Å with surface roughness about 55 Å and Au surface roughness 14Å was estimated by SXRR. After one hour RF plasma exposure it is observed by SXRR and Raman spectroscopy that carbon layer is completely removed. The AFM and SXRR results show that roughness of Au surface not increase after plasma exposure.

  20. Spectrum and density of neutron flux in the irradiation beam line no. 3 of the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Shabalin, E. P.; Verkhoglyadov, A. E.; Bulavin, M. V.; Rogov, A. D.; Kulagin, E. N.; Kulikov, S. A.

    2015-03-01

    Methodology and results of measuring the differential density of the neutron flux in irradiation beam line no. 3 of the IBR-2 reactor using neutron activation analysis (NAA) are presented in the paper. The results are compared to the calculation performed on the basis of the 3D MCNP model. The data that are obtained are required to determine the integrated radiation dose of the studied samples at various distances from the reactor.

  1. PAL-XFEL cavity beam position monitor pick-up design and beam test

    NASA Astrophysics Data System (ADS)

    Lee, Sojeong; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-01

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  2. Scintillating fiber-based photon beam profiler for the Jefferson Lab tagged photon beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorn, C.; Barbosa, F.J.; Freyberger, A.

    2000-10-01

    A scintillating fiber hodoscope has been built for use as a photon beam profiler in the bremsstrahlung tagged photon beam in Hall B of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The device consists of a linear array of 64 2-2 mm2 scintillating fibers glued to a corresponding set of light guide fibers. Both fiber types use double-clad technology for maximum intensity. The light guide fibers are gently bent into a square array of holes and air-gap coupled to four compact position-sensitive photomultipliers (16 channel Hamamatsu R5900-M16). Custom electronics amplifies and converts the analog outputs to ECL pulses whichmore » are counted by VME-based scalars. The device consisting of the fibers, photomultipliers, and electronics is sealed within a light-tight aluminum box. Two modules make up a beam imaging 2-D system. The system has been tested successfully during an experimental run« less

  3. Focusing elliptical laser beams

    NASA Astrophysics Data System (ADS)

    Marchant, A. B.

    1984-03-01

    The spot formed by focusing an elliptical laser beam through an ordinary objective lens can be optimized by properly filling the objective lens. Criteria are given for maximizing the central irradiance and the line-spread function. An optimized spot is much less elliptical than the incident laser beam. For beam ellipticities as high as 2:1, this spatial filtering reduces the central irradiance by less than 14 percent.

  4. Evaluation of thermal helium beam and line-ratio fast diagnostic on the National Spherical Torus Experiment-Upgrade

    DOE PAGES

    Munoz Burgos, Jorge M.; Agostini, Matteo; Scarin, Paolo; ...

    2015-05-06

    A 1-D kinetic collisional radiative model (CRM) with state-of-the-art atomic data is developed and employed to simulate line emission to evaluate the Thermal Helium Beam (THB) diagnostic on NSTX-U. This diagnostic is currently in operation on RFX-mod, and it is proposed to be installed on NSTX-U. The THB system uses the intensity ratios of neutral helium lines 667.8, 706.5, and 728.1 nm to derive electron temperature (eV ) and density (cm –3) profiles. The purpose of the present analysis is to evaluate the applications of this diagnostic for determining fast (~4 μs) electron temperature and density radial profiles on themore » scrape-off layer (SOL) and edge regions of NSTX-U that are needed in turbulence studies. The diagnostic is limited by the level of detection of the 728.1 nm line, which is the weakest of the three. In conclusion, this study will also aid in future design of a similar 2-D diagnostic systems on the divertor.« less

  5. A new e-beam application in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Sadat, Theo; Malcolm, Fiona

    2005-10-01

    The paper presents a new electron beam application in the pharmaceutical industry: an in-line self-shielded atropic transfer system using electron beam for surface decontamination of products entering a pharmaceutical filling line. The unit was developed by Linac Technologies in response to the specifications of a multi-national pharmaceutical company, to solve the risk of microbial contamination entering a filling line housed inside an isolator. In order to fit the sterilization unit inside the pharmaceutical plant, a "miniature" low-energy (200 keV) electron beam accelerator and e-beam tunnel were designed, all conforming to the pharmaceutical good manufacturing practice (GMP) regulations. Process validation using biological indicators is described, with reference to the regulations governing the pharmaceutical industry. Other industrial applications of a small-sized self-shielded electron beam sterilization unit are mentioned.

  6. Line spread instrumentation for propagation measurements

    NASA Technical Reports Server (NTRS)

    Bailey, W. H., Jr.

    1980-01-01

    A line spread device capable of yielding direct measure of a laser beam's line spread function (LSF) was developed and employed in propagation tests conducted in a wind tunnel to examine optimal acoustical suppression techniques for laser cavities exposed to simulated aircraft aerodynamic environments. Measurements were made on various aerodynamic fences and cavity air injection techniques that effect the LSF of a propagating laser. Using the quiescent tunnel as a control, the relative effect of each technique on laser beam quality was determined. The optical instrument employed enabled the comparison of relative beam intensity for each fence or mass injection. It was found that fence height had little effect on beam quality but fence porosity had a marked effect, i.e., 58% porosity alleviated cavity resonance and degraded the beam the least. Mass injection had little effect on the beam LSF. The use of a direct LSF measuring device proved to be a viable means of determining aerodynamic seeing qualities of flow fields.

  7. Modified M20 Beam Position Monitor Testing

    NASA Astrophysics Data System (ADS)

    Koros, Jessica; Musson, John

    2017-09-01

    Beam position monitors (BPMs) are used to measure lateral beam position. Two pairs of modified wire BPMs are being evaluated for installation into the injector at Jefferson Lab (JLab). The BPMs were coated with a Non-Evaporable Getter (NEG) to aid in pumping at the electron gun, as an ultra-high vacuum is required to protect the gun and to avoid scattering the beam. Beam in the injector has a large diameter, allowing extraction of second moments to give information about beam profile and emittance. The purpose of this project is to determine the effects of NEG coating on the BPMs and to calculate second moments from beam models on the Goubau Line (G-Line). Using the G-Line, scans of the BPMs were taken before and after NEG coating. Each scan produced an electrical field map, which characterizes properties of the BPM, including scale factors and coupling. Second moments were calculated using superposition of previous scan data, and verification of this method was attempted using several beam models. Results show the BPMs responded well to NEG and that measurement of second moments is possible. Once the BPMs are installed, they will enhance gun vacuum and enable monitoring of shape and trajectory of the beam as it exits the electron gun to ensure quality beam for experiments. This work is made possible through support from NSF award 1659177 to Old Dominion University.

  8. Design study of beam transport lines for BioLEIR facility at CERN

    NASA Astrophysics Data System (ADS)

    Ghithan, S.; Roy, G.; Schuh, S.

    2017-09-01

    The biomedical community has asked CERN to investigate the possibility to transform the Low Energy Ion Ring (LEIR) accelerator into a multidisciplinary, biomedical research facility (BioLEIR) that could provide ample, high-quality beams of a range of light ions suitable for clinically oriented, fundamental research on cell cultures and for radiation instrumentation development. The present LEIR machine uses fast beam extraction to the next accelerator in the chain, eventually leading to the Large Hadron Collider (LHC) . To provide beam for a biomedical research facility, a new slow extraction system must be installed. Two horizontal and one vertical experimental beamlines were designed for transporting the extracted beam to three experimental end-stations. The vertical beamline (pencil beam) was designed for a maximum energy of 75 MeV/u for low-energy radiobiological research, while the two horizontal beamlines could deliver up to 440 MeV/u. One horizontal beamline shall be used preferentially for biomedical experiments and shall provide pencil beam and a homogeneous broad beam, covering an area of 5 × 5 cm2 with a beam homogeneity of ±5%. The second horizontal beamline will have pencil beam only and is intended for hardware developments in the fields of (micro-)dosimetry and detector development. The minimum full aperture of the beamlines is approximately 100 mm at all magnetic elements, to accommodate the expected beam envelopes. Seven dipoles and twenty quadrupoles are needed for a total of 65 m of beamlines to provide the specified beams. In this paper we present the optical design for the three beamlines.

  9. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breitbach, Elizabeth K.; Maltz, Jonathan S.; Gangadharan, Bijumon

    2011-11-15

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd{sub 2}O{sub 2}S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to whichmore » the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision{sup TM} image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p < 10{sup -8}), 1.64 (p < 10{sup -13}), 2.66 (p < 10{sup -9}), respectively. For all

  10. A direct method of extracting surface recombination velocity from an electron beam induced current line scan

    NASA Astrophysics Data System (ADS)

    Ong, Vincent K. S.

    1998-04-01

    The extraction of diffusion length and surface recombination velocity in a semiconductor with the use of an electron beam induced current line scan has traditionally been done by fitting the line scan into complicated theoretical equations. It was recently shown that a much simpler equation is sufficient for the extraction of diffusion length. The linearization coefficient is the only variable that is needed to be adjusted in the curve fitting process. However, complicated equations are still necessary for the extraction of surface recombination velocity. It is shown in this article that it is indeed possible to extract surface recombination velocity with a simple equation, using only one variable, the linearization coefficient. An intuitive feel for the reason behind the method was discussed. The accuracy of the method was verified with the use of three-dimensional computer simulation, and was found to be even slightly better than that of the best existing method.

  11. Characterization of the Li beam probe with a beam profile monitor on JETa)

    NASA Astrophysics Data System (ADS)

    Nedzelskiy, I. S.; Korotkov, A.; Brix, M.; Morgan, P.; Vince, J.; Jet Efda Contributors

    2010-10-01

    The lithium beam probe (LBP) is widely used for measurements of the electron density in the edge plasma of magnetically confined fusion experiments. The quality of LBP data strongly depends on the stability and profile shape of the beam. The main beam parameters are as follows: beam energy, beam intensity, beam profile, beam divergence, and the neutralization efficiency. For improved monitoring of the beam parameters, a beam profile monitor (BPM) from the National Electrostatics Corporation (NEC) has been installed in the Li beam line at JET. In the NEC BPM, a single grounded wire formed into a 45° segment of a helix is rotated by a motor about the axis of the helix. During each full revolution, the wire sweeps twice across the beam to give X and Y profiles. In this paper, we will describe the properties of the JET Li beam as measured with the BPM and demonstrate that it facilitates rapid optimization of the gun performance.

  12. Beam Trail Tracking at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicklaus, Dennis J.; Carmichael, Linden Ralph; Neswold, Richard

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trendsmore » in the performance of the accelerators« less

  13. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.

    2016-10-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.

  14. Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped

    NASA Astrophysics Data System (ADS)

    Yan, Boxia; Qi, Yan; Wang, Yanwei

    2016-10-01

    Compact, high power, and low-cost green laser light sources are needed in projection-related applications such as digital cinema, rear-projection television, simulators, and command and control stations. We report a LD array directly pumped intracavity SHG Nd:YVO4/PPMgLN laser without lens or waveguide in this letter. A compact 3.12 W green laser was demonstrated by intra-cavity frequency doubled using a PPMgLN bulk crystal by a 19-emitter LD array pumped(single bar), the conversion efficiency from input LD array was 9.2%. A line-beam output suitable for laser projectors was generated, which has the potential to be scalable to small volumes and low costs for laser projection displays.

  15. LATTICE/hor ellipsis/a beam transport program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staples, J.

    1987-06-01

    LATTICE is a computer program that calculates the first order characteristics of synchrotrons and beam transport systems. The program uses matrix algebra to calculate the propagation of the betatron (Twiss) parameters along a beam line. The program draws on ideas from several older programs, notably Transport and Synch, adds many new ones and incorporates them into an interactive, user-friendly program. LATTICE will calculate the matched functions of a synchrotron lattice and display them in a number of ways, including a high resolution Tektronix graphics display. An optimizer is included to adjust selected element parameters so the beam meets a setmore » of constraints. LATTICE is a first order program, but the effect of sextupoles on the chromaticity of a synchrotron lattice is included, and the optimizer will set the sextupole strengths for zero chromaticity. The program will also calculate the characteristics of beam transport systems. In this mode, the beam parameters, defined at the start of the transport line, are propagated through to the end. LATTICE has two distinct modes: the lattice mode which finds the matched functions of a synchrotron, and the transport mode which propagates a predefined beam through a beam line. However, each mode can be used for either type of problem: the transport mode may be used to calculate an insertion for a synchrotron lattice, and the lattice mode may be used to calculate the characteristics of a long periodic beam transport system.« less

  16. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  17. On beam shaping of the field radiated by a line source coupled to finite or infinite photonic crystals.

    PubMed

    Ceccuzzi, Silvio; Jandieri, Vakhtang; Baccarelli, Paolo; Ponti, Cristina; Schettini, Giuseppe

    2016-04-01

    Comparison of the beam-shaping effect of a field radiated by a line source, when an ideal infinite structure constituted by two photonic crystals and an actual finite one are considered, has been carried out by means of two different methods. The lattice sums technique combined with the generalized reflection matrix method is used to rigorously investigate the radiation from the infinite photonic crystals, whereas radiation from crystals composed of a finite number of rods along the layers is analyzed using the cylindrical-wave approach. A directive radiation is observed with the line source embedded in the structure. With an increased separation distance between the crystals, a significant edge diffraction appears that provides the main radiation mechanism in the finite layout. Suitable absorbers are implemented to reduce the above-mentioned diffraction and the reflections at the boundaries, thus obtaining good agreement between radiation patterns of a localized line source coupled to finite and infinite photonic crystals, when the number of periods of the finite structure is properly chosen.

  18. Spectral line polarimetry with a channeled polarimeter.

    PubMed

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.

  19. Laser Plasma Instability (LPI) Driven Light Scattering Measurements with 44 beam-lines of Nike KrF Laser^*

    NASA Astrophysics Data System (ADS)

    Oh, J.; Weaver, J. L.; Kehne, D. M.; Phillips, L. S.; Obenschain, S. P.; Serlin, V.; McLean, E. A.; Lehmberg, R. H.; Manka, C. K.

    2009-11-01

    With short wavelength (248 nm), large bandwidth (˜1 THz), and ISI beam smoothing, Nike KrF laser provides unique opportunities of LPI research for direct-drive inertial confinement fusion. Previous experiments at intensities (10^15˜10^16 W/cm^2) exceeded two-plasmon decay (TPD) instability threshold using 12 beam-lines of Nike laser.^a,b For further experiments to study LPI excitation in bigger plasma volumes, 44 Nike main beams have been used to produce plasmas with total laser energies up to 1 kJ of ˜350 psec FWHM pulses. This talk will present results of the recent LPI experiment focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. Blackbody temperature and expansion speed measurements of the plasmas were also made. The experiment was conducted at laser intensities of (1˜4)x10^15 W/cm^2 on solid planar CH targets. ^a J. L. Weaver, et al, NO4.14, APS DPP (2008) ^b J. Oh, et al, NO4.15, APS DPP (2008) * Work supported by DoE/NNSA and performed at Naval Research Laboratory.

  20. Beam heating of thick targets for on-line mass separators

    NASA Astrophysics Data System (ADS)

    Eaton, T. W.; Ravn, H. L.; Isolde Collaboration

    1987-05-01

    Energy deposition computations have been made on a variety of target materials utilized for the production of radioisotopes by means of 600-MeV protons. Results have shown that, when a proton current of 100 μA is assumed, dispersed target materials, such as uranium carbide powder and magnesium oxide, are best able to withstand the energy absorption and consequent beam heating without the need of additional cooling. Modified foil targets of titanium, zirconium and tantalum also appear capable of withstanding a full beam current, whilst liquid metal targets in their present form appear to have limitations in terms of the maximum allowable beam current. A redesign of the target container is proposed which allows higher proton currents to be used with these targets also.

  1. Visualizing polarization singularities in Bessel-Poincaré beams.

    PubMed

    Shvedov, V; Karpinski, P; Sheng, Y; Chen, X; Zhu, W; Krolikowski, W; Hnatovsky, C

    2015-05-04

    We demonstrate that an annulus of light whose polarization is linear at each point, but the plane of polarization gradually rotates by π radians can be used to generate Bessel-Poincaré beams. In any transverse plane this beam exhibits concentric rings of polarization singularities in the form of L-lines, where the polarization is purely linear. Although the L-lines are invisible in terms of light intensity variations, we present a simple way to visualize them as dark rings around a sharp peak of intensity in the beam center. To do this we use a segmented polarizer whose transmission axes are oriented differently in each segment. The radius of the first L-line is always smaller than the radius of the central disk of the zero-order Bessel beam that would be produced if the annulus were homogeneously polarized and had no phase circulation along it.

  2. An X-ray beam position monitor based on the photoluminescence of helium gas

    NASA Astrophysics Data System (ADS)

    Revesz, Peter; White, Jeffrey A.

    2005-03-01

    A new method for white beam position monitoring for both bend magnet and wiggler synchrotron X-ray radiation has been developed. This method utilizes visible light luminescence generated as a result of ionization by the intense X-ray flux. In video beam position monitors (VBPMs), the luminescence of helium gas at atmospheric pressure is observed through a view port using a CCD camera next to the beam line. The beam position, profile, integrated intensity and FWHM are calculated from the distribution of luminescence intensity in each captured image by custom software. Misalignment of upstream apertures changes the image profile making VBPMs helpful for initial alignment of upstream beam line components. VBPMs can thus provide more information about the X-ray beam than most beam position monitors (BPMs). A beam position calibration procedure, employing a tilted plane-parallel glass plate placed in front of the camera lens, has also been developed. The accuracy of the VBPM system was measured during a bench-top experiment to be better than 1 μm. The He-luminescence-based VBPM system has been operative on three CHESS beam lines (F hard-bend and wiggler, A-line wiggler and G-line wiggler) for about a year. The beam positions are converted to analog voltages and used as feedback signals for beam stabilization. In our paper we discuss details of VBPM construction and describe further results of its performance.

  3. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  4. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    NASA Astrophysics Data System (ADS)

    Makhloufi, M.; Salah, H.

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.

  5. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  6. Evaluation of beam halo from beam-gas scattering at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Yang, R.; Naito, T.; Bai, S.; Aryshev, A.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.; Faus-Golfe, A.; Kubytskyi, V.; Liu, S.; Wallon, S.; Bambade, P.

    2018-05-01

    In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrate the influence of the beam-gas scattering process on the transverse halo distribution.

  7. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    NASA Astrophysics Data System (ADS)

    Wang, Tiegu; Huang, Qunce; Feng, Weisen

    2007-10-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  8. Particle beam injection system

    DOEpatents

    Jassby, Daniel L.; Kulsrud, Russell M.

    1977-01-01

    This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

  9. Electron Beam "Writes" Silicon On Sapphire

    NASA Technical Reports Server (NTRS)

    Heinemann, Klaus

    1988-01-01

    Method of growing silicon on sapphire substrate uses beam of electrons to aid growth of semiconductor material. Silicon forms as epitaxial film in precisely localized areas in micron-wide lines. Promising fabrication method for fast, densely-packed integrated circuits. Silicon deposited preferentially in contaminated substrate zones and in clean zone irradiated by electron beam. Electron beam, like surface contamination, appears to stimulate decomposition of silane atmosphere.

  10. Compact compressive arc and beam switchyard for energy recovery linac-driven ultraviolet free electron lasers

    NASA Astrophysics Data System (ADS)

    Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.

    2017-08-01

    High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.

  11. New beam line for time-of-flight medium energy ion scattering with large area position sensitive detector

    NASA Astrophysics Data System (ADS)

    Linnarsson, M. K.; Hallén, A.; Åström, J.; Primetzhofer, D.; Legendre, S.; Possnert, G.

    2012-09-01

    A new beam line for medium energy ion mass scattering (MEIS) has been designed and set up at the Ångström laboratory, Uppsala University, Sweden. This MEIS system is based on a time-of-flight (ToF) concept and the electronics for beam chopping relies on a 4 MHz function generator. Repetition rates can be varied between 1 MHz and 63 kHz and pulse widths below 1 ns are typically obtained by including beam bunching. A 6-axis goniometer is used at the target station. Scattering angle and energy of backscattered ions are extracted from a time-resolved and position-sensitive detector. Examples of the performance are given for three kinds of probing ions, 1H+, 4He+, and 11B+. Depth resolution is in the nanometer range and 1 and 2 nm thick Pt layers can easily be resolved. Mass resolution between nearby isotopes can be obtained as illustrated by Ga isotopes in GaAs. Taking advantage of the large size detector, a direct imaging (blocking pattern) of crystal channels are shown for hexagonal, 4H-SiC. The ToF-MEIS system described in this paper is intended for use in semiconductor and thin film areas. For example, depth profiling in the sub nanometer range for device development of contacts and dielectric interfaces. In addition to applied projects, fundamental studies of stopping cross sections in this medium energy range will also be conducted.

  12. Status of the Beam Thermalization Area at the NSCL

    NASA Astrophysics Data System (ADS)

    Cooper, Kortney; Barquest, Bradley; Morrissey, David; Rodriguez, Jose Alberto; Schwarz, Stefan; Sumithrarachchi, Chandana; Kwarsick, Jeff; Savard, Guy

    2013-10-01

    Beam thermalization is a necessary process for the production of low-energy ion beams at projectile fragmentation facilities. Present beam thermalization techniques rely on passing high-energy ion beams through solid degraders followed by a gas cell where the remaining kinetic energy is dissipated through collisions with buffer gas atoms. Recently, the National Superconducting Cyclotron Laboratory (NSCL) upgraded its thermalization area with the implementation of new large acceptance beam lines and a large RF-gas catcher constructed by Argonne National Lab (ANL). Two high-energy beam lines were commissioned along with the installation and commissioning of this new device in late 2012. Low-energy radioactive ion beams have been successfully delivered to the Electron Beam Ion Trap (EBIT) charge breeder for the ReA3 reaccelerator, the SuN detector, the Low Energy Beam Ion Trap (LEBIT) penning trap, and the Beam Cooler and Laser Spectroscopy (BeCoLa) collinear laser beamline. Construction of a gas-filled reverse cyclotron dubbed the CycStopper is also underway. The status of the beam thermalization area will be presented and the overall efficiency of the system will be discussed.

  13. Fine line structures of ceramic films formed by patterning of metalorganic precursors using photolithography and ion beams

    NASA Astrophysics Data System (ADS)

    Hung, L. S.; Zheng, L. R.

    1992-05-01

    Fine line structures of ceramic thin films were fabricated by patterning of metalorganic precursors using photolithography and ion beams. A trilevel structure was developed with an outer resist layer to transfer patterns, a silver delineated layer as an implantation mask, and a planar resist layer protecting the precursor film from chemical attacking and sputtering. Ion irradiation through the Ag stencil rendered metal carboxylates insoluble in 2-ethylhexanoic acid, permitting patterning of the precursor film with patterning features on micron scales. The potential of this technique was demonstrated in patterning of Bi2Sr2CaCu2O(8+x) and Pb(Zr(0.53)Ti(0.47) thin films.

  14. SU-F-T-138: Commissioning and Evaluating Dose Computation Models for a Dedicated Proton Line Scanning Beam Nozzle in Eclipse Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, P; Chang Gung University, Taoyuan, Taiwan; Huang, H

    Purpose: In this study, we present an effective method to derive low dose envelope of the proton in-air spot fluence at beam positions other than the isocenter to reduce amount of measurements required for planning commission. Also, we demonstrate commissioning and validation results of this method to the Eclipse treatment planning system (version 13.0.29) for a Sumitomo dedicated proton line scanning beam nozzle. Methods: The in-air spot profiles at five beam-axis positions (±200, ±100 and 0 mm) were obtained in trigger mode using a MP3 Water tank (PTW-Freiburg) and a pinpoint ionization chamber (model 31014, PTW-Freiburg). Low dose envelope (belowmore » 1% of the center dose) of the spot profile at isocenter was obtained by repeated point measurements to minimize dosimetry uncertainty. The double Gaussian (DG) model was used to fit and obtain optimal σ1, σ2 and their corresponding weightings through our in-house MATLAB (Mathworks) program. σ1, σ2 were assumed to expand linearly along the beam axis from a virtual source position calculated by back projecting fitted sigmas from the single Gaussian (SG) model. Absolute doses in water were validated using an Advanced Markus chamber at the depth of 2cm with Pristine Peak (BP) R90d ranging from 5–32 cm for 10×10 cm2 scanned fields. The field size factors were verified with square fields from 2 to 20 cm at 2cm and before BP depth. Results: The absolute dose outputs were found to be within ±3%. For field size factor, the agreement between calculated and measurement were within ±2% at 2cm and ±3% before BP, except for the field size below 2×2 cm2. Conclusion: The double Gaussian model was found to be sufficient for characterizing the Sumitomo dedicated proton line scanning nozzle. With our effective double Gaussian fitting method, we are able to save significant proton beam time with acceptable output accuracy.« less

  15. Inertial confinement fusion method producing line source radiation fluence

    DOEpatents

    Rose, Ronald P.

    1984-01-01

    An inertial confinement fusion method in which target pellets are imploded in sequence by laser light beams or other energy beams at an implosion site which is variable between pellet implosions along a line. The effect of the variability in position of the implosion site along a line is to distribute the radiation fluence in surrounding reactor components as a line source of radiation would do, thereby permitting the utilization of cylindrical geometry in the design of the reactor and internal components.

  16. WE-H-BRA-06: Experimental Investigation of RBE for Lung Cancer Cell Lines as a Function of Dose and LET in Proton, Helium and Carbon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, D; Titt, U; Bronk, L

    2016-06-15

    Purpose: Investigate and quantify the effect of dose and LET on the RBE of protons, helium and carbon ions. Methods: High throughput, high accuracy experimental setups were custom designed to investigate the Relative Biological Effectiveness (RBE) dependence on the dose and Linear Energy Transfer (LET) values for proton, helium and carbon ion beams. The experiment was conducted at the HIT facility in collaboration with the DKFZ in Heidelberg/Germany. Clonogenic assays of two human lung cancer cell lines, H460 and H1437, were investigated in this study. γH2AX foci staining on the H460 cell line was also undertaken to facilitate the studymore » of differential DNA double-strand break induction and repair between low-design available at the HIT facility. Specific points along the Bragg curve corresponding to well-defined doses and LET values were chosen by appropriate selection of the pre-absorber thicknesses. With a setup design for horizontal beam lines we were able to minimize ion scattering in the cell plate, resulting in narrower energy spectra and hence LET distributions in the Bragg peak and in the distal falloff regions, compared to the earlier experiments. Results: Approximately 16,000 samples of cancer cells were irradiated during 23 hours of beam time. The preliminary results of the survival curves for both cell lines show a distinct dependence on LET for a given dose with decreased survival fractions at increasing LET values, encountered at the Bragg peak and in the distal falloff. Conclusion: Our preliminary findings are indicative of the importance of novel variable-RBE models for proton therapy and provide insight into the RBE of heavy ions for possible future heavy ion therapy facilities in the US. Funding support: SINF 2015/16.« less

  17. The Relative Biological Effectiveness for Carbon and Oxygen Ion Beams Using the Raster-Scanning Technique in Hepatocellular Carcinoma Cell Lines

    PubMed Central

    Habermehl, Daniel; Ilicic, Katarina; Dehne, Sarah; Rieken, Stefan; Orschiedt, Lena; Brons, Stephan; Haberer, Thomas; Weber, Klaus-Josef; Debus, Jürgen; Combs, Stephanie E.

    2014-01-01

    Background Aim of this study was to evaluate the relative biological effectiveness (RBE) of carbon (12C) and oxygen ion (16O)-irradiation applied in the raster-scanning technique at the Heidelberg Ion beam Therapy center (HIT) based on clonogenic survival in hepatocellular carcinoma cell lines compared to photon irradiation. Methods Four human HCC lines Hep3B, PLC, HepG2 and HUH7 were irradiated with photons, 12C and 16O using a customized experimental setting at HIT for in-vitro trials. Cells were irradiated with increasing physical photon single doses of 0, 2, 4 and 6 Gy and heavy ionsingle doses of 0, 0.125, 0.5, 1, 2, 3 Gy (12C and 16O). SOBP-penetration depth and extension was 35 mm +/−4 mm and 36 mm +/−5 mm for carbon ions and oxygen ions respectively. Mean energy level and mean linear energy transfer (LET) were 130 MeV/u and 112 keV/um for 12C, and 154 MeV/u and 146 keV/um for 16O. Clonogenic survival was computated and realtive biological effectiveness (RBE) values were defined. Results For all cell lines and both particle modalities α- and β-values were determined. As expected, α-values were significantly higher for 12C and 16O than for photons, reflecting a steeper decline of the initial slope of the survival curves for high-LET beams. RBE-values were in the range of 2.1–3.3 and 1.9–3.1 for 12C and 16O, respectively. Conclusion Both irradiation with 12C and 16O using the rasterscanning technique leads to an enhanced RBE in HCC cell lines. No relevant differences between achieved RBE-values for 12C and 16O were found. Results of this work will further influence biological-adapted treatment planning for HCC patients that will undergo particle therapy with 12C or 16O. PMID:25460352

  18. Delivering the world's most intense muon beam

    NASA Astrophysics Data System (ADS)

    Cook, S.; D'Arcy, R.; Edmonds, A.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Ogitsu, T.; Sakamoto, H.; Sato, A.; Tran, N. H.; Truong, N. M.; Wing, M.; Yamamoto, A.; Yoshida, M.

    2017-03-01

    A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4 ±2.7 )×1 05 muons per watt of proton beam power (μ+ and μ-), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of (4.2 ±1.1 )×1 08 muons s-1 , among the highest in the world. The number of μ- measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  19. Primary radiotherapy for carcinoma of the endometrium using external beam radiotherapy and single line source brachytherapy.

    PubMed

    Churn, M; Jones, B

    1999-01-01

    A small proportion of patients with adenocarcinoma of the endometrium are inoperable by virtue of severe concurrent medical conditions, gross obesity or advanced stage disease. They can be treated with primary radiotherapy with either curative or palliative intent. We report 37 such patients treated mainly with a combination of external beam radiotherapy and intracavitary brachytherapy using a single line source technique. The 5-year disease-specific survival for nonsurgically staged patients was 68.4% for FIGO Stages I and II and 33.3% for Stages III and IV. The incidence of late morbidity was acceptably low. Using the Franco-Italian Glossary, there was 27.0% grade 1 but no grade 2-4 bladder toxicity. For the rectum the rates were 18.9% grade 1, 5.4% grade 2, 2.7% grade 3, and no grade 4 toxicity. Methods of optimizing the dose distribution of the brachytherapy by means of variation of treatment length, radioactive source positions, and prescription point according to tumour bulk and individual anatomy are discussed. The biologically equivalent doses (BED) for combined external beam radiotherapy and brachytherapy were calculated to be in the range of 78-107 Gy(3) or 57-75 Gy(10) at point 'A' and appear adequate for the control of Stage I cancers.

  20. Beam-smiling in bent-Laue monochromators

    NASA Astrophysics Data System (ADS)

    Ren, B.; Dilmanian, F. A.; Chapman, L. D.; Wu, X. Y.; Zhong, Z.; Ivanov, I.; Thomlinson, W. C.; Huang, X.

    1997-07-01

    When a wide fan-shaped x-ray beam is diffracted by a bent crystal in the Laue geometry, the profile of the diffracted beam generally does not appear as a straight line, but as a line with its ends curved up or curved down. This effect, referred to as "beam-smiling", has been a major obstacle in developing bent-Laue crystal monochromators for medical applications of synchrotron x-ray. We modeled a cylindrically bent crystal using the Finite Element Analysis (FEA) method, and we carried out experiments at the National Synchrotron Light Source and Cornell High Energy Synchrotron Source. Our studies show that, while beam-smiling exists in most of the crystal's area because of anticlastic bending effects, there is a region parallel to the bending axis of the crystal where the diffracted beam is "smile-free". By applying asymmetrical bending, this smile-free region can be shifted vertically away from the geometric center of the crystal, as desired. This leads to a novel method of compensating for beam-smiling. We will discuss the method of "differential bending" for smile removal, beam-smiling in the Cauchios and the polychromatic geometry, and the implications of the method on developing single- and double-bent Laue monochromators. The experimental results will be discussed, concentrating on specific beam-smiling observation and removal as applied to the new monochromator of the Multiple Energy Computed Tomography [MECT] project of the Medical Department, Brookhaven National Laboratory.

  1. Ion-optical studies for a range adaptation method in ion beam therapy using a static wedge degrader combined with magnetic beam deflection.

    PubMed

    Chaudhri, Naved; Saito, Nami; Bert, Christoph; Franczak, Bernhard; Steidl, Peter; Durante, Marco; Rietzel, Eike; Schardt, Dieter

    2010-06-21

    Fast radiological range adaptation of the ion beam is essential when target motion is mitigated by beam tracking using scanned ion beams for dose delivery. Electromagnetically controlled deflection of a well-focused ion beam on a small static wedge degrader positioned between two dipole magnets, inside the beam delivery system, has been considered as a fast range adaptation method. The principle of the range adaptation method was tested in experiments and Monte Carlo simulations for the therapy beam line at the GSI Helmholtz Centre for Heavy Ions Research. Based on the simulations, ion optical settings of beam deflection and realignment of the adapted beam were experimentally applied to the beam line, and additional tuning was manually performed. Different degrader shapes were employed for the energy adaptation. Measured and simulated beam profiles, i.e. lateral distribution and range in water at isocentre, were analysed and compared with the therapy beam values for beam scanning. Deflected beam positions of up to +/-28 mm on degrader were performed which resulted in a range adaptation of up to +/-15 mm water equivalence (WE). The maximum deviation between the measured adapted range from the nominal range adaptation was below 0.4 mm WE. In experiments, the width of the adapted beam at the isocentre was adjustable between 5 and 11 mm full width at half maximum. The results demonstrate the feasibility/proof of the proposed range adaptation method for beam tracking from the beam quality point of view.

  2. Summary from Working Group on Multiple Beams and Funneling

    NASA Technical Reports Server (NTRS)

    Wangler, T. P.

    1985-01-01

    The working group on Multiple Beams and Funneling discussed various topics related to multiple beams and funneling, including (1) design considerations for multiple-beam accelerators; (2) scaling of current, emittance, and brightness for multiple-beam systems; (3) funneling lines using either discrete components or a radiofrequency quadrupole (RFQ) funneling structure; and (4) alternatives to funneling.

  3. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, Robert W.; Dobelbower, M. Christian

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  4. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  5. Enhanced laser beam coupling to a plasma

    DOEpatents

    Steiger, Arno D.; Woods, Cornelius H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma.

  6. Structure of polarization singularities of a light beam at triple frequency generated in isotropic medium by singularly polarized beam.

