Sample records for accumbal dopamine release

  1. Concomitant Release of Ventral Tegmental Acetylcholine and Accumbal Dopamine by Ghrelin in Rats

    PubMed Central

    Jerlhag, Elisabet; Janson, Anna Carin; Waters, Susanna; Engel, Jörgen A.

    2012-01-01

    Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg) to the dopaminergic cells of the ventral tegmental area (VTA) and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.). Ghrelin receptors (GHS-R1A) are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg) to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating. PMID:23166710

  2. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference.

    PubMed

    Jerlhag, Elisabet; Egecioglu, Emil; Dickson, Suzanne L; Engel, Jörgen A

    2010-09-01

    Recently we demonstrated that genetic or pharmacological suppression of the central ghrelin signaling system, involving the growth hormone secretagogue receptor 1A (GHS-R1A), lead to a reduced reward profile from alcohol. As the target circuits for ghrelin in the brain include a mesolimbic reward pathway that is intimately associated with reward-seeking behaviour, we sought to determine whether the central ghrelin signaling system is required for reward from drugs of abuse other than alcohol, namely cocaine or amphetamine. We found that amphetamine-as well as cocaine-induced locomotor stimulation and accumbal dopamine release were reduced in mice treated with a GHS-R1A antagonist. Moreover, the ability of these drugs to condition a place preference was also attenuated by the GHS-R1A antagonist. Thus GHS-R1A appears to be required not only for alcohol-induced reward, but also for reward induced by psychostimulant drugs. Our data suggest that the central ghrelin signaling system constitutes a novel potential target for treatment of addictive behaviours such as drug dependence.

  4. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro.

    PubMed

    Yavas, Ersin; Young, Andrew M J

    2017-02-15

    The N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine, induces behavioral changes in rodents mimicking symptoms of schizophrenia, possibly mediated through dysregulation of glutamatergic control of mesolimbic dopamine release. We tested the hypothesis that NMDA receptor activation modulates accumbens dopamine release, and that phencyclidine pretreatment altered this modulation. NMDA caused a receptor-specific, dose-dependent decrease in electrically stimulated dopamine release in nucleus accumbens brain slices. This decrease was unaffected by picrotoxin, making it unlikely to be mediated through GABAergic neurones, but was decreased by the metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-sulfonophenylglycine, indicating that NMDA activates mechanisms controlled by these receptors to decrease stimulated dopamine release. The effect of NMDA was unchanged by in vivo pretreatment with phencyclidine (twice daily for 5 days), with a washout period of at least 7 days before experimentation, which supports the hypothesis that there is no enduring direct effect of PCP at NMDA receptors after this pretreatment procedure. We propose that NMDA depression of accumbal dopamine release is mediated by metabotropic glutamate receptors located pre- or perisynaptically, and suggest that NMDA evoked increased extrasynaptic spillover of glutamate is sufficient to activate these receptors that, in turn, inhibit dopamine release. Furthermore, we suggest that enduring functional changes brought about by subchronic phencyclidine pretreatment, modeling deficits in schizophrenia, are downstream effects consequent on chronic blockade of NMDA receptors, rather than direct effects on NMDA receptors themselves.

  5. Sub-second changes in accumbal dopamine during sexual behavior in male rats.

    PubMed

    Robinson, D L; Phillips, P E; Budygin, E A; Trafton, B J; Garris, P A; Wightman, R M

    2001-08-08

    Transient (200--900 ms), high concentrations (200--500 nM) of dopamine, measured using fast-scan cyclic voltammetry, occurred in the nucleus accumbens core of male rats at the presentation of a receptive female. Additional dopamine signals were observed during subsequent approach behavior. Background-subtracted cyclic voltammograms of the naturally-evoked signals matched those of electrically-evoked dopamine measured at the same recording sites. Administration of nomifensine amplified natural and evoked dopamine release, and increased the frequency of detectable signals. While gradual changes in dopamine concentration during sexual behavior have been well established, these findings dramatically improve the time resolution. The observed dopamine transients, probably resulting from neuronal burst firing, represent the first direct correlation of dopamine with sexual behavior on a sub-second time scale.

  6. The mGluR5 antagonist MPEP elevates accumbal dopamine and glycine levels; interaction with strychnine-sensitive glycine receptors.

    PubMed

    Chau, PeiPei; Söderpalm, Bo; Ericson, Mia

    2011-10-01

    Studies have indicated that the metabotropic glutamate receptor 5 (mGluR5) antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) decreases ethanol self-administration, and the same receptor type was also suggested to be involved in the mechanism of action of the anti-craving substance acamprosate. Our previous research suggested that glycine receptors (GlyRs) in the nucleus accumbens (nAc) play a major part in mediating the dopamine-elevating properties of ethanol and are highly involved in the ethanol intake-reducing effect of acamprosate. The aim of this study was to examine if modulation of nAc dopamine via mGluR5 antagonism or GlyR agonism is a linked or separated phenomena. The extracellular levels of dopamine as well as of the GlyR ligands, glycine, taurine and β-alanine were measured in the nAc by means of microdialysis after local perfusion of MPEP (100 or 500 µM) with or without pre-treatment with strychnine. MPEP increased dopamine levels, an effect that was blocked by pre-treatment with strychnine. In addition, the higher MPEP concentration increased glycine output, whereas no alterations of taurine or β-alanine were observed. These results indicate a relationship between the glutamatergic and glycinergic transmitter systems in regulating dopamine output, possibly via alteration of extracellular glycine levels. Taken together with our previous data demonstrating the importance of accumbal GlyRs both in ethanol-induced elevation of nAc dopamine and in ethanol consumption, it is plausible that the effects of MPEP treatment, on dopamine output and on ethanol intake, may be mediated via interaction with the same neuronal circuitry that previously has been demonstrated for ethanol, taurine and acamprosate. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  7. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    PubMed

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  8. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release

    PubMed Central

    Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.

    2015-01-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081

  9. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    PubMed Central

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  10. Corticotropin-releasing hormone and dopamine release in healthy individuals.

    PubMed

    Payer, Doris; Williams, Belinda; Mansouri, Esmaeil; Stevanovski, Suzanna; Nakajima, Shinichiro; Le Foll, Bernard; Kish, Stephen; Houle, Sylvain; Mizrahi, Romina; George, Susan R; George, Tony P; Boileau, Isabelle

    2017-02-01

    Corticotropin-releasing hormone (CRH) is a key component of the neuroendocrine response to stress. In animal models, CRH has been shown to modulate dopamine release, and this interaction is believed to contribute to stress-induced relapse in neuropsychiatric disorders. Here we investigated whether CRH administration induces dopamine release in humans, using positron emission tomography (PET). Eight healthy volunteers (5 female, 22-48 years old) completed two PET scans with the dopamine D 2/3 receptor radioligand [ 11 C]-(+)-PHNO: once after saline injection, and once after injection of corticorelin (synthetic human CRH). We also assessed subjective reports and measured plasma levels of endocrine hormones (adrenocorticotropic hormone and cortisol). Relative to saline, corticorelin administration decreased binding of the D 2/3 PET probe [ 11 C]-(+)-PHNO, suggesting dopamine release. Endocrine stress markers were also elevated, in line with activation of the hypothalamic-pituitary-adrenal axis, but we detected no changes in subjective ratings. Preliminary results from this proof-of-concept study suggests that CRH challenge in combination with [ 11 C]-(+)-PHNO PET may serve as an assay of dopamine release, presenting a potential platform for evaluating CRH/dopamine interactions in neuropsychiatric disorders and CRH antagonists as potential treatment avenues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of 18-methoxycoronaridine on ghrelin-induced increases in sucrose intake and accumbal dopamine overflow in female rats

    PubMed Central

    Taraschenko, Olga D.; Hathaway, Ethan R.; Vincent, Melanie Y.; Glick, Stanley D.

    2013-01-01

    Rationale 18-Methoxycoronaridine (18-MC), a selective antagonist of α3β4 nicotinic receptors, has been previously shown, in rats, to reduce the self-administration of several drugs of abuse, reduce operant responding for sucrose, and prevent the development of sucrose-induced obesity. It has become increasingly apparent that there is a significant overlap between the systems regulating drug reward and food intake, therefore, we investigated whether 18-MC might modulate the effects of ghrelin, one of several orexigenic peptides recently implicated in both feeding and drug reward. Objectives In female Sprague–Dawley rats, we determined whether acute 18-MC treatment would reduce both ghrelin-induced increases in sucrose intake and ghrelin-elicited increases in accumbal dopamine levels. Results Pretreatment with 18-MC (20 mg/kg, i.p.), given prior to the administration of ghrelin (1 µg, lateral ventricle), blocked ghrelin-induced increases in sucrose (5%) intake in a two-bottle open access paradigm. Using in vivo microdialysis, 18-MC (both 20 and 40 mg/kg) prevented ghrelin (2 µg, intraventral tegmental area)-induced increases in extracellular dopamine in the nucleus accumbens. 18-MC had no effect on deposition of fat or on serum levels of glucose, triglycerides, and cholesterol in ghrelin-treated rats. Conclusions The present results suggest that one potential mechanism by which 18-MC exerts its effects on palatable food consumption is via modulation of ghrelin’s effects. PMID:21210086

  12. Accumbal strychnine-sensitive glycine receptors: an access point for ethanol to the brain reward system.

    PubMed

    Molander, Anna; Söderpalm, Bo

    2005-01-01

    Ethanol (EtOH), like other drugs of abuse, increases extracellular dopamine (DA) levels in the nucleus accumbens (nAc) of the brain reward system, an effect that may be of importance for alcohol addiction. How this DA increase is produced is not fully understood, although previous studies from the present laboratories indicate that nicotinic acetylcholine receptors in the ventral tegmental area play an important role in mediating this effect. Furthermore, activation of these receptors may be secondary to some priming effect produced by EtOH in the nAc. We recently demonstrated that strychnine-sensitive glycine receptors (GlyRs) are present in the nAc and that they are involved in regulating extracellular DA levels. Here we examine the tentative role of these accumbal GlyRs in the above-mentioned priming mechanism of EtOH. In vivo microdialysis (coupled to high pressure liquid chromatography with electrochemical detection) and reversed microdialysis, in awake, freely moving adult male Wistar rats. Local perfusion of strychnine decreased accumbal DA levels per se and completely prevented the increase of accumbal DA levels after both local and systemic EtOH administration. Accumbal perfusion of the GlyR agonist glycine instead increased DA levels in a subpopulation of rats and prevented the EtOH-induced increase after local but not systemic EtOH in all animals. The present results suggest that GlyRs in the nAc might constitute targets for EtOH in its mesolimbic DA-activating effect. Gene polymorphism and drug developmental studies that focus on this receptor population and its relation to alcohol dependence are warranted.

  13. A transient dopamine signal encodes subjective value and causally influences demand in an economic context

    PubMed Central

    Schelp, Scott A.; Pultorak, Katherine J.; Rakowski, Dylan R.; Gomez, Devan M.; Krzystyniak, Gregory; Das, Raibatak; Oleson, Erik B.

    2017-01-01

    The mesolimbic dopamine system is strongly implicated in motivational processes. Currently accepted theories suggest that transient mesolimbic dopamine release events energize reward seeking and encode reward value. During the pursuit of reward, critical associations are formed between the reward and cues that predict its availability. Conditioned by these experiences, dopamine neurons begin to fire upon the earliest presentation of a cue, and again at the receipt of reward. The resulting dopamine concentration scales proportionally to the value of the reward. In this study, we used a behavioral economics approach to quantify how transient dopamine release events scale with price and causally alter price sensitivity. We presented sucrose to rats across a range of prices and modeled the resulting demand curves to estimate price sensitivity. Using fast-scan cyclic voltammetry, we determined that the concentration of accumbal dopamine time-locked to cue presentation decreased with price. These data confirm and extend the notion that dopamine release events originating in the ventral tegmental area encode subjective value. Using optogenetics to augment dopamine concentration, we found that enhancing dopamine release at cue made demand more sensitive to price and decreased dopamine concentration at reward delivery. From these observations, we infer that value is decreased because of a negative reward prediction error (i.e., the animal receives less than expected). Conversely, enhancing dopamine at reward made demand less sensitive to price. We attribute this finding to a positive reward prediction error, whereby the animal perceives they received a better value than anticipated. PMID:29109253

  14. Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens

    PubMed Central

    2017-01-01

    The release of dopamine from terminals in the NAc is regulated by a number of factors, including voltage-gated ion channels, D2-autoreceptors, and nAChRs. Cholinergic interneurons (CINs) drive dopamine release through activation of nAChRs on dopamine terminals. Using cyclic voltammetry in mouse brain slices, nAChR-dependent spontaneous dopamine transients and the mechanisms underlying the origin were examined in the NAc. Spontaneous events were infrequent (0.3 per minute), but the rate and amplitude were increased after blocking Kv channels with 4-aminopyridine. Although the firing frequency of CINs was increased by blocking glutamate reuptake with TBOA and the Sk blocker apamin, only 4-aminopyridine increased the frequency of dopamine transients. In contrast, inhibition of CIN firing with the μ/δ selective opioid [Met5]enkephalin (1 μm) decreased spontaneous dopamine transients. Cocaine increased the rate and amplitude of dopamine transients, suggesting that the activity of the dopamine transporter limits the detection of these events. In the presence of cocaine, the rate of spontaneous dopamine transients was further increased after blocking D2-autoreceptors. Blockade of muscarinic receptors had no effect on evoked dopamine release, suggesting that feedback inhibition of acetylcholine release was not involved. Thus, although spontaneous dopamine transients are reliant on nAChRs, the frequency was not strictly governed by the activity of CINs. The increase in frequency of spontaneous dopamine transients induced by cocaine was not due to an increase in cholinergic tone and is likely a product of an increase in detection resulting from decreased dopamine reuptake. SIGNIFICANCE STATEMENT The actions of dopamine in the NAc are thought to be responsible for endogenous reward and the reinforcing properties of drugs of abuse, such as psychostimulants. The present work examines the mechanisms underlying nAChR-induced spontaneous dopamine release. This study

  15. Familiar companions diminish cocaine conditioning and attenuate cocaine-stimulated dopamine release in the nucleus accumbens.

    PubMed

    Tzeng, Wen-Yu; Cherng, Chian-Fang G; Wang, Shyi-Wu; Yu, Lung

    2016-06-01

    This study aimed to assess the impact of companions on the rewarding effects of cocaine. Three cage mates, serving as companions, were housed with each experimental mouse throughout cocaine-place conditioning in a cocaine-induced conditioned place preference (CPP) paradigm using conditioning doses of 10 and 20mg/kg. The presence of companions decreased the magnitude of the CPP. At 20mg/kg, cocaine stimulated dopamine (DA) release in the nucleus accumbens as evidenced by a significant decrease in total (spontaneous and electrical stimulation-provoked) DA release in accumbal superfusate samples. The presence of companions prevented this cocaine-stimulated DA release; such a reduction in cocaine-induced DA release may account for the reduction in the magnitude of the CPP in the presence of the companions. Furthermore, cocaine pretreatment (2.5mg/kg) was found to prevent the companion-produced decreases in cocaine (10mg/kg/conditioning)-induced CPP as well as the cocaine (10mg/kg)-stimulated DA release. Moreover, the presence of methamphetamine (MA) (1mg/kg)-treated companions decreased cocaine (20mg/kg/conditioning)-induced CPP and prevented the cocaine (20mg/kg)-stimulated DA release. Finally, the presence of companions decreased the magnitude of the CPP could not seem to be accounted for by cocaine-stimulated corticosterone (CORT) release. Taken together, these results indicate that familiar companions, regardless of their pharmacological status, may exert dampening effects on CPP induced by moderate to high conditioning doses of cocaine, at least in part, by preventing cocaine-stimulated DA release in the nucleus accumbens. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area

    PubMed Central

    2015-01-01

    Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active. PMID:26084913

  17. Striatal dopamine release codes uncertainty in pathological gambling.

    PubMed

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka; Møller, Arne; Doudet, Doris Jeanne; Gjedde, Albert

    2012-10-30

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis of dopaminergic sensitivity toward uncertainty, and suggest that dopaminergic sensitivity to uncertainty is pronounced in pathological gambling, but not among non-gambling healthy controls. The findings have implications for understanding dopamine dysfunctions in pathological gambling and addictive behaviors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Neurochemical Correlates of Accumbal Dopamine D2 and Amygdaloid 5-HT1B Receptor Densities on Observational Learning of Aggression

    PubMed Central

    Suzuki, Hideo; Lucas, Louis R.

    2015-01-01

    Social learning theory postulates that individuals learn to engage in aggressive behavior through observing an aggressive social model. Prior studies have shown that repeatedly observing aggression, also called “chronic passive exposure to aggression,” changes accumbal dopamine D2 receptor (D2R) and amygdaloid 5-HT1B receptor (5-HT1BR) densities in observers. But, the association between these outcomes remains unknown. Thus, our study used a rat paradigm to comprehensively examine the linkage between aggression, D2R density in the nucleus accumbens core (AcbC) and shell (AcbSh), and 5-HT1BR density in the medial (MeA), basomedial (BMA), and basolateral (BLA) amygdala following chronic passive exposure to aggression. Male Sprague-Dawley rats (N = 72) were passively exposed to either aggression or non-aggression acutely (1 day) or chronically (23 days). When observer rats were exposed to aggression chronically, they showed increased aggressive behavior and reduced D2R density in the bilateral AcbSh. On the other hand, exposure to aggression, regardless of exposure length, increased 5-HT1BR density in the bilateral BLA. Finally, low D2R in the AcbSh significantly interacted with high 5-HT1BR density in the BLA in predicting high levels of aggression in observer rats. Our results advance our understanding of the neurobiological mechanisms for observational learning of aggression, highlighting that dopamine-serotonin interaction, or AcbSh-BLA interaction, may contribute to a risk factor for aggression in observers who chronically witness aggressive interactions. PMID:25650085

  19. The glycine reuptake inhibitor org 25935 interacts with basal and ethanol-induced dopamine release in rat nucleus accumbens.

    PubMed

    Lidö, Helga Höifödt; Stomberg, Rosita; Fagerberg, Anne; Ericson, Mia; Söderpalm, Bo

    2009-07-01

    The mesolimbic dopamine (DA) projection from the ventral tegmental area to nucleus accumbens (nAc), a central part of the reward system, is activated by ethanol (EtOH) and other drugs of abuse. We have previously demonstrated that the glycine receptor in the nAc and its amino acid agonists may be implicated in the DA activation and reinforcing properties of EtOH. We have also reported that the glycine transporter 1 inhibitor, Org 25935, produces a robust and dose-dependent decrease in EtOH consumption in Wistar rats. The present study explores the interaction between EtOH and Org 25935 with respect to DA levels in the rat nAc. The effects of Org 25935 (6 mg/kg, i.p.) and/or EtOH (2.5 g/kg, i.p.) on accumbal DA levels were examined by means of in vivo microdialysis (coupled to HPLC-ED) in freely moving male Wistar rats. The effect of Org 25935 on accumbal glycine output was also investigated. Systemic Org 25935 increased DA output in a subpopulation of rats (52% in Experiment 1 and 38% in Experiment 2). In Experiment 2, EtOH produced a significant increase in DA levels in vehicles (35%) and in Org 25935 nonresponders (19%), whereas EtOH did not further increase the DA level in rats responding to Org 25935 (2%). The same dose of Org 25935 increased glycine levels by 87% in nAc. This study demonstrates that Org 25935, probably via increased glycine levels, (i) counteracts EtOH-induced increases of accumbal DA levels and (ii) increases basal DA levels in a subpopulation of rats. The results are in line with previous findings and it is suggested that the effects observed involve interference with accumbal GlyRs and are related to the alcohol consumption modulating effect of Org 25935.

  20. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less

  1. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-11-01

    Methamphetamine's widepread abuse and concerns that it might increase Parkinson's disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [(11)C]cocaine to measure DAT, and with [(11)C]raclopride to measure dopamine release (assessed as changes in specific binding of [(11)C]raclopride between placebo and methylphenidate), which was used as a marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals

  2. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    DOE PAGES

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; ...

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less

  3. Amphetamine Elicits Opposing Actions on Readily Releasable and Reserve Pools for Dopamine

    PubMed Central

    Covey, Dan P.; Juliano, Steven A.; Garris, Paul A.

    2013-01-01

    Amphetamine, a highly addictive drug with therapeutic efficacy, exerts paradoxical effects on the fundamental communication modes employed by dopamine neurons in modulating behavior. While amphetamine elevates tonic dopamine signaling by depleting vesicular stores and driving non-exocytotic release through reverse transport, this psychostimulant also activates phasic dopamine signaling by up-regulating vesicular dopamine release. We hypothesized that these seemingly incongruent effects arise from amphetamine depleting the reserve pool and enhancing the readily releasable pool. This novel hypothesis was tested using in vivo voltammetry and stimulus trains of varying duration to access different vesicular stores. We show that amphetamine actions are stimulus dependent in the dorsal striatum. Specifically, amphetamine up-regulated vesicular dopamine release elicited by a short-duration train, which interrogates the readily releasable pool, but depleted release elicited by a long-duration train, which interrogates the reserve pool. These opposing actions of vesicular dopamine release were associated with concurrent increases in tonic and phasic dopamine responses. A link between vesicular depletion and tonic signaling was supported by results obtained for amphetamine in the ventral striatum and cocaine in both striatal sub-regions, which demonstrated augmented vesicular release and phasic signals only. We submit that amphetamine differentially targeting dopamine stores reconciles the paradoxical activation of tonic and phasic dopamine signaling. Overall, these results further highlight the unique and region-distinct cellular mechanisms of amphetamine and may have important implications for its addictive and therapeutic properties. PMID:23671560

  4. Visualizing dopamine released from living cells using a nanoplasmonic probe

    NASA Astrophysics Data System (ADS)

    Qin, W. W.; Wang, S. P.; Li, J.; Peng, T. H.; Xu, Y.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D.

    2015-09-01

    We report the development of an ultrasensitive nanoplasmonic probe for discriminative detection and imaging of dopamine released from living cells. The sensing mechanism is based on the dopamine-induced seeded-growth of Au nanoparticles (Au NPs) that leads to the shift of the plasmon band. This platform allows for the detection of dopamine with a detection limit down to 0.25 pM within 1 min. This nanoplasmonic assay is further applied to visualize the release of dopamine from living rat pheochromocytoma (PC12) cells under ATP-stimulation with dark-field microscopy (DFM). The DFM results together with real time fluorescence imaging of PC12 cells stained with the Fluo calcium indicator, suggested that ATP stimulated-release of dopamine is concomitant with the Ca2+ influx, and the influx of Ca2+ is through ATP-activated channels instead of the voltage-gated Ca2+ channel (VGC).We report the development of an ultrasensitive nanoplasmonic probe for discriminative detection and imaging of dopamine released from living cells. The sensing mechanism is based on the dopamine-induced seeded-growth of Au nanoparticles (Au NPs) that leads to the shift of the plasmon band. This platform allows for the detection of dopamine with a detection limit down to 0.25 pM within 1 min. This nanoplasmonic assay is further applied to visualize the release of dopamine from living rat pheochromocytoma (PC12) cells under ATP-stimulation with dark-field microscopy (DFM). The DFM results together with real time fluorescence imaging of PC12 cells stained with the Fluo calcium indicator, suggested that ATP stimulated-release of dopamine is concomitant with the Ca2+ influx, and the influx of Ca2+ is through ATP-activated channels instead of the voltage-gated Ca2+ channel (VGC). Electronic supplementary information (ESI) available: Fig. S1-S4 and Table S1. See DOI: 10.1039/c5nr04433b

  5. Direct and Systemic Administration of a CNS-Permeant Tamoxifen Analog Reduces Amphetamine-Induced Dopamine Release and Reinforcing Effects.

    PubMed

    Carpenter, Colleen; Zestos, Alexander G; Altshuler, Rachel; Sorenson, Roderick J; Guptaroy, Bipasha; Showalter, Hollis D; Kennedy, Robert T; Jutkiewicz, Emily; Gnegy, Margaret E

    2017-09-01

    Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [ 3 H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [ 3 H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 μM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.

  6. Dopamine release in rat striatum - Physiological coupling to tyrosine supply

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1989-01-01

    Intracerebral microdialysis was used to monitor dopamine release in rat striatal extracellular fluid following the intraperitoneal administration of dopamine's precursor amino acid, L-tyrosine. Dopamine concentrations in dialysates increased transiently after tyrosine (50-100 mg/kg) administration. Pretreatment with haloperidol or the partial lesioning of nigrostriatal neurons enhanced the effect of tyrosine on dopamine release, and haloperidol also prolonged this effect. These data suggest that nigrostriatal dopaminergic neurons are responsive to changes in precursor availability under basal conditions, but that receptor-mediated feedback mechanisms limit the magnitude and duration of this effect.

  7. D1- and D2-like dopamine receptors within the nucleus accumbens contribute to stress-induced analgesia in formalin-related pain behaviours in rats.

    PubMed

    Faramarzi, G; Zendehdel, M; Haghparast, A

    2016-10-01

    Stressful experiences can produce analgesia, termed stress-induced analgesia (SIA). Meanwhile, it has been widely established that the mesolimbic dopamine pathway and nucleus accumbens (NAc) have a profound role in pain modulation. In this study, we examined the role of accumbal dopamine receptors in antinociception caused by forced swim stress (FSS) in order to understand more about the function of these receptors within the NAc in FSS-induced analgesia. Stereotaxic surgery was unilaterally performed on adult male Wistar rats weighing 230-250 g (some on the left and some on the right side of the midline). Two supergroups were microinjected into the NAc with a D1-like dopamine receptor antagonist, SCH-23390, at doses of 0.25, 1 and 4 μg/0.5 μl saline per rat or Sulpiride as a D2-like dopamine receptor antagonist at the same doses [0.25, 1 and 4 μg/0.5 μl dimethyl sulfoxide (DMSO) per rat]; while their controls just received intra-accumbal saline or DMSO at 0.5 μl, respectively. The formalin test was performed after rats were subjected to FSS (6 min, 25 ± 1 °C) to assess pain-related behaviours. The results demonstrated that intra-accumbal infusions of SCH-23390 and Sulpiride dose-dependently reduced FSS-induced antinociception in both phases of the formalin test. However, the percentage decrease in area under the curve (AUC) values calculated for treatment groups compared to formalin-control group was more significant in the late phase than the early phase. Our findings suggest that D1- and D2-like dopamine receptors in the NAc are involved in stress-induced antinociceptive behaviours in the formalin test as an animal model of persistent inflammatory pain. Forced swim stress (FSS) induces the antinociception in both phases of formalin test. Blockade of accumbal dopamine receptors attenuate the antinociception induced by FSS. Stress-induced analgesia is dose-dependently reduced by dopamine receptor antagonists in both phases, although it is more

  8. Food deprivation facilitates reinstatement of morphine-induced conditioned place preference: Role of intra-accumbal dopamine D2-like receptors in associating reinstatement of morphine CPP with stress.

    PubMed

    Sadeghzadeh, Fatemeh; Babapour, Vahab; Haghparast, Abbas

    2017-04-01

    The high rate of relapse to drug use is one of the main problems in the treatment of addiction. Stress plays the essential role in drug abuse and relapse; nevertheless, little is known about the mechanisms underlying stress and relapse. Accordingly, the effects of intra-accumbal administration of Sulpiride, as a dopamine D2-like receptor antagonist, on an ineffective morphine dose + food deprivation(FD)- and morphine priming-induced reinstatement of conditioned place preference (CPP). About 104 adult male albino Wistar rats weighing 200-280 g were bilaterally implanted by cannula into the nucleus accumbens (NAc). Subcutaneous (sc) injection of morphine (5 mg kg -1 ) was used daily during a 3-day conditioning phase. After a 24-hr "off" period following achievement of extinction criterion, rats were tested for FD- and priming-induced reinstatement of morphine CPP by an ineffective (0.5 mg kg -1 , sc) and priming (1 mg kg -1 , sc) dose of morphine, respectively. In the next experiments, animals received different doses of intra-accumbal Sulpiride (0.25, 1, and 4 µg/0.5 µL saline) bilaterally and were subsequently tested for morphine reinstatement. Our findings indicated that the 24-hr FD facilitated reinstatement of morphine CPP. Furthermore, the D2-like receptor antagonist attenuated the ineffective morphine dose+ FD- and priming-induced reinstatement of morphine CPP dose-dependently. Also, contribution of D2-like receptors in mediation of the ineffective morphine dose+ FD-induced reinstatement of CPP was greater than morphine priming-induced reinstatement of CPP. The role of dopaminergic system in morphine reinstatement through a neural pathway in the NAc provides the evidence that D2-like receptor antagonist can be useful therapeutic targets for reinstatement of morphine CPP. © 2016 Wiley Periodicals, Inc.

  9. A translational systems biology approach in both animals and humans identifies a functionally related module of accumbal genes involved in the regulation of reward processing and binge drinking in males.

    PubMed

    Stacey, David; Lourdusamy, Anbarasu; Ruggeri, Barbara; Maroteaux, Matthieu; Jia, Tianye; Cattrell, Anna; Nymberg, Charlotte; Banaschewski, Tobias; Bhattacharyya, Sohinee; Band, Hamid; Barker, Gareth; Bokde, Arun; Buchel, Christian; Carvalho, Fabiana; Conrod, Patricia; Desrivieres, Sylvane; Easton, Alanna; Fauth-Buehler, Mira; Fernandez-Medarde, Alberto; Flor, Herta; Frouin, Vincent; Gallinat, Jurgen; Garavanh, Hugh; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lawrence, Claire; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Rotter, Andrea; Santos, Eugenio; Smolka, Michael; Sommer, Wolfgang; Mameli, Manuel; Spanagel, Rainer; Girault, Jean-Antoine; Mueller, Christian; Schumann, Gunter

    2016-04-01

    The mesolimbic dopamine system, composed primarily of dopaminergic neurons in the ventral tegmental area that project to striatal structures, is considered to be the key mediator of reinforcement-related mechanisms in the brain. Prompted by a genome-wide association meta-analysis implicating the Ras-specific guanine nucleotide-releasing factor 2 (RASGRF2) gene in the regulation of alcohol intake in men, we have recently shown that male Rasgrf2(-/-) mice exhibit reduced ethanol intake and preference accompanied by a perturbed mesolimbic dopamine system. We therefore propose that these mice represent a valid model to further elucidate the precise genes and mechanisms regulating mesolimbic dopamine functioning. Transcriptomic data from the nucleus accumbens (NAcc) of male Rasgrf2(-/-) mice and wild-type controls were analyzed by weighted gene coexpression network analysis (WGCNA). We performed follow-up genetic association tests in humans using a sample of male adolescents from the IMAGEN study characterized for binge drinking (n = 905) and ventral striatal activation during an fMRI reward task (n = 608). The WGCNA analyses using accumbal transcriptomic data revealed 37 distinct "modules," or functionally related groups of genes. Two of these modules were significantly associated with Rasgrf2 knockout status: M5 (p < 0.001) and M6 (p < 0.001). In follow-up translational analyses we found that human orthologues for the M5 module were significantly (p < 0.01) enriched with genetic association signals for binge drinking in male adolescents. Furthermore, the most significant locus, originating from the EH-domain containing 4 (EHD4) gene (p < 0.001), was also significantly associated with altered ventral striatal activity in male adolescents performing an fMRI reward task (pempirical < 0.001). It was not possible to determine the extent to which the M5 module was dysregulated in Rasgrf2(-/-) mice by perturbed mesolimbic dopamine signalling or by the loss of Rasgrf2

  10. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    PubMed

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  11. Optimized in vivo detection of dopamine release using 18F-fallypride PET.

    PubMed

    Ceccarini, Jenny; Vrieze, Elske; Koole, Michel; Muylle, Tom; Bormans, Guy; Claes, Stephan; Van Laere, Koen

    2012-10-01

    The high-affinity D(2/3) PET radioligand (18)F-fallypride offers the possibility of measuring both striatal and extrastriatal dopamine release during activation paradigms. When a single (18)F-fallypride scanning protocol is used, task timing is critical to the ability to explore both striatal and extrastriatal dopamine release simultaneously. We evaluated the sensitivity and optimal timing of task administration for a single (18)F-fallypride PET protocol and the linearized simplified reference region kinetic model in detecting both striatal and extrastriatal reward-induced dopamine release, using human and simulation studies. Ten healthy volunteers underwent a single-bolus (18)F-fallypride PET protocol. A reward responsiveness learning task was initiated at 100 min after injection. PET data were analyzed using the linearized simplified reference region model, which accounts for time-dependent changes in (18)F-fallypride displacement. Voxel-based statistical maps, reflecting task-induced D(2/3) ligand displacement, and volume-of-interest-based analysis were performed to localize areas with increased ligand displacement after task initiation, thought to be proportional to changes in endogenous dopamine release (γ parameter). Simulated time-activity curves for baseline and hypothetical dopamine release functions (different peak heights of dopamine and task timings) were generated using the enhanced receptor-binding kinetic model to investigate γ as a function of these parameters. The reward task induced increased ligand displacement in extrastriatal regions of the reward circuit, including the medial orbitofrontal cortex, ventromedial prefrontal cortex, and dorsal anterior cingulate cortex. For task timing of 100 min, ligand displacement was found for the striatum only when peak height of dopamine was greater than 240 nM, whereas for frontal regions, γ was always positive for all task timings and peak heights of dopamine. Simulation results for a peak height of

  12. Adenosine transiently modulates stimulated dopamine release in the caudate putamen via A1 receptors

    PubMed Central

    Ross, Ashley E.; Venton, B. Jill

    2014-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 µM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7 %, similar to the 54 ± 6 % decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 minutes. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. PMID:25219576

  13. Presynaptic control of dopamine release by BETA-phenylethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zharikova, A.D.; Godukhin, O.V.

    The authors study the effect of extracellular ions (Ca/sup 2 +/, Na/sup 2 +/) on the beta-phenylethylamine (beta-PEA) releasing effect, dependence of this effect on the membrane potential of dopaminergic endings, and the participation of dopamine presynaptic autoreceptors in the realization of the effects of beta-PEA on dopamine (DA) release. Experi ments were carried out on noninbred male albino rats. By means of a microsyringe, (/sup 3/H)-DA hydrochloride was injected. The significance of the difference in levels of (/sup 3/H)-DA release during analogous periods of perfusion in the groups of animals compared was estimated by Student's test. These experiments inmore » vivo thus demonstrated the ability of beta-PEA to regulate DA release in different directions depending on the functional state of the dopaminergic neuron.« less

  14. Deficits in striatal dopamine release in cannabis dependence

    PubMed Central

    van de Giessen, Elsmarieke; Weinstein, Jodi J.; Cassidy, Clifford M.; Haney, Margaret; Dong, Zhengchao; Ghazzaoui, Rassil; Ojeil, Najate; Kegeles, Lawrence S.; Xu, Xiaoyan; Vadhan, Nehal P.; Volkow, Nora D.; Slifstein, Mark; Abi-Dargham, Anissa

    2016-01-01

    Most drugs of abuse lead to a general blunting of dopamine release in the chronic phase of dependence, which contributes to poor outcome. To test whether cannabis dependence is associated with a similar dopaminergic deficit, we examined striatal and extrastriatal dopamine release in severely cannabis dependent participants (CD), free of any comorbid conditions, including nicotine use. Eleven CD and twelve healthy controls (HC) completed two positron emission tomography scans with [11C]-(+)-PHNO, before and after oral administration of d-amphetamine. CD stayed inpatient for 5–7 days prior to the scans to standardize abstinence. Magnetic Resonance Imaging (MRS) measures of glutamate in the striatum and hippocampus were obtained in the same subjects. Percent change in [11C]-(+)-PHNO binding potential (ΔBPND) was compared between groups and correlations with MRS glutamate, subclinical psychopathological and neurocognitive parameters were examined. CD had significantly lower ΔBPND in the striatum (p=0.002, effect size (ES)=1.48), including the associative striatum (p=0.003, ES=1.39), sensorimotor striatum (p=0.003, ES=1.41), and the pallidus (p=0.012, ES=1.16). Lower dopamine release in the associative striatum correlated with inattention and negative symptoms in CD, and with poorer working memory and probabilistic category learning performance in both CD and HC. No relationships to MRS glutamate and amphetamine-induced subclinical positive symptoms were detected. In conclusion, this study provides evidence that severe cannabis dependence -without the confounds of any comorbidity- is associated with a deficit in striatal dopamine release. This deficit extends to other extrastriatal areas and predicts subclinical psychopathology. PMID:27001613

  15. Deficits in striatal dopamine release in cannabis dependence.

    PubMed

    van de Giessen, E; Weinstein, J J; Cassidy, C M; Haney, M; Dong, Z; Ghazzaoui, R; Ojeil, N; Kegeles, L S; Xu, X; Vadhan, N P; Volkow, N D; Slifstein, M; Abi-Dargham, A

    2017-01-01

    Most drugs of abuse lead to a general blunting of dopamine release in the chronic phase of dependence, which contributes to poor outcome. To test whether cannabis dependence is associated with a similar dopaminergic deficit, we examined striatal and extrastriatal dopamine release in severely cannabis-dependent participants (CD), free of any comorbid conditions, including nicotine use. Eleven CD and 12 healthy controls (HC) completed two positron emission tomography scans with [ 11 C]-(+)-PHNO, before and after oral administration of d-amphetamine. CD stayed inpatient for 5-7 days prior to the scans to standardize abstinence. Magnetic resonance spectroscopy (MRS) measures of glutamate in the striatum and hippocampus were obtained in the same subjects. Percent change in [ 11 C]-(+)-PHNO-binding potential (ΔBP ND ) was compared between groups and correlations with MRS glutamate, subclinical psychopathological and neurocognitive parameters were examined. CD had significantly lower ΔBP ND in the striatum (P=0.002, effect size (ES)=1.48), including the associative striatum (P=0.003, ES=1.39), sensorimotor striatum (P=0.003, ES=1.41) and the pallidus (P=0.012, ES=1.16). Lower dopamine release in the associative striatum correlated with inattention and negative symptoms in CD, and with poorer working memory and probabilistic category learning performance in both CD and HC. No relationships to MRS glutamate and amphetamine-induced subclinical positive symptoms were detected. In conclusion, this study provides evidence that severe cannabis dependence-without the confounds of any comorbidity-is associated with a deficit in striatal dopamine release. This deficit extends to other extrastriatal areas and predicts subclinical psychopathology.

  16. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors.

    PubMed

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-02-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release.

  17. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors

    PubMed Central

    Mikhailova, Maria A.; Bass, Caroline E.; Grinevich, Valentina P.; Chappell, Ann M.; Deal, Alex L.; Bonin, Keith D.; Weiner, Jeff L.; Gainetdinov, Raul R.; Budygin, Evgeny A.

    2016-01-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in the water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors. PMID:27421228

  18. A translational systems biology approach in both animals and humans identifies a functionally related module of accumbal genes involved in the regulation of reward processing and binge drinking in males

    PubMed Central

    Stacey, David; Lourdusamy, Anbarasu; Ruggeri, Barbara; Maroteaux, Matthieu; Jia, Tianye; Cattrell, Anna; Nymberg, Charlotte; Banaschewski, Tobias; Bhattacharyya, Sohinee; Band, Hamid; Barker, Gareth; Bokde, Arun; Buchel, Christian; Carvalho, Fabiana; Conrod, Patricia; Desrivieres, Sylvane; Easton, Alanna; Fauth-Buehler, Mira; Fernandez-Medarde, Alberto; Flor, Herta; Frouin, Vincent; Gallinat, Jurgen; Garavanh, Hugh; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lawrence, Claire; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Rotter, Andrea; Santos, Eugenio; Smolka, Michael; Sommer, Wolfgang; Mameli, Manuel; Spanagel, Rainer; Girault, Jean-Antoine; Mueller, Christian; Schumann, Gunter

    2016-01-01

    Background The mesolimbic dopamine system, composed primarily of dopaminergic neurons in the ventral tegmental area that project to striatal structures, is considered to be the key mediator of reinforcement-related mechanisms in the brain. Prompted by a genome-wide association meta-analysis implicating the Ras-specific guanine nucleotide-releasing factor 2 (RASGRF2) gene in the regulation of alcohol intake in men, we have recently shown that male Rasgrf2−/− mice exhibit reduced ethanol intake and preference accompanied by a perturbed mesolimbic dopamine system. We therefore propose that these mice represent a valid model to further elucidate the precise genes and mechanisms regulating mesolimbic dopamine functioning. Methods Transcriptomic data from the nucleus accumbens (NAcc) of male Rasgrf2−/− mice and wild-type controls were analyzed by weighted gene coexpression network analysis (WGCNA). We performed follow-up genetic association tests in humans using a sample of male adolescents from the IMAGEN study characterized for binge drinking (n = 905) and ventral striatal activation during an fMRI reward task (n = 608). Results The WGCNA analyses using accumbal transcriptomic data revealed 37 distinct “modules,” or functionally related groups of genes. Two of these modules were significantly associated with Rasgrf2 knockout status: M5 (p < 0.001) and M6 (p < 0.001). In follow-up translational analyses we found that human orthologues for the M5 module were significantly (p < 0.01) enriched with genetic association signals for binge drinking in male adolescents. Furthermore, the most significant locus, originating from the EH-domain containing 4 (EHD4) gene (p < 0.001), was also significantly associated with altered ventral striatal activity in male adolescents performing an fMRI reward task (pempirical < 0.001). Limitations It was not possible to determine the extent to which the M5 module was dysregulated in Rasgrf2−/− mice by perturbed mesolimbic

  19. Schizophrenia-Like Dopamine Release Abnormalities in a Mouse Model of NMDA Receptor Hypofunction.

    PubMed

    Nakao, Kazuhito; Jeevakumar, Vivek; Jiang, Sunny Zhihong; Fujita, Yuko; Diaz, Noelia B; Pretell Annan, Carlos A; Eskow Jaunarajs, Karen L; Hashimoto, Kenji; Belforte, Juan E; Nakazawa, Kazu

    2018-01-31

    Amphetamine-induced augmentation of striatal dopamine and its blunted release in prefrontal cortex (PFC) is a hallmark of schizophrenia pathophysiology. Although N-methyl-D-aspartate receptor (NMDAR) hypofunction is also implicated in schizophrenia, it remains unclear whether NMDAR hypofunction leads to dopamine release abnormalities. We previously demonstrated schizophrenia-like phenotypes in GABAergic neuron-specific NMDAR hypofunctional mutant mice, in which Ppp1r2-Cre dependent deletion of indispensable NMDAR channel subunit Grin1 is induced in corticolimbic GABAergic neurons including parvalbumin (PV)-positive neurons, in postnatal development, but not in adulthood. Here, we report enhanced dopaminomimetic-induced locomotor activity in these mutants, along with bidirectional, site-specific changes in in vivo amphetamine-induced dopamine release: nucleus accumbens (NAc) dopamine release was enhanced by amphetamine in postnatal Ppp1r2-Cre/Grin1 knockout (KO) mice, whereas dopamine release was dramatically reduced in the medial PFC (mPFC) compared to controls. Basal tissue dopamine levels in both the NAc and mPFC were unaffected. Interestingly, the magnitude and distribution of amphetamine-induced c-Fos expression in dopamine neurons was comparable between genotypes across dopaminergic input subregions in the ventral tegmental area (VTA). These effects appear to be both developmentally and cell-type specifically modulated, since PV-specific Grin1 KO mice could induce the same effects as seen in postnatal-onset Ppp1r2-Cre/Grin1 KO mice, but no such abnormalities were observed in somatostatin-Cre/Grin1 KO mice or adult-onset Ppp1r2-Cre/Grin1 KO mice. These results suggest that PV GABAergic neuron-NMDAR hypofunction in postnatal development confers bidirectional NAc hyper- and mPFC hypo-sensitivity to amphetamine-induced dopamine release, similar to that classically observed in schizophrenia pathophysiology. © The Author(s) 2018. Published by Oxford University

  20. Amantadine Ameliorates Dopamine-Releasing Deficits and Behavioral Deficits in Rats after Fluid Percussion Injury

    PubMed Central

    Huang, Eagle Yi-Kung; Tsui, Pi-Fen; Kuo, Tung-Tai; Tsai, Jing-Jr.; Chou, Yu-Ching; Ma, Hsin-I; Chiang, Yung-Hsiao; Chen, Yuan-Hao

    2014-01-01

    Aims To investigate the role of dopamine in cognitive and motor learning skill deficits after a traumatic brain injury (TBI), we investigated dopamine release and behavioral changes at a series of time points after fluid percussion injury, and explored the potential of amantadine hydrochloride as a chronic treatment to provide behavioral recovery. Materials and Methods In this study, we sequentially investigated dopamine release at the striatum and behavioral changes at 1, 2, 4, 6, and 8 weeks after fluid percussion injury. Rats subjected to 6-Pa cerebral cortical fluid percussion injury were treated by using subcutaneous infusion pumps filled with either saline (sham group) or amantadine hydrochloride, with a releasing rate of 3.6mg/kg/hour for 8 weeks. The dopamine-releasing conditions and metabolism were analyzed sequentially by fast scan cyclic voltammetry (FSCV) and high-pressure liquid chromatography (HPLC). Novel object recognition (NOR) and fixed-speed rotarod (FSRR) behavioral tests were used to determine treatment effects on cognitive and motor deficits after injury. Results Sequential dopamine-release deficits were revealed in 6-Pa-fluid-percussion cerebral cortical injured animals. The reuptake rate (tau value) of dopamine in injured animals was prolonged, but the tau value became close to the value for the control group after amantadine therapy. Cognitive and motor learning impairments were shown evidenced by the NOR and FSRR behavioral tests after injury. Chronic amantadine therapy reversed dopamine-release deficits, and behavioral impairment after fluid percussion injuries were ameliorated in the rats treated by using amantadine-pumping infusion. Conclusion Chronic treatment with amantadine hydrochloride can ameliorate dopamine-release deficits as well as cognitive and motor deficits caused by cerebral fluid-percussion injury. PMID:24497943

  1. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory

    PubMed Central

    Kempadoo, Kimberly A.; Mosharov, Eugene V.; Choi, Se Joon; Sulzer, David; Kandel, Eric R.

    2016-01-01

    Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory. PMID:27930324

  2. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory.

    PubMed

    Kempadoo, Kimberly A; Mosharov, Eugene V; Choi, Se Joon; Sulzer, David; Kandel, Eric R

    2016-12-20

    Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory.

  3. Is sexual motivational state linked to dopamine release in the medial preoptic area?

    PubMed

    Kleitz-Nelson, H K; Dominguez, J M; Cornil, C A; Ball, G F

    2010-04-01

    The medial preoptic area (mPOA) is a key site for the dopaminergic enhancement of male sexual behavior. Dopamine release increases in the rat mPOA with mating, supporting the critical stimulatory role played by preoptic dopamine on male sexual behavior. However, it has been questioned whether dopamine is specifically related to the occurrence of male sexual behavior and not simply involved in general arousal. To address this question, we asked whether dopamine release in the mPOA is linked to the production of male sexual behavior in Japanese quail (Coturnix japonica), a species that exhibits a much shorter temporal pattern of copulation than rats and does not have an intermittent organ, resulting in a very different topography of their sexual response. Extracellular samples from the mPOA of adult sexually experienced male quail were collected every 6 min before, during, and after exposure to a female using in vivo microdialysis and analyzed using high-performance liquid chromatography with electrochemical detection. Extracellular dopamine significantly increased in the presence of a female and returned to baseline after removal of the female. However, quail that failed to copulate did not display this increased release. These findings indicate that it is not solely the presence of a female that drives dopamine release in males, but how a male responds to her. Furthermore, in quail that copulated, dopamine release did not change in samples collected during periods of no copulation. Together, these findings support the hypothesis that dopamine action in the mPOA is specifically linked to sexual motivation and not only to copulatory behavior or physical arousal.

  4. Prefrontal/accumbal catecholamine system processes high motivational salience

    PubMed Central

    Puglisi-Allegra, Stefano; Ventura, Rossella

    2012-01-01

    Motivational salience regulates the strength of goal seeking, the amount of risk taken, and the energy invested from mild to extreme. Highly motivational experiences promote highly persistent memories. Although this phenomenon is adaptive in normal conditions, experiences with extremely high levels of motivational salience can promote development of memories that can be re-experienced intrusively for long time resulting in maladaptive outcomes. Neural mechanisms mediating motivational salience attribution are, therefore, very important for individual and species survival and for well-being. However, these neural mechanisms could be implicated in attribution of abnormal motivational salience to different stimuli leading to maladaptive compulsive seeking or avoidance. We have offered the first evidence that prefrontal cortical norepinephrine (NE) transmission is a necessary condition for motivational salience attribution to highly salient stimuli, through modulation of dopamine (DA) in the nucleus accumbens (NAc), a brain area involved in all motivated behaviors. Moreover, we have shown that prefrontal-accumbal catecholamine (CA) system determines approach or avoidance responses to both reward- and aversion-related stimuli only when the salience of the unconditioned stimulus (UCS) is high enough to induce sustained CA activation, thus affirming that this system processes motivational salience attribution selectively to highly salient events. PMID:22754514

  5. MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia

    NASA Astrophysics Data System (ADS)

    Tziortzi, A.; Searle, G.; Tsoumpas, C.; Long, C.; Shotbolt, P.; Rabiner, E.; Jenkinson, M.; Gunn, R. N.

    2011-09-01

    The basal ganglia is a group of anatomical nuclei, functionally organised into limbic, associative and sensorimotor regions, which plays a central role in dopamine related neurological and psychiatric disorders. In this study, we combine two imaging modalities to enable the measurement of dopamine release in functionally related subdivisions of the basal ganglia. [11C]-(+)-PHNO Positron Emission Tomography (PET) measurements in the living human brain pre- and post-administration of amphetamine allow for the estimation of regional dopamine release. Combined Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data allows for the definition of functional territories of the basal ganglia from connectivity information. The results suggest that there is a difference in dopamine release among the connectivity derived functional subdivisions. Dopamine release is highest in the limbic area followed by the sensorimotor and then the associative area with this pattern reflected in both striatum and pallidum.

  6. Tyrosine administration enhances dopamine synthesis and release in light-activated rat retina

    NASA Technical Reports Server (NTRS)

    Gibson, C. J.; Watkins, C. J.; Wurtman, R. J.

    1983-01-01

    Exposure of dark-adapted albino rats to light (350 lux) significantly elevated retinal levels of the dopamine metabolite dihydroxyphenyl acetic acid during the next hour; their return to a dark environment caused dihydroxyphenyl acetic acid levels to fall. Retinal dopamine levels were increased slightly by light exposure, suggesting that the increase in dihydroxyphenyl acetic acid reflected accelerated dopamine synthesis. Administration of tyrosine (100 mg/kg, i.p.) further elevated retinal dihydroxyphenyl acetic acid among light-exposed animals, but failed to affect dopamine release among animals in the dark. These observations show that a physiological stimulus - light exposure - can cause catecholaminergic neurons to become tyrosine-dependent; they also suggest that food consumption may affect neurotransmitter release within the retina.

  7. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    PubMed Central

    Rose, Jamie H.; Karkhanis, Anushree N.; Steiniger-Brach, Björn; Jones, Sara R.

    2016-01-01

    The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs. PMID:27472317

  8. Small effect of dopamine release and no effect of dopamine depletion on [18F]fallypride binding in healthy humans.

    PubMed

    Cropley, Vanessa L; Innis, Robert B; Nathan, Pradeep J; Brown, Amira K; Sangare, Janet L; Lerner, Alicja; Ryu, Yong Hoon; Sprague, Kelly E; Pike, Victor W; Fujita, Masahiro

    2008-06-01

    Molecular imaging has been used to estimate both drug-induced and tonic dopamine release in the striatum and most recently extrastriatal areas of healthy humans. However, to date, studies of drug-induced and tonic dopamine release have not been performed in the same subjects. This study performed positron emission tomography (PET) with [18F]fallypride in healthy subjects to assess (1) the reproducibility of [18F]fallypride and (2) both D-amphetamine-induced and alpha-methyl-p-tyrosine (AMPT)-induced changes in dopamin release on [(18)F]fallypride binding in striatal and extrastriatal areas. Subjects underwent [18F]fallypride PET studies at baseline and following oral D-amphetamine administration (0.5 mg/kg) and oral AMPT administration (3 g/70 kg/day over 44 h). Binding potential (BP) (BP(ND)) of [18F]fallypride was calculated in striatal and extrastriatal areas using a reference region method. Percent change in regional BP(ND) was computed and correlated with change in cognition and mood. Test-retest variability of [18F]fallypride was low in both striatal and extrastriatal regions. D-Amphetamine significantly decreased BP(ND) by 8-14% in striatal subdivisions, caudate, putamen, substantia nigra, medial orbitofrontal cortex, and medial temporal cortex. Correlation between change in BP(ND) and verbal fluency was seen in the thalamus and substantia nigra. In contrast, depletion of endogenous dopamine with AMPT did not effect [18F]fallypride BP(ND) in both striatum and extrastriatal regions. These findings indicate that [18F]fallypride is useful for measuring amphetamine-induced dopamine release, but may be unreliable for estimating tonic dopamine levels, in striatum and extrastriatal regions of healthy humans.

  9. Cortical cholinergic deficiency enhances amphetamine-induced dopamine release in the accumbens but not striatum.

    PubMed

    Mattsson, Anna; Olson, Lars; Svensson, Torgny H; Schilström, Björn

    2007-11-01

    Cholinergic dysfunction has been implicated as a putative contributing factor in the pathogenesis of schizophrenia. Recently, we showed that cholinergic denervation of the neocortex in adult rats leads to a marked increase in the behavioral response to amphetamine. The main objective of this study was to investigate if the enhanced locomotor response to amphetamine seen after cortical cholinergic denervation was paralleled by an increased amphetamine-induced release of dopamine in the nucleus accumbens and/or striatum. The corticopetal cholinergic projections were lesioned by intraparenchymal infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of adult rats. Amphetamine-induced dopamine release in the nucleus accumbens or striatum was monitored by in vivo microdialysis 2 to 3 weeks after lesioning. We found that cholinergic denervation of the rat neocortex leads to a significantly increased amphetamine-induced dopamine release in the nucleus accumbens. Interestingly, the cholinergic lesion did not affect amphetamine-induced release of dopamine in the striatum. The enhanced amphetamine-induced dopamine release in the nucleus accumbens in the cholinergically denervated rats could be reversed by administration of the muscarinic agonist oxotremorine, but not nicotine, prior to the amphetamine challenge, suggesting that loss of muscarinic receptor stimulation is likely to have caused the observed effect. The results suggest that abnormal responsiveness of dopamine neurons can be secondary to cortical cholinergic deficiency. This, in turn, might be of relevance for the pathophysiology of schizophrenia and provides a possible link between cholinergic disturbances and alteration of dopamine transmission.

  10. Naltrexone modulates dopamine release following chronic, but not acute amphetamine administration: a translational study

    PubMed Central

    Jayaram-Lindström, N; Guterstam, J; Häggkvist, J; Ericson, M; Malmlöf, T; Schilström, B; Halldin, C; Cervenka, S; Saijo, T; Nordström, A-L; Franck, J

    2017-01-01

    The opioid antagonist naltrexone has been shown to attenuate the subjective effects of amphetamine. However, the mechanisms behind this modulatory effect are currently unknown. We hypothesized that naltrexone would diminish the striatal dopamine release induced by amphetamine, which is considered an important mechanism behind many of its stimulant properties. We used positron emission tomography and the dopamine D2-receptor radioligand [11C]raclopride in healthy subjects to study the dopaminergic effects of an amphetamine injection after pretreatment with naltrexone or placebo. In a rat model, we used microdialysis to study the modulatory effects of naltrexone on dopamine levels after acute and chronic amphetamine exposure. In healthy humans, naltrexone attenuated the subjective effects of amphetamine, confirming our previous results. Amphetamine produced a significant reduction in striatal radioligand binding, indicating increased levels of endogenous dopamine. However, there was no statistically significant effect of naltrexone on dopamine release. The same pattern was observed in rats, where an acute injection of amphetamine caused a significant rise in striatal dopamine levels, with no effect of naltrexone pretreatment. However, in a chronic model, naltrexone significantly attenuated the dopamine release caused by reinstatement of amphetamine. Collectively, these data suggest that the opioid system becomes engaged during the more chronic phase of drug use, evidenced by the modulatory effect of naltrexone on dopamine release following chronic amphetamine administration. The importance of opioid-dopamine interactions in the reinforcing and addictive effects of amphetamine is highlighted by the present findings and may help to facilitate medication development in the field of stimulant dependence. PMID:28440810

  11. Blockade of nicotine sensitization by methanol extracts of Glycyrrhizae radix mediated via antagonism of accumbal oxidative stress.

    PubMed

    Zhao, Zheng Lin; Kim, Sang Chan; Liu, Hong Feng; Wu, Yi Yan; Li, Li Bo; Wang, Yu Hua; Jiao, Yu; Fan, Yu; Lee, Chul Won; Lee, Bong Hyeo; Cho, Il Je; Yang, Chae Ha; Zhao, Rong Jie

    2017-11-16

    We previously reported that a methanol extract of Glycyrrhizae radix (MEGR) blocked methamphetamine-induced locomotor sensitization and conditioned place preference in rats. In the present study, the effects of MEGR on repeated nicotine-induced locomotor sensitization and enhanced extracellular dopamine (DA) release in the nucleus accumbens (Nacc) were evaluated. Male Sprague-Dawley rats received repeated administrations of nicotine (0.4 mg/kg, subcutaneous) or saline twice a day for 7 d and were challenged with nicotine 4 d after the last daily dosing. During the 4-d withdrawal period, the rats were treated once a day with MEGR (60 or 180 mg/kg/d). Extracellular DA levels were measured by in vivo microdialysis, the malondialdehyde levels and the activities of superoxide dismutase and catalase in the Nacc were biochemically evaluated, and the expression of antioxidant proteins was confirmed by Western blot assays. All data were assessed with analysis of variance tests followed by post-hoc comparison tests and p values <0.05 were considered statistically significant. The expression of repeated nicotine-induced locomotor sensitization was dose-dependently attenuated by MEGR, and 180 mg/kg/d MEGR significantly inhibited augmented accumbal DA release induced by a direct local challenge of nicotine. Moreover, 180 mg/kg/d MEGR reversed increases in malondialdehyde production, decreases in superoxide dismutase and catalase activities, and the reduced expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1 in the nicotine-sensitized Nacc. These results suggest that MEGR inhibited nicotine-induced locomotion and dopaminergic sensitization via antioxidant action.

  12. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens.

    PubMed

    Rose, Jamie H; Karkhanis, Anushree N; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F; Becker, Howard C; McCool, Brian A; Jones, Sara R

    2016-05-01

    Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety

  13. Lateralized sex differences in stress-induced dopamine release in the rat.

    PubMed

    Sullivan, Ron M; Dufresne, Marc M; Waldron, Jay

    2009-02-18

    This study examined the possibility that hemispheric differences in stress-induced brain activation vary as a function of sex. Using in-vivo voltammetry, increases in extracellular dopamine release in response to predator odour and tail pinch stress were recorded bilaterally and simultaneously in either the infralimbic cortex or basolateral amygdala. In both stress-sensitive brain regions, significant sex x hemisphere interactions were observed, with males and females showing greater dopamine activation in right-brain and left-brain structures, respectively. Cortical asymmetries in dopamine release also showed sex-specific correlations with stress-induced neuroendocrine activation. Given the intriguing human parallels, we suggest that differential cerebral lateralization may be highly relevant to the disproportionately high incidence of stress-related disorders such as depression and anxiety seen in women.

  14. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome.

    PubMed

    Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A

    2010-10-20

    In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.

  15. Antagonistic effects of beta-phenylethylamine on quinpirole- and (-)-sulpiride-induced changes in evoked dopamine release from rat striatal slices.

    PubMed

    Yamada, S; Harano, M; Tanaka, M

    1998-02-19

    To assess the role of beta-phenylethylamine in aspects of dopamine release, we measured the level of beta-phenylethylamine in the rat striatum after killing the rats by microwave irradiation. We then investigated the effect of beta-phenylethylamine on electrically evoked dopamine release from rat striatal slices in vitro. The striatal beta-phenylethylamine level was 46.5 +/- 3.5 ng/g wet tissue, equivalent to 0.3 micromol/l. Superfusion with low concentrations of beta-phenylethylamine up to 1 micromol/l had no effect on spontaneous or electrically evoked dopamine release from striatal slices. Quinpirole reduced the evoked dopamine release from slices in a concentration-dependent manner. The quinpirole-induced reduction of evoked dopamine release was attenuated 30% by superfusion with 0.3 micromol/l beta-phenylethylamine. Moreover, the (-)-sulpiride (0.1 micromol/l)-induced increase in evoked dopamine release was also attenuated by superfusion with 0.3 micromol/l beta-phenylethylamine. These data indicate that submicromolar levels of beta-phenylethylamine could modify the dopamine autoreceptor mediated changes in evoked dopamine release from rat striatal slices.

  16. Pramipexole enhances disadvantageous decision-making: Lack of relation to changes in phasic dopamine release.

    PubMed

    Pes, Romina; Godar, Sean C; Fox, Andrew T; Burgeno, Lauren M; Strathman, Hunter J; Jarmolowicz, David P; Devoto, Paola; Levant, Beth; Phillips, Paul E; Fowler, Stephen C; Bortolato, Marco

    2017-03-01

    Pramipexole (PPX) is a high-affinity D 2 -like dopamine receptor agonist, used in the treatment of Parkinson's disease (PD) and restless leg syndrome. Recent evidence indicates that PPX increases the risk of problem gambling and impulse-control disorders in vulnerable patients. Although the molecular bases of these complications remain unclear, several authors have theorized that PPX may increase risk propensity by activating presynaptic dopamine receptors in the mesolimbic system, resulting in the reduction of dopamine release in the nucleus accumbens (NAcc). To test this possibility, we subjected rats to a probability-discounting task specifically designed to capture the response to disadvantageous options. PPX enhanced disadvantageous decision-making at a dose (0.3 mg/kg/day, SC) that reduced phasic dopamine release in the NAcc. To test whether these modifications in dopamine efflux were responsible for the observed neuroeconomic deficits, PPX was administered in combination with the monoamine-depleting agent reserpine (RES), at a low dose (1 mg/kg/day, SC) that did not affect baseline locomotor and operant responses. Contrary to our predictions, RES surprisingly exacerbated the effects of PPX on disadvantageous decision-making, even though it failed to augment PPX-induced decreases in phasic dopamine release. These results collectively suggest that PPX impairs the discounting of probabilistic losses and that the enhancement in risk-taking behaviors secondary to this drug may be dissociated from dynamic changes in mesolimbic dopamine release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Phasic dopamine release drives rapid activation of striatal D2-receptors

    PubMed Central

    Marcott, Pamela F; Mamaligas, Aphroditi A; Ford, Christopher P

    2014-01-01

    Summary Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G-protein activated inwardly rectifying potassium (GIRK2; Kir 3.2) channels were virally overexpressed in the striatum and the resulting outward currents were used as a sensor of D2-receptor activation. Electrical and optogenetic stimulation of dopamine terminals evoked robust D2-receptor inhibitory post-synaptic currents (IPSCs) in GIRK2-expressing MSNs that occurred in under a second. Evoked D2-IPSCs could be driven by repetitive stimulation and were not occluded by background dopamine tone. Together, the results indicate that D2-receptors on MSNs exhibit functional low affinity and suggest that striatal D2-receptors can encode both tonic and phasic dopamine signals. PMID:25242218

  18. Motor Function and Dopamine Release Measurements in Transgenic Huntington’s Disease Model Rats

    PubMed Central

    Ortiz, Andrea N.; Osterhaus, Gregory L.; Lauderdale, Kelli; Mahoney, Luke; Fowler, Stephen C.; von Hörsten, Stephan; Riess, Olaf; Johnson, Michael A.