    PubMed

    Grigoriev, K S; Ryzhikov, P S; Cherepetskaya, E B; Makarov, V A

    2017-10-16

    The components of electric field of the third harmonic beam, generated in isotropic medium with cubic nonlinearity by a monochromatic light beam carrying polarization singularity of an arbitrary type, are found analytically. The relation between C-points characteristics in the fundamental and signal beams are determined, as well as the impact of the phase mismatch on the shape of the C-lines.

  7. Space beam combiner for long-baseline interferometry

    NASA Astrophysics Data System (ADS)

    Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.

    1999-04-01

    An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.

  8. Time resolving beam position measurement and analysis of beam unstable movement in PSR

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. V.

    2000-11-01

    Precise measurement of beam centroid movement is very important for understanding the fast transverse instability in the Los Alamos Proton Storage Ring (PSR). Proton bunch in the PSR is long thus different parts of the bunch can have different betatron phase and move differently therefore time resolving position measurement is needed. Wide band strip line BPM can be adequate if proper processing algorithm is used. In this work we present the results of the analysis of unstable transverse beam motion using time resolving processing algorithm. Suggested algorithm allows to calculate transverse position of different parts of the beam on each turn, then beam centroid movement on successive turns can be developed in series of plane travelling waves in the beam frame of reference thus providing important information on instability development. Some general features of fast transverse instability, unknown before, are discovered.

  9. Fin-line horn antenna

    DOEpatents

    Reindel, John

    1990-01-01

    A fin line circuit card containing a fin line slot feeds a dipole antenna ich extends a quarterwave outside the waveguide and provides an energy beam focal point at or near the open end of the waveguide. The dipole antenna thus maintains a wide and nearly constant beamwidth, low VSWR and a circular symmetric radiation pattern for use in electronic warfare direction finding and surveillance applications.

  10. Two-dimensional beam profiles and one-dimensional projections

    NASA Astrophysics Data System (ADS)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  11. Edge roughness evaluation method for quantifying at-size beam blur in electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Masaki; Moriya, Shigeru

    2000-07-01

    At-size beam blur at any given pattern size of an electron beam (EB) direct writer, HL800D, was quantified using the new edge roughness evaluation (ERE) method to optimize the electron-optical system. We characterized the two-dimensional beam-blur dependence on the electron deflection length of the EB direct writer. The results indicate that the beam blur ranged from 45 nm to 56 nm in a deflection field 2520 micrometer square. The new ERE method is based on the experimental finding that line edge roughness of a resist pattern is inversely proportional to the slope of the Gaussian-distributed quasi-beam-profile (QBP) proposed in this paper. The QBP includes effects of the beam blur, electron forward scattering, acid diffusion in chemically amplified resist (CAR), the development process, and aperture mask quality. The application the ERE method to investigating the beam-blur fluctuation demonstrates the validity of the ERE method in characterizing the electron-optical column conditions of EB projections such as SCALPEL and PREVAIL.

  12. Vibrational Analysis of a Shipboard Free Electron Laser Beam Path

    DTIC Science & Technology

    2011-12-01

    2 Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1...in Figure 2. Figure 2. Optical Extraction (η) vs. Separation and Electron Beam Tilt for a Notional FEL Oscillator . (From [1]) The narrow beam...3 is a top down view of the entire electron beam path. Figure 3. Electron Beam Line of a Notional FEL Oscillator . 2. Optical Path The optical

  13. Design, Modeling and Simulations in the RACE Project: Preliminary study for the development of a transport line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, C. O.; Hunt, A. W.; Idaho State University, Department of Physics, PO Box 8106, Pocatello, ID 83209

    2007-02-12

    As part of the Reactor Accelerator Coupling Experiment (RACE) a set of preliminary studies were conducted to design a transport beam line that could bring a 25 MeV electron beam from a Linear Accelerator to a neutron-producing target inside a subcritical system. Because of the relatively low energy beam, the beam size and a relatively long beam line (implicating a possible divergence problem) different parameters and models were studied before a final design could be submitted for assembly. This report shows the first results obtained from different simulations of the transport line optics and dynamics.

  14. Autogenerator of beams of charged particles

    DOEpatents

    Adler, Richard J.; Mazarakis, Michael G.; Miller, Robert B.; Shope, Steven L.; Smith, David L.

    1986-01-01

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  15. Autogenerator of beams of charged particles

    DOEpatents

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  16. Start-to-end simulations for beam dynamics in the injector system of the KHIMA heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Lee, Yumi; Kim, Eun-San; Kim, Chanmi; Bahng, Jungbae; Li, Zhihui; Hahn, Garam

    2017-07-01

    The Korea Heavy Ion Medical Accelerator (KHIMA) project has been developed for cancer therapy. The injector system consists of a low energy beam transport (LEBT) line, a radio-frequency quadrupole, a drift tube linac with two tanks, and a medium energy beam transport (MEBT) line with a charge stripper section. The injector system transports and accelerates the 12C4+ beam that is produced from electron cyclotron resonance ion source up to 7 MeV/u, respectively. The 12C6+ beam, which is transformed by a charge stripper from the 12C4+ beam, is injected into a synchrotron and accelerated up to 430 MeV/u. The lattice for the injector system was designed to optimize the beam parameters and to meet beam requirements for the synchrotron. We performed start-to-end simulations from the LEBT line to the MEBT line to confirm that the required design goals of the beam and injector system were met. Our simulation results indicate that our design achieves the required performance and a good transmission efficiency of 90%. We present the lattice design and beam dynamics for the injector system in the KHIMA project.

  17. Line Emission and X-ray Line Polarization of Multiply Ionized Mo Ions

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.; Stafford, A.; Safronova, U. I.; Shrestha, I. K.; Schultz, K. A.; Childers, R.; Cooper, M. C.; Beiersdorfer, P.; Hell, N.; Brown, G. V.

    2016-10-01

    We present a comprehensive experimental and theoretical study of the line emission from multiply ionized Mo ions produced by two different sets of experiments: at LLNL EBIT and the pulsed power generator Zebra at UNR. Mo line emission and polarization measurements were accomplished at EBIT for the first time. In particular, benchmarking experiments at the LLNL EBIT with Mo ions produced at electron beam energies from 2.75 keV up to 15 keV allowed us to break down these very complicated spectra into spectra with only few ionization stages and to select processes that influence them as well as to measure line polarization. The EBIT data were recorded using the EBIT Calorimeter Spectrometer and a crystal spectrometer with a Ge crystal. X-ray Mo spectra and pinhole images were collected from Z-pinch plasmas produced from various wire loads. Non-LTE modeling, high-precision relativistic atomic and polarization data were used to analyze L-shell Mo spectra. The influence of different plasma processes including electron beams on Mo line radiation is summarized. This work was supported by NNSA under DOE Grant DE-NA0002954. Experiments at the NTF/UNR were funded in part by DE-NA0002075. Work at LLNL was performed under the auspices of the U.S. DOE under contract DE-AC52-07NA27344.

  18. Studies on low energy beam transport for high intensity high charged ions at IMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y., E-mail: yangyao@impcas.ac.cn; Lu, W.; Fang, X.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18–24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberrationmore » of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.« less

  19. Detection of an electron beam in a high density plasma via an electrostatic probe

    NASA Astrophysics Data System (ADS)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki; Ji, Hantao

    2017-10-01

    The perturbation in floating potential by an electron beam is detected by a 1D floating potential probe array to evaluate the use of an electron beam for magnetic field line mapping in the Magnetic Reconnection Experiment (MRX) plasma. The MRX plasma is relatively high density (1013 cm-3) and low temperature (5 eV). Beam electrons are emitted from a tungsten filament and are accelerated by a 200 V potential across the sheath. They stream along the magnetic field lines towards the probe array. The spatial electron beam density profile is assumed to be a Gaussian along the radial axis of MRX and the effective beam width is determined from the radial profile of the floating potential. The magnitude of the perturbation is in agreement with theoretical predictions and the location of the perturbation is also in agreement with field line mapping. In addition, no significant broadening of the electron beam is observed after propagation for tens of centimeters through the high density plasma. These results demonstrate that this method of field line mapping is, in principle, feasible in high density plasmas. This work is supported by the DOE Contract No. DE-AC0209CH11466.

  20. PSR Injection Line Upgrade

    NASA Astrophysics Data System (ADS)

    Blind, Barbara; Jason, Andrew J.

    1997-05-01

    We describe the new injection line to be implemented for the Los Alamos Proton Storage Ring in the change from a two-step process to direct H- injection. While obeying all geometrical constraints imposed by the existing structures, the new line has properties not found in the present injection line. In particular, it features decoupled transverse phase spaces downstream of the skew bend and a high degree of tunability of the beam at the injection foil. A comprehensive set of error studies has dictated the component tolerances imposed and has indicated the expected performance of the system.

  1. A system for online beam emittance measurements and proton beam characterization

    NASA Astrophysics Data System (ADS)

    Nesteruk, K. P.; Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Scampoli, P.

    2018-01-01

    A system for online measurement of the transverse beam emittance was developed. It is named 4PrOBεaM (4-Profiler Online Beam Emittance Measurement) and was conceived to measure the emittance in a fast and efficient way using the multiple beam profiler method. The core of the system is constituted by four consecutive UniBEaM profilers, which are based on silica fibers passing across the beam. The 4PrOBεaM system was deployed for characterization studies of the 18 MeV proton beam produced by the IBA Cyclone 18 MeV cyclotron at Bern University Hospital (Inselspital). The machine serves daily radioisotope production and multi-disciplinary research, which is carried out with a specifically conceived Beam Transport Line (BTL). The transverse RMS beam emittance of the cyclotron was measured as a function of several machine parameters, such as the magnetic field, RF peak voltage, and azimuthal angle of the stripper. The beam emittance was also measured using the method based on the quadrupole strength variation. The results obtained with both techniques were compared and a good agreement was found. In order to characterize the longitudinal dynamics, the proton energy distribution was measured. For this purpose, a method was developed based on aluminum absorbers of different thicknesses, a UniBEaM detector, and a Faraday cup. The results were an input for a simulation of the BTL developed in the MAD-X software. This tool allows machine parameters to be tuned online and the beam characteristics to be optimized for specific applications.

  2. Beam commissioning for a superconducting proton linac

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; He, Yuan; Jia, Huan; Dou, Wei-ping; Chen, Wei-long; Zhang, X. L.; Liu, Shu-hui; Feng, Chi; Tao, Yue; Wang, Wang-sheng; Wu, Jian-qiang; Zhang, Sheng-hu; Zhao, Hong-Wei

    2016-12-01

    To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS) system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today's nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS) proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW) superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  3. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, developmentmore » of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.« less

  4. Repetitively pumped electron beam device

    DOEpatents

    Schlitt, Leland G [Livermore, CA

    1979-07-24

    Apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired.

  5. DESIGN OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE 50 GEV PROTON BEAM LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANDERER,P.; ET AL.

    2003-06-15

    Superconducting combined function magnets will be utilized for the 50GeV-750kW proton beam line for the J-PARC neutrino experiment and an R and D program has been launched at KEK. The magnet is designed to provide a combined function with a dipole field of 2.59 T and a quadrupole field of 18.7 T/m in a coil aperture of 173.4 mm. A single layer coil is proposed to reduce the fabrication cost and the coil arrangement in the 2-D cross-section results in left-right asymmetry. This paper reports the design study of the magnet.

  6. RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, Ashok K., E-mail: asingal@prl.res.in

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in themore » orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.« less

  7. Relativistic Doppler Beaming and Misalignments in AGN Jets

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-08-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  8. Photoelectron photoion molecular beam spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  9. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  10. Rapid electron beam accelerator (REBA-tron)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapetanakos, C.A.; Sprangle, P.A.; Dialetis, D.

    1986-03-05

    This invention comprises a particle accelerator with a toroidal vacuum chamber, an injector for injecting a charged-paticle beam into the chamber and an exit port to extract the accelerated particle beam. A toroidal magnetic field to confine the beam in the chamber is generated by a set of coils with their axis along the minor axis of the chamber and by two twisted wires that carry current in the same direction wrapped around the chamber. The two twisted wires also generate a torsatron magnetic field that controls the minor radius of the beam. A time-varying magnetic field is generated bymore » two concentric cylindrical plates surrounding the chamber. A convoluted transmission line generates a localized electric field in the chamber to accelerate the beam.« less

  11. Simulator for beam-based LHC collimator alignment

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Aßmann, Ralph; Redaelli, Stefano; Sammut, Nicholas

    2014-02-01

    In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.

  12. Ince Gaussian beams in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Deng, Dongmei; Guo, Qi

    2008-07-01

    Based on the Snyder-Mitchell model that describes the beam propagation in strongly nonlocal nonlinear media, the close forms of Ince-Gaussian (IG) beams have been found. The transverse structures of the IG beams are described by the product of the Ince polynomials and the Gaussian function. Depending on the input power of the beams, the IG beams can be either a soliton state or a breather state. The IG beams constitute the exact and continuous transition modes between Hermite-Gaussian beams and Laguerre-Gaussian beams. The IG vortex beams can be constructed by a linear combination of the even and odd IG beams. The transverse intensity pattern of IG vortex beams consists of elliptic rings, whose number and ellipticity can be controlled, and a phase displaying a number of in-line vortices, each with a unitary topological charge. The analytical solutions of the IG beams are confirmed by the numerical simulations of the nonlocal nonlinear Schr\\rm \\ddot{o} dinger equation.

  13. A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania

    NASA Astrophysics Data System (ADS)

    Burducea, I.; Straticiuc, M.; Ghiță, D. G.; Moșu, D. V.; Călinescu, C. I.; Podaru, N. C.; Mous, D. J. W.; Ursu, I.; Zamfir, N. V.

    2015-09-01

    A 3 MV Tandetron™ accelerator system has been installed and commissioned at the "Horia Hulubei" National Institute for Physics and Nuclear Engineering - IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry - RBS, Nuclear Reaction Analysis - NRA, Particle Induced X-ray and γ-ray Emission - PIXE and PIGE and micro-beam experiments - μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He- of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper.

  14. Video-based beam position monitoring at CHESS

    NASA Astrophysics Data System (ADS)

    Revesz, Peter; Pauling, Alan; Krawczyk, Thomas; Kelly, Kevin J.

    2012-10-01

    CHESS has pioneered the development of X-ray Video Beam Position Monitors (VBPMs). Unlike traditional photoelectron beam position monitors that rely on photoelectrons generated by the fringe edges of the X-ray beam, with VBPMs we collect information from the whole cross-section of the X-ray beam. VBPMs can also give real-time shape/size information. We have developed three types of VBPMs: (1) VBPMs based on helium luminescence from the intense white X-ray beam. In this case the CCD camera is viewing the luminescence from the side. (2) VBPMs based on luminescence of a thin (~50 micron) CVD diamond sheet as the white beam passes through it. The CCD camera is placed outside the beam line vacuum and views the diamond fluorescence through a viewport. (3) Scatter-based VBPMs. In this case the white X-ray beam passes through a thin graphite filter or Be window. The scattered X-rays create an image of the beam's footprint on an X-ray sensitive fluorescent screen using a slit placed outside the beam line vacuum. For all VBPMs we use relatively inexpensive 1.3 Mega-pixel CCD cameras connected via USB to a Windows host for image acquisition and analysis. The VBPM host computers are networked and provide live images of the beam and streams of data about the beam position, profile and intensity to CHESS's signal logging system and to the CHESS operator. The operational use of VBPMs showed great advantage over the traditional BPMs by providing direct visual input for the CHESS operator. The VBPM precision in most cases is on the order of ~0.1 micron. On the down side, the data acquisition frequency (50-1000ms) is inferior to the photoelectron based BPMs. In the future with the use of more expensive fast cameras we will be able create VBPMs working in the few hundreds Hz scale.

  15. Contrastive Analysis and Research on Negative Pressure Beam Tube System and Positive Pressure Beam Tube System for Mine Use

    NASA Astrophysics Data System (ADS)

    Wang, Xinyi; Shen, Jialong; Liu, Xinbo

    2018-01-01

    Against the technical defects of universally applicable beam tube monitoring system at present, such as air suction in the beam tube, line clogging, long sampling time, etc., the paper analyzes the current situation of the spontaneous combustion fire disaster forecast of mine in our country and these defects one by one. On this basis, the paper proposes a research thought that improving the positive pressure beam tube so as to substitute the negative pressure beam tube. Then, the paper introduces the beam tube monitoring system based on positive pressure technology through theoretical analysis and experiment. In the comparison with negative pressure beam tube, the paper concludes the advantage of the new system and draws the conclusion that the positive pressure beam tube is superior to the negative pressure beam tube system both in test result and test time. At last, the paper proposes prospect of the beam tube monitoring system based on positive pressure technology.

  16. Propagation of a laser beam in a plasma

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Kevorkian, J.; Steinhauer, L. C.; Vagners, J.

    1975-01-01

    This paper shows that for a nonabsorbing medium with a prescribed index of refraction, the effects of beam stability, line focusing, and beam distortion can be predicted from simple ray optics. When the paraxial approximation is used, diffraction effects are examined for Gaussian, Lorentzian, and square beams. Most importantly, it is shown that for a Gaussian beam, diffraction effects can be included simply by adding imaginary solutions to the paraxial ray equations. Also presented are several procedures to extend the paraxial approximation so that the solution will have a domain of validity of greater extent.

  17. Precision sizing of moving large particles using diffraction splitting of Doppler lines

    NASA Astrophysics Data System (ADS)

    Kononenko, Vadim L.

    1999-02-01

    It is shown, that the Doppler line from a single large particle moving with a constant velocity through a finite- width laser beam, undergoes a doublet-type splitting under specific observation conditions. A general requirement is that particle size 2a is not negligibly small, compared with beam diameter 2w$0. Three optical mechanisms of line splitting are considered. The first one is based on nonsymmetric diffraction of a bounded laser beam by a moving particle. The second arises from the transient geometry of diffraction. The third mechanism, of photometric nature, originates from specific time variation of total illuminance of moving particles when 2a>Lambda, the interference fringe spacing in the measuring volume. The diffraction splitting is observed when a detector is placed near one of diffraction minima corresponding to either of probing beams, and 2a equals (n0.5)Lambda for n equals 1,2. The photometric splitting is observed with an image-forming optics, when 2a equals n(Lambda) . That gives the possibility of distant particles sizing based on the Doppler line splitting phenomenon. A general theory of line splitting is developed, and used to explain the experimental observations quantitatively. The influence of the scattering angels and observation angle on the line splitting characteristics is studied analytically and numerically.

  18. One-Micron Beams for Macromolecular Crystallography at GM/CA-CAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder, D. W.; Sanishvili, R.; Xu, S.

    2010-06-23

    GM/CA-CAT has developed a 1-{mu}m beam for challenging micro-diffraction experiments with macromolecular crystals (e.g. small crystals) and for radiation damage studies. Reflective (Kirkpatrick-Baez mirrors) and diffractive (Fresnel zone plates) optics have been used to focus the beam. Both cases are constrained by the need to maintain a small beam convergence. Using two different zone plates, 1.0x1.0 and 0.8x0.9 {mu}m{sup 2} (VxH,FWHM) beams were created at 15.2 keV and 18.5 keV, respectively. Additionally, by introducing a vertical focusing mirror upstream of the zone plate, a line focus at 15.2 keV was created (28x1.4 {mu}m{sup 2} VxH,FWHM) with the line oriented perpendicularmore » to the X-ray polarization and the crystal rotation axis. Crystal-mounting stages with nanometer resolution have been assembled to profile these beams and to perform diffraction experiments.« less

  19. Line-edge quality optimization of electron beam resist for high-throughput character projection exposure utilizing atomic force microscope analysis

    NASA Astrophysics Data System (ADS)

    Ikeno, Rimon; Mita, Yoshio; Asada, Kunihiro

    2017-04-01

    High-throughput electron-beam lithography (EBL) by character projection (CP) and variable-shaped beam (VSB) methods is a promising technique for low-to-medium volume device fabrication with regularly arranged layouts, such as standard-cell logics and memory arrays. However, non-VLSI applications like MEMS and MOEMS may not fully utilize the benefits of CP method due to their wide variety of layout figures including curved and oblique edges. In addition, the stepwise shapes that appear on such irregular edges by VSB exposure often result in intolerable edge roughness, which may degrade performances of the fabricated devices. In our former study, we proposed a general EBL methodology for such applications utilizing a combination of CP and VSB methods, and demonstrated its capabilities in electron beam (EB) shot reduction and edge-quality improvement by using a leading-edge EB exposure tool, ADVANTEST F7000S-VD02, and high-resolution Hydrogen Silsesquioxane resist. Both scanning electron microscope and atomic force microscope observations were used to analyze quality of the resist edge profiles to determine the influence of the control parameters used in the exposure-data preparation process. In this study, we carried out detailed analysis of the captured edge profiles utilizing Fourier analysis, and successfully distinguish the systematic undulation by the exposed CP character profiles from random roughness components. Such capability of precise edge-roughness analysis is useful to our EBL methodology to maintain both the line-edge quality and the exposure throughput by optimizing the control parameters in the layout data conversion.

  20. Improvements on the accuracy of beam bugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.J.; Fessenden, T.

    1998-08-17

    At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as ''beam bugs'', have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less

  1. Improvements on the accuracy of beam bugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y J; Fessenden, T

    1998-09-02

    At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as "beam bugs", have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less

  2. Measurement of the curvature of a surface using parallel light beams

    DOEpatents

    Chason, Eric H.; Floro, Jerrold A.; Seager, Carleton H.; Sinclair, Michael B.

    1999-01-01

    Apparatus for measuring curvature of a surface wherein a beam of collimated light is passed through means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90.degree. about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90.degree. relative to the line onto which the single set of parallel beams from the first etalon would have fallen.

  3. Measurement of the curvature of a surface using parallel light beams

    DOEpatents

    Chason, E.H.; Floro, J.A.; Seager, C.H.; Sinclair, M.B.

    1999-06-15

    Apparatus is disclosed for measuring curvature of a surface wherein a beam of collimated light is passed through a means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90[degree] about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90[degree] relative to the line onto which the single set of parallel beams from the first etalon would have fallen. 5 figs.

  4. Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae

    RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement ofmore » the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.« less

  5. Repetitively pumped electron beam device

    DOEpatents

    Schlitt, L.G.

    1979-07-24

    Disclosed is an apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired. 12 figs.

  6. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.

    2016-02-15

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less

  7. Development of an Annular Electron Beam HPM Amplifier

    DTIC Science & Technology

    1994-09-01

    34, Phys.Rev.Lett., 64(19), ppgs 2320-2323, 7 May 1990 9. Lau, Y.Y. and Chernin, D., "A review of the ac space - charge effect in electron-circuit interactions...the Child-Lanamuir, space - charge limiting current in the beam line. This removes the potential of torming a virtual cathode (Ref. 19). The...propagates the electron beam through a single modulating gap, with a specified voltage, frequency, and gap extent. The beam space charge is an input

  8. Generation and dynamics of optical beams with polarization singularities.

    PubMed

    Cardano, Filippo; Karimi, Ebrahim; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico

    2013-04-08

    We present a convenient method to generate vector beams of light having polarization singularities on their axis, via partial spin-to-orbital angular momentum conversion in a suitably patterned liquid crystal cell. The resulting polarization patterns exhibit a C-point on the beam axis and an L-line loop around it, and may have different geometrical structures such as "lemon", "star", and "spiral". Our generation method allows us to control the radius of L-line loop around the central C-point. Moreover, we investigate the free-air propagation of these fields across a Rayleigh range.

  9. Laser beam delivery at ELI-NP

    DOE PAGES

    Ursescu, Daniel; Cheriaux, G.; Audebert, P.; ...

    2017-01-01

    The Laser Beam Delivery (LBD) system technical design report covers the interface between the High Power Laser System (HPLS) and the experiments, together with the pulse quality management. Here, the laser transport part of the LBD has a number of subsystems as follows: the beam transport lines for the six main outputs of HPLS, the additional short and long pulses and the synchronization system including the timing of the laser pulses with the Gamma Beam System (GBS) and the experiments on femtosecond timescale. Pulse quality management, discussed further here, consist in the generation and delivery of multiple HPLS pulses, coherentmore » combining of the HPLS arms, laser pulse diagnostics on target, laser beam dumps, shutters and output energy adaption.« less

  10. Isomer spectroscopy using RI beam

    NASA Astrophysics Data System (ADS)

    Odahara, Atsuko

    2009-10-01

    We have studied systematically high-spin oblate shape isomers in the N=83 isotones, which have revealed the characteristics of nuclear structure, such as the preserving pairing interactions at high-spin states, decrease of Z=64 proton shell gap energy as the decrease of proton number from 64 to 60 and so on. Recently, it became possible to search for isomers by the secondary fusion reaction at high-spin states in nuclei, which could not be populated by the stable beam and stable target, using RCNP RI beam line at Osaka University. RI beams enable us to study high-spin states in nuclei in wide mass region. By using the RI beams delivered by RIBF and the high-efficiency γ-ray detection system GRETINA, it will be possible to investigate nuclei far from the stability line. Single-particle energies and nucleon-nucleon interactions of these nuclei close to drip line are expected to be the test ground of nuclear models, such as shell structures. We have a plan to search for isomers with half lives of ˜μsec to ˜msec and to explore the decay mechanism of isomers in the proton-rich nuclei along N=Z line with 80< A<100. Moreover we try to search for nuclei beyond the proton drip line, which could be defined that isomeric states would be bound by the centrifugal potential although the ground states would be unbound against the proton emission. Isomers are expected to reveal the following characteristics of these nuclei. (1) Existence of isomers could prove the magicity of N=Z=50 and the large neutron-proton interaction, as one of the candidates of isomers is spin-gap isomer which is caused by the lowering of excitation energies resulting from the stretch coupling of spins of high-j (g9/2) holes of the ^100Sn core. (2) Isomers could prove the nuclear deformation which is caused by the evolution of shell structure. One of spin-gap isomers in ^94Ag was reported to have large prolate deformation. (3) This mass region is on the way of the rapid proton (rp) synthesis pass

  11. Development of a high-resolution cavity-beam position monitor

    NASA Astrophysics Data System (ADS)

    Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir

    2008-06-01

    We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.

  12. Studies on space charge neutralization and emittance measurement of beam from microwave ion source.

    PubMed

    Misra, Anuraag; Goswami, A; Sing Babu, P; Srivastava, S; Pandit, V S

    2015-11-01

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  13. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    NASA Astrophysics Data System (ADS)

    Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S.

    2015-11-01

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (˜5 mA at 75 keV), it is possible to reduce the beam spot size by ˜34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  14. High gradient lens for charged particle beam

    DOEpatents

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  15. Ion source and injection line for high intensity medical cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, XianLu, E-mail: jiaxl@ciae.ac.cn; Guan, Fengping; Yao, Hongjuan

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from themore » extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.« less

  16. Obstacle evasion in free-space optical communications utilizing Airy beams.

    PubMed

    Zhu, Guoxuan; Wen, Yuanhui; Wu, Xiong; Chen, Yujie; Liu, Jie; Yu, Siyuan

    2018-03-15

    A high speed free-space optical communication system capable of self-bending signal transmission around line-of-sight obstacles is proposed and demonstrated. Airy beams are generated and controlled to achieve different propagating trajectories, and the signal transmission characteristics of these beams around the obstacle are investigated. Our results confirm that, by optimizing their ballistic trajectories, Airy beams are able to bypass obstacles with more signal energy and thus improve the communication performance compared with normal Gaussian beams.

  17. Obstacle evasion in free-space optical communications utilizing Airy beams

    NASA Astrophysics Data System (ADS)

    Zhu, Guoxuan; Wen, Yuanhui; Wu, Xiong; Chen, Yujie; Liu, Jie; Yu, Siyuan

    2018-03-01

    A high speed free-space optical communication system capable of self-bending signal transmission around line-of-sight obstacles is proposed and demonstrated. Airy beams are generated and controlled to achieve different propagating trajectories, and the signal transmission characteristics of these beams around the obstacle are investigated. Our results confirm that, by optimising their ballistic trajectories, Airy beams are able to bypass obstacles with more signal energy and thus improve the communication performance compared with normal Gaussian beams.

  18. OPERA - First Beam Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, M.

    2008-02-21

    OPERA is a long base-line neutrino oscillation experiment to detect tau-neutrino appearance and to prove that the origin of the atmospheric muon neutrino deficit observed by Kamiokande is the neutrino oscillation. A Hybrid emulsion detector, of which weight is about 1.3 kton, has been installed in Gran Sasso laboratory. New muon neutrino beam line, CNGS, has been constructed at CERN to send neutrinos to Gran Sasso, 730 km apart from CERN. In 2006, first neutrinos were sent from CERN to LNGS and were detected by the OPERA detector successfully as planned.

  19. Electron beam interaction with space plasmas.

    NASA Astrophysics Data System (ADS)

    Krafft, C.; Bolokitin, A. S.

    1999-12-01

    Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification.

  20. Detection of an electron beam in a high density plasma via an electrostatic probe

    NASA Astrophysics Data System (ADS)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki

    2018-07-01

    An electron beam is detected by a 1D floating potential probe array in a relatively high density (1012–1013 cm‑3) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.

  1. Acquisition and Initial Analysis of H+- and H--Beam Centroid Jitter at LANSCE

    NASA Astrophysics Data System (ADS)

    Gilpatrick, J. D.; Bitteker, L.; Gulley, M. S.; Kerstiens, D.; Oothoudt, M.; Pillai, C.; Power, J.; Shelley, F.

    2006-11-01

    During the 2005 Los Alamos Neutron Science Center (LANSCE) beam runs, beam current and centroid-jitter data were observed, acquired, analyzed, and documented for both the LANSCE H+ and H- beams. These data were acquired using three beam position monitors (BPMs) from the 100-MeV Isotope Production Facility (IPF) beam line and three BPMs from the Switchyard transport line at the end of the LANSCE 800-MeV linac. The two types of data acquired, intermacropulse and intramacropulse, were analyzed for statistical and frequency characteristics as well as various other correlations including comparing their phase-space like characteristics in a coordinate system of transverse angle versus transverse position. This paper will briefly describe the measurements required to acquire these data, the initial analysis of these jitter data, and some interesting dilemmas these data presented.

  2. Correlation between cell death and induction of non-rejoining PCC breaks by carbon-ion beams.

    PubMed

    Suzuki, M; Kase, Y; Kanai, T; Ando, K

    1998-01-01

    We have shown a correlation between cell death and induction of non-rejoining chromatin breaks in two normal human cells and three human tumor cell lines irradiated by carbon-ion beams and X rays. Non-rejoining chromatin breaks were measured by counting the number of remaining chromatin fragments detected by the premature chromosome condensation (PCC) technique. Carbon-ion beams were accelerated by the Heavy Ion Medical Accelerator in Chiba (HIMAC). The cells were irradiated by two different mono-LET beams (LET = 13 keV/micrometer and 77 keV/micrometer ) and 200 kV X rays. The RBE values of cell death for carbon-ion beams relative to X rays were 1.1 to 1.4 for 13 keV/micrometer beams and 2.5 to 2.9 for 77 keV/micrometer beams. The induction rate of non-rejoining PCC breaks per cell per Gy was found to be highest for the 77 keV/micrometer beams for all of the cell lines. The results found in this study show that there is a good correlation between cell death and induction of non-rejoining PCC breaks for these human cell lines.

  3. Appearance of wavefront dislocations under interference among beams with simple wavefronts

    NASA Astrophysics Data System (ADS)

    Angelsky, Oleg V.; Besaha, R. N.; Mokhun, Igor I.

    1997-12-01

    The appearance of wave front dislocations under interference among beams with simple wave fronts is considered. It is shown, that even two beams with the smooth wave fonts is possible the formation of dislocations screw type. The screw dislocations are formed in cross point of lines of equal amplitude of beams and minimum of an interference pattern.

  4. Electron-Beam Produced Air Plasma: Optical and Electrical Diagnostics

    NASA Astrophysics Data System (ADS)

    Vidmar, Robert; Stalder, Kenneth; Seeley, Megan

    2006-10-01

    High energy electron impact excitation is used to stimulate optical emissions that quantify the measurement of electron beam current. A 100 keV 10-ma electron beam source is used to produce air plasma in a test cell at a pressure between 1 mTorr and 760 Torr. Optical emissions originating from the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm are observed. Details on calibration using signals from an isolated transmission window and a Faraday plate are discussed. Results using this technique and other electrical signal are presented.

  5. Development of a Handheld Line Information Reader and Generator for Efficient Management of Optical Communication Lines

    PubMed Central

    Lee, Jaeyul; Kwon, Hyungwoo; Song, Jaewon; Jeon, Mansik; Kim, Jeehyun

    2017-01-01

    A handheld line information reader and a line information generator were developed for the efficient management of optical communication lines. The line information reader consists of a photo diode, trans-impedance amplifier, voltage amplifier, microcontroller unit, display panel, and communication modules. The line information generator consists of a laser diode, laser driving circuits, microcontroller unit, and communication modules. The line information reader can detect the optical radiation field of the test line by bending the optical fiber. To enhance the sensitivity of the line information reader, an additional lens was used with a focal length of 4.51 mm. Moreover, the simulation results obtained through BeamPROP® software from Synopsys, Inc. demonstrated a stronger optical radiation field of the fiber due to a longer transmission wavelength and larger bending angle of the fiber. Therefore, the developed devices can be considered as useful tools for the efficient management of optical communication lines. PMID:28837058

  6. An empirical model for calculation of the collimator contamination dose in therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Vidal, M.; De Marzi, L.; Szymanowski, H.; Guinement, L.; Nauraye, C.; Hierso, E.; Freud, N.; Ferrand, R.; François, P.; Sarrut, D.

    2016-02-01

    Collimators are used as lateral beam shaping devices in proton therapy with passive scattering beam lines. The dose contamination due to collimator scattering can be as high as 10% of the maximum dose and influences calculation of the output factor or monitor units (MU). To date, commercial treatment planning systems generally use a zero-thickness collimator approximation ignoring edge scattering in the aperture collimator and few analytical models have been proposed to take scattering effects into account, mainly limited to the inner collimator face component. The aim of this study was to characterize and model aperture contamination by means of a fast and accurate analytical model. The entrance face collimator scatter distribution was modeled as a 3D secondary dose source. Predicted dose contaminations were compared to measurements and Monte Carlo simulations. Measurements were performed on two different proton beam lines (a fixed horizontal beam line and a gantry beam line) with divergent apertures and for several field sizes and energies. Discrepancies between analytical algorithm dose prediction and measurements were decreased from 10% to 2% using the proposed model. Gamma-index (2%/1 mm) was respected for more than 90% of pixels. The proposed analytical algorithm increases the accuracy of analytical dose calculations with reasonable computation times.

  7. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  8. Preliminary results with a strip ionization chamber used as beam monitor for hadrontherapy treatments

    NASA Astrophysics Data System (ADS)

    Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Luparia, A.; Marchette, F.; Peroni, C.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-01-01

    Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape.