    2013-01-01

    Huntington’s disease (HD) is a fatal, genetic, neurodegenerative disorder characterized by deficits in motor and cognitive function. Here, we have quantitatively characterized motor deficiencies and dopamine release dynamics in transgenic HD model rats. Behavioral analyses were conducted using a newly-developed force-sensing runway and a previously-developed force-plate actometer. Gait disturbances were readily observed in transgenic HD rats at 12 to 15 months of age. Additionally, dopamine system challenge by ip injection of amphetamine also revealed that these rats were resistant to the expression of focused stereotypy compared to wild-type controls. Moreover, dopamine release, evoked by the application of single and multiple electrical stimulus pulses applied at different frequencies, and measured using fast-scan cyclic voltammetry at carbon-fiber microelectrodes, was diminished in transgenic HD rats compared to age-matched wild-type control rats. Collectively, these results underscore the potential contribution of dopamine release alterations to the expression of motor impairments in transgenic HD rats. PMID:22418060

  19. Characterization of dopamine releasable and reserve pools in Drosophila larvae using ATP/P2X2-mediated stimulation

    PubMed Central

    Xiao, Ning; Venton, B. Jill

    2015-01-01

    Dopaminergic signaling pathways are conserved between mammals and Drosophila, but the factors important for maintaining the functional pool of synaptic dopamine are not fully understood in Drosophila. In this study, we characterized the releasable and reserve dopamine pools in Drosophila larvae using ATP/ P2X2-mediated stimulation. Dopamine release was stable with stimulations performed at least every 5 min but decayed with stimulations performed 2 min apart or less, indicating the replenishment of the releasable pool occurred on a time scale between 2 and 5 min. Dopamine synthesis or uptake were pharmacologically inhibited with 3-iodotyrosine and cocaine, respectively, to evaluate their contributions to maintaining the releasable dopamine pool. We found that both synthesis and uptake were needed to maintain the releasable dopamine pool, with synthesis playing a major part in long-term replenishment and uptake being more important for short-term replenishment. These effects of synthesis and uptake on different time scales in Drosophila are analogous to mammals. However, unlike in mammals, cocaine did not activate a reserve pool of dopamine in Drosophila when using P2X2 stimulations. Our study shows that both synthesis and uptake replenish the releasable pool, providing a better understanding of dopamine regulation in Drosophila. PMID:25951875

  20. Somatodendritic dopamine release: recent mechanistic insights

    PubMed Central

    Rice, Margaret E.; Patel, Jyoti C.

    2015-01-01

    Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K+ channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca2+ dependence of release and the potential role of exocytotic proteins. PMID:26009764

  1. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory.

    PubMed

    Fernandez Espejo, Emilio

    2003-03-01

    Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (p<0.01), supporting the hypothesis that a hyperdopaminergic tone emerges in the nucleus accumbens after prefrontocortical dopamine loss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning

  2. A comparison of the effects of the dopamine partial agonists aripiprazole and (-)-3-PPP with quinpirole on stimulated dopamine release in the rat striatum: Studies using fast cyclic voltammetry in vitro.

    PubMed

    O'Connor, John J; Lowry, John P

    2012-07-05

    The effects of aripiprazole, (-)-(3-hydroxyphenyl)-N-n-propylpiperidine ((-)-3-PPP) and quinpirole on single and multiple pulse stimulated dopamine release were investigated using the technique of fast cyclic voltammetry (FCV) in isolated rat striatal slices. Aripiprazole and (-)-3-PPP had no significant effect on single pulse dopamine release at concentrations from 10nM to 10μM indicating low agonist activity. The compounds failed to potentiate 5 pulse stimulated release of dopamine although inhibitory effects were seen at 10μM for aripiprazole. Both compounds were tested against the concentration-response curve for quinpirole's inhibition of stimulated single pulse dopamine release. Aripiprazole and (-)-3-PPP shifted the concentration-response curve for quinpirole to the right. In each case this was greater than a 100-fold shift for the 10μM test compound. Whilst these results indicate that both compounds show little agonist activity on dopamine release and significant antagonism of the inhibitory effect of quinpirole on dopamine release, whether they are functionally selective dopamine D(2) ligands remains controversial. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Coincident postsynaptic activity gates presynaptic dopamine release to induce plasticity in Drosophila mushroom bodies

    PubMed Central

    Ueno, Kohei; Suzuki, Ema; Naganos, Shintaro; Ofusa, Kyoko; Horiuchi, Junjiro; Saitoe, Minoru

    2017-01-01

    Simultaneous stimulation of the antennal lobes (ALs) and the ascending fibers of the ventral nerve cord (AFV), two sensory inputs to the mushroom bodies (MBs), induces long-term enhancement (LTE) of subsequent AL-evoked MB responses. LTE induction requires activation of at least three signaling pathways to the MBs, mediated by nicotinic acetylcholine receptors (nAChRs), NMDA receptors (NRs), and D1 dopamine receptors (D1Rs). Here, we demonstrate that inputs from the AL are transmitted to the MBs through nAChRs, and inputs from the AFV are transmitted by NRs. Dopamine signaling occurs downstream of both nAChR and NR activation, and requires simultaneous stimulation of both pathways. Dopamine release requires the activity of the rutabaga adenylyl cyclase in postsynaptic MB neurons, and release is restricted to MB neurons that receive coincident stimulation. Our results indicate that postsynaptic activity can gate presynaptic dopamine release to regulate plasticity. DOI: http://dx.doi.org/10.7554/eLife.21076.001 PMID:28117664

  4. Enhanced Striatal Dopamine Release During Food Stimulation in Binge Eating Disorder

    PubMed Central

    Wang, Gene-Jack; Geliebter, Allan; Volkow, Nora D.; Telang, Frank W.; Logan, Jean; Jayne, Millard C.; Galanti, Kochavi; Selig, Peter A.; Han, Hao; Zhu, Wei; Wong, Christopher T.; Fowler, Joanna S.

    2011-01-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [11C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating. PMID:21350434

  5. Amperozide, a putative anti-psychotic drug: Uptake inhibition and release of dopamine in vitro in the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, E.

    1990-01-01

    The effects of amperozide (a diphenylbutylpiperazinecarboxamide derivative) on the uptake and release of {sup 3}H-dopamine in vitro were investigated. Amperozide inhibited the amphetamine-stimulated release of dopamine from perfused rat striatal tissue in a dose-dependent manner. With 1 and 10 {mu}m amperozide there was significant inhibition of the amphetamine-stimulated release of dopamine, to 44 and 36 % of control. In contrast, 10 {mu}M amperozide significantly strengthened the electrically stimulated release of dopamine from perfused striatal slices. Amperozide 1-10 {mu}M had no significant effect on the potassium-stimulated release of dopamine, 10 {mu}M amperozide also slightly increased the basal release of {sup 3}H-dopaminemore » from perfused striatal tissue. These effects on various types of release are similar to those reported for uptake inhibitors. The uptake of dopamine in striatal tissue was inhibited by amperozide with IC{sub 50} values of 18 {mu}M for uptake in chopped tissue and 1.0 {mu}M for uptake in synaptosomes. Amperozide also inhibited the uptake of serotonin in synaptosomes from frontal cortex, IC{sub 50} = 0.32 {mu}M and the uptake of noradrenaline in cortical synaptosomes, IC{sub 50} = 0.78 {mu}M.« less

  6. Rab3A Inhibition of Ca2+ -Dependent Dopamine Release From PC12 Cells Involves Interaction With Synaptotagmin I.

    PubMed

    Dai, Zhipan; Tang, Xia; Chen, Jia; Tang, Xiaochao; Wang, Xianchun

    2017-11-01

    Rab3 and synaptotagmin have been suggested to play important roles in the regulation of neurotransmitter release and, however, the molecular mechanism has not been completely clear. Here, we studied the effects of Rab3A and synaptotagmin I (Syt I) on dopamine release using PC12 cells as a model system. Rab3A was demonstrated to have effects on both Ca 2+ -independent and Ca 2+ -dependent dopamine releases from the PC12 cells. Application of Rab3A (up to 2500 nM) gradually decreased the amount of Ca 2+ -dependently released dopamine, indicating that Rab3A is a negative modulator that was further supported by the increase in dopamine release caused by Rab3A knockdown. Syt I knockdown weakened the Ca 2+ -dependent dopamine release, suggesting that Syt I plays a positive regulatory role in the cellular process. Treatment of the Syt I-knocked down PC12 cells with Rab3A further decreased Ca 2+ -dependent dopamine release and, however, the decrease magnitude was significantly reduced compared with that before Syt I knockdown, thus for the first time demonstrating that the inhibitory effect of Rab3A on Ca 2+ -dependent dopamine release involves the interaction with Syt I. This work has shed new light on the molecular mechanism for Rab3 and synaptotamin regulation of neurotransmitter release. J. Cell. Biochem. 118: 3696-3705, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Interactions of MK-801 with glutamate-, glutamine- and methamphetamine-evoked release of ( sup 3 H)dopamine from striatal slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowyer, J.F.; Scallet, A.C.; Holson, R.R.

    1991-04-01

    The interactions of MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d) cyclohepten-5,10-imine), glutamate and glutamine with methamphetamine (METH)-evoked release of ({sup 3}H)dopamine were assessed in vitro to determine whether MK-801 inhibition of METH neurotoxicity might be mediated presynaptically, and to evaluate the effects of glutamatergic stimulation on METH-evoked dopamine release. MK-801 inhibition of glutamate- or METH-evoked dopamine release might reduce synaptic dopamine levels during METH exposure and decrease the formation of 6-hydroxydopamine or other related neurotoxins. Without Mg{sup 2}{sup +} present, 40 microM and 1 mM glutamate evoked a N-methyl-D-aspartate receptor-mediated ({sup 3}H)dopamine and ({sup 3}H)metabolite (tritium) release of 3 to 6 and 12 to 16%more » of total tritium stores, respectively, from striatal slices. With 1.50 mM Mg{sup 2}{sup +} present, 10 mM glutamate alone or in combination with the dopamine uptake blocker nomifensine released only 2.1 or 4.2%, respectively, of total tritium stores, and release was only partially dependent on N-methyl-D-aspartate-type glutamate receptors. With or without 1.50 mM Mg{sup 2}{sup +} present, 0.5 or 5 microM METH evoked a substantial release of tritium (5-8 or 12-21% of total stores, respectively). METH-evoked dopamine release was not affected by 5 microM MK-801 but METH-evoked release was additive with glutamate-evoked release. Without Mg{sup 2}{sup +} present, 1 mM glutamine increased glutamate release and induced the release of ({sup 3}H)dopamine and metabolites. Both 0.5 and 5 microM METH also increased tritium release with 1 mM glutamine present. When striatal slices were exposed to 5 microM METH this glutamine-evoked release of glutamate was increased more than 50%.« less

  8. Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine.

    PubMed

    Dal Bo, Gregory; St-Gelais, Fannie; Danik, Marc; Williams, Sylvain; Cotton, Mathieu; Trudeau, Louis-Eric

    2004-03-01

    Dopamine neurons have been suggested to use glutamate as a cotransmitter. To identify the basis of such a phenotype, we have examined the expression of the three recently identified vesicular glutamate transporters (VGLUT1-3) in postnatal rat dopamine neurons in culture. We found that the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3. In comparison, serotonin neurons express only VGLUT3. Single-cell RT-PCR experiments confirmed the presence of VGLUT2 mRNA in dopamine neurons. Arguing for phenotypic heterogeneity among axon terminals, we find that only a proportion of terminals established by dopamine neurons are VGLUT2-positive. Taken together, our results provide a basis for the ability of dopamine neurons to release glutamate as a cotransmitter. A detailed analysis of the conditions under which DA neurons gain or loose a glutamatergic phenotype may provide novel insight into pathophysiological processes that underlie diseases such as schizophrenia, Parkinson's disease and drug dependence.

  9. New Repeat Polymorphism in the AKT1 Gene Predicts Striatal Dopamine D2/D3 Receptor Availability and Stimulant-Induced Dopamine Release in the Healthy Human Brain.

    PubMed

    Shumay, Elena; Wiers, Corinde E; Shokri-Kojori, Ehsan; Kim, Sung Won; Hodgkinson, Colin A; Sun, Hui; Tomasi, Dardo; Wong, Christopher T; Weinberger, Daniel R; Wang, Gene-Jack; Fowler, Joanna S; Volkow, Nora D

    2017-05-10

    The role of the protein kinase Akt1 in dopamine neurotransmission is well recognized and has been implicated in schizophrenia and psychosis. However, the extent to which variants in the AKT1 gene influence dopamine neurotransmission is not well understood. Here we investigated the effect of a newly characterized variant number tandem repeat (VNTR) polymorphism in AKT1 [major alleles: L- (eight repeats) and H- (nine repeats)] on striatal dopamine D2/D3 receptor (DRD2) availability and on dopamine release in healthy volunteers. We used PET and [ 11 C]raclopride to assess baseline DRD2 availability in 91 participants. In 54 of these participants, we also measured intravenous methylphenidate-induced dopamine release to measure dopamine release. Dopamine release was quantified as the difference in specific binding of [ 11 C]raclopride (nondisplaceable binding potential) between baseline values and values following methylphenidate injection. There was an effect of AKT1 genotype on DRD2 availability at baseline for the caudate ( F (2,90) = 8.2, p = 0.001) and putamen ( F (2,90) = 6.6, p = 0.002), but not the ventral striatum ( p = 0.3). For the caudate and putamen, LL showed higher DRD2 availability than HH; HL were in between. There was also a significant effect of AKT1 genotype on dopamine increases in the ventral striatum ( F (2,53) = 5.3, p = 0.009), with increases being stronger in HH > HL > LL. However, no dopamine increases were observed in the caudate ( p = 0.1) or putamen ( p = 0.8) following methylphenidate injection. Our results provide evidence that the AKT1 gene modulates both striatal DRD2 availability and dopamine release in the human brain, which could account for its association with schizophrenia and psychosis. The clinical relevance of the newly characterized AKT1 VNTR merits investigation. SIGNIFICANCE STATEMENT The AKT1 gene has been implicated in schizophrenia and psychosis. This association is likely to reflect modulation of dopamine signaling by

  10. MAOA-VNTR polymorphism modulates context-dependent dopamine release and aggressive behavior in males.

    PubMed

    Schlüter, Thorben; Winz, Oliver; Henkel, Karsten; Eggermann, Thomas; Mohammadkhani-Shali, Siamak; Dietrich, Claudia; Heinzel, Alexander; Decker, Michel; Cumming, Paul; Zerres, Klaus; Piel, Markus; Mottaghy, Felix M; Vernaleken, Ingo

    2016-01-15

    A recent [(18)F]FDOPA-PET study reports negative correlations between dopamine synthesis rates and aggressive behavior. Since dopamine is among the substrates for monoamine oxidase A (MAOA), this investigation examines whether functional allelic variants of the MAOA tandem repeat (VNTR) promotor polymorphism, which is known to modulate aggressive behavior, influences dopamine release and aggression in response to violent visual stimuli. We selected from a genetic prescreening sample, strictly case-matched groups of 2×12 healthy male subjects with VNTRs predictive of high (MAOA-High) and low (MAOA-Low) MAOA expression. Subjects underwent pairs of PET sessions (dopamine D2/3 ligand [(18)F]DMFP) while viewing a movie of neutral content, versus violent content. Directly afterwards, aggressive behavior was assessed by the Point Subtraction Aggression Paradigm (PSAP). Finally, PET data of 23 participants and behavioral data of 22 participants were analyzed due to post hoc exclusion criteria. In the genetic prescreening sample MAOA-Low carriers had significantly increased scores on the Buss-Perry Aggression Questionnaire. In the PET-study-group, aggressive behavior under the emotional neutral condition was significantly higher in the MAOA-Low group. Interestingly, the two MAOA-groups showed inverse dopaminergic and behavioral reactions to the violent movie: The MAOA-High group showed higher dopamine release and increased aggression after the violent movie; MAOA-Low subjects showed decreases in aggressive behavior and no consistent dopamine release. These results indicate a possible impact of the MAOA-promotor polymorphism on the neurobiological modulation of aggressive behavior. However, the data do not support approaches stating that MAOA-Low fosters aggression by a simple pro-dopaminergic mechanism. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Correlation of individual differences in schizotypal personality traits with amphetamine-induced dopamine release in striatal and extrastriatal brain regions.

    PubMed

    Woodward, Neil D; Cowan, Ronald L; Park, Sohee; Ansari, M Sib; Baldwin, Ronald M; Li, Rui; Doop, Mikisha; Kessler, Robert M; Zald, David H

    2011-04-01

    Schizotypal personality traits are associated with schizophrenia spectrum disorders, and individuals with schizophrenia spectrum disorders demonstrate increased dopamine transmission in the striatum. The authors sought to determine whether individual differences in normal variation in schizotypal traits are correlated with dopamine transmission in the striatum and in extrastriatal brain regions. Sixty-three healthy volunteers with no history of psychiatric illness completed the Schizotypal Personality Questionnaire and underwent positron emission tomography imaging with [(18)F]fallypride at baseline and after administration of oral d-amphetamine (0.43 mg/kg). Dopamine release, quantified by subtracting each participant's d-amphetamine scan from his or her baseline scan, was correlated with Schizotypal Personality Questionnaire total and factor scores using region-of-interest and voxel-wise analyses. Dopamine release in the striatum was positively correlated with overall schizotypal traits. The association was especially robust in the associative subdivision of the striatum. Voxel-wise analyses identified additional correlations between dopamine release and schizotypal traits in the left middle frontal gyrus and left supramarginal gyrus. Exploratory analyses of Schizotypal Personality Questionnaire factor scores revealed correlations between dopamine release and disorganized schizotypal traits in the striatum, thalamus, medial prefrontal cortex, temporal lobe, insula, and inferior frontal cortex. The association between dopamine signaling and psychosis phenotypes extends to individual differences in normal variation in schizotypal traits and involves dopamine transmission in both striatal and extrastriatal brain regions. Amphetamine-induced dopamine release may be a useful endophenotype for investigating the genetic basis of schizophrenia spectrum disorders.

  12. Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats

    PubMed Central

    Shnitko, Tatiana A.; Spear, Linda P.; Robinson, Donita L.

    2015-01-01

    Rationale Early onset of alcohol drinking has been associated with alcohol abuse in adulthood. The neurobiology of this phenomenon is unclear, but mesolimbic dopamine pathways, which are dynamic during adolescence, may play a role. Objectives We investigated the impact of adolescent binge-like alcohol on phasic dopaminergic neurotransmission during adulthood. Methods Rats received intermittent intragastric ethanol, water or nothing during adolescence. In adulthood, electrically-evoked dopamine release and subsequent uptake were measured in the nucleus accumbens core at baseline and after acute challenge of ethanol or saline. Results Adolescent ethanol exposure did not alter basal measures of evoked dopamine release or uptake. Ethanol challenge dose-dependently decreased the amplitude of evoked dopamine release in rats by 30–50% in control groups, as previously reported, but did not alter evoked release in ethanol-exposed animals. To address the mechanism by which ethanol altered dopamine signaling, the evoked signals were modeled to estimate dopamine efflux per impulse and the velocity of the dopamine transporter. Dopamine uptake was slower in all exposure groups after ethanol challenge compared to saline, while dopamine efflux per pulse of electrical stimulation was reduced by ethanol only in ethanol-naive rats. Conclusions The results demonstrate that exposure to binge levels of ethanol during adolescence blunts the effect of ethanol challenge to reduce the amplitude of phasic dopamine release in adulthood. Large dopamine transients may result in more extracellular dopamine after alcohol challenge in adolescent-exposed rats, and may be one mechanism by which alcohol is more reinforcing in people who initiated drinking at an early age. PMID:26487039

  13. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    PubMed Central

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  14. Utility of a tripolar stimulating electrode for eliciting dopamine release in the rat striatum.

    PubMed

    Bergstrom, B P; Garris, P A

    1999-03-01

    The present study evaluated tripolar stimulating electrodes for eliciting dopamine release in the rat brain in vivo. Stimulating electrodes were placed either in the medial forebrain bundle or in the ventral mesencephalon associated with the ventral tegmental area and substantia nigra. The concentration of extracellular dopamine was monitored in dopamine terminal fields at 100-ms intervals using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. To characterize the stimulated area, recordings were collected in several striatal regions including the caudate putamen and the core and shell of the nucleus accumbens. The tripolar electrode was equally effective in stimulating dopamine release in medial and lateral regions of the striatum. In contrast, responses evoked by a bipolar electrode were typically greater in one mediolateral edge versus the other. The added size of the tripolar electrode did not appear to cause complications as signals were stable over the course of the experiment (3 h). Subsets of mesostriatal dopamine neurons could also be selectively activated using the tripolar electrode in excellent agreement with previously described topography. Taken together, these results suggested that the tripolar stimulating electrode is well suited for studying the regulation of midbrain dopamine neurons in vivo.

  15. Ethanol Exposure History and Alcoholic Reward Differentially Alter Dopamine Release in the Nucleus Accumbens to a Reward-Predictive Cue.

    PubMed

    Fiorenza, Amanda M; Shnitko, Tatiana A; Sullivan, Kaitlin M; Vemuru, Sudheer R; Gomez-A, Alexander; Esaki, Julie Y; Boettiger, Charlotte A; Da Cunha, Claudio; Robinson, Donita L

    2018-06-01

    Conditioned stimuli (CS) that predict reward delivery acquire the ability to induce phasic dopamine release in the nucleus accumbens (NAc). This dopamine release may facilitate conditioned approach behavior, which often manifests as approach to the site of reward delivery (called "goal-tracking") or to the CS itself (called "sign-tracking"). Previous research has linked sign-tracking in particular to impulsivity and drug self-administration, and addictive drugs may promote the expression of sign-tracking. Ethanol (EtOH) acutely promotes phasic release of dopamine in the accumbens, but it is unknown whether an alcoholic reward alters dopamine release to a CS. We hypothesized that Pavlovian conditioning with an alcoholic reward would increase dopamine release triggered by the CS and subsequent sign-tracking behavior. Moreover, we predicted that chronic intermittent EtOH (CIE) exposure would promote sign-tracking while acute administration of naltrexone (NTX) would reduce it. Rats received 14 doses of EtOH (3 to 5 g/kg, intragastric) or water followed by 6 days of Pavlovian conditioning training. Rewards were a chocolate solution with or without 10% (w/v) alcohol. We used fast-scan cyclic voltammetry to measure phasic dopamine release in the NAc core in response to the CS and the rewards. We also determined the effect of NTX (1 mg/kg, subcutaneous) on conditioned approach. Both CIE and alcoholic reward, individually but not together, associated with greater dopamine to the CS than control conditions. However, this increase in dopamine release was not linked to greater sign-tracking, as both CIE and alcoholic reward shifted conditioned approach from sign-tracking behavior to goal-tracking behavior. However, they both also increased sensitivity to NTX, which reduced goal-tracking behavior. While a history of EtOH exposure or alcoholic reward enhanced dopamine release to a CS, they did not promote sign-tracking under the current conditions. These findings are

  16. Mechanism for optimization of signal-to-noise ratio of dopamine release based on short-term bidirectional plasticity.

    PubMed

    Da Cunha, Claudio; McKimm, Eric; Da Cunha, Rafael M; Boschen, Suelen L; Redgrave, Peter; Blaha, Charles D

    2017-07-15

    Repeated electrical stimulation of dopamine (dopamine) fibers can cause variable effects on further dopamine release; sometimes there are short-term decreases while in other cases short-term increases have been reported. Previous studies have failed to discover what factors determine in which way dopamine neurons will respond to repeated stimulation. The aim of the present study was therefore to investigate what determines the direction and magnitude of this particular form of short-term plasticity. Fixed potential amperometry was used to measure dopamine release in the nucleus accumbens in response to two trains of electrical pulses administered to the ventral tegmental area of anesthetized mice. When the pulse trains were of equal magnitude we found that low magnitude stimulation was associated with short-term suppression and high magnitude stimulation with short-term facilitation of dopamine release. Secondly, we found that the magnitude of the second pulse train was critical for determining the sign of the plasticity (suppression or facilitation), while the magnitude of the first pulse train determined the extent to which the response to the second train was suppressed or facilitated. This form of bidirectional plasticity might provide a mechanism to enhance signal-to-noise ratio of dopamine neurotransmission. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation.

    PubMed

    Saddoris, Michael P; Cacciapaglia, Fabio; Wightman, R Mark; Carelli, Regina M

    2015-08-19

    Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real

  18. Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation

    PubMed Central

    Cacciapaglia, Fabio; Wightman, R. Mark; Carelli, Regina M.

    2015-01-01

    Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. SIGNIFICANCE STATEMENT Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have

  19. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia.

    PubMed

    Cassidy, Clifford M; Van Snellenberg, Jared X; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa; Horga, Guillermo

    2016-04-13

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. It is unclear

  20. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia

    PubMed Central

    Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa

    2016-01-01

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE

  1. Greater Ethanol Inhibition of Presynaptic Dopamine Release in C57BL/6J than DBA/2J Mice: Role of Nicotinic Acetylcholine Receptors

    PubMed Central

    Yorgason, Jordan T.; Rose, Jamie H.; McIntosh, J. Michael; Ferris, Mark J.; Jones, Sara R.

    2014-01-01

    The mesolimbic dopamine system, originating in the ventral tegmental area (VTA) and projecting to the nucleus accumbens (NAc), has been heavily implicated in the reinforcing effects of ethanol. Recent slice voltammetry studies have shown that ethanol inhibits dopamine release selectively during highfrequency activity that elicits phasic dopamine release shown to be important for learning and reinforcement. Presently, we examined ethanol inhibition of electrically evoked NAc dopamine in two mouse strains with divergent dopamine responses to ethanol, C57BL/6 (C57) and DBA/2J (DBA) mice. Previous electrophysiology and microdialysis studies have demonstrated greater ethanol induced VTA dopaminergic firing and NAc dopamine elevations in DBA compared to C57 mice. Additionally, DBA mice have greater ethanol responses in dopamine-related behaviors, including hyperlocomotion and conditioned place preference. Currently, we demonstrate greater sensitivity of ethanol inhibition of NAc dopamine signaling in C57 compared to DBA mice. The reduced sensitivity to ethanol inhibition in DBA mice may contribute to the overall greater ethanol-induced dopamine signaling and related behaviors observed in this strain. NAc cholinergic activity is known to potently modulate terminal dopamine release. Additionally, ethanol is known to interact with multiple aspects of nicotinic acetylcholine receptor activity. Therefore, we examined ethanol-mediated inhibition of dopamine release at two ethanol concentrations (80 and 160mM) during bath application of the non-selective nicotinic receptor antagonist mecamylamine, as well as compounds selective for the β2- (DhβE) and α6- (α-conotoxin MII [H9A; L15A]) subunit-containing receptors. Mecamylamine and DhβE decreased dopamine release and reduced ethanol's inhibitory effects on dopamine in both DBA and C57 mice. Further, α-conotoxin also reduced the dopamine release and the dopamine-inhibiting effects of ethanol at the 80mM, but not 160m

  2. Dynamics of rapid dopamine release in the nucleus accumbens during goal-directed behaviors for cocaine versus natural rewards

    PubMed Central

    Cameron, Courtney M.; Wightman, R. Mark; Carelli, Regina M.

    2014-01-01

    Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n=8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors. PMID:25174553

  3. alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex.

    PubMed

    Livingstone, Phil D; Srinivasan, Jayaraman; Kew, James N C; Dawson, Lee A; Gotti, Cecilia; Moretti, Milena; Shoaib, Mohammed; Wonnacott, Susan

    2009-02-01

    Nicotine enhances attentional and working memory aspects of executive function in the prefrontal cortex (PFC) where dopamine plays a major role. Here, we have determined the nicotinic acetylcholine receptor (nAChR) subtypes that can modulate dopamine release in rat PFC using subtype-selective drugs. Nicotine and 5-Iodo-A-85380 (beta2* selective) elicited [(3)H]dopamine release from both PFC and striatal prisms in vitro and dopamine overflow from medial PFC in vivo. Blockade by dihydro-beta-erythroidine supports the participation of beta2* nAChRs. However, insensitivity of nicotine-evoked [(3)H]dopamine release to alpha-conotoxin-MII in PFC prisms suggests no involvement of alpha6beta2* nAChRs, in contrast to the striatum, and this distinction is supported by immunoprecipitation of nAChR subunits from these tissues. The alpha7 nAChR-selective agonists choline and Compound A also promoted dopamine release from PFC in vitro and in vivo, and their effects were enhanced by the alpha7 nAChR-selective allosteric potentiator PNU-120596 and blocked by specific antagonists. DNQX and MK801 inhibited [(3)H]dopamine release evoked by choline and PNU-120596, suggesting crosstalk between alpha7 nAChRs, glutamate and dopamine in the PFC. In vivo, systemic (but not local) administration of PNU-120596, in the absence of agonist, facilitated dopamine overflow in the medial PFC, consistent with the activation of extracortical alpha7 nAChRs by endogenous acetylcholine or choline. These data establish that both beta2* and alpha7 nAChRs can modulate dopamine release in the PFC in vitro and in vivo. Through their distinct actions on dopamine release, these nAChR subtypes could contribute to executive function, making them specific therapeutic targets for conditions such as schizophrenia and attention deficit hyperactivity disorder.

  4. Delta-9-Tetrahydrocannabinol-Induced Dopamine Release as a Function of Psychosis Risk: 18F-Fallypride Positron Emission Tomography Study

    PubMed Central

    Kuepper, Rebecca; Ceccarini, Jenny; Lataster, Johan; van Os, Jim; van Kroonenburgh, Marinus; van Gerven, Joop M. A.; Marcelis, Machteld; Van Laere, Koen; Henquet, Cécile

    2013-01-01

    Cannabis use is associated with psychosis, particularly in those with expression of, or vulnerability for, psychotic illness. The biological underpinnings of these differential associations, however, remain largely unknown. We used Positron Emission Tomography and 18F-fallypride to test the hypothesis that genetic risk for psychosis is expressed by differential induction of dopamine release by Δ9-THC (delta-9-tetrahydrocannabinol, the main psychoactive ingredient of cannabis). In a single dynamic PET scanning session, striatal dopamine release after pulmonary administration of Δ9-THC was measured in 9 healthy cannabis users (average risk psychotic disorder), 8 patients with psychotic disorder (high risk psychotic disorder) and 7 un-related first-degree relatives (intermediate risk psychotic disorder). PET data were analyzed applying the linear extension of the simplified reference region model (LSRRM), which accounts for time-dependent changes in 18F-fallypride displacement. Voxel-based statistical maps, representing specific D2/3 binding changes, were computed to localize areas with increased ligand displacement after Δ9-THC administration, reflecting dopamine release. While Δ9-THC was not associated with dopamine release in the control group, significant ligand displacement induced by Δ9-THC in striatal subregions, indicative of dopamine release, was detected in both patients and relatives. This was most pronounced in caudate nucleus. This is the first study to demonstrate differential sensitivity to Δ9-THC in terms of increased endogenous dopamine release in individuals at risk for psychosis. PMID:23936196

  5. In Vivo Comparison of Norepinephrine and Dopamine Release in Rat Brain by Simultaneous Measurements with Fast-Scan Cyclic Voltammetry

    PubMed Central

    Park, Jinwoo; Takmakov, Pavel; Wightman, R. Mark

    2011-01-01

    Brain norepinephrine and dopamine regulate a variety of critical behaviors such as stress, learning, memory, and drug addiction. Here, we demonstrate differences in the regulation of in vivo neurotransmission for dopamine in the anterior nucleus accumbens (NAc) and norepinephrine in the ventral bed nucleus of the stria terminalis (vBNST) of the anesthetized rat. Release of the two catecholamines was measured simultaneously using fast-scan cyclic voltammetry (FSCV) at two different carbon-fiber microelectrodes, each implanted in the brain region of interest. Simultaneous dopamine and norepinephrine release was evoked by electrical stimulation of a region where the ventral noradrenergic bundle (VNB), the pathway of noradrenergic neurons, courses through the ventral tegmental area/substantia nigra (VTA/SN), the origin of dopaminergic cell bodies. The release and uptake of norepinephrine in the vBNST were both significantly slower than for dopamine in the NAc. Pharmacological manipulations in the same animal demonstrated that the two catecholamines are differently regulated. The combination of a dopamine autoreceptor antagonist and amphetamine significantly increased basal extracellular dopamine whereas a norepinephrine autoreceptor antagonist and amphetamine did not change basal norepinephrine concentration. α-Methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, decreased electrically evoked dopamine release faster than norepinephrine. The dual-microelectrode FSCV technique along with anatomical and pharmacological evidence confirms that dopamine in the NAc and norepinephrine in the vBNST can be monitored selectively and simultaneously in the same animal. The high temporal and spatial resolution of the technique enabled us to examine differences in the dynamics of extracellular norepinephrine and dopamine concurrently in two different limbic structures. PMID:21933188

  6. Striatal dopamine release in vivo following neurotoxic doses of methamphetamine and effect of the neuroprotective drugs, chlormethiazole and dizocilpine.

    PubMed

    Baldwin, H A; Colado, M I; Murray, T K; De Souza, R J; Green, A R

    1993-03-01

    1. Administration to rats of methamphetamine (15 mg kg-1, i.p.) every 2 h to a total of 4 doses resulted in a neurotoxic loss of striatal dopamine of 36% and of 5-hydroxytryptamine (5-HT) in the cortex (43%) and hippocampus (47%) 3 days later. 2. Administration of chlormethiazole (50 mg kg-1, i.p.) 15 min before each dose of methamphetamine provided complete protection against the neurotoxic loss of monoamines while administration of dizocilpine (1 mg kg-1, i.p.) using the same dose schedule provided substantial protection. 3. Measurement of dopamine release in the striatum by in vivo microdialysis revealed that methamphetamine produced an approximate 7000% increase in dopamine release after the first injection. The enhanced release response was somewhat diminished after the third injection but still around 4000% above baseline. Dizocilpine (1 mg kg-1, i.p.) did not alter this response but chlormethiazole (50 mg kg-1, i.p.) attenuated the methamphetamine-induced release by approximately 40%. 4. Dizocilpine pretreatment did not influence the decrease in the dialysate concentration of the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) produced by administration of methamphetamine while chlormethiazole pretreatment decreased the dialysate concentration of these metabolites still further. 5. The concentration of dopamine in the dialysate during basal conditions increased modestly during the course of the experiment. This increase did not occur in chlormethiazole-treated rats. HVA concentrations were unaltered by chlormethiazole administration. 6. Chlormethiazole (100-1000 microM) did not alter methamphetamine (100 microM) or K+ (35 mM)-evoked release of endogenous dopamine from striatal prisms in vitro. 7. Several NMDA antagonists prevent methamphetamine-induced neurotoxicity; however chlormethiazole is not an NMDA antagonist. Inhibition of striatal dopamine function prevents methamphetamine-induced toxicity of both dopamine and 5

  7. Dynamics of rapid dopamine release in the nucleus accumbens during goal-directed behaviors for cocaine versus natural rewards.

    PubMed

    Cameron, Courtney M; Wightman, R Mark; Carelli, Regina M

    2014-11-01

    Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n = 8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Modulating dopamine release by optogenetics in transgenic mice reveals terminal dopaminergic dynamics

    PubMed Central

    Lu, Yao; Driscoll, Nicolette; Ozden, Ilker; Yu, Zeyang; Nurmikko, Arto V.

    2015-01-01

    Abstract. Dopamine (DA) release and uptake dynamics in the nucleus accumbens (NAc) have important implications for neurological diseases and mammalian animal behaviors. We demonstrate here the use of cell-type-specific optogenetic targeting in conjunction with fast-scan cyclic voltammetry applied to brain slices prepared from specifically tailored transgenic mice, which conditionally express channelrhodopsin-2 (ChR2) through dopamine transporter (DAT)-Cre. Terminal dopaminergic dynamics and the direct manipulation of induced DA release level by controlling light intensity, pulse width, and the shape of stimulation waveforms were studied. Effective cell terminal-targeting optogenetic induction of DA release at physiological levels in NAc is demonstrated and discussed. It was found that delivering more light energy by increasing stimulation intensity and length is not the only way to control DA release; the temporal shape of the stimulus waveform at light onset is also critically related to induced DA concentrations. In addition, DA uptake dynamics as well as the recovery of the presynaptic releasable DA pool are studied and modeled. More broadly, our experimental findings provide important further evidence for effectively applying optogenetics to induce neurotransmitter release in the behaviorally relevant region of the brain in a highly cell-type selective context. PMID:26171413

  9. Nicotine-induced Conditional Place Preference is Affected by Head Injury: Correlation with Dopamine Release in the Nucleus Accumbens Shell.

    PubMed

    Yuan-Hao, Chen; Kuo, Tung-Tai; Huang, Eagle Yi-Kung; Hoffer, Barry J; Kao, Jen-Hsin; Chou, Yu-Ching; Chiang, Yung-Hsiao; Miller, Jonathan

    2018-06-14

    Traumatic brain injury (TBI) is known to impact dopamine-mediated reward pathways, but the underlying mechanisms have not been fully established. Nicotine-induced conditional place preference (CPP) was used to study rats exposed to a 6-psi fluid percussion injury (FPI) with and without prior exposure to nicotine. Preference was quantified as a score defined as (C1-C2) / (C1+C2), where C1 is time in the nicotine-paired compartment and C2 is time in the saline-paired compartment. Subsequent fast-scan cyclic voltammetry (FSCV) was used to analyze the impact of nicotine infusion on dopamine release in the shell portion of the nucleus accumbens (NAc). To further determine the influence of brain injury on nicotine withdrawal, nicotine infusion was administered to the rats after FPI. The effects of FPI on CPP after prior exposure to nicotine and abstinence or withdrawal from nicotine were also assessed. After TBI, dopamine release was reduced in the NAc shell, and nicotine-induced CPP preference was significantly impaired. Preference scores of control, sham-injured, and FPI groups were 0.1627 ± 0.04204, 0.1515 ± 0.03806, and -0.001300 ± 0.04286, respectively. Nicotine-induced CPP was also seen in animals after nicotine pre-treatment, with a CPP score of 0.07805 ± 0.02838. Nicotine pre-exposure substantially increased tonic dopamine release in sham-injured animals, but it did not change phasic release; nicotine exposure after FPI enhanced phasic release, though not to the same levels seen in sham-injured rats. Conditioned preference was related not only to phasic dopamine release (r= 0.8110) but also to the difference between tonic and phasic dopamine levels (r= 0.9521). TBI suppresses dopamine release from the shell portion of the NAc, which in turn significantly alters reward-seeking behavior. These results have important implications for tobacco and drug use after TBI.

  10. Regional influence of cocaine on evoked dopamine release in the nucleus accumbens core: A role for the caudal brainstem.

    PubMed

    Gerth, Ashlynn I; Alhadeff, Amber L; Grill, Harvey J; Roitman, Mitchell F

    2017-01-15

    Cocaine increases dopamine concentration in the nucleus accumbens through competitive binding to the dopamine transporter (DAT). However, it also increases the frequency of dopamine release events, a finding that cannot be explained by action at the DAT alone. Rather, this effect may be mediated by cocaine-induced modulation of brain regions that project to dopamine neurons. To explore regional contributions of cocaine to dopamine signaling, we administered cocaine to the lateral or fourth ventricles and compared the effects on dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area to that of systemically-delivered cocaine. Stimulation trains caused a sharp rise in dopamine followed by a slower return to baseline. The magnitude of dopamine release ([DA]max) as well as the latency to decay to fifty percent of the maximum (t(1/2); index of DAT activity) by each stimulation train were recorded. All routes of cocaine delivery caused an increase in [DA]max; only systemic cocaine caused an increase in t(1/2). Importantly, these data are the first to show that hindbrain (fourth ventricle)-delivered cocaine modulates phasic dopamine signaling. Fourth ventricular cocaine robustly increased cFos immunoreactivity in the nucleus of the solitary tract (NTS), suggesting a neural substrate for hindbrain cocaine-mediated effects on [DA]max. Together, the data demonstrate that cocaine-induced effects on phasic dopamine signaling are mediated via actions throughout the brain including the hindbrain. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Effects of a combination of 3,4-methylenedioxymeth amphetamine and caffeine on real time stimulated dopamine release in the rat striatum: Studies using fast cyclic voltammetry.

    PubMed

    O'Connor, J J; O'Boyle, K M; Lowry, J P

    2018-04-15

    It is well documented that caffeine exacerbates the hyperthermia associated with acute exposure to 3,4-methylenedioxymethamphetamine (MDMA) in rats. Previous reports have also indicated that MDMA-related enhancement of dopamine release is exacerbated in the presence of caffeine. In the present study we have examined whether the effects of MDMA on real-time stimulated dopamine release, in the absence of uptake inhibition, are accentuated in the presence of caffeine. Isolated striatal slices from adult male Wistar rats were treated acutely with MDMA, caffeine, or a combination, and their effects on single and 5pulse stimulated dopamine release monitored using the technique of fast cyclic voltammetry. Caffeine at 10 or 100μM had no significant effect on single pulse stimulated dopamine release. However 100μM caffeine caused a significant peak increase in 5pulse stimulated dopamine release. Both 1 and 30μM MDMA gave rise to a significant increase in both single and 5-pulse dopamine release and reuptake. A combination of 100μM caffeine and 1 or 30μM MDMA did not significantly enhance the effects of MDMA on single or 5pulse dopamine release and reuptake when compared to that applied alone. Utilizing single action potential dependent dopamine release, these results do not demonstrate a caffeine-enhanced MDMA-induced dopamine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A tobacco extract containing alkaloids induces distinct effects compared to pure nicotine on dopamine release in the rat.

    PubMed

    Khalki, Hanane; Navailles, Sylvia; Piron, Camille L; De Deurwaerdère, Philippe

    2013-06-07

    It has been suggested that minor alkaloids in plants play a role in the biological and neuronal actions of nicotine. We hypothesized that these molecules modulate the effect of nicotine on the activity of central dopamine (DA) neurons, one of the main cellular targets in addiction to drugs. In this study the effect of a single intraperitoneal injection of either nicotine or an alkaloid extract of the tobacco plant (0.5 mg/kg) on the efflux of DA were investigated. DA was measured in vivo by intracerebral microdialysis in the nucleus accumbens and the striatum of freely-moving rats. Results show that nicotine enhanced accumbal and striatal DA extracellular levels (+47 and 20% above baseline, respectively). The extract also evoked a significant increase in DA extracellular levels in both regions (+33 and +38% above baseline). However, this effect was significantly higher compared to nicotine in the striatum only. In conclusion, the tobacco extract enhanced the neurochemical effect of nicotine alone in the striatum, a response that could underlie the higher propensity of developing addictive-like behavior using nicotine with tobacco alkaloids. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Treatment of Parkinson’s disease: nanostructured sol–gel silica–dopamine reservoirs for controlled drug release in the central nervous system

    PubMed Central

    López, Tessy; Bata-García, José L; Esquivel, Dulce; Ortiz-Islas, Emma; Gonzalez, Richard; Ascencio, Jorge; Quintana, Patricia; Oskam, Gerko; Álvarez-Cervera, Fernando J; Heredia-López, Francisco J; Góngora-Alfaro, José L

    2011-01-01

    Introduction We have evaluated the use of silica–dopamine reservoirs synthesized by the sol–gel approach with the aim of using them in the treatment of Parkinson’s disease, specifically as a device for the controlled release of dopamine in the striatum. Theoretical calculations illustrate that dopamine is expected to assume a planar structure and exhibit weak interactions with the silica surface. Methods Several samples were prepared by varying the wt% of dopamine added during the hydrolysis of tetraethyl orthosilicate. The silica–dopamine reservoirs were characterized by N2 adsorption, scanning and transmission electron microscopy, and Fourier transform infrared spectroscopy. The in vitro release profiles were determined using ultraviolet visible absorbance spectroscopy. The textural analyses showed a maximum value for the surface area of 620 m2/g nanostructured silica materials. The stability of dopamine in the silica network was confirmed by infrared and 13C-nuclear magnetic resonance spectroscopy. The reservoirs were evaluated by means of apomorphine-induced rotation behavior in hemiparkisonian rats. Results The in vitro dopamine delivery profiles indicate two regimes of release, a fast and sustained dopamine delivery was observed up to 24 hours, and after this time the rate of delivery became constant. Histologic analysis of formalin-fixed brains performed 24–32 weeks after reservoir implantation revealed that silica–dopamine implants had a reddish-brown color, suggesting the presence of oxidized dopamine, likely caused by the fixation procedure, while implants without dopamine were always translucent. Conclusion The major finding of the study was that intrastriatal silica–dopamine implants reversed the rotational asymmetry induced by apomorphine, a dopamine agonist, in hemiparkinsonian rats. No dyskinesias or other motor abnormalities were observed in animals implanted with silica or silica–dopamine. PMID:21289978

  14. Striatal dopamine neurotransmission: regulation of release and uptake

    PubMed Central

    Sulzer, David; Cragg, Stephanie J.; Rice, Margaret E.

    2016-01-01

    Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients. PMID:27141430

  15. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release

    PubMed Central

    Acevedo-Rodriguez, Alexandra; Zhang, Lifen; Zhou, Fuwen; Gong, Suzhen; Gu, Howard; De Biasi, Mariella; Zhou, Fu-Ming; Dani, John A.

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic) stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors. PMID:25237305

  16. Examining the Complex Regulation and Drug-Induced Plasticity of Dopamine Release and Uptake Using Voltammetry in Brain Slices

    PubMed Central

    2013-01-01

    Fast scan cyclic voltammetry in brain slices (slice voltammetry) has been used over the last several decades to increase substantially our understanding of the complex local regulation of dopamine release and uptake in the striatum. This technique is routinely used for the study of changes that occur in the dopamine system associated with various disease states and pharmacological treatments, and to study mechanisms of local circuitry regulation of dopamine terminal function. In the context of this Review, we compare the relative advantages of voltammetry using striatal slice preparations versus in vivo preparations, and highlight recent advances in our understanding of dopamine release and uptake in the striatum specifically from studies that use slice voltammetry in drug-naïve animals and animals with a history of psychostimulant self-administration. PMID:23581570

  17. Angiotensin AT1 and AT2 receptor antagonists modulate nicotine-evoked [³H]dopamine and [³H]norepinephrine release.

    PubMed

    Narayanaswami, Vidya; Somkuwar, Sucharita S; Horton, David B; Cassis, Lisa A; Dwoskin, Linda P

    2013-09-01

    Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of

  18. Intra-accumbal CB1 receptor blockade reduced extinction and reinstatement of morphine.

    PubMed

    Khaleghzadeh-Ahangar, Hossein; Haghparast, Abbas

    2015-10-01

    The limbic dopaminergic reward system is the main target of morphine-like drugs which begins from the ventral tegmental area (VTA) and sends its dopaminergic projections to the nucleus accumbens (NAc), amygdala, hippocampus and prefrontal cortex. Cannabinoid receptors exist in afferent neurons from these areas to the NAc and can modulate glutamate synaptic transmission in the NAc. Cannabinoids can interact with the opiate system in reward-related behaviors; nevertheless these systems' interaction in extinction duration and reinstatement has not been shown. In the present study, the effects of bilateral intra-accumbal administration of AM251, a CB1 receptor antagonist, on the duration of the extinction phase and reinstatement to morphine were investigated by conditioned place preference (CPP) paradigm. Forty eight adult male albino Wistar rats were used. Bilateral intra-accumbal administration of AM251 (15, 45 and 90μM/0.5μl DMSO per side) was performed. Subcutaneous administration of morphine (5mg/kg) in three consecutive days was used to induce CPP. The results showed that administration of the maximal dose of AM251 during the extinction period significantly reduces duration of extinction and reinstatement to morphine. Administration of the middle dose during the extinction period significantly attenuated reinstatement to morphine. A single microinjection of the middle dose just before the reinstatement phase significantly attenuated reinstatement to morphine only, while bilateral intra-accumbal administration of neither the lowest dose nor the vehicle (DMSO) had any effects. These results for the first time indicated that CB1 receptors within the NAc are involved in the maintenance of morphine rewarding properties, and morphine seeking behaviors in extinguished morphine-induced CPP rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Opiate-induced dopamine release is modulated by severity of alcohol dependence: an [(18)F]fallypride positron emission tomography study.

    PubMed

    Spreckelmeyer, Katja N; Paulzen, Michael; Raptis, Mardjan; Baltus, Thomas; Schaffrath, Sabrina; Van Waesberghe, Julia; Zalewski, Magdalena M; Rösch, Frank; Vernaleken, Ingo; Schäfer, Wolfgang M; Gründer, Gerhard

    2011-10-15

    Preclinical data implicate the reinforcing effects of alcohol to be mediated by interaction between the opioid and dopamine systems of the brain. Specifically, alcohol-induced release of β-endorphins stimulates μ-opioid receptors (MORs), which is believed to cause dopamine release in the brain reward system. Individual differences in opioid or dopamine neurotransmission have been suggested to be responsible for enhanced liability to abuse alcohol. In the present study, a single dose of the MOR agonist remifentanil was administered in detoxified alcohol-dependent patients and healthy control subjects to mimic the β-endorphin-releasing properties of ethanol and to assess the effects of direct MOR stimulation on dopamine release in the mesolimbic reward system. Availability of D(2/3) receptors was assessed before and after single-dose administration of the MOR agonist remifentanil in 11 detoxified alcohol-dependent patients and 11 healthy control subjects with positron emission tomography with the radiotracer [(18)F]fallypride. Severity of dependence as assessed with the Alcohol Use Disorders Identification Test was compared with remifentanil-induced percentage change in [(18)F]fallypride binding (Δ%BP(ND)). The [(18)F]fallypride binding potentials (BP(ND)s) were significantly reduced in the ventral striatum, dorsal putamen, and amygdala after remifentanil application in both patients and control subjects. In the patient group, ventral striatum Δ%BP(ND) was correlated with the Alcohol Use Disorders Identification Test score. The data provide evidence for a MOR-mediated interaction between the opioid and the dopamine system, supporting the assumption that one way by which alcohol unfolds its rewarding effects is via a MOR-(γ-aminobutyric acid)-dopamine pathway. No difference in dopamine release was found between patients and control subjects, but evidence for a patient-specific association between sensitivity to MOR stimulation and severity of alcohol dependence

  20. Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): selectivity to limbic striatum.

    PubMed

    Bossong, Matthijs G; Mehta, Mitul A; van Berckel, Bart N M; Howes, Oliver D; Kahn, René S; Stokes, Paul R A

    2015-08-01

    Elevated dopamine function is thought to play a key role in both the rewarding effects of addictive drugs and the pathophysiology of schizophrenia. Accumulating epidemiological evidence indicates that cannabis use is a risk factor for the development of schizophrenia. However, human neurochemical imaging studies that examined the impact of ∆9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, on striatal dopamine release have provided inconsistent results. The objective of this study is to assess the effect of a THC challenge on human striatal dopamine release in a large sample of healthy participants. We combined human neurochemical imaging data from two previous studies that used [(11)C]raclopride positron emission tomography (PET) (n = 7 and n = 13, respectively) to examine the effect of THC on striatal dopamine neurotransmission in humans. PET images were re-analysed to overcome differences in PET data analysis. THC administration induced a significant reduction in [(11)C]raclopride binding in the limbic striatum (-3.65 %, from 2.39 ± 0.26 to 2.30 ± 0.23, p = 0.023). This is consistent with increased dopamine levels in this region. No significant differences between THC and placebo were found in other striatal subdivisions. In the largest data set of healthy participants so far, we provide evidence for a modest increase in human striatal dopamine transmission after administration of THC compared to other drugs of abuse. This finding suggests limited involvement of the endocannabinoid system in regulating human striatal dopamine release and thereby challenges the hypothesis that an increase in striatal dopamine levels after cannabis use is the primary biological mechanism underlying the associated higher risk of schizophrenia.

  1. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: A combined PET, fMRI and DTI study

    PubMed Central

    Simonyan, Kristina; Herscovitch, Peter; Horwitz, Barry

    2013-01-01

    Considerable progress has been recently made in understanding the brain mechanisms underlying speech and language control. However, the neurochemical underpinnings of normal speech production remain largely unknown. We investigated the extent of striatal endogenous dopamine release and its influences on the organization of functional striatal speech networks during production of meaningful English sentences using a combination of positron emission tomography (PET) with the dopamine D2/D3 receptor radioligand [11C]raclopride and functional MRI (fMRI). In addition, we used diffusion tensor tractography (DTI) to examine the extent of dopaminergic modulatory influences on striatal structural network organization. We found that, during sentence production, endogenous dopamine was released in the ventromedial portion of the dorsal striatum, in its both associative and sensorimotor functional divisions. In the associative striatum, speech-induced dopamine release established a significant relationship with neural activity and influenced the left-hemispheric lateralization of striatal functional networks. In contrast, there were no significant effects of endogenous dopamine release on the lateralization of striatal structural networks. Our data provide the first evidence for endogenous dopamine release in the dorsal striatum during normal speaking and point to the possible mechanisms behind the modulatory influences of dopamine on the organization of functional brain circuits controlling normal human speech. PMID:23277111

  2. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens.

    PubMed

    Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C

    2016-03-15

    Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Chronic CRH depletion from GABAergic, long-range projection neurons in the extended amygdala reduces dopamine release and increases anxiety.

    PubMed

    Dedic, Nina; Kühne, Claudia; Jakovcevski, Mira; Hartmann, Jakob; Genewsky, Andreas J; Gomes, Karina S; Anderzhanova, Elmira; Pöhlmann, Max L; Chang, Simon; Kolarz, Adam; Vogl, Annette M; Dine, Julien; Metzger, Michael W; Schmid, Bianca; Almada, Rafael C; Ressler, Kerry J; Wotjak, Carsten T; Grinevich, Valery; Chen, Alon; Schmidt, Mathias V; Wurst, Wolfgang; Refojo, Damian; Deussing, Jan M

    2018-06-01

    The interplay between corticotropin-releasing hormone (CRH) and the dopaminergic system has predominantly been studied in addiction and reward, while CRH-dopamine interactions in anxiety are scarcely understood. We describe a new population of CRH-expressing, GABAergic, long-range-projecting neurons in the extended amygdala that innervate the ventral tegmental area and alter anxiety following chronic CRH depletion. These neurons are part of a distinct CRH circuit that acts anxiolytically by positively modulating dopamine release.

  4. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series ofmore » PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.« less

  5. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    PubMed

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  6. beta-Phenylethylamine modulates acetylcholine release in the rat striatum: involvement of a dopamine D(2) receptor mechanism.

    PubMed

    Kato, M; Ishida, K; Chuma, T; Abe, K; Shigenaga, T; Taguchi, K; Miyatake, T

    2001-04-20

    We examined the effects of beta-phenylethylamine on striatal acetylcholine release in freely moving rats using in vivo microdialysis. beta-Phenylethylamine at 12.5 mg/kg, i.p. did not affect acetylcholine release in the striatum, whereas 25 and 50 mg/kg, i.p. immediately induced an increase in acetylcholine release in the striatum at 15-45 min. This increase following intraperitoneal administration of beta-phenylethylamine (25 mg/kg) was not affected by locally applied SCH-23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine, 10 microM), a dopamine D(1) receptor antagonist, nor by raclopride (10 microM), a dopamine D(2) receptor antagonist. The increased release of acetylcholine induced by beta-phenylethylamine was suppressed by local infusion of tetrodotoxin (1 microM). In contrast, the extracellular acetylcholine level in the striatum was significantly decreased by local application of beta-phenylethylamine (10 and 100 microM) in the striatum via a microdialysis probe. The decrease was completely blocked by local co-application of raclopride (10 microM). The beta-phenylethylamine-induced decrease in striatal acetylcholine release was not affected by co-perfusion with SCH-23390 (10 microM). These results indicate that systemic administration of beta-phenylethylamine increases acetylcholine release, whereas locally applied beta-phenylethylamine decreases striatal acetylcholine release in freely moving rats. Furthermore, the dopaminergic system, through the dopamine D(2) receptor, is involved in the locally applied beta-phenylethylamine-induced decrease in acetylcholine in the striatum.

  7. Implantable microencapsulated dopamine (DA): prolonged functional release of DA in denervated striatal tissue.

    PubMed

    McRae, A; Hjorth, S; Mason, D; Dillon, L; Tice, T

    1990-01-01

    Biodegradable controlled-release microcapsule systems made with the biocompatible biodegradable polyester excipient poly [DL-lactide-co-gly-colide] constitute an exciting new technology for drug delivery to the central nervous system (CNS). The present study describes functional observations indicating that implantation of dopamine (DA) microcapsules encapsulated within two different polymer excipients into denervated striatal tissue assures a prolonged release of the transmitter in vivo. This technology has a considerable potential for basic and possibly clinical research.

  8. Impaired Prefrontal Cortical Dopamine Release in Schizophrenia During a Cognitive Task: A [11C]FLB 457 Positron Emission Tomography Study.

    PubMed

    Rao, Naren; Northoff, Georg; Tagore, Abanti; Rusjan, Pablo; Kenk, Miran; Wilson, Alan; Houle, Sylvain; Strafella, Antonio; Remington, Gary; Mizrahi, Romina

    2018-06-07

    Evidence from several lines of research suggests decreased dopamine release in the prefrontal cortex as the neurochemical correlates of cognitive deficits in schizophrenia (SCZ). However, in vivo examination of cortical hypodopaminergia using positron emission tomography (PET) during cognitive task performance in SCZ remains to be investigated. We examined dopamine release in anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC), using PET while participants were performing a cognitive task. Thirteen drug-free patients with SCZ and 13 healthy volunteers (HV) matched for age and sex participated in the study. Data were acquired between 2011 and 2015. Two PET scans with [11C]FLB 457 were acquired while the participants were performing the Wisconsin Card Sorting Test (WCST) and a sensorimotor control task (SMCT). A magnetic resonance image was acquired for anatomical delineation. Differences in cortical dopamine release between SCZ and HV, indexed as percentage change in binding potential between WCST and SMCT (ΔBPND), were calculated in ACC and DLPFC. We observed significant differences in the ΔBPND in ACC (HV = 4.40 ± 6.00; SCZ = -11.48 ± 15.08; t = 3.52; P = .003) and a trend-level difference in ΔBPND in DLPFC (HV = -0.58 ± 8.45; SCZ = -7.79 ± 11.28; t = 1.84; P = .079), suggesting dopamine depletion in cortical brain regions in patients with SCZ while performing a cognitive task. These results provide the first in vivo evidence for reduced dopamine release or even dopamine depletion while performing cognitive task in ACC and DLPFC in patients with SCZ. The present results provide support for the frontal hypodopaminergia hypothesis of cognitive symptoms in SCZ.

  9. Striatal and extrastriatal dopamine release in the common marmoset brain measured by positron emission tomography and [(18)F]fallypride.

    PubMed

    Ota, Miho; Ogawa, Shintaro; Kato, Koichi; Masuda, Chiaki; Kunugi, Hiroshi

    2015-12-01

    Previous studies have demonstrated that patients with schizophrenia show greater sensitivity to psychostimulants than healthy subjects. Sensitization to psychostimulants and resultant alteration of dopaminergic neurotransmission in rodents has been suggested as a useful model of schizophrenia. This study sought to examine the use of methylphenidate as a psychostimulant to induce dopamine release and that of [(18)F]fallypride as a radioligand to quantify the release in a primate model of schizophrenia. Four common marmosets were scanned by positron emission tomography twice, before and after methylphenidate challenge, to evaluate dopamine release. Four other marmosets were sensitized by repeated methamphetamine (MAP) administration. Then, they were scanned twice, before and after methylphenidate challenge, to evaluate whether MAP-sensitization induced greater sensitivity to methylphenidate. We revealed a main effect of the methylphenidate challenge but not the MAP pretreatment on the striatal binding potential. These results suggest that methylphenidate-induced striatal dopamine release in the common marmoset could be evaluated by [(18)F]fallypride. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  10. Cross-hemispheric dopamine projections have functional significance

    PubMed Central

    Fox, Megan E.; Mikhailova, Maria A.; Bass, Caroline E.; Takmakov, Pavel; Gainetdinov, Raul R.; Budygin, Evgeny A.; Wightman, R. Mark

    2016-01-01

    Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson’s disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine–lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371

  11. Cortical Regulation of Striatal Medium Spiny Neuron Dendritic Remodeling in Parkinsonism: Modulation of Glutamate Release Reverses Dopamine Depletion–Induced Dendritic Spine Loss

    PubMed Central

    Garcia, Bonnie G.; Neely, M. Diana

    2010-01-01

    Striatal medium spiny neurons (MSNs) receive glutamatergic afferents from the cerebral cortex and dopaminergic inputs from the substantia nigra (SN). Striatal dopamine loss decreases the number of MSN dendritic spines. This loss of spines has been suggested to reflect the removal of tonic dopamine inhibitory control over corticostriatal glutamatergic drive, with increased glutamate release culminating in MSN spine loss. We tested this hypothesis in two ways. We first determined in vivo if decortication reverses or prevents dopamine depletion–induced spine loss by placing motor cortex lesions 4 weeks after, or at the time of, 6-hydroxydopamine lesions of the SN. Animals were sacrificed 4 weeks after cortical lesions. Motor cortex lesions significantly reversed the loss of MSN spines elicited by dopamine denervation; a similar effect was observed in the prevention experiment. We then determined if modulating glutamate release in organotypic cocultures prevented spine loss. Treatment of the cultures with the mGluR2/3 agonist LY379268 to suppress corticostriatal glutamate release completely blocked spine loss in dopamine-denervated cultures. These studies provide the first evidence to show that MSN spine loss associated with parkinsonism can be reversed and point to suppression of corticostriatal glutamate release as a means of slowing progression in Parkinson's disease. PMID:20118184

  12. Short-term dopaminergic regulation of GABA release in dopamine deafferented caudate-putamen is not directly associated with glutamic acid decarboxylase gene expression.