  9. Transport channel of secondary ion beam of experimental setup for selective laser ionization with gas cell GALS

    NASA Astrophysics Data System (ADS)

    Gulbekyan, G. G.; Zemlyanoy, S. G.; Bashevoy, V. V.; Ivanenko, I. A.; Kazarinov, N. Yu; Kazacha, V. I.; Osipov, N. F.

    2017-07-01

    GALS is the experimental setup intended for production and research of isobaric and isotopically pure heavy neutron-rich nuclei. The beam line consists of two parts. The initial part is used for transport of the primary 136Xe ion beam with the energy of 4.5-9.0 MeV/amu from the FLNR cyclotron U-400M to the Pb target for production of the studying ion beams. These beams have the following design parameters: the charge Z = +1, the mass A = 180-270 and the kinetic energy W = 40 keV. The second part placed after the target consists of the SPIG (QPIG) system, the accelerating gap, the electrostatic Einzel lens, 90-degree spectrometric magnet (calculated value of the mass-resolution is equal to 1400) and the beam line for the transportation of the ions from the magnet focal plane to a particle detector. The results of simulation of the particle dynamics and the basic parameters of all elements of the beam line are presented.

  10. Torsion sensing based on patterned piezoelectric beams

    NASA Astrophysics Data System (ADS)

    Cha, Youngsu; You, Hangil

    2018-03-01

    In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.

  11. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  12. Beam maser measurements of CH3OH rotational transitions

    NASA Technical Reports Server (NTRS)

    Gaines, L.; Casleton, K. H.; Kukolich, S. G.

    1974-01-01

    Precise measurements of rotational transitions in methanol are reported that were made by means of beam maser spectrometers. No hyperfine structure was resolved at a resonance line width of 8 kHz. Accurate center frequencies for the transitions measured are useful for determining Doppler shifts for observed interstellar lines.

  13. Detection of an electron beam in a high density plasma via an electrostatic probe

    DOE PAGES

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; ...

    2018-05-08

    Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less

  14. Detection of an electron beam in a high density plasma via an electrostatic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart

    Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less

  15. Possible impact of multi-electron loss events on the average beam charge state in an HIF target chamber and a neutral beam approach

    NASA Astrophysics Data System (ADS)

    Grisham, L. R.

    2001-05-01

    Experiments were carried out during the early 1980s to assess the obtainable atomic neutralization of energetic beams of negative ions ranging from lithium to silicon. The experiments found (Grisham et al. Rev. Sci. Instrum. 53 (1982) 281; Princeton Plasma Physics Laboratory Report PPPL-1857, 1981) that, for higher atomic number elements than lithium, it appeared that a substantial fraction of the time more than one electron was being lost in a single collision. This result was inferred from the existence of more than one ionization state in the product beam for even the thinnest line densities at which any electron removal took place. Because of accelerator limitations, these experiments were limited to maximum energies of 7 MeV. However, based upon these results, it is possible that multi-electron loss events may also play a significant role in determining the average ion charge state of the much higher Z and more energetic beams traversing the medium in an heavy ion fusion chamber. This could result in the beam charge state being considerably higher than previously anticipated, and might require designers to consider harder vacuum ballistic focusing approaches, or the development of additional space charge neutralization schemes. This paper discusses the measurements that gave rise for these concerns, as well as a description of further measurements that are proposed to be carried out for atomic numbers and energies per amu which would be closer to those required for heavy ion fusion drivers. With a very low current beam of a massive, but low charge state energetic ion, the charge state distribution emerging from a target gas cell could be measured as a function of line density and medium composition. Varying the line density would allow one to simulate the charge state evolution of the beam as a function of distance into the target chamber. This paper also briefly discusses a possible alternative driver approach using photodetachment-neutralized atomic beams

  16. Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers

    PubMed Central

    Cheary, R. W.; Coelho, A. A.; Cline, J. P.

    2004-01-01

    The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594

  17. Development of NIRS pencil beam scanning system for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Tansho, R.; Saraya, Y.; Inaniwa, T.; Mori, S.; Iwata, Y.; Shirai, T.; Noda, K.

    2017-09-01

    At Heavy Ion Medical Accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences (NIRS), more than 9000 patients have been successfully treated by carbon ion beams since 1994. The successful results of treatments have led us to construct a new treatment facility equipped with a three-dimensional pencil beam scanning irradiation system, which is one of sophisticated techniques for cancer therapy with high energetic ion beam. This new facility comprises two treatment rooms having fixed beam lines and one treatment room having rotating gantry line. The challenge of this project is to realize treatment of a moving target by scanning irradiation. Thus, to realize this, the development of the fast scanning system is one of the most important issues in this project. After intense commissioning and quality assurance tests, the treatment with scanned ion beam was started in May 2011. After treatment of static target starts, we have developed related technologies. As a result, we can start treatment of moving target and treatment without range shifter plates since 2015. In this paper, the developments of the scanning irradiation system are described.

  18. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  19. Commissioning of BL 7.2, the new diagnostic beam line at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sannibale, Fernando; Baum, Dennis; Biocca, Alan

    2004-06-29

    BL 7.2 is a new beamline at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed in the storage ring in August 2003 and commissioning with the ALS electron beam followed immediately after. In this paper the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization.

  20. A Multicusp Ion Source for Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.

    1997-05-01

    In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.

  1. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector.

    PubMed

    Barbisan, M; Zaniol, B; Pasqualotto, R

    2014-11-01

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H(-)/D(-) ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurement is based on the collection of the Hα/Dα emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled Hα spectra in the case of MITICA experiment.

  2. Curved singular beams for three-dimensional particle manipulation.

    PubMed

    Zhao, Juanying; Chremmos, Ioannis D; Song, Daohong; Christodoulides, Demetrios N; Efremidis, Nikolaos K; Chen, Zhigang

    2015-07-13

    For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark "hole" in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications.

  3. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.

    2013-07-01

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and

  4. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.

    2013-07-03

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. Formore » the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic

  5. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  6. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  7. MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yiping

    Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-codedmore » analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been

  8. Data analysis of photon beam position at PLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, J.; Shin, S., E-mail: tlssh@postech.ac.kr; Huang, Jung-Yun

    In the third generation light source, photon beam position stability is critical issue on user experiment. Generally photon beam position monitors have been developed for the detection of the real photon beam position and the position is controlled by feedback system in order to keep the reference photon beam position. In the PLS-II, photon beam position stability for front end of particular beam line, in which photon beam position monitor is installed, has been obtained less than rms 1μm for user service period. Nevertheless, detail analysis for photon beam position data in order to demonstrate the performance of photon beammore » position monitor is necessary, since it can be suffers from various unknown noises. (for instance, a back ground contamination due to upstream or downstream dipole radiation, undulator gap dependence, etc.) In this paper, we will describe the start to end study for photon beam position stability and the Singular Value Decomposition (SVD) analysis to demonstrate the reliability on photon beam position data.« less

  9. Design of the transfer line from booster to storage ring at 3 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayar, C., E-mail: cafer.bayar@cern.ch; Ciftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch

    The Synchrotron Booster Ring accelerates the e-beam up to 3 GeV and particles are transported from booster to storage ring by transfer line. In this study, two options are considered, the first one is a long booster which shares the same tunnel with storage ring and the second one is a compact booster. As a result, two transfer line are designed based on booster options. The optical design is constrained by the e-beam Twiss parameters entering and leaving the transfer line. Twiss parameters in the extraction point of booster are used for the entrance of transfer line and are matchedmore » in the exit of transfer line to the injection point of the storage ring.« less

  10. Beam position monitor engineering

    NASA Astrophysics Data System (ADS)

    Smith, Stephen R.

    1997-01-01

    The design of beam position monitors often involves challenging system design choices. Position transducers must be robust, accurate, and generate adequate position signal without unduly disturbing the beam. Electronics must be reliable and affordable, usually while meeting tough requirements on precision, accuracy, and dynamic range. These requirements may be difficult to achieve simultaneously, leading the designer into interesting opportunities for optimization or compromise. Some useful techniques and tools are shown. Both finite element analysis and analytic techniques will be used to investigate quasi-static aspects of electromagnetic fields such as the impedance of and the coupling of beam to striplines or buttons. Finite-element tools will be used to understand dynamic aspects of the electromagnetic fields of beams, such as wake fields and transmission-line and cavity effects in vacuum-to-air feedthroughs. Mathematical modeling of electrical signals through a processing chain will be demonstrated, in particular to illuminate areas where neither a pure time-domain nor a pure frequency-domain analysis is obviously advantageous. Emphasis will be on calculational techniques, in particular on using both time domain and frequency domain approaches to the applicable parts of interesting problems.

  11. Low-energy plasma focus device as an electron beam source.

    PubMed

    Khan, Muhammad Zubair; Ling, Yap Seong; Yaqoob, Ibrar; Kumar, Nitturi Naresh; Kuang, Lim Lian; San, Wong Chiow

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 10(16)/m(3), respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  12. PI-line-based image reconstruction in helical cone-beam computed tomography with a variable pitch.

    PubMed

    Zou, Yu; Pan, Xiaochuan; Xia, Dan; Wang, Ge

    2005-08-01

    Current applications of helical cone-beam computed tomography (CT) involve primarily a constant pitch where the translating speed of the table and the rotation speed of the source-detector remain constant. However, situations do exist where it may be more desirable to use a helical scan with a variable translating speed of the table, leading a variable pitch. One of such applications could arise in helical cone-beam CT fluoroscopy for the determination of vascular structures through real-time imaging of contrast bolus arrival. Most of the existing reconstruction algorithms have been developed only for helical cone-beam CT with constant pitch, including the backprojection-filtration (BPF) and filtered-backprojection (FBP) algorithms that we proposed previously. It is possible to generalize some of these algorithms to reconstruct images exactly for helical cone-beam CT with a variable pitch. In this work, we generalize our BPF and FBP algorithms to reconstruct images directly from data acquired in helical cone-beam CT with a variable pitch. We have also performed a preliminary numerical study to demonstrate and verify the generalization of the two algorithms. The results of the study confirm that our generalized BPF and FBP algorithms can yield exact reconstruction in helical cone-beam CT with a variable pitch. It should be pointed out that our generalized BPF algorithm is the only algorithm that is capable of reconstructing exactly region-of-interest image from data containing transverse truncations.

  13. Design of a new tracking device for on-line beam range monitor in carbon therapy.

    PubMed

    Traini, Giacomo; Battistoni, Giuseppe; Bollella, Angela; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Frallicciardi, Paola Maria; Mancini-Terracciano, Carlo; Marafini, Michela; Mattei, Ilaria; Miraglia, Federico; Muraro, Silvia; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Senzacqua, Martina; Solfaroli-Camillocci, Elena; Toppi, Marco; Voena, Cecilia; Patera, Vincenzo

    2017-02-01

    Charged particle therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbon ions. A critical issue is the monitoring of the beam range so to check the correct dose deposition to the tumor and surrounding tissues. The design of a new tracking device for beam range real-time monitoring in pencil beam carbon ion therapy is presented. The proposed device tracks secondary charged particles produced by beam interactions in the patient tissue and exploits the correlation of the charged particle emission profile with the spatial dose deposition and the Bragg peak position. The detector, currently under construction, uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a pixelated Lutetium Fine Silicate (LFS) crystal calorimeter. An algorithm to account and correct for emission profile distortion due to charged secondaries absorption inside the patient tissue is also proposed. Finally detector reconstruction efficiency for charged particle emission profile is evaluated using a Monte Carlo simulation considering a quasi-realistic case of a non-homogenous phantom. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Event-synchronized data acquisition system for the SPring-8 linac beam position monitors

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Fukui, T.; Tanaka, R.; Taniuchi, T.; Yamashita, A.; Yanagida, K.

    2005-05-01

    By the summer of 2003, we had completed the installation of a new non-destructive beam position monitor (BPM) system to facilitate beam trajectory and energy correction for the SPring-8 linac. In all, 47 BPM sets were installed on the 1-GeV linac and three beam-transport lines. All of the BPM data acquisition system was required to operate synchronously with the electron beam acceleration cycle. We have developed an event-synchronized data acquisition system for the BPM data readout. We have succeeded in continuously taking all the BPMs data from six VME computers synchronized with the 10 pps operation of the linac to continuously acquire data. For each beam shot, the data points are indexed by event number and stored in a database. Using the real-time features of the Solaris operating system and distributed database technology, we currently have achieved about 99.9% efficiency in capturing and archiving all of the 10 Hz data. The linac BPM data is available for off-line analysis of the beam trajectory, but also for real-time control and automatic correction of the beam trajectory and energy.

  15. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    PubMed

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Probing the magnetsophere with artificial electron beams

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1981-01-01

    An analysis is conducted of the University of Minnesota Electron Echo experiments, which so far have included five sounding rocket experiments. The concept of the Echo experiment is to inject electron beam pulses from a rocket into the ionosphere at altitudes in the range from 100 to 300 km. The electrons move to the conjugate hemisphere following magnetic field lines and return on neighboring field lines to the neighborhood of the rocket where the pulses may be detected and analyzed. Attention is given to the detection and analysis of echoes, the structure of echoes, and the Echo V experiment. The Echo V experiment showed clearly that detection of remote echo beams by atmospheric fluorescence using low light level TV system is not a viable technique. A future experiment is to use throw-away detectors for direct remote echo detection.

  17. Spot-scanning beam delivery with laterally- and longitudinally-mixed spot size pencil beams in heavy ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Yan, Yuan-Lin; Liu, Xin-Guo; Dai, Zhong-Ying; Ma, Yuan-Yuan; He, Peng-Bo; Shen, Guo-Sheng; Ji, Teng-Fei; Zhang, Hui; Li, Qiang

    2017-09-01

    The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally-mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviation/mean) in the target volume is better than 95%. Supported by Key Project of National Natural Science Foundation of China (U1232207), National Key Technology Support Program of the Ministry of Science and Technology of China (2015BAI01B11), National Key Research and Development Program of the Ministry of Science and Technology of China (2016YFC0904602) and National Natural Science Foundation of China (11075191, 11205217, 11475231, 11505249)

  18. EPR/alanine dosimetry for two therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.

  19. Improvements of high-power diode laser line generators open up new application fields

    NASA Astrophysics Data System (ADS)

    Meinschien, J.; Bayer, A.; Bruns, P.; Aschke, L.; Lissotschenko, V. N.

    2009-02-01

    Beam shaping improvements of line generators based on high power diode lasers lead to new application fields as hardening, annealing or cutting of various materials. Of special interest is the laser treatment of silicon. An overview of the wide variety of applications is presented with special emphasis of the relevance of unique laser beam parameters like power density and beam uniformity. Complementary to vision application and plastic processing, these new application markets become more and more important and can now be addressed by high power diode laser line generators. Herewith, a family of high power diode laser line generators is presented that covers this wide spectrum of application fields with very different requirements, including new applications as cutting of silicon or glass, as well as the beam shaping concepts behind it. A laser that generates a 5m long and 4mm wide homogeneous laser line is shown with peak intensities of 0.2W/cm2 for inspection of railway catenaries as well as a laser that generates a homogeneous intensity distribution of 60mm x 2mm size with peak intensities of 225W/cm2 for plastic processing. For the annealing of silicon surfaces, a laser was designed that generates an extraordinary uniform intensity distribution with residual inhomogeneities (contrast ratio) of less than 3% over a line length of 11mm and peak intensities of up to 75kW/cm2. Ultimately, a laser line is shown with a peak intensity of 250kW/cm2 used for cutting applications. Results of various application tests performed with the above mentioned lasers are discussed, particularly the surface treatment of silicon and the cutting of glass.

  20. Design and performance of a high resolution, low latency stripline beam position monitor system

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.

    2015-03-01

    A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  1. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    NASA Astrophysics Data System (ADS)

    Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  2. SPS Beam Steering for LHC Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianfelice-Wendt, Eliana; Bartosik, Hannes; Cornelis, Karel

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towardsmore » a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.« less

  3. Physics Design Considerations for Diagnostic X Electron Beam Transport System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y-J

    2000-04-10

    The Diagnostic X (D-X) beamlines will transport the DARHT-II beam from the end of the accelerator to the Diagnostic X firing point providing four lines of sight for x-ray radiography. The design goal for the Diagnostic X beamline is to deliver four x-ray pulses with the DARHT-II dose format and time integrated spot size on each line of sight. The D-X beamline's final focus should be compatible with a range of first conjugates from 1 m-5 m. Furthermore, the D-X beamline operational parameters and the beamline layout should not preclude a possible upgrade to additional lines of sight. The DARHT-IImore » accelerator is designed to deliver beams at a rate of 1 pulse per minute or less. Tuning the D-X beamline with several hundred optical elements would be time consuming. Therefore, minimizing the required number of tuning shots for the D-X beamline is also an important design goal. Many different beamline configurations may be able to accomplish these design objectives, and high beam quality (i.e., high current and low emittance) must be maintained throughout the chosen beamline configuration in order to achieve the DARHT-II x-ray dose format. In general, the longer the distance a beam travels, the harder it is to preserve the beam quality. Therefore, from the point of view of maintaining beam quality, it is highly desirable to minimize the beamline length. Lastly, modification to the DARHT-II building and the downstream transport should be minimized. Several processes can degrade beam quality by increasing the beam emittance, increasing the time-varying transverse beam motion, creating a beam halo, or creating a time-varying beam envelope. In this report, we consider those processes in the passive magnet lattice beamline and indicate how they constrain the beamline design. The physics design considerations for the active components such as the kicker system will be discussed in Ref. 2. In Sec. I, we discuss how beam emittance affects the x-ray forward dose. We also

  4. Molecular Dynamics Simulation of the Three-Dimensional Ordered State in Laser-Cooled Heavy-Ion Beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke

    A molecular dynamics simulation is performed to study the formation of three-dimensional ordered beams by laser cooling in a cooler storage ring. Ultralow-temperature heavy-ion beams are generated by transverse cooling with displaced Gaussian lasers and resonant coupling. A three-dimensional ordered state of the ion beam is attained at a high line density. The ordered beam exhibits several unique characteristics different from those of an ideal crystalline beam.

  5. ELF waves and ion resonances produced by an electron beam emitting rocket in the ionosphere

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Abe, Y.; Erickson, K. N.

    1986-01-01

    Results are reported from the ECHO-6 electron-beam-injection experiment, performed in the auroral-zone ionosphere on March 30, 1983 using a sounding rocket equipped with two electron guns and a free-flying plasma-diagnostics instrument package. The data are presented in extensive graphs and diagrams and characterized in detail. Large ELF wave variations, superposed on the strong beam-sector-directed quasi-dc component, are observed in the 100-eV beam-induced plasma when the beam is injected in a transverse spiral, but not when it is injected upward parallel to the magnetic-field line. ELF activity is found to be suppressed whenever the rocket passed through field lines with auroral activity, suggesting that the waves are produced by the interaction of the beam potentials, plasma currents, and return currents neutralizing the accelerator payload.

  6. High temperature ion source for an on-line isotope separator

    DOEpatents

    Mlekodaj, Ronald L.

    1979-01-01

    A reduced size ion source for on-line use with a cyclotron heavy-ion beam is provided. A sixfold reduction in source volume while operating with similar input power levels results in a 2000.degree. C. operating temperature. A combined target/window normally provides the reaction products for ionization while isolating the ion source plasma from the cyclotron beam line vacuum. A graphite felt catcher stops the recoiling reaction products and releases them into the plasma through diffusion and evaporation. Other target arrangements are also possible. A twenty-four hour lifetime of unattended operation is achieved, and a wider range of elements can be studied than was heretofore possible.

  7. Theoretical study on effects of photodecomposable quenchers in line-and-space pattern fabrication with 7 nm quarter-pitch using chemically amplified electron beam resist process

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro

    2017-04-01

    The line width roughness (LWR) is a significant issue in the development of chemically amplified resists. The increase in sensitizer concentration is inevitable for the suppression of LWR in the sub-10 nm fabrication. In this study, we investigated the effects of photodecomposable quenchers from the viewpoint of the excluded volume effect, assuming line-and-space patterns with 7 nm quarter-pitch (7 nm space width and 28 nm pitch). The pattern formation of chemically amplified electron beam resists with photodecomposable quenchers was calculated and compared with those with conventional quenchers. It was found that the sum of the concentrations of acid generators and quenchers (photodecomposable or conventional quenchers) can be reduced without decreasing the chemical gradient (an indicator of LWR) by using the photodecomposable quenchers. The photodecomposable quenchers are considered essential in the high-resolution fabrication.

  8. Generation of dark hollow beam by focusing a sine-Gaussian beam using a cylindrical lens and a focusing lens

    NASA Astrophysics Data System (ADS)

    Tang, Huiqin; Zhu, Kaicheng

    2013-12-01

    Based on the generalized Huygens-Fresnel diffraction integral, a closed-form propagation equation related to sine-Gaussian beams through a cylindrical lens and a focusing lens is derived and illustrated with numerical methods. It is found that a sine-Gaussian beam through such a system may be converted into a dark hollow beam (DHB) with topological charge index one and its bright enclosure is approximately an elongated ellipse with very high ellipticity. Moreover, the parameter values at which the DHBs have perfect intensity patterns are designed. The optimal relative orientation between the dislocation line of the input sine-Gaussian beam and the axial orientation of the cylindrical lens is specified. And the ellipticity of the elliptical DHBs is mainly defined by the focal length of the cylindrical lens and the Fresnel number of the optical system.

  9. Generation of helical Ince-Gaussian beams with a liquid-crystal display.

    PubMed

    Bentley, Joel B; Davis, Jeffrey A; Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2006-03-01

    We generate helical Ince-Gaussian (HIG) beams by using complex amplitude and phase masks encoded onto a liquid-crystal display (LCD). These beams display an intensity pattern consisting of elliptic rings, whose number and ellipticity can be controlled, and a phase exhibiting a number of in-line vortices, each with a unitary topological charge. We show experimental results that display the properties of these elliptic dark hollow beams. We introduce a novel interference technique for generating the object and reference beams by using a single LCD and show the vortex interference patterns. We expect that these HIG beams will be useful in optical trapping applications.

  10. Generation of helical Ince-Gaussian beams with a liquid-crystal display

    NASA Astrophysics Data System (ADS)

    Bentley, Joel B.; Davis, Jeffrey A.; Bandres, Miguel A.; Gutiérrez-Vega, Julio C.

    2006-03-01

    We generate helical Ince-Gaussian (HIG) beams by using complex amplitude and phase masks encoded onto a liquid-crystal display (LCD). These beams display an intensity pattern consisting of elliptic rings, whose number and ellipticity can be controlled, and a phase exhibiting a number of in-line vortices, each with a unitary topological charge. We show experimental results that display the properties of these elliptic dark hollow beams. We introduce a novel interference technique for generating the object and reference beams by using a single LCD and show the vortex interference patterns. We expect that these HIG beams will be useful in optical trapping applications.

  11. Modeling and simulation of a beam emission spectroscopy diagnostic for the ITER prototype neutral beam injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbisan, M., E-mail: marco.barbisan@igi.cnr.it; Zaniol, B.; Pasqualotto, R.

    2014-11-15

    A test facility for the development of the neutral beam injection system for ITER is under construction at Consorzio RFX. It will host two experiments: SPIDER, a 100 keV H{sup −}/D{sup −} ion RF source, and MITICA, a prototype of the full performance ITER injector (1 MV, 17 MW beam). A set of diagnostics will monitor the operation and allow to optimize the performance of the two prototypes. In particular, beam emission spectroscopy will measure the uniformity and the divergence of the fast particles beam exiting the ion source and travelling through the beam line components. This type of measurementmore » is based on the collection of the H{sub α}/D{sub α} emission resulting from the interaction of the energetic particles with the background gas. A numerical model has been developed to simulate the spectrum of the collected emissions in order to design this diagnostic and to study its performance. The paper describes the model at the base of the simulations and presents the modeled H{sub α} spectra in the case of MITICA experiment.« less

  12. Low-Energy Plasma Focus Device as an Electron Beam Source

    PubMed Central

    Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952

  13. Radial electron-beam-breakup transit-time oscillator

    DOEpatents

    Kwan, Thomas J. T.; Mostrom, Michael A.

    1998-01-01

    A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.

  14. Evaluation and utilization of beam simulation codes for the SNS ion source and low energy beam transport developmenta)

    NASA Astrophysics Data System (ADS)

    Han, B. X.; Welton, R. F.; Stockli, M. P.; Luciano, N. P.; Carmichael, J. R.

    2008-02-01

    Beam simulation codes PBGUNS, SIMION, and LORENTZ-3D were evaluated by modeling the well-diagnosed SNS base line ion source and low energy beam transport (LEBT) system. Then, an investigation was conducted using these codes to assist our ion source and LEBT development effort which is directed at meeting the SNS operational and also the power-upgrade project goals. A high-efficiency H- extraction system as well as magnetic and electrostatic LEBT configurations capable of transporting up to 100mA is studied using these simulation tools.

  15. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirai, Takahisa; Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo; Saito, Soichiro

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in Nationalmore » Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.« less

  16. Polarized He 3 + 2 ions in the Alternate Gradient Synchrotron to RHIC transfer line

    DOE PAGES

    Tsoupas, N.; Huang, H.; Méot, F.; ...

    2016-09-06

    The proposed electron-hadron collider (eRHIC) to be built at Brookhaven National Laboratory (BNL) will allow the collisions of 20 GeV polarized electrons with 250 GeV polarized protons, or 100 GeV/n polarized 3He +2 ions, or other unpolarized ion species. The large value of the anomalous magnetic moment of the 3He nucleus G He=(g₋2)/2=₋4.184 (where g is the g-factor of the 3He nuclear spin) combined with the peculiar layout of the transfer line which transports the beam bunches from the Alternate Gradient Synchrotron (AGS) to the Relativistic Heavy Ion Collider (RHIC) makes the transfer and injection of polarized 3He ions frommore » AGS to RHIC (AtR) a special case as we explain in the paper. Specifically in this paper we calculate the stable spin direction of a polarized 3He beam at the exit of the AtR line which is also the injection point of RHIC, and lastly, we discuss a simple modifications of the AtR beam-transfer-line, to perfectly match the stable spin direction of the injected polarized 3He beam to that of the circulating beam, at the injection point of RHIC.« less

  17. A linear diode array (JFD-5) for match line in vivo dosimetry in photon and electron beams; evaluation for a chest wall irradiation technique.

    PubMed

    Essers, M; van Battum, L; Heijmen, B J

    2001-11-01

    In vivo dosimetry using thermoluminiscence detectors (TLD) is routinely performed in our institution to determine dose inhomogeneities in the match line region during chest wall irradiation. However, TLDs have some drawbacks: online in vivo dosimetry cannot be performed; generally, doses delivered by the contributing fields are not measured separately; measurement analysis is time consuming. To overcome these problems, the Joined Field Detector (JFD-5), a detector for match line in vivo dosimetry based on diodes, has been developed. This detector and its characteristics are presented. The JFD-5 is a linear array of 5 p-type diodes. The middle three diodes, used to measure the dose in the match line region, are positioned at 5-mm intervals. The outer two diodes, positioned at 3-cm distance from the central diode, are used to measure the dose in the two contributing fields. For three JFD-5 detectors, calibration factors for different energies, and sensitivity correction factors for non-standard field sizes, patient skin temperature, and oblique incidence have been determined. The accuracy of penumbra and match line dose measurements has been determined in phantom studies and in vivo. Calibration factors differ significantly between diodes and between photon and electron beams. However, conversion factors between energies can be applied. The correction factor for temperature is 0.35%/ degrees C, and for oblique incidence 2% at maximum. The penumbra measured with the JFD-5 agrees well with film and linear diode array measurements. JFD-5 in vivo match line dosimetry reproducibility was 2.0% (1 SD) while the agreement with TLD was 0.999+/-0.023 (1 SD). The JFD-5 can be used for accurate, reproducible, and fast on-line match line in vivo dosimetry.

  18. Resist characteristics with direct-write electron beam and SCALPEL exposure system

    NASA Astrophysics Data System (ADS)

    Sato, Mitsuru; Omori, Katsumi; Ishikawa, Kiyoshi; Nakayama, Toshimasa; Novembre, Anthony E.; Ocola, Leonidas E.

    1999-06-01

    High acceleration voltage electron beam exposure is one of the possible candidates for post-optical lithography. The use of electrons, instead of photons, avoids optical related problems such as the standing wave issues. However, resists must conform to certain needs for the SCALPEL system, such as exposure in a vacuum chamber with 100kv electron beams. Taking into account the challenging requirements of high resolution, high sensitivity, low bake dependency and no outgassing, TOK has been able to develop resists to meet most of the SCALPEL system needs. However, due to the nature of chemical amplification and the PEB dependency, as is the case with DUV resist which varies for different features, we must recommend different resist for multiple features such as dense lines, isolated lines and contact holes. TOK has designed an electron beam negative resist, EN-009, which demonstrate 100nm pattern resolution. The dose to print on the SCALPEL system is 5.0(mu) C/cm2. The electron beam positive resist, EP-004M, has been designed for line and space patterns. The dose to print on the SCALPEL system is 8.25(mu) C/cm2. The processing conditions are standard, using 0.26N developer. These are the lowest exposure energies reported to date for similar resolution on this exposure tools.

  19. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media.

    PubMed

    Fahrbach, Florian O; Rohrbach, Alexander

    2012-01-17

    Laser beams that can self-reconstruct their initial beam profile even in the presence of massive phase perturbations are able to propagate deeper into inhomogeneous media. This ability has crucial advantages for light sheet-based microscopy in thick media, such as cell clusters, embryos, skin or brain tissue or plants, as well as scattering synthetic materials. A ring system around the central intensity maximum of a Bessel beam enables its self-reconstruction, but at the same time illuminates out-of-focus regions and deteriorates image contrast. Here we present a detection method that minimizes the negative effect of the ring system. The beam's propagation stability along one straight line enables the use of a confocal line principle, resulting in a significant increase in image contrast. The axial resolution could be improved by nearly 100% relative to the standard light-sheet techniques using scanned Gaussian beams, while demonstrating self-reconstruction also for high propagation depths.

  20. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  1. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  2. Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system.

    PubMed

    Kwak, Sehyun; Svensson, J; Brix, M; Ghim, Y-C

    2016-02-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The proposed approach makes it possible to extract the intensity of Li line without doing a separate background subtraction through modulation of the Li beam.

  3. Improving laser system productivity through production line integration

    NASA Astrophysics Data System (ADS)

    Belforte, David A.

    1994-09-01

    Thousands of laser systems are employed profitably in a variety of industrial applications. These installations have proved successful for economic and technical reasons. And, in certain applications: ceramic scribing, resistor trimming, sheet metal cutting, and air foil drilling, for example, have become the industry standard. Most of these installations are free standing or, at best, part of an off-line manufacturing cell. Examples of laser systems fully integrated into a production line, where the laser process is synchronized with up and down stream manufacturing operation, are rare. The laser has been under utilized in its potential contribution to production line productivity. Current development in laser beam delivery: multiplexing, beam splitting and other distributed energy concepts make the laser an attractive option for just-in-time manufacturing operations. The reasons for this apparent neglect of the laser's full potential are reviewed in this paper, and suggestions for improvement of this situation are offered. Examples of fully integrated laser systems and their successful implementation are described and a forecast of changes in the way lasers contribute to improved productivity and profitability will be made.

  4. Design of a beam emission spectroscopy diagnostic for negative ions radio frequency source SPIDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaniol, B.; Pasqualotto, R.; Barbisan, M.

    2012-04-15

    A facility will be built in Padova (Italy) to develop, commission, and optimize the neutral beam injection system for ITER. The full scale prototype negative ion radio frequency source SPIDER, featuring up to 100 kV acceleration voltage, includes a full set of diagnostics, required for safe operation and to measure and optimize the beam performance. Among them, beam emission spectroscopy (BES) will be used to measure the line integrated beam uniformity, divergence, and neutralization losses inside the accelerator (stripping losses). In the absence of the neutralization stage, SPIDER beam is mainly composed by H{sup -} or D{sup -} particles, accordingmore » to the source filling gas. The capability of a spectroscopic diagnostic of an H{sup -} (D{sup -}) beam relies on the interaction of the beam particles with the background gas particles. The BES diagnostic will be able to acquire the H{sub {alpha}} (D{sub {alpha}}) spectrum from up to 40 lines of sight. The system is capable to resolve stripping losses down to 2 keV and to measure beam divergence with an accuracy of about 10%. The design of this diagnostic is reported, with discussion of the layout and its components, together with simulations of the expected performance.« less

  5. Progress and process improvements for multiple electron-beam direct write

    NASA Astrophysics Data System (ADS)

    Servin, Isabelle; Pourteau, Marie-Line; Pradelles, Jonathan; Essomba, Philippe; Lattard, Ludovic; Brandt, Pieter; Wieland, Marco

    2017-06-01

    Massively parallel electron beam direct write (MP-EBDW) lithography is a cost-effective patterning solution, complementary to optical lithography, for a variety of applications ranging from 200 to 14 nm. This paper will present last process/integration results to achieve targets for both 28 and 45 nm nodes. For 28 nm node, we mainly focus on line-width roughness (LWR) mitigation by playing with stack, new resist platform and bias design strategy. The lines roughness was reduced by using thicker spin-on-carbon (SOC) hardmask (-14%) or non-chemically amplified (non-CAR) resist with bias writing strategy implementation (-20%). Etch transfer into trilayer has been demonstrated by preserving pattern fidelity and profiles for both CAR and non-CAR resists. For 45 nm node, we demonstrate the electron-beam process integration within optical CMOS flows. Resists based on KrF platform show a full compatibility with multiple stacks to fit with conventional optical flow used for critical layers. Electron-beam resist performances have been optimized to fit the specifications in terms of resolution, energy latitude, LWR and stack compatibility. The patterning process overview showing the latest achievements is mature enough to enable starting the multi-beam technology pre-production mode.

  6. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.

    1991-09-10

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.

  7. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Short, Robert W.; Craxton, Stephen; Letzring, Samuel A.; Soures, John

    1991-01-01

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  8. Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, Adam F.; Allred, Joel C.; Uitenbroek, Han

    2017-03-10

    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigtmore » profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a “multithread” model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a “hot spot” atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: ∼0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.« less

  9. Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    NASA Technical Reports Server (NTRS)

    Kowalski, Adam F.; Allred, Joel C.; Uitenbroek, Han; Tremblay, Pier-Emmanuel; Brown, Stephen; Carlsson, Mats; Osten, Rachel A.; Wisniewski, John P.; Hawley, Suzanne L.

    2017-01-01

    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a 'multithread' model improves the agreement with the observations. We revisit the three component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a 'hot spot' atmosphere heated by an ultra relativistic electron beam with reasonable filling factors: approximately 0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.

  10. Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Allred, Joel C.; Uitenbroek, Han; Tremblay, Pier-Emmanuel; Brown, Stephen; Carlsson, Mats; Osten, Rachel A.; Wisniewski, John P.; Hawley, Suzanne L.

    2017-03-01

    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a “multithread” model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a “hot spot” atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: ˜0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.

  11. Cyclotron harmonic lines in the thermal magnetic fluctuation spectrum of spiraling electrons in plasmas

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Golubyatnikov, G.

    1993-10-01

    Radio frequency (rf) magnetic fluctuations B˜ have been measured with loop antennas in a large pulsed discharge plasma column (ne≲1012 cm-3, kTe≲3 eV, B0≂20 G, Ar, 2×10-4 Torr, 1 m diam×2.5 m length). A 1/f-like noise spectrum is observed in the whistler wave regime (ωce1/2ωci1/2<ω<ωce) both in the Maxwellian afterglow plasma and in the active discharge which contains energetic (45 eV) electrons. Discrete emission lines at the electron cyclotron frequency and its harmonics are found only in the presence of spiraling energetic electrons. These are naturally present in the active discharge but have also been injected as a controlled oblique electron beam into the Maxwellian afterglow plasma. In the latter case up to 15 cyclotron harmonic lines with weak amplitude decay B˜z(ω) are generated in the beam flux tube. From two-point correlation measurements it is shown that the line spectrum is due to ballistic beam modes rather than plasma eigenmodes driven unstable by the beam. The lines evolve from broadband thermal current fluctuations of the beam through a filtering effect. Those fluctuations which rotate synchronously with the ordered cyclotron motion (ω=nωc) constructively interfere (k∥=0) and produce coherent solenoidal rf fields, while others interfere destructively. Axial and azimuthal phase velocity measurements for rf-modulated beams clearly demonstrate the filtering effect. In the present parameter regime (ωp≫ωc) the fluctuations are evanescent and localized near the electron flux tube (rc≳c/ωp). In low density plasmas the fluctuations may couple to propagating electromagnetic waves and be observable externally as in earlier observations by Landauer or Ikegami.

  12. Robust and adjustable C-shaped electron vortex beams

    NASA Astrophysics Data System (ADS)

    Mousley, M.; Thirunavukkarasu, G.; Babiker, M.; Yuan, J.

    2017-06-01

    Wavefront engineering is an important quantum technology, often applied to the production of states carrying orbital angular momentum (OAM). Here, we demonstrate the design and production of robust C-shaped beam states carrying OAM, in which the usual doughnut-shaped transverse intensity structure of the vortex beam contains an adjustable gap. We find that the presence of the vortex lines in the core of the beam is crucial for maintaining the stability of the C-shape structure during beam propagation. The topological charge of the vortex core controls mainly the size of the C-shape, while its opening angle is related to the presence of vortex-anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. C-shaped electron vortex beams have potential applications in nanoscale fabrication of planar split-ring structures and three-dimensional chiral structures as well as depth sensing and magnetic field determination through rotation of the gap in the C-shape.

  13. Development of splitting convergent beam electron diffraction (SCBED).

    PubMed

    Houdellier, Florent; Röder, Falk; Snoeck, Etienne

    2015-12-01

    Using a combination of condenser electrostatic biprism with dedicated electron optic conditions for sample illumination, we were able to split a convergent beam electron probe focused on the sample in two half focused probes without introducing any tilt between them. As a consequence, a combined convergent beam electron diffraction pattern is obtained in the back focal plane of the objective lens arising from two different sample areas, which could be analyzed in a single pattern. This splitting convergent beam electron diffraction (SCBED) pattern has been tested first on a well-characterized test sample of Si/SiGe multilayers epitaxially grown on a Si substrate. The SCBED pattern contains information from the strained area, which exhibits HOLZ lines broadening induced by surface relaxation, with fine HOLZ lines observed in the unstrained reference part of the sample. These patterns have been analyzed quantitatively using both parts of the SCBED transmitted disk. The fine HOLZ line positions are used to determine the precise acceleration voltage of the microscope while the perturbed HOLZ rocking curves in the stained area are compared to dynamical simulated ones. The combination of these two information leads to a precise evaluation of the sample strain state. Finally, several SCBED setups are proposed to tackle fundamental physics questions as well as applied materials science ones and demonstrate how SCBED has the potential to greatly expand the range of applications of electron diffraction and electron holography. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Electron Beam Diagnostics Of The JLAB UV FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, Pavel; Benson, Stephen; Biallas, George

    2011-03-01

    In this contribution we describe various systems and aspects of the electron beam diagnostics of the JLab UV FEL. The FEL is installed on a new bypass beam line at the existing 10 kW IR Upgrade FEL. Here, we describe a set of the following systems. A combination of OTR and phosphor viewers is used for measurements of the transverse beam profile, transverse emittance, and Twiss parameters. This system is also used for alignment of the optical cavity of the UV oscillator and to ensure the overlap between the electron beam and optical mode in the FEL wiggler. A systemmore » of beam position monitors equipped with log-amp based BPM electronics. Bunch length on the order of 120 fs RMS is measured with the help of a modified Martin-Puplett interferometer. The longitudinal transfer function measurement system is used to set up bunch compression in an optimal way, such that the LINAC RF curvature is compensated using only higher order magnetic elements of the beam transport. This set of diagnostic systems made a significant contribution in achieving first lasing of the FEL after only about 60 hours of beam operation.« less

  15. Spes: An intense source of Neutron-Rich Radioactive Beams at Legnaro

    NASA Astrophysics Data System (ADS)

    Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Ballan, M.; Borgna, F.; D'Agostini, F.; Gramegna, F.; Prete, G.; Meneghetti, G.; Ferrari, M.; Zenoni, A.

    2018-02-01

    The Isotope Separation On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) is attracting significant interest in the worldwide nuclear physics community. Within this context the SPES (Selective Production of Exotic Species) RIB facility is now under construction at INFN LNL (Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro). This technique is established as one of the main techniques for high intensity and high quality beams production. The SPES facility will produce n-rich isotopes by means of a 40 MeV proton beam, emitted by a cyclotron, impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe the most important results obtained by the study of the on-line behavior of the SPES production target assembly. This target system will produce RIBs at a rate of about 1013 fissions per second, it will be able to dissipate a total power of up to 10 kW, and it is planned to work continuously for 2 week-runs of irradiation. ISOL beams of 24 different elements will be produced, therefore a target and ion source development is ongoing to ensure a great variety of produced isotopes and to improve the beam intensity and purity.

  16. Enhanced beam coupling modulation using the polarization properties of photorefractive GaAs

    NASA Technical Reports Server (NTRS)

    Partovi, Afshin; Garmire, Elsa M.; Cheng, Li-Jen

    1987-01-01

    Observation is reported of a rotation in the polarization of the two photorefractive recording beams in GaAs for a configuration with the internally generated space-charge field along the line 110 crystallographic orientation. This rotation is a result of simultaneous constructive and destructive beam coupling in each beam for the optical electric field components along the two electrooptically induced principal dielectric axes of the crystal. By turning one of the beams on and off, the intensity of the other beam after the crystal and a polarization analyzer can be modulated by as much as 500 percent. This result is of particular importance for optical information processing applications.

  17. Means and method for the focusing and acceleration of parallel beams of charged particles

    DOEpatents

    Maschke, Alfred W.

    1983-07-05

    A novel apparatus and method for focussing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The quadrupole arrays may comprise electrodes which are shared by two or more quadrupoles. Such quadrupole arrays are particularly adapted to providing strong focussing forces for high current, high brightness, beams of charged particles, said beams further comprising a plurality of parallel beams, or beamlets, each such beamlet being focussed by one quadrupole of the array. Such arrays may be incorporated in various devices wherein beams of charged particles are accelerated or transported, such as linear accelerators, klystron tubes, beam transport lines, etc.

  18. Numerical Simulations for Distribution Characteristics of Internal Forces on Segments of Tunnel Linings

    NASA Astrophysics Data System (ADS)

    Li, Shouju; Shangguan, Zichang; Cao, Lijuan

    A procedure based on FEM is proposed to simulate interaction between concrete segments of tunnel linings and soils. The beam element named as Beam 3 in ANSYS software was used to simulate segments. The ground loss induced from shield tunneling and segment installing processes is simulated in finite element analysis. The distributions of bending moment, axial force and shear force on segments were computed by FEM. The commutated internal forces on segments will be used to design reinforced bars on shield linings. Numerically simulated ground settlements agree with observed values.

  19. ISEE 1 observations of electrostatic ion cyclotron waves in association with ion beams on auroral field lines from about 2.5 to 4.5 R(E)

    NASA Technical Reports Server (NTRS)

    Catell, C. A.; Mozer, F. S.; Roth, I.; Anderson, R. R.; Elphic, R. C.

    1991-01-01

    Quasi-monochromatic waves at about the hydrogen cyclotron frequency were observed as the ISEE 1 satellite traversed auroral field lines at radial distances of about 2.5-4.5 R(E) near midnight on June 19, 1981. Waves and both lower and higher frequencies were observed at higher altitudes, and possible electrostatic helium cyclotron and oxygen cyclotron waves occurred at lower altitudes. Upflowing hydrogen and oxygen beams and field-aligned currents occurred simultaneously. The features of the waves are most consistent with the current-driven mode. In addition, numerical studies of the linear dispersion relation, using parameters based on the observations, show that both the parallel and oblique two-stream modes and the ion-beam-driven modes were stable while oblique current-driven modes were unstable. The O(+) and H(+) distributions provide evidence for interactions with local electrostatic ion cyclotron waves and for the H(+)-O(+) two-stream instability at altitudes below the satellite.

  20. Modelling of Electron and Proton Beams in a White-light Solar Flare

    NASA Astrophysics Data System (ADS)

    Milligan, R. O.; Procházka, O.; Reid, A.; Allred, J. C.; Mathioudakis, M.

    2017-12-01

    Observations of an X1 class WL solar flare on 2014 June 11 showed a surprisingly weak emission in both higher order Balmer and Lyman lines and continua. The flare was observed by RHESSI but low energy cut-off of non-thermal component was indeterminable due to the unusually hard electron spectrum (delta = 3). An estimate of power in non-thermal electron beams together with an area of WL emission observed by HMI yielded to an upper and lower estimate of flux 1E9 and 3E10 erg/cm2/s, respectively. We performed a grid of models using a radiative hydrodynamic code RADYN in order to compare synthetic spectra with observations. For low energy cut-off we chose a range from 20 to 120 keV with a step of 20 keV and delta parameter equal to 3. Electron beam-driven models show that higher low energy cut-off is more likely to produce an absorption Balmer line profile, if the total energy flux remains relatively low. On the other hand a detectable rise of HMI continuum (617 nm) lays a lower limit on the beam flux. Proton beam-driven models with equivalent fluxes indicate a greater penetration depth, while the Balmer lines reveal significantly weaker emission. Atmospheric temperature profiles show that for higher values of low energy cut-off the energy of the beam is deposited lower in chromosphere or even in temperature minimum region. This finding suggests, that suppressed hydrogen emission can indicate a formation of white-light continuum below chromosphere.

  1. Electromigration-induced plastic deformation in passivated metal lines

    NASA Astrophysics Data System (ADS)

    Valek, B. C.; Bravman, J. C.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Spolenak, R.; Brown, W. L.; Batterman, B. W.; Patel, J. R.

    2002-11-01

    We have used scanning white beam x-ray microdiffraction to study microstructural evolution during an in situ electromigration experiment on a passivated Al(Cu) test line. The data show plastic deformation and grain rotations occurring under the influence of electromigration, seen as broadening, movement, and splitting of reflections diffracted from individual metal grains. We believe this deformation is due to localized shear stresses that arise due to the inhomogeneous transfer of metal along the line. Deviatoric stress measurements show changes in the components of stress within the line, including relaxation of stress when current is removed.

  2. Electron Beam Pattern Rotation as a Method of Tunable Bunch Train Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    Transversely modulated electron beams can be formed in photo injectors via microlens array (MLA) UV laser shap- ing technique. Microlenses can be arranged in polygonal lattices, with resulting transverse electron beam modula- tion mimicking the lenses pattern. Conventionally, square MLAs are used for UV laser beam shaping, and generated electron beam patterns form square beamlet arrays. The MLA setup can be placed on a rotational mount, thereby rotating electron beam distribution. In combination with transverse-to-longitudinal emittance exchange (EEX) beam line, it allows to vary beamlets horizontal projection and tune electron bunch train. In this paper, we extend the technique tomore » the case of different MLA lattice arrangements and explore the benefits of its rotational symmetries.« less

  3. Soft X-ray holographic grating beam splitter including a double frequency grating for interferometer pre-alignment.

    PubMed

    Liu, Ying; Tan, Xin; Liu, Zhengkun; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun

    2008-09-15

    Grating beam splitters have been fabricated for soft X-ray Mach- Zehnder interferometer using holographic interference lithography. The grating beam splitter consists of two gratings, one works at X-ray laser wavelength of 13.9 nm with the spatial frequency of 1000 lines/mm as the operation grating, the other works at visible wavelength of 632.8 nm for pre-aligning the X-ray interferometer with the spatial frequency of 22 lines/mm as the pre-alignment grating. The two gratings lie vertically on the same substrate. The main feature of the beam splitter is the use of low-spatial- frequency beat grating of a holographic double frequency grating as the pre-alignment grating of the X-ray interferometer. The grating line parallelism between the two gratings can be judged by observing the diffraction patterns of the pre-alignment grating directly.

  4. Suppression of dilution in Ni-Cr-Si-B alloy cladding layer by controlling diode laser beam profile

    NASA Astrophysics Data System (ADS)

    Tanigawa, Daichi; Funada, Yoshinori; Abe, Nobuyuki; Tsukamoto, Masahiro; Hayashi, Yoshihiko; Yamazaki, Hiroyuki; Tatsumi, Yoshihiro; Yoneyama, Mikio

    2018-02-01

    A Ni-Cr-Si-B alloy layer was produced on a type 304 stainless steel plate by laser cladding. In order to produce cladding layer with smooth surface and low dilution, influence of laser beam profile on cladding layer was investigated. A laser beam with a constant spatial intensity at the focus spot was used to suppress droplet formation during the cladding layer formation. This line spot, formed with a focussing unit designed by our group, suppressed droplet generation. The layer formed using this line spot with a constant spatial intensity had a much smoother surface compared to a layer formed using a line spot with a Gaussian-like beam. In addition, the dilution of the former layer was much smaller. These results indicated that a line spot with a constant spatial intensity was more effective in producing a cladding layer with smooth surface and low dilution because it suppressed droplet generation.

  5. The effect of tail stretching on the ionospheric accessibility of relativistic electron beam experiments

    NASA Astrophysics Data System (ADS)

    Willard, J.; Johnson, J.; Sanchez, E. R.; Kaganovich, I.; Greklek-McKeon, M.; Powis, T.

    2017-12-01

    New accelerator technologies have made it possible to install a lightweight electron beam accelerator onto small to medium satellites. Electron beams fired along the geomagnetic field would be able to carry energy flux into the ionosphere if they were fired into the loss cone, making these particles observable from the ground. Such an experiment would provide a way to accurately map field lines. One of the important challenges to utilizing this concept is understanding accessibility of these electrons to the ionosphere. While relativistic electron beams are generally more stable than lower energy beams, they are more sensitive to the effects of field-line curvature, which can significantly modify the loss cone [Porazik et al., 2014] making accessibility to the ionosphere sensitive to the launch angle with respect to the magnetic field. We examine the loss cone for 1 MeV electrons in a realistic magnetospheric geometry considering, in particular, the role of field-line stretching. To map the loss cone, we consider conservation of the first adiabatic invariant to second order in ρ/L using the asymptotic series derived by Gardner [Phys Fluids, 1966], which is valid on the midnight meridian. We investigate the loss cones for different magnetic field models controlled by a stretching parameter over the entire midnight meridian. We found that, because tail stretching increases field line curvature near the midplane but decreases curvature elsewhere, accessibility to the ionosphere is increased by tail stretching in regions above and below the midplane, although accessibility of particles passing through the midplane is reduced. This result implies that satellites armed with electron beam accelerators may be able to visibly affect the atmosphere from distances greater than previously anticipated.

  6. High-radiance LDP source for mask inspection and beam line applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Teramoto, Yusuke; Santos, Bárbara; Mertens, Guido; Kops, Ralf; Kops, Margarete; von Wezyk, Alexander; Bergmann, Klaus; Yabuta, Hironobu; Nagano, Akihisa; Ashizawa, Noritaka; Taniguchi, Yuta; Yamatani, Daiki; Shirai, Takahiro; Kasama, Kunihiko

    2017-04-01

    High-throughput actinic mask inspection tools are needed as EUVL begins to enter into volume production phase. One of the key technologies to realize such inspection tools is a high-radiance EUV source of which radiance is supposed to be as high as 100 W/mm2/sr. Ushio is developing laser-assisted discharge-produced plasma (LDP) sources. Ushio's LDP source is able to provide sufficient radiance as well as cleanliness, stability and reliability. Radiance behind the debris mitigation system was confirmed to be 120 W/mm2/sr at 9 kHz and peak radiance at the plasma was increased to over 200 W/mm2/sr in the recent development which supports high-throughput, high-precision mask inspection in the current and future technology nodes. One of the unique features of Ushio's LDP source is cleanliness. Cleanliness evaluation using both grazing-incidence Ru mirrors and normal-incidence Mo/Si mirrors showed no considerable damage to the mirrors other than smooth sputtering of the surface at the pace of a few nm per Gpulse. In order to prove the system reliability, several long-term tests were performed. Data recorded during the tests was analyzed to assess two-dimensional radiance stability. In addition, several operating parameters were monitored to figure out which contributes to the radiance stability. The latest model that features a large opening angle was recently developed so that the tool can utilize a large number of debris-free photons behind the debris shield. The model was designed both for beam line application and high-throughput mask inspection application. At the time of publication, the first product is supposed to be in use at the customer site.

  7. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Renier, Y.; Bambade, P.; Tauchi, T.; White, G. R.; Boogert, S.

    2013-06-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC) as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs), it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  8. Double Emittance Exchanger as a Bunch Compressor for the MaRIE XFEL electron beam line at 1GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander; Yampolsky, Nikolai; Carlsten, Bruce Eric

    We demonstrate an alternative realization of a bunch compressor (specifically the second bunch compressor for the MaRIE XFEL beamline, 1GeV electron energy) using a double emittance exchanger (EEX) and a telescope in the transverse phase space.We compare our results with a traditional bunch compressor realized via chicane, taking into account the nonlinear dynamics, Coherent Synchrotron Radiation (CSR) and Space Charge (SC) effects. In particular, we use the Elegant code for tracking particles through the beam line and analyze the eigen-emittances evolution to separate the influence of the CSR/SC effects from the nonlinear dynamics effects. We optimize the scheme parameters tomore » reach a desirable compression factor and minimize the emittance growth. We observe dominant CSR-effects in our scheme resulting in critical emittance growth and introduce alternative version of an emittance exchanger with a reduced number of bending magnets to minimize the impact of CSR effects.« less

  9. Beam diagnostics in the CIRFEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnaswamy, J.; Lehrman, I.S.; Hartley, R.

    1995-12-31

    The CIRFEL system has been operating with electron energies in the range of 11 to 12 MeV and RF pulse length of 3 to 4 {mu}secs. The electrons produced by a Magnesium photocathode illuminated by a 261nm mode locked laser are accelerated in the RF gun, and further boosted in energy by a booster section downstream of the RIF gun. The electrons are energy selected in the bending section before insertion into a permanent magnet wiggler. We describe several recent diagnostic measurements carried out on the CIRFEL system: emittance measurements in two different sections of the beam line, energy andmore » energy spread measurements, and jitter characteristics of the photo cathode drive laser as well as the electron beam energy.« less

  10. Qualification and implementation of line ratio spectroscopy on helium as plasma edge diagnostic at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Griener, M.; Muñoz Burgos, J. M.; Cavedon, M.; Birkenmeier, G.; Dux, R.; Kurzan, B.; Schmitz, O.; Sieglin, B.; Stroth, U.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team

    2018-02-01

    A new thermal helium beam diagnostic has been implemented as plasma edge diagnostic at the ASDEX Upgrade (AUG) tokamak. The helium beam is built to measure the electron density n e and temperature T e simultaneously with high spatial and temporal resolution in order to investigate steady-state as well as fast transport processes in the plasma edge region. For the thermal helium beam emission line ratio spectroscopy, neutral helium is locally injected into the plasma by a piezo valve. This enabled the measurement of the line resolved emission intensities of seven He I lines for different plasma scenarios in AUG. The different line ratios can be used together with a collisional-radiative model (CRM) to reconstruct the underlying electron temperature and density. Ratios from the same spin species are used for the electron density reconstruction, whereas spin mixed ratios are sensitive to electron temperature changes. The different line ratios as well as different CRMs are tested for their suitability for diagnostic applications. Furthermore their consistency in calculating identical parameters is validated and the resulting profiles are compared to other available diagnostics at AUG.

  11. Physical and engineering aspect of carbon beam therapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki; Kanematsu, Nobuyuki; Minohara, Shinichi; Yusa, Ken; Urakabe, Eriko; Mizuno, Hideyuki; Iseki, Yasushi; Kanazawa, Mitsutaka; Kitagawa, Atsushi; Tomitani, Takehiro

    2003-08-01

    Conformal irradiation system of HIMAC has been up-graded for a clinical trial using a technique of a layer-stacking method. The system has been developed for localizing irradiation dose to target volume more effectively than the present irradiation dose. With dynamic control of the beam modifying devices, a pair of wobbler magnets, and multileaf collimator and range shifter, during the irradiation, more conformal radiotherapy can be achieved. The system, which has to be adequately safe for patient irradiations, was constructed and tested from a viewpoint of safety and the quality of the dose localization realized. A secondary beam line has been constructed for use of radioactive beam in heavy-ion radiotherapy. Spot scanning method has been adapted for the beam delivery system of the radioactive beam. Dose distributions of the spot beam were measured and analyzed taking into account of aberration of the beam optics. Distributions of the stopped positron-emitter beam can be observed by PET. Pencil beam of the positron-emitter, about 1 mm size, can also be used for measurements ranges of the test beam in patients using positron camera. The positron camera, consisting of a pair of Anger-type scintillation detectors, has been developed for this verification before treatment. Wash-out effect of the positron-emitter was examined using the positron camera installed. In this report, present status of the HIMAC irradiation system is described in detail.

  12. Red and infrared gas laser beam for therapy

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail-Lucian; Ristici, Marin; Ristici, E.; Tivarus, Madalina-Elena

    2000-06-01

    For the low power laser therapy, the experiments show that better results are obtained when the laser beam is an overlapping of two radiations: one in the visible region of the spectrum and the other in IR region. Also, some experiments show that for good results in biostimulation it is important to have a high coherence length of laser beam; this is not the case of the laser diodes The He-Ne laser has the best coherence, being able to generate laser radiations in visible and IR. It has tow strong laser lines: 633 nm and 1.15 micrometers . Although their gains are about the same, the available power of the red radiation is 3-4 times higher because of its larger width, when they oscillate separately. Using special dichroic mirrors for simultaneous reflection of the both liens, the laser beam will consist of the two radiations, each of them having good coherence . A 420 mm active length, 1.8 mm inner diameter He-Ne laser tube and a special designed resonator has been developed. The mirrors reflect both radiations as follows: one reflects 99.9 percent and the other, the output mirror, reflects 98 percent. There is a competition between them because these lines have a common lower level. The output power of the laser beam as 6 mW for 633 nm and 4 mW for 1.15 micrometers , respectively.

  13. High power linear pulsed beam annealer

    DOEpatents

    Strathman, Michael D.; Sadana, Devendra K.; True, Richard B.

    1983-01-01

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  14. Simple Correctors for Elimination of High-Order Modes in Corrugated Waveguide Transmission Lines

    PubMed Central

    Kowalski, Elizabeth J.; Shapiro, Michael A.; Temkin, Richard J.

    2014-01-01

    When using overmoded corrugated waveguide transmission lines for high power applications, it is necessary to control the mode content of the system. Ideally, overmoded corrugated transmission lines operate in the fundamental HE11 mode and provide low losses for long distances. Unwanted higher order modes (HOMs), particularly LP11 and HE12, are often excited in the experimental systems due to practical misalignments in the transmission line system. This paper discusses how the unwanted modes propagate along with the fundamental mode in the transmission line system by formulating an equation that relates the center of power offset and angle of propagation of a beam (for the HE11 and LP11 modes) or the waist size and phase front radius of curvature of a beam (for the HE11 and HE12 modes). By introducing two miter bend correctors into the transmission system—miter bends that have slightly angled or ellipsoidal mirrors—the HOMs can be precisely manipulated in the system. This technique can be used to eliminate small quantities of unwanted modes, thereby creating a nearly pure fundamental mode beam with minimal losses. Examples of these applications are calculated and show the theoretical conversion of up to 10% HOM content into the fundamental HE11 mode with minimal losses. PMID:25067859

  15. Development of target ion source systems for radioactive beams at GANIL

    NASA Astrophysics Data System (ADS)

    Bajeat, O.; Delahaye, P.; Couratin, C.; Dubois, M.; Franberg-Delahaye, H.; Henares, J. L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M.

    2013-12-01

    The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.

  16. Wave Phenomena and Beam-Plasma Interactions at the Magnetopause Reconnection Region

    NASA Astrophysics Data System (ADS)

    Burch, J. L.; Webster, J. M.; Genestreti, K. J.; Torbert, R. B.; Giles, B. L.; Fuselier, S. A.; Dorelli, J. C.; Rager, A. C.; Phan, T. D.; Allen, R. C.; Chen, L.-J.; Wang, S.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Ergun, R. E.; Jaynes, A. N.; Lindqvist, P.-A.; Graham, D. B.; Wilder, F. D.; Hwang, K.-J.; Goldstein, J.

    2018-02-01

    This paper reports on Magnetospheric Multiscale observations of whistler mode chorus and higher-frequency electrostatic waves near and within a reconnection diffusion region on 23 November 2016. The diffusion region is bounded by crescent-shaped electron distributions and associated dissipation just upstream of the X-line and by magnetic field-aligned currents and electric fields leading to dissipation near the electron stagnation point. Measurements were made southward of the X-line as determined by southward directed ion and electron jets. We show that electrostatic wave generation is due to magnetosheath electron beams formed by the electron jets as they interact with a cold background plasma and more energetic population of magnetospheric electrons. On the magnetosphere side of the X-line the electron beams are accompanied by a strong perpendicular electron temperature anisotropy, which is shown to be the source of an observed rising-tone whistler mode chorus event. We show that the apex of the chorus event and the onset of electrostatic waves coincide with the opening of magnetic field lines at the electron stagnation point.

  17. Polarization singularity indices in Gaussian laser beams

    NASA Astrophysics Data System (ADS)

    Freund, Isaac

    2002-01-01

    Two types of point singularities in the polarization of a paraxial Gaussian laser beam are discussed in detail. V-points, which are vector point singularities where the direction of the electric vector of a linearly polarized field becomes undefined, and C-points, which are elliptic point singularities where the ellipse orientations of elliptically polarized fields become undefined. Conventionally, V-points are characterized by the conserved integer valued Poincaré-Hopf index η, with generic value η=±1, while C-points are characterized by the conserved half-integer singularity index IC, with generic value IC=±1/2. Simple algorithms are given for generating V-points with arbitrary positive or negative integer indices, including zero, at arbitrary locations, and C-points with arbitrary positive or negative half-integer or integer indices, including zero, at arbitrary locations. Algorithms are also given for generating continuous lines of these singularities in the plane, V-lines and C-lines. V-points and C-points may be transformed one into another. A topological index based on directly measurable Stokes parameters is used to discuss this transformation. The evolution under propagation of V-points and C-points initially embedded in the beam waist is studied, as is the evolution of V-dipoles and C-dipoles.

  18. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm-2s-1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  19. Design of large vacuum chamber for VEC superconducting cyclotron beam line switching magnet

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sumantra; Nandi, Chinmoy; Gayen, Subhasis; Roy, Suvadeep; Mishra, Santosh Kumar; Ramrao Bajirao, Sanjay; Pal, Gautam; Mallik, C.

    2012-11-01

    VEC K500 superconducting cyclotron will be used to accelerate heavy ion. The accelerated beam will be transported to different beam halls by using large switching magnets. The vacuum chamber for the switching magnet is around 1000 mm long. It has a height of 85 mm and width varying from 100 mm to 360 mm. The material for the chamber has been chosen as SS304.The material for the vacuum chamber for the switching magnet has been chosen as SS304. Design of the vessel was done as per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. It was observed that primary stress values exceed the allowable limit. Since, the magnet was already designed with a fixed pole gap; increase of the vacuum chamber plate thickness restricts the space for beam transport. Design was optimized using stress analysis software ANSYS. Analysis was started using plate thickness of 4 mm. The stress was found higher than the allowable level. The analysis was repeated by increasing plate thickness to 6 mm, resulting in the reduction of stress level below the allowable level. In order to reduce the stress concentration due to sharp bend, chamfering was done at the corner, where the stress level was higher. The thickness of the plate at the corner was increased from 6 mm to 10 mm. These measures resulted in reduction of localized stress.

  20. Sensitivity of MSE measurements on the beam atomic level population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, C., E-mail: carlos.ruiz@wisc.edu; Kumar, S. T. A.; Anderson, F. S. B.

    The effect of variation in atomic level population of a neutral beam on the Motional Stark Effect (MSE) measurements is investigated in the low density plasmas of HSX stellarator. A 30 KeV, 4 A, 3 ms hydrogen diagnostic neutral beam is injected into HSX plasmas of line averaged electron density ranging from 2 to 4 ⋅ 10{sup 18} m{sup −3} at a magnetic field of 1 T. For this density range, the excited level population of the hydrogen neutral beam is expected to undergo variations. Doppler shifted and Stark split H{sub α} and H{sub β} emissions from the beam aremore » simultaneously measured using two cross-calibrated spectrometers. The emission spectrum is simulated and fit to the experimental measurements and the deviation from a statistically populated beam is investigated.« less

  1. A high efficiency Ku-band radial line relativistic klystron amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Fangchao; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Zhong, Huihuang

    2016-07-15

    To achieve the gigawatt-level microwave amplification output at Ku-band, a radial-line relativistic klystron amplifier is proposed and investigated in this paper. Different from the annular electron beam in conventional axial relativistic klystron amplifiers, a radial-radiated electron beam is employed in this proposed klystron. Owing to its radially spreading speciality, the electron density and space charge effect are markedly weakened during the propagation in the radial line drift tube. Additionally, the power capacity, especially in the output cavity, is enhanced significantly because of its large volume, which is profitable for the long pulse operation. Particle-in-cell simulation results demonstrate that a highmore » power microwave with the power of 3 GW and the frequency of 14.25 GHz is generated with a 500 kV, 12 kA electron beam excitation and the 30 kW radio-frequency signal injection. The power conversion efficiency is 50%, and the gain is about 50 dB. Meanwhile, there is insignificant electron beam self-excitation in the proposed structure by the adoption of two transverse electromagnetic reflectors. The relative phase difference between the injected signals and output microwaves keeps stable after the amplifier saturates.« less

  2. Optimised Combined Angular and Energy Dispersive Diffraction at the PSICHE Beam Line of the SOLEIL Synchrotron for Fast, High Q-range Structure Determination at High Pressure and Temperature.

    NASA Astrophysics Data System (ADS)

    King, A.; Guignot, N.; Boulard, E.; Deslandes, J. P.; Clark, A. N.; Morard, G.; Itié, J. P.

    2017-12-01

    Synchrotron diffraction is an ideal technique for investigating materials at high pressure and temperature, because the penetrating nature of high-energy X-rays allows measurements to be made inside pressure cells or sample environments. Wang et al. described the CAESAR acquisition strategy, in which energy and angular dispersive techniques are combined to produce an instrument particularly suitable for quantitative measurements from samples inside high-pressure apparati [1]. The PSICHE beam line of the SOLEIL Synchrotron is equipped with such a CAESAR system. Uniquely, this system allows energy dispersive diffraction spectra to be acquired at scattering angles between -5 and +30 degrees two theta, while maintaining a sphere of confusion at the measurement position in the order of 10 microns. The slits used to define the scattering angle act as Soller slits and select the diffracted volume, separating the sample from its environment. By developing an optimised acquisition strategy we are able to obtain data covering a very wide Q range (to 160nm-1 or more), while minimising the total acquisition time (one hour per complete acquisition). In addition, the 2D nature (angle and energy) of the acquired dataset enables the effective incident spectrum to be efficiently determined with no addition measurements, in order to normalise the acquired data. The resulting profile of scattered intensity as a function of Q is suitable for Fourier transform analysis of liquid or amorphous structures. PSICHE is a multi technique beam line, with a part of the beam time dedicated to parallel beam absorption and phase contrast radiography and tomography [2]. Examples will be given to show how these techniques can be combined with diffraction techniques to greatly enrich studies of materials at extreme conditions. [1] Wang, Y., Uchida, T., Von Dreele, R., Rivers, M. L., Nishiyama, N., Funakoshi, K., Nozawa, A., and Keneko, H., J. Appl. Crystallogr. 37, 947 (2004). [2] King, A., Guignot

  3. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.

    PubMed

    Dennis, Mark R; Ring, James D

    2013-09-01

    We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.

  4. Infrared Risley beam pointer

    NASA Astrophysics Data System (ADS)

    Harford, Steven T.; Gutierrez, Homero; Newman, Michael; Pierce, Robert; Quakenbush, Tim; Wallace, John; Bornstein, Michael

    2014-03-01

    Ball Aerospace & Technologies Corp. (BATC) has developed a Risley Beam Pointer (RBP) mechanism capable of agile slewing, accurate pointing and high bandwidth. The RBP is comprised of two wedged prisms that offer a wide Field of Regard (FOR) and may be manufactured and operated with diffraction limited optical quality. The tightly packaged mechanism is capable of steering a 4 inch beam over a 60° half angle cone with better than 60 μrad precision. Absolute accuracy of the beam steering is better than 1 mrad. The conformal nature of the RBP makes it an ideal mechanism for use on low altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) thermal compliance to maintain bearing preload and optical figure over a wide temperature range; and ii) packaging of a remote infrared sensor that periodically reports the temperature of both prisms for accurate determination of the index of refraction. The pointing control system operates each prism independently and employs an inner rate loop nested within an outer position loop. Mathematics for the transformation between line-of-sight coordinates and prism rotation are hosted on a 200 MHz microcontroller with just 516 KB of RAM.