    PubMed

    O'Connor, W T; Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H; Ungerstedt, U

    1991-07-08

    In vivo microdialysis and in situ hybridization were combined to study dopaminergic regulation of gamma-amino butyric acid (GABA) neurons in rat caudate-putamen (CPu). Potassium-stimulated GABA release in CPu was elevated following a dopamine deafferentation. Local perfusion with exogenous dopamine (50 microM) for 3 h via the microdialysis probe attenuated the potassium-stimulated increase in extracellular GABA in CPu. Expression of glutamic acid decarboxylase (GAD) mRNA was also increased in the dopamine deafferented CPu. However, local perfusion with dopamine had no significant attenuating effect on the increased GAD mRNA expression. These findings indicate that dopaminergic regulation of GABA neurons in the dopamine deafferented CPu includes both a short-term effect at the level of GABA release independent of changes in GAD mRNA expression and a long-term modulation at the level of GAD gene expression.

  13. Control of extracellular dopamine at dendrite and axon terminals

    PubMed Central

    Ford, Christopher P.; Gantz, Stephanie C.; Phillips, Paul E. M.; Williams, John T.

    2010-01-01

    Midbrain dopamine neurons release dopamine from both axons and dendrites. The mechanism underlying release at these different sites has been proposed to differ. This study used electrochemical and electrophysiological methods to compare the time course and calcium-dependence of somatodendritc dopamine release in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) to that of axonal dopamine release in the dorsal striatum. The amount of dopamine released in the striatum was ~20 fold greater than in cell body regions of the VTA or SNc. However the calcium dependence and time to peak of the dopamine transients were similar. These results illustrate an unexpected overall similarity in the mechanisms of dopamine release in the striatum and cell body regions. To examine how diffusion regulates the time course of dopamine following release, dextran was added to the extracellular solution to slow diffusion. In the VTA, dextran slowed the rate of rise and fall of the extracellular dopamine transient as measured by fast-scan cyclic voltammetry (FSCV) yet did not alter the kinetics of the dopamine dependent inhibitory post-synaptic current (IPSC). Dextran failed to significantly alter the time course of the rise and fall of the dopamine transient in the striatum suggesting a more influential role for reuptake in the striatum. The conclusion is that the time course of dopamine within the extracellular space of the VTA is dependent on both diffusion and reuptake, whereas the activation of D2-receptors on dopamine neurons is primarily limited by reuptake. PMID:20484639

  14. Methamphetamine-sensitized rats show augmented dopamine release to methylphenidate stimulation: a positron emission tomography using [18F]fallypride.

    PubMed

    Ota, Miho; Ogawa, Shintaro; Kato, Koichi; Wakabayashi, Chisato; Kunugi, Hiroshi

    2015-04-30

    Previous studies demonstrated that patients with schizophrenia show greater sensitivity to psychostimulants than healthy subjects. Sensitization to psychostimulants and resultant alteration of dopaminergic neurotransmission in rodents have been suggested as a useful model of schizophrenia. This study was aimed to examine the use of methylphenidate as a psychostimulant to induce dopamine release and that of [18F]fallypride as a radioligand to estimate the release in a rat model of schizophrenia. Six rats were scanned by positron emission tomography (PET) twice before and after methylphenidate challenge to evaluate dopamine release. After the scans, these rats were sensitized by using repeated methamphetamine (MAP) administration. Then, they were re-scanned twice again before and after methylphenidate challenge to evaluate whether MAP-sensitized rats show greater sensitivity to methylphenidate. We revealed a main effect of MAP-pretreatment and that of metylphenidate challenge. We found that % change of distribution volume ratio after repeated administration of MAP was greater than that before sensitization. These results suggest that methylphenidate-induced striatal dopamine release increased after sensitization to MAP. PET scan using [18F]fallypride at methylphenidate-challenge may provide a biological marker for schizophrenia and be useful to diagnose schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Stimulus-Dependent Dopamine Release in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Sikstrom, Sverker; Soderlund, Goran

    2007-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is related to an attenuated and dysfunctional dopamine system. Normally, a high extracellular dopamine level yields a tonic dopaminergic input that down-regulates stimuli-evoked phasic dopamine responses through autoreceptors. Abnormally low tonic extracellular dopamine in ADHD up-regulates the…

  16. Probabilistic classification learning with corrective feedback is associated with in vivo striatal dopamine release in the ventral striatum, while learning without feedback is not

    PubMed Central

    Wilkinson, Leonora; Tai, Yen Foung; Lin, Chia Shu; Lagnado, David Albert; Brooks, David James; Piccini, Paola; Jahanshahi, Marjan

    2014-01-01

    The basal ganglia (BG) mediate certain types of procedural learning, such as probabilistic classification learning on the ‘weather prediction task’ (WPT). Patients with Parkinson's disease (PD), who have BG dysfunction, are impaired at WPT-learning, but it remains unclear what component of the WPT is important for learning to occur. We tested the hypothesis that learning through processing of corrective feedback is the essential component and is associated with release of striatal dopamine. We employed two WPT paradigms, either involving learning via processing of corrective feedback (FB) or in a paired associate manner (PA). To test the prediction that learning on the FB but not PA paradigm would be associated with dopamine release in the striatum, we used serial 11C-raclopride (RAC) positron emission tomography (PET), to investigate striatal dopamine release during FB and PA WPT-learning in healthy individuals. Two groups, FB, (n = 7) and PA (n = 8), underwent RAC PET twice, once while performing the WPT and once during a control task. Based on a region-of-interest approach, striatal RAC-binding potentials reduced by 13–17% in the right ventral striatum when performing the FB compared to control task, indicating release of synaptic dopamine. In contrast, right ventral striatal RAC binding non-significantly increased by 9% during the PA task. While differences between the FB and PA versions of the WPT in effort and decision-making is also relevant, we conclude striatal dopamine is released during FB-based WPT-learning, implicating the striatum and its dopamine connections in mediating learning with FB. PMID:24777947

  17. Hybrid dopamine uptake blocker-serotonin releaser ligands: a new twist on transporter-focused therapeutics.

    PubMed

    Blough, Bruce E; Landavazo, Antonio; Partilla, John S; Baumann, Michael H; Decker, Ann M; Page, Kevin M; Rothman, Richard B

    2014-06-12

    As part of our program to study neurotransmitter releasers, we report herein a class of hybrid dopamine reuptake inhibitors that display serotonin releasing activity. Hybrid compounds are interesting since they increase the design potential of transporter related compounds and hence represent a novel and unexplored strategy for therapeutic drug discovery. A series of N-alkylpropiophenones was synthesized and assessed for uptake inhibition and release activity using rat brain synaptosomes. Substitution on the aromatic ring yielded compounds that maintained hybrid activity, with the two disubstituted analogues (PAL-787 and PAL-820) having the most potent hybrid activity.

  18. Phasic dopamine release in the rat nucleus accumbens predicts approach and avoidance performance

    PubMed Central

    Gentry, Ronny N.; Lee, Brian; Roesch, Matthew R.

    2016-01-01

    Dopamine (DA) is critical for reward processing, but significantly less is known about its role in punishment avoidance. Using a combined approach-avoidance task, we measured phasic DA release in the nucleus accumbens (NAc) of rats during presentation of cues that predicted reward, punishment or neutral outcomes and investigated individual differences based on avoidance performance. Here we show that DA release within a single microenvironment is higher for reward and avoidance cues compared with neutral cues and positively correlated with poor avoidance behaviour. We found that DA release delineates trial-type during sessions with good avoidance but is non-selective during poor avoidance, with high release correlating with poor performance. These data demonstrate that phasic DA is released during cued approach and avoidance within the same microenvironment and abnormal processing of value signals is correlated with poor performance. PMID:27786172

  19. Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles.

    PubMed

    Tucker, Kristal R; Block, Ethan R; Levitan, Edwin S

    2015-08-11

    Based on lysotracker red imaging in cultured hippocampal neurons, antipsychotic drugs (APDs) were proposed to accumulate in synaptic vesicles by acidic trapping and to be released in response to action potentials. Because many APDs are dopamine (DA) D2 receptor (D2R) antagonists, such a mechanism would be particularly interesting if it operated in midbrain DA neurons. Here, the APD cyamemazine (CYAM) is visualized directly by two-photon microscopy in substantia nigra and striatum brain slices. CYAM accumulated slowly into puncta based on vacuolar H(+)-ATPase activity and dispersed rapidly upon dissipating organelle pH gradients. Thus, CYAM is subject to acidic trapping and released upon deprotonation. In the striatum, Ca(2+)-dependent reduction of the CYAM punctate signal was induced by depolarization or action potentials. Striatal CYAM overlapped with the dopamine transporter (DAT). Furthermore, parachloroamphetamine (pCA), acting via vesicular monoamine transporter (VMAT), and a charged VMAT, substrate 1-methyl-4-phenylpyridinium (MPP(+)), reduced striatal CYAM. In vivo CYAM administration and in vitro experiments confirmed that clinically relevant CYAM concentrations result in vesicular accumulation and pCA-dependent release. These results show that some CYAM is in DA neuron VMAT vesicles and suggests a new drug interaction in which amphetamine induces CYAM deprotonation and release as a consequence of the H(+) countertransport by VMAT that accompanies vesicular uptake, but not by inducing exchange or acting as a weak base. Therefore, in the striatum, APDs are released with DA in response to action potentials and an amphetamine. This synaptic corelease is expected to enhance APD antagonism of D2Rs where and when dopaminergic transmission occurs.

  20. Intra-accumbal blockade of endocannabinoid CB1 receptors impairs learning but not retention of conditioned relief.

    PubMed

    Bergado Acosta, Jorge R; Schneider, Miriam; Fendt, Markus

    2017-10-01

    Humans and animals are able to associate an environmental cue with the feeling of relief from an aversive event, a phenomenon called relief learning. Relief from an aversive event is rewarding and a relief-associated cue later induces an attenuation of the startle magnitude or approach behavior. Previous studies demonstrated that the nucleus accumbens is essential for relief learning. Here, we asked whether accumbal cannabinoid type 1 (CB1) receptors are involved in relief learning. In rats, we injected the CB1 receptor antagonist/inverse agonist SR141716A (rimonabant) directly into the nucleus accumbens at different time points during a relief learning experiment. SR141716A injections immediately before the conditioning inhibited relief learning. However, SR141716A injected immediately before the retention test was not effective when conditioning was without treatment. These findings indicate that accumbal CB1 receptors play an important role in the plasticity processes underlying relief learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Role of dopamine D1-like receptor within the nucleus accumbens in acute food deprivation- and drug priming-induced reinstatement of morphine seeking in rats.

    PubMed

    Sadeghzadeh, Fatemeh; Babapour, Vahab; Haghparast, Abbas

    2015-01-01

    Dopamine is a predominant neurotransmitter in the nervous system, which plays an important role in both drug priming- and cue-induced reinstatement of cocaine and heroin seeking. Therefore, in the present study, the conditioned place preference (CPP) paradigm was used to evaluate the effects of intra-accumbal administration of SCH23390 as a dopamine D1-like receptor antagonist on food deprivation (FD) and drug priming-induced reinstatement. Sixty-eight adult male albino Wistar rats weighing 200-280 g were bilaterally implanted by cannulae into the nucleus accumbens (NAc). For induction of the CPP, subcutaneous (sc) administration of morphine (5mg/kg) was used daily during a three-day conditioning phase. The conditioning score and locomotor activity were recorded by using the Ethovision software. Under extinction conditions, rats were given an 'off' period and were tested for FD-induced reinstatement following the 24-h or 48-h FD condition, and for drug priming-induced reinstatement under the sated condition following an injection of 0.5 and 1mg/kg (sc) morphine. In the next experiments, animals received different doses of intra-accumbal SCH23390 (0.25, 1 and 4 μg/0.5 μl saline) bilaterally and were subsequently tested for FD- and morphine priming-induced reinstatement. Our findings indicated that only a dose of 1mg/kg and not 0.5mg/kg of morphine induced the reinstatement of morphine. 24-h FD similar to 48-h FD induced the reinstatement of seeking behaviors facilitated by an ineffective dose of morphine (0.5mg/kg). Furthermore, the D1-like receptor antagonist attenuated FD- and drug priming-induced reinstatement dose-dependently. It is concluded that FD- and drug priming-induced reinstatement may be mediated, at least in some way, by activation of dopamine D1-like receptors in the NAc. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Metabotropic glutamate receptor modulation of dopamine release in the nucleus accumbens shell is unaffected by phencyclidine pretreatment: In vitro assessment using fast-scan cyclic voltammetry rat brain slices.

    PubMed

    Gupta, Ishan; Young, Andrew M J

    2018-05-15

    The non-competitive glutamate antagonist, phencyclidine is used in rodents to model behavioural deficits see in schizophrenia. Importantly, these deficits endure long after the cessation of short-term chronic treatment (sub-chronic), indicating that the drug treatment causes long-term changes in the physiology and/or chemistry of the brain. There is evidence that this may occur through glutamatergic modulation of mesolimbic dopamine release, perhaps involving metabotropic glutamate receptors (mGluR). This study sought to investigate the effect of sub-chronic phencyclidine pretreatment on modulation of dopamine neurotransmission by metabotropic glutamate receptors 2 and 5 (mGluR2 and mGluR5) in the nucleus accumbens shell in vitro, with the hypothesis that phencyclidine pretreatment would disrupt the mGluR-mediated modulation of dopamine release. We showed that the orthosteric mGluR2 agonist LY379268 (0.1 µM, 1 µM and 10 µM) and mGluR5 positive allosteric modulator CDPPB (1 µM and 10 µM) both attenuated potassium-evoked dopamine release, underscoring their role in modulating dopamine neurotransmission in the nucleus accumbens. Sub-chronic PCP treatment, which caused cognitive deficits measured by performance in the novel object recognition task, modelling aspects of behavioral deficits seen in schizophrenia, induced neurobiological changes that enhanced dopamine release in the nucleus accumbens, but had no effect on mGluR2 or mGluR5 mediated changes in dopamine release. Therefore it is unlikely that schizophrenia-related behavioural changes seen after sub-chronic phencyclidine pre-treatment are mediated through mGluR modulation of dopamine release. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Dual-Functionalization Device for Therapy through Dopamine Release and Monitoring.

    PubMed

    Fabregat, Georgina; Giménez, Alessia; Díaz, Angélica; Puiggalí, Jordi; Alemán, Carlos

    2018-05-01

    A dual-functional device is fabricated to release progressively dopamine (DA) from a biohydrogel under real-time monitoring via electrochemical detection. For this purpose, a poly-γ-glutamic acid biohydrogel is assembled with a poly(3,4-ethylenedioxythiophene) (PEDOT) layer, previously deposited onto a screen printed electrode. The biohydrogel is formulated to achieve dimensional stability and maximum DA-loading capacity. Conditions for DA-loading are influenced by the oxidation of the neurotransmitter in acid environments and the poor resistance of PEDOT to the lyophilization. The performance of the device is proved in a medium with the physiological pH of blood and the cerebrospinal fluid. The progressive release of DA is successfully monitored by the device, the limit of detection and sensitivity of the integrated sensor being 450 × 10 -9 m and 8 × 10 -5 mA µm -1 , respectively. The effect of electrochemical stimulation in the kinetics of the DA release is also investigated applying potential ramps in cyclic phase to alter the biohydrogel morphology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Intrahippocampal Infusions of Anisomycin Produce Amnesia: Contribution of Increased Release of Norepinephrine, Dopamine, and Acetylcholine

    ERIC Educational Resources Information Center

    Qi, Zhenghan; Gold, Paul E.

    2009-01-01

    Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…

  5. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens.

    PubMed

    Rakovska, Angelina; Baranyi, Maria; Windisch, Katalin; Petkova-Kirova, Polina; Gagov, Hristo; Kalfin, Reni

    2017-09-01

    CART (Cocaine- and Amphetamine-Regulated Transcript) peptide is a neurotransmitter naturally occurring in the CNS and found mostly in nucleus accumbens, ventrotegmental area, ventral pallidum, amygdalae and striatum, brain regions associated with drug addiction. In the nucleus accumbens, known for its significant role in motivation, pleasure, reward and reinforcement learning, CART peptide inhibits cocaine and amphetamine-induced dopamine-mediated increases in locomotor activity and behavior, suggesting a CART peptide interaction with the dopaminergic system. Thus in the present study, we examined the effect of CART (55-102) peptide on the basal, electrical field stimulation-evoked (EFS-evoked) (30V, 2Hz, 120 shocks) and returning basal dopamine (DA) release and on the release of the DA metabolites 3,4-dihydroxyphenyl acetaldehyde (DOPAL), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3,4-dihydroxyphenylethanol (DOPET), 3-methoxytyramine (3-MT) as well as on norepinephrine (NE) and dopamine-o-quinone (Daq) in isolated mouse nucleus accumbens, in a preparation, in which any CART peptide effects on the dendrites or soma of ventral tegmental projection neurons have been excluded. We further extended our study to assess the effect of CART (55-102) peptide on basal cocaine-induced release of dopamine and its metabolites DOPAL, DOPAC, HVA, DOPET and 3-MT as well as on NE and Daq. To analyze the amount of [ 3 H]dopamine, dopamine metabolites, Daq and NE in the nucleus accumbens superfusate, a high-pressure liquid chromatography (HPLC), coupled with electrochemical, UV and radiochemical detections was used. CART (55-102) peptide, 0.1μM, added alone, exerted: (i) a significant decrease in the basal and EFS-evoked levels of extracellular dopamine (ii) a significant increase in the EFS-evoked and returning basal levels of the dopamine metabolites DOPAC and HVA, major products of dopamine degradation and (iii) a significant decrease in the returning basal

  6. Amphetamine-induced dopamine release and neurocognitive function in treatment-naive adults with ADHD.

    PubMed

    Cherkasova, Mariya V; Faridi, Nazlie; Casey, Kevin F; O'Driscoll, Gillian A; Hechtman, Lily; Joober, Ridha; Baker, Glen B; Palmer, Jennifer; Dagher, Alain; Leyton, Marco; Benkelfat, Chawki

    2014-05-01

    Converging evidence from clinical, preclinical, neuroimaging, and genetic research implicates dopamine neurotransmission in the pathophysiology of attention deficit hyperactivity disorder (ADHD). The in vivo neuroreceptor imaging evidence also suggests alterations in the dopamine system in ADHD; however, the nature and behavioral significance of those have not yet been established. Here, we investigated striatal dopaminergic function in ADHD using [(11)C]raclopride PET with a d-amphetamine challenge. We also examined the relationship of striatal dopamine responses to ADHD symptoms and neurocognitive function. A total of 15 treatment-free, noncomorbid adult males with ADHD (age: 29.87 ± 8.65) and 18 healthy male controls (age: 25.44 ± 6.77) underwent two PET scans: one following a lactose placebo and the other following d-amphetamine (0.3 mg/kg, p.o.), administered double blind and in random order counterbalanced across groups. In a separate session without a drug, participants performed a battery of neurocognitive tests. Relative to the healthy controls, the ADHD patients, as a group, showed greater d-amphetamine-induced decreases in striatal [(11)C]raclopride binding and performed more poorly on measures of response inhibition. Across groups, a greater magnitude of d-amphetamine-induced change in [(11)C]raclopride binding potential was associated with poorer performance on measures of response inhibition and ADHD symptoms. Our findings suggest an augmented striatal dopaminergic response in treatment-naive ADHD. Though in contrast to results of a previous study, this finding appears consistent with a model proposing exaggerated phasic dopamine release in ADHD. A susceptibility to increased phasic dopamine responsivity may contribute to such characteristics of ADHD as poor inhibition and impulsivity.

  7. Selective inhibition of dopamine-beta-hydroxylase enhances dopamine release from noradrenergic terminals in the medial prefrontal cortex.

    PubMed

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Frau, Roberto; Gessa, Gian L

    2015-10-01

    Disulfiram has been claimed to be useful in cocaine addiction therapy, its efficacy being attributed to dopamine-beta-hydroxylase (DBH) inhibition. Our previous results indicate that disulfiram and the selective DBH inhibitor nepicastat increase extracellular dopamine (DA) in the rat medial prefrontal cortex (mPFC), and markedly potentiated cocaine-induced increase. Concomitantly, in rats with cocaine self-administration history, cocaine-seeking behavior induced by drug priming was prevented, probably through overstimulation of D1 receptors due to the DA increase. The present research was aimed at studying the neurochemical mechanisms originating the enhanced DA release. Noradrenergic system ablation was attained by intracerebroventricular (i.c.v.) administration of the neurotoxin anti-DBH-saporin (aDBH-sap). DA, noradrenaline (NA), and DOPAC were assessed by HPLC after ex vivo tissue extraction or in vivo microdialysis. Control and denervated rats were subjected to microdialysis in the mPFC and caudate nucleus to evaluate the effect of nepicastat-cocaine combination on extracellular DA levels and their regulation by α2-adrenoceptors. Fifteen days after neurotoxin or its vehicle administration, tissue and extracellular NA were reduced to less than 2% the control value, while extracellular DA was increased by approximately 100%. In control rats, nepicastat given alone and in combination with cocaine increased extracellular DA by about 250% and 1100%, respectively. In denervated rats, nepicastat slightly affected extracellular DA, while in combination with cocaine increased extracellular DA by 250%. No differences were found in the caudate nucleus. Clonidine almost totally reversed the extracellular DA elevation produced by nepicastat-cocaine combination, while it was ineffective in denervated rats. This research shows that the increase of extracellular DA produced by nepicastat alone or in combination with cocaine was prevented by noradrenergic denervation. The

  8. Enhanced dopamine release by dopamine transport inhibitors described by a restricted diffusion model and fast scan cyclic voltammetry

    PubMed Central

    Hoffman, Alexander F.; Spivak, Charles E.; Lupica, Carl R.

    2016-01-01

    Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple, 5 parameter, two compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using non-linear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altered Ca2+/Mg2+ ratio or tetrodotoxin (TTX), reduced the release parameter with no effect on the uptake parameter. The DAT inhibitors methylenedioxypyrovalerone (MDPV), cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa-opioid receptor (KOR) agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data. PMID:27018734

  9. Enhanced Dopamine Release by Dopamine Transport Inhibitors Described by a Restricted Diffusion Model and Fast-Scan Cyclic Voltammetry.

    PubMed

    Hoffman, Alexander F; Spivak, Charles E; Lupica, Carl R

    2016-06-15

    Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple five-parameter, two-compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using nonlinear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altering the Ca(2+)/Mg(2+) ratio or adding tetrodotoxin reduced the release parameter with no effect on the uptake parameter. DAT inhibitors methylenedioxypyrovalerone, cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa opioid receptor agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data.

  10. Antidepressants differentially affect striatal amphetamine-stimulated dopamine and serotonin release in rats with high and low novelty-oriented behaviour.

    PubMed

    O'Leary, Aet; Kõiv, Kadri; Raudkivi, Karita; Harro, Jaanus

    2016-11-01

    In the studies of depression pathogenesis and antidepressant action, the monoaminergic hypothesis of depression has mainly focused on the serotonergic and noradrenergic mechanisms. However, dopaminergic neurotransmission is also linked to both depressive symptomatology as well as antidepressant effects. We have previously shown that persistent inter-individual differences in the rat behavioural activity in novel environments is associated with differences in the striatal extracellular levels of dopamine and serotonin, depressive-like behaviour and the expression of several depression-related genes. The aim of the current study was to investigate the relative potency of the tricyclic antidepressant imipramine, the selective serotonin re-uptake inhibitor fluoxetine, and the selective noradrenaline re-uptake inhibitor reboxetine (all drugs administered in the dose of 10mg/kg, i.p.) to enhance amphetamine-stimulated dopamine and serotonin release in the striatum using in vivo microdialysis in awake, freely-moving rats, categorized into high explorers (HE) and low explorers (LE) based on their spontaneous novelty-oriented behaviour. The basal extracellular dopamine and serotonin concentration in the striatum did not differ between the LE- and HE-rats. None of the antidepressants alone were able to modify baseline striatal dopamine levels, but the amphetamine-stimulated dopamine release was significantly higher in the HE-rats after acute and chronic imipramine (but not fluoxetine or reboxetine). Acute imipramine and fluoxetine, but not reboxetine, increased both the basal and amphetamine-stimulated levels of serotonin in the striatum. Again, the HE-rats had higher amphetamine-stimulated serotonin release after fluoxetine administration. These findings suggest that rats with depressive-like phenotype are less sensitive to the neurochemical effects of antidepressants in the striatum. These results may have relevance in understanding the neurobiological bases for inter

  11. Changes in Striatal Dopamine Release Associated with Human Motor-Skill Acquisition

    PubMed Central

    Kawashima, Shoji; Ueki, Yoshino; Kato, Takashi; Matsukawa, Noriyuki; Mima, Tatsuya; Hallett, Mark; Ito, Kengo; Ojika, Kosei

    2012-01-01

    The acquisition of new motor skills is essential throughout daily life and involves the processes of learning new motor sequence and encoding elementary aspects of new movement. Although previous animal studies have suggested a functional importance for striatal dopamine release in the learning of new motor sequence, its role in encoding elementary aspects of new movement has not yet been investigated. To elucidate this, we investigated changes in striatal dopamine levels during initial skill-training (Day 1) compared with acquired conditions (Day 2) using 11C-raclopride positron-emission tomography. Ten volunteers learned to perform brisk contractions using their non-dominant left thumbs with the aid of visual feedback. On Day 1, the mean acceleration of each session was improved through repeated training sessions until performance neared asymptotic levels, while improved motor performance was retained from the beginning on Day 2. The 11C-raclopride binding potential (BP) in the right putamen was reduced during initial skill-training compared with under acquired conditions. Moreover, voxel-wise analysis revealed that 11C-raclopride BP was particularly reduced in the right antero-dorsal to the lateral part of the putamen. Based on findings from previous fMRI studies that show a gradual shift of activation within the striatum during the initial processing of motor learning, striatal dopamine may play a role in the dynamic cortico-striatal activation during encoding of new motor memory in skill acquisition. PMID:22355391

  12. Enhanced dopamine D2 autoreceptor function in the adult prefrontal cortex contributes to dopamine hypoactivity following adolescent social stress.

    PubMed

    Weber, Matthew A; Graack, Eric T; Scholl, Jamie L; Renner, Kenneth J; Forster, Gina L; Watt, Michael J

    2018-06-14

    Adult psychiatric disorders characterized by cognitive deficits reliant on prefrontal cortex (PFC) dopamine are promoted by teenage bullying. Similarly, male Sprague-Dawley rats exposed to social defeat in mid-adolescence (P35-39) show impaired working memory in adulthood (P56-70), along with decreased medial PFC (mPFC) dopamine activity that results in part from increased dopamine transporter-mediated clearance. Here, we determined if dopamine synthesis and D2 autoreceptor-mediated inhibition of dopamine release in the adult mPFC are also enhanced by adolescent defeat to contribute to later dopamine hypofunction. Control and previously defeated rats did not differ in either DOPA accumulation following amino acid decarboxylase inhibition (NSD-1015 100 mg/kg ip.) or total/phosphorylated tyrosine hydroxylase protein expression, suggesting dopamine synthesis in the adult mPFC is not altered by adolescent defeat. However, exposure to adolescent defeat caused greater decreases in extracellular dopamine release (measured using in vivo chronoamperometry) in the adult mPFC upon local infusion of the D2 receptor agonist quinpirole (3 nM), implying greater D2 autoreceptor function. Equally enhanced D2 autoreceptor-mediated inhibition of dopamine release is seen in the adolescent (P40 or P49) mPFC, which declines in control rats by adulthood. However, this developmental decrease in autoreceptor function is absent following adolescent defeat, suggesting retention of an adolescent-like phenotype into adulthood. Current and previous findings indicate adolescent defeat decreases extracellular dopamine availability in the adult mPFC via both enhanced inhibition of dopamine release and increased dopamine clearance, which may be viable targets for improving treatment of cognitive deficits seen in neuropsychiatric disorders promoted by adolescent stress. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Mechanism of aminopyridine-induced release of [3H]dopamine from rat brain synaptosomes.

    PubMed

    Scheer, H W; Lavoie, P A

    1991-01-01

    1. Aminopyridines (APs) induced the release of [3H]dopamine (3H-DA) from rat synaptosomal preparations. 2. 4-AP and 3,4-DAP were of equal efficacy in inducing release of 3H-DA; 3-AP, 2-AP and 2,6-AP were less active; pyridine and pyridine-4-carboxylamide were inactive. 3. Cd2+ was more effective in inhibiting 4-AP-induced release of 3H-DA (IC50 approximately 4 microM) than Co2+ and Ni2+ (IC50s approximately 500 microM). 4. While 4-AP increased the 45Ca2+ content of whole synaptosomal preparations, no effect of 4-AP on 45Ca2+ content was observed in lysed synaptosomal preparations. 5. 4-AP-induced 45Ca2+ uptake was inhibited by Cd2+, Ni2+ and Co2+ in concentration ranges similar to those inhibiting 3H-DA release.

  14. Distinctive Modulation of Dopamine Release in the Nucleus Accumbens Shell Mediated by Dopamine and Acetylcholine Receptors.

    PubMed

    Shin, Jung Hoon; Adrover, Martin F; Alvarez, Veronica A

    2017-11-15

    Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivo SIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is

  15. Mesolimbic Dopamine Signals the Value of Work

    PubMed Central

    Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.

    2015-01-01

    Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651

  16. Circadian-Related Heteromerization of Adrenergic and Dopamine D4 Receptors Modulates Melatonin Synthesis and Release in the Pineal Gland

    PubMed Central

    González, Sergio; Moreno-Delgado, David; Moreno, Estefanía; Pérez-Capote, Kamil; Franco, Rafael; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ortiz, Jordi

    2012-01-01

    The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D4 receptors. Through α1 B-D4 and β1-D4 receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D4 was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D4 receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs. PMID:22723743

  17. Frontal Transcranial Direct Current Stimulation Induces Dopamine Release in the Ventral Striatum in Human

    PubMed Central

    Fonteneau, Clara; Redoute, Jérome; Haesebaert, Frédéric; Le Bars, Didier; Costes, Nicolas; Suaud-Chagny, Marie-Françoise; Brunelin, Jérome

    2018-01-01

    Abstract A single transcranial direct current stimulation (tDCS) session applied over the dorsolateral prefrontal cortex (DLFPC) can be associated with procognitive effects. Furthermore, repeated DLPFC tDCS sessions are under investigation as a new therapeutic tool for a range of neuropsychiatric conditions. A possible mechanism explaining such beneficial effects is a modulation of meso-cortico-limbic dopamine transmission. We explored the spatial and temporal neurobiological effects of bifrontal tDCS on subcortical dopamine transmission during and immediately after the stimulation. In a double blind sham-controlled study, 32 healthy subjects randomly received a single session of either active (20 min, 2 mA; n = 14) or sham (n = 18) tDCS during a dynamic positron emission tomography scan using [11C]raclopride binding. During the stimulation period, no significant effect of tDCS was observed. After the stimulation period, compared with sham tDCS, active tDCS induced a significant decrease in [11C]raclopride binding potential ratio in the striatum, suggesting an increase in extracellular dopamine in a part of the striatum involved in the reward–motivation network. The present study provides the first evidence that bifrontal tDCS induces neurotransmitter release in polysynaptic connected subcortical areas. Therefore, levels of dopamine activity and reactivity should be a new element to consider for a general hypothesis of brain modulation by bifrontal tDCS. PMID:29688276

  18. Frontal Transcranial Direct Current Stimulation Induces Dopamine Release in the Ventral Striatum in Human.

    PubMed

    Fonteneau, Clara; Redoute, Jérome; Haesebaert, Frédéric; Le Bars, Didier; Costes, Nicolas; Suaud-Chagny, Marie-Françoise; Brunelin, Jérome

    2018-07-01

    A single transcranial direct current stimulation (tDCS) session applied over the dorsolateral prefrontal cortex (DLFPC) can be associated with procognitive effects. Furthermore, repeated DLPFC tDCS sessions are under investigation as a new therapeutic tool for a range of neuropsychiatric conditions. A possible mechanism explaining such beneficial effects is a modulation of meso-cortico-limbic dopamine transmission. We explored the spatial and temporal neurobiological effects of bifrontal tDCS on subcortical dopamine transmission during and immediately after the stimulation. In a double blind sham-controlled study, 32 healthy subjects randomly received a single session of either active (20 min, 2 mA; n = 14) or sham (n = 18) tDCS during a dynamic positron emission tomography scan using [11C]raclopride binding. During the stimulation period, no significant effect of tDCS was observed. After the stimulation period, compared with sham tDCS, active tDCS induced a significant decrease in [11C]raclopride binding potential ratio in the striatum, suggesting an increase in extracellular dopamine in a part of the striatum involved in the reward-motivation network. The present study provides the first evidence that bifrontal tDCS induces neurotransmitter release in polysynaptic connected subcortical areas. Therefore, levels of dopamine activity and reactivity should be a new element to consider for a general hypothesis of brain modulation by bifrontal tDCS.

  19. Effects of atropine on refractive development, dopamine release, and slow retinal potentials in the chick.

    PubMed

    Schwahn, H N; Kaymak, H; Schaeffel, F

    2000-01-01

    Atropine has previously been found to suppress visually induced myopia both in animals and humans. The mechanism of its action is unclear. We have studied its retinal effects in an in vitro preparation, using the retina-pigment epithelium-choroid complex of the chick eye. In vivo, deprivation myopia was induced by translucent goggles. Atropine solution was injected into the vitreous at two-day intervals. Dopamine release from the retina following atropine injection in vivo and from the in vitro retina preparation was quantified by HPLC-EC. In vitro preparations of the isolated chick retina-pigment epithelium-choroid were superfused with atropine. Light-induced potentials (local ERG), slow standing potentials from the retinal pigment epithelium/neural retina, and extracellular potassium concentrations were recorded. In line with previous findings, intravitreal injections of atropine (25 microg, 250 microg) reduced deprivation myopia in a dose-dependent manner. Atropine increased the release of the neurotransmitter dopamine into the superfusate in vitro at 100-500 microM and into the vitreous in vivo at 250 microg. Before an increase was measured in the vitreous, the retinal dopamine content was elevated. In concentrations equivalent to the intravitreal concentration to suppress myopia in vivo (200-800 microM), atropine induced spreading depression (SD) in the in vitro preparation. In contrast, muscarinic agonists, acetylcholine and pilocarpine, did not induce SD. Atropine reduced the ERG b- and d-wave, led to damped oscillations of RPE potentials, and reversed the ERG c-wave. Atropine suppressed myopia only at doses at which severe nonspecific side effects were observed in the retina. Atropine seems to intrude massively into the vital functions of the retina as indicated by the occurrence of SD. We conclude that atropine, by inducing SD, boosts neurotransmitter release from cellular stores, which may cancel out a presumed retinal signal that controls eye growth and

  20. Use of fast-scan cyclic voltammetry to assess phasic dopamine release in rat models of early postpartum maternal behavior and neglect.

    PubMed

    Shnitko, Tatiana A; Mace, Kyla D; Sullivan, Kaitlin M; Martin, W Kyle; Andersen, Elizabeth H; Williams Avram, Sarah K; Johns, Josephine M; Robinson, Donita L

    2017-12-01

    Maternal behavior (MB) is a complex response to infant cues, orchestrated by postpartum neurophysiology. Although mesolimbic dopamine contributes toward MB, little is known about real-time dopamine fluctuations during the postpartum period. Thus, we used fast-scan cyclic voltammetry to measure individual dopamine transients in the nucleus accumbens of early postpartum rats and compared them with dopamine transients in virgins and in postpartum females exposed to cocaine during pregnancy, which is known to disrupt MB. We hypothesized that dopamine transients are normally enhanced postpartum and support MB. In anesthetized rats, electrically evoked dopamine release was larger and clearance was faster in postpartum females than in virgins and gestational cocaine exposure blocked the change in clearance. In awake rats, control mothers showed more dopamine transients than cocaine-exposed mothers during MB. Salient pup-produced stimuli may contribute toward differences in maternal phasic dopamine by evoking dopamine transients; supporting the feasibility of this hypothesis, urine composition (glucose, ketones, and leukocytes) differed between unexposed and cocaine-exposed infants. These data, resulting from the novel application of fast-scan cyclic voltammetry to models of MB, support the hypothesis that phasic dopamine signaling is enhanced postpartum. Future studies with additional controls can delineate which aspects of gestational cocaine reduce dopamine clearance and transient frequency.

  1. Dopamine D1 receptor-dependent regulation of extracellular citrulline level in the rat nucleus accumbens during conditioned fear response.

    PubMed

    Saulskaya, Natalia B; Fofonova, Nellia V; Sudorghina, Polina V; Saveliev, Sergey A

    2008-08-01

    Nucleus accumbens (N.Acc) contains a subclass of nitric oxide (NO)-generating interneurons that are presumably regulated by the dopamine input. Receptor mechanisms underlying dopamine-NO interaction in the N.Acc are poorly understood. In the current study, we used in vivo microdialysis combined with high-performance liquid chromatography to examine participation of dopamine D1 receptors in regulation of extracellular levels of citrulline (an NO co-product) in the medial N.Acc of Sprague-Dawley rats during both pharmacological challenge and a conditioned fear response. The intraaccumbal infusion of the D1 receptor agonist SKF-38393 (100-500 microM) increased dose-dependently the local dialysate citrulline levels. The SKF-38393-induced increase in extracellular citrulline was prevented by intraaccumbal infusions of 500 microM 7-nitroindazole, a neuronal NO synthase inhibitor. In behavioral microdialysis experiment, the accumbal levels of extracellular citrulline markedly increased in rats given a mild footshock paired with tone. The presentation of the tone previously paired with footshock (the conditioned fear response) produced a "conditioned" rise of extracellular citrulline levels in the N.Acc which was attenuated by intraaccumbal infusion of 100 microM SCH-23390, a dopamine D1 receptor antagonist, and prevented by intraaccumbal infusion of 500 microM 7-nitroindazole. The results suggest that in the N.Acc, the dopamine D1 receptors might regulate the neuronal NO synthase activity; this dopamine-dependent mechanism seems to participate in activation of the neuronal NO synthase and probably NO formation in this brain area during the conditioned fear response.

  2. Tyrosine - Effects on catecholamine release

    NASA Technical Reports Server (NTRS)

    Acworth, Ian N.; During, Matthew J.; Wurtman, Richard J.

    1988-01-01

    Tyrosine administration elevates striatal levels of dopamine metabolites in animals given treatments that accelerate nigrostriatal firing, but not in untreated rats. We examined the possibility that the amino acid might actually enhance dopamine release in untreated animals, but that the technique of measuring striatal dopamine metabolism was too insensitive to demonstrate such an effect. Dopamine release was assessed directly, using brain microdialysis of striatal extracellular fluid. Tyrosine administration (50-200 mg/kg IP) did indeed cause a dose related increase in extracellular fluid dopamine levels with minor elevations in levels of DOPAC and HVA, its major metabolites, which were not dose-related. The rise in dopamine was short-lived, suggesting that receptor-mediated feedback mechanisms responded to the increased dopamine release by diminishing neuronal firing or sensitivity to tyrosine. These observations indicate that measurement of changes in striatal DOPAC and HVA, if negative, need not rule out increases in nigrostriatal dopamine release.

  3. A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter

    NASA Astrophysics Data System (ADS)

    Razavi, Asghar M.; Khelashvili, George; Weinstein, Harel

    2017-01-01

    The dopamine transporter (DAT) belongs to the neurotransmitter:sodium symporter (NSS) family of membrane proteins that are responsible for reuptake of neurotransmitters from the synaptic cleft to terminate a neuronal signal and enable subsequent neurotransmitter release from the presynaptic neuron. The release of one sodium ion from the crystallographically determined sodium binding site Na2 had been identified as an initial step in the transport cycle which prepares the transporter for substrate translocation by stabilizing an inward-open conformation. We have constructed Markov State Models (MSMs) from extensive molecular dynamics simulations of human DAT (hDAT) to explore the mechanism of this sodium release. Our results quantify the release process triggered by hydration of the Na2 site that occurs concomitantly with a conformational transition from an outward-facing to an inward-facing state of the transporter. The kinetics of the release process are computed from the MSM, and transition path theory is used to identify the most probable sodium release pathways. An intermediate state is discovered on the sodium release pathway, and the results reveal the importance of various modes of interaction of the N-terminus of hDAT in controlling the pathways of release.

  4. Phasic dopamine release in the nucleus accumbens in response to pro-social 50 kHz ultrasonic vocalizations in rats.

    PubMed

    Willuhn, Ingo; Tose, Amanda; Wanat, Matthew J; Hart, Andrew S; Hollon, Nick G; Phillips, Paul E M; Schwarting, Rainer K W; Wöhr, Markus

    2014-08-06

    Rats emit ultrasonic vocalizations (USVs) that are thought to serve as situation-dependent affective signals and accomplish important communicative functions. In appetitive situations, rats produce 50 kHz USVs, whereas 22 kHz USVs occur in aversive situations. Reception of 50 kHz USVs induces social approach behavior, while 22 kHz USVs lead to freezing behavior. These opposite behavioral responses are paralleled by distinct brain activation patterns, with 50 kHz USVs, but not 22 kHz USVs, activating neurons in the nucleus accumbens (NAcc). The NAcc mediates appetitive behavior and is critically modulated by dopaminergic afferents that are known to encode the value of reward. Therefore, we hypothesized that 50 kHz USVs, but not 22 kHz USVs, elicit NAcc dopamine release. While recording dopamine signaling with fast-scan cyclic voltammetry, freely moving rats were exposed to playback of four acoustic stimuli via an ultrasonic speaker in random order: (1) 50 kHz USVs, (2) 22 kHz USVs, (3) time- and amplitude-matched white noise, and (4) background noise. Only presentation of 50 kHz USVs induced phasic dopamine release and elicited approach behavior toward the speaker. Both of these effects, neurochemical and behavioral, were most pronounced during initial playback, but then declined rapidly with subsequent presentations, indicating a close temporal relationship between the two measures. Moreover, the magnitudes of these effects during initial playback were significantly correlated. Collectively, our findings show that NAcc dopamine release encodes pro-social 50 kHz USVs, but not alarming 22 kHz USVs. Thus, our results support the hypothesis that these call types are processed in distinct neuroanatomical regions and establish a functional link between pro-social communicative signals and reward-related neurotransmission. Copyright © 2014 the authors 0270-6474/14/3410616-08$15.00/0.

  5. The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation

    PubMed Central

    Jennings, Katie A.; Platt, Nicola J.; Cragg, Stephanie J.

    2015-01-01

    Dopamine function is disturbed in Parkinson's disease (PD), but whether and how release of dopamine from surviving neurons is altered has long been debated. Nicotinic acetylcholine receptors (nAChRs) on dopamine axons powerfully govern dopamine release and could be critical contributing factors. We revisited whether fundamental properties of dopamine transmission are changed in a parkinsonian brain and tested the potentially profound masking effects of nAChRs. Using real-time detection of dopamine in mouse striatum after a partial 6-hydroxydopamine lesion and under nAChR inhibition, we reveal that dopamine signals show diminished sensitivity to presynaptic activity. This effect manifested as diminished contrast between DA release evoked by the lowest versus highest frequencies. This reduced activity-dependence was underpinned by loss of short-term facilitation of dopamine release, consistent with an increase in release probability (Pr). With nAChRs active, the reduced activity-dependence of dopamine release after a parkinsonian lesion was masked. Consequently, moment-by-moment variation in activity of nAChRs may lead to dynamic co-variation in dopamine signal impairments in PD. PMID:26117304

  6. Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine.

    PubMed

    Malave, Lauren B; Broderick, Patricia A

    2014-06-01

    Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE ® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo , in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction.

  7. Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine

    PubMed Central

    Malave, Lauren B.

    2014-01-01

    Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo, in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction. PMID:25054079

  8. Dopamine release in chronic cannabis users: a [11C]raclopride Positron Emission Tomography study

    PubMed Central

    Urban, Nina B.L.; Slifstein, Mark; Thompson, Judy L.; Xu, Xiaoyan; Girgis, Ragy R.; Raheja, Sonia; Haney, Margaret; Abi-Dargham, Anissa

    2012-01-01

    Introduction Low striatal dopamine 2/3 receptor (D2/3) availability and low ventrostriatal (VST) dopamine (DA) release have been observed in alcoholism, cocaine and heroin dependence. Less is known about the dopaminergic system in cannabis dependence. We assessed D2/3 availability and DA release in abstinent cannabis users compared to controls and explored relationships to parameters of cannabis use history, using [11C]raclopride Positron Emission Tomography (PET) and an amphetamine challenge paradigm. Methods 16 recently abstinent, medically and psychiatrically healthy cannabis-using participants (CD, 27.3 ± 6.1 years, 1 female, 15 males) and 16 matched controls (HC, 28.1 ± 6.7 years, 2 females, 14 males) completed two PET scans, before and after injection of i.v. d-amphetamine (0.3 mg/kg). Percent change in [11C]raclopride binding after amphetamine (ΔBPND) in subregions of the striatum was compared between groups. Correlations with clinical parameters were examined. Results Cannabis dependent participants had an average consumption of 517± 465 estimated puffs per month, indicating overall mild to moderate cannabis dependence. Neither baseline BPND nor ΔBPND differed from controls in any ROI, including VST. In CD, earlier age of onset of use correlated with lower [ΔBPND] in the associative striatum (AST) when controlling for current age. Conclusions Unlike other addictions, cannabis dependence of mild to moderate severity is not associated with striatal DA alterations. However, earlier use, or longer duration of use, is related to lower DA release in the AST. These observations suggest a more harmful effect of use during adolescence; more research is needed to distinguish effects of chronicity versus onset. PMID:22290115

  9. Microchip-based Integration of Cell Immobilization, Electrophoresis, Post-column Derivatization, and Fluorescence Detection for Monitoring the Release of Dopamine from PC 12 Cells

    PubMed Central

    Li, Michelle W.; Martin, R. Scott

    2008-01-01

    In this paper, we describe the fabrication and evaluation of a multilayer microchip device that can be used to quantitatively measure the amount of catecholamines released from PC 12 cells immobilized within the same device. This approach allows immobilized cells to be stimulated on-chip and, through rapid actuation of integrated microvalves, the products released from the cells are repeatedly injected into the electrophoresis portion of the microchip, where the analytes are separated based upon mass and charge and detected through post-column derivatization and fluorescence detection. Following optimization of the post-column derivatization detection scheme (using naphthalene-2,3-dicarboxaldehyde and 2-β-mercaptoethanol), off-chip cell stimulation experiments were performed to demonstrate the ability of this device to detect dopamine from a population of PC 12 cells. The final 3-dimensional device that integrates an immobilized PC 12 cell reactor with the bilayer continuous flow sampling/electrophoresis microchip was used to continuously monitor the on-chip stimulated release of dopamine from PC 12 cells. Similar dopamine release was seen when stimulating on-chip versus off-chip yet the on-chip immobilization studies could be carried out with 500 times fewer cells in a much reduced volume. While this paper is focused on PC 12 cells and neurotransmitter analysis, the final device is a general analytical tool that is amenable to immobilization of a variety of cell lines and analysis of various released analytes by electrophoretic means. PMID:18810283

  10. Renal dopamine containing nerves. What is their functional significance?

    PubMed

    DiBona, G F

    1990-06-01

    Biochemical and morphological studies indicate that there are nerves within the kidney that contain dopamine and that various structures within the kidney contain dopamine receptors. However, the functional significance of these renal dopamine containing nerves in relation to renal dopamine receptors is unknown. The functional significance could be defined by demonstrating that an alteration in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves is dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors. Thus, the hypothesis becomes: reflex or electrical activation of efferent renal nerves causes alterations in renal function (eg, renal blood flow, water and solute handling) that are inhibited by specific and selective dopamine receptor antagonists. As reviewed herein, the published experimental data do not support the hypothesis. Therefore, the view that alterations in one or more renal functions occurring in response to reflex or electrical activation of efferent renal nerves are dependent on release of dopamine as the neurotransmitter from the renal nerve terminals acting on renal dopamine receptors remains unproven.

  11. Cocaine cue–induced dopamine release in the human prefrontal cortex

    PubMed Central

    Milella, Michele S.; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F.; Larcher, Kevin; Verhaeghe, Jeroen A.J.; Cox, Sylvia M.L.; Reader, Andrew J.; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco

    2016-01-01

    Background Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. Methods We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Results Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. Conclusion In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms. PMID:26900792

  12. Cocaine cue-induced dopamine release in the human prefrontal cortex.

    PubMed

    Milella, Michele S; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F; Larcher, Kevin; Verhaeghe, Jeroen A J; Cox, Sylvia M L; Reader, Andrew J; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco

    2016-08-01

    Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms.

  13. Antipsychotic-like Effects of M4 Positive Allosteric Modulators Are Mediated by CB2 Receptor-Dependent Inhibition of Dopamine Release.

    PubMed

    Foster, Daniel J; Wilson, Jermaine M; Remke, Daniel H; Mahmood, M Suhaib; Uddin, M Jashim; Wess, Jürgen; Patel, Sachin; Marnett, Lawrence J; Niswender, Colleen M; Jones, Carrie K; Xiang, Zixiu; Lindsley, Craig W; Rook, Jerri M; Conn, P Jeffrey

    2016-09-21

    Muscarinic receptors represent a promising therapeutic target for schizophrenia, but the mechanisms underlying the antipsychotic efficacy of muscarinic modulators are not well understood. Here, we report that activation of M4 receptors on striatal spiny projection neurons results in a novel form of dopaminergic regulation resulting in a sustained depression of striatal dopamine release that is observed more than 30 min after removal of the muscarinic receptor agonist. Furthermore, both the M4-mediated sustained inhibition of dopamine release and the antipsychotic-like efficacy of M4 activators were found to require intact signaling through CB2 cannabinoid receptors. These findings highlight a novel mechanism by which striatal cholinergic and cannabinoid signaling leads to sustained reductions in dopaminergic transmission and concurrent behavioral effects predictive of antipsychotic efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data

    PubMed Central

    2016-01-01

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS. PMID:27548680

  15. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data.

    PubMed

    Rodeberg, Nathan T; Johnson, Justin A; Bucher, Elizabeth S; Wightman, R Mark

    2016-11-16

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS.

  16. Striatal dopamine release and impaired reinforcement learning in adults with 22q11.2 deletion syndrome.

    PubMed

    van Duin, Esther D A; Kasanova, Zuzana; Hernaus, Dennis; Ceccarini, Jenny; Heinzel, Alexander; Mottaghy, Felix; Mohammadkhani-Shali, Siamak; Winz, Oliver; Frank, Michael; Beck, Merrit C H; Booij, Jan; Myin-Germeys, Inez; van Amelsvoort, Thérèse

    2018-06-01

    22q11.2 deletion syndrome (22q11DS) is a genetic disorder caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk for developing psychosis. The catechol-O-methyltransferase (COMT) gene is located in the deleted region and involved in dopamine (DA) breakdown. Impaired reinforcement learning (RL) is a recurrent feature in psychosis and thought to be related to abnormal striatal DA function. This study aims to examine RL and the potential association with striatal DA-ergic neuromodulation in 22q11DS. Twelve non-psychotic adults with 22q11DS and 16 healthy controls (HC) were included. A dopamine D 2/3 receptor [ 18 F]fallypride positron emission tomography (PET) scan was acquired while participants performed a modified version of the probabilistic stimulus selection task. RL-task performance was significantly worse in 22q11DS compared to HC. There were no group difference in striatal nondisplaceable binding potential (BP ND ) and task-induced DA release. In HC, striatal task-induced DA release was positively associated with task performance, but no such relation was found in 22q11DS subjects. Moreover, higher caudate nucleus task-induced DA release was found in COMT Met hemizygotes relative to Val hemizygotes. This study is the first to show impairments in RL in 22q11DS. It suggests that potentially motivational impairments are not only present in psychosis, but also in this genetic high risk group. These deficits may be underlain by abnormal striatal task-induced DA release, perhaps as a consequence of COMT haplo-insufficiency. Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.

  17. Prefrontal cortex, caloric restriction and stress during aging: studies on dopamine and acetylcholine release, BDNF and working memory.

    PubMed

    Del Arco, Alberto; Segovia, Gregorio; de Blas, Marta; Garrido, Pedro; Acuña-Castroviejo, Dario; Pamplona, Reinald; Mora, Francisco

    2011-01-01

    This study was designed to investigate whether long-term caloric restriction during the life span of the rat changes the effects of an acute mild stress on the release of dopamine and acetylcholine in the prefrontal cortex (PFC) and on working memory performance. Spontaneous motor activity was also monitored and levels of BDNF measured in the prefrontal cortex, amygdala and hippocampus. Male Wistar rats (3 months of age) were housed during 3, 12, 21 and 27 months (6, 15, 24 and 30 months of age at the end of housing) in caloric restriction (CR; 40% food intake restriction) or control conditions. After behavioural testing, animals were further subdivided into two other groups. In one of the groups BDNF protein levels were determined. In the other group rats were implanted with guide cannulas into the PFC to perform microdialysis experiments. In CR rats the release of dopamine produced by handling stress did not differ from the response found in control rats of 6, 15 and 24 months of age. The release of acetylcholine was not changed at the ages of 6 and 15 months but reduced at the age of 24 months. Stress did not change dopamine or acetylcholine release in CR and control rats of 30 months of age. BDNF levels were increased in the hippocampus and amygdala, but not in the PFC, of 6 and 15 months CR rats. Spontaneous motor activity was increased in all groups of CR rats. Age, however, decreased motor activity in CR and control rats. Both experimental groups showed similar working memory performance in a delayed alternation task in basal conditions and after a situation of acute stress. These results suggest that CR does not modify the function of the PFC in response to an acute stress nor the changes found as a result of the normal process of aging. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Insulin resistance impairs nigrostriatal dopamine function.

    PubMed

    Morris, J K; Bomhoff, G L; Gorres, B K; Davis, V A; Kim, J; Lee, P-P; Brooks, W M; Gerhardt, G A; Geiger, P C; Stanford, J A

    2011-09-01

    Clinical studies have indicated a link between Parkinson's disease (PD) and Type 2 Diabetes. Although preclinical studies have examined the effect of high-fat feeding on dopamine function in brain reward pathways, the effect of diet on neurotransmission in the nigrostriatal pathway, which is affected in PD and parkinsonism, is less clear. We hypothesized that a high-fat diet, which models early-stage Type 2 Diabetes, would disrupt nigrostriatal dopamine function in young adult Fischer 344 rats. Rats were fed a high fat diet (60% calories from fat) or a normal chow diet for 12 weeks. High fat-fed animals were insulin resistant compared to chow-fed controls. Potassium-evoked dopamine release and dopamine clearance were measured in the striatum using in vivo electrochemistry. Dopamine release was attenuated and dopamine clearance was diminished in the high-fat diet group compared to chow-fed rats. Magnetic resonance imaging indicated increased iron deposition in the substantia nigra of the high fat group. This finding was supported by alterations in the expression of several proteins involved in iron metabolism in the substantia nigra in this group compared to chow-fed animals. The diet-induced systemic and basal ganglia-specific changes may play a role in the observed impairment of nigrostriatal dopamine function. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Dopamine release in chronic cannabis users: a [11c]raclopride positron emission tomography study.

    PubMed

    Urban, Nina B L; Slifstein, Mark; Thompson, Judy L; Xu, Xiaoyan; Girgis, Ragy R; Raheja, Sonia; Haney, Margaret; Abi-Dargham, Anissa

    2012-04-15

    Low striatal dopamine 2/3 receptor (D(2/3)) availability and low ventrostriatal dopamine (DA) release have been observed in alcoholism and cocaine and heroin dependence. Less is known about the dopaminergic system in cannabis dependence. We assessed D(2/3) availability and DA release in abstinent cannabis users compared with control subjects and explored relationships to cannabis use history using [(11)C]raclopride positron emission tomography and an amphetamine challenge paradigm. Sixteen recently abstinent, psychiatrically healthy cannabis-using participants (27.3 ± 6.1 years, 1 woman, 15 men) and 16 matched control subjects (28.1 ± 6.7 years, 2 women, 14 men) completed two positron emission tomography scans, before and after injection of intravenous d-amphetamine (.3 mg/kg). Percent change in [(11)C]raclopride binding after amphetamine (change in nondisplaceable binding potential, ΔBP(ND)) in subregions of the striatum was compared between groups. Correlations with clinical parameters were examined. Cannabis users had an average consumption of 517 ± 465 estimated puffs per month, indicating mild to moderate cannabis dependence. Neither baseline BP(ND) nor ΔBP(ND) differed from control subjects in any region of interest, including ventral striatum. In cannabis-dependent subjects, earlier age of onset of use correlated with lower [ΔBP(ND)] in the associative striatum when controlling for current age. Unlike other addictions, cannabis dependence of mild to moderate severity is not associated with striatal DA alterations. However, earlier or longer duration of use is related to lower DA release in the associative striatum. These observations suggest a more harmful effect of use during adolescence; more research is needed to distinguish effects of chronicity versus onset. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release.

    PubMed

    Halmos, G; Horváth, T; Polony, G; Fekete, A; Kittel, A; Vizi, E S; van der Laan, B F A M; Zelles, T; Lendvai, B

    2008-06-23

    Dopamine (DA) released from lateral olivocochlear (LOC) terminals may have a neuroprotective effect in the cochlea. To explore the role of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) in the modulation of a cochlear DA release, we measured the release of [3H]DA from isolated mouse cochlea in response to the application of NMDA. NMDA at 100 muM significantly increased the electrical-field stimulation-evoked and resting release of DA from the cochlea. The NO donor sodium nitroprusside enhanced the basal outflow of DA but failed to influence the evoked release. The administration of the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) alone was ineffective, but it significantly inhibited the initial phase of the NMDA-induced elevation of DA outflow, which suggested the role of NO in the NMDA-induced DA release. The DA uptake inhibitor nomifensine increased the electrically evoked release of DA. Nomifensine failed to change the effect of NMDA on the resting or electrically-evoked DA release, which suggested that the uptake mechanism does not play a role in NMDA-evoked and NO-mediated DA release. In summary, we provide evidence that NO can modulate the release of DA from the cochlea following NMDA receptor activation, but does not affect the uptake of DA.

  1. Characterization of the effects of serotonin on the release of (/sup 3/H)dopamine from rat nucleus accumbens and striatal slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-05-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of (/sup 3/H)dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal /sup 3/H overflow and reduced K+-induced release of (/sup 3/H)DA from nucleus accumbens slices. The effect of serotonin on basal /sup 3/H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of (/sup 3/H)DA in the nucleus accumbens or striatum. The serotoninmore » agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of (/sup 3/H)DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.« less

  2. Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease.

    PubMed

    Dunn, Amy R; Stout, Kristen A; Ozawa, Minagi; Lohr, Kelly M; Hoffman, Carlie A; Bernstein, Alison I; Li, Yingjie; Wang, Minzheng; Sgobio, Carmelo; Sastry, Namratha; Cai, Huaibin; Caudle, W Michael; Miller, Gary W

    2017-03-14

    Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.

  3. The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus accumbens [corrected].

    PubMed

    Balfour, David J K

    2004-12-01

    It is now widely accepted that nicotine is the primary addictive component of tobacco smoke and that a majority of habitual smokers find it difficult to quit smoking because of their dependence upon this component of the smoke. However, although nicotine replacement therapy elicits a clinically valuable and significant improvement in the number of quit attempts that are ultimately successful, its efficacy remains disappointingly low. This review considers some of the reasons for this problem. It focuses on the hypothesis that stimulation of the dopamine (DA) projections to the medial shell and the core of the nucleus accumbens play complementary roles in the development of nicotine dependence. The hypothesis proposes that increased extra-synaptic DA in the medial shell of the accumbens confers hedonic properties on behaviors, such as smoking, which deliver nicotine, and thereby increase the probability that the response is learned. It also summarizes the evidence that the primary role of the increased DA overflow, observed in the accumbal core of nicotine-pretreated individuals, challenged with nicotine, is the attribution of incentive salience to cues associated with delivery of the drug and the transition to Pavlovian responding to these conditioned stimuli. The review argues that sensitization of the DA projections to the accumbal core, and the behaviors that depend upon this process, play a pivotal role in the maintenance of the tobacco smoking habit and that it is this component of the dependence that is inadequately addressed by nicotine replacement therapy.

  4. The dopamine theory of addiction: 40 years of highs and lows.

    PubMed

    Nutt, David J; Lingford-Hughes, Anne; Erritzoe, David; Stokes, Paul R A

    2015-05-01

    For several decades, addiction has come to be viewed as a disorder of the dopamine neurotransmitter system; however, this view has not led to new treatments. In this Opinion article, we review the origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit the release of dopamine in the human striatum. There is robust evidence that stimulants increase striatal dopamine levels and some evidence that alcohol may have such an effect, but little evidence, if any, that cannabis and opiates increase dopamine levels. Moreover, there is good evidence that striatal dopamine receptor availability and dopamine release are diminished in individuals with stimulant or alcohol dependence but not in individuals with opiate, nicotine or cannabis dependence. These observations have implications for understanding reward and treatment responses in various addictions.