  5. Theoretical study of fabrication of line-and-space patterns with 7 nm quarter-pitch using electron beam lithography with chemically amplified resist process: III. Post exposure baking on quartz substrates

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro

    2015-09-01

    Electron beam (EB) lithography is a key technology for the fabrication of photomasks for ArF immersion and extreme ultraviolet (EUV) lithography and molds for nanoimprint lithography. In this study, the temporal change in the chemical gradient of line-and-space patterns with a 7 nm quarter-pitch (7 nm space width and 21 nm line width) was calculated until it became constant, independently of postexposure baking (PEB) time, to clarify the feasibility of single nano patterning on quartz substrates using EB lithography with chemically amplified resist processes. When the quencher diffusion constant is the same as the acid diffusion constant, the maximum chemical gradient of the line-and-space pattern with a 7 nm quarter-pitch did not differ much from that with a 14 nm half-pitch under the condition described above. Also, from the viewpoint of process control, a low quencher diffusion constant is considered to be preferable for the fabrication of line-and-space patterns with a 7 nm quarter-pitch on quartz substrates.

  6. Medipix2 as a tool for proton beam characterization

    NASA Astrophysics Data System (ADS)

    Bisogni, M. G.; Cirrone, G. A. P.; Cuttone, G.; Del Guerra, A.; Lojacono, P.; Piliero, M. A.; Romano, F.; Rosso, V.; Sipala, V.; Stefanini, A.

    2009-08-01

    Proton therapy is a technique used to deliver a highly accurate and effective dose for the treatment of a variety of tumor diseases. The possibility to have an instrument able to give online information could reduce the time necessary to characterize the proton beam. To this aim we propose a detection system for online proton beam characterization based on the Medipix2 chip. Medipix2 is a detection system based on a single event counter read-out chip, bump-bonded to silicon pixel detector. The read-out chip is a matrix of 256×256 cells, 55×55 μm 2 each. To demonstrate the capabilities of Medipix2 as a proton detector, we have used a 62 MeV flux proton beam at the CATANA beam line of the LNS-INFN laboratory. The measurements performed confirmed the good imaging performances of the Medipix2 system also for the characterization of proton beams.

  7. Beam dynamics simulation of HEBT for the SSC-linac injector

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ni; Yuan, You-Jin; Xiao, Chen; He, Yuan; Wang, Zhi-Jun; Sheng, Li-Na

    2012-11-01

    The SSC-linac (a new injector for the Separated Sector Cyclotron) is being designed in the HIRFL (Heavy Ion Research Facility in Lanzhou) system to accelerate 238U34+ from 3.72 keV/u to 1.008 MeV/u. As a part of the SSC-linac injector, the HEBT (high energy beam transport) has been designed by using the TRACE-3D code and simulated by the 3D PIC (particle-in-cell) Track code. The total length of the HEBT is about 12 meters and a beam line of about 6 meters are shared with the exiting beam line of the HIRFL system. The simulation results show that the particles can be delivered efficiently in the HEBT and the particles at the exit of the HEBT well match the acceptance of the SSC for further acceleration. The dispersion is eliminated absolutely in the HEBT. The space-charge effect calculated by the Track code is inconspicuous. According to the simulation, more than 60 percent of the particles from the ion source can be transported into the acceptance of the SSC.

  8. External beam pixe programs at the University of California, Davis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, R.A.

    A PIXE system in which large or delicate samples are excited by a low-current external proton beam is described. This system has been used to analyze historical printed books and manuscripts, as well as a large variety of archeological artifacts. The steps used to protect the sample from unnecessary beam current are examined. A recent thorough study of the first volume of the Gutenberg 42-line Bible is described in some detail.

  9. E-beam-pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Rice, Robert R.; Shanley, James F.; Ruggieri, Neil F.

    1995-04-01

    The collapse of the Soviet Union opened many areas of laser technology to the West. E-beam- pumped semiconductor lasers (EBSL) were pursued for 25 years in several Soviet Institutes. Thin single crystal screens of II-VI alloys (ZnxCd1-xSe, CdSxSe1-x) were incorporated in laser CRTs to produce scanned visible laser beams at average powers greater than 10 W. Resolutions of 2500 lines were demonstrated. MDA-W is conducting a program for ARPA/ESTO to assess EBSL technology for high brightness, high resolution RGB laser projection application. Transfer of II-VI crystal growth and screen processing technology is underway, and initial results will be reported. Various techniques (cathodoluminescence, one- and two-photon laser pumping, etc.) have been used to assess material quality and screen processing damage. High voltage (75 kV) video electronics were procured in the U.S. to operate test EBSL tubes. Laser performance was documented as a function of screen temperature, beam voltage and current. The beam divergence, spectrum, efficiency and other characteristics of the laser output are being measured. An evaluation of the effect of laser operating conditions upon the degradation rate is being carried out by a design-of-experiments method. An initial assessment of the projected image quality will be performed.

  10. Coherence degree of the fundamental Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In this article the coherence of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is analyzed. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian optical beam of optical radiation. The behavior of a coherence degree of a fundamental Bessel-Gaussian optical beam depending on parameters of an optical beam and characteristics of turbulent atmosphere is examined. It was revealed that at low levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam has the characteristic oscillating appearance. At high levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam is described by an one-scale decreasing curve which in process of increase of level of fluctuations on a line of formation of a laser beam becomes closer to the same characteristic of a spherical optical wave.

  11. Experimental Measurements of the Secondary Electron Yield in the Experimental Measurement of the Secondary Electron Yield in the PEP-II Particle Accelerator Beam Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pivi, M.T.F.; Collet, G.; King, F.

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under themore » effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.« less

  12. Galerkin projection for geometrically-exact multilayer beams allowing for ply drop-off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu-Quoc, L.; Deng, H.

    1995-12-31

    Focusing on the static case in the present work, we develop a Galerkin projection of the resulting nonlinear governing equations of equilibrium for geometrically exact sandwich beams and 1-D plates developed. In the proposed theory, each layer in the beam can have different thickness and length. As such one can use the present formulation to model an important class of multilayer structures having ply drop-off. No restriction is imposed on the magnitude of the displacement field, whose continuity across the layer interfaces is exactly enforced. The layer cross section in the deformed beam is assumed to remain straight, but notmore » orthogonal to the layer centroidal line, thus shear deformation in each layer is accounted for. Also no restriction is imposed on the rotation of a layer cross section. It follows that the overall cross section in the deformed beam is continuous piecewise linear, and can be best thought of as a chain of rigid links, connected by hinges. The overall deformation of a multilayer beam can be described by the deformation of a reference layer. The unknown kinematic quantities are therefore the two displacement components of the deformed centroidal line of a reference layer, and the finite rotations of the layers. The present theory can be used to analyze large deformation in sandwich beams. Numerical examples, such as roll-up maneuver and sandwich beam with ply drop-off, which underline the salient features of the formulation are presented. Saint-Venant principle is demonstrated for very short sandwich beams. The readers are referred to the paper for detail.« less

  13. Geant4 hadronic physics validation with ATLAS Tile Calorimeter test-beam data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexa, C.; Constantinescu, S.; Dita, S.

    We present comparison studies between Geant4 shower packages and ATLAS Tile Calorimeter test-beam data collected at CERN in H8 beam line at the SPS. Emphasis is put on hadronic physics lists and data concerning differences between Tilecal response to pions and protons of same energy. The ratio between the pure hadronic fraction of pion and the pure hadronic fraction of proton F{sub h}{sup {pi}}/F{sub h}{sup p} was estimated with Tilecal test-beam data and compared with Geant4 simulations.

  14. Quasi-Bessel beams from asymmetric and astigmatic illumination sources.

    PubMed

    Müller, Angelina; Wapler, Matthias C; Schwarz, Ulrich T; Reisacher, Markus; Holc, Katarzyna; Ambacher, Oliver; Wallrabe, Ulrike

    2016-07-25

    We study the spatial intensity distribution and the self-reconstruction of quasi-Bessel beams produced from refractive axicon lenses with edge emitting laser diodes as asymmetric and astigmatic illumination sources. Comparing these to a symmetric mono-mode fiber source, we find that the asymmetry results in a transition of a quasi-Bessel beam into a bow-tie shaped pattern and eventually to a line shaped profile at a larger distance along the optical axis. Furthermore, we analytically estimate and discuss the effects of astigmatism, substrate modes and non-perfect axicons. We find a good agreement between experiment, simulation and analytic considerations. Results include the derivation of a maximal axicon angle related to astigmatism of the illuminating beam, impact of laser diode beam profile imperfections like substrate modes and a longitudinal oscillation of the core intensity and radius caused by a rounded axicon tip.

  15. HOPI: on-line injection optimization program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeMaire, J L

    1977-10-26

    A method of matching the beam from the 200 MeV linac to the AGS without the necessity of making emittance measurements is presented. An on-line computer program written on the PDP10 computer performs the matching by modifying independently the horizontal and vertical emittance. Experimental results show success with this method, which can be applied to any matching section.

  16. Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control

    NASA Astrophysics Data System (ADS)

    Xue, Xiaoxiao; Xuan, Yi; Bao, Chengying; Li, Shangyuan; Zheng, Xiaoping; Zhou, Bingkun; Qi, Minghao; Weiner, Andrew M.

    2018-06-01

    Microwave phased array antennas (PAAs) are very attractive to defense applications and high-speed wireless communications for their abilities of fast beam scanning and complex beam pattern control. However, traditional PAAs based on phase shifters suffer from the beam-squint problem and have limited bandwidths. True-time-delay (TTD) beamforming based on low-loss photonic delay lines can solve this problem. But it is still quite challenging to build large-scale photonic TTD beamformers due to their high hardware complexity. In this paper, we demonstrate a photonic TTD beamforming network based on a miniature microresonator frequency comb (microcomb) source and dispersive time delay. A method incorporating optical phase modulation and programmable spectral shaping is proposed for positive and negative apodization weighting to achieve arbitrary microwave beam pattern control. The experimentally demonstrated TTD beamforming network can support a PAA with 21 elements. The microwave frequency range is $\\mathbf{8\\sim20\\ {GHz}}$, and the beam scanning range is $\\mathbf{\\pm 60.2^\\circ}$. Detailed measurements of the microwave amplitudes and phases are performed. The beamforming performances of Gaussian, rectangular beams and beam notch steering are evaluated through simulations by assuming a uniform radiating antenna array. The scheme can potentially support larger PAAs with hundreds of elements by increasing the number of comb lines with broadband microcomb generation.

  17. Target materials for exotic ISOL beams

    NASA Astrophysics Data System (ADS)

    Gottberg, A.

    2016-06-01

    The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices that can supply new beams of unprecedented intensity and beam current stability.

  18. Characteristics of proton beams and secondary neutrons arising from two different beam nozzles

    NASA Astrophysics Data System (ADS)

    Choi, Yeon-Gyeong; Kim, Yu-Seok

    2015-10-01

    A tandem or a Van de Graaff accelerator with an energy of 3 MeV is typically used for Proton Induced X-ray Emission (PIXE) analysis. In this study, the beam line design used in the PIXE analysis, instead of the typical low-energy accelerator, was used to increase the production of isotopes from a 13-MeV cyclotron. For the PIXE analysis, the proton beam should be focused at the target through a nozzle after degrading the proton beams energy from 13 MeV to 3 MeV by using an energy degrader. Previous studies have been conducted to determine the most appropriate material for and the thickness of the energy degrader. From the energy distribution of the degraded proton beam and the neutron occurrence rate at the degrader, an aluminum nozzle of X thickness was determined to be the most appropriate nozzle construction. Neutrons are created by the collision of 3-MeV protons in the nozzle after passage through the energy degrader. In addition, a proton beam of sufficient intensity is required for a non-destructive PIXE analysis. Therefore, if nozzle design is to be optimized, the number of neutrons that arise from the collision of protons inside the nozzle, as well as the track direction of the generated secondary neutrons, must be considered, with the primary aim of ensuring that a sufficient number of protons pass through the nozzle as a direct beam. A number of laboratories are currently conducting research related to the design of nozzles used in accelerator fields, mostly medical fields. This paper presents a comparative analysis of two typical nozzle shapes in order to minimize the loss of protons and the generation of secondary neutrons. The neutron occurrence rate and the number of protons that pass through the nozzle were analyzed by using a Particle and Heavy Ion Transport code System (PHITS) program in order to identify the nozzle that generated the strongest proton beam.

  19. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible

  20. A prototype of a beam steering assistant tool for accelerator operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Bickley; P. Chevtsov

    2006-10-24

    The CEBAF accelerator provides nuclear physics experiments at Jefferson Lab with high quality electron beams. Three experimental end stations can simultaneously receive the beams with different energies and intensities. For each operational mode, the accelerator setup procedures are complicated and require very careful checking of beam spot sizes and positions on multiple beam viewers. To simplify these procedures and make them reproducible, a beam steering assistant GUI tool has been created. The tool is implemented as a multi-window control screen. The screen has an interactive graphical object window, which is an overlay on top of a digitized live video imagemore » from a beam viewer. It allows a user to easily create and edit any graphical objects consisting of text, ellipses, and lines, right above the live beam viewer image and then save them in a file that is called a beam steering template. The template can show, for example, the area within which the beam must always be on the viewer. Later, this template can be loaded in the interactive graphical object window to help accelerator operators steer the beam to the specified area on the viewer.« less

  1. Pressurized rf cavities in ionizing beams

    DOE PAGES

    Freemire, B.; Tollestrup, A.  V.; Yonehara, K.; ...

    2016-06-20

    A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. In conclusion, energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SFmore » $$_6$$ and O$$_2$$ were measured.« less

  2. Characterization of the NEPOMUC primary and remoderated positron beams at different energies

    NASA Astrophysics Data System (ADS)

    Stanja, J.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Sunn Pedersen, T.; Saitoh, H.; Stenson, E. V.; Stoneking, M. R.; Hugenschmidt, C.; Piochacz, C.

    2016-08-01

    We report on the characterization of the positron beam provided at the open beam port of the NEPOMUC facility at the Heinz Maier-Leibnitz Zentrum (MLZ) Garching. The absolute positron flux of the primary beam at 400 eV and 1 keV kinetic energy and of the remoderated beam at 5, 12 and 22 eV were determined. Energy-dependent intensities in the range of (1 - 5) ·108e+ / s and (2 - 6) ·107e+ / s have been observed for the primary and remoderated beam, respectively. We attribute the significant losses for the primary beam, in comparison with the expected value, to the non-adiabatic positron guiding in the beam line. We also measured the longitudinal energy distribution of the remoderated beam, yielding an energy spread below 3.3 eV. The mean transverse energy of the remoderated beam, determined from measurements in different final magnetic fields, was found to be below 1.3 eV. These results are likely to apply to the NEPOMUC beam delivered to other user stations.

  3. SU-C-204-04: Irradiation of Human Cell Lines Using Various Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y; McMahon, S; Kaminuma, T

    2016-06-15

    Purpose: The purpose of this study is to investigate and quantify the biological effects of ion radiation using several human cell lines. We aim to answer the question of whether carbon ion the most ideal ion species for heavy ion radiotherapy. Methods: The cells were irradiated at different positions along the pristine Bragg peak of several ions with different atomic number. The biological effectiveness was evaluated using the clonogenic cell survival assay. Irradiation of three human lung cancer cell lines and a fibroblast cell line were undertaken using the charged particle beam at the NASA Space Radiation Laboratory at Brookhavenmore » National Lab. Four mono-energetic ion beams (carbon, oxygen, helium and lithium) were used to irradiate the cells. Water or media-filled T25 flasks were lined up along the beam line so that the cell-containing surfaces of the flasks were placed at a specific depth along the pristine Bragg curve. Four depths along the curve, representing entrance point, rising peak, peak and distal fall off, were selected to determine biological effectiveness. Gaf-chromic films were placed between the flasks to monitor the irradiation as soon as it was finished. Results: For all ion radiations, the maximum cell killing effect occurs at either peak or distal fall off, depending on the cell lines. For instance, for the fibroblast cell line AGO1522, RBEs of 1.4, 1.2, 1.4 and 1.9 were observed at the Bragg peak for Helium, Lithium, Carbon and Oxygen ions. Comparing positions, RBEs of 0.9, 1.2, 1.4 and 1.8 were observed for carbon irradiation of AGO-1522 cells positions corresponding to entrance, rising peak, peak and distal fall off. Conclusion: RBE values differ with position in the Bragg peak, ion species and cell line. Ions other than carbon may prove more effective in certain irradiation conditions and may contribute to optimized heavy ion therapy.« less

  4. Beam Loss Measurements at the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Spickermann, Thomas

    2005-06-01

    During normal operation the Los Alamos Proton Storage Ring (PSR) accumulates up to 4ṡ1013 protons over 625μs with a repetition rate of 20 Hz, corresponding to a current of 125μA to the Lujan Neutron Science Center. Beam losses in the ring as well as in the extraction beam line and the subsequent activation of material are a limiting factor at these currents. Careful tuning of injection, ring and extraction line is paramount to limiting losses to acceptable levels. Losses are typically not uniform around the ring, but occur in significantly higher levels in certain "hot spots". Here I will report on losses related to the stripper foil which are the dominant source of losses in the ring. First results of a comparison with simulations will also be presented.

  5. Beam dynamics design of the muon linac high-beta section

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Hasegawa, K.; Otani, M.; Mibe, T.; Yoshida, M.; Kitamura, R.

    2017-07-01

    A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H line) at the J-PARC muon science facility are once stopped in a silica-aerogel target, and room temperature muoniums are evaporated from the aerogel. They are dissociated with lasers, then accelerated up to 212 MeV using a linear accelerator. For the accelerating structure from 40 MeV, disk-loaded traveling-wave structure is applicable because the particle beta is more than 0.7. The structure itself is similar to that for electron linacs, however, the cell length should be harmonic to the increase of the particle velocity. In this paper, the beam dynamics design of this muon linac using the disk-loaded structure (DLS) is described.

  6. Dedicated Cone-Beam CT System for Extremity Imaging

    PubMed Central

    Al Muhit, Abdullah; Zbijewski, Wojciech; Thawait, Gaurav K.; Stayman, J. Webster; Packard, Nathan; Senn, Robert; Yang, Dong; Foos, David H.; Yorkston, John; Siewerdsen, Jeffrey H.

    2014-01-01

    Purpose To provide initial assessment of image quality and dose for a cone-beam computed tomographic (CT) scanner dedicated to extremity imaging. Materials and Methods A prototype cone-beam CT scanner has been developed for imaging the extremities, including the weight-bearing lower extremities. Initial technical assessment included evaluation of radiation dose measured as a function of kilovolt peak and tube output (in milliampere seconds), contrast resolution assessed in terms of the signal difference–to-noise ratio (SDNR), spatial resolution semiquantitatively assessed by using a line-pair module from a phantom, and qualitative evaluation of cadaver images for potential diagnostic value and image artifacts by an expert CT observer (musculoskeletal radiologist). Results The dose for a nominal scan protocol (80 kVp, 108 mAs) was 9 mGy (absolute dose measured at the center of a CT dose index phantom). SDNR was maximized with the 80-kVp scan technique, and contrast resolution was sufficient for visualization of muscle, fat, ligaments and/or tendons, cartilage joint space, and bone. Spatial resolution in the axial plane exceeded 15 line pairs per centimeter. Streaks associated with x-ray scatter (in thicker regions of the patient—eg, the knee), beam hardening (about cortical bone—eg, the femoral shaft), and cone-beam artifacts (at joint space surfaces oriented along the scanning plane—eg, the interphalangeal joints) presented a slight impediment to visualization. Cadaver images (elbow, hand, knee, and foot) demonstrated excellent visibility of bone detail and good soft-tissue visibility suitable to a broad spectrum of musculoskeletal indications. Conclusion A dedicated extremity cone-beam CT scanner capable of imaging upper and lower extremities (including weight-bearing examinations) provides sufficient image quality and favorable dose characteristics to warrant further evaluation for clinical use. © RSNA, 2013 Online supplemental material is available for

  7. Beam Profile Disturbances from Implantable Pacemakers or Implantable Cardioverter-Defibrillator Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gossman, Michael S., E-mail: mgossman@tsrcc.com; Comprehensive Heart and Vascular Associates, Heart and Vascular Center, Ashland, KY; Medtronic, Inc., External Research Program, Mounds View, MN

    2011-01-01

    The medical community is advocating for progressive improvement in the design of implantable cardioverter-defibrillators and implantable pacemakers to accommodate elevations in dose limitation criteria. With advancement already made for magnetic resonance imaging compatibility in some, a greater need is present to inform the radiation oncologist and medical physicist regarding treatment planning beam profile changes when such devices are in the field of a therapeutic radiation beam. Treatment plan modeling was conducted to simulate effects induced by Medtronic, Inc.-manufactured devices on therapeutic radiation beams. As a continuation of grant-supported research, we show that radial and transverse open beam profiles of amore » medical accelerator were altered when compared with profiles resulting when implantable pacemakers and cardioverter-defibrillators are placed directly in the beam. Results are markedly different between the 2 devices in the axial plane and the sagittal planes. Vast differences are also presented for the therapeutic beams at 6-MV and 18-MV x-ray energies. Maximum changes in percentage depth dose are observed for the implantable cardioverter-defibrillator as 9.3% at 6 MV and 10.1% at 18 MV, with worst distance to agreement of isodose lines at 2.3 cm and 1.3 cm, respectively. For the implantable pacemaker, the maximum changes in percentage depth dose were observed as 10.7% at 6 MV and 6.9% at 18 MV, with worst distance to agreement of isodose lines at 2.5 cm and 1.9 cm, respectively. No differences were discernible for the defibrillation leads and the pacing lead.« less

  8. A Beam line for Macromolecular Crystallography in ALBA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juanhuix, Jordi; Ferrer, Salvador

    2007-01-19

    ALBA is a third generation 3 GeV storage ring being built near Barcelona and foreseen to be operational in 2010. Out of the seven beamlines already funded in ALBA, one will be dedicated to macromolecular crystallography (MX). The beamline, dubbed XALOC, shall cope with a broad range of crystal structures and sizes. To this aim, a flexible optical design involving variable focusing optics has been incorporated into the beamline optics. The photon source will be a 2 m long, in-vacuum undulator with a period of 21.3 mm. The optics will consist in a Si(111), double-crystal monochromator cryogenically cooled, and amore » pair of mirrors placed in a Kirkpatrick-Baez configuration. The beamline will deliver a high flux beam in the 5-15 keV energy range, with an energy resolution of {delta}E/E {approx}2 x 10-4. In addition to the main beamline, it is being considered the possibility to use a diamond laue monochromator to provide photons at a fixed wavelength to an ancillary branch. This report shows the present status of the beamline design.« less

  9. Spherical aberration correction with threefold symmetric line currents.

    PubMed

    Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji; Takaoka, Akio; Munro, Eric

    2016-02-01

    It has been shown that N-fold symmetric line current (henceforth denoted as N-SYLC) produces 2N-pole magnetic fields. In this paper, a threefold symmetric line current (N3-SYLC in short) is proposed for correcting 3rd order spherical aberration of round lenses. N3-SYLC can be realized without using magnetic materials, which makes it free of the problems of hysteresis, inhomogeneity and saturation. We investigate theoretically the basic properties of an N3-SYLC configuration which can in principle be realized by simple wires. By optimizing the parameters of a system with beam energy of 5.5keV, the required excitation current for correcting 3rd order spherical aberration coefficient of 400 mm is less than 1AT, and the residual higher order aberrations can be kept sufficiently small to obtain beam size of less than 1 nm for initial slopes up to 5 mrad. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. SU-E-J-92: On-Line Cone Beam CT Based Planning for Emergency and Palliative Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Held, M; Morin, O; Pouliot, J

    2014-06-01

    Purpose: To evaluate and develop the feasibility of on-line cone beam CT based planning for emergency and palliative radiotherapy treatments. Methods: Subsequent to phantom studies, a case library of 28 clinical megavoltage cone beam CT (MVCBCT) was built to assess dose-planning accuracies on MVCBCT for all anatomical sites. A simple emergency treatment plan was created on the MVCBCT and copied to its reference CT. The agreement between the dose distributions of each image pair was evaluated by the mean dose difference of the dose volume and the gamma index of the central 2D axial plane. An array of popular urgentmore » and palliative cases was also evaluated for imaging component clearance and field-of-view. Results: The treatment cases were categorized into four groups (head and neck, thorax/spine, pelvis and extremities). Dose distributions for head and neck treatments were predicted accurately in all cases with a gamma index of >95% for 2% and 2 mm criteria. Thoracic spine treatments had a gamma index as low as 60% indicating a need for better uniformity correction and tissue density calibration. Small anatomy changes between CT and MVCBCT could contribute to local errors. Pelvis and sacral spine treatment cases had a gamma index between 90% and 98% for 3%/3 mm criteria. The limited FOV became an issue for large pelvis patients. Imaging clearance was difficult for cases where the tumor was positioned far off midline. Conclusion: The MVCBCT based dose planning and delivery approach is feasible in many treatment cases. Dose distributions for head and neck patients are unrestrictedly predictable. Some FOV restrictions apply to other treatment sites. Lung tissue is most challenging for accurate dose calculations given the current imaging filters and corrections. Additional clinical cases for extremities need to be included in the study to assess the full range of site-specific planning accuracies. This work is supported by Siemens.« less

  11. The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy.

    PubMed

    Nishio, Teiji; Miyatake, Aya; Ogino, Takashi; Nakagawa, Keiichi; Saijo, Nagahiro; Esumi, Hiroyasu

    2010-01-01

    To verify the usefulness of our developed beam ON-LINE positron emission tomography (PET) system mounted on a rotating gantry port (BOLPs-RGp) for dose-volume delivery-guided proton therapy (DGPT). In the proton treatment room at our facility, a BOLPs-RGp was constructed so that a planar PET apparatus could be mounted with its field of view covering the iso-center of the beam irradiation system. Activity measurements were performed in 48 patients with tumors of the head and neck, liver, lungs, prostate, and brain. The position and intensity of the activity were measured using the BOLPs-RGp during the 200 s immediately after the proton irradiation. The daily measured activity images acquired by the BOLPs-RGp showed the proton irradiation volume in each patient. Changes in the proton-irradiated volume were indicated by differences between a reference activity image (taken at the first treatment) and the daily activity-images. In the case of head-and-neck treatment, the activity distribution changed in the areas where partial tumor reduction was observed. In the case of liver treatment, it was observed that the washout effect in necrotic tumor cells was slower than in non-necrotic tumor cells. The BOLPs-RGp was developed for the DGPT. The accuracy of proton treatment was evaluated by measuring changes of daily measured activity. Information about the positron-emitting nuclei generated during proton irradiation can be used as a basis for ensuring the high accuracy of irradiation in proton treatment.

  12. Tracking Stripped Proton Particles in SNS Ring Injection Momentum Dump Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian-Guang

    3D computer simulations are performed to study magnetic field distributions and particle trajectories along the SNS ring injection momentum dump line. Optical properties and transfer maps along the dump line are calculated. The stripped proton particle distributions on the dump window are analyzed. The study has provided useful information for the redesign of the SNS ring injection beam dump.

  13. An experimental technique to repair cracked teeth using calcium phosphate, melted by a laser beam: an in vitro evaluation.

    PubMed

    Levy, G C; Koubi, G F

    1993-11-01

    Using a neodymium: yttrium-aluminum-garnet laser beam to seal vertical root fracture lines with tricalcium phosphate paste represents an alternative treatment for cracked teeth with noted clinical results. This article describes a study of the permeability of molten crystals of hydroxyapatite in the dentin of a cracked root after crack lines have been filled with a preparation of tricalcium phosphate melted by a neodymium: yttrium-aluminum-garnet laser beam. The morphology of the sealed cracks was analyzed under a scanning electron microscope that showed a deep fusion of tricalcium phosphate along crack lines.

  14. Multiple-hypothesis multiple-model line tracking

    NASA Astrophysics Data System (ADS)

    Pace, Donald W.; Owen, Mark W.; Cox, Henry

    2000-07-01

    Passive sonar signal processing generally includes tracking of narrowband and/or broadband signature components observed on a Lofargram or on a Bearing-Time-Record (BTR) display. Fielded line tracking approaches to date have been recursive and single-hypthesis-oriented Kalman- or alpha-beta filters, with no mechanism for considering tracking alternatives beyond the most recent scan of measurements. While adaptivity is often built into the filter to handle changing track dynamics, these approaches are still extensions of single target tracking solutions to multiple target tracking environment. This paper describes an application of multiple-hypothesis, multiple target tracking technology to the sonar line tracking problem. A Multiple Hypothesis Line Tracker (MHLT) is developed which retains the recursive minimum-mean-square-error tracking behavior of a Kalman Filter in a maximum-a-posteriori delayed-decision multiple hypothesis context. Multiple line track filter states are developed and maintained using the interacting multiple model (IMM) state representation. Further, the data association and assignment problem is enhanced by considering line attribute information (line bandwidth and SNR) in addition to beam/bearing and frequency fit. MHLT results on real sonar data are presented to demonstrate the benefits of the multiple hypothesis approach. The utility of the system in cluttered environments and particularly in crossing line situations is shown.

  15. Diagnostics of red-shifted H-alpha line emission from a C-class flare with full non-LTE radiative and hydrodynamic approach

    NASA Astrophysics Data System (ADS)

    Druett, M. K.; Zharkova, V. V.; Scullion, E.; Zharkov, S.; Matthews, S. A.

    2016-12-01

    We analyse H-alpha line profiles with strong redshifts during the C1.8 flare on 1st July 2012 obtained from the Swedish Solar Telescope (SST) closely resembling the previous observations (Wuelser and Marti, 1989). The flare has a magnetic field configuration with two levels of loop structures. The kernels with red shifts are observed in one of the H-alpha ribbons in the south-west location formed after the main impulse recorded in the north-east. The locations of H-alpha kernels with red shifts reveal close temporal and spatial correlation with weaker HXR signatures and coincide with the locations of coronal jets observed with AIA/SDO. For interpretation we apply a revised 1D hydrodynamic and non-LTE (NLTE) radiative model for 5 level plus continuum model hydrogen atom (Druett & Zharkova, 2016) considering radiative, thermal and non-thermal excitation and ionisation by beam electrons with the updated beam densities (Zharkova & Dobranskis, 2016) and analytical excitation/ionisation rates (Zharkova& Kobylinskijj, 1993). We find the simultaneous solutions of steady state and radiative transfer equations in all optically-thick lines and continua. The electron and ion temperatures, ambient density and macrovelocity of the ambient plasma are derived from a 1D hydrodynamic model with initial condition of the pre-flaring photosphere for the two fluid ambient plasma heated by beam electrons (Zharkova & Zharkov, 2007). We simulate distributions over precipitation depth of ionisation and departure coefficients for all the hydrogen atom transitions including the deviation of ionisation from Saha equation affected by non-thermal electron beams. We show that in the very first seconds after the beam onset Balmer line profiles are sensitive to the effect of beam electrons. The combination of the additional ionisation caused by beam electrons leading to a very strong Stark effect in Balmer lines with the hydrodynamic heating and formation of a low temperature shock in the

  16. Beam Position and Phase Monitor - Wire Mapping System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Heath A; Shurter, Robert B.; Gilpatrick, John D.

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded formore » the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.« less

  17. A neutral-beam profile monitor with a phosphor screen and a high-sensitivity camera for the J-PARC KOTO experiment

    NASA Astrophysics Data System (ADS)

    Matsumura, T.; Kamiji, I.; Nakagiri, K.; Nanjo, H.; Nomura, T.; Sasao, N.; Shinkawa, T.; Shiomi, K.

    2018-03-01

    We have developed a beam-profile monitor (BPM) system to align the collimators for the neutral beam-line at the Hadron Experimental Facility of J-PARC. The system is composed of a phosphor screen and a CCD camera coupled to an image intensifier mounted on a remote control X- Y stage. The design and detailed performance studies of the BPM are presented. The monitor has a spatial resolution of better than 0.6 mm and a deviation from linearity of less than 1%. These results indicate that the BPM system meets the requirements to define collimator-edge positions for the beam-line tuning. Confirmation using the neutral beam for the KOTO experiment is also presented.

  18. Numerical simulation of ion charge breeding in electron beam ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, Jin-Soo

    2014-02-15

    The Electron Beam Ion Source particle-in-cell code (EBIS-PIC) tracks ions in an EBIS electron beam while updating electric potential self-consistently and atomic processes by the Monte Carlo method. Recent improvements to the code are reported in this paper. The ionization module has been improved by using experimental ionization energies and shell effects. The acceptance of injected ions and the emittance of extracted ion beam are calculated by extending EBIS-PIC to the beam line transport region. An EBIS-PIC simulation is performed for a Cs charge-breeding experiment at BNL. The charge state distribution agrees well with experiments, and additional simulation results ofmore » radial profiles and velocity space distributions of the trapped ions are presented.« less

  19. A pepper-pot emittance meter for low-energy heavy-ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kremers, H. R.; Beijers, J. P. M.; Brandenburg, S.

    2013-02-15

    A novel emittance meter has been developed to measure the four-dimensional, transverse phase-space distribution of a low-energy ion beam using the pepper-pot technique. A characteristic feature of this instrument is that the pepper-pot plate, which has a linear array of holes in the vertical direction, is scanned horizontally through the ion beam. This has the advantage that the emittance can also be measured at locations along the beam line where the beam has a large horizontal divergence. A set of multi-channel plates, scintillation screen, and ccd camera is used as a position-sensitive ion detector allowing a large range of beammore » intensities that can be handled. This paper describes the design, construction, and operation of the instrument as well as the data analysis used to reconstruct the four-dimensional phase-space distribution of an ion beam. Measurements on a 15 keV He{sup +} beam are used as an example.« less

  20. Spatial phase-shift dual-beam speckle interferometry.

    PubMed

    Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin

    2018-01-20

    The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.

  1. RHIC BEAM ABORT KICKER POWER SUPPLY SYSTEM COMMISSIONING EXPERIENCE AND REMAINING ISSUES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.; AHRENS,L.A.; MI,J.

    2001-06-18

    The RHIC Beam Abort Kicker Power Supply Systems commissioning experience and the remaining issues will be reported in this paper. The RHIC Blue Ring Beam Abort Kicker Power Supply System initial commissioning took place in June 1999. Its identical system in Yellow Ring was brought on line during Spring 2000. Each of the RHIC Beam Abort Kicker Power Supply Systems consists of five high voltage modulators and subsystems. These systems are critical devices for RHIC machine protection and environmental protection. They are required to be effective, reliable and operating with sufficient redundancy to safely abort the beam to its beammore » dump at the end of accumulation or at any time when they are commanded. To deflect 66 GeV ion beam to the beam absorbers, the RHIC Beam Abort Kicker Power Supply Systems were operated at 22 kV level. The RHIC 2000 commissioning run was very successful.« less

  2. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    NASA Astrophysics Data System (ADS)

    Tan, Y.-R. E.; Wang, D.; Van Garderen, E.; McKinlay, J.

    2012-10-01

    To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM) has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR) of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre) of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal) and 75 um (vertical).

  3. Formation of a uniform ion beam using octupole magnets for BioLEIR facility at CERN

    NASA Astrophysics Data System (ADS)

    Amin, T.; Barlow, R.; Ghithan, S.; Roy, G.; Schuh, S.

    2018-04-01

    The possibility to transform the Low Energy Ion Ring (LEIR) accelerator at CERN into a multidisciplinary, biomedical research facility (BioLEIR) was investigated based on a request from the biomedical community. BioLEIR aims to provide a unique facility with a range of fully stripped ion beams (e.g. He, Li, Be, B, C, N, O) and energies suitable for multidisciplinary biomedical, clinically-oriented research. Two horizontal and one vertical beam transport lines have been designed for transporting the extracted beam from LEIR to three experimental end-stations. The vertical beamline was designed for a maximum energy of 75 MeV/u, while the two horizontal beamlines shall deliver up to a maximum energy of 440 MeV/u. A pencil beam of 4.3 mm FWHM (Full Width Half Maximum) as well as a homogeneous broad beam of 40 × 40 mm2, with a beam homogeneity better than ±4%, are available at the first horizontal (H1) irradiation point, while only a pencil beam is available at the second horizontal (H2) and vertical (V) irradiation points. The H1 irradiation point shall be used to conduct systematic studies of the radiation effect from different ion species on cell-lines. The H1 beamline was designed to utilize two octupole magnets which transform the Gaussian beam distribution at the target location into an approximately uniformly distributed rectangular beam. In this paper, we report on the multi-particle tracking calculations performed using MAD-X software suite for the H1 beam optics to arrive at a homogeneous broad beam on target using nonlinear focusing techniques, and on those to create a Gaussian pencil beam on target by adjusting quadrupoles strengths and positions.

  4. Pulsed beam tests at the SANAEM RFQ beamline

    NASA Astrophysics Data System (ADS)

    Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.

    2017-07-01

    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.

  5. An ultra-compact and low loss passive beam-forming network integrated on chip with off chip linear array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepkowski, Stefan Mark

    2015-05-01

    The work here presents a review of beam forming architectures. As an example, the author presents an 8x8 Butler Matrix passive beam forming network including the schematic, design/modeling, operation, and simulated results. The limiting factor in traditional beam formers has been the large size dictated by transmission line based couplers. By replacing these couplers with transformer-based couplers, the matrix size is reduced substantially allowing for on chip compact integration. In the example presented, the core area, including the antenna crossover, measures 0.82mm×0.39mm (0.48% the size of a branch line coupler at the same frequency). The simulated beam forming achieves amore » peak PNR of 17.1 dB and 15dB from 57 to 63GHz. At the 60GHz center frequency the average insertion loss is simulated to be 3.26dB. The 8x8 Butler Matrix feeds into an 8-element antenna array to show the array patterns with single beam and adjacent beam isolation.« less

  6. Phenomena induced by charged particle beams. [experimental design for Spacelab

    NASA Technical Reports Server (NTRS)

    Beghin, C.

    1981-01-01

    The injection of energetic particles along the Earth's magnetic field lines is a possible remote sensing method for measuring the electric fields parallel to the magnetic field with good time resolution over the entire magnetic field. Neutralization processes, return-current effects, dynamics of the beams, triggered instabilities, and waves must be investigated before the fundamental question about proper experimental conditions, such as energy, intensity and divergence of the beams, pitch-angle injection, ion species, proper probes and detectors and their location, and rendezvous conditions, can be resolved. An experiment designed to provide a better understanding of these special physical processes and to provide some answers to questions concerning beam injection techniques is described.

  7. Comparison of DNQ/novolac resists for e-beam exposure

    NASA Astrophysics Data System (ADS)

    Fedynyshyn, Theodore H.; Doran, Scott P.; Lind, Michele L.; Lyszczarz, Theodore M.; DiNatale, William F.; Lennon, Donna; Sauer, Charles A.; Meute, Jeff

    1999-12-01

    We have surveyed the commercial resist market with the dual purpose of identifying diazoquinone/novolac based resists that have potential for use as e-beam mask making resists and baselining these resists for comparison against future mask making resist candidates. For completeness, this survey would require that each resist be compared with an optimized developer and development process. To accomplish this task in an acceptable time period, e-beam lithography modeling was employed to quickly identify the resist and developer combinations that lead to superior resist performance. We describe the verification of a method to quickly screen commercial i-line resists with different developers, by determining modeling parameters for i-line resists from e-beam exposures, modeling the resist performance, and comparing predicted performance versus actual performance. We determined the lithographic performance of several DNQ/novolac resists whose modeled performance suggests that sensitivities of less than 40 (mu) C/cm2 coupled with less than 10-nm CD change per percent change in dose are possible for target 600-nm features. This was accomplished by performing a series of statistically designed experiments on the leading resists candidates to optimize processing variables, followed by comparing experimentally determined resist sensitivities, latitudes, and profiles of the DNQ/novolac resists a their optimized process.

  8. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    PubMed

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  9. Modeling Drift Compression in an Integrated Beam Experiment for Heavy-Ion-Fusion

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Celata, C. M.; Yu, S. S.

    2003-10-01

    The Integrated Beam Experiment (IBX) is an induction accelerator being designed to further develop the science base for heavy-ion fusion. The experiment is being developed jointly by Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. One conceptual approach would first accelerate a 0.5-1 A beam of singly charged potassium ions to 5 MeV, impose a head-to-tail velocity tilt to compress the beam longitudinally, and finally focus the beam radiallly using a series of quadrupole lenses. The lengthwise compression is a critical step because the radial size must be controlled as the current increases, and the beam emittance must be kept minimal. The work reported here first uses the moment-based model HERMES to design the drift-compression beam line and to assess the sensitivity of the final beam profile to beam and lattice errors. The particle-in-cell code WARP is then used to validate the physics design, study the phase-space evolution, and quantify the emittance growth.

  10. Feasibility of using a dose-area product ratio as beam quality specifier for photon beams with small field sizes.

    PubMed

    Pimpinella, Maria; Caporali, Claudio; Guerra, Antonio Stefano; Silvi, Luca; De Coste, Vanessa; Petrucci, Assunta; Delaunay, Frank; Dufreneix, Stéphane; Gouriou, Jean; Ostrowsky, Aimé; Rapp, Benjamin; Bordy, Jean-Marc; Daures, Josiane; Le Roy, Maïwenn; Sommier, Line; Vermesse, Didier

    2018-01-01

    To investigate the feasibility of using the ratio of dose-area product at 20 cm and 10 cm water depths (DAPR 20,10 ) as a beam quality specifier for radiotherapy photon beams with field diameter below 2 cm. Dose-area product was determined as the integral of absorbed dose to water (D w ) over a surface larger than the beam size. 6 MV and 10 MV photon beams with field diameters from 0.75 cm to 2 cm were considered. Monte Carlo (MC) simulations were performed to calculate energy-dependent dosimetric parameters and to study the DAPR 20,10 properties. Aspects relevant to DAPR 20,10 measurement were explored using large-area plane-parallel ionization chambers with different diameters. DAPR 20,10 was nearly independent of field size in line with the small differences among the corresponding mean beam energies. Both MC and experimental results showed a dependence of DAPR 20,10 on the measurement setup and the surface over which D w is integrated. For a given setup, DAPR 20,10 values obtained using ionization chambers with different air-cavity diameters agreed with one another within 0.4%, after the application of MC correction factors accounting for effects due to the chamber size. DAPR 20,10 differences among the small field sizes were within 1% and sensitivity to the beam energy resulted similar to that of established beam quality specifiers based on the point measurement of D w . For a specific measurement setup and integration area, DAPR 20,10 proved suitable to specify the beam quality of small photon beams for the selection of energy-dependent dosimetric parameters. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Beam Diagnostics of the Compton Scattering Chamber in Jefferson Lab's Hall C

    NASA Astrophysics Data System (ADS)

    Faulkner, Adam; I&C Group Collaboration

    2013-10-01

    Upcoming experimental runs in Hall C will utilize Compton scattering, involving the construction and installation of a rectangular beam enclosure. Conventional cylindrical stripline-style Beam Position Monitors (BPMs) are not appropriate due to their form factor; therefore to facilitate measurement of position, button-style BPMs are being considered due to the ease of placement within the new beam enclosure. Button BPM experience is limited at JLAB, so preliminary measurements are needed to characterize the field response, and guide the development of appropriate algorithms for the Analog to Digital receiver systems. -field mapping is performed using a Goubau Line (G-Line), which employs a surface wave to mimic the electron beam, helping to avoid problems associated with vacuum systems. Potential algorithms include simplistic 1/r modeling (-field mapping), look-up-tables, as well as a potential third order power series fit. In addition, the use of neural networks specifically the multi-layer Perceptron will be examined. The models, sensor field maps, and utility of the neural network will be presented. Next steps include: modification of the control algorithm, as well as to run an in-situ test of the four Button electrodes inside of a mock beam enclosure. The analysis of the field response using Matlab suggests the button BPMs are accurate to within 10 mm, and may be successful for beam diagnostics in Hall C. More testing is necessary to ascertain the limitations of the new electrodes. The National Science Foundation, Old Dominion University, The Department of Energy, and Jefferson Lab.

  12. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; 21st Century Center of Excellence Program for Biomedical Research Using Accelerator Technology, Maebashi, Gunma

    2010-01-15

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated beta-galactosidase (SA-beta-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependentmore » kinase inhibitor p21{sup WAF1/CIP1} in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells (<1% of initially irradiated cells) could not form a colony: however, they showed a morphological phenotype consistent with cellular senescence, that is, enlarged and flattened appearance. The senescent nature of these attached cells was further indicated by staining for SA-beta-gal. The mean telomere length was not changed after irradiation with C-ions. Phosphorylation of p53 at serine 15 as well as the expression of p21{sup WAF1/CIP1} was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.« less

  13. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.

    2015-11-19

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the referencemore » cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Lastly, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.« less

  14. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  15. Progress report of the innovated KIST ion beam facility

    NASA Astrophysics Data System (ADS)

    Kim, Joonkon; Eliades, John A.; Yu, Byung-Yong; Lim, Weon Cheol; Chae, Keun Hwa; Song, Jonghan

    2017-01-01

    The Korea Institute of Science and Technology (KIST, Seoul, Republic of (S.) Korea) ion beam facility consists of three electrostatic accelerators: a 400 kV single ended ion implanter, a 2 MV tandem accelerator system and a 6 MV tandem accelerator system. The 400 kV and 6 MV systems were purchased from High Voltage Engineering Europa (HVEE, Netherlands) and commissioned in 2013, while the 2 MV system was purchased from National Electrostatics Corporation (NEC, USA) in 1995. These systems are used to provide traditional ion beam analysis (IBA), isotope ratio analysis (ex. accelerator mass spectrometry, AMS), and ion implantation/irradiation for domestic industrial and academic users. The main facility is the 6 MV HVEE Tandetron system that has an AMS line currently used for 10Be, 14C, 26Al, 36 Cl, 41Ca and 129I analyses, and three lines for IBA that are under construction. Here, these systems are introduced with their specifications and initial performance results.

  16. Four cavity efficiency enhanced magnetically insulated line oscillator

    DOEpatents

    Lemke, Raymond W.; Clark, Miles C.; Calico, Steve E.

    1998-04-21

    A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity (C4) portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor.

  17. Four cavity efficiency enhanced magnetically insulated line oscillator

    DOEpatents

    Lemke, R.W.; Clark, M.C.; Calico, S.E.

    1998-04-21

    A four cavity, efficient magnetically insulated line oscillator (C4-E MILO) having seven vanes and six cavities formed within a tube-like structure surrounding a cathode is disclosed. The C4-E MILO has a primary slow wave structure which is comprised of four vanes and the four cavities located near a microwave exit end of the tube-like structure. The primary slow wave structure is the four cavity portion of the magnetically insulated line oscillator (MILO). An RF choke is provided which is comprised of three of the vanes and two of the cavities. The RF choke is located near a pulsed power source portion of the tube-like structure surrounding the cathode. The RF choke increases feedback in the primary slow wave structure, prevents microwaves generated in the primary slow wave structure from propagating towards the pulsed power source and modifies downstream electron current so as to enhance microwave power generation. A beam dump/extractor is located at the exit end of the oscillator tube for extracting microwave power from the oscillator, and in conjunction with an RF extractor vane, which comprises the fourth vane of the primary slow wave structure (nearest the exit) having a larger gap radius than the other vanes of the primary SWS, comprises an RF extractor. Uninsulated electron flow is returned downstream towards the exit along an anode/beam dump region located between the beam dump/extractor and the exit where the RF is radiated at said RF extractor vane located near the exit and the uninsulated electron flow is disposed at the beam dump/extractor. 34 figs.

  18. Synchronous acceleration with tapered dielectric-lined waveguides

    DOE PAGES

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...

    2018-05-25

    Here, we present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  19. Comparative study of cross-field and field-aligned electron beams in active experiments. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Pritchett, P. L.

    1988-01-01

    Beam-plasma interactions associated with the cross-field and field-aligned injection of electron beams from spacecraft were investigated using a two-dimensional (three velocity component) electrostatic particle simulations. It is shown that the beam properties and plasma response can be characterized well by the ratio between the stagnation time and the plasma response time, which depends on the ratio of the ambient plasma density to the beam density, the beam width, the beam energy, and the spacecraft length. It was found that the beams injected across the field lines tend to lose their coherence after about one or two gyrations due to space-charge oscillations induced by the beam, irrespective of the spacecraft charging. These oscillations scatter the beam electrons into a hollow cylinder of a radius equal to a beam electron gyroradius and thickness of the order of two beam Debye lengths. Parallel injected beams are subjected to similar oscillations, which cause the beam to expand to fill a solid cylinder of a comparable thickness.

  20. Design of an EBIS charge breeder system for rare-isotope beams

    NASA Astrophysics Data System (ADS)

    Park, Young-Ho; Son, Hyock-Jun; Kim, Jongwon

    2016-09-01

    Rare-isotope beams will be produced by using the isotope separation on-line (ISOL) system at the Rare Isotope Science Project (RISP). A proton cyclotron is the driver accelerator for ISOL targets, and uranium carbide (UCx) will be a major target material. An isotope beam of interest extracted from the target will be ionized and selected by using a mass separator. The beam emittance will then be reduced by using a radio-frequency quadrupole (RFQ) cooler before the beam is injected into the electron-beam ion-source (EBIS) charge breeder (CB). The maximum electron beam current of the EBIS is 3 A from a cathode made of IrCe in an applied magnetic field of 0.2 T. The size of the electron beam is compressed by magnetic fields of up to 6 T caused in the charge-breeding region by a superconducting solenoid. The design of EBIS-CB was performed by using mechanics as well as beam optics. A test stand for the electron gun and its collector, which can take an electron-beam power of 20 kW, are under construction. The gun assembly was first tested by using a high-voltage pulse so as to measure its perveance. The design of the EBIS, along with its test stand, is described.

  1. mA beam acceleration efforts on 100 MeV H- cyclotron at CIAE

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; An, Shizhong; Lv, Yinlong; Ge, Tao; Jia, Xianlu; Ji, Bin; Yin, Zhiguo; Pan, Gaofeng; Cao, Lei; Guan, Fengping; Yang, Jianjun; Li, Zhenguo; Zhao, Zhenlu; Wu, Longcheng; Zhang, He; Wang, Jingfeng; Zhang, Yiwang; Liu, Jingyuan; Li, Shiqiang; Lu, Xiaotong; Liu, Zhenwei; Li, Yaoqian; Guo, Juanjuan; Cao, Xuelong; Guan, Leilei; Wang, Fei; Wang, Yang; Yang, Guang; Zhang, Suping; Hou, Shigang; Wang, Feng

    2017-09-01

    Various technologies for high current compact H- cyclotron have been developed at CIAE since 1990s. A 375 μA proton beam was extracted from a 30 MeV compact H- cyclotron CYCIAE-30 at the end of 1994. A central region model cyclotron CYCIAE-CRM was developed for the design verification of a 100 MeV high current compact H- cyclotron CYCIAE-100. It is also a 10 MeV proton machine as a prototype for PET application. A 430 μA beam was achieved in 2009. The first beam was extracted from the CYCIAE-100 cyclotron on July 4, 2014, the operation stability has been improved and beam current has been increased gradually. A 1.1 mA proton beam was measured on the internal target in July 2016. The effort for an increasing of proton beam has continued till now. In this paper, the effort on several aspects for mA beam development will be presented, including the multi-cusp source, buncher, matching from the energy of the injected beam, vertical beam line and central region, beam loading of the RF system and instrumentation for beam diagnostics etc.

  2. Holographic beam mapping of the CHIME pathfinder array

    NASA Astrophysics Data System (ADS)

    Berger, Philippe; Newburgh, Laura B.; Amiri, Mandana; Bandura, Kevin; Cliche, Jean-François; Connor, Liam; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Gilbert, Adam J.; Good, Deborah; Halpern, Mark; Hanna, David; Hincks, Adam D.; Hinshaw, Gary; Höfer, Carolin; Johnson, Andre M.; Landecker, Tom L.; Masui, Kiyoshi W.; Mena Parra, Juan; Oppermann, Niels; Pen, Ue-Li; Peterson, Jeffrey B.; Recnik, Andre; Robishaw, Timothy; Shaw, J. Richard; Siegel, Seth; Sigurdson, Kris; Smith, Kendrick; Storer, Emilie; Tretyakov, Ian; Van Gassen, Kwinten; Vanderlinde, Keith; Wiebe, Donald

    2016-08-01

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder radio telescope is currently surveying the northern hemisphere between 400 and 800 MHz. By mapping the large scale structure of neutral hydrogen through its redshifted 21 cm line emission between z 0.8-2.5 CHIME will contribute to our understanding of Dark Energy. Bright astrophysical foregrounds must be separated from the neutral hydrogen signal, a task which requires precise characterization of the polarized telescope beams. Using the DRAO John A. Galt 26 m telescope, we have developed a holography instrument and technique for mapping the CHIME Pathfinder beams. We report the status of the instrument and initial results of this effort.

  3. SU-F-J-205: Effect of Cone Beam Factor On Cone Beam CT Number Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, W; Hua, C; Farr, J

    Purpose: To examine the suitability of a Catphan™ 700 phantom for image quality QA of a cone beam computed tomography (CBCT) system deployed for proton therapy. Methods: Catphan phantoms, particularly Catphan™ 504, are commonly used in image quality QA for CBCT. As a newer product, Catphan™ 700 offers more tissue equivalent inserts which may be useful for generating the electron density – CT number curve for CBCT based treatment planning. The sensitometry-and-geometry module used in Catphan™ 700 is located at the end of the phantom and after the resolution line pair module. In Catphan™ 504 the line pair module ismore » located at the end of the phantom and after the sensitometry-and-geometry module. To investigate the effect of difference in location on CT number accuracy due to the cone beam factor, we scanned the Catphan™ 700 with the central plane of CBCT at the center of the phantom, line pair and sensitometry-andgeometry modules of the phantom, respectively. The protocol head and thorax scan modes were used. For each position, scans were repeated 4 times. Results: For the head scan mode, the standard deviation (SD) of the CT numbers of each insert under 4 repeated scans was up to 20 HU, 11 HU, and 11 HU, respectively, for the central plane of CBCT located at the center of the phantom, line pair, and sensitometry-and-geometry modules of the phantom. The mean of the SD was 9.9 HU, 5.7 HU, and 5.9 HU, respectively. For the thorax mode, the mean of the SD was 4.5 HU, 4.4 HU, and 4.4 HU, respectively. The assessment of image quality based on resolution and spatial linearity was not affected by imaging location changes. Conclusion: When the Catphan™ 700 was aligned to the center of imaging region, the CT number accuracy test may not meet expectations. We recommend reconfiguration of the modules.« less

  4. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    NASA Astrophysics Data System (ADS)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  5. A design of a high speed dual spectrometer by single line scan camera

    NASA Astrophysics Data System (ADS)

    Palawong, Kunakorn; Meemon, Panomsak

    2018-03-01

    A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.

  6. An external milli-beam for archaeometric applications on the AGLAE IBA facility of the Louvre museum

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Dran, J.-C.; Hamon, H.; Moignard, B.; Salomon, J.

    1998-03-01

    External beam lines have been built on numerous IBA facilities for the analysis of works of art to avoid sampling and vacuum potentially detrimental to the integrity of such precious objects. On the other hand, growing interest lies on microprobe systems which provide a high lateral resolution but which usually work under vacuum. Until recently, the AGLAE facility was equipped with separate external beam and microprobe lines. The need of a better spatial resolution in the external beam mode has led us to combine them into a single system which exhibits numerous advantages and allows the analysis of small heterogeneities like inclusions in gemstones or tiny components of composite samples. The triplet of quadrupole lenses bought from Oxford is used to focus the beam. By using a 0.75 μm thick Al foil as the exit window, blowing a helium flow around the beam spot and reducing the window-sample distance below 3 mm, a beam size of about 30 μm can be reached. The experimental setup includes two Si(Li), a HPGe and a Si surface barrier detectors for the simultaneous implementation of PIXE, NRA and RBS. The full description of this device is given as well as a few applications to highlight its capability.

  7. On-ground calibration of AGILE-GRID with a photon beam: results and lessons for the future

    NASA Astrophysics Data System (ADS)

    Cattaneo, P. W.; Rappoldi, A.

    2013-06-01

    On the AGILE satellite, there is the Gamma Ray Imaging Detector (GRID) consisting of a Silicon Tracker (ST), a Cesium Iodide Mini-Calorimeter and an Anti-Coincidence system of plastic scintillator bars. The ST needs a calibration with a γ-ray beam to validate the simulation used to calculate the detector response versus the energy and the direction of the γ rays. A tagged γ-ray beam line was designed at the Beam Test Facility of the Laboratori Nazionali of Frascati, generated by an electron beam through bremsstrahlung in a position-sensitive target. The γ-ray energy is deduced by the difference with the post-bremsstrahlung electron energy [P. W. Cattaneo, et al., Characterization of a tagged γ-ray beam line at the daΦne beam test facility, Nucl. Instr. and Meth. A 674 (2012) 55-66; P. W. Cattaneo, et al., First results about on-ground calibration of the silicon tracker for the agile satellite, Nucl. Instr. and Meth. A 630(1) (2011) 251-257.]. The electron energy is measured by a spectrometer consisting of a dipole magnet and an array of position sensitive silicon strip detectors, the Photon Tagging System (PTS). In this paper the setup and the calibration of AGILE performed in 2005 are described.

  8. Conditions for coherent-synchrotron-radiation-induced microbunching suppression in multibend beam transport or recirculation arcs

    NASA Astrophysics Data System (ADS)

    Tsai, C.-Y.; Di Mitri, S.; Douglas, D.; Li, R.; Tennant, C.

    2017-02-01

    The coherent synchrotron radiation (CSR) of a high-brightness electron beam traversing a series of dipoles, such as transport or recirculation arcs, may result in beam phase space degradation. On one hand, CSR can perturb electron transverse motion in dispersive regions along the beam line and possibly cause emittance growth. On the other hand, the CSR effect on the longitudinal beam dynamics could result in microbunching instability. For transport arcs, several schemes have been proposed to suppress the CSR-induced emittance growth. Correspondingly, a few scenarios have been introduced to suppress CSR-induced microbunching instability, which however mostly aim for linac-based machines. In this paper we provide sufficient conditions for suppression of CSR-induced microbunching instability along transport or recirculation arcs. Examples are presented with the relevant microbunching analyses carried out by our developed semianalytical Vlasov solver [C.-Y. Tsai, D. Douglas, R. Li, and C. Tennant, Linear microbunching analysis for recirculation machines, Phys. Rev. ST Accel. Beams 19, 114401 (2016), 10.1103/PhysRevAccelBeams.19.114401]. The example lattices include low-energy (˜100 MeV ) and high-energy (˜1 GeV ) recirculation arcs, and medium-energy compressor arcs. Our studies show that lattices satisfying the proposed conditions indeed have microbunching gain suppressed. Beam current dependences of maximal CSR microbunching gains are also demonstrated, which should help outline a beam line design for different scales of nominal currents. We expect this analysis can shed light on the lattice design approach that aims to control the CSR-induced microbunching.

  9. The Radioactive Ion Beams in Brazil (RIBRAS) facility. Description, program, main results, future plans

    NASA Astrophysics Data System (ADS)

    Lépine-Szily, A.; Lichtenthäler, R.; Guimarães, V.

    2014-08-01

    RIBRAS (Radioactive Ion Beams in Brazil) is a facility installed at the Institute of Physics of the University of São Paulo (IFUSP), Brazil. The RIBRAS system consists of two superconducting solenoids and uses the "in-flight method" to produce radioactive ion beams using the primary beam provided by the 8UD Pelletron Tandem of IFUSP. The ion beams produced so far by RIBRAS are 6He, 8Li, 7Be, 10Be, 8B, 12B with intensities that can vary from 104 to 106 pps. Initially the experimental program covered the study of elastic and inelastic scattering with the objective to study the interaction potential and the reaction mechanisms between weakly bound (RIB) and halo (6He and 8B projectiles on light, medium and heavy mass targets. With highly purified beams, the study of resonant elastic scattering and resonant transfer reactions, using inverse kinematics and thick targets, has also been included in our experimental program. Also, transfer reactions of astrophysical interest and fusion reactions induced by halo nuclei are part of the near-future research program. Our recent results on elastic scattering, alpha-particle production and total reaction cross sections, as well as the resonant elastic and transfer reactions, are presented. Our plans for the near future are related to the installation of a new beam line and a cave for gamma-ray detection. We intend to place in operation a large area neutron detector available in our laboratory. The long-range plans could be the move of the RIBRAS system to the more energetic beam line of the LINAC post-accelerator (10MeV/nucleon primary beams) still in construction in our laboratory.

  10. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    PubMed

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Advanced control of neutral beam injected power in DIII-D

    DOE PAGES

    Pawley, Carl J.; Crowley, Brendan J.; Pace, David C.; ...

    2017-03-23

    In the DIII-D tokamak, one of the most powerful techniques to control the density, temperature and plasma rotation is by eight independently modulated neutral beam sources with a total power of 20 MW. The rapid modulation requires a high degree of reproducibility and precise control of the ion source plasma and beam acceleration voltage. Recent changes have been made to the controls to provide a new capability to smoothly vary the beam current and beam voltage during a discharge, while maintaining the modulation capability. The ion source plasma inside the arc chamber is controlled through feedback from the Langmuir probesmore » measuring plasma density near the extraction end. To provide the new capability, the plasma control system (PCS) has been enabled to change the Langmuir probe set point and the beam voltage set point in real time. When the PCS varies the Langmuir set point, the plasma density is directly controlled in the arc chamber, thus changing the beam current (perveance) and power going into the tokamak. Alternately, the PCS can sweep the beam voltage set point by 20 kV or more and adjust the Langmuir probe setting to match, keeping the perveance constant and beam divergence at a minimum. This changes the beam power and average neutral particle energy, which changes deposition in the tokamak plasma. The ion separating magnetic field must accurately match the beam voltage to protect the beam line. To do this, the magnet current control accurately tracks the beam voltage set point. In conclusion, these new capabilities allow continuous in-shot variation of neutral beam ion energy to complement« less

  12. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiedler, Andrew J.

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experimentsmore » investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.« less

  13. Emittance matching of a slow extracted beam for a rotating gantry

    NASA Astrophysics Data System (ADS)

    Fujimoto, T.; Iwata, Y.; Matsuba, S.; Fujita, T.; Sato, S.; Shirai, T.; Noda, K.

    2017-09-01

    The introduction of a heavy-ion rotating gantry is in progress at the Heavy Ion Medical Accelerator in Chiba (HIMAC) for realizing high-precision cancer therapy using heavy ions. A scanning irradiation method will be applied to this gantry course with 48-430 MeV/u beam energy. In the rotating gantry, the horizontal and vertical beam parameters are coupled by its rotation. To maintain a circular spot shape at the isocenter irrespective of the gantry angle, achieving symmetric phase space distribution of the horizontal and vertical beam at the entrance of the rotating gantry is necessary. Therefore, compensating the horizontal and vertical emittance is necessary. We consider using a thin scatterer method to compensate the emittance. After considering the optical design for emittance matching, the scatterer device is located in the high-energy beam transport line. In the beam commissioning, we confirm that the symmetrical spot shape is obtained at the isocenter without depending on the gantry angle.

  14. An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China

    NASA Astrophysics Data System (ADS)

    Han, Jifeng; An, Zhu; Zheng, Gaoqun; Bai, Fan; Li, Zhihui; Wang, Peng; Liao, Xiaodong; Liu, Mantian; Chen, Shunli; Song, Mingjiang; Zhang, Jun

    2018-03-01

    A new ion beam facility based on a 3 MV tandetron accelerator system has been installed in Sichuan University, China. The facility was developed by High Voltage Engineering Europa and consists of three high-energy beam lines including the ion beam analysis, ion implantation and nuclear physics experiment end stations, respectively. The terminal voltage stability of the accelerator is better than ±30 V, and the brightness of the proton beam is approximately 5.06 A/rad2/m2/eV. The system demonstrates a great application potential in fields such as nuclear, material and environmental studies.

  15. Image reconstruction from cone-beam projections with attenuation correction

    NASA Astrophysics Data System (ADS)

    Weng, Yi

    1997-07-01

    In single photon emission computered tomography (SPECT) imaging, photon attenuation within the body is a major factor contributing to the quantitative inaccuracy in measuring the distribution of radioactivity. Cone-beam SPECT provides improved sensitivity for imaging small organs. This thesis extends the results for 2D parallel- beam and fan-beam geometry to 3D parallel-beam and cone- beam geometries in order to derive filtered backprojection reconstruction algorithms for the 3D exponential parallel-beam transform and for the exponential cone-beam transform with sampling on a sphere. An exact inversion formula for the 3D exponential parallel-beam transform is obtained and is extended to the 3D exponential cone-beam transform. Sampling on a sphere is not useful clinically and current cone-beam tomography, with the focal point traversing a planar orbit, does not acquire sufficient data to give an accurate reconstruction. Thus a data acquisition method that obtains complete data for cone-beam SPECT by simultaneously rotating the gamma camera and translating the patient bed, so that cone-beam projections can be obtained with the focal point traversing a helix that surrounds the patient was developed. First, an implementation of Grangeat's algorithm for helical cone- beam projections was developed without attenuation correction. A fast new rebinning scheme was developed that uses all of the detected data to reconstruct the image and properly normalizes any multiply scanned data. In the case of attenuation no theorem analogous to Tuy's has been proven. We hypothesized that an artifact-free reconstruction could be obtained even if the cone-beam data are attenuated, provided the imaging orbit satisfies Tuy's condition and the exact attenuation map is known. Cone-beam emission data were acquired by using a circle- and-line and a helix orbit on a clinical SPECT system. An iterative conjugate gradient reconstruction algorithm was used to reconstruct projection data with a

  16. Radar Interferometry Detection of Hinge Line Migration on Rutford Ice Stream and Carlson Inlet, Antarctica

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1997-01-01

    Satellite synthetic-aperture radar (SAR) Interferometry is employed to map the hinge line, or limit of tidal flexing, of Rutford Ice Stream and Carlson Inlet, Antarctica, and detect its migration between 1992 and 1996. The hinge line is mapped using a model fit from an elastic beam theory.

  17. Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking.

    PubMed

    Llewellyn, M; Yang, J F; Prochazka, A

    1990-01-01

    Hoffman (H) reflexes were elicited from the soleus (SOL) muscle while subjects walked on a treadmill and on a narrow beam (3.5 cm wide, raised 34 cm from the floor). The speed of walking on the treadmill was selected for each subject to match the background activation level of their SOL muscle during beam walking. The normal reciprocal activation pattern of the tibialis anterior and SOL muscles in treadmill walking was replaced by a pattern dominated by co-contraction on the beam. In addition, the step cycle duration was more variable and the time spent in the swing phase was reduced on the beam. The H-reflexes were highly modulated in both tasks, the amplitude being high in the stance phase and low in the swing phase. The H-reflex amplitude was on average 40% lower during beam walking than treadmill walking. The relationship between the H-reflex amplitude and the SOL EMG level was quantified by a regression line relating the two variables. The slope of this line was on average 41% lower in beam walking than treadmill walking. The lower H-reflex gain observed in this study and the high level of fusimotor drive observed in cats performing similar tasks suggest that the two mechanisms which control the excitability of this reflex pathway (i.e. fusimotor action and control of transmission at the muscle spindle to moto-neuron synapse) may be controlled independently.

  18. A novel algorithm for the calculation of physical and biological irradiation quantities in scanned ion beam therapy: the beamlet superposition approach

    NASA Astrophysics Data System (ADS)

    Russo, G.; Attili, A.; Battistoni, G.; Bertrand, D.; Bourhaleb, F.; Cappucci, F.; Ciocca, M.; Mairani, A.; Milian, F. M.; Molinelli, S.; Morone, M. C.; Muraro, S.; Orts, T.; Patera, V.; Sala, P.; Schmitt, E.; Vivaldo, G.; Marchetto, F.

    2016-01-01

    The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the per-track information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.

  19. Precision atomic beam density characterization by diode laser absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxley, Paul; Wihbey, Joseph

    2016-09-15

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident lasermore » light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.« less

  20. Hollow-cathode lamps as optical frequency standards: the influence of optical imaging on the line-strength ratios

    NASA Astrophysics Data System (ADS)

    Huke, Philipp; Tal-Or, Lev; Sarmiento, Luis Fernando; Reiners, Ansgar

    2016-07-01

    Hollow cathode discharge lamps (HCLs) have been successfully used in recent years as calibration sources of optical astronomical spectrographs. The numerous narrow metal lines have stable wavelengths, which makes them well suited for m/s calibration accuracy of high-resolution spectrographs, while the buffer-gas lines are less stable and less useful. Accordingly, an important property is the metal-to-gas line-strength ratio (Rmetal/gas). Processes inside the lamp cause the light to be emitted from different regions between the cathode and the anode leaing to the emission of different beams with different values of Rmetal/gas. We used commercially- available HCLs to measure and characterize these beams with respect to their spatial distribution, their angle of propagation relative to the optical axis, and their values of Rmetal/gas. We conclude that a good imaging of an HCL into a fiber-fed spectrograph would consist of an aperture close to its front window in order to filter out the parts of the beam with low Rmetal/gas, and of a lens to collimate the important central beam. We show that Rmetal/gas can be further improved with only minor adjustments of the imaging parameters, and that the imaging scheme that yields the highest Rmetal/gas does not necessarily provide the highest flux.