  5. Elevated Striatal Dopamine Function in Immigrants and Their Children: A Risk Mechanism for Psychosis.

    PubMed

    Egerton, Alice; Howes, Oliver D; Houle, Sylvain; McKenzie, Kwame; Valmaggia, Lucia R; Bagby, Michael R; Tseng, Huai-Hsuan; Bloomfield, Michael A P; Kenk, Miran; Bhattacharyya, Sagnik; Suridjan, Ivonne; Chaddock, Chistopher A; Winton-Brown, Toby T; Allen, Paul; Rusjan, Pablo; Remington, Gary; Meyer-Lindenberg, Andreas; McGuire, Philip K; Mizrahi, Romina

    2017-03-01

    Migration is a major risk factor for schizophrenia but the neurochemical processes involved are unknown. One candidate mechanism is through elevations in striatal dopamine synthesis and release. The objective of this research was to determine whether striatal dopamine function is elevated in immigrants compared to nonimmigrants and the relationship with psychosis. Two complementary case-control studies of in vivo dopamine function (stress-induced dopamine release and dopamine synthesis capacity) in immigrants compared to nonimmigrants were performed in Canada and the United Kingdom. The Canadian dopamine release study included 25 immigrant and 31 nonmigrant Canadians. These groups included 23 clinical high risk (CHR) subjects, 9 antipsychotic naïve patients with schizophrenia, and 24 healthy volunteers. The UK dopamine synthesis study included 32 immigrants and 44 nonimmigrant British. These groups included 50 CHR subjects and 26 healthy volunteers. Both striatal stress-induced dopamine release and dopamine synthesis capacity were significantly elevated in immigrants compared to nonimmigrants, independent of clinical status. These data provide the first evidence that the effect of migration on the risk of developing psychosis may be mediated by an elevation in brain dopamine function. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  6. Chronic lithium treatment rectifies maladaptive dopamine release in the nucleus accumbens.

    PubMed

    Can, Adem; Frost, Douglas O; Cachope, Roger; Cheer, Joseph F; Gould, Todd D

    2016-11-01

    Chronic lithium treatment effectively reduces behavioral phenotypes of mania in humans and rodents. The mechanisms by which lithium exerts these actions are poorly understood. Pre-clinical and clinical evidence have implicated increased mesolimbic dopamine (DA) neurotransmission with mania. We used fast-scan cyclic voltammetry to characterize changes in extracellular DA concentrations in the nucleus accumbens (NAc) core evoked by 20 and 60 Hz electrical stimulation of the ventral tegmental area (VTA) in C57BL6/J mice treated either acutely or chronically with lithium. The effects of chronic lithium treatment on the availability of DA for release were assessed by depleting readily releasable DA using short inter-train intervals, or administering d-amphetamine acutely to mobilize readily releasable DA. Chronic, but not acute, lithium treatment decreased the amplitude of DA responses in the NAc following 60 Hz pulse train stimulation. Neither lithium treatment altered the kinetics of DA release or reuptake. Chronic treatment did not impact the progressive reduction in the amplitude of DA responses when, using 20 or 60 Hz pulse trains, the VTA was stimulated every 6 s to deplete DA. Specifically, the amplitude of DA responses to 60 Hz pulse trains was initially reduced compared to control mice, but by the fifth pulse train, there was no longer a treatment effect. However, chronic lithium treatment attenuated d-amphetamine-induced increases in DA responses to 20 Hz pulse trains stimulation. Our data suggest that long-term administration of lithium may ameliorate mania phenotypes by normalizing the readily releasable DA pool in VTA axon terminals in the NAc. Read the Editorial Highlight for this article on Page 520. © 2016 International Society for Neurochemistry.

  7. Nucleus Accumbens Shell Dopamine Preferentially Tracks Information Related to Outcome Value of Reward.

    PubMed

    Sackett, Deirdre A; Saddoris, Michael P; Carelli, Regina M

    2017-01-01

    Effective decision-making requires organisms to predict reward values and bias behavior toward the best available option. The mesolimbic dopamine system, including the nucleus accumbens (NAc) shell and core, is involved in this process. Although studies support a role of the shell and core in specific aspects of decision-making (e.g., risk, effort, delay), no studies have directly compared dopamine release dynamics in these subregions to cues exclusively signaling the availability of different reward magnitudes. Here, fast-scan cyclic voltammetry was used to compare rapid dopamine release dynamics in the NAc subregions during a magnitude-based decision-making task. Rats learned that distinct cues signaled the availability of either a small or large reward (one or two sugar pellets), and then were given an opportunity to choose their preferred option. We found that peak dopamine release tracked the more preferred (higher-magnitude) option in both core and shell subregions. Critically, however, overall (i.e., global) dopamine release was significantly higher and longer lasting in the shell and tracked the preferred magnitude during the entire cue period. Further, in the shell (not core), dopamine signaling significantly declined immediately at the lever press for reward but increased during the period of reward consumption. Collectively, the results indicate that although dopamine release in both the core and shell are activated by cues signaling the opportunity to respond for rewards of different magnitudes, dopamine release in the shell plays a differential and unique role in tracking information related to the outcome value of reward.

  8. Breathing is affected by dopamine D2-like receptors in the basolateral amygdala.

    PubMed

    Sugita, Toshihisa; Kanamaru, Mitsuko; Iizuka, Makito; Sato, Kanako; Tsukada, Setsuro; Kawamura, Mitsuru; Homma, Ikuo; Izumizaki, Masahiko

    2015-04-01

    The precise mechanisms underlying how emotions change breathing patterns remain unclear, but dopamine is a candidate neurotransmitter in the process of emotion-associated breathing. We investigated whether basal dopamine release occurs in the basolateral amygdala (BLA), where sensory-related inputs are received and lead to fear or anxiety responses, and whether D1- and D2-like receptor antagonists affect breathing patterns and dopamine release in the BLA. Adult male mice (C57BL/6N) were perfused with artificial cerebrospinal fluid, a D1-like receptor antagonist (SCH 23390), or a D2-like receptor antagonist ((S)-(-)-sulpiride) through a microdialysis probe in the BLA. Respiratory variables were measured using a double-chamber plethysmograph. Dopamine release was measured by an HPLC. Perfusion of (S)-(-)-sulpiride in the BLA, not SCH 23390, specifically decreased respiratory rate without changes in local release of dopamine. These results suggest that basal dopamine release in the BLA, at least partially, increases respiratory rates only through post-synaptic D2-like receptors, not autoreceptors, which might be associated with emotional responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. MK-801-induced behavioural sensitisation alters dopamine release and turnover in rat prefrontal cortex.

    PubMed

    Cui, Xiaoying; Lefevre, Emilia; Turner, Karly M; Coelho, Carlos M; Alexander, Suzy; Burne, Thomas H J; Eyles, Darryl W

    2015-02-01

    Repeated exposure to psychostimulants that either increase dopamine (DA) release or target N-methyl-D-aspartate (NMDA) receptors can induce behavioural sensitisation, a phenomenon that may be important for the processes of addiction and even psychosis. A critical component of behavioural sensitisation is an increase in DA release within mesocorticolimbic circuits. In particular, sensitisation to amphetamine leads to increased DA release within well-known sub-cortical brain regions and also regulatory regions such as prefrontal cortex (PFC). However, it is unknown how DA release within the PFC of animals is altered by sensitisation to NMDA receptor antagonists. The aims of the present study were twofold, firstly to examine whether a single dose of dizocilpine maleate (MK-801) could induce long-term behavioural sensitisation and secondly to examine DA release in the PFC of sensitised rats. Behavioural sensitisation was assessed by measuring locomotion after drug exposure. DA release in the PFC was measured using freely moving microdialysis. We show that a single dose of MK-801 can induce sensitisation to subsequent MK-801 exposure in a high percentage of rats (66 %). Furthermore, rats sensitised to MK-801 have altered DA release and turnover in the PFC compared with non-sensitised rats. Schizophrenia patients have been postulated to have 'endogenous sensitisation' to psychostimulants. MK-801-induced sensitised rats, in particular when compared with non-sensitised rats, provide a useful model for studying PFC dysfunction in schizophrenia.

  10. Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats.

    PubMed

    Andino-Pavlovsky, Victoria; Souza, Annie C; Scheffer-Teixeira, Robson; Tort, Adriano B L; Etchenique, Roberto; Ribeiro, Sidarta

    2017-01-01

    Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC.

  11. Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor.

    PubMed

    Błasiak, Ewa; Łukasiewicz, Sylwia; Szafran-Pilch, Kinga; Dziedzicka-Wasylewska, Marta

    2017-04-01

    The human dopamine D2 receptor gene has three polymorphic variants that alter its amino acid sequence: alanine substitution by valine in position 96 (V96A), proline substitution by serine in position 310 (P310S) and serine substitution by cysteine in position 311 (S311C). Their functional role has never been the object of extensive studies, even though there is some evidence that their occurrence correlates with schizophrenia. The HEK293 cell line was transfected with dopamine D1 and D2 receptors (or genetic variants of the D2 receptor), coupled to fluorescent proteins which allowed us to measure the extent of dimerization of these receptors, using a highly advanced biophysical approach (FLIM-FRET). Additionally, Fluoro-4 AM was used to examine changes in the level of calcium release after ligand stimulation of cells expressing different combinations of dopamine receptors. Using FLIM-FRET experiments we have shown that in HEK 293 expressing dopamine receptors, polymorphic mutations in the D2 receptor play a role in dimmer formation with the dopamine D1 receptor. The association level of dopamine receptors is affected by ligand administration, with variable effects depending on polymorphic variant of the D2 dopamine receptor. We have found that the level of heteromer formation is reflected by calcium ion release after ligand stimulation and have observed variations of this effect dependent on the polymorphic variant and the ligand. The data presented in this paper support the hypothesis on the role of calcium signaling regulated by the D1-D2 heteromer which may be of relevance for schizophrenia etiology. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells

    PubMed Central

    Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T.

    2013-01-01

    Evidence for co-expression of two or more classic neurotransmitters in neurons has increased but less is known about co-transmission. Ventral tegmental area (VTA) neurons, co-release dopamine (DA), the excitatory transmitter glutamate and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and co-express markers for dopamine (DA) and GABA. Using an optogenetic approach we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABAA receptor-mediated monosynaptic inhibitory response followed by DA-D1-like receptor-mediated excitatory response in ETCs. The GABAA receptor-mediated hyperpolarization activates Ih current in ETCs; synaptically released DA increases Ih, which enhances post-inhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by Ih to generate an inhibition-to-excitation “switch” in ETCs. Consistent with the established role of Ih in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA co-transmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array. PMID:23407950

  13. Effects of phenylethanolamine N-methyltransferase inhibitors on uptake and release of norepinephrine and dopamine from rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, N.Y.; Hower, J.A.; Borchardt, R.T.

    1985-09-01

    Inhibitors of phenylethanolamine N-methyltransferase (PNMT) and amphetamine were evaluated for their effects on the uptake of (TH)-norepinephrine (TH-NE) and the release of endogenous NE and dopamine (DA) from chopped rat brain tissues. Unlike amphetamine, all of PNMT inhibitors tested produced only slight inhibition of (TH)-NE uptake into chopped cerebral cortex. 2,3-Dichloro-alpha-methylbenzylamine (DCMB) and 7,8-dichloro-1,2,3,4-tetrahydroisoquinoline (SKF64139), but not 2-cyclooctyl-2-hydroxyethylamine (CONH) and 1-aminomethylcycloundecanol (CUNH) produced slight release of endogenous NE and DA from chopped hypothalami, but their effects were less pronounced than those produced by amphetamine.

  14. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT

    PubMed Central

    Aguilar, Jenny I.; Dunn, Matthew; Mingote, Susana; Karam, Caline S.; Farino, Zachary J.; Sonders, Mark S.; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J.; McCabe, Brian D.; Mosharov, Eugene V.; Krantz, David E.; Javitch, Jonathan A.; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-01-01

    SUMMARY The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. PMID:28823729

  15. The Role of D2-Autoreceptors in Regulating Dopamine Neuron Activity and Transmission

    PubMed Central

    Ford, Christopher P

    2014-01-01

    Dopamine D2-autoreceptors play a key role in regulating the activity of dopamine neurons and control the synthesis, release and uptake of dopamine. These Gi/o-coupled inhibitory receptors play a major part in shaping dopamine transmission. Found at both somatodendritic and axonal sites, autoreceptors regulate the firing patterns of dopamine neurons and control the timing and amount of dopamine released from their terminals in target regions. Alterations in the expression and activity of autoreceptors are thought to contribute to Parkinson’s disease as well as schizophrenia, drug addiction and attention deficit hyperactivity disorder (ADHD), which emphasizes the importance of D2-autoreceptors in regulating the dopamine system. This review will summarize the cellular actions of dopamine autoreceptors and discuss recent advances that have furthered our understanding of the mechanisms by which D2-receptors control dopamine transmission. PMID:24463000

  16. Anti-aggressive effect elicited by coca-paste in isolation-induced aggression of male rats: influence of accumbal dopamine and cortical serotonin.

    PubMed

    Meikle, María Noel; Prieto, José Pedro; Urbanavicius, Jessika; López, Ximena; Abin-Carriquiry, Juan Andrés; Prunell, Giselle; Scorza, María Cecilia

    2013-09-01

    Coca-paste (CP), an illicit drug of abuse, has been frequently associated with aggressive and impulsive behaviors in humans. However, preclinical studies have not been carried out in order to characterize CP effects on aggression. The acute effect of CP, cocaine and caffeine (the main adulterant present in seized samples) on aggression was assessed using the isolation-induced aggression paradigm in male rats. The dopaminergic (DA) neurotransmission in the nucleus accumbens (NAcc) and serotonergic (5-HT) activity in the frontal cortex were explored. CP and cocaine induced a similar anti-aggressive effect on isolated rats although CP-treated animals showed a shorter latency to the first attack. Aggressive behavior was not increased per se by caffeine. Social investigation time was slightly reduced only by cocaine while exploratory activity and time spent walking were increased by the three drugs. Accumbal DA levels were significantly augmented by CP, cocaine and caffeine, although differences in DOPAC and HVA levels were evidenced. A decrease in DA turnover was only observed after CP and cocaine administration. Increased cortical 5-HT levels with a concomitant decrease in 5-HT turnover were observed after CP and cocaine whereas caffeine did not alter it. As cocaine but not caffeine reduced aggression, it seems like cocaine content was mainly responsible for CP anti-aggressive action; however, the presence of caffeine in CP may have a role in the shorter latency to attack compared to cocaine. Despite the increase in NAcc DA, the enhancement of cortical 5-HT levels can likely underlie the anti-aggression observed in CP-treated animals. © 2013 Elsevier Inc. All rights reserved.

  17. Dopamine and serotonin: influences on male sexual behavior.

    PubMed

    Hull, Elaine M; Muschamp, John W; Sato, Satoru

    2004-11-15

    Steroid hormones regulate sexual behavior primarily by slow, genomically mediated effects. These effects are realized, in part, by enhancing the processing of relevant sensory stimuli, altering the synthesis, release, and/or receptors for neurotransmitters in integrative areas, and increasing the responsiveness of appropriate motor outputs. Dopamine has facilitative effects on sexual motivation, copulatory proficiency, and genital reflexes. Dopamine in the nigrostriatal tract influences motor activity; in the mesolimbic tract it activates numerous motivated behaviors, including copulation; in the medial preoptic area (MPOA) it controls genital reflexes, copulatory patterns, and specifically sexual motivation. Testosterone increases nitric oxide synthase in the MPOA; nitric oxide increases basal and female-stimulated dopamine release, which in turn facilitates copulation and genital reflexes. Serotonin (5-HT) is primarily inhibitory, although stimulation of 5-HT(2C) receptors increases erections and inhibits ejaculation, whereas stimulation of 5-HT(1A) receptors has the opposite effects: facilitation of ejaculation and, in some circumstances, inhibition of erection. 5-HT is released in the anterior lateral hypothalamus at the time of ejaculation. Microinjections of selective serotonin reuptake inhibitors there delay the onset of copulation and delay ejaculation after copulation begins. One means for this inhibition is a decrease in dopamine release in the mesolimbic tract.

  18. Modafinil evokes striatal [(3)H]dopamine release and alters the subjective properties of stimulants.

    PubMed

    Dopheide, Marsha M; Morgan, Russell E; Rodvelt, Kelli R; Schachtman, Todd R; Miller, Dennis K

    2007-07-30

    Modafinil is a mild psychostimulant used for the treatment of sleep and arousal-related disorders, and has been considered a pharmacotherapy for cocaine and amphetamine dependence; however, modafinil's mechanism of action is largely unclear. The present study investigated modafinil using drug discrimination and slice superfusion techniques. Rats were trained to discriminate cocaine (1.6 or 5 mg/kg) or amphetamine (0.3 mg/kg) from saline injection for food reinforcement. Modafinil (64-128 mg/kg) substituted partially for both cocaine doses and amphetamine. Pretreatment with a lower modafinil dose (32 mg/kg) augmented the discriminative stimulus properties of cocaine (1.6 mg/kg dose group) and amphetamine. In neurochemical experiments, modafinil (100-300 microM) evoked [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine in a concentration-dependent manner; however, modafinil was less potent and efficacious than amphetamine and nicotine. The dopamine transporter inhibitor nomifensine (10 microM) blocked modafinil-evoked [(3)H]overflow, and concentrations of modafinil (<100 microM) that did not have intrinsic activity attenuated amphetamine (1 and 3 microM)-evoked [(3)H]overflow. Modafinil-evoked [(3)H]overflow was not altered by the nicotinic acetylcholine receptor antagonist mecamylamine, and modafinil did not alter nicotine-evoked [(3)H]overflow, indicating that nicotinic acetylcholine receptors likely are not important for modafinil's mechanism of action. The present results indicate that modafinil evokes dopamine release from striatal neurons and is a psychostimulant that is pharmacologically similar to, but much less potent and efficacious than, amphetamine.

  19. The HIV-1 associated protein, Tat1–86, impairs dopamine transporters and interacts with cocaine to reduce nerve terminal function: a no-net-flux microdialysis study

    PubMed Central

    Ferris, Mark J.; Frederick-Duus, Danielle; Fadel, Jim; Mactutus, Charles F.; Booze, Rosemarie M.

    2009-01-01

    Injection drug use accounts for approximately one-third of HIV-infections in the United States. HIV associated proteins have been shown to interact with various drugs of abuse to incite concerted neurotoxicity. One common area for their interaction is the nerve terminal, including dopamine transporter (DAT) systems. However, results regarding DAT function and regulation in HIV-infection, regardless of drug use, are mixed. Thus, the present experiments were designed to explicitly control Tat and cocaine administration in an in vivo model in order to reconcile differences that exist in the literature to date. We examined Tat plus cocaine-induced alterations using no-net-flux microdialysis, which is sensitive to alterations in DAT function, in order to test the potential for DAT as an early mediator of HIV-induced oxidative stress and neurodegeneration in vivo. Within 5 hours of intra-accumbal administration of the HIV-associated protein, Tat, we noted a significant reduction in local DAT efficiency with little change in DA overflow/release dynamics. Further, at 48 hrs post-Tat administration, we demonstrated a concerted effect of the HIV-protein Tat with cocaine on both uptake and release function. Finally, we discuss the extent to which DAT dysfunction may be considered a predecessor to generalized nerve terminal dysfunction. Characterization of DAT dysfunction in vivo may provide an early pharamacotherapeutic target, which in turn may prevent or attenuate downstream mediators of neurotoxicity (i.e., reactive species) to DA systems occurring in NeuroAIDS. PMID:19344635

  20. Orbitofrontal Dopamine Depletion Upregulates Caudate Dopamine and Alters Behavior via Changes in Reinforcement Sensitivity

    PubMed Central

    Cardinal, R. N.; Rygula, R.; Hong, Y. T.; Fryer, T. D.; Sawiak, S. J.; Ferrari, V.; Cockcroft, G.; Aigbirhio, F. I.; Robbins, T. W.; Roberts, A. C.

    2014-01-01

    Schizophrenia is associated with upregulation of dopamine (DA) release in the caudate nucleus. The caudate has dense connections with the orbitofrontal cortex (OFC) via the frontostriatal loops, and both areas exhibit pathophysiological change in schizophrenia. Despite evidence that abnormalities in dopaminergic neurotransmission and prefrontal cortex function co-occur in schizophrenia, the influence of OFC DA on caudate DA and reinforcement processing is poorly understood. To test the hypothesis that OFC dopaminergic dysfunction disrupts caudate dopamine function, we selectively depleted dopamine from the OFC of marmoset monkeys and measured striatal extracellular dopamine levels (using microdialysis) and dopamine D2/D3 receptor binding (using positron emission tomography), while modeling reinforcement-related behavior in a discrimination learning paradigm. OFC dopamine depletion caused an increase in tonic dopamine levels in the caudate nucleus and a corresponding reduction in D2/D3 receptor binding. Computational modeling of behavior showed that the lesion increased response exploration, reducing the tendency to persist with a recently chosen response side. This effect is akin to increased response switching previously seen in schizophrenia and was correlated with striatal but not OFC D2/D3 receptor binding. These results demonstrate that OFC dopamine depletion is sufficient to induce striatal hyperdopaminergia and changes in reinforcement learning relevant to schizophrenia. PMID:24872570

  1. Computational Modeling of Neurotransmitter Release Evoked by Electrical Stimulation: Nonlinear Approaches to Predicting Stimulation-Evoked Dopamine Release.

    PubMed

    Trevathan, James K; Yousefi, Ali; Park, Hyung Ook; Bartoletta, John J; Ludwig, Kip A; Lee, Kendall H; Lujan, J Luis

    2017-02-15

    Neurochemical changes evoked by electrical stimulation of the nervous system have been linked to both therapeutic and undesired effects of neuromodulation therapies used to treat obsessive-compulsive disorder, depression, epilepsy, Parkinson's disease, stroke, hypertension, tinnitus, and many other indications. In fact, interest in better understanding the role of neurochemical signaling in neuromodulation therapies has been a focus of recent government- and industry-sponsored programs whose ultimate goal is to usher in an era of personalized medicine by creating neuromodulation therapies that respond to real-time changes in patient status. A key element to achieving these precision therapeutic interventions is the development of mathematical modeling approaches capable of describing the nonlinear transfer function between neuromodulation parameters and evoked neurochemical changes. Here, we propose two computational modeling frameworks, based on artificial neural networks (ANNs) and Volterra kernels, that can characterize the input/output transfer functions of stimulation-evoked neurochemical release. We evaluate the ability of these modeling frameworks to characterize subject-specific neurochemical kinetics by accurately describing stimulation-evoked dopamine release across rodent (R 2 = 0.83 Volterra kernel, R 2 = 0.86 ANN), swine (R 2 = 0.90 Volterra kernel, R 2 = 0.93 ANN), and non-human primate (R 2 = 0.98 Volterra kernel, R 2 = 0.96 ANN) models of brain stimulation. Ultimately, these models will not only improve understanding of neurochemical signaling in healthy and diseased brains but also facilitate the development of neuromodulation strategies capable of controlling neurochemical release via closed-loop strategies.

  2. Regulation of /sup 3/H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalev, G.I.; Hetey, L.

    1987-06-01

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain.

  3. Drug discrimination and neurochemical studies in alpha7 null mutant mice: tests for the role of nicotinic alpha7 receptors in dopamine release.

    PubMed

    Quarta, Davide; Naylor, Christopher G; Barik, Jacques; Fernandes, Cathy; Wonnacott, Susan; Stolerman, Ian P

    2009-04-01

    The nicotine discriminative stimulus has been linked to beta2-containing (beta2*) nicotinic receptors, with little evidence of a role for alpha7 nicotinic receptors, because nicotine discrimination was very weak in beta2 null mutant mice but normal in alpha7 mutants. As both alpha7 and beta2* nicotinic receptors have been implicated in nicotine-stimulated dopamine overflow, this study focused on the dopamine-mediated element in the nicotine stimulus by examining cross-generalisation between amphetamine and nicotine. Male alpha7 nicotinic receptor null mutant mice and wild-type controls were bred in-house and trained to discriminate nicotine (0.8 mg/kg) or (+)-amphetamine (0.6 mg/kg) from saline in a two-lever procedure with a tandem VI-30 FR-10 schedule of food reinforcement. Dopamine release from striatal slices was determined in parallel experiments. An alpha7 nicotinic receptor-mediated component of dopamine release was demonstrated in tissue from wild-type mice using choline as a selective agonist. This response was absent in tissue from null mutant animals. The mutation did not influence acquisition of drug discriminations but subtly affected the results of cross-generalisation tests. In mice trained to discriminate nicotine or amphetamine, there was partial cross-generalisation in wild-type mice and, at certain doses, these effects were attenuated in mutants. Further support for an alpha7 nicotinic receptor-mediated component was provided by the ability of the alpha7 nicotinic receptor antagonist methyllycaconitine to attenuate responses to nicotine and amphetamine in wild-type mice. These findings support the concept of an alpha7 nicotinic receptor-mediated dopaminergic element in nicotine discrimination, warranting further tests with selective dopamine agonists.

  4. Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats

    PubMed Central

    Andino-Pavlovsky, Victoria; Souza, Annie C.; Scheffer-Teixeira, Robson; Tort, Adriano B. L.; Etchenique, Roberto; Ribeiro, Sidarta

    2017-01-01

    Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC. PMID:28536507

  5. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    PubMed

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Ventral tegmental ionotropic glutamate receptor stimulation of nucleus accumbens tonic dopamine efflux blunts hindbrain-evoked phasic neurotransmission: implications for dopamine dysregulation disorders.

    PubMed

    Tye, S J; Miller, A D; Blaha, C D

    2013-11-12

    Activation of glutamate receptors within the ventral tegmental area (VTA) stimulates extrasynaptic (basal) dopamine release in terminal regions, including the nucleus accumbens (NAc). Hindbrain inputs from the laterodorsal tegmental nucleus (LDT) are critical for elicitation of phasic VTA dopamine cell activity and consequent transient dopamine release. This study investigated the role of VTA ionotropic glutamate receptor (iGluR) stimulation on both basal and LDT electrical stimulation-evoked dopamine efflux in the NAc using in vivo chronoamperometry and fixed potential amperometry in combination with stearate-graphite paste and carbon fiber electrodes, respectively. Intra-VTA infusion of the iGluR agonists (±)-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA; 1 μg/μl) or N-methyl-d-aspartic acid (NMDA; 2 μg/μl) enhanced basal NAc dopamine efflux. This iGluR-mediated potentiation of basal dopamine efflux was paralleled by an attenuation of LDT-evoked transient NAc dopamine efflux, suggesting that excitation of basal activity effectively inhibited the capacity of hindbrain afferents to elicit transient dopamine efflux. In line with this, post-NMDA infusion of the dopamine D2 autoreceptor (D2R) agonist quinpirole (1 μg/μl; intra-VTA) partially recovered NMDA-mediated attenuation of LDT-evoked NAc dopamine, while concurrently attenuating NMDA-mediated potentiation of basal dopamine efflux. Post-NMDA infusion of quinpirole (1 μg/μl) alone attenuated basal and LDT-evoked dopamine efflux. Taken together, these data reveal that hyperstimulation of basal dopamine transmission can stunt hindbrain burst-like stimulation-evoked dopamine efflux. Inhibitory autoreceptor mechanisms within the VTA help to partially recover the magnitude of phasic dopamine efflux, highlighting the importance of both iGluRs and D2 autoreceptors in maintaining the functional balance of tonic and phasic dopamine neurotransmission. Dysregulation of this balance may have important

  7. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    PubMed Central

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  8. Beer self-administration provokes lateralized nucleus accumbens dopamine release in male heavy drinkers.

    PubMed

    Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; O'Connor, Sean J; Yoder, Karmen K; Kareken, David A

    2015-03-01

    Although striatal dopamine (DA) is important in alcohol abuse, the nature of DA release during actual alcohol drinking is unclear, since drinking includes self-administration of both conditioned flavor stimuli (CS) of the alcoholic beverage and subsequent intoxication, the unconditioned stimulus (US). Here, we used a novel self-administration analog to distinguish nucleus accumbens (NAcc) DA responses specific to the CS and US. Right-handed male heavy drinkers (n = 26) received three positron emission tomography (PET) scans with the D2/D3 radioligand [(11)C]raclopride (RAC) and performed a pseudo self-administration task that separately administered a flavor CS of either a habitually consumed beer or the appetitive control Gatorade®, concomitant with the US of ethanol intoxication (0.06 g/dL intravenous (IV) administration) or IV saline. Scan conditions were Gatorade flavor + saline (Gat&Sal), Gatorade flavor + ethanol (Gat&Eth), and beer flavor + ethanol (Beer&Eth). Ethanol (US) reduced RAC binding (inferring DA release) in the left (L) NAcc [Gat&Sal > Gat&Eth]. Beer flavor (CS) increased DA in the right (R) NAcc [Gat&Eth > Beer&Eth]. The combination of beer flavor and ethanol (CS + US), [Gat&Sal > Beer&Eth], induced DA release in bilateral NAcc. Self-reported intoxication during scanning correlated with L NAcc DA release. Relative to saline, infusion of ethanol increased alcoholic drink wanting. Our findings suggest lateralized DA function in the NAcc, with L NAcc DA release most reflecting intoxication, R NAcc DA release most reflecting the flavor CS, and the conjoint CS + US producing a bilateral NAcc response.

  9. Olfactory modulation by dopamine in the context of aversive learning

    PubMed Central

    Riffell, Jeffrey A.; Martin, Joshua P.; Gage, Stephanie L.; Nighorn, Alan J.

    2012-01-01

    The need to detect and process sensory cues varies in different behavioral contexts. Plasticity in sensory coding can be achieved by the context-specific release of neuromodulators in restricted brain areas. The context of aversion triggers the release of dopamine in the insect brain, yet the effects of dopamine on sensory coding are unknown. In this study, we characterize the morphology of dopaminergic neurons that innervate each of the antennal lobes (ALs; the first synaptic neuropils of the olfactory system) of the moth Manduca sexta and demonstrate with electrophysiology that dopamine enhances odor-evoked responses of the majority of AL neurons while reducing the responses of a small minority. Because dopamine release in higher brain areas mediates aversive learning we developed a naturalistic, ecologically inspired aversive learning paradigm in which an innately appetitive host plant floral odor is paired with a mimic of the aversive nectar of herbivorized host plants. This pairing resulted in a decrease in feeding behavior that was blocked when dopamine receptor antagonists were injected directly into the ALs. These results suggest that a transient dopaminergic enhancement of sensory output from the AL contributes to the formation of aversive memories. We propose a model of olfactory modulation in which specific contexts trigger the release of different neuromodulators in the AL to increase olfactory output to downstream areas of processing. PMID:22552185

  10. Aniracetam enhances cortical dopamine and serotonin release via cholinergic and glutamatergic mechanisms in SHRSP.

    PubMed

    Shirane, M; Nakamura, K

    2001-10-19

    Aniracetam, a cognition enhancer, has been recently found to preferentially increase extracellular levels of dopamine (DA) and serotonin (5-HT) in the prefrontal cortex (PFC), basolateral amygdala and dorsal hippocampus of the mesocorticolimbic system in stroke-prone spontaneously hypertensive rats. In the present study, we aimed to identify actually active substances among aniracetam and its major metabolites and to clarify the mode of action in DA and 5-HT release in the PFC. Local perfusion of mecamylamine, a nicotinic acetylcholine (nACh) and N-methyl-D-aspartate (NMDA) receptor antagonist, into the ventral tegmental area (VTA) and dorsal raphe nucleus (DRN) completely blocked DA and 5-HT release, respectively, in the PFC elicited by orally administered aniracetam. The effects of aniracetam were mimicked by local perfusion of N-anisoyl-gamma-aminobutyric acid [corrected] (N-anisoyl-GABA), one of the major metabolites of aniracetam, into the VTA and DRN. The cortical DA release induced by N-anisoyl-GABA applied to the VTA was also completely abolished by co-perfusion of mecamylamine. Additionally, when p-anisic acid, another metabolite of aniracetam, and N-anisoyl-GABA were locally perfused into the PFC, they induced DA and 5-HT release in the same region, respectively. These results indicate that aniracetam enhances DA and 5-HT release by mainly mediating the action of N-anisoyl-GABA that targets not only somatodendritic nACh and NMDA receptors but also presynaptic nACh receptors.

  11. Dopamine D1 and D2 Receptor Immunoreactivities in the Arcuate-Median Eminence Complex and their Link to the Tubero-Infundibular Dopamine Neurons

    PubMed Central

    Romero-Fernandez, W.; Borroto-Escuela, D.O.; Vargas-Barroso, V.; Narváez, M.; Di Palma, M.; Agnati, L.F.; Sahd, J. Larriva

    2014-01-01

    modulate the activity and/or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region. PMID:25308843

  12. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons.

    PubMed

    Romero-Fernandez, W; Borroto-Escuela, D O; Vargas-Barroso, V; Narváez, M; Di Palma, M; Agnati, L F; Larriva Sahd, J; Fuxe, K

    2014-07-18

    modulate the activity and /or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region.

  13. In vitro and in vivo evaluation of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)/dopamine-coated electrodes for dopamine delivery.

    PubMed

    Sui, L; Song, X J; Ren, J; Cai, W J; Ju, L H; Wang, Y; Wang, L Y; Chen, M

    2014-06-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrene sulfonate) (PSS) has a variety of chemical and biomedical applications. The application of PEDOT/PSS polymers in drug delivery has attracted attention. However, whether conducting polymers of PEDOT/PSS could be used for dopamine delivery has not clear. In the present study, the PEDOT/PSS coatings incorporated with dopamine were fabricated on 0.5 mm diameter platinum electrodes, electrochemical properties, and dopamine delivery capacities of these electrodes were evaluated in vitro and in vivo through implanting these electrodes into brain striatum area. The findings demonstrated that the PEDOT/PSS/dopamine coatings on platinum electrodes could reduce electrodes impedances, increase charge storage capacities, and release significant levels of dopamine upon electrical stimulation of these electrodes. These results indicated that polymers of PEDOT/PSS/dopamine could be used for dopamine delivery, implicating potential application of PEDOT/PSS/dopamine-coated implantable electrodes in the treatment of some diseases associated with dopamine deficits, such as, electrodes for the treatment of Parkinson's disease during deep brain stimulation. Copyright © 2013 Wiley Periodicals, Inc.

  14. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.

    PubMed

    Collins, Anne L; Aitken, Tara J; Greenfield, Venuz Y; Ostlund, Sean B; Wassum, Kate M

    2016-11-01

    Environmental reward-predictive cues can motivate reward-seeking behaviors. Although this influence is normally adaptive, it can become maladaptive in disordered states, such as addiction. Dopamine release in the nucleus accumbens core (NAc) is known to mediate the motivational impact of reward-predictive cues, but little is known about how other neuromodulatory systems contribute to cue-motivated behavior. Here, we examined the role of the NAc cholinergic receptor system in cue-motivated behavior using a Pavlovian-to-instrumental transfer task designed to assess the motivating influence of a reward-predictive cue over an independently-trained instrumental action. Disruption of NAc muscarinic acetylcholine receptor activity attenuated, whereas blockade of nicotinic receptors augmented cue-induced invigoration of reward seeking. We next examined a potential dopaminergic mechanism for this behavioral effect by combining fast-scan cyclic voltammetry with local pharmacological acetylcholine receptor manipulation. The data show evidence of opposing modulation of cue-evoked dopamine release, with muscarinic and nicotinic receptor antagonists causing suppression and augmentation, respectively, consistent with the behavioral effects of these manipulations. In addition to demonstrating cholinergic modulation of naturally-evoked and behaviorally-relevant dopamine signaling, these data suggest that NAc cholinergic receptors may gate the expression of cue-motivated behavior through modulation of phasic dopamine release.

  15. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core.

    PubMed

    Fortin, Samantha M; Roitman, Mitchell F

    2017-07-01

    Drugs of abuse increase the frequency and magnitude of brief (1-3s), high concentration (phasic) dopamine release events in terminal regions. These are thought to be a critical part of drug reinforcement and ultimately the development of addiction. Recently, metabolic regulatory peptides, including the satiety signal glucagon-like peptide-1 (GLP-1), have been shown to modulate cocaine reward-driven behavior and sustained dopamine levels after cocaine administration. Here, we use fast-scan cyclic voltammetry (FSCV) to explore GLP-1 receptor (GLP-1R) modulation of dynamic dopamine release in the nucleus accumbens (NAc) during cocaine administration. We analyzed dopamine release events in both the NAc shell and core, as these two subregions are differentially affected by cocaine and uniquely contribute to motivated behavior. We found that central delivery of the GLP-1R agonist Exendin-4 suppressed the induction of phasic dopamine release events by intravenous cocaine. This effect was selective for dopamine signaling in the NAc core. Suppression of phasic signaling in the core by Exendin-4 could not be attributed to interference with cocaine binding to one of its major substrates, the dopamine transporter, as cocaine-induced increases in reuptake were unaffected. The results suggest that GLP-1R activation, instead, exerts its suppressive effects by altering dopamine release - possibly by suppressing the excitability of dopamine neurons. Given the role of NAc core dopamine in the generation of conditioned responses based on associative learning, suppression of cocaine-induced dopamine signaling in this subregion by GLP-1R agonism may decrease the reinforcing properties of cocaine. Thus, GLP-1Rs remain viable targets for the treatment and prevention of cocaine seeking, taking and relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain.

    PubMed

    Shnitko, Tatiana A; Taylor, Sarah C; Stringfield, Sierra J; Zandy, Shannon L; Cofresí, Roberto U; Doherty, James M; Lynch, William B; Boettiger, Charlotte A; Gonzales, Rueben A; Robinson, Donita L

    2016-06-01

    Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered. We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] administration reduces phasic dopamine release in the NAc. Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control amino acid solution. Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats. These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.

  17. GS 455534 selectively suppresses binge eating of palatable food and attenuates dopamine release in the accumbens of sugar-bingeing rats.

    PubMed

    Bocarsly, Miriam E; Hoebel, Bartley G; Paredes, Daniel; von Loga, Isabell; Murray, Susan M; Wang, Miaoyuan; Arolfo, Maria P; Yao, Lina; Diamond, Ivan; Avena, Nicole M

    2014-04-01

    Binge eating palatable foods has been shown to have behavioral and neurochemical similarities to drug addiction. GS 455534 is a highly selective reversible aldehyde dehydrogenase 2 inhibitor that has been shown to reduce alcohol and cocaine intake in rats. Given the overlaps between binge eating and drug abuse, we examined the effects of GS 455534 on binge eating and subsequent dopamine release. Sprague-Dawley rats were maintained on a sugar (experiment 1) or fat (experiment 2) binge eating diet. After 25 days, GS 455534 was administered at 7.5 and 15 mg/kg by an intraperitoneal injection, and food intake was monitored. In experiment 3, rats with cannulae aimed at the nucleus accumbens shell were maintained on the binge sugar diet for 25 days. Microdialysis was performed, during which GS 455534 15 mg/kg was administered, and sugar was available. Dialysate samples were analyzed to determine extracellular levels of dopamine. In experiment 1, GS 455534 selectively decreased sugar intake food was made available in the Binge Sugar group but not the Ad libitum Sugar group, with no effect on chow intake. In experiment 2, GS 455534 decreased fat intake in the Binge Fat group, but not the Ad libitum Fat group, however, it also reduced chow intake. In experiment 3, GS 455534 attenuated accumbens dopamine release by almost 50% in binge eating rats compared with the vehicle injection. The findings suggest that selective reversible aldehyde dehydrogenase 2 inhibitors may have the therapeutic potential to reduce binge eating of palatable foods in clinical populations.

  18. Computational Systems Analysis of Dopamine Metabolism

    PubMed Central

    Qi, Zhen; Miller, Gary W.; Voit, Eberhard O.

    2008-01-01

    A prominent feature of Parkinson's disease (PD) is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease. PMID:18568086

  19. [Dopamine receptor signaling regulates human osteoclastogenesis].

    PubMed

    Hanami, Kentaro; Nakano, Kazuhisa; Tanaka, Yoshiya

    2013-01-01

    Although the central nervous system and the neurotransmitters are known to control not only the immune system but also the homeostasis of bone mass, their pathological relevance to bone disorders remains unclear. Osteoclasts in the synovium of rheumatoid arthritis (RA) play an important role in bone destruction. It is known that increased sympathetic nervous activity increases both differentiation and function of osteoclasts, which leads to bone loss. Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. We previously reported that dopamine plays an important role in IL-6-IL-17 axis and subsequent joint destruction in RA. The major source of dopamine in the synovial tissue of RA was dendritic cells (DCs) that stored and secreted dopamine. Dopamine released by DCs bounded to D1-like dopamine receptors on T cells and induced activation of cAMP and differentiation to Th17 cells via IL-6 production We here overview the interplay among the immune system, bone metabolism and neurologic system shedding light upon dopaminergic signals upon osteoclastogenesis.

  20. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder

    PubMed Central

    Rogers, Tiffany D.; Dickson, Price E.; McKimm, Eric; Heck, Detlef H.; Goldowitz, Dan; Blaha, Charles D.; Mittleman, Guy

    2013-01-01

    Imaging, clinical and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area [VTA] and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50% in wildtype and 20-30% in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15% in wildtype and 40% in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways. PMID:23436049

  1. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder.

    PubMed

    Rogers, Tiffany D; Dickson, Price E; McKimm, Eric; Heck, Detlef H; Goldowitz, Dan; Blaha, Charles D; Mittleman, Guy

    2013-08-01

    Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.

  2. Microfabricated FSCV-Compatible Microelectrode Array for Real-time Monitoring of Heterogeneous Dopamine Release

    PubMed Central

    Zachek, Matthew K.; Park, Jinwoo; Takmakov, Pavel; Wightman, R. Mark; McCarty, Gregory S.

    2010-01-01

    Fast scan cyclic voltammetry (FSCV) has been used previously to detect neurotransmitter release and reuptake in vivo. An advantage that FSCV has over other electrochemical techniques is its ability to distinguish neurotransmitters of interest (i.e. monoamines) from their metabolites using their respective characteristic cyclic voltammogram. While much has been learned with this technique, it has generally only been used in a single working electrode arrangement. Additionally, traditional electrode fabrication techniques tend to be difficult and somewhat irreproducible. Described in this report is a fabrication method for a FSCV compatible microelectrode array (FSCV-MEA) that is capable of functioning in vivo. The microfabrication techniques employed here allow for better reproducibility than traditional fabrication methods of carbon fiber microelectrodes, and enable batch fabrication of electrode arrays. The reproducibility and electrochemical qualities of the probes were assessed along with cross talk in vitro. Heterogeneous release of electrically stimulated dopamine was observed in real-time in the striatum of an anesthetized rat using the FSCV-MEA. The heterogeneous effects of pharmacology on the striatum was also observed and shown to be consistent across multiple animals. PMID:20464031

  3. Demon voltammetry and analysis software: Analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures

    PubMed Central

    Yorgason, Jordan T.; España, Rodrigo A.; Jones, Sara R.

    2011-01-01

    The fast sampling rates of fast scan cyclic voltammetry make it a favorable method for measuring changes in brain monoamine release and uptake kinetics in slice, anesthetized, and freely moving preparations. The most common analysis technique for evaluating changes in dopamine signaling uses well-established Michaelis-Menten kinetic methods that can accurately model dopamine release and uptake parameters across multiple experimental conditions. Nevertheless, over the years, many researchers have turned to other measures to estimate changes in dopamine release and uptake, yet to our knowledge no systematic comparison amongst these measures has been conducted. To address this lack of uniformity in kinetic analyses, we have created the Demon Voltammetry and Analysis software suite, which is freely available to academic and non-profit institutions. Here we present an explanation of the Demon Acquisition and Analysis features, and demonstrate its utility for acquiring voltammetric data under in vitro, in vivo anesthetized, and freely moving conditions. Additionally, the software was used to compare the sensitivity of multiple kinetic measures of release and uptake to cocaine-induced changes in electrically evoked dopamine efflux in nucleus accumbens core slices. Specifically, we examined and compared tau, full width at half height, half-life, T20, T80, slope, peak height, calibrated peak dopamine concentration, and area under the curve to the well-characterized Michaelis-Menten parameters, dopamine per pulse, maximal uptake rate, and apparent affinity. Based on observed results we recommend tau for measuring dopamine uptake and calibrated peak dopamine concentration for measuring dopamine release. PMID:21392532

  4. Dopamine dynamics during emotional cognitive processing: Implications of the specific actions of clozapine compared with haloperidol.

    PubMed

    Kawano, Masahiko; Oshibuchi, Hidehiro; Kawano, Takaaki; Muraoka, Hiroyuki; Tsutsumi, Takahiro; Yamada, Makiko; Inada, Ken; Ishigooka, Jun

    2016-06-15

    Clozapine has improved efficacy relative to typical antipsychotics in schizophrenia treatment, particularly regarding emotional symptoms. However, the mechanisms underlying its therapeutic benefits remain unclear. Using a methamphetamine-sensitised rat model, we measured changes in dopamine levels in the amygdalae in response to a fear-conditioned cue, serving as a biochemical marker of emotional cognitive processing disruption in psychosis, for analysing the biochemical mechanisms associated with the clinical benefits of clozapine. We also compared how clozapine and haloperidol affected basal dopamine levels and phasic dopamine release in response to the fear-conditioned cue. Extracellular dopamine was collected from the amygdalae of freely moving rats via microdialysis and was analysed by high-performance liquid chromatography. Clozapine or haloperidol was injected during microdialysis, followed by exposure to the fear-conditioned cue. We analysed the ratio of change in dopamine levels from baseline. Haloperidol treatment increased the baseline dopamine levels in both non-sensitised and sensitised rats. Conversely, clozapine only increased the basal dopamine levels in the non-sensitised rats, but not in the sensitised rats. Although both antipsychotics attenuated phasic dopamine release in both the non-sensitised and sensitised rats, the attenuation extent was greater for clozapine than for haloperidol under both dopaminergic conditions. Our findings indicate that stabilized dopamine release in the amygdalae is a common therapeutic mechanism of antipsychotic action during emotional processing. However, the specific dopaminergic state-dependent action of clozapine on both basal dopamine levels and stress-induced dopamine release may be the underlying mechanism for its superior clinical effect on emotional cognitive processing in patients with schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Decoding the Dopamine Signal in Macaque Prefrontal Cortex: A Simulation Study Using the Cx3Dp Simulator

    PubMed Central

    Spühler, Isabelle Ayumi; Hauri, Andreas

    2013-01-01

    Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated ‘teaching’ signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson’s disease, or induced through drugs blocking dopamine reuptake. PMID:23951205

  6. Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters

    PubMed Central

    Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S. S.; Wainer, Irving W.; Cheer, Joseph F.; Frost, Douglas O.; Huang, Xi-Ping

    2016-01-01

    Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID

  7. The Iowa Gambling Task and the three fallacies of dopamine in gambling disorder

    PubMed Central

    Linnet, Jakob

    2013-01-01

    Gambling disorder sufferers prefer immediately larger rewards despite long term losses on the Iowa Gambling Task (IGT), and these impairments are associated with dopamine dysfunctions. Dopamine is a neurotransmitter linked with temporal and structural dysfunctions in substance use disorder, which has supported the idea of impaired decision-making and dopamine dysfunctions in gambling disorder. However, evidence from substance use disorders cannot be directly transferred to gambling disorder. This article focuses on three hypotheses of dopamine dysfunctions in gambling disorder, which appear to be “fallacies,” i.e., have not been supported in a series of positron emission tomography (PET) studies. The first “fallacy” suggests that gambling disorder sufferers have lower dopamine receptor availability, as seen in substance use disorders. However, no evidence supported this hypothesis. The second “fallacy” suggests that maladaptive decision-making in gambling disorder is associated with higher dopamine release during gambling. No evidence supported the hypothesis, and the literature on substance use disorders offers limited support for this hypothesis. The third “fallacy” suggests that maladaptive decision-making in gambling disorder is associated with higher dopamine release during winning. The evidence did not support this hypothesis either. Instead, dopaminergic coding of reward prediction and uncertainty might better account for dopamine dysfunctions in gambling disorder. Studies of reward prediction and reward uncertainty show a sustained dopamine response toward stimuli with maximum uncertainty, which may explain the continued dopamine release and gambling despite losses in gambling disorder. The findings from the studies presented here are consistent with the notion of dopaminergic dysfunctions of reward prediction and reward uncertainty signals in gambling disorder. PMID:24115941

  8. Beer flavor provokes striatal dopamine release in male drinkers: mediation by family history of alcoholism.

    PubMed

    Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; Albrecht, Daniel S; Yoder, Karmen K; Kareken, David A

    2013-08-01

    Striatal dopamine (DA) is increased by virtually all drugs of abuse, including alcohol. However, drug-associated cues are also known to provoke striatal DA transmission- a phenomenon linked to the motivated behaviors associated with addiction. To our knowledge, no one has tested if alcohol's classically conditioned flavor cues, in the absence of a significant pharmacologic effect, are capable of eliciting striatal DA release in humans. Employing positron emission tomography (PET), we hypothesized that beer's flavor alone can reduce the binding potential (BP) of [(11)C]raclopride (RAC; a reflection of striatal DA release) in the ventral striatum, relative to an appetitive flavor control. Forty-nine men, ranging from social to heavy drinking, mean age 25, with a varied family history of alcoholism underwent two [(11)C]RAC PET scans: one while tasting beer, and one while tasting Gatorade. Relative to the control flavor of Gatorade, beer flavor significantly increased self-reported desire to drink, and reduced [(11)C]RAC BP, indicating that the alcohol-associated flavor cues induced DA release. BP reductions were strongest in subjects with first-degree alcoholic relatives. These results demonstrate that alcohol-conditioned flavor cues can provoke ventral striatal DA release, absent significant pharmacologic effects, and that the response is strongest in subjects with a greater genetic risk for alcoholism. Striatal DA responses to salient alcohol cues may thus be an inherited risk factor for alcoholism.

  9. High Doses of Amphetamine Augment, Rather Than Disrupt, Exocytotic Dopamine Release in the Dorsal and Ventral Striatum of the Anesthetized Rat

    PubMed Central

    Ramsson, Eric S.; Howard, Christopher D.; Covey, Dan P.; Garris, Paul A.

    2011-01-01

    High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action. PMID:21806614

  10. Role of external and internal calcium on heterocarrier-mediated transmitter release.

    PubMed

    Fassio, A; Bonanno, G; Fontana, G; Usai, C; Marchi, M; Raiteri, M

    1996-04-01

    Release-regulating heterocarriers exist on brain nerve endings. We have investigated in this study the mechanisms involved in the neurotransmitter release evoked by GABA heterocarrier activation. GABA increased the basal release of [3H]acetylcholine and [3H]noradrenaline from rat hippocampal synaptosomes and of [3H]dopamine from striatal synaptosomes. These GABA effects, insensitive to GABA receptor antagonists, were prevented by inhibiting GABA uptake but not by blocking noradrenaline, choline, or dopamine transport. Lack of extracellular Ca2+ or addition of tetrodotoxin selectively abolished the GABA-evoked release of [3H]noradrenaline, leaving unaffected that of [3H]acetylcholine or [3H]dopamine. 1,2-Bis(2-aminophenoxyl)-ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) or vesamicol attenuated the release of [3H]acetylcholine elicited by GABA. Reserpine, but not BAPTA-AM, prevented the effect of GABA on [3H] dopamine release. Autoreceptor activation inhibited the GABA-evoked release of [3H]noradrenaline but not that of [3H]acetylcholine or [3H]dopamine. It is concluded that (a) the release of [3H]noradrenaline consequent to activation of GABA heterocarriers sited on noradrenergic terminals meets the criteria of a conventional exocytotic process, (b) the extracellular [Ca2+]-independent releases of [3H]acetylcholine and [3H]dopamine appear to occur from vesicles possibly through involvement of intraterminal Ca2+, and (c) autoreceptor activation only affects heterocarrier-mediated vesicular release linked to entry of extracellular Ca2+.

  11. The role of dopamine D₁ and D₂ receptors in adolescent methylphenidate conditioned place preference: sex differences and brain-derived neurotrophic factor.

    PubMed

    Cummins, Elizabeth D; Griffin, Stephen B; Duty, Chase M; Peterson, Daniel J; Burgess, Katherine C; Brown, Russell W

    2014-01-01

    This study analyzed the role of dopamine D1 and D2 receptors in methylphenidate (MPH) conditioned place preference (CPP) in adolescent male and female rats, in addition to the role of these receptors in the effects of MPH on brain-derived neurotrophic factor (BDNF) in the dorsal striatum and nucleus accumbens. Using a nonbiased CPP procedure, the animals were conditioned from postnatal day (PD) 33 to 37. On conditioning trials, animals were first administered saline or their respective antagonist (0.1 or 0.2 mg/kg SCH-23390; 0.01 or 0.03 mg/kg eticlopride HCl), followed by MPH (5 mg/kg). Approximately 10 min after MPH administration, the rats were placed into the paired context for a 10-min trial. One day after conditioning on PD38, a preference test was administered with dividers removed. One day following the preference test on PD39, brain tissue was removed, and the nucleus accumbens and striatum were analyzed for BDNF. Results revealed that MPH conditioning resulted in an increased preference that was blocked by either dose of SCH-23390, but generally not affected by either dose of eticlopride. Further, the higher dose of SCH-23390 resulted in a conditioned place aversion in males, presumably due to an increased number of dopamine D1 receptors in adolescent males. MPH produced a significant increase of striatal and accumbal BDNF alleviated by SCH-23390 or eticlopride. These results show that MPH results in CPP in adolescent male and female rats and these effects appear to be mediated by the dopamine D1 receptor, but the effects of MPH on BDNF appear to be mediated by both dopamine receptor families. © 2014 S. Karger AG, Basel.

  12. Protection from inorganic mercury effects on the in vivo dopamine release by ionotropic glutamate receptor antagonists and nitric oxide synthase inhibitors.

    PubMed

    Vidal, Lucía; Durán, Rafael; Faro, Lilian F; Campos, Francisco; Cervantes, Rosa C; Alfonso, Miguel

    2007-09-05

    The possible role of ionotropics glutamate receptors on the HgCl(2)-induced dopamine (DA) release from rat striatum was investigated by using in vivo brain microdialysis technique after administration of selective NMDA and AMPA/Kainate receptors antagonists dizocilpine (MK-801), D (-)-2-amino-5-phoshonopentanoic acid (AP5), and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Moreover, we have also studied the effects of nitric oxide synthase (NOS) inhibitors L-nitro-arginine methyl ester (L-NAME) and 7-nitro-indazol (7-NI) on HgCl(2)-induced DA release. Intraestriatal infusion of 1mM HgCl(2) increased striatal DA to 1717.2+/-375.4% respect to basal levels. Infusion of 1mM HgCl(2) in 400 microM MK-801 pre-treated animals produced an increase on striatal DA levels 61% smaller than that induced in non-pre-treated animals. In the case of AP5, this treatment reduced 92% the increase produced by HgCl(2) as compared to non-pre-treated rats. Nevertheless, the administration of CNQX did not produce any effect on HgCl(2)-induced dopamine release. Intrastriatal infusion of 1mM HgCl(2) in 100 microM L-NAME pre-treated animals produced an increase on extracellular DA levels 82% smaller than produced by HgCl(2) alone. In addition, the pre-treatment with 7-NI reduced 90% the increase produced by infusion of HgCl(2) alone in rats. Thus, HgCl(2)-induced DA release could be produced at last in part, by overstimulation of NMDA receptors with NO production, since administration of NMDA receptor antagonists and NOS inhibitors protected against HgCl(2) effects on DA release.

  13. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise.

    PubMed

    Felger, Jennifer C; Miller, Andrew H

    2012-08-01

    Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Imaging human intrasynaptic dopamine release by IV cocaine and amphetamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, D.F.; Hong, C.; Yokoi, F.

    1995-05-01

    Intrasynaptic dopamine (DA) release was measured with C-11 Raclopride (RAC) PET in 15 human subjects with two psychostimulant drugs, IV cocaine or IV amphetamine (AMPH). Eleven cocaine users received IV saline then cocaine with high specific activity (SA) tracer RAC by IV bolus. To determine the optimal timing of drug administration, subjects received 48mg cocaine at 0 min.(1 subject), 4 min.(3 subjects) or 10 min.(7 subjects) post injection (mpi). One received 32mg at 4 and 16mg at 10 mpi. In a separate paradigm, the effect of AMPH not only on the binding of Hi SA but also on the receptormore » density (B{sub max}) using Hi SA and low SA was examined. Four normals received 2 pairs of Hi SA and Low SA RAC PET scans, each pair separated by 1 week to estimate 2 B{sub max}`s, one affected by AMPH. Before the 2nd pair, 0.3mg/kg IV AMPH was given in the times corresponding to the AMPH times for the 1s B{sub max} measurement. All were scanned on a GE 4096WB+PET with 50 frames over 90 min with radial arterial plasma sampling and HPLC metabolite correction. Neuropsychological-endocrine testing was done concurrently. All subjects had a marked psychophysiological response for cocaine or AMPH (less with Low SA RAC). However, evidence of substantial DA release was not consistent with IV cocaine nor correlated with any timing of cocaine vs. RAC, except for an overall trend for RAC reduction with cocaine. The % change in k{sub 3}/k{sub 4} by graphical analysis ranged from +10 to -21%, with similar changes by other methods of quantification, such as k{sub 3}/k{sub 4} constrained to cerebellar K{sub 1}/k{sub 2}, and simple tissue ratios comparisons. IV AMPH showed DA release (19% {plus_minus} 2 (SEM) decrease) in all Hi SA RAC (k{sub 3}/k{sub 4}) by graphical analysis. The calculation of B{sub max} in putamen using Scatchard analysis (baseline B{sub max}29{plus_minus}2) showed 12 to 28% decreases following AMPH.« less

  15. The role of reactive oxygen species in methamphetamine self-administration and dopamine release in the nucleus accumbens.

    PubMed

    Jang, Eun Young; Yang, Chae Ha; Hedges, David M; Kim, Soo Phil; Lee, Jun Yeon; Ekins, Tyler G; Garcia, Brandon T; Kim, Hee Young; Nelson, Ashley C; Kim, Nam Jun; Steffensen, Scott C

    2017-09-01

    Methamphetamine (METH) markedly increases dopamine (DA) release in the mesolimbic DA system, which plays an important role in mediating the reinforcing effects of METH. METH-induced DA release results in the formation of reactive oxygen species (ROS), leading to oxidative damage. We have recently reported that ROS are implicated in behavior changes and DA release in the nucleus accumbens (NAc) following cocaine administration. The aim of this study was to evaluate the involvement of ROS in METH-induced locomotor activity, self-administration and enhancement of DA release in the NAc. Systemic administration of a non-specific ROS scavenger, N-tert-butyl-α-phenylnitrone (PBN; 0, 50 and 75 mg/kg, IP) or a superoxide-selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL; 0, 50 and 100 mg/kg, IP), attenuated METH-induced locomotor activity without affecting generalized behavior in METH-naïve rats. PBN and TEMPOL significantly attenuated METH self-administration without affecting food intake. Increased oxidative stress was found in neurons, but not astrocytes, microglia or oligodendrocytes, in the NAc of METH self-administering rats. In addition, TEMPOL significantly decreased METH enhancement of DA release in the NAc. Taken together, these results suggest that enhancement of ROS in the NAc contributes to the reinforcing effect of METH. © 2016 Society for the Study of Addiction.

  16. Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum

    PubMed Central

    Salinas, Armando G.; Davis, Margaret I.; Lovinger, David M.; Mateo, Yolanda

    2016-01-01

    The striatum is typically classified according to its major output pathways, which consist of dopamine D1 and D2 receptor-expressing neurons. The striatum is also divided into striosome and matrix compartments, based on the differential expression of a number of proteins, including the mu opioid receptor, dopamine transporter (DAT), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1). Numerous functional differences between the striosome and matrix compartments are implicated in dopamine-related neurological disorders including Parkinson’s disease and addiction. Using Nr4a1-eGFP mice, we provide evidence that electrically evoked dopamine release differs between the striosome and matrix compartments in a regionally-distinct manner. We further demonstrate that this difference is not due to differences in inhibition of dopamine release by dopamine autoreceptors or nicotinic acetylcholine receptors. Furthermore, cocaine enhanced extracellular dopamine in striosomes to a greater degree than in the matrix and concomitantly inhibited dopamine uptake in the matrix to a greater degree than in striosomes. Importantly, these compartment differences in cocaine sensitivity were limited to the dorsal striatum. These findings demonstrate a level of exquisite microanatomical regulation of dopamine by the DAT in striosomes relative to the matrix. PMID:27036891

  17. Studies on striatal neurotoxicity caused by the 3,4-methylenedioxymethamphetamine/ malonate combination: implications for serotonin/dopamine interactions.

    PubMed

    Goñi-Allo, Beatriz; Ramos, Mar'a; Herv'as, Isabel; Lasheras, Berta; Aguirre, Norberto

    2006-03-01

    The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) produces long-term toxicity to serotonin (5-HT) neurones in rats, which is exacerbated when combined with the mitochondrial inhibitor malonate. Moreover, MDMA, which does not produce dopamine depletion in the rat, potentiates malonate-induced striatal dopamine toxicity. Because the malonate/MDMA combination acutely causes a synergistic increase of 5-HT and dopamine release, in this study we sought to determine whether pharmacological blockade of MDMA- and/or malonate-induced dopamine release prevents neurotoxicity. Fluoxetine, given 30 min prior to the malonate/MDMA combination, afforded complete protection against 5-HT depletion and reversed MDMA-induced exacerbation of dopamine toxicity found in the malonate/MDMA treated rats. Protection afforded by fluoxetine was not related to changes in MDMA-induced hyperthermia. Similarly, potentiation of malonate-induced dopamine toxicity caused by MDMA was not observed in p-chlorophenylalanine-5-HT depleted rats. Finally, the dopamine transporter inhibitor GBR 12909 completely prevented dopamine neurotoxicity caused by the malonate/MDMA combination and reversed the exacerbating toxic effects of malonate on MDMA-induced 5-HT depletion without significantly altering the hyperthermic response. Overall, these results suggest that the synergic release of dopamine caused by the malonate/MDMA combination plays an important role in the long-term toxic effects. A possible mechanism of neurotoxicity and protection is proposed.

  18. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    PubMed

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  19. Extracellular dopamine, acetylcholine, and activation of dopamine D1 and D2 receptors after selective breeding for cocaine self-administration in rats.

    PubMed

    Xu, Haiyang; Das, Sasmita; Sturgill, Marc; Hodgkinson, Colin; Yuan, Qiaoping; Goldman, David; Grasing, Kenneth

    2017-08-01

    The low self-administration (LS)/Kgras (LS) and high self-administration (HS)/Kgras (HS) rat lines were generated by selective breeding for low- and high-intravenous cocaine self-administration, respectively, from a common outbred Wistar stock (Crl:WI). This trait has remained stable after 13 generations of breeding. The objective of the present study is to compare cocaine preference, neurotransmitter release, and dopamine receptor activation in LS and HS rats. Levels of dopamine, acetylcholine, and cocaine were measured in the nucleus accumbens (NA) shell of HS and LS rats by tandem mass spectrometry of microdialysates. Cocaine-induced locomotor activity and conditioned-place preference were compared between LS and HS rats. HS rats displayed greater conditioned-place preference scores compared to LS and reduced basal extracellular concentrations of dopamine and acetylcholine. However, patterns of neurotransmitter release did not differ between strains. Low-dose cocaine increased locomotor activity in LS rats, but not in HS animals, while high-dose cocaine augmented activity only in HS rats. Either dose of cocaine increased immunoreactivity for c-Fos in the NA shell of both strains, with greater elevations observed in HS rats. Activation identified by cells expressing both c-Fos and dopamine receptors was generally greater in the HS strain, with a similar pattern for both D1 and D2 dopamine receptors. Diminished levels of dopamine and acetylcholine in the NA shell, with enhanced cocaine-induced expression of D1 and D2 receptors, are associated with greater rewarding effects of cocaine in HS rats and an altered dose-effect relationship for cocaine-induced locomotor activity.