  1. Population trapping: The mechanism for the lost resonance lines in Pm-like ions

    NASA Astrophysics Data System (ADS)

    Kato, Daiji; Sakaue, Hiroyuki A.; Murakami, Izumi; Nakamura, Nobuyuki

    2017-10-01

    We report a population kinetics study on line emissions of the Pm-like Bi22+ performed by using a collisional-radiative (CR) model. Population rates of excited levels are analyzed to explain the population trapping in the 4f135s2 state which causes the loss of the 5s - 5p resonance lines in emission spectra. Based on the present analysis, we elucidate why the population trapping is not facilitated for a meta-stable excited level of the Sm-like Bi21+. The emission line spectra are calculated for the Pm-like isoelectronic sequence from Au18+ through W13+ and compared with experimental measurements by electron-beam-ion-traps (EBITs). Structures of the spectra are similar for all of the cases except for calculated W13+ spectra. The calculated spectra are hardly reconciled with the measured W13+ spectrum using the compact electron-beam-ion-trap (CoBIT) [Phys. Rev. A 92 (2015) 022510].

  2. Cavity beam position monitor system for the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Kim, Y. I.; Ainsworth, R.; Aryshev, A.; Boogert, S. T.; Boorman, G.; Frisch, J.; Heo, A.; Honda, Y.; Hwang, W. H.; Huang, J. Y.; Kim, E.-S.; Kim, S. H.; Lyapin, A.; Naito, T.; May, J.; McCormick, D.; Mellor, R. E.; Molloy, S.; Nelson, J.; Park, S. J.; Park, Y. J.; Ross, M.; Shin, S.; Swinson, C.; Smith, T.; Terunuma, N.; Tauchi, T.; Urakawa, J.; White, G. R.

    2012-04-01

    The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  3. Directivity analysis of meander-line-coil EMATs with a wholly analytical method.

    PubMed

    Xie, Yuedong; Liu, Zenghua; Yin, Liyuan; Wu, Jiande; Deng, Peng; Yin, Wuliang

    2017-01-01

    This paper presents the simulation and experimental study of the radiation pattern of a meander-line-coil EMAT. A wholly analytical method, which involves the coupling of two models: an analytical EM model and an analytical UT model, has been developed to build EMAT models and analyse the Rayleigh waves' beam directivity. For a specific sensor configuration, Lorentz forces are calculated using the EM analytical method, which is adapted from the classic Deeds and Dodd solution. The calculated Lorentz force density are imported to an analytical ultrasonic model as driven point sources, which produce the Rayleigh waves within a layered medium. The effect of the length of the meander-line-coil on the Rayleigh waves' beam directivity is analysed quantitatively and verified experimentally. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Detection of errant laser beams

    NASA Astrophysics Data System (ADS)

    Taylor, Arthur F. D. S.; Edwards, Stanley A.; Barrett, J. A.; Bandle, Anthony M.

    1990-10-01

    The new generation of automated laser machine tools poses problems for those responsible for setting safety standards. While traditional safeguarding will frustrate full exploitation of this hybrid technology, wholesale abandonment of effective containment in favour of safety monitoring and control systems is unlikely to be acceptable. Long term, quantitative risk assessment will resolve this dilemma. Short term, guide lines will have to be derived from practical considerations of the laser facility design, materials, primary safety devices and procedures. Earlier risk assessments are reviewed relative to the emerging perspective of high average power laser installations. Aspects of extended beam delivery systems and equipment utilization and maintenance are examined to assess possible interaction with operational safety and in particular the potential to adversely influence errant laser beam occurrances (ELBO). To satisfy international safety standards for a laser enclosure which offers flexibility and is cost effective a detection system is described which continuously surveys the inside of the enclosure. Extensive trials have been carried out with high average power lasers (up to 10kW) where a range of engineering materials has been exposed to a laser beam. It is shown that the ratio of detection and shut down time to the burn through time can be an acceptable risk and thus indicate which materials will prove adequate.

  5. SU-E-T-568: Improving Normal Brain Sparing with Increasing Number of Arc Beams for Volume Modulated Arc Beam Radiosurgery of Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, S; Hildebrand, K; Ahmad, S

    Purpose: Intensity modulated arc beams have been newly reported for treating multiple brain metastases. The purpose of this study was to determine the variations in the normal brain doses with increasing number of arc beams for multiple brain metastases treatments via the TrueBeam Rapidarc system (Varian Oncology, Palo Alto, CA). Methods: A patient case with 12 metastatic brain lesions previously treated on the Leksell Gamma Knife Perfexion (GK) was used for the study. All lesions and organs at risk were contoured by a senior radiation oncologist and treatment plans for a subset of 3, 6, 9 and all 12 targetsmore » were developed for the TrueBeam Rapidarc system via 3 to 7 intensity modulated arc-beams with each target covered by at least 99% of the prescribed dose of 20 Gy. The peripheral normal brain isodose volumes as well as the total beam-on time were analyzed with increasing number of arc beams for these targets. Results: All intensisty modulated arc-beam plans produced efficient treatment delivery with the beam-on time averaging 0.6–1.5 min per lesion at an output of 1200 MU/min. With increasing number of arc beams, the peripheral normal brain isodose volumes such as the 12-Gy isodose line enclosed normal brain tissue volumes were on average decreased by 6%, 11%, 18%, and 28% for the 3-, 6-, 9-, 12-target treatment plans respectively. The lowest normal brain isodose volumes were consistently found for the 7-arc treatment plans for all the cases. Conclusion: With nearly identical beam-on times, the peripheral normal brain dose was notably decreased when the total number of intensity modulated arc beams was increased when treating multiple brain metastases. Dr Sahgal and Dr Ma are currently serving on the board of international society of stereotactic radiosurgery.« less

  6. Realization of a twin beam source based on four-wave mixing in Cesium

    NASA Astrophysics Data System (ADS)

    Adenier, G.; Calonico, D.; Micalizio, S.; Samantaray, N.; Degiovanni, I. P.; Berchera, I. Ruo

    2016-05-01

    Four-wave mixing (4WM) is a known source of intense non-classical twin beams. It can be generated when an intense laser beam (the pump) and a weak laser beam (the seed) overlap in a χ(3) medium (here Cesium vapor), with frequencies close to resonance with atomic transitions. The twin beams generated by 4WM have frequencies naturally close to atomic transitions, and can be intense (gain ≫1) even in the CW pump regime, which is not the case for PDC χ(2) phenomenon in nonlinear crystals. So, 4WM is well suited for atom-light interaction and atom-based quantum-protocols. Here, we present the first realization of a source of 4-wave mixing exploiting D2 line of Cesium atoms.

  7. Optimization and verification of image reconstruction for a Compton camera towards application as an on-line monitor for particle therapy

    NASA Astrophysics Data System (ADS)

    Taya, T.; Kataoka, J.; Kishimoto, A.; Tagawa, L.; Mochizuki, S.; Toshito, T.; Kimura, M.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.

    2017-07-01

    Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200 MeV, which has a range of ~ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3 %(1 σ) and 5 %(1 σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy.

  8. High-Voltage, High-Impedance Ion Beam Production

    DTIC Science & Technology

    2009-06-01

    the anode tube with a loosely-crumpled, thin aluminized- mylar foil. This spoils the virtual cathode and greatly reduces the neutron signal, as seen...ions follow ballistic (straight-line) trajectories in the drift tube (see Sec. VIII), then (except for the small displacement associated with bending...mTorr) ambient in the drift tube . Based on our previous experience, we would expect charge, but not necessarily current, neutralization of the beam

  9. First results on the measurements of the proton beam polarization at internal target at Nuclotron1

    NASA Astrophysics Data System (ADS)

    Ladygin, V. P.; Gurchin, Yu V.; Isupov, A. Yu; Janek, M.; Khrenov, A. N.; Kurilkin, P. K.; Livanov, A. N.; Piyadin, S. M.; Reznikov, S. G.; Skhomenko, Ya T.; Terekhin, A. A.; Tishevsky, A. V.; Averyanov, A. V.; Bazylev, S. N.; Belov, A. S.; Butenko, A. V.; Chernykh, E. V.; Filatov, Yu N.; Fimushkin, V. V.; Krivenkov, D. O.; Kondratenko, A. M.; Kondratenko, M. A.; Kovalenko, A. D.; Slepnev, I. V.; Slepnev, V. M.; Shutov, A. V.; Sidorin, A. O.; Vnukov, I. E.; Volkov, V. S.

    2017-12-01

    The spin program at NICA using SPD and MPD requires high intensity polarized proton beam with high value of the beam polarization. First results on the measurements of the proton beam polarization performed at internal target at Nuclotron are reported. The polarization of the proton beam provided by new source of polarized ions has been measured at 500 MeV using quasielastic proton-proton scattering and DSS setup at internal target. The obtained value of the vertical polarization of ∼35% is consistent with the calculations taking into account the current magnetic optics of the Nuclotron injection line.

  10. Simulation of a beam rotation system for a spallation source

    NASA Astrophysics Data System (ADS)

    Reiss, Tibor; Reggiani, Davide; Seidel, Mike; Talanov, Vadim; Wohlmuther, Michael

    2015-04-01

    With a nominal beam power of nearly 1 MW on target, the Swiss Spallation Neutron Source (SINQ), ranks among the world's most powerful spallation neutron sources. The proton beam transport to the SINQ target is carried out exclusively by means of linear magnetic elements. In the transport line to SINQ the beam is scattered in two meson production targets and as a consequence, at the SINQ target entrance the beam shape can be described by Gaussian distributions in transverse x and y directions with tails cut short by collimators. This leads to a highly nonuniform power distribution inside the SINQ target, giving rise to thermal and mechanical stresses. In view of a future proton beam intensity upgrade, the possibility of homogenizing the beam distribution by means of a fast beam rotation system is currently under investigation. Important aspects which need to be studied are the impact of a rotating proton beam on the resulting neutron spectra, spatial flux distributions and additional—previously not present—proton losses causing unwanted activation of accelerator components. Hence a new source description method was developed for the radiation transport code MCNPX. This new feature makes direct use of the results from the proton beam optics code TURTLE. Its advantage to existing MCNPX source options is that all phase space information and correlations of each primary beam particle computed with TURTLE are preserved and transferred to MCNPX. Simulations of the different beam distributions together with their consequences in terms of neutron production are presented in this publication. Additionally, a detailed description of the coupling method between TURTLE and MCNPX is provided.

  11. Proton beam irradiation inhibits the migration of melanoma cells.

    PubMed

    Jasińska-Konior, Katarzyna; Pochylczuk, Katarzyna; Czajka, Elżbieta; Michalik, Marta; Romanowska-Dixon, Bożena; Swakoń, Jan; Urbańska, Krystyna; Elas, Martyna

    2017-01-01

    In recent years experimental data have indicated that low-energy proton beam radiation might induce a difference in cellular migration in comparison to photons. We therefore set out to compare the effect of proton beam irradiation and X-rays on the survival and long-term migratory properties of two cell lines: uveal melanoma Mel270 and skin melanoma BLM. Cells treated with either proton beam or X-rays were analyzed for their survival using clonogenic assay and MTT test. Long-term migratory properties were assessed with time-lapse monitoring of individual cell movements, wound test and transpore migration, while the expression of the related proteins was measured with western blot. Exposure to proton beam and X-rays led to similar survival but the quality of the cell colonies was markedly different. More paraclones with a low proliferative activity and fewer highly-proliferative holoclones were found after proton beam irradiation in comparison to X-rays. At 20 or 40 days post-irradiation, migratory capacity was decreased more by proton beam than by X-rays. The beta-1-integrin level was decreased in Mel270 cells after both types of radiation, while vimentin, a marker of EMT, was increased in BLM cells only. We conclude that proton beam irradiation induced long-term inhibition of cellular motility, as well as changes in the level of beta-1 integrin and vimentin. If confirmed, the change in the quality, but not in the number of colonies after proton beam irradiation might favor tumor growth inhibition after fractionated proton therapy.

  12. Artificial auroras in the upper atmosphere. I - Electron beam injections

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Mende, S. B.; Kawashima, N.; Roberts, W. T.; Taylor, W. W. L.; Neubert, T.; Gibson, W. C.; Marshall, J. A.; Swenson, G. R.

    1993-01-01

    The Atlas-1 Spacelab payload's Space Experiments with Particle Accelerators generated artificial electron beams for the stimulation of auroral emissions at southern auroral latitudes. Optical measurements were made by the Shuttle Orbiter's onboard TV cameras, as well as by the Atmospheric Emissions Photometric Imager (in both white light and the 427.8 nm N2(+) emission line). Shuttle-based auroral imaging furnished a novel perspective on the artificial auroras; the emissions were traced from 295 km to the 110 km level along the curved magnetic-field lines.

  13. Advances in Heavy Ion Beam Probe Technology and Operation on MST

    NASA Astrophysics Data System (ADS)

    Demers, D. R.; Connor, K. A.; Schoch, P. M.; Radke, R. J.; Anderson, J. K.; Craig, D.; den Hartog, D. J.

    2003-10-01

    A technique to map the magnetic field of a plasma via spectral imaging is being developed with the Heavy Ion Beam Probe on the Madison Symmetric Torus. The technique will utilize two-dimensional images of the ion beam in the plasma, acquired by two CCD cameras, to generate a three-dimensional reconstruction of the beam trajectory. This trajectory, and the known beam ion mass, energy and charge-state, will be used to determine the magnetic field of the plasma. A suitable emission line has not yet been observed since radiation from the MST plasma is both broadband and intense. An effort to raise the emission intensity from the ion beam by increasing beam focus and current has been undertaken. Simulations of the accelerator ion optics and beam characteristics led to a technique, confirmed by experiment, that achieves a narrower beam and marked increase in ion current near the plasma surface. The improvements arising from these simulations will be discussed. Realization of the magnetic field mapping technique is contingent upon accurate reconstruction of the beam trajectory from the camera images. Simulations of two camera CCD images, including the interior of MST, its various landmarks and beam trajectories have been developed. These simulations accept user input such as camera locations, resolution via pixellization and noise. The quality of the images simulated with these and other variables will help guide the selection of viewing port pairs, image size and camera specifications. The results of these simulations will be presented.

  14. Laser effect on the 248 nm KrF transition using heavy ion beam pumping

    NASA Astrophysics Data System (ADS)

    Adonin, A.; Jacoby, J.; Turtikov, V.; Fertman, A.; Golubev, A.; Hoffmann, D. H. H.; Ulrich, A.; Varentsov, D.; Wieser, J.

    2007-07-01

    In December 2005 the first successful operation of a UV excimer laser pumped with a heavy ion beam was demonstrated at GSI. It was the first experiment in which the specific power deposition was sufficient to overcome laser threshold for a UV excimer scheme. The well known KrF* excimer laser line at λ=248 nm has been chosen for this experiment, because the wavelength is short, but still in the range of usual optical diagnostic tools and the emitted light can propagate in air without attenuation. A bunch compressed U+73238 beam with a particle energy of 250 MeV/u and about 110 ns pulse duration (FWHM) was used for this experiment. Single pulses of a beam intensity up to 2.5×109 particles per bunch were focused into the laser cell along the cavity axis. Compact spectrometers, high speed UV-photodiodes and gated CCD-cameras were used for diagnostics of the spontaneous and stimulated emission. As a main result of the experiment laser effect on the 248 nm KrF* excimer laser line has been obtained and verified by temporal and spectral narrowing of the laser line as well as the threshold behaviour and exponential growth of intensity with increasing pumping power. In summary it could be shown that the pumping power of the heavy ion beam at GSI is now sufficient to pump short wavelength lasers. It is planned to extend laser experiments in near future to the VUV range of the spectrum (λ<200 nm).

  15. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  16. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worm, Esben S., E-mail: esbeworm@rm.dk; Department of Medical Physics, Aarhus University Hospital, Aarhus; Hoyer, Morten

    2012-05-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensionalmore » marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line

  17. Beam commissioning of a superconducting rotating-gantry for carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Iwata, Y.; Fujimoto, T.; Matsuba, S.; Fujita, T.; Sato, S.; Furukawa, T.; Hara, Y.; Mizushima, K.; Saraya, Y.; Tansho, R.; Saotome, N.; Shirai, T.; Noda, K.

    2016-10-01

    A superconducting rotating-gantry for carbon-ion radiotherapy was developed. This isocentric gantry can transport carbon ions having kinetic energies of between E=430 and 48 MeV/u to an isocenter over an angle of ±180°, and is further capable of performing three-dimensional raster-scanning irradiation. Construction of the entire rotating-gantry system was completed by the end of September 2015. Prior to beam commissioning, phase-space distributions of extracted carbon beams from the synchrotron were deduced by using an empirical method. In this method, phase-space distributions at the extraction channel of the synchrotron were modeled with 8 parameters, and the best parameters were determined so as to minimize a difference between the calculated and measured beam profiles by using a simplex method. Based on the phase-space distributions, beam optics through the beam-transport lines as well as the rotating gantry were designed. Since horizontal and vertical beam emittances, as extracted slowly from the synchrotron, generally differ with each other, a horizontal-vertical beam coupling would occur when the gantry rotates. Thus, the size and shape of beam spots at the isocenter should vary depending on the gantry angle. To compensate for the difference in the emittances, we employed a method to utilize multiple Coulomb scattering of the beam particles by a thin scatterer. Having compensated for the emittances and designed beam optics through the rotating gantry, beam commissioning over various combinations of gantry angles and beam energies was performed. By finely tuning the superconducting quadrupoles of the rotating gantry, we could successfully obtain the designed beam quality, which satisfies the requirements of scanning irradiation.

  18. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  19. Mitigation of X-ray damage in macromolecular crystallography by submicrometre line focusing.

    PubMed

    Finfrock, Y Zou; Stern, Edward A; Alkire, R W; Kas, Joshua J; Evans-Lutterodt, Kenneth; Stein, Aaron; Duke, Norma; Lazarski, Krzysztof; Joachimiak, Andrzej

    2013-08-01

    Reported here are measurements of the penetration depth and spatial distribution of photoelectron (PE) damage excited by 18.6 keV X-ray photons in a lysozyme crystal with a vertical submicrometre line-focus beam of 0.7 µm full-width half-maximum (FWHM). The experimental results determined that the penetration depth of PEs is 5 ± 0.5 µm with a monotonically decreasing spatial distribution shape, resulting in mitigation of diffraction signal damage. This does not agree with previous theoretical predication that the mitigation of damage requires a peak of damage outside the focus. A new improved calculation provides some qualitative agreement with the experimental results, but significant errors still remain. The mitigation of radiation damage by line focusing was measured experimentally by comparing the damage in the X-ray-irradiated regions of the submicrometre focus with the large-beam case under conditions of equal exposure and equal volumes of the protein crystal, and a mitigation factor of 4.4 ± 0.4 was determined. The mitigation of radiation damage is caused by spatial separation of the dominant PE radiation-damage component from the crystal region of the line-focus beam that contributes the diffraction signal. The diffraction signal is generated by coherent scattering of incident X-rays (which introduces no damage), while the overwhelming proportion of damage is caused by PE emission as X-ray photons are absorbed.

  20. HYDRO2GEN: Non-thermal hydrogen Balmer and Paschen emission in solar flares generated by electron beams

    NASA Astrophysics Data System (ADS)

    Druett, M. K.; Zharkova, V. V.

    2018-03-01

    Aim. Sharp rises of hard X-ray (HXR) emission accompanied by Hα line profiles with strong red-shifts up to 4 Å from the central wavelength, often observed at the onset of flares with the Specola Solare Ticinese Telescope (STT) and the Swedish Solar Telescope (SST), are not fully explained by existing radiative models. Moreover, observations of white light (WL) and Balmer continuum emission with the Interface Region Imaging Spectrograph (IRISH) reveal strong co-temporal enhancements and are often nearly co-spatial with HXR emission. These effects indicate a fast effective source of excitation and ionisation of hydrogen atoms in flaring atmospheres associated with HXR emission. In this paper, we investigate electron beams as the agents accounting for the observed hydrogen line and continuum emission. Methods: Flaring atmospheres are considered to be produced by a 1D hydrodynamic response to the injection of an electron beam defining their kinetic temperatures, densities, and macro velocities. We simulated a radiative response in these atmospheres using a fully non-local thermodynamic equilibrium (NLTE) approach for a 5-level plus continuum hydrogen atom model, considering its excitation and ionisation by spontaneous, external, and internal diffusive radiation and by inelastic collisions with thermal and beam electrons. Simultaneous steady-state and integral radiative transfer equations in all optically thick transitions (Lyman and Balmer series) were solved iteratively for all the transitions to define their source functions with the relative accuracy of 10-5. The solutions of the radiative transfer equations were found using the L2 approximation. Resulting intensities of hydrogen line and continuum emission were also calculated for Balmer and Paschen series. Results: We find that inelastic collisions with beam electrons strongly increase excitation and ionisation of hydrogen atoms from the chromosphere to photosphere. This leads to an increase in Lyman continuum

  1. Single Crystal Diamond Beam Position Monitors with Radiofrequency Electronic Readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solar, B.; Graafsma, H.; Potdevin, G.

    2010-06-23

    Over the energy range 5{approx}30 keV a suitably contacted, thin ({approx}100 {mu}m) diamond plate can be operated in situ as a continuous monitor of X-ray beam intensity and position as the diamond absorbs only a small percentage of the incident beam. Single crystal diamond is a completely homogeneous material showing fast (ns), spatially uniform signal response and negligible (beams. We report on tests made at ESRF and DESY using diamond beam position monitors of simple quadrant electrodemore » designs with metal contacts, operated using wideband electronic readout corresponding to the RF accelerator frequency. The instrumentation for these monitors must cover a large range of operating conditions: different beam sizes, fluxes, energies and time structure corresponding to the synchrotron fill patterns. Sophisticated new RF sampling electronics can satisfy most requirements: using a modified Libera Brilliance readout system, we measured the center of gravity position of a 25 {mu}m beam at the DORIS III F4 beam line at a rate of 130 Msample/s with narrowband filtering of a few MHz bandwidth. Digitally averaging the signal further provided a spatial resolution {approx}20 nm.« less

  2. Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave.

    PubMed

    Lin, Jiao; Dellinger, Jean; Genevet, Patrice; Cluzel, Benoit; de Fornel, Frederique; Capasso, Federico

    2012-08-31

    A new surface wave is introduced, the cosine-Gauss beam, which does not diffract while it propagates in a straight line and tightly bound to the metallic surface for distances up to 80 μm. The generation of this highly localized wave is shown to be straightforward and highly controllable, with varying degrees of transverse confinement and directionality, by fabricating a plasmon launcher consisting of intersecting metallic gratings. Cosine-Gauss beams have potential for applications in plasmonics, notably for efficient coupling to nanophotonic devices, opening up new design possibilities for next-generation optical interconnects.

  3. Experimental generation of tripartite polarization entangled states of bright optical beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liang; Liu, Yanhong; Deng, Ruijie

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an opticalmore » beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.« less

  4. Dielectric image line groove antennas for millimeterwaves

    NASA Astrophysics Data System (ADS)

    Solbach, K.; Wolff, I.

    Grooves in the ground plane of dielectric image lines are proposed as a new radiating structure. A figure is included showing the proposed groove structure as a discontinuity in a dielectric image line. A wave incident on the dielectric image line is partly reflected by the discontinuity, partly transmitted across the groove, and partly radiated into space above the line. In a travelling-wave antenna, a number of grooves are arranged below a dielectric guide, with spacings around one guide wavelength to produce a beam in the upper half space. A prescribed aperture distribution can be effected by tapering the series radiation resistance of the grooves. This can be done by adjusting the depths of the grooves with a constant width or by varying the widths of the grooves with a constant depth. Attention is also given to circular grooves. Here, the widths of the holes are chosen so that they can be considered as waveguides operating far below the cut-off frequency of the fundamental circular waveguide mode.

  5. Physics and applications of positron beams in an integrated PET/MR.

    PubMed

    Watson, Charles C; Eriksson, Lars; Kolb, Armin

    2013-02-07

    In PET/MR systems having the PET component within the uniform magnetic field interior to the MR, positron beams can be injected into the PET field of view (FOV) from unshielded emission sources external to it, as a consequence of the action of the Lorentz force on the transverse components of the positron's velocity. Such beams may be as small as a few millimeters in diameter, but extend 50 cm or more axially without appreciable divergence. Larger beams form 'phantoms' of annihilations in air that can be easily imaged, and that are essentially free of γ-ray attenuation and scatter effects, providing a unique tool for characterizing PET systems and reconstruction algorithms. Thin targets intersecting these beams can produce intense annihilation sources having the thickness of a sheet of paper, which are very useful for high resolution measurements, and difficult to achieve with conventional sources. Targeted beams can provide other point, line and surface sources for various applications, all without the need to have radioactivity within the FOV. In this paper we discuss the physical characteristics of positron beams in air and present examples of their applications.

  6. Aligning the magnetic field of a linear induction accelerator with a low-energy electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, J.C.; Deadrick, F.J.; Kallman, J.S.

    1989-03-10

    The Experimental Test Accelerator II (ETA-II) linear induction accelerator at Lawrence Livermore National Laboratory uses a solenoid magnet in each acceleration cell to focus and transport an electron beam over the length of the accelerator. To control growth of the corkscrew mode the magnetic field must be precisely aligned over the full length of the accelerate. Concentric with each solenoid magnet is sine/cosmic-wound correction coil to steer the beam and correct field errors. A low-energy electron probe traces the central flux line through the accelerator referenced to a mechanical axis that is defined by a copropagating laser beam. Correction coilsmore » are activated to force the central flux line to cross the mechanical axis at the end of each acceleration cell. The ratios of correction coil currents determined by the low-energy electron probe are then kept fixed to correct for field errors during normal operation with an accelerated beam. We describe the construction of the low-energy electron probe and report the results of experiments we conducted to measure magnetic alignment with and without the correction coils activated. 5 refs., 3 figs.« less

  7. A study of electric transmission lines for use on the lunar surface

    NASA Technical Reports Server (NTRS)

    Gaustad, Krista L.; Gordon, Lloyd B.; Weber, Jennifer R.

    1994-01-01

    The sources for electrical power on a lunar base are said to include solar/chemical, nuclear (static conversion), and nuclear (dynamic conversion). The transmission of power via transmission lines is more practical than power beaming or superconducting because of its low cost and reliable, proven technology. Transmission lines must have minimum mass, maximum efficiency, and the ability to operate reliably in the lunar environment. The transmission line design includes conductor material, insulator material, conductor geometry, conductor configuration, line location, waveform, phase selection, and frequency. This presentation oulines the design. Liquid and gaseous dielectrics are undesirable for long term use in the lunar vacuum due to a high probability of loss. Thus, insulation for high voltage transmission line will most likely be solid dielectric or vacuum insulation.

  8. SU-F-J-197: A Novel Intra-Beam Range Detection and Adaptation Strategy for Particle Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, M; Jiang, S; Shao, Y

    2016-06-15

    Purpose: In-vivo range detection/verification is crucial in particle therapy for effective and safe delivery. The state-of-art techniques are not sufficient for in-vivo on-line range verification due to conflicts among patient dose, signal statistics and imaging time. We propose a novel intra-beam range detection and adaptation strategy for particle therapy. Methods: This strategy uses the planned mid-range spots as probing beams without adding extra radiation to patients. Such choice of probing beams ensures the Bragg peaks to remain inside the tumor even with significant range variation from the plan. It offers sufficient signal statistics for in-beam positron emission tomography (PET) duemore » to high positron activity of therapeutic dose. The probing beam signal can be acquired and reconstructed using in-beam PET that allows for delineation of the Bragg peaks and detection of range shift with ease of detection enabled by single-layered spots. If the detected range shift is within a pre-defined tolerance, the remaining spots will be delivered as the original plan. Otherwise, a fast re-optimization using range-shifted beamlets and accounting for the probing beam dose is applied to consider the tradeoffs posed by the online anatomy. Simulated planning and delivery studies were used to demonstrate the effectiveness of the proposed techniques. Results: Simulations with online range variations due to shifts of various foreign objects into the beam path showed successful delineation of the Bragg peaks as a result of delivering probing beams. Without on-line delivery adaptation, dose distribution was significantly distorted. In contrast, delivery adaptation incorporating detected range shift recovered well the planned dose. Conclusion: The proposed intra-beam range detection and adaptation utilizing the planned mid-range spots as probing beams, which illuminate the beam range with strong and accurate PET signals, is a safe, practical, yet effective approach to

  9. Low Cost Beam-Steering Approach for a Series-Fed Array

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex and costly. This paper presents a concept which overcomes these detrimental attributes by eliminating all of the phased array backend (including phase shifters). Instead, a propagation constant reconfigurable transmission line in a series fed array arrangement is used to allow phase shifting with one small (less than or equal to 100mil) linear mechanical motion. A novel slotted coplanar stripline design improves on previous transmission lines by demonstrating a greater control of propagation constant, thus allowing practical prototypes to be built. Also, beam steering pattern control is explored. We show that with correct choice of line impedance, pattern control is possible for all scan angles. A 20 element array scanning from -25 deg less than or equal to theta less than or equal to 21 deg. with mostly uniform gain at 13GHz is presented. Measured patterns show a reduced scan range of 12 deg. less than or equal to theta less than or equal to 25 deg. due to a correctable manufacturing error as verified by simulation. Beam squint is measured to be plus or minus 2.5 deg for a 600MHz bandwidth and cross-pol is measured to be at least -15dB.

  10. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement

    PubMed Central

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-01

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS. PMID:25557721

  11. Beam-beam interaction study of medium energy eRHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao,Y.; Litvinenko, V. N.; Ptitsyn, V.

    Medium Energy eRHIC (MeRHIC), the first stage design of eRHIC, includes a multi-pass ERL that provides 4GeV high quality electron beam to collide with the ion beam of RHIC. It delivers a minimum luminosity of 10{sup 32} cm{sup -2}s{sup -1}. Beam-beam effects present one of major factors limiting the luminosity of colliders. In this paper, both beam-beam effects on the electron beam and the proton beam in MeRHIC are investigated. The beam-beam interaction can induce a head-tail type instability of the proton beam referred to as the kink instability. Thus, beam stability conditions should be established to avoid proton beammore » loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure that the beam quality is good enough for the energy recovery pass. The relation of proton beam stability, electron disruption and consequential luminosity are carried out after thorough discussion.« less

  12. Population inversions in ablation plasmas generated by intense electron beams. Final report, 1 November 1985-31 October 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilgenbach, R.M.; Kammash, T.; Brake, M.L.

    1988-11-01

    Experiments during the past three years have concerned the generation and spectroscopic study of electron beam-driven carbon plasmas in order to explore the production of optical and ultraviolet radiation from nonequilibrium populations. The output of MELBA (Michigan Electron Long Beam Accelerator), has been connected to an electron-beam diode consisting of an aluminum (or brass) cathode stalk and a carbon anode. Magnetic-field coils were designed, procured, and utilized to focus the electron beam. A side viewing port permitted spectroscopic diagnostics to view across the surface of the anode. Spectroscopic diagnosis was performed using a 1-m spectrograph capable of operation from themore » vacuum-ultraviolet through the visible. This spectrograph is coupled to a 1024-channel optical multichannel analyzer. Spectra taken during the initial 400-ns period of the e-beam pulse showed a low effective-charge plasma with primarily molecular components (C/sub 2/, CH) as well as atomic hydrogen and singly ionized carbon (CII). When the generator pulse was crowbarred after the first 400 ns, the spectra revealed a continuation of the low-charge-state plasma. At times greater than 400 ns in non-crowbarred shots, the spectra revealed a highly ionized plasma with a very large intensity line at 2530 Angstroms due to CIV (5g-4f), and lower-intensity lines due to CIII and CII. This CIV line emission increased with time, peaking sharply between 750 and 900 ns, and decayed rapidly in less than 100 ns. Emission from these high ionization states may be due to electron beam-plasma instabilities, as this emission was accompanied by high levels of radio frequency and microwave emission.« less

  13. SOIMUMPs micromirror scanner and its application in laser line generator

    NASA Astrophysics Data System (ADS)

    Zuo, Hui; Nia, Farzad Hossein; He, Siyuan

    2017-01-01

    A SOIMUMPs 1-D rotation micromirror is presented. The micromirror is driven by electrostatic vertical comb-drive actuators to work at resonant mode to scan a laser beam. The residual stress in the metal film coated on the SOI device layer is used to generate vertical offset in the comb-drive actuators with the combs located far from the rotation axis to increase the torque. A concave lens is designed to put after the micromirror to amplify the laser beam scanning angle, as well as to compensate for the curvature of the micromirror. A micromirror-based scanning system is used to build a laser line generator with a continuously adjustable fan angle, which solves the limitation of a fixed fan angle in conventional laser line generators. Prototypes of the micromirror and the laser line generator are fabricated and measured. A driving circuit that can generate a high-voltage square wave driving signal with adjustable amplitude and frequency is designed. All the parts are integrated in a 44 mm×88 mm×44 mm box and powered with a single 5-V power supply. The optical scanning angle under 100 V with or without the concave lens is 27 deg and 12 deg, respectively, at a resonant frequency of 900 Hz.

  14. Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment

    DOE PAGES

    Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; ...

    2016-05-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted onmore » the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.« less

  15. Characterization and correction of cupping effect artefacts in cone beam CT

    PubMed Central

    Hunter, AK; McDavid, WD

    2012-01-01

    Objective The purpose of this study was to demonstrate and correct the cupping effect artefact that occurs owing to the presence of beam hardening and scatter radiation during image acquisition in cone beam CT (CBCT). Methods A uniform aluminium cylinder (6061) was used to demonstrate the cupping effect artefact on the Planmeca Promax 3D CBCT unit (Planmeca OY, Helsinki, Finland). The cupping effect was studied using a line profile plot of the grey level values using ImageJ software (National Institutes of Health, Bethesda, MD). A hardware-based correction method using copper pre-filtration was used to address this artefact caused by beam hardening and a software-based subtraction algorithm was used to address scatter contamination. Results The hardware-based correction used to address the effects of beam hardening suppressed the cupping effect artefact but did not eliminate it. The software-based correction used to address the effects of scatter resulted in elimination of the cupping effect artefact. Conclusion Compensating for the presence of beam hardening and scatter radiation improves grey level uniformity in CBCT. PMID:22378754

  16. A metrology system for a high resolution cavity beam position monitor system

    NASA Astrophysics Data System (ADS)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Hinton, Shantell; Honda, Yosuke; Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2013-11-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved-ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.

  17. High Resolution Fabrication of Interconnection Lines Using Picosecond Laser and Controlled Deposition of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahmoon, Asaf; Strauß, Johnnes; Zafri, Hadar; Schmidt, Michael; Zalevsky, Zeev

    In this paper we present the fabrication procedure as well as the preliminary experimental results of a novel method for construction of high resolution nanometric interconnection lines. The fabrication procedure relies on a self-assembly process of gold nanoparticles at specific predetermined nanostructures. The nanostructures for the self-assembly process are based on the focused ion beam (FIB) or scanning electron beam (SEM) technology. The assembled nanoparticles are being illuminated using a picosecond laser with a wavelength of 532 nm. Different pulse energies have been investigated. The paper aimed at developing a novel and reliable process for fabrication of interconnection lines encompass three different disciplines, self-assembly of nanometric particles, optics and microelectronic.