  20. Functional Fast Scan Cyclic Voltammetry Assay to Characterize Dopamine D2 and D3 Autoreceptors in the Mouse Striatum

    PubMed Central

    2010-01-01

    Dopamine D2 and D3 autoreceptors are located on presynaptic terminals and are known to control the release and synthesis of dopamine. Dopamine D3 receptors have a fairly restricted pattern of expression in the mammalian brain. Their localization in the nucleus accumbens core and shell is of particular interest because of their association with the rewarding properties of drugs of abuse. Using background subtracted fast scan cyclic voltammetry, we investigated the effects of dopamine D2 and D3 agonists on electrically stimulated dopamine release and uptake rates in the mouse caudate putamen and nucleus accumbens core and shell. The dopamine D2 agonists (−)-quinpirole hydrochloride and 5,6,7,8-tetrahydro-6-(2-propen-1-yl)-4H-thiazolo[4,5-d]azepin-2-amine dihydrochloride (B-HT 920) had the same dopamine release inhibition effects on caudate putamen and nucleus accumbens (core and shell) on the basis of their EC50 values and efficacies. This suggests that the dopamine D2 autoreceptor functionality is comparable in all three striatal regions investigated. The dopamine D3 agonists (4aR,10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride ((+)-PD 128907) and (±)-7-Hydroxy-2-dipropylaminotetralin hydrobromide (7-OH-DPAT) had a significantly greater effect on dopamine release inhibition in the nucleus accumbens shell than in the caudate putamen. This study confirms that, the dopamine D3 autoreceptor functionality is greater in the nucleus accumbens shell followed by the nucleus accumbens core, with the caudate putamen having the least. Neither dopamine D2 nor D3 agonists affected the uptake rates in nucleus accumbens but concentrations greater than 0.1 μM lowered the uptake rate in caudate putamen. To validate our method of evaluating dopamine D2 and D3 autoreceptors, sulpiride (D2 antagonist) and nafadotride (D3 antagonist) were used to reverse the effects of the dopamine agonists to approximately 100% of the preagonist

  1. Stochastic Simulation of Dopamine Neuromodulation for Implementation of Fluorescent Neurochemical Probes in the Striatal Extracellular Space.

    PubMed

    Beyene, Abraham G; McFarlane, Ian R; Pinals, Rebecca L; Landry, Markita P

    2017-10-18

    Imaging the dynamic behavior of neuromodulatory neurotransmitters in the extracelluar space that arise from individual quantal release events would constitute a major advance in neurochemical imaging. Spatial and temporal resolution of these highly stochastic neuromodulatory events requires concurrent advances in the chemical development of optical nanosensors selective for neuromodulators in concert with advances in imaging methodologies to capture millisecond neurotransmitter release. Herein, we develop and implement a stochastic model to describe dopamine dynamics in the extracellular space (ECS) of the brain dorsal striatum to guide the design and implementation of fluorescent neurochemical probes that record neurotransmitter dynamics in the ECS. Our model is developed from first-principles and simulates release, diffusion, and reuptake of dopamine in a 3D simulation volume of striatal tissue. We find that in vivo imaging of neuromodulation requires simultaneous optimization of dopamine nanosensor reversibility and sensitivity: dopamine imaging in the striatum or nucleus accumbens requires nanosensors with an optimal dopamine dissociation constant (K d ) of 1 μM, whereas K d s above 10 μM are required for dopamine imaging in the prefrontal cortex. Furthermore, as a result of the probabilistic nature of dopamine terminal activity in the striatum, our model reveals that imaging frame rates of 20 Hz are optimal for recording temporally resolved dopamine release events. Our work provides a modeling platform to probe how complex neuromodulatory processes can be studied with fluorescent nanosensors and enables direct evaluation of nanosensor chemistry and imaging hardware parameters. Our stochastic model is generic for evaluating fluorescent neurotransmission probes, and is broadly applicable to the design of other neurotransmitter fluorophores and their optimization for implementation in vivo.

  2. A Transient Dopamine Signal Represents Avoidance Value and Causally Influences the Demand to Avoid

    PubMed Central

    Pultorak, Katherine J.; Schelp, Scott A.; Isaacs, Dominic P.; Krzystyniak, Gregory

    2018-01-01

    Abstract While an extensive literature supports the notion that mesocorticolimbic dopamine plays a role in negative reinforcement, recent evidence suggests that dopamine exclusively encodes the value of positive reinforcement. In the present study, we employed a behavioral economics approach to investigate whether dopamine plays a role in the valuation of negative reinforcement. Using rats as subjects, we first applied fast-scan cyclic voltammetry (FSCV) to determine that dopamine concentration decreases with the number of lever presses required to avoid electrical footshock (i.e., the economic price of avoidance). Analysis of the rate of decay of avoidance demand curves, which depict an inverse relationship between avoidance and increasing price, allows for inference of the worth an animal places on avoidance outcomes. Rapidly decaying demand curves indicate increased price sensitivity, or low worth placed on avoidance outcomes, while slow rates of decay indicate reduced price sensitivity, or greater worth placed on avoidance outcomes. We therefore used optogenetics to assess how inducing dopamine release causally modifies the demand to avoid electrical footshock in an economic setting. Increasing release at an avoidance predictive cue made animals more sensitive to price, consistent with a negative reward prediction error (i.e., the animal perceives they received a worse outcome than expected). Increasing release at avoidance made animals less sensitive to price, consistent with a positive reward prediction error (i.e., the animal perceives they received a better outcome than expected). These data demonstrate that transient dopamine release events represent the value of avoidance outcomes and can predictably modify the demand to avoid. PMID:29766047

  3. Leptin regulates dopamine responses to sustained stress in humans.

    PubMed

    Burghardt, Paul R; Love, Tiffany M; Stohler, Christian S; Hodgkinson, Colin; Shen, Pei-Hong; Enoch, Mary-Anne; Goldman, David; Zubieta, Jon-Kar

    2012-10-31

    Neural systems that identify and respond to salient stimuli are critical for survival in a complex and changing environment. In addition, interindividual differences, including genetic variation and hormonal and metabolic status likely influence the behavioral strategies and neuronal responses to environmental challenges. Here, we examined the relationship between leptin allelic variation and plasma leptin levels with DAD2/3R availability in vivo as measured with [(11)C]raclopride PET at baseline and during a standardized pain stress challenge. Allelic variation in the leptin gene was associated with varying levels of dopamine release in response to the pain stressor, but not with baseline D2/3 receptor availability. Circulating leptin was also positively associated with stress-induced dopamine release. These results show that leptin serves as a regulator of neuronal function in humans and provides an etiological mechanism for differences in dopamine neurotransmission in response to salient stimuli as related to metabolic function. The capacity for leptin to influence stress-induced dopaminergic function is of importance for pathological states where dopamine is thought to play an integral role, such as mood, substance-use disorders, eating disorders, and obesity.

  4. Effects of amantadine on modification of dopamine dependent behaviours by molindone.

    PubMed

    Dhaware, B S; Balsara, J J; Nandal, N V; Chandorkar, A G

    2000-08-01

    Amantadine, a dopamine agonist is reported to act by releasing dopamine from the dopaminergic nerve terminals as an anti-Parkinsonian drug. In the present behavioural study in the rat, molindone-induced catalepsy and ptosis, which are dopamine dependent-behaviors are reversed by amantadine. Amantadine has also revered molindone-induced inhibition of traction response in mice. Our study indicates that amantadine, like other DA agonists, e.g. amphetamine and apomorphine can antagonize or even reverse the neuroleptic induced dopaminergic behaviors.

  5. Activation of the mesocortical dopamine system by feeding: lack of a selective response to stress.

    PubMed

    Taber, M T; Fibiger, H C

    1997-03-01

    There is wide agreement that catecholamine systems in the prefrontal cortex are activated by stressful stimuli. To date, however, the extent to which other stimuli can increase the activity of these systems has received little attention. In the present study, the effects of tail pinch stress and feeding on dopamine and noradrenaline release in the prefrontal cortex of rats were examined using in vivo brain microdialysis. Both stimuli increased dopamine release, with peak effects reaching 212% above baseline for tail pinch and 165% above baseline for feeding. The effects of the two stimuli on peak dopamine release were not significantly different. Both stimuli also significantly increased noradrenaline release, with peak effects reaching 128% above baseline for tail pinch and 98% above baseline for feeding. The effects of the two stimuli on peak noradrenaline release were not significantly different. These results indicate that activation of catecholaminergic afferents to the prefrontal cortex is not specific to stress, but also occurs in response to non-stressors with positive motivational valence.

  6. Species differences in somatodendritic dopamine transmission determine D2-autoreceptor mediated inhibition of ventral tegmental area neuron firing

    PubMed Central

    Courtney, Nicholas A; Mamaligas, Aphroditi A; Ford, Christopher P

    2012-01-01

    The somatodendritic release of dopamine within the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) activates inhibitory post-synaptic D2-receptors on dopaminergic neurons. The proposed mechanisms that regulate this form of transmission differ between electrochemical studies using rats and guinea pigs and electrophysiological studies using mice. This study examines the release and resulting dopamine D2-autoreceptor mediated inhibitory post-synaptic currents (D2-IPSCs) in the VTA of mouse, rat and guinea pig. Robust D2-IPSCs were observed in all recordings from neurons in slices taken from mouse, whereas in rat and guinea pig D2-IPSCs were observed less frequently and were significantly smaller in amplitude. In slices taken from guinea pig, dopamine release was more persistent under conditions of reduced extracellular calcium. The decline in the concentration of dopamine was also prolonged and not as sensitive to inhibition of reuptake by cocaine. This resulted in an increased duration of D2-IPSCs in the guinea pig. Therefore, unlike the mouse or the rat, the time course of dopamine in the extracellular space of the guinea pig determined the duration the D2-IPSC. Functionally, differences in D2-IPSCs resulted in inhibition of dopamine neuron firing only in slices from mouse. The results suggest that the mechanisms and functional consequences of somatodendritic dopamine transmission in the VTA vary among species. This highlights the complexity that underlies dopamine dependent transmission in one brain area. Differences in somatodendritic transmission would be expected in vivo to affect the downstream activity of the mesocorticolimbic dopamine system and subsequent terminal release. PMID:23015441

  7. Music and Methamphetamine: Conditioned Cue-induced Increases in Locomotor Activity and Dopamine Release in Rats

    PubMed Central

    Polston, J.E.; Rubbinaccio, H.Y.; Morra, J.T.; Sell, E.M.; Glick, S.D.

    2011-01-01

    Associations between drugs of abuse and cues facilitate the acquisition and maintenance of addictive behaviors. Although significant research has been done to elucidate the role that simple discriminative or discrete conditioned stimuli (e.g., a tone or a light) play in addiction, less is known about complex environmental cues. The purpose of the present study was to examine the role of a musical conditioned stimulus by assessing locomotor activity and in vivo microdialysis. Two groups of rats were given non-contingent injections of methamphetamine (1.0 mg/kg) or vehicle and placed in standard conditioning chambers. During these conditioning sessions both groups were exposed to a continuous conditioned stimulus, in the form of a musical selection (“Four” by Miles Davis) played repeatedly for ninety minutes. After seven consecutive conditioning days subjects were given one day of rest, and subsequently tested for locomotor activity or dopamine release in the absence of drug while the musical conditioned stimulus was continually present. The brain regions examined included the basolateral amygdala, nucleus accumbens, and prefrontal cortex. The results show that music is an effective contextual conditioned stimulus, significantly increasing locomotor activity after repeated association with methamphetamine. Furthermore, this musical conditioned stimulus significantly increased extracellular dopamine levels in the basolateral amygdala and nucleus accumbens. These findings support other evidence showing the importance of these brain regions in conditioned learning paradigms, and demonstrate that music is an effective conditioned stimulus warranting further investigation. PMID:21145911

  8. A receptor-based model for dopamine-induced fMRI signal

    PubMed Central

    Mandeville, Joseph. B.; Sander, Christin Y. M.; Jenkins, Bruce G.; Hooker, Jacob M.; Catana, Ciprian; Vanduffel, Wim; Alpert, Nathaniel M.; Rosen, Bruce R.; Normandin, Marc D.

    2013-01-01

    This report describes a multi-receptor physiological model of the fMRI temporal response and signal magnitude evoked by drugs that elevate synaptic dopamine in basal ganglia. The model is formulated as a summation of dopamine’s effects at D1-like and D2-like receptor families, which produce functional excitation and inhibition, respectively, as measured by molecular indicators like adenylate cyclase or neuroimaging techniques like fMRI. Functional effects within the model are described in terms of relative changes in receptor occupancies scaled by receptor densities and neuro-vascular coupling constants. Using literature parameters, the model reconciles many discrepant observations and interpretations of pre-clinical data. Additionally, we present data showing that amphetamine stimulation produces fMRI inhibition at low doses and a biphasic response at higher doses in the basal ganglia of non-human primates (NHP), in agreement with model predictions based upon the respective levels of evoked dopamine. Because information about dopamine release is required to inform the fMRI model, we simultaneously acquired PET 11C-raclopride data in several studies to evaluate the relationship between raclopride displacement and assumptions about dopamine release. At high levels of dopamine release, results suggest that refinements of the model will be required to consistently describe the PET and fMRI data. Overall, the remarkable success of the model in describing a wide range of preclinical fMRI data indicate that this approach will be useful for guiding the design and analysis of basic science and clinical investigations and for interpreting the functional consequences of dopaminergic stimulation in normal subjects and in populations with dopaminergic neuroadaptations. PMID:23466936

  9. Dopamine improves hypothermic machine preservation of the liver.

    PubMed

    Minor, Thomas; Lüer, Bastian; Efferz, Patrik

    2011-10-01

    Hypothermic machine preservation (HMP) is currently reconsidered as alternative to standard cold storage of organs from non-heart-beating donors. The present study was aimed at investigating the possible synergistic effect of HMP and the addition of dopamine to the circulating perfusate during preservation. Cardiac arrest was induced in male Wistar rats (250-300 g) by phrenotomy. Thirty minutes later livers were flushed via the portal vein and subjected to 20 h of HMP at 5ml/min at 4°C. During HMP the preservation solution was equilibrated with 100% oxygen and dopamine was added at 0, 10, 50 or 100 μM (D0, D10, D50, D100; n=6 resp.). Graft viability was assessed thereafter upon warm reperfusion in vitro for 2h. During HMP, D50 and D100 significantly reduced hepatic release of ALT to about 50%. No influence of dopamine was found on vascular resistance, oxygen uptake or lactate production at any concentration. D50 significantly reduced enzyme release during reperfusion (∼50%), enhanced bile flow and oxygen consumption. D10 was less effective while D100 even rose enzyme release compared with D0. Enhanced oxygen free radical mediated lipid peroxidation (LPO), found in the tissue of D0 livers was significantly reduced by D50; D50 significantly abrogated molecular upregulation of vWillebrand factor upon reperfusion suggesting vascular protection of the endothelial cell. Efficiency of HMP might be increased by stimulating livers with dopamine during ex vivo preservation, limiting vascular side effects and improving functional recovery upon early reperfusion. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Encoding of aversion by dopamine and the nucleus accumbens.

    PubMed

    McCutcheon, James E; Ebner, Stephanie R; Loriaux, Amy L; Roitman, Mitchell F

    2012-01-01

    Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc) and the dopamine projection to it are considered an integral part of the brain's reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias toward reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus - intra-oral infusion of sucrose - has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion vs. reward.

  11. Accumbal μ-Opioid Receptors Modulate Ethanol Intake in Alcohol-Preferring Alko Alcohol Rats.

    PubMed

    Uhari-Väänänen, Johanna; Raasmaja, Atso; Bäckström, Pia; Oinio, Ville; Airavaara, Mikko; Piepponen, Petteri; Kiianmaa, Kalervo

    2016-10-01

    The nucleus accumbens shell is a key brain area mediating the reinforcing effects of ethanol (EtOH). Previously, it has been shown that the density of μ-opioid receptors in the nucleus accumbens shell is higher in alcohol-preferring Alko Alcohol (AA) rats than in alcohol-avoiding Alko Non-Alcohol rats. In addition, EtOH releases opioid peptides in the nucleus accumbens and opioid receptor antagonists are able to modify EtOH intake, all suggesting an opioidergic mechanism in the control of EtOH consumption. As the exact mechanisms of opioidergic involvement remains to be elucidated, the aim of this study was to clarify the role of accumbal μ- and κ-opioid receptors in controlling EtOH intake in alcohol-preferring AA rats. Microinfusions of the μ-opioid receptor antagonist CTOP (0.3 and 1 μg/site), μ-opioid receptor agonist DAMGO (0.03 and 0.1 μg/site), nonselective opioid receptor agonist morphine (30 μg/site), and κ-opioid receptor agonist U50488H (0.3 and 1 μg/site) were administered via bilateral guide cannulas into the nucleus accumbens shell of AA rats that voluntarily consumed 10% EtOH solution in an intermittent, time-restricted (90-minute) 2-bottle choice access paradigm. CTOP (1 μg/site) significantly increased EtOH intake. Conversely, DAMGO resulted in a decreasing trend in EtOH intake. Neither morphine nor U50488H had any effect on EtOH intake in the used paradigm. The results provide further evidence for the role of accumbens shell μ-opioid receptors but not κ-opioid receptors in mediating reinforcing effects of EtOH and in regulating EtOH consumption. The results also provide support for views suggesting that the nucleus accumbens shell has a major role in mediating EtOH reward. Copyright © 2016 by the Research Society on Alcoholism.

  12. Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques

    PubMed Central

    Siciliano, Cody A.; Calipari, Erin S.; Yorgason, Jordan T.; Lovinger, David M.; Mateo, Yolanda; Jimenez, Vanessa A.; Helms, Christa M.; Grant, Kathleen A.; Jones, Sara R.

    2016-01-01

    Rationale Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use, and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are unknown. Objective Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Methods Female rhesus macaques completed one year of daily (22 hr/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa-opioid receptor agonist) induced inhibition of dopamine release. Results Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa-opioid receptors, which both act as negative regulators of presynaptic dopamine release, were moderately and robustly enhanced in ethanol drinkers. Conclusions Greater uptake rates and sensitivity to D2-type autoreceptor and kappa-opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system, and suggest that the dopamine and dynorphin/kappa-opioid receptor systems may be efficacious pharmcotherapeutic targets in the treatment of alcohol use disorders. PMID:26892380

  13. Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques.

    PubMed

    Siciliano, Cody A; Calipari, Erin S; Yorgason, Jordan T; Lovinger, David M; Mateo, Yolanda; Jimenez, Vanessa A; Helms, Christa M; Grant, Kathleen A; Jones, Sara R

    2016-04-01

    Hypofunction of striatal dopamine neurotransmission, or hypodopaminergia, is a consequence of excessive ethanol use and is hypothesized to be a critical component of alcoholism, driving alcohol intake in an attempt to restore dopamine levels; however, the neurochemical mechanisms involved in these dopaminergic deficiencies are not fully understood. Here we examined the specific dopaminergic adaptations that produce hypodopaminergia and contribute to alcohol use disorders using direct, sub-second measurements of dopamine signaling in nonhuman primates following chronic ethanol self-administration. Female rhesus macaques completed 1 year of daily (22 h/day) ethanol self-administration. Subsequently, fast-scan cyclic voltammetry was used in nucleus accumbens core brain slices to determine alterations in dopamine terminal function, including release and uptake kinetics, and sensitivity to quinpirole (D2/D3 dopamine receptor agonist) and U50,488 (kappa opioid receptor agonist) induced inhibition of dopamine release. Ethanol drinking greatly increased uptake rates, which were positively correlated with lifetime ethanol intake. Furthermore, the sensitivity of dopamine D2/D3 autoreceptors and kappa opioid receptors, which both act as negative regulators of presynaptic dopamine release, was moderately and robustly enhanced in ethanol drinkers. Greater uptake rates and sensitivity to D2-type autoreceptor and kappa opioid receptor agonists could converge to drive a hypodopaminergic state, characterized by reduced basal dopamine and an inability to mount appropriate dopaminergic responses to salient stimuli. Together, we outline the specific alterations to dopamine signaling that may drive ethanol-induced hypofunction of the dopamine system and suggest that the dopamine and dynorphin/kappa opioid receptor systems may be efficacious pharmacotherapeutic targets in the treatment of alcohol use disorders.

  14. Dietary uridine-5'-monophosphate supplementation increases potassium-evoked dopamine release and promotes neurite outgrowth in aged rats.

    PubMed

    Wang, Lei; Pooler, Amy M; Albrecht, Meredith A; Wurtman, Richard J

    2005-01-01

    Membrane phospholipids like phosphatidylcholine (PC) are required for cellular growth and repair, and specifically for synaptic function. PC synthesis is controlled by cellular levels of its precursor, cytidine-5'-diphosphate choline (CDP-choline), which is produced from cytidine triphosphate (CTP) and phosphocholine. In rat PC12 cells exogenous uridine was shown to elevate intracellular CDP-choline levels, by promoting the synthesis of uridine triphosphate (UTP), which was partly converted to CTP. In such cells uridine also enhanced the neurite outgrowth produced by nerve growth factor (NGF). The present study assessed the effect of dietary supplementation with uridine-5'-monophosphate disodium (UMP-2Na+, an additive in infant milk formulas) on striatal dopamine (DA) release in aged rats. Male Fischer 344 rats consumed either a control diet or one fortified with 2.5% UMP for 6 wk, ad libitum. In vivo microdialysis was then used to measure spontaneous and potassium (K+)-evoked DA release in the right striatum. Potassium (K+)-evoked DA release was significantly greater among UMP-treated rats, i.e., 341+/-21% of basal levels vs. 283+/-9% of basal levels in control rats (p<0.05); basal DA release was unchanged. In general, each animal's K+-evoked DA release correlated with its striatal DA content, measured postmortem. The levels of neurofilament-70 and neurofilament-M proteins, biomarkers of neurite outgrowth, increased to 182+/-25% (p<0.05) and 221+/-34% (p<0.01) of control values, respectively, with UMP consumption. Hence, UMP treatment not only enhances membrane phosphatide production but also can modulate two membrane-dependent processes, neurotransmitter release and neurite outgrowth, in vivo.

  15. A genetic determinant of the striatal dopamine response to alcohol in men

    PubMed Central

    Ramchandani, Vijay A.; Umhau, John; Pavon, Francisco J.; Ruiz-Velasco, Victor; Margas, Wojciech; Sun, Hui; Damadzic, Ruslan; Eskay, Robert; Schoor, Michael; Thorsell, Annika; Schwandt, Melanie L.; Sommer, Wolfgang H.; George, David T.; Parsons, Loren H.; Herscovitch, Peter; Hommer, Daniel; Heilig, Markus

    2010-01-01

    Excessive alcohol use, a major cause of morbidity and mortality, is less well understood than other addictive disorders. Dopamine release in ventral striatum is a common element of drug reward, but alcohol has an unusually complex pharmacology, and humans vary greatly in their alcohol responses. This variation is related to genetic susceptibility for alcoholism, which contributes more than half of alcoholism risk. Here, we report that a functional OPRM1 A118G polymorphism is a major determinant of striatal dopamine responses to alcohol. Social drinkers recruited based on OPRM1 genotype were challenged in separate sessions with alcohol and placebo under pharmacokinetically controlled conditions, and examined for striatal dopamine release using positron emission tomography and [11C]-raclopride displacement. A striatal dopamine response to alcohol was restricted to carriers of the minor 118G allele. To directly establish the causal role of OPRM1 A118G variation, we generated two humanized mouse lines, carrying the respective human sequence variant. Brain microdialysis showed a four-fold greater peak dopamine response to an alcohol challenge in h/mOPRM1-118GG than in h/mOPRM1-118AA mice. OPRM1 A118G variation is a genetic determinant of dopamine responses to alcohol, a mechanism by which it likely modulates alcohol reward. PMID:20479755

  16. METHAMPHETAMINE-INDUCED DOPAMINE TERMINAL DEFICITS IN THE NUCLEUS ACCUMBENS ARE EXACERBATED BY REWARD-ASSOCIATED CUES AND ATTENUATED BY CB1 RECEPTOR ANTAGONISM

    PubMed Central

    Loewinger, Gabriel C.; Beckert, Michael V.; Tejeda, Hugo A.; Cheer, Joseph F.

    2012-01-01

    Methamphetamine (METH) exposure is primarily associated with deleterious effects to dopaminergic neurons. While several studies have implicated the endocannabinoid system in METH’s locomotor, rewarding and neurochemical effects, a role for this signaling system in METH’s effects on dopamine terminal dynamics has not been elucidated. Given that CB1 receptor blockade reduces the acute potentiation of phasic extracellular dopamine release from other psychomotor stimulant drugs and that the degree of acute METH-induced increases in extracellular dopamine levels is related to the severity of dopamine depletion, we predicted that pretreatment with the CB1 receptor antagonist rimonabant would reduce METH-induced alterations at dopamine terminals. Furthermore, we hypothesized that administration of METH in environments where reward associated-cues were present would potentiate METH’s acute effects on dopamine release in the nucleus accumbens and exacerbate changes in dopamine terminal activity. Fast-scan cyclic voltammetry was used to measure electrically-evoked dopamine release in the nucleus accumbens and revealed markers of compromised dopamine terminal integrity nine days after a single dose of METH. These were exacerbated in animals that received METH in the presence of reward-associated cues, and attenuated in rimonabant-pretreated animals. While these deficits in dopamine dynamics were associated with reduced operant responding on days following METH administration in animals treated with only METH, rimonabant-pretreated animals exhibited levels of operant responding comparable to control. Moreover, dopamine release correlated significantly with changes in lever pressing behavior that occurred on days following METH administration. Together these data suggest that the endocannabinoid system is involved in the subsecond dopaminergic response to METH. PMID:22306525

  17. Effect of beta-phenylethylamine on extracellular concentrations of dopamine in the nucleus accumbens and prefrontal cortex.

    PubMed

    Murata, Mikio; Katagiri, Nobuyuki; Ishida, Kota; Abe, Kenji; Ishikawa, Masago; Utsunomiya, Iku; Hoshi, Keiko; Miyamoto, Ken-ichi; Taguchi, Kyoji

    2009-05-07

    It is known that psychostimulants stimulate dopamine transmission in the nucleus accumbens. In the present study, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor-stimulating trace amine, on dopamine concentrations in the nucleus accumbens and prefrontal cortex in freely moving rats, using an in vivo microdialysis technique. Intraperitoneal administration of beta-PEA (12.5 and 25 mg/kg) significantly increased extracellular dopamine levels in the nucleus accumbens shell. The observed increase in the dopamine concentration in nucleus accumbens shell dialysate after intraperitoneal administration of 25 mg/kg beta-PEA was inhibited by pre-treatment with a dopamine uptake inhibitor, GBR12909 (10 mg/kg, i.p.). In contrast, beta-PEA (25 mg/kg, i.p.) did not affect dopamine release in the nucleus accumbens core. Although a high dose of beta-PEA (50 mg/kg) significantly increased dopamine levels in the nucleus accumbens core, the dopamine increasing effect of beta-PEA was more potent in the nucleus accumbens shell. Systemic administration of 12.5 and 25 mg/kg beta-PEA also increased extracellular dopamine levels in the prefrontal cortex of rats. However, systemic 25 mg/kg beta-PEA-induced increases in extracellular dopamine levels were not blocked by GBR12909 within the prefrontal cortex. These results suggest that beta-PEA has a greater effect in the shell than in the core and low-dose beta-PEA stimulates dopamine release in the nucleus accumbens shell through uptake by a dopamine transporter. Similarly, beta-PEA increased extracellular dopamine levels in the prefrontal cortex. Thus, beta-PEA may increase extracellular dopamine concentrations in the mesocorticolimbic pathway.

  18. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  19. Dopamine modulates episodic memory persistence in old age

    PubMed Central

    Chowdhury, Rumana; Guitart-Masip, Marc; Bunzeck, Nico; Dolan, Raymond J; Düzel, Emrah

    2013-01-01

    Activation of the hippocampus is required in order to encode memories for new events (or episodes). Observations from animal studies suggest that for these memories to persist beyond 4 to 6 hours, a release of dopamine generated by strong hippocampal activation is needed. This predicts that dopaminergic enhancement should improve human episodic memory persistence also for events encoded with weak hippocampal activation. Here, using pharmacological fMRI in an elderly population where there is a loss of dopamine neurons as part of normal aging, we show this very effect. The dopamine precursor levodopa led to a dose-dependent (inverted U-shape) persistent episodic memory benefit for images of scenes when tested after 6 hours, independent of whether encoding-related hippocampal fMRI activity was weak or strong (U-shaped dose-response relationship). This lasting improvement even for weakly encoded events supports a role for dopamine in human episodic memory consolidation albeit operating within a narrow dose range. PMID:23055489

  20. Microencapsulation of dopamine neurons derived from human induced pluripotent stem cells.

    PubMed

    Konagaya, Shuhei; Iwata, Hiroo

    2015-01-01

    Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress. hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons. Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved. hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads. Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Blunted Dopamine Transmission in Addiction: Potential Mechanisms and Implications for Behavior.

    PubMed

    Trifilieff, Pierre; Ducrocq, Fabien; van der Veldt, Suzanne; Martinez, Diana

    2017-01-01

    Positron emission tomography (PET) imaging consistently shows blunted striatal dopamine release and decreased dopamine D2 receptor availability in addiction. Here, we review the preclinical and clinical studies indicating that this neurobiological phenotype is likely to be both a consequence of chronic drug consumption and a vulnerability factor in the development of addiction. We propose that, behaviorally, blunted striatal dopamine transmission could reflect the increased impulsivity and altered cost/benefit computations that are associated with addiction. The factors that influence blunted striatal dopamine transmission in addiction are unknown. Herein, we give an overview of various factors, genetic, environmental, and social, that are known to affect dopamine transmission and that have been associated with the vulnerability to develop addiction. Altogether, these data suggest that blunted dopamine transmission and decreased D2 receptor availability are biomarkers both for the development of addiction and resistance to treatment. These findings support the view that blunted dopamine reflects impulsive behavior and deficits in motivation, which lead to the escalation of drug use. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease.

    PubMed

    Zucca, Fabio A; Segura-Aguilar, Juan; Ferrari, Emanuele; Muñoz, Patricia; Paris, Irmgard; Sulzer, David; Sarna, Tadeusz; Casella, Luigi; Zecca, Luigi

    2017-08-01

    There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The effects of endomorphins and diprotin A on striatal dopamine release induced by electrical stimulation-an in vitro superfusion study in rats.

    PubMed

    Bagosi, Zsolt; Jászberényi, Miklós; Bujdosó, Erika; Szabó, Gyula; Telegdy, Gyula

    2006-12-01

    The endomorphins (EM1: Tyr-Pro-Trp-Phe-NH2, and EM2: Tyr-Pro-Phe-Phe-NH2) are recently discovered endogenous ligands for mu-opioid receptors (MORs) with role of neurotransmitters or neuromodulators in mammals. Cessation of their physiological action may be effected through rapid enzymatic degradation by the dipeptidyl-peptidase IV (DPPIV) found in the brain synaptic membranes. An in vitro superfusion system was utilized to investigate the actions of EM1, EM2 and specific DPPIV inhibitor diprotin A on the striatal release of dopamine (DA) induced by electrical stimulation in rats. The involvement of the different MORs (MOR1 and MOR2) in this process was studied by pretreatment with MOR antagonists beta-funaltrexamine (a MOR1 and MOR2 antagonist) and naloxonazine (a MOR1 antagonist). EM1 significantly increased the tritium-labelled dopamine DA release induced by electrical stimulation. EM2 was effective only when the slices were pretreated with diprotin A. beta-Funaltrexamine antagonized the stimulatory effects of both EM1 and EM2. The administration of naloxonazine did not appreciably influence the action of EM1, but blocked the action of EM2, at least when the slices were pretreated with diprotin A. These data suggest that both EM1 and EM2 increase DA release from the striatum and, though diprotin A does not affect the action of EM1, it inhibits the enzymatic degradation of EM2. The DA-stimulating action induced by EM1 seems to be mediated by MOR2, while that evoked by EM2 appears to be transmitted by MOR1.

  4. Characterization of dopamine release in the substantia nigra by in vivo microdialysis in freely moving rats.

    PubMed

    Robertson, G S; Damsma, G; Fibiger, H C

    1991-07-01

    Dopamine (DA) is released not only from the terminals of the nigrostriatal projection, but also from the dendrites of these neurons, which arborize in the substantia nigra pars reticulata (SNR). Although striatal DA release has been extensively studied by in vivo microdialysis, dendritic DA release in the SNR has not been characterized by this technique. Extracellular DA was monitored simultaneously in the ipsilateral striatum and SNR. The nigral probe was implanted at a 50 degree angle, permitting 2.5 mm of SNR to be dialyzed. Delivery of the tracer Fluoro-Gold into the striatal probe retrogradely labeled tyrosine hydroxylase-positive cell bodies and dendrites in the vicinity of the nigral probe. Hence, it could be demonstrated that dopaminergic neurons near the nigral probe projected to the vicinity of the striatal probe. Addition of 50 mM KCl to the SNR perfusion solution produced a 3.5-fold increase in DA and a 50% reduction in dihydroxyphenylacetic acid (DOPAC) in the SNR; in contrast, this manipulation in the SNR caused DA release in the striatum to be decreased by 20%, while striatal DOPAC was increased by 50%. Local administration of nomifensine (10 microM) in the SNR produced a sevenfold increase in SNR DA but had no effect on striatal DA. Systemic injection of d-amphetamine (2 mg/kg, s.c.) elevated DA in the SNR and striatum five- to sevenfold, while DOPAC was decreased in both structures by at least 40%. To determine the effect of tetrodotoxin (TTX), basal concentrations of DA in the SNR were first elevated threefold by including nomifensine (1 microM) in the nigral perfusion solution.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats' nucleus accumbens.

    PubMed

    Adriani, W; Boyer, F; Gioiosa, L; Macrì, S; Dreyer, J-L; Laviola, G

    2009-03-03

    Multiple theories have been proposed for sensation seeking and vulnerability to impulse-control disorders [Zuckerman M, Kuhlman DM (2000) Personality and risk-taking: Common biosocial factors. J Pers 68:999-1029], and many of these rely on a dopamine system deficit. Available animal models reproduce only some behavioral symptoms and seem devoid of construct validity. We used lentivirus tools for over-expressing or silencing the dopamine transporter (DAT) and we evaluated the resulting behavioral profiles in terms of motivation and self-control. Wistar adult rats received stereotaxic inoculation of a lentivirus that allowed localized intra-accumbens delivery of a DAT gene enhancer/silencer, or the green fluorescent protein, GFP. These animals were studied for intolerance to delay, risk proneness and novelty seeking. As expected, controls shifted their demanding from a large reward toward a small one when the delivery of the former was increasingly delayed (or uncertain). Interestingly, in the absence of general locomotor effects, DAT over-expressing rats showed increased impulsivity (i.e. a more marked shift of demanding from the large/delayed toward the small/soon reward), and increased risk proneness (i.e. a less marked shift from the large/uncertain toward the small/sure reward), compared with controls. Rats with enhanced or silenced DAT expression did not show any significant preference for a novel environment. In summary, consistent with literature on comorbidity between attention-deficit/hyperactivity disorder and pathological gambling, we demonstrate that DAT over-expression in rats' nucleus accumbens leads to impulsive and risk prone phenotype. Thus, a reduced dopaminergic tone following altered accumbal DAT function may subserve a sensation-seeker phenotype and the vulnerability to impulse-control disorders.

  6. Cigarette Use and Striatal Dopamine D2/3 Receptors: Possible Role in the Link between Smoking and Nicotine Dependence.

    PubMed

    Okita, Kyoji; Mandelkern, Mark A; London, Edythe D

    2016-11-01

    Cigarette smoking induces dopamine release in the striatum, and smoking- or nicotine-induced ventral striatal dopamine release is correlated with nicotine dependence. Smokers also exhibit lower dopamine D2/3 receptor availability in the dorsal striatum than nonsmokers. Negative correlations of striatal dopamine D2/3 receptor availability with smoking exposure and nicotine dependence, therefore, might be expected but have not been tested. Twenty smokers had positron emission tomography scans with [ 18 F]fallypride to measure dopamine D2/3 receptor availability in ventral and dorsal regions of the striatum and provided self-report measures of recent and lifetime smoking and of nicotine dependence. As reported before, lifetime smoking was correlated with nicotine dependence. New findings were that ventral striatal dopamine D2/3 receptor availability was negatively correlated with recent and lifetime smoking and also with nicotine dependence. The results suggest an effect of smoking on ventral striatal D2/3 dopamine receptors that may contribute to nicotine dependence. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  7. Dopamine/Tyrosine Hydroxylase Neurons of the Hypothalamic Arcuate Nucleus Release GABA, Communicate with Dopaminergic and Other Arcuate Neurons, and Respond to Dynorphin, Met-Enkephalin, and Oxytocin

    PubMed Central

    Zhang, Xiaobing

    2015-01-01

    rats, the mechanism underlying bursting was not dependent on gap junctions but required T-type calcium and A-type potassium channel activation. Neuropeptides dynorphin and met-enkephalin inhibited dopamine neurons, whereas oxytocin excited them. Most ventrolateral ARC TH cells did not contain dopamine and did not show bursting electrical activity. TH-containing neurons appeared to release synaptic GABA within the ARC onto dopamine neurons and unidentified neurons, suggesting that the cells not only control pituitary hormones but also may modulate nearby neurons. PMID:26558770

  8. Individual differences in anhedonic and accumbal dopamine responses to chronic social stress and their link to cocaine self-administration in female rats

    PubMed Central

    Holly, Elizabeth N.; Boyson, Christopher O.; DeBold, Joseph F.; Miczek, Klaus A.

    2014-01-01

    Rationale Women are twice as likely as men to develop major depressive disorder. Exposure to chronic stress can induce depression in some vulnerable individuals, while others are resistant to depressive-like symptoms after equivalent levels of chronic stress. Objectives In female rats, individual differences in saccharin intake during chronic social defeat stress may predict subsequent cocaine self-administration, and may be attributed to alterations in mesolimbic dopamine activity. Methods Female rats were exposed to 21 days of chronic social defeat stress, during which they were evaluated for their anhedonia-like responses in the form of saccharin intake. After chronic social defeat stress, the rats were tested for behavioral cross-sensitization to cocaine and escalated cocaine self-administration in a 24-h “binge.” A separate group of animals underwent in vivo microdialysis of the nucleus accumbens (NAc) shell to assess dopamine (DA) in response to acute cocaine challenge. Results Cluster analysis revealed two phenotypes among the stressed female rats based on their saccharin intake while being exposed to stress, termed stress-resistant (SR, 28 %) and stress-sensitive (SS, 72 %). The amount of cocaine self-administered during the 24-h “binge” was positively correlated with preceding saccharin intake. The NAc DA response to a cocaine challenge was significantly lower in SR rats than in the SS and non-stressed control rats. No other significant differences were observed in behavioral cross-sensitization or cocaine self-administration prior to the “binge.” Conclusion Female rats showed individual differences in their anhedonic-like response to chronic social defeat stress, and these differences were reliably associated with subsequent cocaine-taking behavior. PMID:25178816

  9. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease

    PubMed Central

    Lohr, Kelly M.; Masoud, Shababa T.; Salahpour, Ali; Miller, Gary W.

    2016-01-01

    Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are two regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move transmitter efficiently throughout the neuron. The accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine. PMID:27520881

  10. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease.

    PubMed

    Lohr, Kelly M; Masoud, Shababa T; Salahpour, Ali; Miller, Gary W

    2017-01-01

    Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move the transmitter efficiently throughout the neuron. Accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here, we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. A Single Amphetamine Infusion Reverses Deficits in Dopamine Nerve-Terminal Function Caused by a History of Cocaine Self-Administration.

    PubMed

    Ferris, Mark J; Calipari, Erin S; Rose, Jamie H; Siciliano, Cody A; Sun, Haiguo; Chen, Rong; Jones, Sara R

    2015-07-01

    There are ∼ 1.6 million people who meet the criteria for cocaine addiction in the United States, and there are currently no FDA-approved pharmacotherapies. Amphetamine-based dopamine-releasing drugs have shown efficacy in reducing the motivation to self-administer cocaine and reducing intake in animals and humans. It is hypothesized that amphetamine acts as a replacement therapy for cocaine through elevation of extracellular dopamine levels. Using voltammetry in brain slices, we tested the ability of a single amphetamine infusion in vivo to modulate dopamine release, uptake kinetics, and cocaine potency in cocaine-naive animals and after a history of cocaine self-administration (1.5 mg/kg/infusion, fixed-ratio 1, 40 injections/day × 5 days). Dopamine kinetics were measured 1 and 24 h after amphetamine infusion (0.56 mg/kg, i.v.). Following cocaine self-administration, dopamine release, maximal rate of uptake (Vmax), and membrane-associated dopamine transporter (DAT) levels were reduced, and the DAT was less sensitive to cocaine. A single amphetamine infusion reduced Vmax and membrane DAT levels in cocaine-naive animals, but fully restored all aspects of dopamine terminal function in cocaine self-administering animals. Here, for the first time, we demonstrate pharmacologically induced, immediate rescue of deficits in dopamine nerve-terminal function in animals with a history of high-dose cocaine self-administration. This observation supports the notion that the DAT expression and function can be modulated on a rapid timescale and also suggests that the pharmacotherapeutic actions of amphetamine for cocaine addiction go beyond that of replacement therapy.

  12. A Single Amphetamine Infusion Reverses Deficits in Dopamine Nerve-Terminal Function Caused by a History of Cocaine Self-Administration

    PubMed Central

    Ferris, Mark J; Calipari, Erin S; Rose, Jamie H; Siciliano, Cody A; Sun, Haiguo; Chen, Rong; Jones, Sara R

    2015-01-01

    There are ∼1.6 million people who meet the criteria for cocaine addiction in the United States, and there are currently no FDA-approved pharmacotherapies. Amphetamine-based dopamine-releasing drugs have shown efficacy in reducing the motivation to self-administer cocaine and reducing intake in animals and humans. It is hypothesized that amphetamine acts as a replacement therapy for cocaine through elevation of extracellular dopamine levels. Using voltammetry in brain slices, we tested the ability of a single amphetamine infusion in vivo to modulate dopamine release, uptake kinetics, and cocaine potency in cocaine-naive animals and after a history of cocaine self-administration (1.5 mg/kg/infusion, fixed-ratio 1, 40 injections/day × 5 days). Dopamine kinetics were measured 1 and 24 h after amphetamine infusion (0.56 mg/kg, i.v.). Following cocaine self-administration, dopamine release, maximal rate of uptake (Vmax), and membrane-associated dopamine transporter (DAT) levels were reduced, and the DAT was less sensitive to cocaine. A single amphetamine infusion reduced Vmax and membrane DAT levels in cocaine-naive animals, but fully restored all aspects of dopamine terminal function in cocaine self-administering animals. Here, for the first time, we demonstrate pharmacologically induced, immediate rescue of deficits in dopamine nerve-terminal function in animals with a history of high-dose cocaine self-administration. This observation supports the notion that the DAT expression and function can be modulated on a rapid timescale and also suggests that the pharmacotherapeutic actions of amphetamine for cocaine addiction go beyond that of replacement therapy. PMID:25689882

  13. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    PubMed

    Meyers, Allison M; Mourra, Devry; Beeler, Jeff A

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  14. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity

    PubMed Central

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets. PMID:29287121

  15. Phasic dopamine signals: from subjective reward value to formal economic utility

    PubMed Central

    Schultz, Wolfram; Carelli, Regina M; Wightman, R Mark

    2015-01-01

    Although rewards are physical stimuli and objects, their value for survival and reproduction is subjective. The phasic, neurophysiological and voltammetric dopamine reward prediction error response signals subjective reward value. The signal incorporates crucial reward aspects such as amount, probability, type, risk, delay and effort. Differences of dopamine release dynamics with temporal delay and effort in rodents may derive from methodological issues and require further study. Recent designs using concepts and behavioral tools from experimental economics allow to formally characterize the subjective value signal as economic utility and thus to establish a neuronal value function. With these properties, the dopamine response constitutes a utility prediction error signal. PMID:26719853

  16. Electroconvulsive therapy (ECT) in Parkinson's disease: ECS and dopamine enhancement.

    PubMed

    Cumper, Samantha K; Ahle, Gabriella M; Liebman, Lauren S; Kellner, Charles H

    2014-06-01

    In addition to its effects in major psychiatric illness, electroconvulsive therapy (ECT) is known to have a beneficial effect on the core motor symptoms of Parkinson's disease (PD). This effect is believed to be mediated via dopamine in the striatum. Electroconvulsive shock (ECS), the animal analogue of ECT, is the model in which investigators have sought to elucidate the specific dopaminergic mechanisms by which ECT exerts its therapeutic effect in PD. Electroconvulsive shock has been given to intact animals as well as to animals with neurotoxic lesions that create parkinsonism. In this paper, we selectively review the electroconvulsive shock literature on dopamine in the striatum. Electroconvulsive shock, and by extension, ECT, is associated with increased dopamine release and modulation of dopamine receptors. Better understanding of how ECT works to enhance dopaminergic systems in the brain could help to make it a more accepted treatment for PD.

  17. Intra-accumbal Cannabinoid Agonist Attenuated Reinstatement but not Extinction Period of Morphine-Induced Conditioned Place Preference; Evidence for Different Characteristics of Extinction Period and Reinstatement.

    PubMed

    Khaleghzadeh-Ahangar, Hossein; Haghparast, Abbas

    2017-11-01

    The brain reward system consists of the ventral tegmental area that sends its dopaminergic projections to the forebrain, cortical areas, amygdala and largely to the nucleus accumbens (NAc). The present study aims were to investigate the effects of bilateral intra-accumbal microinjection of WIN55,212-2, a CB1 receptor agonist, on the duration of extinction period and reinstatement to morphine by the conditioned place preference (CPP) paradigm in the rat. Forty-six adult male albino Wistar rats received intra-accumbal WIN55,212-2 [p0.5, 1 and 2 mM/0.5 μl dimethyl sulfoxide (DMSO)] injections bilaterally. To induce CPP, morphine (5 mg/kg) was injected subcutaneously over three consecutive days. The results showed that intra-NAc administration of WIN55,212-2 during the extinction period had no effect on its duration but single administration of the1 mM/0.5 μl DMSO dose just before the reinstatement phase significantly attenuated its conditioning score. This is the first time that interactions of opioid and cannabinoid systems by local activation of CB1 receptors in the NAc during extinction and morphine-induced reinstatement were investigated. The CB1 agonist can inhibit and eliminate the reward-associated memory of morphine and the conditioning score in reinstatement but not in the extinction period. Our findings suggest that the extinction period and reinstatement could occur through different mechanisms.

  18. Implications for glycine receptors and astrocytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens.

    PubMed

    Adermark, Louise; Clarke, Rhona B C; Olsson, Torsten; Hansson, Elisabeth; Söderpalm, Bo; Ericson, Mia

    2011-01-01

    Elevated dopamine levels are believed to contribute to the rewarding sensation of ethanol (EtOH), and previous research has shown that strychnine-sensitive glycine receptors in the nucleus accumbens (nAc) are involved in regulating dopamine release and in mediating the reinforcing effects of EtOH. Furthermore, the osmoregulator taurine, which is released from astrocytes treated with EtOH, can act as an endogenous ligand for the glycine receptor, and increase extracellular dopamine levels. The aim of this study was to address if EtOH-induced swelling of astrocytes could contribute to elevated dopamine levels by increasing the extracellular concentration of taurine. Cell swelling was estimated by optical sectioning of fluorescently labeled astrocytes in primary cultures from rat, and showed that EtOH (25-150 mM) increased astrocyte cell volumes in a concentration- and ion-dependent manner. The EtOH-induced cell swelling was inhibited in cultures treated with the Na(+) /K(+) /2Cl⁻ cotransporter blocker furosemide (1 mM), Na(+) /K(+) -ATPase inhibitor ouabain (0.1 mM), potassium channel inhibitor BaCl₂ (50 µM) and in cultures containing low extracellular sodium concentration (3 mM). In vivo microdialysis performed in the nAc of awake and freely moving rats showed that local treatment with EtOH enhanced the concentrations of dopamine and taurine in the microdialysate, while glycine and β-alanine levels were not significantly modulated. EtOH-induced dopamine release was antagonized by local treatment with the glycine receptor antagonist strychnine (20 µM) or furosemide (100 µM or 1 mM). Furosemide also prevented EtOH-induced taurine release in the nAc. In conclusion, our data suggest that extracellular concentrations of dopamine and taurine are interconnected and that swelling of astrocytes contributes to the acute rewarding sensation of EtOH. © 2010 The Authors, Addiction Biology © 2010 Society for the Study of Addiction.

  19. Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine

    NASA Astrophysics Data System (ADS)

    Malvindi, Maria Ada; di Corato, Riccardo; Curcio, Annalisa; Melisi, Daniela; Rimoli, Maria Grazia; Tortiglione, Claudia; Tino, Angela; George, Chandramohan; Brunetti, Virgilio; Cingolani, Roberto; Pellegrino, Teresa; Ragusa, Andrea

    2011-12-01

    The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed hydrolysis by esterases, yielding a smart nanotool for specific biolabeling and controlled drug release.The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed

  20. The Role of Dopamine in Inflammation-Associated Depression: Mechanisms and Therapeutic Implications.

    PubMed

    Felger, Jennifer C

    Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have consistently reported evidence that inflammatory cytokines affect the basal ganglia and dopamine to mediate depressive symptoms related to motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal responses to hedonic reward, decreased dopamine and dopamine metabolites in cerebrospinal fluid, and decreased availability of striatal dopamine, all of which correlate with symptoms of anhedonia, fatigue, and psychomotor retardation. Similar relationships between alterations in dopamine-relevant corticostriatal reward circuitry and symptoms of anhedonia and psychomotor slowing have also been observed in patients with major depression who exhibit increased peripheral cytokines and other inflammatory markers, such as C-reactive protein. Of note, these inflammation-associated depressive symptoms are often difficult to treat in patients with medical illnesses or major depression. Furthermore, a wealth of literature suggests that inflammation can decrease dopamine synthesis, packaging, and release, thus sabotaging or circumventing the efficacy of standard antidepressant treatments. Herein, the mechanisms by which inflammation and cytokines affect dopamine neurotransmission are discussed, which may provide novel insights into treatment of inflammation-related behavioral symptoms that contribute to an inflammatory malaise.

  1. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation.

    PubMed

    Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping

    2015-07-24

    One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.

  2. Heightened Dopaminergic Response to Amphetamine at the D3 Dopamine Receptor in Methamphetamine Users

    PubMed Central

    Boileau, Isabelle; Payer, Doris; Rusjan, Pablo M; Houle, Sylvain; Tong, Junchao; McCluskey, Tina; Wilson, Alan A; Kish, Stephen J

    2016-01-01

    Neuroimaging studies in stimulant use (eg, cocaine, methamphetamine) disorders show that diminished dopamine release by dopamine-elevating drugs is a potential marker of relapse and suggest that increasing dopamine at the D2/3 receptors may be therapeutically beneficial. In contrast, recent investigations indicate heightened D3 receptor levels in stimulant users prompting the view that D3 antagonism may help prevent relapse. Here we tested whether a ‘blunted' response to amphetamine in methamphetamine (MA) users extends to D3-rich brain areas. Fourteen MA users and 15 healthy controls completed two positron emission tomographic scans with a D3-preferring probe [11C]-(+)-PHNO at baseline and after amphetamine (0.4 mg/kg). Relative to healthy controls, MA users had greater decreases in [11C]-(+)-PHNO binding (increased dopamine release) after amphetamine in D3-rich substantia nigra (36 vs 20%, p=0.03) and globus pallidus (30 vs 17%, p=0.06), which correlated with self-reported ‘drug wanting'. We did not observe a ‘blunted' dopamine response to amphetamine in D2-rich striatum; however, drug use severity was negatively associated with amphetamine-induced striatal changes in [11C]-(+)-PHNO binding. Our study provides evidence that dopamine transmission in extrastriatal ‘D3-areas' is not blunted but rather increased in MA users. Together with our previous finding of elevated D3 receptor level in MA users, the current observation suggests that greater dopaminergic transmission at the D3 dopamine receptor may contribute to motivation to use drugs and argues in favor of D3 antagonism as a possible therapeutic tool to reduce craving and relapse in MA addiction. PMID:27353309

  3. Heightened Dopaminergic Response to Amphetamine at the D3 Dopamine Receptor in Methamphetamine Users.

    PubMed

    Boileau, Isabelle; Payer, Doris; Rusjan, Pablo M; Houle, Sylvain; Tong, Junchao; McCluskey, Tina; Wilson, Alan A; Kish, Stephen J

    2016-12-01

    Neuroimaging studies in stimulant use (eg, cocaine, methamphetamine) disorders show that diminished dopamine release by dopamine-elevating drugs is a potential marker of relapse and suggest that increasing dopamine at the D 2/3 receptors may be therapeutically beneficial. In contrast, recent investigations indicate heightened D 3 receptor levels in stimulant users prompting the view that D 3 antagonism may help prevent relapse. Here we tested whether a 'blunted' response to amphetamine in methamphetamine (MA) users extends to D 3 -rich brain areas. Fourteen MA users and 15 healthy controls completed two positron emission tomographic scans with a D 3 -preferring probe [ 11 C]-(+)-PHNO at baseline and after amphetamine (0.4 mg/kg). Relative to healthy controls, MA users had greater decreases in [ 11 C]-(+)-PHNO binding (increased dopamine release) after amphetamine in D 3 -rich substantia nigra (36 vs 20%, p=0.03) and globus pallidus (30 vs 17%, p=0.06), which correlated with self-reported 'drug wanting'. We did not observe a 'blunted' dopamine response to amphetamine in D 2 -rich striatum; however, drug use severity was negatively associated with amphetamine-induced striatal changes in [ 11 C]-(+)-PHNO binding. Our study provides evidence that dopamine transmission in extrastriatal 'D 3 -areas' is not blunted but rather increased in MA users. Together with our previous finding of elevated D 3 receptor level in MA users, the current observation suggests that greater dopaminergic transmission at the D 3 dopamine receptor may contribute to motivation to use drugs and argues in favor of D 3 antagonism as a possible therapeutic tool to reduce craving and relapse in MA addiction.

  4. Distinct presynaptic regulation of dopamine release through NMDA receptors in striosome- and matrix-enriched areas of the rat striatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krebs, M.O.; Trovero, F.; Desban, M.

    1991-05-01

    Striosome- and matrix-enriched striatal zones were defined in coronal and sagittal brain sections of the rat, on the basis of {sup 3}H-naloxone binding to mu-opiate receptors (a striosome-specific marker). Then, using a new in vitro microsuperfusion device, the NMDA (50 microM)-evoked release of newly synthesized {sup 3}H-dopamine ({sup 3}H-DA) was examined in these four striatal areas under Mg(2+)-free conditions. The amplitudes of the responses were different in striosomal (171 +/- 6% and 161 +/- 5% of the spontaneous release) than in matrix areas (223 +/- 6% and 248 +/- 12%), even when glycine (1 or 100 microM) was coapplied (inmore » the presence of 1 microM strychnine). In the four areas, the NMDA-evoked release of {sup 3}H-DA was blocked completely by Mg{sup 2}{sup +} (1 mM) or (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK-801; 1 microM) and almost totally abolished by kynurenate (100 microM). Because the tetrodotoxin (TTX)-resistant NMDA-evoked release of {sup 3}H-DA was similar in striosome- (148 +/- 5% and 152 +/- 6%) or matrix-enriched (161 +/- 5% and 156 +/- 7%) areas, the indirect (TTX-sensitive) component of NMDA-evoked responses, which involves striatal neurons and/or afferent fibers, seems more important in the matrix- than in the striosome-enriched areas. The modulation of DA release by cortical glutamate and/or aspartate-containing inputs through NMDA receptors in the matrix appears thus to be partly distinct from that observed in the striosomes, providing some functional basis for the histochemical striatal heterogeneity.« less

  5. Pineal control of the dopamine D2-receptor gene and dopamine release in the retina of the chicken and their possible relation to growth rhythms of the eye.

    PubMed

    Ohngemach, S; Feldkaemper, M; Schaeffel, F

    2001-09-01

    Retinal dopamine (DA) and the DA D2-receptor have been implicated in the development of "deprivation myopia", induced by frosted eye occluders. We have studied the changes in D2-mediated dopaminergic transmission in the retina, their possible relations to eye growth rhythms and myopia, and their control by the pineal gland. (1) We found that the sensitivity of eye growth to retinal image degradation varied over the day. Intermittent periods of normal vision inhibited deprivation myopia more if they occurred in the evening than in the morning. (2) Diurnal growth rhythms in both eyes interacted even though it was previously shown that both deprivation myopia and the accompanying changes in retinal DA release can be monocularly induced. (3) The D2-receptor mRNA concentration in the retina showed no systemic diurnal changes and was not affected by deprivation myopia, but was increased after 2 days in darkness. Since DA release varies over the day, the gain of dopaminergic transmission may also vary, which could explain the observation described in (1) above. (4) Depletion of retinal DA by intravitreal application of reserpine, which lowers DA content severely, had little effect on D2-receptor mRNA concentration. (5) Selective illumination of the pineal gland reduced the D2-receptor mRNA content in the retina to a similar level to full illumination, indicating that the pineal gland controls the D2-receptor mRNA content in the retina. The pineal also controlled DA release in the retina. These results show that the pineal has a surprisingly large influence on both the retinal DA receptor gene transcription and DA release. It can probably control the gain of dopaminergic transmission in the retina and deprivation myopia and mediate the interactions of the growth rhythms in both eyes.

  6. C-FSCV: Compressive Fast-Scan Cyclic Voltammetry for Brain Dopamine Recording.

    PubMed

    Zamani, Hossein; Bahrami, Hamid Reza; Chalwadi, Preeti; Garris, Paul A; Mohseni, Pedram

    2018-01-01

    This paper presents a novel compressive sensing framework for recording brain dopamine levels with fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode. Termed compressive FSCV (C-FSCV), this approach compressively samples the measured total current in each FSCV scan and performs basic FSCV processing steps, e.g., background current averaging and subtraction, directly with compressed measurements. The resulting background-subtracted faradaic currents, which are shown to have a block-sparse representation in the discrete cosine transform domain, are next reconstructed from their compressively sampled counterparts with the block sparse Bayesian learning algorithm. Using a previously recorded dopamine dataset, consisting of electrically evoked signals recorded in the dorsal striatum of an anesthetized rat, the C-FSCV framework is shown to be efficacious in compressing and reconstructing brain dopamine dynamics and associated voltammograms with high fidelity (correlation coefficient, ), while achieving compression ratio, CR, values as high as ~ 5. Moreover, using another set of dopamine data recorded 5 minutes after administration of amphetamine (AMPH) to an ambulatory rat, C-FSCV once again compresses (CR = 5) and reconstructs the temporal pattern of dopamine release with high fidelity ( ), leading to a true-positive rate of 96.4% in detecting AMPH-induced dopamine transients.

  7. Single cocaine exposure does not alter striatal pre-synaptic dopamine function in mice: an [18 F]-FDOPA PET study.

    PubMed

    Bonsall, David R; Kokkinou, Michelle; Veronese, Mattia; Coello, Christopher; Wells, Lisa A; Howes, Oliver D

    2017-12-01

    Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug. © 2017 International Society for Neurochemistry.

  8. Effects of amphetamine on striatal dopamine release, open-field activity, and play in Fischer 344 and Sprague-Dawley rats.

    PubMed

    Siviy, Stephen M; McDowell, Lana S; Eck, Samantha R; Turano, Alexandra; Akopian, Garnik; Walsh, John P

    2015-12-01

    Previous work from our laboratories has shown that juvenile Fischer 344 (F344) rats are less playful than other strains and also appear to be compromised in dopamine (DA) functioning. To determine whether the dysfunctional play in this strain is associated with deficits in the handling and delivery of vesicular DA, the following experiments assessed the extent to which F344 rats are differentially sensitive to the effects of amphetamine. When exposed to amphetamine, striatal slices obtained from F344 rats showed a small increase in unstimulated DA release when compared with slices from Sprague-Dawley rats; they also showed a more rapid high K+-mediated release of DA. These data provide tentative support for the hypothesis that F344 rats have a higher concentration of cytoplasmic DA than Sprague-Dawley rats. When rats were tested for activity in an open field, F344 rats presented a pattern of results that was consistent with either an enhanced response to amphetamine (3 mg/kg) or a more rapid release of DA (10 mg/kg). Although there was some indication that amphetamine had a dose-dependent differential effect on play in the two strains, play in F344 rats was not enhanced to any degree by amphetamine. Although these results are not consistent with our working hypothesis that F344 rats are less playful because of a deficit in vesicular release of DA, they still suggest that this strain may be a useful model for better understanding the role of DA in social behavior during the juvenile period.

  9. An Integrative Perspective on the Role of Dopamine in Schizophrenia

    PubMed Central

    Maia, Tiago V.; Frank, Michael J.

    2017-01-01

    We propose that schizophrenia involves a combination of decreased phasic dopamine responses for relevant stimuli and increased spontaneous phasic dopamine release. Using insights from computational reinforcement-learning models and basic-science studies of the dopamine system, we show that each of these two disturbances contributes to a specific symptom domain and explains a large set of experimental findings associated with that domain. Reduced phasic responses for relevant stimuli help to explain negative symptoms and provide a unified explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate with negative symptoms: reduced learning from rewards; blunted activation of the ventral striatum, midbrain, and other limbic regions for rewards and positive prediction errors; blunted activation of the ventral striatum during reward anticipation; blunted autonomic responding for relevant stimuli; blunted neural activation for aversive outcomes and aversive prediction errors; reduced willingness to expend effort for rewards; and psychomotor slowing. Increased spontaneous phasic dopamine release helps to explain positive symptoms and provides a unified explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate with positive symptoms: aberrant learning for neutral cues (assessed with behavioral and autonomic responses), and aberrant, increased activation of the ventral striatum, midbrain, and other limbic regions for neutral cues, neutral outcomes, and neutral prediction errors. Taken together, then, these two disturbances explain many findings in schizophrenia. We review evidence supporting their co-occurrence and consider their differential implications for the treatment of positive and negative symptoms. PMID:27452791

  10. An Integrative Perspective on the Role of Dopamine in Schizophrenia.

    PubMed

    Maia, Tiago V; Frank, Michael J

    2017-01-01

    We propose that schizophrenia involves a combination of decreased phasic dopamine responses for relevant stimuli and increased spontaneous phasic dopamine release. Using insights from computational reinforcement-learning models and basic-science studies of the dopamine system, we show that each of these two disturbances contributes to a specific symptom domain and explains a large set of experimental findings associated with that domain. Reduced phasic responses for relevant stimuli help to explain negative symptoms and provide a unified explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate with negative symptoms: reduced learning from rewards; blunted activation of the ventral striatum, midbrain, and other limbic regions for rewards and positive prediction errors; blunted activation of the ventral striatum during reward anticipation; blunted autonomic responding for relevant stimuli; blunted neural activation for aversive outcomes and aversive prediction errors; reduced willingness to expend effort for rewards; and psychomotor slowing. Increased spontaneous phasic dopamine release helps to explain positive symptoms and provides a unified explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate with positive symptoms: aberrant learning for neutral cues (assessed with behavioral and autonomic responses), and aberrant, increased activation of the ventral striatum, midbrain, and other limbic regions for neutral cues, neutral outcomes, and neutral prediction errors. Taken together, then, these two disturbances explain many findings in schizophrenia. We review evidence supporting their co-occurrence and consider their differential implications for the treatment of positive and negative symptoms. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells.

    PubMed

    Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T

    2013-02-13

    Evidence for coexpression of two or more classic neurotransmitters in neurons has increased, but less is known about cotransmission. Ventral tegmental area (VTA) neurons corelease dopamine (DA), the excitatory transmitter glutamate, and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and coexpress markers for DA and GABA. Using an optogenetic approach, we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABA(A) receptor-mediated monosynaptic inhibitory response, followed by DA-D(1)-like receptor-mediated excitatory response in ETCs. The GABA(A) receptor-mediated hyperpolarization activates I(h) current in ETCs; synaptically released DA increases I(h), which enhances postinhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by I(h) to generate an inhibition-to-excitation "switch" in ETCs. Consistent with the established role of I(h) in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA cotransmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array.

  12. Dopamine release in the medial preoptic area is related to hormonal action and sexual motivation.

    PubMed

    Kleitz-Nelson, Hayley K; Dominguez, Juan M; Ball, Gregory F

    2010-12-01

    To help elucidate how general the role of dopamine (DA) release in the medial preoptic area (mPOA) is for the activation of male sexual behavior in vertebrates, we recently developed an in vivo microdialysis procedure in the mPOA of Japanese quail. Using these techniques in the present experiment, the temporal pattern of DA release in relation to the precopulatory exposure to a female and to the expression of both appetitive and consummatory aspects of male sexual behavior was investigated. Extracellular samples from the mPOA of adult sexually experienced male quail were collected every 6 min before, while viewing, while in physical contact with, and after exposure to a female. In the absence of a precopulatory rise in DA, males failed to copulate when the barrier separating them from the female was removed. In contrast, males that showed a substantial increase in mPOA DA during precopulatory interactions behind the barrier, copulated with females after its removal. However, there was no difference in DA during periods when the quail were copulating as compared to when the female was present but the males were not copulating. In addition, we show that precopulatory DA predicts future DA levels and copulatory behavior frequency. Furthermore, the size of the cloacal gland, an accurate indicator of testosterone action, is positively correlated with precopulatory DA. Taken together, these results provide further support for the hypothesis that DA action in the mPOA is specifically linked to sexual motivation as compared to copulatory behavior per se. © 2010 APA, all rights reserved.

  13. Dendritic release of neurotransmitters

    PubMed Central

    Ludwig, Mike; Apps, David; Menzies, John; Patel, Jyoti C.; Rice, Margaret E.

    2017-01-01

    Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters and signaling molecules such as nitric oxide, carbon monoxide, ATP and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. PMID:28135005

  14. Sexual side effects of serotonergic antidepressants: mediated by inhibition of serotonin on central dopamine release?

    PubMed

    Bijlsma, Elisabeth Y; Chan, Johnny S W; Olivier, Berend; Veening, Jan G; Millan, Mark J; Waldinger, Marcel D; Oosting, Ronald S

    2014-06-01

    Antidepressant-induced sexual dysfunction adversely affects the quality of life of antidepressant users and reduces compliance with treatment. Animal models provide an instructive approach for examining potential sexual side effects of novel drugs. This review discusses the stability and reproducibility of our standardized test procedure that assesses the acute, subchronic and chronic effects of psychoactive compounds in a 30 minute mating test. In addition, we present an overview of the effects of several different (putative) antidepressants on male rat sexual behavior, as tested in our standardized test procedure. By comparing the effects of these mechanistically distinct antidepressants (paroxetine, venlafaxine, bupropion, buspirone, DOV 216,303 and S32006), this review discusses the putative mechanism underlying sexual side effects of antidepressants and their normalization. This review shows that sexual behavior is mainly inhibited by antidepressants that increase serotonin neurotransmission via blockade of serotonin transporters, while those that mainly increase the levels of dopamine and noradrenaline are devoid of sexual side effects. Those sexual disturbances cannot be normalized by simultaneously increasing noradrenaline neurotransmission, but are normalized by increasing both noradrenaline and dopamine neurotransmission. Therefore, it is hypothesized that the sexual side effects of selective serotonin reuptake inhibitors may be mediated by their inhibitory effects on dopamine signaling in sex brain circuits. Clinical development of novel antidepressants should therefore focus on compounds that simultaneously increase both serotonin and dopamine signaling. © 2013 Elsevier Inc. All rights reserved.

  15. The 5-HT1A/1B-receptor agonist eltoprazine increases both catecholamine release in the prefrontal cortex and dopamine release in the nucleus accumbens and decreases motivation for reward and "waiting" impulsivity, but increases "stopping" impulsivity.

    PubMed

    Korte, S Mechiel; Prins, Jolanda; Van den Bergh, Filip S; Oosting, Ronald S; Dupree, Rudy; Korte-Bouws, Gerdien A H; Westphal, Koen G C; Olivier, Berend; Denys, Damiaan A; Garland, Alexis; Güntürkün, Onur

    2017-01-05

    The 5-HT 1A/1B -receptor agonist eltoprazine has a behavioral drug signature that resembles that of a variety of psychostimulant drugs, despite the differences in receptor binding profile. These psychostimulants are effective in treating impulsivity disorders, most likely because they increase norepinephrine (NE) and dopamine (DA) levels in the prefrontal cortex. Both amphetamine and methylphenidate, however, also increase dopamine levels in the nucleus accumbens (NAc), which has a significant role in motivation, pleasure, and reward. How eltoprazine affects monoamine release in the medial prefrontal cortex (mPFC), the orbitofrontal cortex (OFC), and the NAc is unknown. It is also unknown whether eltoprazine affects different forms of impulsivity and brain reward mechanisms. Therefore, in the present study, we investigate the effects of eltoprazine in rats in the following sequence: 1) the activity of the monoaminergic systems using in vivo microdialysis, 2) motivation for reward measured using the intracranial self-stimulation (ICSS) procedure, and finally, 3) "waiting" impulsivity in the delay-aversion task, and the "stopping" impulsivity in the stop-signal task. The microdialysis studies clearly showed that eltoprazine increased DA and NE release in both the mPFC and OFC, but only increased DA concentration in the NAc. In contrast, eltoprazine decreased 5-HT release in the mPFC and NAc (undetectable in the OFC). Remarkably, eltoprazine decreased impulsive choice, but increased impulsive action. Furthermore, brain stimulation was less rewarding following eltoprazine treatment. These results further support the long-standing hypothesis that "waiting" and "stopping" impulsivity are regulated by distinct neural circuits, because 5-HT 1A/1B -receptor activation decreases impulsive choice, but increases impulsive action. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    PubMed Central

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  17. Localized Drug Application and Sub-Second Voltammetric Dopamine Release Measurements in a Brain Slice Perfusion Device

    PubMed Central

    2015-01-01

    The use of fast scan cyclic voltammetry (FSCV) to measure the release and uptake of dopamine (DA) as well as other biogenic molecules in viable brain tissue slices has gained popularity over the last 2 decades. Brain slices have the advantage of maintaining the functional three-dimensional architecture of the neuronal network while also allowing researchers to obtain multiple sets of measurements from a single animal. In this work, we describe a simple, easy-to-fabricate perfusion device designed to focally deliver pharmacological agents to brain slices. The device incorporates a microfluidic channel that runs under the perfusion bath and a microcapillary that supplies fluid from this channel up to the slice. We measured electrically evoked DA release in brain slices before and after the administration of two dopaminergic stimulants, cocaine and GBR-12909. Measurements were collected at two locations, one directly over and the other 500 μm away from the capillary opening. Using this approach, the controlled delivery of drugs to a confined region of the brain slice and the application of this chamber to FSCV measurements, were demonstrated. Moreover, the consumption of drugs was reduced to tens of microliters, which is thousands of times less than traditional perfusion methods. We expect that this simply fabricated device will be useful in providing spatially resolved delivery of drugs with minimum consumption for voltammetric and electrophysiological studies of a variety of biological tissues both in vitro and ex vivo. PMID:24734992

  18. Reduced dopamine and glutamate neurotransmission in the nucleus accumbens of quinpirole-sensitized rats hints at inhibitory D2 autoreceptor function.

    PubMed

    Escobar, Angélica P; Cornejo, Francisca A; Olivares-Costa, Montserrat; González, Marcela; Fuentealba, José A; Gysling, Katia; España, Rodrigo A; Andrés, María E

    2015-09-01

    Dopamine from the ventral tegmental area and glutamate from several brain nuclei converge in the nucleus accumbens (NAc) to drive motivated behaviors. Repeated activation of D2 receptors with quinpirole (QNP) induces locomotor sensitization and compulsive behaviors, but the mechanisms are unknown. In this study, in vivo microdialysis and fast scan cyclic voltammetry in adult anesthetized rats were used to investigate the effect of repeated QNP on dopamine and glutamate neurotransmission within the NAc. Following eight injections of QNP, a significant decrease in phasic and tonic dopamine release was observed in rats that displayed locomotor sensitization. Either a systemic injection or the infusion of QNP into the NAc decreased dopamine release, and the extent of this effect was similar in QNP-sensitized and control rats, indicating that inhibitory D2 autoreceptor function is maintained despite repeated activation of D2 receptors and decreased dopamine extracellular levels. Basal extracellular levels of glutamate in the NAc were also significantly lower in QNP-treated rats than in controls. Moreover, the increase in NAc glutamate release induced by direct stimulation of medial prefrontal cortex was significantly lower in QNP-sensitized rats. Together, these results indicate that repeated activation of D2 receptors disconnects NAc from medial prefrontal cortex and ventral tegmental area. Repeated administration of the dopamine D2 receptor agonist quinpirole (QNP) induces locomotor sensitization. We found that the NAc of QNP-sensitized rats has reduced glutamate levels coming from prefrontal cortex together with a decreased phasic and tonic dopamine neurotransmission but a conserved presynaptic D2 receptor function. We suggest that locomotor sensitization is because of increased affinity state of D2 post-synaptic receptors. © 2015 International Society for Neurochemistry.

  19. Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Oliva, I; O'Shea, E; Martin, E D; Colado, M I; Moratalla, R

    2012-02-01

    Methamphetamine (METH) is a potent, highly addictive psychostimulant consumed worldwide. In humans and experimental animals, repeated exposure to this drug induces persistent neurodegenerative changes. Damage occurs primarily to dopaminergic neurons, accompanied by gliosis. The toxic effects of METH involve excessive dopamine (DA) release, thus DA receptors are highly likely to play a role in this process. To define the role of D(1) receptors in the neurotoxic effects of METH we used D(1) receptor knock-out mice (D(1)R(-/-)) and their WT littermates. Inactivation of D(1)R prevented METH-induced dopamine fibre loss and hyperthermia, and increases in gliosis and pro-inflammatory molecules such as iNOS in the striatum. In addition, D(1)R inactivation prevented METH-induced loss of dopaminergic neurons in the substantia nigra. To explore the relationship between hyperthermia and neurotoxicity, METH was given at high ambient temperature (29 °C). In this condition, D(1)R(-/-) mice developed hyperthermia following drug delivery and the neuroprotection provided by D(1)R inactivation at 23 °C was no longer observed. However, reserpine, which empties vesicular dopamine stores, blocked hyperthermia and strongly potentiated dopamine toxicity in D(1)R(-/-) mice, suggesting that the protection afforded by D(1)R inactivation is due to both hypothermia and higher stored vesicular dopamine. Moreover, electrical stimulation evoked higher DA overflow in D(1)R(-/-) mice as demonstrated by fast scan cyclic voltammetry despite their lower basal DA content, suggesting higher vesicular DA content in D(1)R(-/-) than in WT mice. Altogether, these results indicate that the D(1)R plays a significant role in METH-induced neurotoxicity by mediating drug-induced hyperthermia and increasing the releasable cytosolic DA pool. Copyright © 2011. Published by Elsevier Inc.

  20. The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum

    PubMed Central

    Dobrev, Dobromir; Milde, Alexander S; Andreas, Klaus; Ravens, Ursula

    1999-01-01

    The putative inhibitory effects of verapamil and diltiazem on neuronal non-L-type Ca2+ channels were studied by investigating their effects on either K+- or veratridine-evoked [3H]-dopamine ([3H]-DA) release in rat striatal slices. Involvement of N-, P- and Q-type channels was identified by sensitivity of [3H]-DA release to ω-conotoxin GVIA (ω-CTx-GVIA), ω-agatoxin IVA (ω-Aga-IVA) and ω-conotoxin MVIIC (ω-CTx-MVIIC), respectively.KCl (50 mM)-evoked [3H]-DA release was abolished in the absence of Ca2+, and was insensitive to dihydropyridines (up to 30 μM). It was significantly blocked by ω-CTx-GVIA (1 μM), ω-Aga-IVA (30 nM) and was confirmed to be abolished by ω-CTx-MVIIC (3 μM), indicating involvement of N-, P- and Q-type channel subtypes.Verapamil and diltiazem inhibited K+-evoked [3H]-DA release in a concentration-dependent manner. The inhibitory effects of verapamil or diltiazem (each 30 μM) were fully additive to the effect of ω-CTx-GVIA (1 μM), whereas co-application with ω-Aga-IVA (30 nM) produced similar effects to those of ω-Aga-IVA alone.As shown previously, veratridine-evoked [3H]-DA release in Ca2+ containing medium exclusively involves Q-type Ca2+ channels. Here, diltiazem (30 μM) did not inhibit veratridine-evoked [3H]-DA release, whereas verapamil (30 μM) partially inhibited it, indicating possible involvement of Q-type channels in verapamil-induced inhibition. However, verapamil (30 μM) inhibited this release even in the absence of extracellular Ca2+, suggesting that Na+ rather than Q-type Ca2+ channels are involved.Taken together, our results suggest that verapamil can block P- and at higher concentrations possibly N- and Q-type Ca2+ channels linked to [3H]-DA release, whereas diltiazem appears to block P-type Ca2+ channels only. PMID:10385261

  1. Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism.

    PubMed

    Kivell, Bronwyn; Uzelac, Zeljko; Sundaramurthy, Santhanalakshmi; Rajamanickam, Jeyaganesh; Ewald, Amy; Chefer, Vladimir; Jaligam, Vanaja; Bolan, Elizabeth; Simonson, Bridget; Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Prisinzano, Thomas E; Gomes, Ivone; Devi, Lakshmi A; Jayanthi, Lankupalle D; Sitte, Harald H; Ramamoorthy, Sammanda; Shippenberg, Toni S

    2014-11-01

    Salvinorin A (SalA), a selective κ-opioid receptor (KOR) agonist, produces dysphoria and pro-depressant like effects. These actions have been attributed to inhibition of striatal dopamine release. The dopamine transporter (DAT) regulates dopamine transmission via uptake of released neurotransmitter. KORs are apposed to DAT in dopamine nerve terminals suggesting an additional target by which SalA modulates dopamine transmission. SalA produced a concentration-dependent, nor-binaltorphimine (BNI)- and pertussis toxin-sensitive increase of ASP(+) accumulation in EM4 cells coexpressing myc-KOR and YFP-DAT, using live cell imaging and the fluorescent monoamine transporter substrate, trans 4-(4-(dimethylamino)-styryl)-N-methylpyridinium) (ASP(+)). Other KOR agonists also increased DAT activity that was abolished by BNI pretreatment. While SalA increased DAT activity, SalA treatment decreased serotonin transporter (SERT) activity and had no effect on norepinephrine transporter (NET) activity. In striatum, SalA increased the Vmax for DAT mediated DA transport and DAT surface expression. SalA up-regulation of DAT function is mediated by KOR activation and the KOR-linked extracellular signal regulated kinase-½ (ERK1/2) pathway. Co-immunoprecipitation and BRET studies revealed that DAT and KOR exist in a complex. In live cells, DAT and KOR exhibited robust FRET signals under basal conditions. SalA exposure caused a rapid and significant increase of the FRET signal. This suggests that the formation of KOR and DAT complexes is promoted in response to KOR activation. Together, these data suggest that enhanced DA transport and decreased DA release resulting in decreased dopamine signalling may contribute to the dysphoric and pro-depressant like effects of SalA and other KOR agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity

    PubMed Central

    Madeo, G.; Schirinzi, T.; Martella, G.; Latagliata, E.C.; Puglisi, F.; Shen, J.; Valente, E.M.; Federici, M.; Mercuri, N.B.; Puglisi-Allegra, S.; Bonsi, P.; Pisani, A.

    2014-01-01

    Background Homozygous or compound heterozygous mutations in the PTEN-induced kinase 1 (PINK1) gene are causative of autosomal recessive, early onset PD. Single heterozygous mutations have been repeatedly detected in a subset of patients as well as in non-affected subjects, and their significance has long been debated. Several neurophysiological studies from non-manifesting PINK1 heterozygotes have shown the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. Methods In the present study, we performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knock-out (PINK1+/−) mice by a multidisciplinary approach. Results We found that, despite a normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long-term potentiation (LTP), whereas long-term depression (LTD) was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, we measured a significantly lower dopamine release in the striatum of PINK1+/−, compared to control mice, suggesting that a decrease in stimulus-evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored a normal LTP in heterozygous mice. Moreover, MAO-B inhibitors rescued a physiological LTP and a normal dopamine release. Conclusions Our results provide novel evidence for striatal plasticity abnormalities even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of PD, and a valid tool to characterize early disease stage and design possible disease-modifying therapies. PMID:24167038

  3. Has dopamine a physiological role in the control of sexual behavior? A critical review of the evidence.

    PubMed

    Paredes, Raúl G; Agmo, Anders

    2004-06-01

    The role of dopaminergic systems in the control of sexual behavior has been a subject of study for at least 40 years. Not surprisingly, reviews of the area have been published at variable intervals. However, the earlier reviews have been summaries of published research rather than a critical analysis of it. They have focused upon the conclusions presented in the original research papers rather than on evaluating the reliability and functional significance of the data reported to support these conclusions. During the last few years, important new knowledge concerning dopaminergic systems and their behavioral functions as well as the possible role of these systems in sexual behavior has been obtained. For the first time, it is now possible to integrate the data obtained in studies of sexual behavior into the wider context of general dopaminergic functions. To make this possible, we first present an analysis of the nature and organization of sexual behavior followed by a summary of current knowledge about the brain structures of crucial importance for this behavior. We then proceed with a description of the dopaminergic systems within or projecting to these structures. Whenever possible, we also try to include data on the electrophysiological actions of dopamine. Thereafter, we proceed with analyses of pharmacological data and release studies, both in males and in females. Consistently throughout this discussion, we make an effort to distinguish pharmacological effects on sexual behavior from a possible physiological role of dopamine. By pharmacological effects, we mean here drug-induced alterations in behavior that are not the result of the normal actions of synaptically released dopamine in the untreated animal. The conclusion of this endeavor is that pharmacological effects of dopaminergic drugs are variable in both males and females, independently of whether the drugs are administered systemically or intracerebrally. We conclude that the pharmacological data

  4. Contrasting contribution of 5-hydroxytryptamine 1A receptor activation to neurochemical profile of novel antipsychotics: frontocortical dopamine and hippocampal serotonin release in rat brain.

    PubMed

    Assié, Marie-Bernadette; Ravailhe, Véronique; Faucillon, Valérie; Newman-Tancredi, Adrian

    2005-10-01

    , and the D2 partial agonists, aripiprazole and bifeprunox, did not significantly alter dopamine release. Taken together, these data demonstrate the diverse contribution of 5-HT1A receptor activation to the profile of antipsychotics and suggest that novel drugs selectively targeting D2 and 5-HT1A receptors may present distinctive therapeutic properties.

  5. Dopamine-induced programmed cell death is associated with cytochrome c release and caspase-3 activation in snail salivary gland cells.

    PubMed

    Pirger, Zsolt; Rácz, Boglárka; Kiss, Tibor

    2009-02-01

    PCD (programmed cell death) is a common mechanism to remove unwanted and excessive cells from organisms. In several exocrine cell types, PCD mode of release of secretory products has been reported. The molecular mechanism of the release, however, is largely unknown. Our aim was to study the molecular mechanism of saliva release from cystic cells, the specific cell type of snail SGs (salivary glands). SG cells in active feeding animals revealed multiple morphological changes characteristic of PCD. Nerve stimulation and DA (dopamine) increased the number of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling)-positive cells both in inactive and feeding animals. The DA-induced PCD was prevented by TEA (tetraethylammonium chloride) and eticlopride, emphasizing the role of K channels and D2 receptors in the PCD of cystic cells. DA enhanced cyto-c (cytochrome c) translocation into the cytosol and methyl-beta-cyclodextrin prevented it, suggesting apoptosome formation and ceramide involvement in the PCD linking of the surface DA receptor to mitochondria. Western blot analysis revealed that the release of cyto-c was under the control of Bcl-2 and Bad. DA also increased the active caspase-3 in gland cells while D2 receptor antagonists and TEA attenuated it. Our results provide evidence for a type of transmitter-mediated pathway that regulates the PCD of secretory cells in a mitochondrial-caspase-dependent manner. The activation of specific molecules, such as K channels, DA receptors, cyto-c, ceramide, Bcl-2 proteins and caspase-3, but not caspase-8, was demonstrated in cells involved in the DA-induced PCD, suggesting that PCD is a physiological method for the release of saliva from SG cells.

  6. Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter

    PubMed Central

    Gainetdinov, Raul R.; Mohn, Amy R.; Bohn, Laura M.; Caron, Marc G.

    2001-01-01

    In the brain, dopamine exerts an important modulatory influence over behaviors such as emotion, cognition, and affect as well as mechanisms of reward and the control of locomotion. The dopamine transporter (DAT), which reuptakes the released neurotransmitter into presynaptic terminals, is a major determinant of the intensity and duration of the dopaminergic signal. Knockout mice lacking the dopamine transporter (DAT-KO mice) display marked changes in dopamine homeostasis that result in elevated dopaminergic tone and pronounced locomotor hyperactivity. A feature of DAT-KO mice is that their hyperactivity can be inhibited by psychostimulants and serotonergic drugs. The pharmacological effect of these drugs occurs without any observable changes in dopaminergic parameters, suggesting that other neurotransmitter systems in addition to dopamine might contribute to the control of locomotion in these mice. We report here that the hyperactivity of DAT-KO mice can be markedly further enhanced when N-methyl-d-aspartate receptor-mediated glutamatergic transmission is blocked. Conversely, drugs that enhance glutamatergic transmission, such as positive modulators of l-α-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptors, suppress the hyperactivity of DAT-KO mice. Interestingly, blockade of N- methyl-d-aspartate receptors prevented the inhibitory effects of both psychostimulant and serotonergic drugs on hyperactivity. These findings support the concept of a reciprocal functional interaction between dopamine and glutamate in the basal ganglia and suggest that agents modulating glutamatergic transmission may represent an approach to manage conditions associated with dopaminergic dysfunction. PMID:11572967

  7. Effect of perinatal asphyxia and carbamazepine treatment on cortical dopamine and DOPAC levels.

    PubMed

    López-Pérez, Silvia J; Morales-Villagrán, Alberto; Medina-Ceja, Laura

    2015-02-13

    One of the most important manifestations of perinatal asphyxia is the occurrence of seizures, which are treated with antiepileptic drugs, such as carbamazepine. These early seizures, combined with pharmacological treatments, may influence the development of dopaminergic neurotransmission in the frontal cortex. This study aimed to determine the extracellular levels of dopamine and its main metabolite DOPAC in 30-day-old rats that had been asphyxiated for 45 min in a low (8%) oxygen chamber at a perinatal age and treated with daily doses of carbamazepine. Quantifications were performed using microdialysis coupled to a high-performance liquid chromatography (HPLC) system in basal conditions and following the use of the chemical stimulus. Significant decreases in basal and stimulated extracellular dopamine and DOPAC content were observed in the frontal cortex of the asphyxiated group, and these decreases were partially recovered in the animals administered daily doses of carbamazepine. Greater basal dopamine concentrations were also observed as an independent effect of carbamazepine. Perinatal asphyxia plus carbamazepine affects extracellular levels of dopamine and DOPAC in the frontal cortex and stimulated the release of dopamine, which provides evidence for the altered availability of dopamine in cortical brain areas during brain development.

  8. The atypical antipsychotic quetiapine increases both noradrenaline and dopamine release in the rat prefrontal cortex.

    PubMed

    Pira, Luigi; Mongeau, Raymond; Pani, Luca

    2004-11-03

    Quetiapine is a novel atypical antipsychotic drug with multi-receptorial affinity. Using in vivo microdialysis, we investigated if quetiapine modulates extracellular noradrenaline and dopamine in brain areas generally believed to be involved in the pathophysiology of schizophrenia and in the action of antipsychotic drugs. Quetiapine (5, 10 and 20 mg/kg, i.p.) increased levels of noradrenaline in both the prefrontal cortex and the caudate nucleus, while it increased dopamine levels mainly in the prefrontal cortex. It is argued that the marked increase of dopaminergic transmission in the prefrontal cortex induced by quetiapine might be relevant to its therapeutical action.

  9. Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila.

    PubMed

    Bainton, R J; Tsai, L T; Singh, C M; Moore, M S; Neckameyer, W S; Heberlein, U

    2000-02-24

    Drugs of abuse have a common property in mammals, which is their ability to facilitate the release of the neurotransmitter and neuromodulator dopamine in specific brain regions involved in reward and motivation. This increase in synaptic dopamine levels is believed to act as a positive reinforcer and to mediate some of the acute responses to drugs. The mechanisms by which dopamine regulates acute drug responses and addiction remain unknown. We present evidence that dopamine plays a role in the responses of Drosophila to cocaine, nicotine or ethanol. We used a startle-induced negative geotaxis assay and a locomotor tracking system to measure the effect of psychostimulants on fly behavior. Using these assays, we show that acute responses to cocaine and nicotine are blunted by pharmacologically induced reductions in dopamine levels. Cocaine and nicotine showed a high degree of synergy in their effects, which is consistent with an action through convergent pathways. In addition, we found that dopamine is involved in the acute locomotor-activating effect, but not the sedating effect, of ethanol. We show that in Drosophila, as in mammals, dopaminergic pathways play a role in modulating specific behavioral responses to cocaine, nicotine or ethanol. We therefore suggest that Drosophila can be used as a genetically tractable model system in which to study the mechanisms underlying behavioral responses to multiple drugs of abuse.

  10. Enhanced Dopamine-Dependent Hippocampal Plasticity after Single MK-801 Application

    PubMed Central

    Bartsch, Julia C; Fidzinski, Pawel; Huck, Jojanneke HJ; Hörtnagl, Heide; Kovács, Richard; Liotta, Agustin; Priller, Josef; Wozny, Christian; Behr, Joachim

    2015-01-01

    Dopaminergic hyperfunction and N-methyl-D-aspartate receptor (NMDAR) hypofunction have both been implicated in psychosis. Dopamine-releasing drugs and NMDAR antagonists replicate symptoms associated with psychosis in healthy humans and exacerbate symptoms in patients with schizophrenia. Though hippocampal dysfunction contributes to psychosis, the impact of NMDAR hypofunction on hippocampal plasticity remains poorly understood. Here, we used an NMDAR antagonist rodent model of psychosis to investigate hippocampal long-term potentiation (LTP). We found that single systemic NMDAR antagonism results in a region-specific, presynaptic LTP at hippocampal CA1-subiculum synapses that is induced by activation of D1/D5 dopamine receptors and modulated by L-type voltage-gated Ca2+ channels. Thereby, our findings may provide a cellular mechanism how NMDAR antagonism can lead to an enhanced hippocampal output causing activation of the hippocampus-ventral tegmental area-loop and overdrive of the dopamine system. PMID:25315194

  11. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids

    PubMed Central

    Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.

    2018-01-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  12. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  13. Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: Role of kappa opioid receptors

    PubMed Central

    Karkhanis, Anushree N.; Huggins, Kimberly N.; Rose, Jamie H.; Jones, Sara R.

    2016-01-01

    Acute ethanol exposure is known to stimulate the dopamine system; however, chronic exposure has been shown to downregulate the dopamine system. In rodents, chronic intermittent exposure (CIE) to ethanol also increases negative affect during withdrawal, such as, increases in anxiety- and depressive-like behavior. Moreover, CIE exposure results in increased ethanol drinking and preference during withdrawal. Previous literature documents reductions in CIE-induced anxiety-, depressive-like behaviors and ethanol intake in response to kappa opioid receptor (KOR) blockade. KORs are located on presynaptic dopamine terminals in the nucleus accumbens (NAc) and inhibit release, an effect which has been linked to negative affective behaviors. Previous reports show an upregulation in KOR function following extended CIE exposure; however it is not clear whether there is a direct link between KOR upregulation and dopamine downregulation during withdrawal from CIE. This study aimed to examine the effects of KOR modulation on dopamine responses to ethanol of behaving mice exposed to air or ethanol vapor in a repeated intermittent pattern. First, we showed that KORs have a greater response to an agonist after moderate CIE compared to air exposed mice using ex vivo fast scan cyclic voltammetry. Second, using in vivo microdialysis, we showed that, in contrast to the expected increase in extracellular levels of dopamine following an acute ethanol challenge in air exposed mice, CIE exposed mice exhibited a robust decrease in dopamine levels. Third, we showed that blockade of KORs reversed the aberrant inhibitory dopamine response to ethanol in CIE exposed mice while not affecting the air exposed mice demonstrating that inhibition of KORs “rescued” dopamine responses in CIE exposed mice. Taken together, these findings indicate that augmentation of dynorphin/KOR system activity drives the reduction in stimulated (electrical and ethanol) dopamine release in the NAc. Thus, blockade of

  14. Effects of intra-accumbal administration of dopamine and ionotropic glutamate receptor drugs on delay discounting performance in rats.

    PubMed

    Yates, Justin R; Bardo, Michael T

    2017-10-01

    Nucleus accumbens core (NAcc) has been implicated in impulsive choice, as measured in delay discounting. The role of dopamine (DA) in impulsive choice has received considerable attention, whereas glutamate (Glu) has recently been shown to be an important mediator of discounting. However, research has not examined how DA or Glu receptors in NAcc mediate different aspects of delay discounting performance, that is, (a) sensitivity to reinforcer magnitude and (b) sensitivity to delayed reinforcement. Adult male Sprague-Dawley rats were first trained in a delay discounting task, in which the delay to a large magnitude food reinforcer increased across blocks of trials. Following behavioral training, rats received bilateral implantation of guide cannulas into NAcc. Half of the rats (n = 12) received infusions of the DA-selective ligands SKF 38393 (D1-like agonist: 0.03 or 0.1 μg), SCH 23390 (D1-like antagonist: 0.3 or 1.0 μg), quinpirole (D2-like agonist: 0.3 or 1.0 μg), and eticlopride (D2-like antagonist: 0.3 or 1.0 μg). The other half received infusions of the ionotropic Glu ligands MK-801 (NMDA uncompetitive antagonist: 0.3 or 1.0 μg), AP-5 (NMDA competitive antagonist: 0.3 or 1.0 μg), ifenprodil (noncompetitive antagonist at NR2B-containing NMDA receptors: 0.3 or 1.0 μg), and CNQX (AMPA competitive antagonist: 0.2 or 0.5 μg). Results showed that SCH 23390 (0.3 μg) decreased sensitivity to reinforcer magnitude without altering impulsive choice, whereas ifenprodil (1.0 μg) decreased sensitivity to delayed reinforcement (i.e., impulsive choice). The current results show that DA and NMDA receptors in NAcc mediate distinct aspects of discounting performance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Dopamine depresses excitatory synaptic transmission onto rat subicular neurons via presynaptic D1-like dopamine receptors.

    PubMed

    Behr, J; Gloveli, T; Schmitz, D; Heinemann, U

    2000-07-01

    Schizophrenia is considered to be associated with an abnormal functioning of the hippocampal output. The high clinical potency of antipsychotics that act as antagonists at dopamine (DA) receptors indicate a hyperfunction of the dopaminergic system. The subiculum obtains information from area CA1 and the entorhinal cortex and represents the major output region of the hippocampal complex. To clarify whether an enhanced dopaminergic activity alters the hippocampal output, the effect of DA on alveus- and perforant path-evoked excitatory postsynaptic currents (EPSCs) in subicular neurons was examined using conventional intracellular and whole cell voltage-clamp recordings. Dopamine (100 microM) depressed alveus-elicited (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated EPSCs to 56 +/- 8% of control while perforant path-evoked EPSCs were attenuated to only 76 +/- 7% of control. Dopamine had no effect on the EPSC kinetics. Dopamine reduced the frequency of spontaneous miniature EPSCs without affecting their amplitudes. The sensitivity of subicular neurons to the glutamate receptor agonist (S)-alpha-amino-3-hydoxy-5-methyl-4-isoxazolepropionic acid was unchanged by DA pretreatment, excluding a postsynaptic mechanism for the observed reduction of excitatory synaptic transmission. The effect of DA on evoked EPSCs was mimicked by the D1 receptor agonist SFK 38393 and partially antagonized by the D1 receptor antagonist SCH 23390. While the D2 receptor agonist quinelorane failed to reduce the EPSCs, the D2 receptor antagonist sulpiride did not block the action of DA. The results indicate that DA strongly depresses the hippocampal and the entorhinal excitatory input onto subicular neurons by decreasing the glutamate release following activation of presynaptic D1-like DA receptors.

  16. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.

    PubMed

    Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2015-05-26

    Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.

  17. Identification of the dopamine autoreceptor in the guinea-pig retina as D2 receptor using novel subtype-selective antagonists

    PubMed Central

    Weber, Bernd; Schlicker, Eberhard; Sokoloff, Pierre; Stark, Holger

    2001-01-01

    Dopamine release in the retina is subject to modulation via autoreceptors, which belong to the D2 receptor family (encompassing the D2, D3 and D4 receptors). The aim of the present study was to determine the receptor subtype (D2 vs D3) involved in the inhibition of dopamine release in guinea-pig retinal discs, using established (haloperidol, (S)-nafadotride) and novel dopamine receptor antagonists (ST-148, ST-198). hD2L and hD3 receptors were expressed in CHO cells and the pKi values determined in binding studies with [125I]-iodosulpride were: haloperidol 9.22 vs 8.54; ST-148 7.85 vs 6.60; (S)-nafadotride 8.52 vs 9.51; ST-198 6.14 vs 7.92. The electrically evoked tritium overflow from retinal discs preincubated with [3H]-noradrenaline (which represents quasi-physiological dopamine release) was inhibited by the dopamine receptor agonists B-HT 920 (talipexole) and quinpirole (maximally by 82 and 71%; pEC50 5.80 and 5.83). The concentration-response curves of these agonists were shifted to the right by haloperidol (apparent pA2 8.69 and 8.23) and ST-148 (7.52 and 7.66). (S)-Nafadotride 0.01 μM and ST-198 0.32 μM did not affect the concentration-response curve of B-HT 920. The dopamine autoreceptor in the guinea-pig retina can be classified as a D2 receptor. ST-148 and ST-198 show an improved selectivity for D2 and D3 receptors when compared to haloperidol and (S)-nafadotride, respectively. PMID:11498509

  18. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia.

    PubMed

    Howes, Oliver D; McCutcheon, Robert; Owen, Michael J; Murray, Robin M

    2017-01-01

    The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia. Because it was initially based on indirect evidence and findings in patients with established schizophrenia, it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also affect presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis, and psychosocial stress. Included among the many genes associated with risk of schizophrenia are the gene encoding the dopamine D 2 receptor and those involved in the upstream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acidergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitize the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Wireless Instantaneous Neurotransmitter Concentration System–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring

    PubMed Central

    Agnesi, Filippo; Tye, Susannah J.; Bledsoe, Jonathan M.; Griessenauer, Christoph J.; Kimble, Christopher J.; Sieck, Gary C.; Bennet, Kevin E.; Garris, Paul A.; Blaha, Charles D.; Lee, Kendall H.

    2009-01-01

    Object In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. Methods The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal

  20. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.

    PubMed

    Agnesi, Filippo; Tye, Susannah J; Bledsoe, Jonathan M; Griessenauer, Christoph J; Kimble, Christopher J; Sieck, Gary C; Bennet, Kevin E; Garris, Paul A; Blaha, Charles D; Lee, Kendall H

    2009-10-01

    In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig. The

  1. The role of genes, stress and dopamine in the development of schizophrenia

    PubMed Central

    Howes, Oliver D; McCutcheon, Robert; Owen, Michael J; Murray, Robin

    2017-01-01

    The dopamine hypothesis is the longest standing pathoaetiological theory of schizophrenia. As it was initially based on indirect evidence and findings in patients with established schizophrenia it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity, and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in-line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also impact on presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis and psychosocial stress. Included among the many genes associated with risk of schizophrenia, are the gene encoding the DRD2 receptor and those involved in the up-stream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acid (GABA)-ergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitise the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients. PMID:27720198

  2. α-synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons.

    PubMed

    Zaltieri, Michela; Grigoletto, Jessica; Longhena, Francesca; Navarria, Laura; Favero, Gaia; Castrezzati, Stefania; Colivicchi, Maria Alessandra; Della Corte, Laura; Rezzani, Rita; Pizzi, Marina; Benfenati, Fabio; Spillantini, Maria Grazia; Missale, Cristina; Spano, PierFranco; Bellucci, Arianna

    2015-07-01

    The main neuropathological features of Parkinson's disease are dopaminergic nigrostriatal neuron degeneration, and intraneuronal and intraneuritic proteinaceous inclusions named Lewy bodies and Lewy neurites, respectively, which mainly contain α-synuclein (α-syn, also known as SNCA). The neuronal phosphoprotein synapsin III (also known as SYN3), is a pivotal regulator of dopamine neuron synaptic function. Here, we show that α-syn interacts with and modulates synapsin III. The absence of α-syn causes a selective increase and redistribution of synapsin III, and changes the organization of synaptic vesicle pools in dopamine neurons. In α-syn-null mice, the alterations of synapsin III induce an increased locomotor response to the stimulation of synapsin-dependent dopamine overflow, despite this, these mice show decreased basal and depolarization-dependent striatal dopamine release. Of note, synapsin III seems to be involved in α-syn aggregation, which also coaxes its increase and redistribution. Furthermore, synapsin III accumulates in the caudate and putamen of individuals with Parkinson's disease. These findings support a reciprocal modulatory interaction of α-syn and synapsin III in the regulation of dopamine neuron synaptic function. © 2015. Published by The Company of Biologists Ltd.

  3. Nicotine- and methamphetamine-induced dopamine release evaluated with in-vivo binding of radiolabelled raclopride to dopamine D2 receptors: comparison with in-vivo microdialysis data.

    PubMed

    Kim, Sang Eun; Han, Seung-Moo

    2009-07-01

    The effect of substances which alter extracellular dopamine (DA) concentration has been studied by measuring changes in the binding of radiolabelled raclopride, a DA D2 receptor ligand that is sensitive to endogenous DA. To better characterize the relationship between extracellular DA concentration and DA D2 receptor binding of raclopride, we compared the changes of extracellular DA concentration (measured using in-vivo microdialysis) and in-vivo [3H]raclopride binding induced by different doses of methamphetamine (Meth) and nicotine, drugs that enhance DA release with and without blocking DA transporters (DATs), respectively, in rat striatum. Nicotine elicited a modest increase of striatal extrasynaptic extracellular DA, while Meth produced a marked increase of striatal extrasynaptic DA in a dose-dependent manner. There was a close correlation between the decrease in [3H]raclopride in-vivo binding and the increase in extrasynaptic DA concentration induced by both nicotine (r2=0.95, p<0.001) and Meth (r2=0.98, p=0.001), supporting the usefulness of the radiolabelled raclopride-binding measurement for the non-invasive assessment of DA release following interventions in the living brain. However, the linear regression analysis revealed that the ratio of percent DA increase to percent [3H]raclopride binding reduction was 25-fold higher for Meth (34.8:1) than for nicotine (1.4:1). The apparent discrepancy in the extrasynaptic DA-[3H]raclopride binding relationship between the DA-enhancing drugs with and without DAT-blocking property indicates that the competition between endogenous DA and radiolabelled raclopride takes place at the intrasynaptic rather than extrasynaptic DA D2 receptors and reflects synaptic concentration of DA.

  4. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    PubMed Central

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  5. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward.

    PubMed

    Kishida, Kenneth T; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R; Laxton, Adrian W; Tatter, Stephen B; White, Jason P; Ellis, Thomas L; Phillips, Paul E M; Montague, P Read

    2016-01-05

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson's disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson's disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons.

  6. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction.

    PubMed

    Feng, Peijian; Chen, Yulei; Zhang, Lei; Qian, Cheng-Gen; Xiao, Xuanzhong; Han, Xu; Shen, Qun-Dong

    2018-02-07

    Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.

  7. Cortical Dopamine Transmission as Measured with the [11C]FLB 457 – Amphetamine PET Imaging Paradigm Is Not Influenced by COMT Genotype

    PubMed Central

    Narendran, Rajesh; Tumuluru, Divya; May, Maureen A.; Chowdari, Kodavali V.; Himes, Michael L.; Fasenmyer, Kelli; Frankle, W. Gordon; Nimgaonkar, Vishwajit L.

    2016-01-01

    Basic investigations link a Val158Met polymorphism (rs4680) in the catechol-O-methyltransferase (COMT) gene to not only its enzymatic activity, but also to its dopaminergic tone in the prefrontal cortex. Previous PET studies have documented the relationship between COMT Val158Met polymorphism and D1 and D2/3 receptor binding potential (BP), and interpreted them in terms of dopaminergic tone. The use of baseline dopamine D1 and D2/3 receptor binding potential (BPND) as a proxy for dopaminergic tone is problematic because they reflect both endogenous dopamine levels (a change in radiotracer's apparent affinity) and receptor density. In this analysis of 31 healthy controls genotyped for the Val158Met polymorphism (Val/Val, Val/Met, and Met/Met), we used amphetamine-induced displacement of [11C]FLB 457 as a direct measure of dopamine release. Our analysis failed to show a relationship between COMT genotype status and prefrontal cortical dopamine release. COMT genotype was also not predictive of baseline dopamine D2/3 receptor BPND. PMID:27322568

  8. Brain site- and transmitter-dependent actions of methamphetamine, morphine and antipsychotics.

    PubMed

    Mori, Tomohisa; Iwase, Yoshiyuki; Murata, Asami; Iwata, Noriyuki; Suzuki, Tsutomu

    2016-06-01

    While several methamphetamine- and morphine-induced psychotic states are ordinarily treated by antipsychotics, the therapeutic mechanisms of antipsychotic drugs have yet been elucidated. The present study was designed to investigate the mechanisms how antipsychotic drugs suppress the behavioral changes induced by psychoactive drugs in mice. Low to medium doses of methamphetamine produced hyperlocomotion, whereas high dose of methamphetamine induced hypolocomotion. Hyperlocomotion induced by methamphetamine was potently suppressed by clozapine and 5-HT2 receptor antagonists, but not by the intra-accumbens injection of haloperidol. On the other hand, microinjection of haloperidol into the ventrolateral striatum increased locomotor activity with high dose of methamphetamine. In contrast, morphine-induced hyperlocomotion was suppressed by systemic as well as intra-accumbens injection of haloperidol, whereas relatively resistant to clozapine, compared to its effects in the case of methamphetamine. It has been widely believed that methamphetamine-induced psychosis is an animal model of schizophrenia, which is mediated by activation of accumbal dopamine receptors. Our findings suggest that methamphetamine differentially regulate monoaminergic systems (e.g., dopaminergic vs. 5-HTnergic), and accumbal dopamine receptors are not involved in methamphetamine-induced hyperlocomotion in mice. Thus, our findings may lead to a better understanding of the therapeutic mechanisms that underlie the effects of antipsychotic drugs and behavioral effects of methamphetamine and morphine. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Using In Vitro Electrophysiology to Screen Medications: Accumbal Plasticity as an Engram of Alcohol Dependence.

    PubMed

    Renteria, R; Jeanes, Z M; Mangieri, R A; Maier, E Y; Kircher, D M; Buske, T R; Morrisett, R A

    2016-01-01

    The nucleus accumbens (NAc) is a central component of the mesocorticolimbic reward system. Increasing evidence strongly implicates long-term synaptic neuroadaptations in glutamatergic excitatory activity of the NAc shell and/or core medium spiny neurons in response to chronic drug and alcohol exposure. Such neuroadaptations likely play a critical role in the development and expression of drug-seeking behaviors. We have observed unique cell-type-specific bidirectional changes in NAc synaptic plasticity (metaplasticity) following acute and chronic intermittent ethanol exposure. Other investigators have also previously observed similar metaplasticity in the NAc following exposure to psychostimulants, opiates, and amazingly, even following an anhedonia-inducing experience. Considering that the proteome of the postsynaptic density likely contains hundreds of biochemicals, proteins and other components and regulators, we believe that there is a large number of potential molecular sites through which accumbal metaplasticity may be involved in chronic alcohol abuse. Many of our companion laboratories are now engaged in identifying and screening medications targeting candidate genes and its products previously linked to maladaptive alcohol phenotypes. We hypothesize that if manipulation of such target genes and their products change NAc plasticity, then that observation constitutes an important validation step for the development of novel therapeutics to treat alcohol dependence. © 2016 Elsevier Inc. All rights reserved.

  10. Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses.

    PubMed

    Doly, Stéphane; Quentin, Emily; Eddine, Raphaël; Tolu, Stefania; Fernandez, Sebastian P; Bertran-Gonzalez, Jesus; Valjent, Emmanuel; Belmer, Arnauld; Viñals, Xavier; Callebert, Jacques; Faure, Philippe; Meye, Frank J; Hervé, Denis; Robledo, Patricia; Mameli, Manuel; Launay, Jean-Marie; Maldonado, Rafael; Maroteaux, Luc

    2017-10-25

    Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT 2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT 2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT 2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT 2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT 2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT 2B -receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT 2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse. SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT 2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT 2B receptors in a subpopulation of

  11. An updated view on the role of dopamine in myopia.

    PubMed

    Feldkaemper, Marita; Schaeffel, Frank

    2013-09-01

    retinal dopamine synthesis and release, the role of dopamine in the early steps is unclear. The wide spatial distribution of dopaminergic amacrine cells in the retina and the observation that changes in dopamine levels can be locally induced by local retinal deprivation is in line with the assumption that dopaminergic mechanisms control both central and peripheral eye growth. The protective effect of outdoor activity on myopia development in children seems to be partly mediated by the stimulatory effect of light on retinal dopamine production and release. However, the dose-response function linking light exposure to dopamine and to the suppression of myopia is not known and requires further studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats.

    PubMed

    Escobar, Angélica P; González, Marcela P; Meza, Rodrigo C; Noches, Verónica; Henny, Pablo; Gysling, Katia; España, Rodrigo A; Fuentealba, José A; Andrés, María E

    2017-08-01

    Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  13. Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.

    PubMed

    Ide, Soichiro; Takahashi, Takehiro; Takamatsu, Yukio; Uhl, George R; Niki, Hiroaki; Sora, Ichiro; Ikeda, Kazutaka

    2017-05-01

    Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward. © The Author

  14. Limonene inhibits methamphetamine-induced locomotor activity via regulation of 5-HT neuronal function and dopamine release.

    PubMed

    Yun, Jaesuk

    2014-05-15

    Methamphetamine is a psychomotor stimulant that produces hyperlocomotion in rodents. Limonene (a cyclic terpene from citrus essential oils) has been reported to induce sedative effects. In this study, we demonstrated that limonene administration significantly inhibited serotonin (5-hydroxytryptamine, 5-HT)-induced head twitch response in mice. In rats, pretreatment with limonene decreased hyperlocomotion induced by methamphetamine injection. In addition, limonene reversed the increase in dopamine levels in the nucleus accumbens of rats given methamphetamine. These results suggest that limonene may inhibit stimulant-induced behavioral changes via regulating dopamine levels and 5-HT receptor function. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Dopamine Dependence in Aggregate Feedback Learning: A Computational Cognitive Neuroscience Approach

    PubMed Central

    Valentin, Vivian V.; Maddox, W. Todd; Ashby, F. Gregory

    2016-01-01

    Procedural learning of skills depends on dopamine-mediated striatal plasticity. Most prior work investigated single stimulus-response procedural learning followed by feedback. However, many skills include several actions that must be performed before feedback is available. A new procedural-learning task is developed in which three independent and successive unsupervised categorization responses receive aggregate feedback indicating either that all three responses were correct, or at least one response was incorrect. Experiment 1 showed superior learning of stimuli in position 3, and that learning in the first two positions was initially compromised, and then recovered. An extensive theoretical analysis that used parameter space partitioning found that a large class of procedural-learning models, which predict propagation of dopamine release from feedback to stimuli, and/or an eligibility trace, fail to fully account for these data. The analysis also suggested that any dopamine released to the second or third stimulus impaired categorization learning in the first and second positions. A second experiment tested and confirmed a novel prediction of this large class of procedural-learning models that if the to-be-learned actions are introduced one-by-one in succession then learning is much better if training begins with the first action (and works forwards) than if it begins with the last action (and works backwards). PMID:27596541

  16. Dopamine dependence in aggregate feedback learning: A computational cognitive neuroscience approach.

    PubMed

    Valentin, Vivian V; Maddox, W Todd; Ashby, F Gregory

    2016-11-01

    Procedural learning of skills depends on dopamine-mediated striatal plasticity. Most prior work investigated single stimulus-response procedural learning followed by feedback. However, many skills include several actions that must be performed before feedback is available. A new procedural-learning task is developed in which three independent and successive unsupervised categorization responses receive aggregate feedback indicating either that all three responses were correct, or at least one response was incorrect. Experiment 1 showed superior learning of stimuli in position 3, and that learning in the first two positions was initially compromised, and then recovered. An extensive theoretical analysis that used parameter space partitioning found that a large class of procedural-learning models, which predict propagation of dopamine release from feedback to stimuli, and/or an eligibility trace, fail to fully account for these data. The analysis also suggested that any dopamine released to the second or third stimulus impaired categorization learning in the first and second positions. A second experiment tested and confirmed a novel prediction of this large class of procedural-learning models that if the to-be-learned actions are introduced one-by-one in succession then learning is much better if training begins with the first action (and works forwards) than if it begins with the last action (and works backwards). Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques.

    PubMed

    Durdagi, Serdar; Salmas, Ramin Ekhteiari; Stein, Matthias; Yurtsever, Mine; Seeman, Philip

    2016-02-17

    We have recently reported G-protein coupled receptor (GPCR) model structures for the active and inactive states of the human dopamine D2 receptor (D2R) using adrenergic crystal structures as templates. Since the therapeutic concentrations of dopamine agonists that suppress the release of prolactin are the same as those that act at the high-affinity state of the D2 receptor (D2High), D2High in the anterior pituitary gland is considered to be the functional state of the receptor. In addition, the therapeutic concentrations of anti-Parkinson drugs are also related to the dissociation constants in the D2High form of the receptor. The discrimination between the high- and low-affinity (D2Low) components of the D2R is not obvious and requires advanced computer-assisted structural biology investigations. Therefore, in this work, the derived D2High and D2Low receptor models (GPCR monomer and dimer three-dimensional structures) are used as drug-binding targets to investigate binding interactions of dopamine and apomorphine. The study reveals a match between the experimental dissociation constants of dopamine and apomorphine at their high- and low-affinity sites of the D2 receptor in monomer and dimer and their calculated dissociation constants. The allosteric receptor-receptor interaction for dopamine D2R dimer is associated with the accessibility of adjacent residues of transmembrane region 4. The measured negative cooperativity between agonist ligand at dopamine D2 receptor is also correctly predicted using the D2R homodimerization model.

  18. High-Fat-Diet-Induced Deficits in Dopamine Terminal Function Are Reversed by Restoring Insulin Signaling.

    PubMed

    Fordahl, Steve C; Jones, Sara R

    2017-02-15

    Systemically released insulin crosses the blood-brain barrier and binds to insulin receptors on several neural cell types, including dopaminergic neurons. Insulin has been shown to decrease dopamine neuron firing in the ventral tegmental area (VTA), but potentiate release and reuptake at dopamine terminals in the nucleus accumbens (NAc). Here we show that prolonged consumption of a high fat diet blocks insulin's effects in the NAc, but insulin's effects are restored by inhibiting protein tyrosine phosphatase 1B, which supports insulin receptor signaling. Mice fed a high fat diet (60% kcals from fat) displayed significantly higher fasting blood glucose 160 mg/dL, compared to 101 mg/dL for control-diet-fed mice, and high-fat-diet-fed mice showed reduced blood glucose clearance after an intraperitoneal glucose tolerance test. Using fast scan cyclic voltammetry to measure electrically evoked dopamine in brain slices containing the NAc core, high-fat-diet-fed mice exhibited slower dopamine reuptake compared to control-diet-fed mice (2.2 ± 0.1 and 2.67 ± 0.15 μM/s, respectively). Moreover, glucose clearance rate was negatively correlated with V max . Insulin (10 nM to 1 μM) dose dependently increased reuptake rates in control-diet-fed mice compared with in the high-fat-diet group; however, the small molecule insulin receptor sensitizing agent, TCS 401 (300 nM), restored reuptake in high-fat-diet-fed mice to control-diet levels, and a small molecule inhibitor of the insulin receptor, BMS 536924 (300 nM), attenuated reuptake, similar to high-fat-diet-fed mice. These data show that a high-fat diet impairs dopamine reuptake by attenuating insulin signaling at dopamine terminals.

  19. Induction of dopamine biosynthesis by l-DOPA in PC12 cells: implications of L-DOPA influx and cyclic AMP.

    PubMed

    Jin, Chun Mei; Yang, Yoo Jung; Huang, Hai Shan; Lim, Sung Cil; Kai, Masaaki; Lee, Myung Koo

    2008-09-04

    The effects of 3,4-dihydroxyphenylalanine (l-DOPA) on dopamine biosynthesis and cytotoxicity were investigated in PC12 cells. l-DOPA treatment (20-200 microM) increased the levels of dopamine by 226%-504% after 3-6 h of treatment and enhanced the activities of tyrosine hydroxylase (TH) and aromatic l-amino acid decarboxylase (AADC). l-DOPA (20-200 muM) treatment led to a 562%-937% increase in l-DOPA influx at 1 h, which inhibited the activity of TH, but not AADC, during the same period. The extracellular releases of dopamine were also increased by 231%-570% after treatment with 20 and 200 microM l-DOPA for 0.5-3 h. l-DOPA at a concentration of 100-200 microM, but not 20 microM, exerted apoptotic cytotoxicity towards PC12 cells for 24-48 h. l-DOPA (20-200 microM) increased the intracellular cyclic AMP levels by 318%-557% after 0.5-1 h in a concentration-dependent manner. However, the elevated cyclic AMP levels by l-DOPA could not protect against l-DOPA (100-200 microM)-induced cytotoxicity after 24-48 h. In addition, l-DOPA (20-200 microM)-induced increases in cyclic AMP and dopamine were significantly reduced by treatment with SCH23390 (dopamine D(1) receptor antagonist). The increased levels of dopamine by l-DOPA were also reduced by H89 (protein kinase A, PKA, inhibitor) and GF109203X (protein kinase C inhibitor); however, the reduction by GF109203X was not significant. l-DOPA at 20-200 microM stimulated the phosphorylation of PKA and cyclic AMP-response element binding protein and induced the biosynthesis of the TH protein. These results indicate that 20-200 microM l-DOPA induces dopamine biosynthesis by two pathways. One pathway involves l-DOPA directly entering the cells to convert dopamine through AADC activity (l-DOPA decarboxylation). The other pathway involves l-DOPA and/or released dopamine activating TH to enhance dopamine biosynthesis by the dopamine D(1) receptor-cyclic AMP-PKA signaling system (dopamine biosynthesis by TH).

  20. Effect of acute administration of hypericum perforatum-CO2 extract on dopamine and serotonin release in the rat central nervous system.

    PubMed

    Di Matteo, V; Di Giovanni, G; Di Mascio, M; Esposito, E

    2000-01-01

    The hydromethanolic extract of Hypericum perforatum has been shown to be an effective antidepressant, although its mechanism of action is still unclear. In this study, in vivo microdialysis was used to investigate the effects of Hypericum perforatum-CO2 extract on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) release in various areas of brain. Administration of Hypericum perforatum extract (1 mg/kg, p.o.) caused a slight, but significant increase of DA outflow both in the nucleus accumbens and the striatum. The maximal increase of DA efflux (+19.22+/-1.93%, relative to the control group) in the nucleus accumbens occurred 100 min after administration of Hypericum perforatum. In the striatum, the extract maximally enhanced DA outflow (+24.83+/-7.49 %, relative to the control group) 80 min after administration. Extraneuronal DOPAC levels were not significantly affected by Hypericum perforatum treatment. Moreover, Hypericum perforatum (1 mg/kg, p.o.) did not produce any significant effect on either 5-HT or 5-HIAA efflux in the ventral hippocampus. This study shows for the first time that Hypericum perforatum extract is capable of increasing in vivo DA release.

  1. METHAMPHETAMINE-INDUCED NEUROTOXICITY DISRUPTS PHARMACOLOGICALLY EVOKED DOPAMINE TRANSIENTS IN THE DORSOMEDIAL AND DORSOLATERAL STRIATUM

    PubMed Central

    Robinson, John D.; Howard, Christopher D.; Pastuzyn, Elissa D.; Byers, Diane L.; Keefe, Kristen A.; Garris, Paul A.

    2014-01-01

    Phasic dopamine (DA) signaling, during which burst firing by dopamine neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH

  2. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    PubMed Central

    Parnaudeau, Sébastien; Dongelmans, Marie-louise; Turiault, Marc; Ambroggi, Frédéric; Delbes, Anne-Sophie; Cansell, Céline; Luquet, Serge; Piazza, Pier-Vincenzo; Tronche, François; Barik, Jacques

    2014-01-01

    The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice. PMID:24574986

  3. Ethanol and Mesolimbic Serotonin/Dopamine Interactions via 5-HT-1B Receptors

    DTIC Science & Technology

    2005-03-01

    finished with After completion of the dialysis, the animals were given infusion of 50 [tM of baclofen , a GABAB receptor agonist, an intracardiac...in the quickly, and 40-[tm-thick coronal sections were cut on a ipsilateral NACC after perfusion with baclofen was consid- freezing microtome, stained...triethylamine, 11.5% and appropriate accumbal DA responses to perfusion of the acetonitrile and 11.5% methanol (pH 5.6 with H3 PO4 ), VTA with baclofen were

  4. Involvement of lateral septum in alcohol's dopamine-elevating effect in the rat.

    PubMed

    Jonsson, Susanne; Morud, Julia; Stomberg, Rosita; Ericson, Mia; Söderpalm, Bo

    2017-01-01

    Drugs of abuse share the ability to increase extracellular dopamine (DA) levels in the mesolimbic DA system. This effect has been linked to positive and reinforcing experiences of drug consumption and is presumed to be of importance for continued use, as well as for the development of dependence and addiction. Previous rat studies from our lab have implicated a neuronal circuitry involving glycine receptors in nucleus accumbens (nAc) and, secondarily, nicotinic acetylcholine receptors in the ventral tegmental area (VTA) in ethanol's (EtOH) DA-elevating effect. The work presented here, performed in male Wistar rats, suggests that the lateral septum (LS), which has previously been associated with different aspects of EtOH-related behaviour, is involved as well. In vivo microdialysis methodology demonstrated that blocking the generation of action potentials in LS using tetrodotoxin prevented a DA increase in nAc after accumbal EtOH perfusion. Retrograde tracing and polymerase chain reaction (PCR) were used to identify and characterize cells projecting to VTA from nAc/LS and from LS to nAc. Based on the PCR results, cells projecting from both LS/nAc to anterior VTA and from LS to nAc were mainly GABAergic neurons expressing glycine receptors, and these cells are presumed to be involved in mediating the DA-elevating effect of EtOH. These results provide further evidence implicating LS in the reinforcing effects of EtOH. Additional studies are needed to investigate LS involvement in EtOH consumption behaviour and its potential role in the development of dependence and addiction. © 2015 Society for the Study of Addiction.

  5. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons

    PubMed Central

    Linehan, Victoria; Trask, Robert B.; Briggs, Chantalle; Rowe, Todd M.; Hirasawa, Michiru

    2017-01-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups, where orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying DA action on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using whole cell patch clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration dependent, bidirectional manner. Low (1 μM) and high concentrations (100 μM) of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors, whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. PMID:26036709

  6. Genetic Variation in COMT Activity Impacts Learning and Dopamine Release Capacity in the Striatum

    ERIC Educational Resources Information Center

    Simpson, Eleanor H.; Morud, Julia; Winiger, Vanessa; Biezonski, Dominik; Zhu, Judy P.; Bach, Mary Elizabeth; Malleret, Gael; Polan, H. Jonathan; Ng-Evans, Scott; Phillips, Paul E. M.; Kellendonk, Christoph; Krandel, Eric R.