  18. Two-Dimensional Array Beam Scanning Via Externally and Mutually Injection Locked Coupled Oscillators

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    Some years ago, Stephan proposed an approach to one dimensional (linear) phased array beam steering which requires only a single phase shifter. This involves the use of a linear array of voltage-controlled electronic oscillators coupled to nearest neighbors. The oscillators are mutually injection locked by controlling their coupling and tuning appropriately. Stephan's approach consists of deriving two signals from a master oscillator, one signal phase shifted with respect to the other by means of a single phase shifter. These two signals are injected into the end oscillators of the array. The result is a linear phase progression across the oscillator array. Thus, if radiating elements are connected to each oscillator and spaced uniformly along a line, they will radiate a beam at an angle to that line determined by the phase gradient which is, in turn, determined by the phase difference between the injection signals.The beam direction is therefore controlled by adjusting this phase difference. Recently, Pogorzelski and York presented a formulation which facilitates theoretical analysis of the above beam steering technique. This was subsequently applied by Pogorzelski in analysis of two dimensional beam steering using perimeter detuning of a coupled oscillator array. The formulation is based on a continuum model in which the oscillator phases are represented by a continuous function satisfying a partial differential equation of diffusion type. This equation can be solved via the Laplace transform and the resulting solution exhibits the dynamic behavior of the array as the beam is steered. Stephan's beam steering technique can be similarly generalized to two-dimensional arrays in which the beam control signals are applied to the oscillators on the perimeter of the array. In this paper the continuum model for this two-dimensional case is developed and the dynamic solution for the corresponding aperture phase function is obtained. The corresponding behavior of the

  19. Simulations of the Mg II K and Ca II 8542 Lines From an Alfvén Wave-Heated Flare Chromosphere

    NASA Technical Reports Server (NTRS)

    Kerr, Graham S.; Fletcher, Lyndsay; Russell, Alexander J. B.; Allred, Joel C.

    2016-01-01

    We use radiation hydrodynamic simulations to examine two models of solar flare chromospheric heating: Alfven wave dissipation and electron beam collisional losses. Both mechanisms are capable of strong chromospheric heating, and we show that the distinctive atmospheric evolution in the mid-to-upper chromosphere results in Mg II k-line emission that should be observably different between wave-heated and beam-heated simulations. We also present Ca II 8542 A profiles that are formed slightly deeper in the chromosphere. The Mg II k-line profiles from our wave-heated simulation are quite different from those from a beam-heated model and are more consistent with Interface Region Imaging Spectrograph observations. The predicted differences between the Ca II 8542 A in the two models are small. We conclude that careful observational and theoretical study of lines formed in the mid-to-upper chromosphere holds genuine promise for distinguishing between competing models for chromospheric heating inflares.

  20. Velocity Spread Reduction for Axis-encircling Electron Beam Generated by Single Magnetic Cusp

    NASA Astrophysics Data System (ADS)

    Jeon, S. G.; Baik, C. W.; Kim, D. H.; Park, G. S.; Sato, N.; Yokoo, K.

    2001-10-01

    Physical characteristics of an annular Pierce-type electron gun are investigated analytically. An annular electron gun is used in conjunction with a non-adiabatic magnetic reversal and an adiabatic compression to produce an axis-encircling electron beam. Velocity spread close to zero is realized with an initial canonical angular momentum spread at the cathode when the beam trajectory does not coincide with the magnetic flux line. Both the analytical calculation and the EGUN code simulation confirm this phenomenon.

  1. Ion recombination correction in carbon ion beams.

    PubMed

    Rossomme, S; Hopfgartner, J; Lee, N D; Delor, A; Thomas, R A S; Romano, F; Fukumura, A; Vynckier, S; Palmans, H

    2016-07-01

    In this work, ion recombination is studied as a function of energy and depth in carbon ion beams. Measurements were performed in three different passively scattered carbon ion beams with energies of 62 MeV/n, 135 MeV/n, and 290 MeV/n using various types of plane-parallel ionization chambers. Experimental results were compared with two analytical models for initial recombination. One model is generally used for photon beams and the other model, developed by Jaffé, takes into account the ionization density along the ion track. An investigation was carried out to ascertain the effect on the ion recombination correction with varying ionization chamber orientation with respect to the direction of the ion tracks. The variation of the ion recombination correction factors as a function of depth was studied for a Markus ionization chamber in the 62 MeV/n nonmodulated carbon ion beam. This variation can be related to the depth distribution of linear energy transfer. Results show that the theory for photon beams is not applicable to carbon ion beams. On the other hand, by optimizing the value of the ionization density and the initial mean-square radius, good agreement is found between Jaffé's theory and the experimental results. As predicted by Jaffé's theory, the results confirm that ion recombination corrections strongly decrease with an increasing angle between the ion tracks and the electric field lines. For the Markus ionization chamber, the variation of the ion recombination correction factor with depth was modeled adequately by a sigmoid function, which is approximately constant in the plateau and strongly increasing in the Bragg peak region to values of up to 1.06. Except in the distal edge region, all experimental results are accurately described by Jaffé's theory. Experimental results confirm that ion recombination in the investigated carbon ion beams is dominated by initial recombination. Ion recombination corrections are found to be significant and cannot be

  2. Synthesis of metal nanoparticle and patterning in polymeric films induced by electron beam

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi; Marignier, Jean-Louis; Mostafavi, Mehran; Belloni, Jacqueline

    2018-03-01

    Using an electron beam, thin polymeric films loaded with metal nanoparticles of silver were prepared by a one-step irradiation-induced reduction of the metal ions embedded in the polymer. The metal nanoparticles were observed by either optical absorption or microscopy. The mechanism of the reduction of metal ions and of the polymer crosslinking were deduced from the average absorbance measurements. In view of realizing specific patterns of high resolution using the electron beam, electron beam produces 200 nm wide lines that can be separated by unexposed spaces of adjustable width, where precursors were dissolved. The resolution of the electron beam has been exploited to demonstrate the achievement of nanopatterning on polymer films using a direct-writing process. This method supplies interesting applications such as masks, replicas, or imprint molds of improved density and contrast.

  3. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalaryd, Mårten, E-mail: Marten.Dalaryd@med.lu.se; Knöös, Tommy; Ceberg, Crister

    Purpose: There are currently several commercially available radiotherapy treatment units without a flattening filter in the beam line. Unflattened photon beams have an energy and lateral fluence distribution that is different from conventional beams and, thus, their attenuation properties differ. As a consequence, for flattening filter free (FFF) beams, the relationship between the beam-quality specifier TPR{sub 20,10} and the Spencer–Attix restricted water-to-air mass collision stopping-power ratios, (L{sup -}/ρ){sub air}{sup water}, may have to be refined in order to be used with equivalent accuracy as for beams with a flattening filter. The purpose of this work was twofold. First, to studymore » the relationship between TPR{sub 20,10} and (L{sup -}/ρ){sub air}{sup water} for FFF beams, where the flattening filter has been replaced by a metal plate as in most clinical FFF beams. Second, to investigate the potential of increasing the accuracy in determining (L{sup -}/ρ){sub air}{sup water} by adding another beam-quality metric, TPR{sub 10,5}. The relationship between (L{sup -}/ρ){sub air}{sup water} and %dd(10){sub x} for beams with and without a flattening filter was also included in this study. Methods: A total of 24 realistic photon beams (10 with and 14 without a flattening filter) from three different treatment units have been used to calculate (L{sup -}/ρ){sub air}{sup water}, TPR{sub 20,10}, and TPR{sub 10,5} using the EGSnrc Monte Carlo package. The relationship between (L{sup -}/ρ){sub air}{sup water} and the dual beam-quality specifier TPR{sub 20,10} and TPR{sub 10,5} was described by a simple bilinear equation. The relationship between the photon beam-quality specifier %dd(10){sub x} used in the AAPM’s TG-51 dosimetry protocol and (L{sup -}/ρ){sub air}{sup water} was also investigated for the beams used in this study, by calculating the photon component of the percentage depth dose at 10 cm depth with SSD 100 cm. Results: The calculated (L

  4. Primary Beam Air Kerma Dependence on Distance from Cargo and People Scanners.

    PubMed

    Strom, Daniel J; Cerra, Frank

    2016-06-01

    The distance dependence of air kerma or dose rate of the primary radiation beam is not obvious for security scanners of cargo and people in which there is relative motion between a collimated source and the person or object being imaged. To study this problem, one fixed line source and three moving-source scan-geometry cases are considered, each characterized by radiation emanating perpendicular to an axis. The cases are 1) a stationary line source of radioactive material, e.g., contaminated solution in a pipe; 2) a moving, uncollimated point source of radiation that is shuttered or off when it is stationary; 3) a moving, collimated point source of radiation that is shuttered or off when it is stationary; and 4) a translating, narrow "pencil" beam emanating in a flying-spot, raster pattern. Each case is considered for short and long distances compared to the line source length or path traversed by a moving source. The short distance model pertains mostly to dose to objects being scanned and personnel associated with the screening operation. The long distance model pertains mostly to potential dose to bystanders. For radionuclide sources, the number of nuclear transitions that occur a) per unit length of a line source or b) during the traversal of a point source is a unifying concept. The "universal source strength" of air kerma rate at 1 m from the source can be used to describe x-ray machine or radionuclide sources. For many cargo and people scanners with highly collimated fan or pencil beams, dose varies as the inverse of the distance from the source in the near field and with the inverse square of the distance beyond a critical radius. Ignoring the inverse square dependence and using inverse distance dependence is conservative in the sense of tending to overestimate dose.

  5. Primary Beam Air Kerma Dependence on Distance from Cargo and People Scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.; Cerra, Frank

    The distance dependence of air kerma or dose rate of the primary radiation beam is not obvious for security scanners of cargo and people in which there is relative motion between a collimated source and the person or object being imaged. To study this problem, one fixed line source and three moving-source scan-geometry cases are considered, each characterized by radiation emanating perpendicular to an axis. The cases are 1) a stationary line source of radioactive material, e.g., contaminated solution in a pipe; 2) a moving, uncollimated point source of radiation that is shuttered or off when it is stationary; 3)more » a moving, collimated point source of radiation that is shuttered or off when it is stationary; and 4) a translating, narrow “pencil” beam emanating in a flying-spot, raster pattern. Each case is considered for short and long distances compared to the line source length or path traversed by a moving source. The short distance model pertains mostly to dose to objects being scanned and personnel associated with the screening operation. The long distance model pertains mostly to potential dose to bystanders. For radionuclide sources, the number of nuclear transitions that occur a) per unit length of a line source, or b) during the traversal of a point source, is a unifying concept. The “universal source strength” of air kerma rate at a meter from the source can be used to describe x-ray machine or radionuclide sources. For many cargo and people scanners with highly collimated fan or pencil beams, dose varies as the inverse of the distance from the source in the near field and with the inverse square of the distance beyond a critical radius. Ignoring the inverse square dependence and using inverse distance dependence is conservative in the sense of tending to overestimate dose.« less

  6. Laser beam alignment and profilometry using diagnostic fluorescent safety mirrors

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-03-01

    There are a wide range of laser beam delivery systems in use for various purposes; including industrial and medical applications. Virtually all such beam delivery systems for practical purposes employ optical systems comprised of mirrors and lenses to shape, focus and guide the laser beam down to the material being processed. The goal of the laser beam delivery is to set the optimum parameters and to "fold" the beam path to reduce the mechanical length of the optical system, thereby allowing a physically compact system. In many cases, even a compact system can incorporate upwards of six mirrors and a comparable number of lenses all needing alignment so they are collinear. One of the major requirements for use of such systems in industry is a method of safe alignment. The alignment process requires that the aligner determine where the beam strikes each element. The aligner should also preferably be able to determine the shape or pattern of the laser beam at that point and its relative power. These alignments are further compounded in that the laser beams generated are not visible to the unaided human eye. Such beams are also often of relatively high power levels, and are thereby a significant hazard to the eyes of the aligner. Obvious an invisible beam makes it nearly impossible to align laser system without some form of optical assistance. The predominant method of visually aligning the laser beam delivery is the use of thermal paper, paper cards or fluorescing card material. The use of paper products which have limited power handling capability or coated plastics can produce significant debris and contaminants within the beam line that ultimately damage the optics. The use of the cards can also create significant laser light scatter jeopardizing the safety of the person aligning the system. This paper covers a new safety mirror design for use with at various UV and Near IR wavelengths (193 nm to 1064 nm) within laser beam delivery systems and how its use can

  7. An electron cyclotron resonance ion source based low energy ion beam platform.

    PubMed

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.

  8. Definition of Beam Diameter for Electron Beam Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgardt, Paul; Pierce, Stanley W.; Dvornak, Matthew John

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machinemore » (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.« less

  9. Adaptive beam tracking and steering via electrowetting-controlled liquid prism

    NASA Astrophysics Data System (ADS)

    Cheng, Jiangtao; Chen, Chung-Lung

    2011-11-01

    We report an electrowetting-controlled optofluidic system for adaptive beam tracking and agile steering. With two immiscible fluids in a transparent cell, we can actively control the contact angle along the fluid-fluid-solid tri-junction line and hence the orientation of the fluid-fluid interface via electrowetting. The naturally formed meniscus between the two liquids can function as an optical prism. We have fabricated a liquid prism module with an aperture size of 10 mm × 10mm. With 1 wt. % KCl and 1 wt. % Sodium Dodecyl Sulfate added into deionized water, the orientation of the water-silicone oil interface has been modulated between -26° and 26° that can deflect and steer beam within the incidence angle of 0°-15°. The wide-range beam tracking and steering enables the liquid prism work as an electrowetting solar cell.

  10. Successful Beam-Beam Tuneshift Compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishofberger, Kip Aaron

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (T EL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operationsmore » with inclusion of the T EL are presented and analyzed. It is shown that the T EL provides a way to shatter the previously inescapable beam-beam limit.« less

  11. Tracking of an electron beam through the solar corona with LOFAR

    NASA Astrophysics Data System (ADS)

    Mann, G.; Breitling, F.; Vocks, C.; Aurass, H.; Steinmetz, M.; Strassmeier, K. G.; Bisi, M. M.; Fallows, R. A.; Gallagher, P.; Kerdraon, A.; Mackinnon, A.; Magdalenic, J.; Rucker, H.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Best, P.; Bîrzan, L.; Bonafede, A.; Broderick, J. W.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Corstanje, A.; Gasperin, F. de; Geus, E. de; Deller, A.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; van Haarlem, M.; Hassall, T. E.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Hörandel, J.; Horneffer, A.; Juette, E.; Karastergiou, A.; Klijn, W. F. A.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Rafferty, D.; Reich, W.; Röttgering, H.; Scaife, A. M. M.; Schwarz, D. J.; Serylak, M.; Sluman, J.; Smirnov, O.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, J. A.

    2018-03-01

    The Sun's activity leads to bursts of radio emission, among other phenomena. An example is type-III radio bursts. They occur frequently and appear as short-lived structures rapidly drifting from high to low frequencies in dynamic radio spectra. They are usually interpreted as signatures of beams of energetic electrons propagating along coronal magnetic field lines. Here we present novel interferometric LOFAR (LOw Frequency ARray) observations of three solar type-III radio bursts and their reverse bursts with high spectral, spatial, and temporal resolution. They are consistent with a propagation of the radio sources along the coronal magnetic field lines with nonuniform speed. Hence, the type-III radio bursts cannot be generated by a monoenergetic electron beam, but by an ensemble of energetic electrons with a spread distribution in velocity and energy. Additionally, the density profile along the propagation path is derived in the corona. It agrees well with three-fold coronal density model by (1961, ApJ, 133, 983).

  12. NONLINEAR AND FIBER OPTICS: Transmission of submillimeter laser beams along hollow-core dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Epishin, V. A.; Maslov, Vyacheslav A.; Ryabykh, V. N.; Svich, V. A.; Topkov, A. N.

    1990-04-01

    Theoretical and experimental investigations are reported of the propagation of axisymmetric linearly polarized laser radiation beams along hollow-core dielectric waveguides. The conditions for transmission with minimum distortion of the complex amplitude and minimum excitation losses are established for beams in the form of Gaussian-Laguerre modes. A scaling relationship is obtained for the attenuation constant of the EH11 mode in glass waveguides acting as transmission lines and for laser cells handling submillimeter wavelengths.

  13. Reflection of a TE-polarised Gaussian beam from a layered structure under conditions of resonance excitation of waveguide modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, V I; Marusin, N V; Molchanova, S I

    2014-11-30

    The problem of reflection of a TE-polarised Gaussian light beam from a layered structure under conditions of resonance excitation of waveguide modes using a total internal reflection prism is considered. Using the spectral approach we have derived the analytic expressions for the mode propagation lengths, widths and depths of m-lines (sharp and narrow dips in the angular dependence of the specular reflection coefficient), depending on the structure parameters. It is shown that in the case of weak coupling, when the propagation lengths l{sub m} of the waveguide modes are mainly determined by the extinction coefficient in the film, the depthmore » of m-lines grows with the mode number m. In the case of strong coupling, when l{sub m} is determined mainly by the radiation of modes into the prism, the depth of m-lines decreases with increasing m. The change in the TE-polarised Gaussian beam shape after its reflection from the layered structure is studied, which is determined by the energy transfer from the incident beam into waveguide modes that propagate along the structure by the distance l{sub m}, are radiated in the direction of specular reflection and interfere with a part of the beam reflected from the working face of the prism. It is shown that this interference can lead to the field intensity oscillations near m-lines. The analysis of different methods for determining the parameters of thin-film structures is presented, including the measurement of mode angles θ{sub m} and the reflected beam shape. The methods are based on simultaneous excitation of a few waveguide modes in the film with a strongly focused monochromatic Gaussian beam, the waist width of which is much smaller than the propagation length of the modes. As an example of using these methods, the refractive index and the thickness of silicon monoxide film on silica substrate at the wavelength 633 nm are determined. (fibre and integrated-optical structures)« less

  14. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complementmore » the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.« less

  15. Difference in the relative biological effectiveness and DNA damage repair processes in response to proton beam therapy according to the positions of the spread out Bragg peak.

    PubMed

    Hojo, Hidehiro; Dohmae, Takeshi; Hotta, Kenji; Kohno, Ryosuke; Motegi, Atsushi; Yagishita, Atsushi; Makinoshima, Hideki; Tsuchihara, Katsuya; Akimoto, Tetsuo

    2017-07-03

    Cellular responses to proton beam irradiation are not yet clearly understood, especially differences in the relative biological effectiveness (RBE) of high-energy proton beams depending on the position on the Spread-Out Bragg Peak (SOBP). Towards this end, we investigated the differences in the biological effect of a high-energy proton beam on the target cells placed at different positions on the SOBP, using two human esophageal cancer cell lines with differing radiosensitivities. Two human esophageal cancer cell lines (OE21, KYSE450) with different radiosensitivities were irradiated with a 235-MeV proton beam at 4 different positions on the SOBP (position #1: At entry; position #2: At the proximal end of the SOBP; position #3: Center of the SOBP; position #4: At the distal end of the SOBP), and the cell survivals were assessed by the clonogenic assay. The RBE 10 for each position of the target cell lines on the SOBP was determined based on the results of the cell survival assay conducted after photon beam irradiation. In addition, the number of DNA double-strand breaks was estimated by quantitating the number of phospho-histone H2AX (γH2AX) foci formed in the nuclei by immunofluorescence analysis. In regard to differences in the RBE of a proton beam according to the position on the SOBP, the RBE value tended to increase as the position on the SOBP moved distally. Comparison of the residual number of γH2AX foci at the end 24 h after the irradiation revealed, for both cell lines, a higher number of foci in the cells irradiated at the distal end of the SOPB than in those irradiated at the proximal end or center of the SOBP. The results of this study demonstrate that the RBE of a high-energy proton beam and the cellular responses, including the DNA damage repair processes, to high-energy proton beam irradiation, differ according to the position on the SOBP, irrespective of the radiosensitivity levels of the cell lines.

  16. Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition.

    PubMed

    Pavel, Nicolaie; Tsunekane, Masaki; Taira, Takunori

    2011-05-09

    A passively Q-switched Nd:YAG/Cr(4+):YAG micro-laser with three-beam output was realized. A single active laser source made of a composite, all-ceramics Nd:YAG/Cr(4+):YAG monolithic cavity was pumped by three independent lines. At 5 Hz repetition rate, each line delivered laser pulses with ~2.4 mJ energy and 2.8-MW peak power. The M(2) factor of a laser beam was 3.7, and stable air breakdowns were realized. The increase of pump repetition rate up to 100 Hz improved the laser pulse energy by 6% and required ~6% increase of the pump pulse energy. Pulse timing of the laser-array beams can by adjusted by less than 5% tuning of an individual line pump energy, and therefore simultaneous multi-point ignition is possible. This kind of laser can be used for multi-point ignition of an automobile engine. © 2011 Optical Society of America

  17. Electron lenses for head-on beam-beam compensation in RHIC

    DOE PAGES

    Gu, X.; Fischer, W.; Altinbas, Z.; ...

    2017-02-17

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  18. Electron lenses for head-on beam-beam compensation in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Fischer, W.; Altinbas, Z.

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  19. ATTO SECOND ELECTRON BEAMS GENERATION AND CHARACTERIZATION EXPERIMENT AT THE ACCELERATOR TEST FACILITY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZOLOTOREV, M.; ZHOLENTS, A.; WANG, X.J.

    2002-02-01

    We are proposing an Atto-second electron beam generation and diagnostics experiment at the Brookhaven Accelerator Test facility (ATF) using 1 {micro}m Inverse Free Electron Laser (IFEL). The proposed experiment will be carried out by an BNL/LBNL collaboration, and it will be installed at the ATF beam line II. The proposed experiment will employ a one-meter long undulator with 1.8 cm period (VISA undulator). The electron beam energy will be 63 MeV with emittance less than 2 mm-mrad and energy spread less than 0.05%. The ATF photocathode injector driving laser will be used for energy modulation by Inverse Free Electron Lasermore » (IFEL). With 10 MW laser peak power, about 2% total energy modulation is expected. The energy modulated electron beam will be further bunched through either a drift space or a three magnet chicane into atto-second electron bunches. The attosecond electron beam bunches will be analyzed using the coherent transition radiation (CTR).« less

  20. Beam characteristics of energy-matched flattening filter free beams.

    PubMed

    Paynter, D; Weston, S J; Cosgrove, V P; Evans, J A; Thwaites, D I

    2014-05-01

    Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare "matched" FFF beams to both "unmatched" FFF beams and flattened beams to determine the benefits of matching beams. For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field. The PDDs of the FFF beams showed

  1. Parametric study of beam refraction problems across laser anemometer windows

    NASA Technical Reports Server (NTRS)

    Owen, A. K.

    1986-01-01

    The experimenter is often required to view flows through a window with a different index of refraction than either the medium being observed or the medium that the laser anemometer is immersed in. The refraction that occurs at the window surfaces may lead to undesirable changes in probe volume position or beam crossing angle and can lead to partial or complete beam uncrossing. This report describes the results of a parametric study of this problem using a ray tracing technique to predict these changes. The windows studied were a flat plate and a simple cyclinder. For the flat-plate study: (1) surface thickness, (2) beam crossing angle, (3) bisecting line - surface normal angle, and (4) incoming beam plane surface orientation were varied. For the cylindrical window additional parameters were also varied: (1) probe volume immersion, (2) probe volume off-radial position, and (3) probe volume position out of the R-theta plane of the lens. A number of empirical correlations were deduced to aid the interested reader in determining the movement, uncrossing, and change in crossing angle for a particular situation.

  2. Development of bunch shape monitor for high-intensity beam on the China ADS proton LINAC Injector II

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyu; Wu, Junxia; Du, Ze; Zhang, Yong; Xue, Zongheng; Xie, Hongming; Wei, Yuan; Jing, Long; Jia, Huan

    2018-05-01

    The development, performance, and testing of the longitudinal bunch shape monitor, namely, the Fast Faraday Cup (FFC), are presented in this paper. The FFC is an invasive instrument controlled by a stepper motor, and its principle of operation is based on a strip line structure. The longitudinal bunch shape was determined by sampling a small part of the beam hitting the strip line through a 1-mm hole. The rise time of the detector reached 24 ps. To accommodate experiments that utilize high-intensity beams, the materials of the bunch shape monitor were chosen to sustain high temperatures. Water cooling was also integrated in the detector system to enhance heat transfer and prevent thermal damage. We also present an analysis of the heating caused by the beam. The bunch shape monitor has been installed and commissioned at the China ADS proton LINAC Injector II.

  3. Comparative study of active plasma lenses in high-quality electron accelerator transport lines

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Benedetti, C.; Schroeder, C. B.; Isono, F.; Tsai, H.-E.; Geddes, C. G. R.; Leemans, W. P.

    2018-05-01

    Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this manuscript, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam. An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.

  4. Comparative study of active plasma lenses in high-quality electron accelerator transport lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Tilborg, J.; Barber, S. K.; Benedetti, C.

    Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this paper, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam.more » An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Finally, optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.« less

  5. Comparative study of active plasma lenses in high-quality electron accelerator transport lines

    DOE PAGES

    van Tilborg, J.; Barber, S. K.; Benedetti, C.; ...

    2018-03-13

    Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this paper, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam.more » An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Finally, optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.« less

  6. Dose computation for therapeutic electron beams

    NASA Astrophysics Data System (ADS)

    Glegg, Martin Mackenzie

    three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).

  7. Beam wander of dark hollow, flat-topped and annular beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, H. T.; Çil, C. Z.

    2008-11-01

    Benefiting from the earlier derivations for the Gaussian beam, we formulate beam wander for dark hollow (DH) and flat-topped (FT) beams, also covering the annular Gaussian (AG) beam as a special case. Via graphical illustrations, beam wander variations of these beams are analyzed and compared among themselves and to the fundamental Gaussian beam against changes in propagation length, amplitude factor, source size, wavelength of operation, inner and outer scales of turbulence. These comparisons show that in relation to the fundamental Gaussian beam, DH and FT beams will exhibit less beam wander, particularly at small primary beam source sizes, lower amplitude factors of the secondary beam and higher beam orders. Furthermore, DH and FT beams will continue to preserve this advantageous position all throughout the considered range of wavelengths, inner and outer scales of turbulence. FT beams, in particular, are observed to have the smallest beam wander values among all, up to certain source sizes.

  8. Ion Beam Neutralization Using FEAs and Mirror Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Nicolaescu, Dan; Sakai, Shigeki; Gotoh, Yasuhito; Ishikawa, Junzo

    2011-01-01

    Advanced implantation systems used for semiconductor processing require transportation of ion beams which are quasi-parallel and have low energy, such as (11B+,31P+,75As+) with energy in the range Eion = 200-1000 eV. Compensation of ion beam divergence may be obtained through electron injection and confinement in regions of non-uniform magnetic fields. Field emitter arrays with special properties are used as electron sources. The present study shows that electron confinement takes place in regions of gradient magnetic field, such as nearby analyzing, collimator and final energy magnets of the ion beam line. Modeling results have been obtained using Opera3D/Tosca/Scala. In regions of gradient magnetic field, electrons have helical trajectories which are confined like a cloud inside curved "magnetic bottles". An optimal range of positions with respect to the magnet for placing electron sources in gradient magnetic field has been shown to exist.

  9. Lightning propagation and flash density in squall lines as determined with radar

    NASA Technical Reports Server (NTRS)

    Mazur, V.; Rust, W. D.

    1983-01-01

    Lightning echo rise times and range-time variations due to discharge propagation are determined using S and L band radars, and the evolution of precipitation reflectivity and the associated lightning activity in squall lines is investigated using VHF and L band radars. The rise time of radar echoes can be explained by ionized channel propagation through the radar beams. Speeds of at least 250,000 m/s are found from measurements of the radial velocity of streamer propagation along the antenna beam. The range-time variations in lightning echoes indicate that either new ionization occurs as streamers develop into different parts of the cloud, channel delay occurs during which adequate ionization exists for radar detection, or continuing current occurs. Determinations of the lightning flash density for a squall line in the U.S. show that the maximum lightning density tends to be near the leading edge of the precipitation cores in developing cells. Long discharges are produced as a cell in the squall line develops and the total lightning density increases, although short discharges predominate. As the cell dissipates, short flashes diminish or cease and the long flashes dominate the lightning activity.

  10. Experimental Study of Coherent Synchrotron Radiation in the Emittance Exchange Line at the A0-Photoinjector

    NASA Astrophysics Data System (ADS)

    Thangaraj, Jayakar C. T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A. H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y. E.; Church, M.; Piot, P.

    2010-11-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at the A0 photoinjector.

  11. Enhanced coherent terahertz beam with a photoconductive antenna containing a chaotic shape electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Dong Ho; Kim, Christopher; Graber, Benjamin

    2014-03-01

    Photoconductive antenna is one of the most popular methods to produce a broadband terahertz beam. Our recent experiments indicate that a photoconductive antenna containing a pair of parallel micro-strip-line electrodes produces both incoherent and coherent terahertz beam. When we drive the antenna with a low bias voltage and a weak femto-second laser power, it produces mostly coherent terahertz beam. However, as the bias voltage and/or the femto-second laser power increase, the incoherent terahertz beam strength increases exponentially with the bias voltage.[1] When the bias voltage and/or the femto-second laser power exceeds critical values, heat associated with the incoherent beam eventually leads to a catastrophic antenna failure, resulting in a permanent damage on the antenna.[2] In order to improve our photoconductive antenna we have implemented a chaotic geometry in the photoconductive antenna's electrodes. Our experimental results show that the new antenna produces substantially more coherent terahertz beam and much less incoherent terahertz beam. We will present the details of our experimental results and discuss the merits of new antenna design. We will also examine some theory to understand our experimental results. Supported by DTRA.

  12. A new small-footprint external-beam PIXE facility for cultural heritage applications using pulsed proton beams

    NASA Astrophysics Data System (ADS)

    Vadrucci, M.; Bazzano, G.; Borgognoni, F.; Chiari, M.; Mazzinghi, A.; Picardi, L.; Ronsivalle, C.; Ruberto, C.; Taccetti, F.

    2017-09-01

    In the framework of the COBRA project, elemental analyses of cultural heritage objects based on the particle induced X-ray emission (PIXE) are planned in a collaboration between the APAM laboratory of ENEA-Frascati and the LABEC laboratory of INFN in Florence. With this aim a 3-7 MeV pulsed proton beam, driven by the injector of the protontherapy accelerator under construction for the TOP-IMPLART project, will be used to demonstrate the feasibility of the technique with a small-footprint pulsed accelerator to Italian small and medium enterprises interested in the composition analysis of ancient artifacts. The experimental set-up for PIXE analysis on the TOP-IMPLART machine consists of a modified assembly of the vertical beam line usually dedicated to radiobiology experiments: the beam produced by the injector (RFQ + DTL, a PL7 ACCSYSHITACHI model) is bent to 90° by a magnet, is collimated by a 300 μm aperture inserted in the end nozzle and extracted into ambient pressure by an exit window consisting of a Upilex foil 7.5 μm thick. The beam is pulsed with a variable pulse duration of 20-100 μs and a repetition rate variable from 10 to 100 Hz. The X-ray detection system is based on a Ketek Silicon Drift Detector (SDD) with 7 mm2 active area and 450 μm thickness, with a thin Beryllium entrance window (8 μm). The results of the calibration of this new PIXE set-up using thick target standards and of the analysis of the preliminary measurements on pigments are presented.

  13. Synchronous acceleration with tapered dielectric-lined waveguides

    NASA Astrophysics Data System (ADS)

    Lemery, F.; Floettmann, K.; Piot, P.; Kärtner, F. X.; Aßmann, R.

    2018-05-01

    We present a general concept to accelerate nonrelativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program astra and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100 MV /m . Numerical simulations indicate that a ˜200 -keV electron beam can be accelerated to an energy of ˜10 MeV over ˜10 cm with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.

  14. Plasma heating, electric fields and plasma flow by electron beam ionospheric injection

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Erickson, K. N.

    1990-01-01

    The electric fields and the floating potentials of a Plasma Diagnostics Payload (PDP) located near a powerful electron beam injected from a large sounding rocket into the auroral zone ionosphere have been studied. As the PDP drifted away from the beam laterally, it surveyed a region of hot plasma extending nearly to 60 m radius. Large polarization electric fields transverse to B were imbedded in this hot plasma, which displayed large ELF wave variations and also an average pattern which has led to a model of the plasma flow about the negative line potential of the beam resembling a hydrodynamic vortex in a uniform flow field. Most of the present results are derived from the ECHO 6 sounding rocket mission.

  15. Graphene as discharge layer for electron beam lithography on insulating substrate

    NASA Astrophysics Data System (ADS)

    Liu, Junku; Li, Qunqing; Ren, Mengxin; Zhang, Lihui; Chen, Mo; Fan, Shoushan

    2013-09-01

    Charging of insulating substrates is a common problem during Electron Beam lithography (EBL), which deflects the beam and distorts the pattern. A homogeneous, electrically conductive, and transparent graphene layer is used as a discharge layer for EBL processes on insulating substrates. The EBL resolution is improved compared with the metal discharge layer. Dense arrays of holes with diameters of 50 nm and gratings with line/space of 50/30 nm are obtained on quartz substrate. The pattern placement errors and proximity effect are suppressed over a large area and high quality complex nanostructures are fabricated using graphene as a conductive layer.

  16. Selective Isobar Suppression for Accelerator Mass Spectrometry and Radioactive Ion Beam Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galindo-Uribarri, Alfredo; Havener, Charles C; Lewis, Thomas L.

    2010-01-01

    Several applications of AMS will benefit from pushing further the detection limits of AMS isotopes. A new method of selective isobar suppression by photodetachment in a radio-frequency quadrupole ion cooler is being developed at HRIBF with a two-fold purpose: (1) increasing the AMS sensitivity for certain isotopes of interest and (2) purifying radioactive ion beams for nuclear science. The potential of suppressing the 36S contaminants in a 36Cl beam using this method has been explored with stable S- and Cl- ions and a Nd:YLF laser. In the study, the laser beam was directed along the experiment's beam line and throughmore » a RF quadrupole ion cooler. Negative 32S and 35Cl ions produced by a Cs sputter ion source were focused into the ion cooler where they were slowed by collisions with He buffer gas; this increased the interaction time between the negative ion beam and the laser beam. As a result, suppression of S- by a factor of 3000 was obtained with about 2.5 W average laser power in the cooler while no reduction in Cl- current was observed.« less

  17. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    PubMed

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  18. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    PubMed Central

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-01-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. Inmost cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  19. Digital video system for on-line portal verification

    NASA Astrophysics Data System (ADS)

    Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott

    1990-07-01

    A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.

  20. Beam-width spreading of vortex beams in free space

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Li, Jinhong; Duan, Meiling

    2018-01-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.