    2014-01-01

    A common genetic polymorphism that results in increased activity of the dopamine regulating enzyme COMT (the "COMT Val" [superscript 158] allele) has been found to associate with poorer cognitive performance and increased susceptibility to develop psychiatric disorders. It is generally assumed that this increase in COMT activity…

  7. Compact microelectrode array system: tool for in situ monitoring of drug effects on neurotransmitter release from neural cells.

    PubMed

    Chen, Yu; Guo, Chunxian; Lim, Layhar; Cheong, Serchoong; Zhang, Qingxin; Tang, Kumcheong; Reboud, Julien

    2008-02-15

    This paper presents a compact microelectrode array (MEA) system, to study potassium ion-induced dopamine release from PC12 neural cells, without relying on a micromanipulator and a microscope. The MEA chip was integrated with a custom-made "test jig", which provides a robust electrical interfacing tool between the microchip and the macroenvironment, together with a potentiostat and a microfluidic syringe pump. This integrated system significantly simplifies the operation procedures, enhances sensing performance, and reduces fabrication costs. The achieved detection limit for dopamine is 3.8 x 10-2 muM (signal/noise, S/N = 3) and the dopamine linear calibration range is up to 7.39 +/- 0.06 muM (mean +/- SE). The effects of the extracelluar matrix collagen coating of the microelectrodes on dopamine sensing behaviors, as well as the influences of K+ and l-3,4-digydroxyphenylalanine concentrations and incubation times on dopamine release, were extensively studied. The results show that our system is well suited for biologists to study chemical release from living cells as well as drug effects on secreting cells. The current system also shows a potential for further improvements toward a multichip array system for drug screening applications.

  8. A review of dopamine agonist therapy in type 2 diabetes and effects on cardio-metabolic parameters.

    PubMed

    Lamos, E M; Levitt, D L; Munir, K M

    2016-02-01

    Dopamine action appears to play a role in changes that are seen in obesity, metabolic syndrome and type 2 diabetes mellitus. Bromocriptine-QR (Quick Release), a dopamine agonist, is approved for use in treatment of type 2 diabetes. It has demonstrated modest improvement in glycemic parameters, cholesterol and weight in certain cohorts. Limited data using cabergoline, a long-acting dopamine agonist, also demonstrate glycemic efficacy. Additionally, bromocriptine-QR appears to have a favorable cardiovascular risk reduction. The direct mechanism by which bromocriptine-QR, or central dopamine agonism, achieves modest glycemic control and favorable cardio-metabolic profile is unclear. This relationship appears to be more complex than the historical explanation of "resetting" the circadian clock and may further be elucidated using data in individuals with hyperprolactinemia and prolactinoma. Copyright © 2015 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  9. Effects of Modafinil on Dopamine and Dopamine Transporters in the Male Human Brain: Clinical Implications

    PubMed Central

    Volkow, Nora D.; Fowler, Joanna S.; Logan, Jean; Alexoff, David; Zhu, Wei; Telang, Frank; Wang, Gene-Jack; Jayne, Millard; Hooker, Jacob M.; Wong, Christopher; Hubbard, Barbara; Carter, Pauline; Warner, Donald; King, Payton; Shea, Colleen; Xu, Youwen; Muench, Lisa; Apelskog-Torres, Karen

    2009-01-01

    Context Modafinil, a wake-promoting drug used to treat narcolepsy, is increasingly being used as a cognitive enhancer. Although initially launched as distinct from stimulants that increase extracellular dopamine by targeting dopamine transporters, recent preclinical studies suggest otherwise. Objective To measure the acute effects of modafinil at doses used therapeutically (200 mg and 400 mg given orally) on extracellular dopamine and on dopamine transporters in the male human brain. Design, Setting, and Participants Positron emission tomography with [11C]raclopride (D2/D3 radioligand sensitive to changes in endogenous dopamine) and [11C]cocaine (dopamine transporter radioligand) was used to measure the effects of modafinil on extracellular dopamine and on dopamine transporters in 10 healthy male participants. The study took place over an 8-month period (2007–2008) at Brookhaven National Laboratory. Main Outcome Measures Primary outcomes were changes in dopamine D2/D3 receptor and dopamine transporter availability (measured by changes in binding potential) after modafinil when compared with after placebo. Results Modafinil decreased mean (SD) [11C]raclopride binding potential in caudate (6.1% [6.5%]; 95% confidence interval [CI], 1.5% to 10.8%; P=.02), putamen (6.7% [4.9%]; 95% CI, 3.2% to 10.3%; P=.002), and nucleus accumbens (19.4% [20%]; 95% CI, 5% to 35%; P=.02), reflecting increases in extracellular dopamine. Modafinil also decreased [11C]cocaine binding potential in caudate (53.8% [13.8%]; 95% CI, 43.9% to 63.6%; P<.001), putamen (47.2% [11.4%]; 95% CI, 39.1% to 55.4%; P<.001), and nucleus accumbens (39.3% [10%]; 95% CI, 30% to 49%; P=.001), reflecting occupancy of dopamine transporters. Conclusions In this pilot study, modafinil blocked dopamine transporters and increased dopamine in the human brain (including the nucleus accumbens). Because drugs that increase dopamine in the nucleus accumbens have the potential for abuse, and considering the increasing

  10. Response contingency directs long-term cocaine-induced neuroplasticity in prefrontal and striatal dopamine terminals.

    PubMed

    Wiskerke, Joost; Schoffelmeer, Anton N M; De Vries, Taco J

    2016-10-01

    Exposure to addictive substances such as cocaine is well-known to alter brain organisation. Cocaine-induced neuroadaptations depend on several factors, including drug administration paradigm. To date, studies addressing the consequences of cocaine exposure on dopamine transmission have either not been designed to investigate the role of response contingency or focused only on short-term neuroplasticity. We demonstrate a key role of response contingency in directing long-term cocaine-induced neuroplasticity throughout projection areas of the mesocorticolimbic dopamine system. We found enhanced electrically-evoked [(3)H]dopamine release from superfused brain slices of nucleus accumbens shell and core, dorsal striatum and medial prefrontal cortex three weeks after cessation of cocaine self-administration. In yoked cocaine rats receiving the same amount of cocaine passively, sensitised dopamine terminal reactivity was only observed in the nucleus accumbens core. Control sucrose self-administration experiments demonstrated that the observed neuroadaptations were not the result of instrumental learning per se. Thus, long-term withdrawal from cocaine self-administration is associated with widespread sensitisation of dopamine terminals throughout frontostriatal circuitries. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  11. Dampened Amphetamine-Stimulated Behavior and Altered Dopamine Transporter Function in the Absence of Brain GDNF.

    PubMed

    Kopra, Jaakko J; Panhelainen, Anne; Af Bjerkén, Sara; Porokuokka, Lauriina L; Varendi, Kärt; Olfat, Soophie; Montonen, Heidi; Piepponen, T Petteri; Saarma, Mart; Andressoo, Jaan-Olle

    2017-02-08

    Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum. SIGNIFICANCE STATEMENT Delivery of ectopic glial cell line-derived neurotrophic factor (GDNF) promotes the function, plasticity, and survival of midbrain dopaminergic neurons, the dysfunction of which contributes to various neurological and psychiatric diseases. However, how the deletion or reduction of GDNF in the CNS affects the function of dopaminergic neurons has remained unknown. Using conditional Gdnf knock-out mice, we found that endogenous GDNF affects striatal dopamine homeostasis and regulates amphetamine-induced behaviors by regulating the level and function of dopamine transporters. These data regarding the physiological role of GDNF are

  12. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons.

    PubMed

    Yapo, Cedric; Nair, Anu G; Clement, Lorna; Castro, Liliana R; Hellgren Kotaleski, Jeanette; Vincent, Pierre

    2017-12-15

    Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level. The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D 1 or D 2 dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D 2 than on D 1 receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine

  13. In vivo neurochemical evidence that delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, inhibit acetylcholine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Kiguchi, Yuri; Aono, Yuri; Watanabe, Yuriko; Yamamoto-Nemoto, Seiko; Shimizu, Kunihiko; Shimizu, Takehiko; Kosuge, Yasuhiro; Waddington, John L; Ishige, Kumiko; Ito, Yoshihisa; Saigusa, Tadashi

    2016-10-15

    Cholinergic neurons in the nucleus accumbens express delta- and mu-opioid receptors that are thought to inhibit neural activity. Delta- and mu-opioid receptors are divided into delta1- and delta2-opioid receptors and mu1- and mu2-opioid receptors, respectively. We analysed the roles of delta- and mu-opioid receptor subtypes in regulating accumbal acetylcholine efflux of freely moving rats using in vivo microdialysis. Other than naloxonazine, given intraperitoneally, delta- and mu-opioid receptor ligands were administered intracerebrally through the dialysis probe. Doses of these compounds indicate total amount (mol) over an infusion time of 30-60min. To monitor basal acetylcholine, a low concentration of physostigmine (50nM) was added to the perfusate. The delta1-opioid receptor agonist DPDPE (3 and 300pmol) and delta2-opioid receptor agonist deltorphin II (3 and 30pmol) decreased accumbal acetylcholine in a dose-related manner. DPDPE (300pmol)- and deltorphin II (3pmol)-induced reductions in acetylcholine were each inhibited by the delta1-opioid receptor antagonist BNTX (0.3pmol) and delta2-opioid receptor antagonist naltriben (15pmol), respectively. The mu-opioid receptor agonists endomorphin-1 and endomorphin-2 (6 and 30nmol) decreased acetylcholine in a dose-related manner. Endomorphin-1- and endomorphin-2 (30nmol)-induced reductions in acetylcholine were prevented by the mu-opioid receptor antagonist CTOP (3nmol). The mu1-opioid receptor antagonist naloxonazine (15mg/kg ip), which inhibits endomorphin-1 (15nmol)-induced accumbal dopamine efflux, did not alter endomorphin-1- or endomorphin-2 (30nmol)-induced reductions in acetylcholine efflux. This study provides in vivo evidence for delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, that inhibit accumbal cholinergic neural activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Attenuating GABAA Receptor Signaling in Dopamine Neurons Selectively Enhances Reward Learning and Alters Risk Preference in Mice

    PubMed Central

    Parker, Jones G.; Wanat, Matthew J.; Soden, Marta E.; Ahmad, Kinza; Zweifel, Larry S.; Bamford, Nigel S.; Palmiter, Richard D.

    2011-01-01

    Phasic dopamine transmission encodes the value of reward-predictive stimuli and influences both learning and decision-making. Altered dopamine signaling is associated with psychiatric conditions characterized by risky choices such as pathological gambling. These observations highlight the importance of understanding how dopamine neuron activity is modulated. While excitatory drive onto dopamine neurons is critical for generating phasic dopamine responses, emerging evidence suggests that inhibitory signaling also modulates these responses. To address the functional importance of inhibitory signaling in dopamine neurons, we generated mice lacking the β3 subunit of the GABAA receptor specifically in dopamine neurons (β3-KO mice) and examined their behavior in tasks that assessed appetitive learning, aversive learning, and risk preference. Dopamine neurons in midbrain slices from β3-KO mice exhibited attenuated GABA-evoked inhibitory post-synaptic currents. Furthermore, electrical stimulation of excitatory afferents to dopamine neurons elicited more dopamine release in the nucleus accumbens of β3-KO mice as measured by fast-scan cyclic voltammetry. β3-KO mice were more active than controls when given morphine, which correlated with potential compensatory upregulation of GABAergic tone onto dopamine neurons. β3-KO mice learned faster in two food-reinforced learning paradigms, but extinguished their learned behavior normally. Enhanced learning was specific for appetitive tasks, as aversive learning was unaffected in β3-KO mice. Finally, we found that β3-KO mice had enhanced risk preference in a probabilistic selection task that required mice to choose between a small certain reward and a larger uncertain reward. Collectively, these findings identify a selective role for GABAA signaling in dopamine neurons in appetitive learning and decision-making. PMID:22114279

  15. Selective effects of buspirone and molindone on dopamine metabolism and function in the striatum and frontal cortex of the rat.

    PubMed

    McMillen, B A; McDonald, C C

    1983-03-01

    The hypothesis that the nerve endings of the dopamine projection of the frontal cortex lack autoreceptors for regulation of tyrosine hydroxylase was tested by using the preferential inhibitors of dopamine autoreceptors, molindole and buspirone. In contrast to haloperidol, which elevates dopamine metabolism in the striatum and frontal cortex, both molindone and buspirone elicited little change in dopamine metabolism in the frontal cortex at doses up to 3.0 mg/kg, which cause the same maximal response in the corpus striatum as does haloperidol. Thus, the lack of autoreceptors in the frontal cortex is of pharmacological importance. That preferential inhibition of striatal dopamine autoreceptors may reverse catalepsy by enhancing synthesis and release of dopamine was tested by first inducing catalepsy with different drugs and then administering molindone or buspirone. Only buspirone (1.0 mg/kg) reversed catalepsy. This effect does not require presynaptic dopamine as catalepsy was reversed by buspirone in the dopamine-depleted rat (with 2.0 mg/kg R04-1284) as well as after postsynaptic dopamine receptor blockade by haloperidol of cis-flupenthixol. Thus, the mechanism for the reversal of catalepsy appears to be located efferent from the dopamine neuron. Buspirone, a non-benzodiazepine anti-anxiety drug, may prove useful for treatment of extrapyramidal motor disorders of either iatrogenic or idiosyncratic origin.

  16. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning.

    PubMed

    Hart, Andrew S; Clark, Jeremy J; Phillips, Paul E M

    2015-01-01

    Cue- and reward-evoked phasic dopamine activity during Pavlovian and operant conditioning paradigms is well correlated with reward-prediction errors from formal reinforcement learning models, which feature teaching signals in the form of discrepancies between actual and expected reward outcomes. Additionally, in learning tasks where conditioned cues probabilistically predict rewards, dopamine neurons show sustained cue-evoked responses that are correlated with the variance of reward and are maximal to cues predicting rewards with a probability of 0.5. Therefore, it has been suggested that sustained dopamine activity after cue presentation encodes the uncertainty of impending reward delivery. In the current study we examined the acquisition and maintenance of these neural correlates using fast-scan cyclic voltammetry in rats implanted with carbon fiber electrodes in the nucleus accumbens core during probabilistic Pavlovian conditioning. The advantage of this technique is that we can sample from the same animal and recording location throughout learning with single trial resolution. We report that dopamine release in the nucleus accumbens core contains correlates of both expected value and variance. A quantitative analysis of these signals throughout learning, and during the ongoing updating process after learning in probabilistic conditions, demonstrates that these correlates are dynamically encoded during these phases. Peak CS-evoked responses are correlated with expected value and predominate during early learning while a variance-correlated sustained CS signal develops during the post-asymptotic updating phase. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Modeling Fast-scan Cyclic Voltammetry Data from Electrically Stimulated Dopamine Neurotransmission Data Using QNsim1.0.

    PubMed

    Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Wagner, Amy K

    2017-06-05

    Central dopaminergic (DAergic) pathways have an important role in a wide range of functions, such as attention, motivation, and movement. Dopamine (DA) is implicated in diseases and disorders including attention deficit hyperactivity disorder, Parkinson's disease, and traumatic brain injury. Thus, DA neurotransmission and the methods to study it are of intense scientific interest. In vivo fast-scan cyclic voltammetry (FSCV) is a method that allows for selectively monitoring DA concentration changes with fine temporal and spatial resolution. This technique is commonly used in conjunction with electrical stimulations of ascending DAergic pathways to control the impulse flow of dopamine neurotransmission. Although the stimulated DA neurotransmission paradigm can produce robust DA responses with clear morphologies, making them amenable for kinetic analysis, there is still much debate on how to interpret the responses in terms of their DA release and clearance components. To address this concern, a quantitative neurobiological (QN) framework of stimulated DA neurotransmission was recently developed to realistically model the dynamics of DA release and reuptake over the course of a stimulated DA response. The foundations of this model are based on experimental data from stimulated DA neurotransmission and on principles of neurotransmission adopted from various lines of research. The QN model implements 12 parameters related to stimulated DA release and reuptake dynamics to model DA responses. This work describes how to simulate DA responses using QNsim1.0 and also details principles that have been implemented to systematically discern alterations in the stimulated dopamine release and reuptake dynamics.

  18. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    PubMed

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Hormonal induction of spawning in 4 species of frogs by coinjection with a gonadotropin-releasing hormone agonist and a dopamine antagonist

    PubMed Central

    2010-01-01

    Background It is well known that many anurans do not reproduce easily in captivity. Some methods are based on administration of mammalian hormones such as human chorionic gonadotropin, which are not effective in many frogs. There is a need for simple, cost-effective alternative techniques to induce spawning. Methods Our new method is based on the injection of a combination of a gonadotropin-releasing hormone (GnRH) agonist and a dopamine antagonist. We have named this formulation AMPHIPLEX, which is derived from the combination of the words amphibian and amplexus. This name refers to the specific reproductive behavior of frogs when the male mounts and clasps the female to induce ovulation and to fertilize the eggs as they are laid. Results We describe the use of the method and demonstrate its applicability for captive breeding in 3 different anuran families. We tested several combinations of GnRH agonists with dopamine antagonists using Lithobates pipiens. The combination of des-Gly10, D-Ala6, Pro-LHRH (0.4 microrams/g body weight) and metoclopramide (10 micrograms/g BWt. MET) was most effective. It was used in-season, after short-term captivity and in frogs artificially hibernated under laboratory conditions. The AMPHIPLEX method was also effective in 3 Argentinian frogs, Ceratophrys ornata, Ceratophrys cranwelli and Odontophrynus americanus. Conclusion Our approach offers some advantages over other hormonally-based techniques. Both sexes are injected only once and at the same time, reducing handling stress. AMPHIPLEX is a new reproductive management tool for captive breeding in Anura. PMID:20398399

  20. Nicotine-mediated improvement in L-dopa-induced dyskinesias in MPTP-lesioned monkeys is dependent on dopamine nerve terminal function.

    PubMed

    Quik, Maryka; Mallela, Archana; Chin, Matthew; McIntosh, J Michael; Perez, Xiomara A; Bordia, Tanuja

    2013-02-01

    L-dopa-induced dyskinesias (LIDs) are abnormal involuntary movements that develop with long term L-dopa therapy for Parkinson's disease. Studies show that nicotine administration reduced LIDs in several parkinsonian animal models. The present work was done to understand the factors that regulate the nicotine-mediated reduction in LIDs in MPTP-lesioned nonhuman primates. To approach this, we used two groups of monkeys, one with mild-moderate and the other with more severe parkinsonism rendered dyskinetic using L-dopa. In mild-moderately parkinsonian monkeys, nicotine pretreatment (300 μg/ml via drinking water) prevented the development of LIDs by ~75%. This improvement was maintained when the nicotine dose was lowered to 50 μg/ml but was lost with nicotine removal. Nicotine re-exposure again decreased LIDs. By contrast, nicotine treatment did not reduce LIDs in monkeys with more severe parkinsonism. We next determined how nicotine's ability to reduce LIDs correlated with lesion-induced changes in the striatal dopamine transporter and (3)H-dopamine release in these two groups of monkeys. The striatal dopamine transporter was reduced to 54% and 28% of control in mild-moderately and more severely parkinsonian monkeys, respectively. However, basal, K(+), α4β2* and α6β2* nAChR-evoked (3)H-dopamine release were near control levels in striatum of mild-moderately parkinsonian monkeys. By contrast, these same release measures were reduced to a significantly greater extent in striatum of more severely parkinsonian monkeys. Thus, nicotine best improves LIDs in lesioned monkeys in which striatal dopamine transmission is still relatively intact. These data suggest that nicotine treatment would most effectively reduce LIDs in patients with mild to moderate Parkinson's disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Dynamic changes in dopamine neuron function after DNSP-11 treatment: effects in vivo and increased ERK 1/2 phosphorylation in vitro.

    PubMed

    Fuqua, Joshua L; Littrell, Ofelia M; Lundblad, Martin; Turchan-Cholewo, Jadwiga; Abdelmoti, Lina G; Galperin, Emilia; Bradley, Luke H; Cass, Wayne A; Gash, Don M; Gerhardt, Greg A

    2014-04-01

    Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide-11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and D-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Mode of action of dopamine in inducing hyperglycemia in the fresh water edible crab, Oziothelphusa senex senex.

    PubMed

    Swetha, Ch; Sainath, S B; Reddy, P Sreenivasula

    2014-11-01

    The objective of this study was to investigate the mode of action of dopamine in regulating hemolymph sugar level in the fresh water edible crab, Oziothelphusa senex senex. Injection of dopamine produced hyperglycemia in a dose-dependent manner in intact crabs but not in eyestalkless crabs. Administration of dopamine resulted in a significant decrease in total carbohydrates and glycogen levels with a significant increase in glycogen phosphorylase activity levels in hepatopancreas and muscle of intact crabs, indicating dopamine-induced glycogenolysis resulting in hyperglycemia. Bilateral eyestalk ablation resulted in significant increase in the total carbohydrates and glycogen levels with a significant decrease in the activity levels of phosphorylase in the hepatopancreas and muscle of the crabs. Eyestalk ablation resulted in significant decrease in hemolymph hyperglycemic hormone levels. The levels of hyperglycemic hormone in the hemolymph of dopamine injected crabs were significantly higher than in control crabs. However, no significant changes in the levels of hemolymph hyperglycemic hormone and sugar and tissue carbohydrate and phosphorylase activity were observed in dopamine injected eyestalk ablated crabs when compared with eyestalk ablated crabs. These results support an earlier hypothesis in crustaceans that dopamine acts as a neurotransmitter and induces hyperglycemia by triggering the release of hyperglycemic hormone in the crab, O. senex senex. © 2014 Wiley Periodicals, Inc.

  3. Intra-accumbal administration of AMN082, a metabotropic glutamate receptor type 7 allosteric agonist, inhibits the acquisition but not the expression of morphine-induced conditioned place preference in rats.

    PubMed

    Vatankhah, Mahsaneh; Karimi-Haghighi, Saeideh; Sarihi, Abdolrahman; Haghparast, Abbas

    2018-05-22

    The nucleus accumbens (NAc) plays a primary role in opioid reward. The actions of glutamate are mediated by the activation of ionotropic and metabotropic glutamate receptors (mGluRs). Previous documents have shown the extensive distributions of the different types of mGluRs, including mGluR7, in regions that are involved in opioid reward, such as the NAc. In this study, seventy male Wistar rats were used to investigate the role of mGluR7 receptors in the NAc on the acquisition and expression of morphine-induced conditioned place preference (CPP). In Experiment 1, to determine the effect of AMN082, a selective mGluR7 allosteric agonist, on the acquisition of morphine-induced conditioned place preference (CPP), the rats bilaterally received AMN082 (1, 3 and 5 μg/0.5 μL DMSO) during three-day conditioning by morphine (5 mg/kg). In Experiment 2, the rats bilaterally received AMN082 (5 μg/0.5 μL DMSO) 5 min prior to the post-conditioning test to investigate the effect of AMN082 on the expression of morphine-induced CPP. The results showed that the intra-accumbal injection of AMN082 prevents the acquisition of morphine-induced CPP in a dose-dependent manner. However, intra-accumbal injection of AMN082 had no effect on the expression of morphine-induced CPP. The findings propose that the mGluR7 in the NAc inhibits the acquisition of morphine-induced CPP that could be mediated by inhibition of NMDA receptors in the NAc. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Dynamic nigrostriatal dopamine biases action selection

    PubMed Central

    Howard, Christopher D.; Li, Hao; Geddes, Claire E.; Jin, Xin

    2017-01-01

    Summary Dopamine is thought to play a critical role in reinforcement learning and goal-directed behavior, but its function in action selection remains largely unknown. Here, we demonstrate that nigrostriatal dopamine biases ongoing action selection. When mice were trained to dynamically switch the action selected at different time points, changes in firing rate of nigrostriatal dopamine neurons, as well as dopamine signaling in the dorsal striatum, were found to be associated with action selection. This dopamine profile is specific to behavioral choice, scalable with interval duration, and doesn’t reflect reward prediction error, timing, or value as single factors alone. Genetic deletion of NMDA receptors on dopamine or striatal neurons, or optogenetic manipulation of dopamine concentration, alters dopamine signaling and biases action selection. These results unveil a crucial role of nigrostriatal dopamine in integrating diverse information for regulating upcoming actions and have important implications for neurological disorders including Parkinson’s disease and substance dependence. PMID:28285820

  5. Dynamic Nigrostriatal Dopamine Biases Action Selection.

    PubMed

    Howard, Christopher D; Li, Hao; Geddes, Claire E; Jin, Xin

    2017-03-22

    Dopamine is thought to play a critical role in reinforcement learning and goal-directed behavior, but its function in action selection remains largely unknown. Here we demonstrate that nigrostriatal dopamine biases ongoing action selection. When mice were trained to dynamically switch the action selected at different time points, changes in firing rate of nigrostriatal dopamine neurons, as well as dopamine signaling in the dorsal striatum, were found to be associated with action selection. This dopamine profile is specific to behavioral choice, scalable with interval duration, and doesn't reflect reward prediction error, timing, or value as single factors alone. Genetic deletion of NMDA receptors on dopamine or striatal neurons or optogenetic manipulation of dopamine concentration alters dopamine signaling and biases action selection. These results unveil a crucial role of nigrostriatal dopamine in integrating diverse information for regulating upcoming actions, and they have important implications for neurological disorders, including Parkinson's disease and substance dependence. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Subchronic nandrolone administration reduces cocaine-induced dopamine and 5-hydroxytryptamine outflow in the rat nucleus accumbens.

    PubMed

    Kurling-Kailanto, Sanna; Kankaanpää, Aino; Seppälä, Timo

    2010-04-01

    The abuse of anabolic androgenic steroids (AASs) is not only a problem in the world of sports but is associated with the polydrug use of nonathletes. Investigations of the neurochemical effects of AAS have focused in part on the monoaminergic systems, involving, among other things, the development of dependence. We have previously shown that pretreatment with nandrolone decanoate attenuates dose-dependently the increase in extracellular dopamine (DA) concentration evoked by amphetamine and 3,4-methylenedioyxymethamphetamine in the nucleus accumbens (NAc). The aim of this study was to investigate whether the nandrolone pre-exposure modulates the acute neurochemical and behavioral effects of cocaine in rats and whether the effects are long lasting. DA, 5-hydroxytryptamine (5-HT), and their metabolites were measured from samples collected from the NAc by microdialysis. The behavior of the animals was recorded. The present study demonstrates that five injections of nandrolone (5 and 20 mg/kg) inhibited cocaine-evoked DA and 5-HT outflow in the NAc, locomotor activity (LMA), and stereotyped behavior in experimental animals, and that these effects are seen even after elimination of nandrolone from bloodstream. Given that accumbal outflow of DA and 5-HT, as well as LMA and stereotyped behavior, is related to gratification of stimulant drugs, this study suggests that nandrolone, at the doses tested, has a significant effect on the pleasurable properties of cocaine. Furthermore, because neurochemical and behavioral responses were still attenuated after a fairly long recovery period, it seems that nandrolone may induce long-lasting changes in the brains of rat.

  7. Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a PET study in conscious monkeys.

    PubMed

    Hashimoto, Kenji; Kakiuchi, Takeharu; Ohba, Hiroyuki; Nishiyama, Shingo; Tsukada, Hideo

    2017-03-01

    R-ketamine appears to be a potent, long-lasting and safer antidepressant, relative to esketamine (S-ketamine), since it might be free of psychotomimetic side effects. Using [ 11 C]raclopride and positron emission tomography (PET), we investigated whether esketamine and R-ketamine can affect dopamine D 2/3 receptor binding in the conscious monkey brain. A single infusion of esketamine (0.5 mg/kg), but not R-ketamine (0.5 mg/kg), caused a reduction of binding availability of dopamine D 2/3 receptor in the monkey striatum. This study suggests that unlike to R-ketamine, esketamine can cause dopamine release in the striatum, and that its release might be associated with psychotomimetic effects of esketamine.

  8. Time- and dose-related effects of a gonadotropin-releasing hormone agonist and dopamine antagonist on reproduction in the Northern leopard frog (Lithobates pipiens).

    PubMed

    Vu, Maria; Weiler, Bradley; Trudeau, Vance L

    2017-12-01

    Gonadotropin-releasing hormone (GnRH) stimulates luteinizing hormone release to control ovulation and spermiation in vertebrates. Dopamine (DA) has a clear inhibitory role in the control of reproduction in numerous teleosts, and emerging evidence suggests that similar mechanisms may exist in amphibians. The interactions between GnRH and DA on spawning success and pituitary gene expression in the Northern leopard frog (Lithobates pipiens) were therefore investigated. Frogs were injected during the natural breeding season with a GnRH agonist [GnRH-A; (Des-Gly 10 , D-Ala 6 , Pro-NHEt 9 )-LHRH; 0.1μg/g and 0.4μg/g] alone and in combination with the dopamine receptor D2 antagonist metoclopramide (MET; 5μg/g and 10μg/g). Injected animals were allowed to breed in outdoor mesocosms. Time to amplexus and oviposition were assessed, and egg mass release, incidences of amplexus, egg mass weight, total egg numbers and fertilization rates were measured. To examine gene expression, female pituitaries were sampled at 12, 24 and 36h following injection of GnRH-A (0.4μg/g) alone and in combination with MET (10μg/g). The mRNA levels of the genes lhb, fshb, gpha, drd2 and gnrhr1 were measured using quantitative real-time PCR. Data were analyzed by a two-way ANOVA. Both GnRH-A doses increased amplexus, oviposition and fertilization alone. Co-injection of MET with GnRH-A did not further enhance spawning success. Injection of GnRH-A alone time-dependently increased expression of lhb, fshb, gpha and gnrhr1. The major effect of MET alone was to decrease expression of drd2. Importantly, the stimulatory effects of GnRH-A on lhb, gpha and gnrhr1 were potentiated by the co-injection of MET at 36h. At this time, expression of fshb was increased only in animals injected with both GnRH-A and MET. Spawning success was primarily driven by the actions of GnRH-A. The hypothesized inhibitory action of DA was supported by pituitary gene expression analysis. The results from this study provide a

  9. Comparison of Monoamine Oxidase Inhibitors in Decreasing Production of the Autotoxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde in PC12 Cells

    PubMed Central

    Jinsmaa, Yunden; Sullivan, Patti; Holmes, Courtney; Kopin, Irwin J.; Sharabi, Yehonatan

    2016-01-01

    According to the catecholaldehyde hypothesis, the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to the loss of nigrostriatal dopaminergic neurons in Parkinson’s disease. Monoamine oxidase-A (MAO-A) catalyzes the conversion of intraneuronal dopamine to DOPAL and may serve as a therapeutic target. The “cheese effect”—paroxysmal hypertension evoked by tyramine-containing foodstuffs—limits clinical use of irreversible MAO-A inhibitors. Combined MAO-A/B inhibition decreases DOPAL production in rat pheochromocytoma PC12 cells, but whether reversible MAO-A inhibitors or MAO-B inhibitors decrease endogenous DOPAL production is unknown. We compared the potencies of MAO inhibitors in attenuating DOPAL production and examined possible secondary effects on dopamine storage, constitutive release, synthesis, and auto-oxidation. Catechol concentrations were measured in cells and medium after incubation with the irreversible MAO-A inhibitor clorgyline, three reversible MAO-A inhibitors, or the MAO-B inhibitors selegiline or rasagiline for 180 minutes. Reversible MAO-A inhibitors were generally ineffective, whereas clorgyline (1 nM), rasagiline (500 nM), and selegiline (500 nM) decreased DOPAL levels in the cells and medium. All three drugs also increased dopamine and norepinephrine, decreased 3,4-dihydroxyphenylalanine, and increased cysteinyl-dopamine concentrations in the medium, suggesting increased vesicular uptake and constitutive release, decreased dopamine synthesis, and increased dopamine spontaneous oxidation. In conclusion, clorgyline, rasagiline, and selegiline decrease production of endogenous DOPAL. At relatively high concentrations, the latter drugs probably lose their selectivity for MAO-B. Possibly offsetting increased formation of potentially toxic oxidation products and decreased formation of DOPAL might account for the failure of large clinical trials of MAO-B inhibitors to demonstrate slowing of neurodegeneration in

  10. Dopamine receptors – IUPHAR Review 13

    PubMed Central

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  11. Dopamine, reward learning, and active inference.

    PubMed

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  12. Evidence that Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    PubMed Central

    Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Benveniste, Helene; Kim, Ron; Thanos, Panayotis K.; Ferré, Sergi

    2012-01-01

    Dopamine D2 receptors are involved with wakefulness but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [11C]raclopride in controls) in striatum, but could not determine if this reflected dopamine increases ([11C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (drug that increases dopamine by blocking dopamine transporters), during sleep deprivation versus rested-sleep with the assumption that methylphenidate’s effects would be greater, if indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [11C]raclopride after rested-sleep and after one night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared to rested-sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared to placebo) did not differ between rested-sleep and sleep deprivation and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to one night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans. PMID:22573693

  13. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials.

    PubMed

    Suzuki, Ikuro; Fukuda, Mao; Shirakawa, Keiichi; Jiko, Hideyasu; Gotoh, Masao

    2013-11-15

    Multi-electrode arrays (MEAs) can be used for noninvasive, real-time, and long-term recording of electrophysiological activity and changes in the extracellular chemical microenvironment. Neural network organization, neuronal excitability, synaptic and phenotypic plasticity, and drug responses may be monitored by MEAs, but it is still difficult to measure presynaptic activity, such as neurotransmitter release, from the presynaptic bouton. In this study, we describe the development of planar carbon nanotube (CNT)-MEA chips that can measure both the release of the neurotransmitter dopamine as well as electrophysiological responses such as field postsynaptic potentials (fPSPs) and action potentials (APs). These CNT-MEA chips were fabricated by electroplating the indium-tin oxide (ITO) microelectrode surfaces. The CNT-plated ITO electrode exhibited electrochemical response, having much higher current density compared with the bare ITO electrode. Chronoamperometric measurements using these CNT-MEA chips detected dopamine at nanomolar concentrations. By placing mouse striatal brain slices on the CNT-MEA chip, we successfully measured synaptic dopamine release from spontaneous firings with a high S/N ratio of 62. Furthermore, APs and fPSPs were measured from cultured hippocampal neurons and slices with high temporal resolution and a 100-fold greater S/N ratio. Our CNT-MEA chips made it possible to measure neurotransmitter dopamine (presynaptic activities), postsynaptic potentials, and action potentials, which have a central role in information processing in the neuronal network. CNT-MEA chips could prove useful for in vitro studies of stem cell differentiation, drug screening and toxicity, synaptic plasticity, and pathogenic processes involved in epilepsy, stroke, and neurodegenerative diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The potential role of dopamine D3 receptor neurotransmission in cognition

    PubMed Central

    Nakajima, Shinichiro; Gerretsen, Philip; Takeuchi, Hiroyoshi; Caravaggio, Fernando; Chow, Tiffany; Le Foll, Bernard; Mulsant, Benoit; Pollock, Bruce; Graff-Guerrero, Ariel

    2013-01-01

    Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson’s disease and Alzheimer’s disease. The primary objective of this work is to review the literature on the role of dopamine D3 receptors in cognition, and propose dopamine D3 receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D3 receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included “dopamine D3 receptor” and “cognition”. The literature search identified 164 articles. The results revealed: (1) D3 receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D3 receptor blockade appears to enhance while D3 receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D3 receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D3 receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects. PMID:23791072

  15. Dopamine, reward learning, and active inference

    PubMed Central

    FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305

  16. β-Phenylethylamine requires the dopamine transporter to increase extracellular dopamine in Caenorhabditis elegans dopaminergic neurons.

    PubMed

    Hossain, Murad; Wickramasekara, Rochelle N; Carvelli, Lucia

    2014-07-01

    β-Phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. β-phenylethylamine Requires the Dopamine Transporter to Increase Extracellular Dopamine in C. elegans Dopaminergic Neurons

    PubMed Central

    Hossain, Murad; Wickramasekara, Rochelle N.; Carvelli, Lucia

    2013-01-01

    β-phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. PMID:24161617

  18. Changes in dopamine and ZENK during suppression of myopia in chicks by intense illuminance.

    PubMed

    Lan, Weizhong; Yang, Zhikuan; Feldkaemper, Marita; Schaeffel, Frank

    2016-04-01

    High ambient illuminances have been found to slow the development of deprivation myopia in several animal models. Almost complete inhibition of myopia was observed in chickens when intermittent episodes of high illuminance were alternated with standard office illuminance (50% duty cycle, alternate periods of 1 min 15,000 lux and 1 min 500 lux, continued for 10 h per day), or when illuminances were increased to 40,000 lux. Since the mechanisms by which bright light suppresses myopia are poorly understood, we have studied the roles of two well-established signaling molecules in myopia, dopamine and ZENK, in the chicken. In line with previous studies, we found that retinal dopamine release (as reflected by vitreal DOPAC content) was severely reduced during development of deprivation myopia. We found that illuminance of 15,000 lux, provided by quartz-halogen lamps, partially rescued the drop in retinal dopamine release. The finding is in line with the assumption that dopamine is involved in the light-induced inhibition of myopia. No differences in vitreal DOPAC were found when bright light was provided continuously or with 1:1 min alternating exposure with 500 lux. As previously described by others, wearing diffusers suppressed the expression of ZENK protein in glucagonergic amacrine cells (GACs) but neither continuous nor 1:1 min alternating bright to normal light could rescue the suppression of ZENK in GACs. While it is well known that light increases global retinal ZENK mRNA and protein levels, the changes of ZENK protein induced specifically in GACs by diffuser wear appear independent of light levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sleep Deprivation Decreases [11C]Raclopride’s Binding to Dopamine D2/D3 Receptors in the Human Brain

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Wong, Christopher; Ma, Jim; Pradhan, Kith; Tomasi, Dardo; Thanos, Peter K.; Ferré, Sergi; Jayne, Millard

    2009-01-01

    Sleep deprivation can markedly impair human performance contributing to accidents and poor productivity. The mechanisms underlying this impairment are not well understood but brain dopamine systems have been implicated. Here we test whether one night of sleep deprivation changes dopamine brain activity. We studied fifteen healthy subjects using positron emission tomography and [11C]raclopride (dopamine D2/3 receptor radioligand) and [11C]cocaine (dopamine transporter radioligand). Subjects were tested twice; after one night of rested sleep and after on night of sleep deprivation. [11C]Raclopride’s specific binding in striatum and thalamus were significantly reduced after sleep deprivation and the magnitude of this reduction correlated with increases in fatigue (tiredness and sleepiness) and with deterioration in cognitive performance (visual attention and working memory). In contrast sleep deprivation did not affect the specific binding of [11C]cocaine in striatum. Since [11C]raclopride competes with endogenous dopamine for binding to D2/D3 receptors, we interpret the decreases in binding to reflect dopamine increases with sleep deprivation. However, we can not rule out the possibility that decreased [11C]raclopride binding reflects decreases in receptor levels or affinity. Sleep deprivation did not affect dopamine transporters (target for most wake-promoting medications) and thus dopamine increases are likely to reflect increases in dopamine cell firing and/or release rather than decreases in dopamine reuptake. Inasmuch as dopamine-enhancing drugs increase wakefulness we postulate that dopamine increases after sleep deprivation is a mechanism by which the brain maintains arousal as the drive to sleep increases but one that is insufficient to counteract behavioral and cognitive impairment. PMID:18716203

  20. Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity

    PubMed Central

    Trifilieff, Pierre; Martinez, Diana

    2014-01-01

    Dependence to drugs of abuse is closely associated with impulsivity, or the propensity to choose a lower, but immediate, reward over a delayed, but more valuable outcome. Here, we review clinical and preclinical studies showing that striatal dopamine signaling and D2 receptor levels – which have been shown to be decreased in addiction - directly impact impulsivity, which is itself predictive of drug self-administration. Based on these studies, we propose that the alterations in D2 receptor binding and dopamine release seen in imaging studies of addiction constitute neurobiological markers of impulsivity. Recent studies in animals also show that higher striatal dopamine signaling at the D2 receptor is associated with a greater willingness to expend effort to reach goals, and we propose that this same relationship applies to humans, particularly with respect to recovery from addiction. PMID:23851257

  1. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    PubMed

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists.

  2. Prefrontal and Striatal Glutamate Differently Relate to Striatal Dopamine: Potential Regulatory Mechanisms of Striatal Presynaptic Dopamine Function?

    PubMed

    Gleich, Tobias; Deserno, Lorenz; Lorenz, Robert Christian; Boehme, Rebecca; Pankow, Anne; Buchert, Ralph; Kühn, Simone; Heinz, Andreas; Schlagenhauf, Florian; Gallinat, Jürgen

    2015-07-01

    Theoretical and animal work has proposed that prefrontal cortex (PFC) glutamate inhibits dopaminergic inputs to the ventral striatum (VS) indirectly, whereas direct VS glutamatergic afferents have been suggested to enhance dopaminergic inputs to the VS. In the present study, we aimed to investigate relationships of glutamate and dopamine measures in prefrontostriatal circuitries of healthy humans. We hypothesized that PFC and VS glutamate, as well as their balance, are differently associated with VS dopamine. Glutamate concentrations in the left lateral PFC and left striatum were assessed using 3-Tesla proton magnetic resonance spectroscopy. Striatal presynaptic dopamine synthesis capacity was measured by fluorine-18-l-dihydroxyphenylalanine (F-18-FDOPA) positron emission tomography. First, a negative relationship was observed between glutamate concentrations in lateral PFC and VS dopamine synthesis capacity (n = 28). Second, a positive relationship was revealed between striatal glutamate and VS dopamine synthesis capacity (n = 26). Additionally, the intraindividual difference between PFC and striatal glutamate concentrations correlated negatively with VS dopamine synthesis capacity (n = 24). The present results indicate an involvement of a balance in PFC and striatal glutamate in the regulation of VS dopamine synthesis capacity. This notion points toward a potential mechanism how VS presynaptic dopamine levels are kept in a fine-tuned range. A disruption of this mechanism may account for alterations in striatal dopamine turnover as observed in mental diseases (e.g., in schizophrenia). The present work demonstrates complementary relationships between prefrontal and striatal glutamate and ventral striatal presynaptic dopamine using human imaging measures: a negative correlation between prefrontal glutamate and presynaptic dopamine and a positive relationship between striatal glutamate and presynaptic dopamine are revealed. The results may reflect a regulatory role

  3. Presynaptic gain control by endogenous cotransmission of dopamine and GABA in the olfactory bulb.

    PubMed

    Vaaga, Christopher E; Yorgason, Jordan T; Williams, John T; Westbrook, Gary L

    2017-03-01

    In the olfactory bulb, lateral inhibition mediated by local juxtaglomerular interneurons has been proposed as a gain control mechanism, important for decorrelating odorant responses. Among juxtaglomerular interneurons, short axon cells are unique as dual-transmitter neurons that release dopamine and GABA. To examine their intraglomerular function, we expressed channelrhodopsin under control of the DAT-cre promoter and activated olfactory afferents within individual glomeruli. Optical stimulation of labeled cells triggered endogenous dopamine release as measured by cyclic voltammetry and GABA release as measured by whole cell GABA A receptor currents. Activation of short axon cells reduced the afferent presynaptic release probability via D 2 and GABA B receptor activation, resulting in reduced spiking in both mitral and external tufted cells. Our results suggest that short axon cells influence glomerular activity not only by direct inhibition of external tufted cells but also by inhibition of afferent inputs to external tufted and mitral cells. NEW & NOTEWORTHY Sensory systems, including the olfactory system, encode information across a large dynamic range, making synaptic mechanisms of gain control critical to proper function. Here we demonstrate that a dual-transmitter interneuron in the olfactory bulb controls the gain of intraglomerular afferent input via two distinct mechanisms, presynaptic inhibition as well as inhibition of a principal neuron subtype, and thereby potently controls the synaptic gain of afferent inputs. Copyright © 2017 the American Physiological Society.

  4. Presence and function of dopamine transporter (DAT) in stallion sperm: dopamine modulates sperm motility and acrosomal integrity.

    PubMed

    Urra, Javier A; Villaroel-Espíndola, Franz; Covarrubias, Alejandra A; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP(+)), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.

  5. Presence and Function of Dopamine Transporter (DAT) in Stallion Sperm: Dopamine Modulates Sperm Motility and Acrosomal Integrity

    PubMed Central

    Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186

  6. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.

    PubMed

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R; McIntosh, J Michael; Brunzell, Darlene H; Cannon, Jason R; Drenan, Ryan M

    2014-04-01

    α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. © 2013 International Society for Neurochemistry.

  7. Neonatal finasteride administration decreases dopamine release in nucleus accumbens after alcohol and food presentation in adult male rats.

    PubMed

    Llidó, Anna; Bartolomé, Iris; Darbra, Sònia; Pallarès, Marc

    2016-08-01

    Endogenous levels of the neurosteroid (NS) allopregnanolone (AlloP) during neonatal stages are crucial for the correct development of the central nervous system (CNS). In a recent work we reported that the neonatal administration of AlloP or finasteride (Finas), an inhibitor of the enzyme 5α-reductase needed for AlloP synthesis, altered the voluntary consumption of ethanol and the ventrostriatal dopamine (DA) levels in adulthood, suggesting that neonatal NS manipulations can increase alcohol abuse vulnerability in adulthood. Moreover, other authors have associated neonatal NS alterations with diverse dopaminergic (DAergic) alterations. Thus, the aim of the present work is to analyse if manipulations of neonatal AlloP alter the DAergic response in the nucleus accumbens (NAcc) during alcohol intake in rats. We administered AlloP or Finas from postnatal day (PND) 5 to PND9. At PND98, we measured alcohol consumption using a two-bottle free-choice model (ethanol 10% (v/v)+glucose 3% (w/v), and glucose 3% (w/v)) for 12 days. On the last day of consumption, we measured the DA and 3,4-dihydroxyphenylacetic acid (DOPAC) release in NAcc in response to ethanol intake. The samples were obtained by means of in vivo microdialysis in freely moving rats, and DA and DOPAC levels were determined by means of high-performance liquid chromatography analysis (HPLC). The results revealed that neonatal Finas increased ethanol consumption in some days of the consumption phase, and decreased the DA release in the NAcc in response to solutions (ethanol+glucose) and food presentation. Taken together, these results suggest that neonatal NS alterations can affect alcohol rewarding properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cocaine cue-induced dopamine release in amygdala and hippocampus: a high-resolution PET [¹⁸F]fallypride study in cocaine dependent participants.

    PubMed

    Fotros, Aryandokht; Casey, Kevin F; Larcher, Kevin; Verhaeghe, Jeroen A J; Cox, Sylvia M L; Gravel, Paul; Reader, Andrew J; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco

    2013-08-01

    Drug-related cues are potent triggers for relapse in people with cocaine dependence. Dopamine (DA) release within a limbic network of striatum, amygdala and hippocampus has been implicated in animal studies, but in humans it has only been possible to measure effects in the striatum. The objective here was to measure drug cue-induced DA release in the amygdala and hippocampus using high-resolution PET with [(18)F]fallypride. Twelve cocaine-dependent volunteers (mean age: 39.6 ± 8.0 years; years of cocaine use: 15.9 ± 7.4) underwent two [(18)F]fallypride high-resolution research tomography-PET scans, one with exposure to neutral cues and one with cocaine cues. [(18)F]Fallypride non-displaceable-binding potential (BPND) values were derived for five regions of interest (ROI; amygdala, hippocampus, ventral limbic striatum, associative striatum, and sensorimotor striatum). Subjective responses to the cues were measured with visual analog scales and grouped using principal component analysis. Drug cue exposure significantly decreased BPND values in all five ROI in subjects who had a high-, but not low-, craving response (limbic striatum: p=0.019, associative striatum: p=0.008, sensorimotor striatum: p=0.004, amygdala: p=0.040, and right hippocampus: p=0.025). Individual differences in the cue-induced craving response predicted the magnitude of [(18)F]fallypride responses within the striatum (ventral limbic: r=0.581, p=0.048; associative: r=0.589, p=0.044; sensorimotor: r=0.675, p=0.016). To our knowledge this study provides the first evidence of drug cue-induced DA release in the amygdala and hippocampus in humans. The preferential induction of DA release among high-craving responders suggests that these aspects of the limbic reward network might contribute to drug-seeking behavior.

  9. Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence

    PubMed Central

    Schlagenhauf, Florian; Rapp, Michael A.; Huys, Quentin J. M.; Beck, Anne; Wüstenberg, Torsten; Deserno, Lorenz; Buchholz, Hans-Georg; Kalbitzer, Jan; Buchert, Ralph; Kienast, Thorsten; Cumming, Paul; Plotkin, Michail; Kumakura, Yoshitaka; Grace, Anthony A.; Dolan, Raymond J.; Heinz, Andreas

    2013-01-01

    Fluid intelligence represents the capacity for flexible problem solving and rapid behavioral adaptation. Rewards drive flexible behavioral adaptation, in part via a teaching signal expressed as reward prediction errors in the ventral striatum, which has been associated with phasic dopamine release in animal studies. We examined a sample of 28 healthy male adults using multimodal imaging and biological parametric mapping with 1) functional magnetic resonance imaging during a reversal learning task and 2) in a subsample of 17 subjects also with positron emission tomography using 6-[18F]fluoro-L-DOPA to assess dopamine synthesis capacity. Fluid intelligence was measured using a battery of nine standard neuropsychological tests. Ventral striatal BOLD correlates of reward prediction errors were positively correlated with fluid intelligence and, in the right ventral striatum, also inversely correlated with dopamine synthesis capacity (FDOPA Kinapp). When exploring aspects of fluid intelligence, we observed that prediction error signaling correlates with complex attention and reasoning. These findings indicate that individual differences in the capacity for flexible problem solving may be driven by ventral striatal activation during reward-related learning, which in turn proved to be inversely associated with ventral striatal dopamine synthesis capacity. PMID:22344813

  10. Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2 dopamine receptor.

    PubMed

    Tillerson, Jennifer L; Caudle, W Michael; Parent, Jack M; Gong, C; Schallert, Timothy; Miller, Gary W

    2006-09-15

    Previous pharmacological studies have implicated dopamine as a modulator of olfactory bulb processing. Several disorders characterized by altered dopamine homeostasis in olfaction-related brain regions display olfactory deficits. To further characterize the role of dopamine in olfactory processing, we subjected dopamine transporter knockout mice (DAT -/-) and dopamine receptor 2 knockout mice (D2 -/-) to a battery of olfactory tests. In addition to behavioral characterization, several neurochemical markers of olfactory bulb integrity and function were examined. DAT -/- mice displayed an olfactory discrimination deficit, but did not differ detectably from DAT wildtype (DAT +/+) mice in odor habituation, olfactory sensitivity, or odor recognition memory. Neurochemically, DAT -/- mice have decreased D2 receptor staining in the periglomerular layer of the olfactory bulb and increased tyrosine hydroxylase immunoreactivity compared to DAT +/+ controls. D2 -/- mice exhibited the same olfactory deficit as the DAT -/- mice, further supporting the role of dopamine at the D2 synapse in olfactory discrimination processing. The findings presented in this paper reinforce the functional significance of dopamine and more specifically the D2 receptor in olfactory discrimination and may help explain the behavioral phenotype in the DAT and D2 knockout mice.

  11. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor.

    PubMed

    Takeda, K; Taniyama, K; Kuno, T; Sano, I; Ishikawa, T; Ohmura, I; Tanaka, C

    1991-05-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10(-8) M to 10(-5) M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: 1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. 2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility.

  12. Model-based predictions for dopamine.

    PubMed

    Langdon, Angela J; Sharpe, Melissa J; Schoenbaum, Geoffrey; Niv, Yael

    2018-04-01

    Phasic dopamine responses are thought to encode a prediction-error signal consistent with model-free reinforcement learning theories. However, a number of recent findings highlight the influence of model-based computations on dopamine responses, and suggest that dopamine prediction errors reflect more dimensions of an expected outcome than scalar reward value. Here, we review a selection of these recent results and discuss the implications and complications of model-based predictions for computational theories of dopamine and learning. Copyright © 2017. Published by Elsevier Ltd.

  13. Cocaine self-administration disrupts mesolimbic dopamine circuit function and attenuates dopaminergic responsiveness to cocaine.

    PubMed

    Siciliano, Cody A; Ferris, Mark J; Jones, Sara R

    2015-08-01

    Dopaminergic projections from the ventral midbrain to the nucleus accumbens (NAc) have long been implicated in encoding associations between reward availability and environmental stimuli. As such, this circuit is instrumental in guiding behaviors towards obtaining maximal rewards based on previous experience. Cocaine acts on the dopamine system to exert its reinforcing effects and it is thought that cocaine-induced dysregulation of dopamine neurotransmission contributes to the difficulty that cocaine addicts exhibit in selecting environmentally appropriate behaviors. Here we used cocaine self-administration combined with in vivo fast scan cyclic voltammetry in anesthetised rats to examine the function of the ventral tegmental area to NAc projection neurons. Over 5 days of cocaine self-administration (fixed-ratio 1; 1.5 mg/kg/injection; 40 injections/day), animals increased their rate of intake. Following cocaine self-administration, there was a marked reduction in ventral tegmental area-stimulated NAc dopamine release. Additionally, there was a decreased augmentation of stimulated dopamine overflow in response to a cocaine challenge. These findings demonstrate that cocaine induces a hypodopaminergic state, which may contribute to the inflexible drug-taking and drug-seeking behaviors observed in cocaine abusers. Additionally, tolerance to the ability of cocaine to elevate dopamine may lead to increased cocaine intake in order to overcome decreased effects, another hallmark of cocaine abuse. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. False labelling of dopaminergic terminals in the rabbit caudate nucleus: uptake and release of [3H]-5-hydroxytryptamine.

    PubMed

    Feuerstein, T J; Hertting, G; Lupp, A; Neufang, B

    1986-07-01

    The effect of the catecholamine uptake inhibitor nomifensine and of the 5-hydroxytryptamine (5-HT) uptake blocker 6-nitroquipazine on the accumulation of [3H]-5-HT (0.1 microM, 60 min incubation) and [3H]-dopamine (0.1 microM, 30 min incubation) into slices of hippocampus and caudate nucleus of the rabbit was investigated. In addition, the influence of nomifensine on the electrically evoked [3H]-5-HT release from caudate nucleus slices and of nomifensine and 6-nitroquipazine on [3H]-5-HT released from caudate nucleus slices was analysed. In hippocampal slices, which contain practically no dopaminergic but densely distributed 5-hydroxytryptaminergic and noradrenergic nerve terminals (ratio of dopamine:5-HT:noradrenaline about 1:30:25), nomifensine (1, 10 microM) did not affect the accumulation of [3H]-5-HT; 6-nitroquipazine (1 microM) reduced [3H]-5-HT uptake to about 35% of controls. In the caudate nucleus, however, where dopamine is the predominant monoamine (ratio of dopamine:5-HT:noradrenaline about 400:25:15) nomifensine (1, 10 microM) reduced the tritium accumulation to 65% whereas 6-nitroquipazine (1 microM) was ineffective. The combination of both drugs (1 microM each) led to a further decrease to about 15%. The uptake of [3H]-dopamine into hippocampal slices was blocked by both nomifensine (1 microM) and 6-nitroquipazine (1 microM) whereas in caudate nucleus slices only nomifensine (1, 10 microM) reduced the accumulation of [3H]-dopamine. The combination of both drugs was not more effective than nomifensine alone. The different effects of both uptake inhibitors in the hippocampus and caudate nucleus suggest a neurone specific rather than a substrate specific mode of action. 4 In caudate nucleus slices incubated with [3H]-5-HT and superfused continuously the electrically evoked 5-HT release was diminished by the D2-dopamine receptor agonist LY 171555 and enhanced by the D2-receptor antagonist domperidone. If, however, the labelling of caudate nucleus slices

  15. A review of ropinirole prolonged release in Parkinson’s disease

    PubMed Central

    Nashatizadeh, Muhammad M; Lyons, Kelly E; Pahwa, Rajesh

    2009-01-01

    Ropinirole prolonged release is a once-daily, 24-hour formulation of ropinirole, a non-ergot dopamine agonist. It is approved as monotherapy and as an adjunct to levodopa in the treatment of Parkinson’s disease (PD). Several potential advantages of ropinirole prolonged release compared to the immediate release formulation include maintaining more consistent dopaminergic activity with steadier plasma levels, increased tolerability, greater compliance from a simpler once-daily dosing regimen and ease in dose titration. In a randomized, double-blind, non-inferiority, crossover study, ropinirole prolonged release was shown to have comparable efficacy and tolerability to immediate release ropinirole in early PD patients, with significantly greater compliance. Subjects were converted overnight between ropinirole formulations without loss of efficacy and with good tolerability. In a randomized, double-blind, placebo-controlled study in advanced PD, daily “off” time was reduced by an average of 2.1 hours with ropinirole prolonged release compared to 0.4 hours with placebo. Patients on ropinirole prolonged release were also more likely to require less daily levodopa. Ropinirole prolonged release is well tolerated with a similar adverse effect profile to other non-ergot dopamine agonists. The most common adverse effects include dyskinesia, nausea, dizziness, hallucinations, somnolence, abdominal pain or discomfort and orthostatic hypotension. Ropinirole prolonged release is a safe and effective treatment option for both early and advanced PD. This manuscript briefly reviews the current pharmacological treatment options for PD and provides a more detailed review of the currently available data regarding ropinirole prolonged release as a treatment option for PD. PMID:19503779

  16. Tetrodotoxin-dependent glutamate release in the rat nucleus accumbens during concurrent presentation of appetitive and conditioned aversive stimuli.

    PubMed

    Saulskaya, Natalia B; Soloviova, Nina A

    2004-12-30

    In vivo microdialysis combined with a high-performance liquid chromatography was used to monitor extracellular glutamate (GLU) levels in the nucleus accumbens (N.Acc) of Sprague-Dawley rats during their behavioral responses to the concurrent presentation of appetitive and conditioned aversive stimuli. The presentation of a highly palatable diet followed by a tone previously paired with footshock to rats trained to take a pellet of the diet under these experimental conditions resulted in a marked and short lasting increase in extracellular glutamate, whereas the tone alone had no effect. A similar increase of the glutamate release was observed during the presentation of a piece of rubber instead of the diet. In both cases, the increase in extracellular glutamate was completely prevented by intra-accumbal infusions through the dialysis probe of 1 microM tetrodotoxin (a voltage-dependent Na(+) channel blocker), whereas (S)-4-carboxyphenylglycine (a cystine/glutamate exchange blocker, 5 microM) had no effect. The data obtained suggest that behavioral responses to unpredicted change in motivational value of expected reward appear to be associated with an increase of the extracellular glutamate level in the nucleus accumbens, and impulse-dependent synaptic release, rather than non-vesicular glutamate release via cystine/glutamate exchange, is responsible for this phenomenon.

  17. Stress in adolescence and drugs of abuse in rodent models: Role of dopamine, CRF, and HPA axis

    PubMed Central

    Burke, Andrew R.; Miczek, Klaus A.

    2014-01-01

    Rationale Research on adolescence and drug abuse increased substantially in the past decade. However, drug-addiction related behaviors following stressful experiences during adolescence are less studied. We focus on rodent models of adolescent stress cross-sensitization to drugs of abuse. Objectives Review the ontogeny of behavior, dopamine, corticotropin-releasing factor (CRF), and the hypothalamic pituitary adrenal (HPA) axis in adolescent rodents. We evaluate evidence that stressful experiences during adolescence engender hypersensitivity to drugs of abuse and offer potential neural mechanisms. Results and Conclusions Much evidence suggests that final maturation of behavior, dopamine systems, and HPA axis occurs during adolescence. Stress during adolescence increases amphetamine- and ethanol-stimulated locomotion, preference, and self-administration under many conditions. The influence of adolescent stress on subsequent cocaine- and nicotine-stimulated locomotion and preference is less clear. The type of adolescent stress, temporal interval between stress and testing, species, sex, and the drug tested are key methodological determinants for successful cross-sensitization procedures. The sensitization of the mesolimbic dopamine system is proposed to underlie stress cross-sensitization to drugs of abuse in both adolescents and adults through modulation by CRF. Reduced levels of mesocortical dopamine appear to be a unique consequence of social stress during adolescence. Adolescent stress may reduce the final maturation of cortical dopamine through D2 dopamine receptor regulation of dopamine synthesis or glucocorticoid-facilitated pruning of cortical dopamine fibers. Certain rodent models of adolescent adversity are useful for determining neural mechanisms underlying the cross-sensitization to drugs of abuse. PMID:24370534

  18. Reversal of Alcohol-Induced Dysregulation in Dopamine Network Dynamics May Rescue Maladaptive Decision-making

    PubMed Central

    Schindler, Abigail G.; Soden, Marta E.; Zweifel, Larry S.

    2016-01-01

    Alcohol is the most commonly abused substance among adolescents, promoting the development of substance use disorders and compromised decision-making in adulthood. We have previously demonstrated, with a preclinical model in rodents, that adolescent alcohol use results in adult risk-taking behavior that positively correlates with phasic dopamine transmission in response to risky options, but the underlying mechanisms remain unknown. Here, we show that adolescent alcohol use may produce maladaptive decision-making through a disruption in dopamine network dynamics via increased GABAergic transmission within the ventral tegmental area (VTA). Indeed, we find that increased phasic dopamine signaling after adolescent alcohol use is attributable to a midbrain circuit, including the input from the pedunculopontine tegmentum to the VTA. Moreover, we demonstrate that VTA dopamine neurons from adult rats exhibit enhanced IPSCs after adolescent alcohol exposure corresponding to decreased basal dopamine levels in adulthood that negatively correlate with risk-taking. Building on these findings, we develop a model where increased inhibitory tone on dopamine neurons leads to a persistent decrease in tonic dopamine levels and results in a potentiation of stimulus-evoked phasic dopamine release that may drive risky choice behavior. Based on this model, we take a pharmacological approach to the reversal of risk-taking behavior through normalization of this pattern in dopamine transmission. These results isolate the underlying circuitry involved in alcohol-induced maladaptive decision-making and identify a novel therapeutic target. SIGNIFICANCE STATEMENT One of the primary problems resulting from chronic alcohol use is persistent, maladaptive decision-making that is associated with ongoing addiction vulnerability and relapse. Indeed, studies with the Iowa Gambling Task, a standard measure of risk-based decision-making, have reliably shown that alcohol-dependent individuals make

  19. Carbon nanopipette electrodes for dopamine detection in Drosophila.

    PubMed

    Rees, Hillary R; Anderson, Sean E; Privman, Eve; Bau, Haim H; Venton, B Jill

    2015-04-07

    Small, robust, sensitive electrodes are desired for in vivo neurotransmitter measurements. Carbon nanopipettes have been previously manufactured and used for single-cell drug delivery and electrophysiological measurements. Here, a modified fabrication procedure was developed to produce batches of solid carbon nanopipette electrodes (CNPEs) with ∼250 nm diameter tips, and controllable lengths of exposed carbon, ranging from 5 to 175 μm. The electrochemical properties of CNPEs were characterized with fast-scan cyclic voltammetry (FSCV) for the first time. CNPEs were used to detect the electroactive neurotransmitters dopamine, serotonin, and octopamine. CNPEs were significantly more sensitive for serotonin detection than traditional carbon-fiber microelectrodes (CFMEs). Similar to CFMEs, CNPEs have a linear response for dopamine concentrations ranging from 0.1 to 10 μM and a limit of detection of 25 ± 5 nM. Recordings with CNPEs were stable for over 3 h when the applied triangle waveform was scanned between -0.4 and +1.3 V vs Ag/AgCl/Cl(-) at 400 V/s. CNPEs were used to detect endogenous dopamine release in Drosophila larvae using optogenetics, which verified the utility of CNPEs for in vivo neuroscience studies. CNPEs are advantageous because they are 1 order of magnitude smaller in diameter than typical CFMEs and have a sharp, tunable geometry that facilitates penetration and implantation for localized measurements in distinct regions of small organisms, such as the Drosophila brain.

  20. Carbon nanopipette electrodes for dopamine detection in Drosophila

    PubMed Central

    Rees, Hillary R.; Anderson, Sean E.; Privman, Eve; Bau, Haim H.; Venton, B. Jill

    2015-01-01

    Small, robust, sensitive electrodes are desired for in vivo neurotransmitter measurements. Carbon nanopipettes have been previously manufactured and used for single cell drug delivery and electrophysiological measurements. Here, a modified fabrication procedure was developed to produce batches of solid carbon nanopipette electrodes (CNPEs) with ~250 nm diameter tips, and controllable lengths of exposed carbon, ranging from 5 μm to 175 μm. The electrochemical properties of CNPEs were characterized with fast-scan cyclic voltammetry (FSCV) for the first time. CNPEs were used to detect the electroactive neurotransmitters dopamine, serotonin, and octopamine. CNPEs were significantly more sensitive for serotonin detection than traditional carbon fiber microelectrodes (CFMEs). Similar to CFMEs, CNPEs have a linear response for dopamine concentrations ranging from 0.1 to 10 μM and a LOD of 25 ± 5 nM. Recordings with CNPEs were stable for over 3 hours when the applied triangle waveform was scanned between −0.4 and 1.3 V vs. Ag/AgCl/Cl− at 400 V/s. CNPEs were used to detect endogenous dopamine release in Drosophila larvae using optogenetics, which verified the utility of CNPEs for in vivo neuroscience studies. CNPEs are advantageous because they are an order of magnitude smaller in diameter than typical CFMEs and have a sharp, tunable geometry that facilitates penetration and implantation for localized measurements in distinct regions of small organisms, such as the Drosophila brain. PMID:25711512

  1. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder.

    PubMed

    Hamilton, P J; Campbell, N G; Sharma, S; Erreger, K; Herborg Hansen, F; Saunders, C; Belovich, A N; Sahai, M A; Cook, E H; Gether, U; McHaourab, H S; Matthies, H J G; Sutcliffe, J S; Galli, A

    2013-12-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity reuptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first functional, structural and behavioral characterization of an ASD-associated de novo mutation in the hDAT. We demonstrate that the hDAT T356M displays anomalous function, characterized as a persistent reverse transport of DA (substrate efflux). Importantly, in the bacterial homolog leucine transporter, substitution of A289 (the homologous site to T356) with a Met promotes an outward-facing conformation upon substrate binding. In the substrate-bound state, an outward-facing transporter conformation is required for substrate efflux. In Drosophila melanogaster, the expression of hDAT T356M in DA neurons-lacking Drosophila DAT leads to hyperlocomotion, a trait associated with DA dysfunction and ASD. Taken together, our findings demonstrate that alterations in DA homeostasis, mediated by aberrant DAT function, may confer risk for ASD and related neuropsychiatric conditions.

  2. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin

    PubMed Central

    2017-01-01

    Fast-scan cyclic voltammetry (FCV) is an established method to monitor increases in extracellular dopamine (DA) concentration ([DA]o) in the striatum, which is densely innervated by DA axons. Ex vivo brain slice preparations provide an opportunity to identify endogenous modulators of DA release. For these experiments, local electrical stimulation is often used to elicit release of DA, as well as other transmitters, in the striatal microcircuitry; changes in evoked increases in [DA]o after application of a pharmacological agent (e.g., a receptor antagonist) indicate a regulatory role for the transmitter system interrogated. Optogenetic methods that allow specific stimulation of DA axons provide a complementary, bottom-up approach for elucidating factors that regulate DA release. To this end, we have characterized DA release evoked by local electrical and optical stimulation in striatal slices from mice that genetically express a variant of channelrhodopsin-2 (ChR2). Evoked increases in [DA]o in the dorsal and ventral striatum (dStr and vStr) were examined in a cross of a Cre-dependent ChR2 line (“Ai32” mice) with a DAT::Cre mouse line. In dStr, repeated optical pulse-train stimulation at the same recording site resulted in rundown of evoked [DA]o using heterozygous mice, which contrasted with the stability seen with electrical stimulation. Similar rundown was seen in the presence of a nicotinic acetylcholine receptor (nAChR) antagonist, implicating the absence of concurrent nAChR activation in DA release instability in slices. Rundown with optical stimulation in dStr could be circumvented by recording from a population of sites, each stimulated only once. Same-site rundown was less pronounced with single-pulse stimulation, and a stable baseline could be attained. In vStr, stable optically evoked increases in [DA]o at single sites could be achieved using heterozygous mice, although with relatively low peak [DA]o. Low release could be overcome by using mice with a

  3. Gβγ subunit activation promotes dopamine efflux through the dopamine transporter

    PubMed Central

    Garcia-Olivares, J; Baust, T; Harris, S; Hamilton, P; Galli, A; Amara, SG; Torres, GE

    2018-01-01

    The dopamine transporter (DAT) is an important regulator of brain dopamine (DA) homeostasis, controlling the intensity and duration of DA signaling. DAT is the target for psychostimulants—like cocaine and amphetamine—and plays an important role in neuropsychiatric disorders, including attention-deficit hyperactivity disorder and drug addiction. Thus, a thorough understanding of the mechanisms that regulate DAT function is necessary for the development of clinical interventions to treat DA-related brain disorders. Previous studies have revealed a plethora of protein–protein interactions influencing DAT cellular localization and activity, suggesting that the fine-tuning of DA homeostasis involves multiple mechanisms. We recently reported that G-protein beta-gamma (Gβγ) subunits bind directly to DAT and decrease DA clearance. Here we show that Gβγ induces the release of DA through DAT. Specifically, a Gβγ-binding/activating peptide, mSIRK, increases DA efflux through DAT in heterologous cells and primary dopaminergic neurons in culture. Addition of the Gβγ inhibitor gallein or DAT inhibitors prevents this effect. Residues 582 to 596 in the DAT carboxy terminus were identified as the primary binding site of Gβγ. A TAT peptide containing the Gβγ-interacting domain of DAT blocked the ability of mSIRK to induce DA efflux, consistent with a direct interaction of Gβγ with the transporter. Finally, activation of a G-protein-coupled receptor, the muscarinic M5R, results in DAT-mediated DA efflux through a Gβγ-dependent mechanism. Collectively, our data show that Gβγ interacts with DAT to promote DA efflux. This novel mechanism may have important implications in the regulation of brain DA homeostasis. PMID:28894302

  4. Dopamine evoked inhibition of single cells of the feline putamen and basolateral amygdala.

    PubMed Central

    Ben-Ari, Y; Kelly, J S

    1976-01-01

    1. In cats under pentobarbitone or halothane anaesthesia, neurones of the putamen and basolateral amygdala were inhibited with a similar time course by iontophoretic applications of dopamine and gamma-aminobutyric acid (GABA), ejected with relatively short (20 sec) low intensity (less than 40 nA) pulses of positive current from five and seven barrelled extracellular micropipettes. The use of a stereotaxically positioned guide tube, sealed to the skull with dental cement, made it possible to obtain stable recording conditions and to correlate the stereotaxic position of the cells with the position of the micro-electrode tracks determined histologically by the post-mortem reconstruction of serial sections. 2. Since in cats anaesthetized with pentobarbitone none of the cells were found to be spontaneously active, the relative potency of dopamine and GABA were compared on glutamate excited cells. Approximately 2-5 times more current was required to release sufficient dopamine to cause just submaximal inhibition, equal in magnitude and duration to that evoked by GABA. 3. In nitrous oxide/halothane anaesthetized cats, approximately one quarter of the cells were spontaneously active. Relative potency studies showed that for dopamine, currents 2-0 and 1-6 times larger than those used for GABA were required to inhibit glutamate excited and spontaneously active cells respectively. 4. When the depth distribution of the cells was compared with the sensitivity of the cells to dopamine and GABA, the most sensitive cells were found to lie within the putamen and the basolateral amygdala. 5. On more than one third of the cells tested, iontophoretic application of the neuroleptic, alpha-flupenthixol of more than 3 or 4 min in duration, greatly reduced or abolished the inhibition of the cells by dopamine without impairing their sensitivity to GABA. 6. In four cats, large I.V. injections of alpha-flupenthixol (10 mg/kg) and the more potent neuroleptic pimozide (1 mg/kg) had no

  5. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats

    PubMed Central

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats. PMID:28280461

  6. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats.

    PubMed

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.

  7. Molecular dynamics study of a heteroditopic-calix[4]diquinone-assisted transfer of KCl and dopamine through a water-chloroform liquid-liquid interface.

    PubMed

    Santos, Sérgio M; Costa, Paulo J; Lankshear, Michael D; Beer, Paul D; Félix, Vítor

    2010-09-02

    The ability of two heteroditopic calix[4]diquinone receptors to transport a KCl ion-pair and a dopamine zwitterion through a water-chloroform interface was investigated via molecular dynamics (MD) simulations. Gas-phase conformational analysis has been carried on KCl and dopamine receptor binding associations and the lowest energy structures found in both cases show that the recognition of KCl and dopamine zwitterion occurs through multiple and cooperative N-H...anion and O...cation bonding interactions, with the receptor adopting equivalent folded conformations stabilized by pi-stacking interactions. The unconstrained MD simulations performed on KCl and dopamine complexes inserted in either the chloroform or water phase revealed that receptors are preferentially located at the interface with the hydrophobic tert-butyl groups of the calix[4]diquinone moiety immersed in the chloroform bulk while the polar anion binding cavity is directed toward the water phase. When the KCl complex is placed in chloroform, the release of the ion-pair occurs only after the first contact with the water interface, being a nonsimultaneous event, with the chloride anion leaving the receptor before the potassium cation. The dopamine, via the -NH(3)(+) binding entity, remains bound to the receptor during the entire time of the MD simulation (10 ns). In contrast, when both complexes were inserted in the water bulk, the full release of KCl and dopamine are fast events. The potentials of mean force (PMFs), associated with the migration of the complexes from chloroform to water through the interface, were calculated from steered molecular dynamics (SMD) simulations. The PMFs for the free KCl and zwitterionic dopamine migrations were also obtained for comparison purposes. The transport of KCl from water to chloroform (the reverse path) mediated by the receptor has a free energy barrier estimated in 6.50 kcal mol(-1), which is 3.0 kcal mol(-1) smaller than that found for the free KCl. The

  8. Dopamine-Secreting Paraganglioma in the Retroperitoneum.

    PubMed

    Matsuda, Yusuke; Kimura, Noriko; Yoshimoto, Takanobu; Sekiguchi, Yoshihiro; Tomoishi, Junzo; Kasahara, Ichiro; Hara, Yoshihito; Ogawa, Yoshihiro

    2017-03-01

    Pheochromocytomas and paragangliomas, which exclusively produce dopamine, are very rare. Herein, we report for the first time a Japanese case of an exclusively dopamine-producing paraganglioma accompanied by detailed immunohistochemical analyses. A 70-year-old Japanese woman was referred to our hospital for functional examination of her left retroperitoneal mass. Her adrenal functions were normal, except for excessive dopamine secretion. After the tumorectomy, her dopamine level normalized. The histopathological diagnosis of the tumor was paraganglioma; this was confirmed by positive immunostaining of chromogranin A (CgA), tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH), and succinate dehydrogenase gene subunit B (SDHB). However, the immunostaining of CgA in the tumor cells showed peculiar dot-like staining located corresponding to Golgi complex in the perinuclear area, rather than the diffuse cytoplasmic staining usually observed in epinephrine- or norepinephrine-producing functional pheochromocytomas and paragangliomas. The immunohistochemical results suggested that the tumor cells had sparse neuroendocrine granules in the cytoplasm, resulting in inhibition of catecholamine synthesis from dopamine to norepinephrine in neurosecretory granules. This may be the mechanism responsible for exclusive dopamine secretion in the present case.

  9. Effects of the neurotoxin MPTP and pargyline protection on extracellular energy metabolites and dopamine levels in the striatum of freely moving rats.

    PubMed

    Bazzu, Gianfranco; Rocchitta, Gaia; Migheli, Rossana; Alvau, Maria Domenica; Zinellu, Manuel; Puggioni, Giulia; Calia, Giammario; Mercanti, Giulia; Giusti, Pietro; Desole, Maria Speranza; Serra, Pier Andrea

    2013-11-13

    The neurotoxin MPTP is known to induce dopamine release and depletion of ATP in the striatum of rats. Therefore, we studied the changes induced by MPTP and pargyline protection both on striatal dopamine release and on extracellular energy metabolites in freely moving rats, using dual asymmetric-flow microdialysis. A dual microdialysis probe was inserted in the right striatum of rats. MPTP (25mg/kg, 15mg/kg, 10mg/kg) was intraperitoneally administered for three consecutive days. MAO-B inhibitor pargyline (15mg/kg) was systemically administered before neurotoxin administration. The first MPTP dose induced an increase in dialysate dopamine and a decrease of DOPAC levels in striatal dialysate. After the first neurotoxin administration, increases in striatal glucose, lactate, pyruvate, lactate/pyruvate (L/P) and lactate/glucose (L/G) ratios were observed. Subsequent MPTP administrations showed a progressive reduction of dopamine, glucose and pyruvate levels with a concomitant further increase in lactate levels and L/P and L/G ratios. At day 1, pargyline pre-treatment attenuated the MPTP-induced changes in all studied analytes. Starting from day 2, pargyline prevented the depletion of dopamine, glucose and pyruvate while reduced the increase of lactate, L/P ratio and L/G ratio. These in vivo results suggest a pargyline neuroprotection role against the MPTP-induced energetic impairment consequent to mitochondrial damage. This neuroprotective effect was confirmed by TH immunostaining of the substantia nigra. © 2013 Elsevier B.V. All rights reserved.

  10. Basolateral amygdalar D2 receptor activation is required for the companions-exerted suppressive effect on the cocaine conditioning.

    PubMed

    Tzeng, Wen-Yu; Cherng, Chian-Fang G; Yu, Lung; Wang, Ching-Yi

    2017-01-01

    The presence of companions renders decreases in cocaine-stimulated dopamine release in the nucleus accumbens and cocaine-induced conditioned place preference (CPP) magnitude. Limbic systems are widely believed to underlie the modulation of accumbal dopamine release and cocaine conditioning. Thus, this study aimed to assess whether intact basolateral nucleus of amygdala (BLA), dorsal hippocampus (DH), and dorsolateral striatum (DLS) is required for the companions-exerted suppressive effect on the cocaine-induced CPP. Three cage mates, serving as companions, were arranged to house with the experimental mice in the cocaine conditioning compartment throughout the cocaine conditioning sessions. Approximately 1week before the conditioning procedure, intracranial ibotenic acid infusions were done in an attempt to cause excitotoxic lesions targeting bilateral BLA, DH and DLS. Albeit their BLA, DH, and DLS lesions, the lesioned mice exhibited comparable cocaine-induced CPP magnitudes compared to the intact and sham lesion controls. Bilateral BLA, but not DH or DLS, lesions abolished the companions-exerted suppressive effect on the cocaine-induced CPP. Intact mice receiving intra-BLA infusion of raclopride, a selective D2 antagonist, 30min prior to the cocaine conditioning did not exhibit the companions-exerted suppressive effect on the cocaine-induced CPP. Intra-BLA infusion of Sch23390, a selective D1 antagonist, did not affect the companions-exerted suppressive effect on the CPP. These results, taken together, prompt us to conclude that the intactness of BLA is required for the companions-exerted suppressive effect on the cocaine-induced CPP. Importantly, activation of D2 receptor in the BLA is required for such suppressive effect on the CPP. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Nucleus accumbens GABAergic inhibition generates intense eating and fear that resists environmental retuning and needs no dopamine

    PubMed Central

    Richard, Jocelyn M.; Plawecki, Andrea M.; Berridge, Kent C.

    2013-01-01

    Intense fearful behavior and/or intense appetitive eating behavior can be generated by localized amino acid inhibitions along a rostrocaudal anatomical gradient within medial shell of nucleus accumbens of the rat. This can be produced by microinjections in medial shell of either the GABAA agonist muscimol (mimicking intrinsic GABAergic inputs) or the AMPA antagonist DNQX (disrupting corticolimbic glutamate inputs). At rostral sites in medial shell, each drug robustly stimulates appetitive eating and food intake, whereas at more caudal sites the same drugs instead produce increasingly fearful behaviors such as escape, distress vocalizations, and defensive treading (an antipredator behavior rodents emit to snakes and scorpions). Previously we showed that intense motivated behaviors generated by glutamate blockade require local endogenous dopamine and can be modulated in valence by environmental ambience. Here we investigated whether GABAergic generation of intense appetitive and fearful motivations similarly depends on local dopamine signals, and whether the valence of motivations generated by GABAergic inhibition can also be retuned by changes in environmental ambience. We report that the answer to both questions is ‘no’. Eating and fear generated by GABAergic inhibition of accumbens shell does not need endogenous dopamine. Also, the appetitive/fearful valence generated by GABAergic muscimol microinjections resists environmental retuning and is determined almost purely by rostrocaudal anatomical placement. These results suggest that NAc GABAergic release of fear and eating are relatively independent of modulatory dopamine signals, and more anatomically pre-determined in valence balance than release of the same intense behaviors by glutamate disruptions. PMID:23551138

  12. MAM (E17) rodent developmental model of neuropsychiatric disease: disruptions in learning and dysregulation of nucleus accumbens dopamine release, but spared executive function.

    PubMed

    Howe, William M; Tierney, Patrick L; Young, Damon A; Oomen, Charlotte; Kozak, Rouba

    2015-11-01

    Gestational day 17 methylazoxymethanol (MAM) treatment has been shown to reproduce, in rodents, some of the alterations in cortical and mesolimbic circuitries thought to contribute to schizophrenia. We characterized the behavior of MAM animals in tasks dependent on these circuitries to see what behavioral aspects of schizophrenia the model captures. We then characterized the integrity of mesolimbic dopamine neurotransmission in a subset of animals used in the behavioral experiments. MAM animals' capacity for working memory, attention, and resilience to distraction was tested with two different paradigms. Cue-reward learning and motivation were assayed with Pavlovian conditioned approach. Measurements of electrically stimulated phasic and tonic DA release in the nucleus accumbens with fast-scan cyclic voltammetry were obtained from the same animals used in the Pavlovian task. MAM animals' basic attentional capacities were intact. MAM animals took longer to acquire the working memory task, but once learned, performed at the same level as shams. MAM animals were also slower to develop a Pavlovian conditioned response, but otherwise no different from controls. These same animals showed alterations in terminal DA release that were unmasked by an amphetamine challenge. The predominant behavioral-cognitive feature of the MAM model is a learning impairment that is evident in acquisition of executive function tasks as well as basic Pavlovian associations. MAM animals also have dysregulated terminal DA release, and this may contribute to observed behavioral differences. The MAM model captures some functional impairments of schizophrenia, particularly those related to acquisition of goal-directed behavior.

  13. Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow N. D.; Fowler J.; Volkow, N.D.

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [{sup 11}C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([{sup 11}C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopaminemore » release was increased during sleep deprivation. We scanned 20 controls with [{sup 11}C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.« less

  14. The gamma-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    PubMed Central

    2012-01-01

    Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse. PMID:22559224

  15. The γ-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens.

    PubMed

    Fu, Zhenyu; Yang, Hongfa; Xiao, Yuqiang; Zhao, Gang; Huang, Haiyan

    2012-07-10

    Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  16. Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1988-01-01

    Intracerebral dialysis was used to monitor extracellular fluid from rat striatum and nucleus accumbens following the intraperitoneal administration of tyrosine. Dopamine concentrations in dialysates from both the striatum and the nucleus accumbens increased significantly in response to the tyrosine. The magnitude of the tyrosine effect was greater in the nucleus accumbens than in the striatum. Hence, mesolimbic dopaminergic neurons may be especially responsive to precursor availability.

  17. Dopamine in the Brain: Hypothesizing Surfeit or Deficit Links to Reward and Addiction.

    PubMed

    Blum, Kenneth; Thanos, Peter K; Oscar-Berman, Marlene; Febo, Marcelo; Baron, David; Badgaiyan, Rajendra D; Gardner, Eliot; Demetrovics, Zsolt; Fahlke, Claudia; Haberstick, Brett C; Dushaj, Kristina; Gold, Mark S

    Recently there has been debate concerning the role of brain dopamine in reward and addiction. David Nutt and associates eloquently proposed that dopamine (DA) may be central to psycho stimulant dependence and some what important for alcohol, but not important for opiates, nicotine or even cannabis. Others have also argued that surfeit theories can explain for example cocaine seeking behavior as well as non-substance-related addictive behaviors. It seems prudent to distinguish between what constitutes "surfeit" compared to" deficit" in terms of short-term (acute) and long-term (chronic) brain reward circuitry responsivity. In an attempt to resolve controversy regarding the contributions of mesolimbic DA systems to reward, we review the three main competing explanatory categories: "liking", "learning", and "wanting". They are (a) the hedonic impact -liking reward, (b) the ability to predict rewarding effects-learning and (c) the incentive salience of reward-related stimuli -wanting. In terms of acute effects, most of the evidence seems to favor the "surfeit theory". Due to preferential dopamine release at mesolimbic-VTA-caudate-accumbens loci most drugs of abuse and Reward Deficiency Syndrome (RDS) behaviors have been linked to heightened feelings of well-being and hyperdopaminergic states.The "dopamine hypotheses" originally thought to be simple, is now believed to be quite complex and involves encoding the set point of hedonic tone, encoding attention, reward expectancy, and incentive motivation. Importantly, Willuhn et al. shows that in a self-administration paradigm, (chronic) excessive use of cocaine is caused by decreased phasic dopamine signaling in the striatum. In terms of chronic addictions, others have shown a blunted responsivity at brain reward sites with food, nicotine, and even gambling behavior. Finally, we are cognizant of the differences in dopaminergic function as addiction progresses and argue that relapse may be tied to dopamine deficiency

  18. Estradiol, dopamine and motivation.

    PubMed

    Yoest, Katie E; Cummings, Jennifer A; Becker, Jill B

    2014-01-01

    The gonadal hormone estradiol modulates mesolimbic dopamine systems in the female rat. This modulatory effect is thought to be responsible for the observed effects of estradiol on motivated behaviors. Dopamine acting in the nucleus accumbens is thought to be important for the attribution of incentive motivational properties to cues that predict reward delivery, while dopamine in the striatum is associated with the expression of repetitive or stereotyped behaviors. Elevated concentrations of estradiol are associated with increased motivation for sex or cues associated with access to a mate, while simultaneously attenuating motivation for food. This shift in motivational salience is important for adaptive choice behavior in the natural environment. Additionally, estradiol's adaptive effects on motivation can be maladaptive when increasing motivation for non-natural reinforcers, such as drugs of abuse. Here we discuss the effect of estradiol on mesotelencephalic dopamine transmission and subsequent effects on motivated behaviors.

  19. 18-Methoxycoronaridine (18-MC) and ibogaine: comparison of antiaddictive efficacy, toxicity, and mechanisms of action.

    PubMed

    Glick, S D; Maisonneuve, I M; Szumlinski, K K

    2000-09-01

    18-MC, a novel iboga alkaloid congener, is being developed as a potential treatment for multiple forms of drug abuse. Like ibogaine (40 mg/kg), 18-MC (40 mg/kg) decreases the intravenous self-administration of morphine and cocaine and the oral self-administration of ethanol and nicotine in rats; unlike ibogaine, 18-MC does not affect responding for a nondrug reinforcer (water). Both ibogaine and 18-MC ameliorate opioid withdrawal signs. Both ibogaine and 18-MC decrease extracellular levels of dopamine in the nucleus accumbens, but only ibogaine increases extracellular levels of serotonin in the nucleus accumbens. Both ibogaine and 18-MC block morphine-induced and nicotine-induced dopamine release in the nucleus accumbens; only ibogaine enhances cocaine-induced increases in accumbal dopamine. Both ibogaine and 18-MC enhance the locomotor and/or stereotypic effects of stimulants. Ibogaine attenuates, but 18-MC potentiates, the acute locomotor effects of morphine; both compounds attenuate morphine-induced locomotion in morphine-experienced rats. Ibogaine produces whole body tremors and, at high doses (> or = 100 mg/kg), cerebellar damage; 18-MC does not produce these effects. Ibogaine, but not 18-MC, decreases heart rate at high doses. While 18-MC and ibogaine have similar affinities for kappa opioid and possibly nicotinic receptors, 18-MC has much lower affinities than ibogaine for NMDA and sigma-2 receptors, sodium channels, and the 5-HT transporter. Both 18-MC and ibogaine are sequestered in fat and, like ibogaine, 18-MC probably has an active metabolite. The data suggest that 18-MC has a narrower spectrum of actions and will have a substantially greater therapeutic index than ibogaine.

  20. Methylphenidate and Cocaine Self-Administration Produce Distinct Dopamine Terminal Alterations

    PubMed Central

    Calipari, Erin S.; Ferris, Mark J.; Melchior, James R.; Bermejo, Kristel; Salahpour, Ali; Roberts, David C. S.; Jones, Sara R.

    2012-01-01

    Methylphenidate (MPH) is a commonly abused psychostimulant prescribed for the treatment of attention deficit hyperactivity disorder. MPH has a mechanism of action similar to cocaine (COC) and is commonly characterized as a dopamine transporter (DAT) blocker. While there has been extensive work aimed at understanding dopamine (DA) nerve terminal changes following COC self-administration, very little is known about the effects of MPH self-administration on the DA system. We used fast scan cyclic voltammetry in nucleus accumbens core slices from animals with a five-day self-administration history of 40 injections/day of either MPH (0.56 mg/kg) or COC (1.5 mg/kg) to explore alterations in baseline DA release and uptake kinetics as well as alterations in the interaction of each compound with the DAT. Although MPH and COC have similar behavioral effects, the consequences of self-administration on DA system parameters were found to be divergent. We show that COC self-administration reduced DAT levels and maximal rates of DA uptake, as well as reducing electrically stimulated release, suggesting decreased DA terminal function. In contrast, MPH self-administration increased DAT levels, DA uptake rates, and DA release, suggesting enhanced terminal function, which was supported by findings of increased metabolite/DA tissue content ratios. Tyrosine hydroxylase mRNA, protein and phosphorylation levels were also assessed in both groups. Additionally, COC self-administration reduced COC-induced DAT inhibition, while MPH self-administration increased MPH-induced DAT inhibition, suggesting opposite pharmacodynamic effects of these two drugs. These findings suggest that the factors governing DA system adaptations are more complicated than simple DA uptake blockade. PMID:22458761

  1. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    PubMed

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  2. The Role of Dopamine Receptors in the Neurobehavioral Syndrome Provoked by Activation of L-Type Calcium Channels in Rodents

    PubMed Central

    Kasim, Suhail; Blake, Bonita L.; Fan, Xueliang; Chartoff, Elena; Egami, Kiyoshi; Breese, George R.; Hess, Ellen J.; Jinnah, H.A.

    2010-01-01

    In rodents, activation of L-type calcium channels with ± BayK 8644 causes an unusual behavioral syndrome that includes dystonia and self-biting. Prior studies have linked both of these behaviors to dysfunction of dopaminergic transmission in the striatum. The current studies were designed to further elucidate the relationship between ± BayK 8644 and dopaminergic transmission in the expression of the behavioral syndrome. The drug does not appear to release presynaptic dopamine stores, since microdialysis of the striatum revealed dopamine release was unaltered by ± BayK 8644. In addition, the behaviors were preserved or even exaggerated in mice or rats with virtually complete dopamine depletion. On the other hand, pretreatment of mice with D3 or D1/5 dopamine receptor antagonists attenuated the behavioral effects of ± BayK 8644, while pretreatment with D2 or D4 antagonists had no effect. In D3 receptor knockout mice, ± BayK 8644 elicited both dystonia and self-biting, but these behaviors were less severe than in matched controls. In D1 receptor knockout mice, behavioral responses to ± BayK 8644 appeared exaggerated. These results argue that the behavioral effects of ± BayK 8644 are not mediated by a presynaptic influence. Instead, the behaviors appear to result from a postsynaptic activation of the drug, which does not require but can be modified by D3 or D1/5 receptors. PMID:17028428

  3. Vesicular Monoamine Transporter 2 (VMAT2) Level Regulates MPTP Vulnerability and Clearance of Excess Dopamine in Mouse Striatal Terminals.

    PubMed

    Lohr, Kelly M; Chen, Merry; Hoffman, Carlie A; McDaniel, Miranda J; Stout, Kristen A; Dunn, Amy R; Wang, Minzheng; Bernstein, Alison I; Miller, Gary W

    2016-09-01

    The vesicular monoamine transporter 2 (VMAT2) packages neurotransmitters for release during neurotransmission and sequesters toxicants into vesicles to prevent neuronal damage. In mice, low VMAT2 levels causes catecholaminergic cell loss and behaviors resembling Parkinson's disease, while high levels of VMAT2 increase dopamine release and protect against dopaminergic toxicants. However, comparisons across these VMAT2 mouse genotypes were impossible due to the differing genetic background strains of the animals. Following back-crossing to a C57BL/6 line, we confirmed that mice with approximately 95% lower VMAT2 levels compared with wild-type (VMAT2-LO) display significantly reduced vesicular uptake, progressive dopaminergic terminal loss with aging, and exacerbated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity. Conversely, VMAT2-overexpressing mice (VMAT2-HI) are protected from the loss of striatal terminals following MPTP treatment. We also provide evidence that enhanced vesicular filling in the VMAT2-HI mice modifies the handling of newly synthesized dopamine, indicated by changes in indirect measures of extracellular dopamine clearance. These results confirm the role of VMAT2 in the protection of vulnerable nigrostriatal dopamine neurons and may also provide new insight into the side effects of L-DOPA treatments in Parkinson's disease. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Infantile parkinsonism-dystonia: a dopamine "transportopathy".

    PubMed

    Blackstone, Craig

    2009-06-01

    The dopamine transporter (DAT) retrieves the neurotransmitter dopamine from the synaptic cleft at dopaminergic synapses. Variations in solute carrier family 6A, member 3 (SLC6A3/DAT1), the human gene encoding DAT, have been implicated in attention deficit hyperactivity and bipolar disorders, and DAT is a prominent site of action for drugs such as amphetamines and cocaine. In this issue of the JCI, Kurian et al. report that an autosomal recessive infantile parkinsonism-dystonia is caused by loss-of-function mutations in DAT that impair dopamine reuptake (see the related article beginning on page 1595). Though this might be predicted to result in dopamine excess in the synaptic cleft, it likely also causes depletion of presynaptic dopamine stores and possibly downregulation of postsynaptic dopamine receptor function, resulting in impairments in dopaminergic neurotransmission consistent with the clinical presentation. This is the first report of a genetic alteration in DAT function underlying a parkinsonian disorder.

  5. Noradrenergic innervation of the hypothalamus of rhesus monkeys: distribution of dopamine-beta-hydroxylase immunoreactive fibers and quantitative analysis of varicosities in the paraventricular nucleus.

    PubMed

    Ginsberg, S D; Hof, P R; Young, W G; Morrison, J H

    1993-01-22

    The distribution of noradrenergic processes within the hypothalamus of rhesus monkeys (Macaca mulatta) was examined by immunohistochemistry with an antibody against dopamine-beta-hydroxylase. The results revealed that the pattern of dopamine-beta-hydroxylase immunoreactivity varied systematically throughout the rhesus monkey hypothalamus. Extremely high densities of dopamine-beta-hydroxylase-immunoreactive processes were observed in the paraventricular and supraoptic nuclei, while relatively lower levels were found in the arcuate and dorsomedial nuclei and in the medial preoptic, perifornical, and suprachiasmatic areas. Moderate levels of dopamine-beta-hydroxylase immunoreactivity were found throughout the lateral hypothalamic area and in the internal lamina of the median eminence. Very few immunoreactive processes were found in the ventromedial nucleus or in the mammillary complex. Other midline diencephalic structures were found to have high densities of dopamine-beta-hydroxylase immunoreactivity, including the paraventricular nucleus of the thalamus and a discrete subregion of nucleus reuniens, the magnocellular subfascicular nucleus. A moderate density of dopamine-beta-hydroxylase immunoreactive processes were found in the rhomboid nucleus and zona incerta whereas little dopamine-beta-hydroxylase immunoreactivity was found in the fields of Forel, nucleus reuniens, or subthalamic nucleus. The differential distribution of dopamine-beta-hydroxylase-immunoreactive processes may reflect a potential role of norepinephrine as a regulator of a variety of functions associated with the nuclei that are most heavily innervated, e.g., neuroendocrine release from the paraventricular and supraoptic nuclei, and gonadotropin release from the medial preoptic area and mediobasal hypothalamus. Additionally, quantitative analysis of dopamine-beta-hydroxylase-immunoreactive varicosities was performed on a laser scanning microscope in both magnocellular and parvicellular regions of

  6. Dopamine elevates intracellular zinc concentration in cultured rat embryonic cortical neurons through the cAMP-nitric oxide signaling cascade.

    PubMed

    Hung, Hui-Hsing; Kao, Lung-Sen; Liu, Pei-Shan; Huang, Chien-Chang; Yang, De-Ming; Pan, Chien-Yuan

    2017-07-01

    Zinc ion (Zn 2+ ), the second most abundant transition metal after iron in the body, is essential for neuronal activity and also induces toxicity if the concentration is abnormally high. Our previous results show that exposure of cultured cortical neurons to dopamine elevates intracellular Zn 2+ concentrations ([Zn 2+ ] i ) and induces autophagosome formation but the mechanism is not clear. In this study, we characterized the signaling pathway responsible for the dopamine-induced elevation of [Zn 2+ ] i and the effect of [Zn 2+ ] i in modulating the autophagy in cultured rat embryonic cortical neurons. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a membrane-permeable Zn 2+ chelator, could rescue the cell death and suppress the autophagosome puncta number induced by dopamine. Dopamine treatment increased the lipidation level of the endogenous microtubule-associated protein 1A/1B-light chain 3 (LC3 II), an autophagosome marker. TPEN added 1h before, but not after, dopamine treatment suppressed the dopamine-induced elevation of LC3 II level. Inhibitors of the dopamine D1-like receptor, protein kinase A (PKA), and NOS suppressed the dopamine-induced elevation of [Zn 2+ ] i . PKA activators and NO generators directly increased [Zn 2+ ] i in cultured neurons. Through cell fractionation, proteins with m.w. values between 5 and 10kD were found to release Zn 2+ following NO stimulation. In addition, TPEN pretreatment and an inhibitor against PKA could suppress the LC3 II level increased by NO and dopamine, respectively. Therefore, our results demonstrate that dopamine-induced elevation of [Zn 2+ ] i is mediated by the D1-like receptor-PKA-NO pathway and is important in modulating the cell death and autophagy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Multiple cone pathways are involved in photic regulation of retinal dopamine.

    PubMed

    Qiao, Sheng-Nan; Zhang, Zhijing; Ribelayga, Christophe P; Zhong, Yong-Mei; Zhang, Dao-Qi

    2016-06-30

    Dopamine is a key neurotransmitter in the retina and plays a central role in the light adaptive processes of the visual system. The sole source of retinal dopamine is dopaminergic amacrine cells (DACs). We and others have previously demonstrated that DACs are activated by rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) upon illumination. However, it is still not clear how each class of photosensitive cells generates light responses in DACs. We genetically isolated cone function in mice to specifically examine the cone-mediated responses of DACs and their neural pathways. In addition to the reported excitatory input to DACs from light-increment (ON) bipolar cells, we found that cones alternatively signal to DACs via a retrograde signalling pathway from ipRGCs. Cones also produce ON and light-decrement (OFF) inhibitory responses in DACs, which are mediated by other amacrine cells, likely driven by type 1 and type 2/3a OFF bipolar cells, respectively. Dye injections indicated that DACs had similar morphological profiles with or without ON/OFF inhibition. Our data demonstrate that cones utilize specific parallel excitatory and inhibitory circuits to modulate DAC activity and efficiently regulate dopamine release and the light-adaptive state of the retina.

  8. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats

    PubMed Central

    Espinosa, Pedro; Silva, Roxana A.; Sanguinetti, Nicole K.; Venegas, Francisca C.; Riquelme, Raul; González, Luis F.; Cruz, Gonzalo; Renard, Georgina M.; Moya, Pablo R.; Sotomayor-Zárate, Ramón

    2016-01-01

    We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL); DHT (dihydrotestosterone of 1.0 mg/50 μL); EV (estradiol valerate of 0.1 mg/50 μL); and control (sesame oil of 50 μL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area. PMID:26904299

  9. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats.

    PubMed

    Espinosa, Pedro; Silva, Roxana A; Sanguinetti, Nicole K; Venegas, Francisca C; Riquelme, Raul; González, Luis F; Cruz, Gonzalo; Renard, Georgina M; Moya, Pablo R; Sotomayor-Zárate, Ramón

    2016-01-01

    We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL); DHT (dihydrotestosterone of 1.0 mg/50 μL); EV (estradiol valerate of 0.1 mg/50 μL); and control (sesame oil of 50 μL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area.

  10. Cocaine-induced adaptation of dopamine D2S, but not D2L autoreceptors

    PubMed Central

    Radl, Daniela; Borrelli, Emiliana; Williams, John T; Neve, Kim A

    2017-01-01

    The dopamine D2 receptor has two splice variants, D2S (Short) and D2L (Long). In dopamine neurons, both variants can act as autoreceptors to regulate neuronal excitability and dopamine release, but the roles of each variant are incompletely characterized. In a previous study we used viral receptor expression in D2 receptor knockout mice to show distinct effects of calcium signaling on D2S and D2L autoreceptor function (Gantz et al., 2015). However, the cocaine-induced plasticity of D2 receptor desensitization observed in wild type mice was not recapitulated with this method of receptor expression. Here we use mice with genetic knockouts of either the D2S or D2L variant to investigate cocaine-induced plasticity in D2 receptor signaling. Following a single in vivo cocaine exposure, the desensitization of D2 receptors from neurons expressing only the D2S variant was reduced. This did not occur in D2L-expressing neurons, indicating differential drug-induced plasticity between the variants. PMID:29154756

  11. Cocaine-induced adaptation of dopamine D2S, but not D2L autoreceptors.

    PubMed

    Robinson, Brooks G; Condon, Alec F; Radl, Daniela; Borrelli, Emiliana; Williams, John T; Neve, Kim A

    2017-11-20

    The dopamine D2 receptor has two splice variants, D2S (Short) and D2L (Long). In dopamine neurons, both variants can act as autoreceptors to regulate neuronal excitability and dopamine release, but the roles of each variant are incompletely characterized. In a previous study we used viral receptor expression in D2 receptor knockout mice to show distinct effects of calcium signaling on D2S and D2L autoreceptor function (Gantz et al., 2015). However, the cocaine-induced plasticity of D2 receptor desensitization observed in wild type mice was not recapitulated with this method of receptor expression. Here we use mice with genetic knockouts of either the D2S or D2L variant to investigate cocaine-induced plasticity in D2 receptor signaling. Following a single in vivo cocaine exposure, the desensitization of D2 receptors from neurons expressing only the D2S variant was reduced. This did not occur in D2L-expressing neurons, indicating differential drug-induced plasticity between the variants.

  12. Dopamine-imprinted monolithic column for capillary electrochromatography.

    PubMed

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus

    PubMed Central

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Fà, Mauro; Gessa, Gian Luigi

    2005-01-01

    Background Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 μM), multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant release of DA and NA

  14. Dopamine, Affordance and Active Inference

    PubMed Central

    Friston, Karl J.; Shiner, Tamara; FitzGerald, Thomas; Galea, Joseph M.; Adams, Rick; Brown, Harriet; Dolan, Raymond J.; Moran, Rosalyn; Stephan, Klaas Enno; Bestmann, Sven

    2012-01-01

    The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level. PMID:22241972

  15. Ca2+ channel blockade prevents lysergic acid diethylamide-induced changes in dopamine and serotonin metabolism.

    PubMed

    Antkiewicz-Michaluk, L; Románska, I; Vetulani, J

    1997-07-30

    To investigate the effect of a single and multiple administration of lysergic acid diethylamide (LSD) on cerebral metabolism of dopamine and serotonin, male Wistar rats were treated with low and high doses (0.1 and 2.0 mg/kg i.p.) of LSD and the levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, 3-methoxytyramine, serotonin and 5-hydroxyindoleacetic acid were assayed by HPLC in the nucleus accumbens, striatum and frontal cortex. Some rats received nifedipine, 5 mg/kg i.p., before each injection of LSD to assess the effect of a Ca2+ channel blockade. High-dose LSD treatment (8 x 2 mg/kg per day) caused a strong stimulation of dopamine metabolism in the nucleus accumbens and striatum, and serotonin metabolism in the nucleus accumbens: the changes were observed 24 (but not 1 h) after the last dose. The changes induced by the low-dose treatment (8 x 0.1 mg/kg per day) had a different pattern, suggesting the release of dopamine from vesicles to cytoplasm. Co-administration of nifedipine completely prevented the LSD-induced biochemical changes. The results suggest that Ca2+ channel blocking agents may prevent development of some behavioral consequences of chronically used LSD.

  16. Circuit Analysis of a Drosophila Dopamine Type 2 Receptor That Supports Anesthesia-Resistant Memory.

    PubMed

    Scholz-Kornehl, Sabrina; Schwärzel, Martin

    2016-07-27

    Dopamine is central to reinforcement processing and exerts this function in species ranging from humans to fruit flies. It can do so via two different types of receptors (i.e., D1 or D2) that mediate either augmentation or abatement of cellular cAMP levels. Whereas D1 receptors are known to contribute to Drosophila aversive odor learning per se, we here show that D2 receptors are specific for support of a consolidated form of odor memory known as anesthesia-resistant memory. By means of genetic mosaicism, we localize this function to Kenyon cells, the mushroom body intrinsic neurons, as well as GABAergic APL neurons and local interneurons of the antennal lobes, suggesting that consolidated anesthesia-resistant memory requires widespread dopaminergic modulation within the olfactory circuit. Additionally, dopaminergic neurons themselves require D2R, suggesting a critical role in dopamine release via its recognized autoreceptor function. Considering the dual role of dopamine in balancing memory acquisition (proactive function of dopamine) and its "forgetting" (retroactive function of dopamine), our analysis suggests D2R as central player of either process. Dopamine provides different information; while it mediates reinforcement during the learning act (proactive function), it balances memory performance between two antithetic processes thereafter (retroactive function) (i.e., forgetting and augmentation). Such bidirectional design can also be found at level of dopamine receptors, where augmenting D1 and abating D2 receptors are engaged to balance cellular cAMP levels. Here, we report that consolidated anesthesia-resistant memory (ARM), but not other concomitant memory phases, are sensitive to bidirectional dopaminergic signals. By means of genetic mosaicism, we identified widespread dopaminergic modulation within the olfactory circuit that suggests nonredundant and reiterating functions of D2R in support of ARM. Our results oppose ARM to its concomitant memory phases

  17. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment

    PubMed Central

    Ashok, A H; Marques, T R; Jauhar, S; Nour, M M; Goodwin, G M; Young, A H; Howes, O D

    2017-01-01

    Bipolar affective disorder is a common neuropsychiatric disorder. Although its neurobiological underpinnings are incompletely understood, the dopamine hypothesis has been a key theory of the pathophysiology of both manic and depressive phases of the illness for over four decades. The increased use of antidopaminergics in the treatment of this disorder and new in vivo neuroimaging and post-mortem studies makes it timely to review this theory. To do this, we conducted a systematic search for post-mortem, pharmacological, functional magnetic resonance and molecular imaging studies of dopamine function in bipolar disorder. Converging findings from pharmacological and imaging studies support the hypothesis that a state of hyperdopaminergia, specifically elevations in D2/3 receptor availability and a hyperactive reward processing network, underlies mania. In bipolar depression imaging studies show increased dopamine transporter levels, but changes in other aspects of dopaminergic function are inconsistent. Puzzlingly, pharmacological evidence shows that both dopamine agonists and antidopaminergics can improve bipolar depressive symptoms and perhaps actions at other receptors may reconcile these findings. Tentatively, this evidence suggests a model where an elevation in striatal D2/3 receptor availability would lead to increased dopaminergic neurotransmission and mania, whilst increased striatal dopamine transporter (DAT) levels would lead to reduced dopaminergic function and depression. Thus, it can be speculated that a failure of dopamine receptor and transporter homoeostasis might underlie the pathophysiology of this disorder. The limitations of this model include its reliance on pharmacological evidence, as these studies could potentially affect other monoamines, and the scarcity of imaging evidence on dopaminergic function. This model, if confirmed, has implications for developing new treatment strategies such as reducing the dopamine synthesis and/or release in

  18. Chronic Nicotine Mitigates Aberrant Inhibitory Motor Learning Induced by Motor Experience under Dopamine Deficiency

    PubMed Central

    Krok, Anne C.; Xu, Jian; Contractor, Anis; McGehee, Daniel S.; Zhuang, Xiaoxi

    2016-01-01

    Although dopamine receptor antagonism has long been associated with impairments in motor performance, more recent studies have shown that dopamine D2 receptor (D2R) antagonism, paired with a motor task, not only impairs motor performance concomitant with the pharmacodynamics of the drug, but also impairs future motor performance once antagonism has been relieved. We have termed this phenomenon “aberrant motor learning” and have suggested that it may contribute to motor symptoms in movement disorders such as Parkinson's disease (PD). Here, we show that chronic nicotine (cNIC), but not acute nicotine, treatment mitigates the acquisition of D2R-antagonist-induced aberrant motor learning in mice. Although cNIC mitigates D2R-mediated aberrant motor learning, cNIC has no effect on D1R-mediated motor learning. β2-containing nicotinic receptors in dopamine neurons likely mediate the protective effect of cNIC against aberrant motor learning, because selective deletion of β2 nicotinic subunits in dopamine neurons reduced D2R-mediated aberrant motor learning. Finally, both cNIC treatment and β2 subunit deletion blunted postsynaptic responses to D2R antagonism. These results suggest that a chronic decrease in function or a downregulation of β2-containing nicotinic receptors protects the striatal network against aberrant plasticity and aberrant motor learning induced by motor experience under dopamine deficiency. SIGNIFICANCE STATEMENT Increasingly, aberrant plasticity and aberrant learning are recognized as contributing to the development and progression of movement disorders. Here, we show that chronic nicotine (cNIC) treatment or specific deletion of β2 nicotinic receptor subunits in dopamine neurons mitigates aberrant motor learning induced by dopamine D2 receptor (D2R) blockade in mice. Moreover, both manipulations also reduced striatal dopamine release and blunt postsynaptic responses to D2R antagonists. These results suggest that chronic downregulation of

  19. Neurobiological model of stimulated dopamine neurotransmission to interpret fast-scan cyclic voltammetry data.

    PubMed

    Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Torres, Gonzalo E; Wagner, Amy K

    2015-03-02

    Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Dopamine and anorexia nervosa.

    PubMed

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway.

    PubMed

    Helbing, Cornelia; Brocka, Marta; Scherf, Thomas; Lippert, Michael T; Angenstein, Frank

    2016-12-01

    Several human functional magnetic resonance imaging studies point to an activation of the mesolimbic dopamine system during reward, addiction and learning. We previously found activation of the mesolimbic system in response to continuous but not to discontinuous perforant pathway stimulation in an experimental model that we now used to investigate the role of dopamine release for the formation of functional magnetic resonance imaging responses. The two stimulation protocols elicited blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Inhibition of dopamine D 1/5 receptors abolished the formation of functional magnetic resonance imaging responses in the medial prefrontal/anterior cingulate cortex during continuous but not during discontinuous pulse stimulations, i.e. only when the mesolimbic system was activated. Direct electrical or optogenetic stimulation of the ventral tegmental area caused strong dopamine release but only electrical stimulation triggered significant blood-oxygen level-dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. These functional magnetic resonance imaging responses were not affected by the D 1/5 receptor antagonist SCH23390 but reduced by the N-methyl-D-aspartate receptor antagonist MK801. Therefore, glutamatergic ventral tegmental area neurons are already sufficient to trigger blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Although dopamine release alone does not affect blood-oxygen-level dependent responses it can act as a switch, permitting the formation of blood-oxygen-level dependent responses. © The Author(s) 2015.

  2. Dopamine, urges to smoke, and the relative salience of drug versus non-drug reward.

    PubMed

    Freeman, Tom P; Das, Ravi K; Kamboj, Sunjeev K; Curran, H Valerie

    2015-01-01

    When addicted individuals are exposed to drug-related stimuli, dopamine release is thought to mediate incentive salience attribution, increasing attentional bias, craving and drug seeking. It is unclear whether dopamine acts specifically on drug cues versus other rewards, and if these effects correspond with craving and other forms of cognitive bias. Here, we administered the dopamine D2/D3 agonist pramipexole (0.5 mg) to 16 tobacco smokers in a double-blind placebo-controlled crossover design. Visual fixations on smoking and money images were recorded alongside smoking urges and fluency tasks. Pramipexole attenuated a marked bias in initial orienting towards smoking relative to money but did not alter a maintained attentional bias towards smoking. Pramipexole decreased urges to smoke retrospectively after the task but not on a state scale. Fewer smoking words were generated after pramipexole but phonological and semantic fluency were preserved. Although these treatment effects did not correlate with each other, changes in initial orienting towards smoking and money were inversely related to baseline scores. In conclusion, pramipexole can reduce the salience of an addictive drug compared with other rewards and elicit corresponding changes in smoking urges and cognitive bias. These reward-specific and baseline-dependent effects support an 'inverted-U' shaped profile of dopamine in addiction. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Pure uptake blockers of dopamine can reduce prolactin secretion: studies with diclofensine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Renzo, G.; Amoroso, S.; Taglialatela, M.

    1988-01-01

    The effects of diclofensine, a pure dopamine (DA) uptake inhibitor on 1) /sup 3/H-DA uptake in rat arcuate-periventricular nucleus-median eminence synaptosomes, 2) basal and K+-evoked endogenous DA release from tuberoinfundibular dopaminergic (TIDA) neurons and 3) in vivo prolactin (PRL) secretion were studied. Diclofensine, in concentrations of 0.01, 0.1 and 1 ..mu..M caused a marked decrease of /sup 3/H-DA uptake. In addition, it was unable to stimulate basal endogenous DA release which, on the contrary, was elicited by d-amphetamine in the same concentration. On the other hand, diclofensine caused a 3 fold enhancement on K+-evoked DA release. Finally, the compound, whenmore » administered in vivo to male rats, significantly reduced basal serum PRL levels. The results of the present study seem to indicate that the pharmacological blockade of DA uptake in TIDA neurons is a condition sufficient to cause a reduction of PRL release.« less

  4. Methamphetamine Regulation of Firing Activity of Dopamine Neurons

    PubMed Central

    Lin, Min; Sambo, Danielle

    2016-01-01

    Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca2+ homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca2+-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane. SIGNIFICANCE STATEMENT Methamphetamine (METH) competes with dopamine uptake, increases dopamine efflux via the dopamine transporter, and affects the excitability of

  5. Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans.

    PubMed

    Zald, David H; Cowan, Ronald L; Riccardi, Patrizia; Baldwin, Ronald M; Ansari, M Sib; Li, Rui; Shelby, Evan S; Smith, Clarence E; McHugo, Maureen; Kessler, Robert M

    2008-12-31

    Novelty-seeking personality traits are a major risk factor for the development of drug abuse and other unsafe behaviors. Rodent models of temperament indicate that high novelty responding is associated with decreased inhibitory autoreceptor control of midbrain dopamine neurons. It has been speculated that individual differences in dopamine functioning also underlie the personality trait of novelty seeking in humans. However, differences in the dopamine system of rodents and humans, as well as the methods for assessing novelty responding/seeking across species leave unclear to what extent the animal models inform our understanding of human personality. In the present study we examined the correlation between novelty-seeking traits in humans and D(2)-like (D(2)/D(3)) receptor availability in the substantia nigra/ventral tegmental area. Based on the rodent literature we predicted that novelty seeking would be characterized by lowered levels of D(2)-like (auto)receptor availability in the midbrain. Thirty-four healthy adults (18 men, 16 women) completed the Tridimensional Personality Questionnaire-Novelty-Seeking Scale and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Novelty-Seeking personality traits were inversely associated with D(2)-like receptor availability in the ventral midbrain, an effect that remained significant after controlling for age. We speculate that the lower midbrain (auto)receptor availability seen in high novelty seekers leads to accentuated dopaminergic responses to novelty and other conditions that induce dopamine release.

  6. Chronic treatment with extended release methylphenidate does not alter dopamine systems or increase vulnerability for cocaine self-administration: a study in nonhuman primates.

    PubMed

    Gill, Kathryn E; Pierre, Peter J; Daunais, James; Bennett, Allyson J; Martelle, Susan; Gage, H Donald; Swanson, James M; Nader, Michael A; Porrino, Linda J

    2012-11-01

    Despite the widespread use of stimulant medications for the treatment of attention deficit hyperactivity disorder, few studies have addressed their long-term effects on the developing brain or susceptibility to drug use in adolescence. Here, we determined the effects of chronic methylphenidate (MPH) treatment on brain dopamine (DA) systems, developmental milestones, and later vulnerability to substance abuse in juvenile nonhuman primates. Male rhesus monkeys (approximately 30 months old) were treated daily with either a sustained release formulation of MPH or placebo (N=8 per group). Doses were titrated to achieve initial drug blood serum levels within the therapeutic range in children and adjusted throughout the study to maintain target levels. Growth, including measures of crown-rump length and weight, was assessed before and after 1 year of treatment and after 3-5 months washout. In addition, positron emission tomography scans were performed to quantify binding availability of D2/D3 receptors and dopamine transporters (DATs). Distribution volume ratios were calculated to quantify binding of [¹⁸F]fluoroclebopride (DA D2/D3) and [¹⁸F]-(+)-N-(4-fluorobenzyl)-2β-propanoyl-3β-(4-chlorophenyl)tropane (DAT). Chronic MPH did not differentially alter the course of weight gain or other measures of growth, nor did it influence DAT or D2/D3 receptor availability after 1 year of treatment. However, after washout, the D2/D3 receptor availability of MPH-treated animals did not continue to decline at the same rate as control animals. Acquisition of intravenous cocaine self-administration was examined by first substituting saline for food reinforcement and then cocaine doses (0.001-0.1 mg/kg per injection) in ascending order. Each dose was available for at least five consecutive sessions. The lowest dose of cocaine that maintained response rates significantly higher than saline-contingent rates was operationally defined as acquisition of cocaine reinforcement. There

  7. The growth hormone (GH) response to GH-releasing peptide (His-DTrp-Ala-Trp-DPhe-Lys-NH2), GH-releasing hormone, and thyrotropin-releasing hormone in acromegaly.

    PubMed

    Alster, D K; Bowers, C Y; Jaffe, C A; Ho, P J; Barkan, A L

    1993-09-01

    In patients with acromegaly, GH-producing pituitary tumors release GH in response to specific stimuli such as GH-releasing hormone (GHRH) and are also responsive to a variety of nonspecific stimuli, such as TRH or GnRH, and may exhibit paradoxical responses to glucose and dopamine. In healthy humans, the synthetic peptide GH-releasing peptide (GHRP) (His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) releases GH by a putative mechanism of action that is independent of GHRH. How these tumors respond to GHRP is not well characterized. We studied the GH responses to GHRH, GHRP, and TRH stimulation in 11 patients with active acromegaly. The peak GH responses to GHRP and GHRH were not correlated (r = 0.57; P = 0.066). In contrast, the peak GH responses to GHRP and TRH were highly correlated (r = 0.95; P < 0.001). In conclusion, in patients with acromegaly, the GH response to GHRP is qualitatively normal and does not appear to depend on GHRH.

  8. Methamphetamine-induced neurotoxicity disrupts pharmacologically evoked dopamine transients in the dorsomedial and dorsolateral striatum.

    PubMed

    Robinson, John D; Howard, Christopher D; Pastuzyn, Elissa D; Byers, Diane L; Keefe, Kristen A; Garris, Paul A

    2014-08-01

    Phasic dopamine (DA) signaling, during which burst firing by DA neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here, we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by means of autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH

  9. Pharmacological stimuli decreasing nucleus accumbens dopamine can act as positive reinforcers but have a low addictive potential.

    PubMed

    Marinelli, M; Barrot, M; Simon, H; Oberlander, C; Dekeyne, A; Le Moal, M; Piazza, P V

    1998-10-01

    Opioid peptides, through mu and delta receptors, play an important part in reward. In contrast, the role of kappa receptors is more controversial. We examined the possible positive reinforcing effects of a selective kappa agonist, RU 51599, by studying intravenous self-administration in the rat. The effect of RU 51599 on dopamine release in the nucleus accumbens was also studied, as opioids and dopamine seem to interact in the mediation of reward. The behavioural and dopaminergic effects of RU 51599 were compared with those of the mu agonist heroin. Rats self-administered both RU 51599 (6.5, 20 and 60 microg/inj) and heroin (30 microg/inj) at low ratio requirement. When the ratio requirement, i.e. the number of responses necessary to receive one drug infusion, was increased, self-administration of RU 51599 rapidly extinguished, whereas self-administration of heroin was maintained. Intravenous infusion of RU 51599 (100, 200 and 400 microg) dose-dependently decreased (25, 30 and 40%, respectively) extracellular concentrations of dopamine, as measured by means of microdialysis in freely moving rats. In contrast, heroin increased accumbens dopamine (130% over baseline). These results indicate that kappa receptors, similarly to mu ones, can mediate positive reinforcing effects of opioid peptides. However, the strength of the reinforcement is very low for kappa receptors. This suggests that changes in accumbens dopamine do not correlate with the capacity of a stimulus to induce reward or aversion. In contrast, a parallel seems to exist between an increase in accumbens dopamine and the drive to reach or obtain a positive reinforcer.

  10. Gray-matter volume, midbrain dopamine D2/D3 receptors and drug craving in methamphetamine users.

    PubMed

    Morales, A M; Kohno, M; Robertson, C L; Dean, A C; Mandelkern, M A; London, E D

    2015-06-01

    Dysfunction of the mesocorticolimbic system has a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [(18)F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, P<0.05 corrected for multiple comparisons). Craving for methamphetamine was negatively associated with gray-matter volume in the insula, prefrontal cortex, amygdala, temporal cortex, occipital cortex, cerebellum and thalamus (P<0.05 corrected for multiple comparisons). A relationship between midbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance-use disorders.

  11. Inhibition of tetrodotoxin-resistant sodium current in dorsal root ganglia neurons mediated by D1/D5 dopamine receptors

    PubMed Central

    2013-01-01

    Background Dopaminergic fibers originating from area A11 of the hypothalamus project to different levels of the spinal cord and represent the major source of dopamine. In addition, tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines, is expressed in 8-10% of dorsal root ganglia (DRG) neurons, suggesting that dopamine may be released in the dorsal root ganglia. Dopamine has been shown to modulate calcium current in DRG neurons, but the effects of dopamine on sodium current and on the firing properties of small DRG neurons are poorly understood. Results The effects of dopamine and dopamine receptor agonists were tested on the tetrodotoxin-resistant (TTX-R) sodium current recorded from acutely dissociated small (diameter ≤ 25 μm) DRG neurons. Dopamine (20 μM) and SKF 81297 (10 μM) caused inhibition of TTX-R sodium current in small DRG neurons by 23% and 37%, respectively. In contrast, quinpirole (20 μM) had no effects on the TTX-R sodium current. Inhibition by SKF 81297 of the TTX-R sodium current was not affected when the protein kinase A (PKA) activity was blocked with the PKA inhibitory peptide (6–22), but was greatly reduced when the protein kinase C (PKC) activity was blocked with the PKC inhibitory peptide (19–36), suggesting that activation of D1/D5 dopamine receptors is linked to PKC activity. Expression of D1and D5 dopamine receptors in small DRG neurons, but not D2 dopamine receptors, was confirmed by Western blotting and immunofluorescence analysis. In current clamp experiments, the number of action potentials elicited in small DRG neurons by current injection was reduced by ~ 30% by SKF 81297. Conclusions We conclude that activation of D1/D5 dopamine receptors inhibits TTX-R sodium current in unmyelinated nociceptive neurons and dampens their intrinsic excitability by reducing the number of action potentials in response to stimulus. Increasing or decreasing levels of dopamine in the dorsal root ganglia

  12. Anti-dopamine beta-hydroxylase immunotoxin-induced sympathectomy in adult rats

    NASA Technical Reports Server (NTRS)

    Picklo, M. J.; Wiley, R. G.; Lonce, S.; Lappi, D. A.; Robertson, D.

    1995-01-01

    Anti-dopamine beta-hydroxylase immunotoxin (DHIT) is an antibody-targeted noradrenergic lesioning tool comprised of a monoclonal antibody against the noradrenergic enzyme, dopamine beta-hydroxylase, conjugated to saporin, a ribosome-inactivating protein. Noradrenergic-neuron specificity and completeness and functionality of sympathectomy were assessed. Adult, male Sprague-Dawley rats were given 28.5, 85.7, 142 or 285 micrograms/kg DHIT i.v. Three days after injection, a 6% to 73% decrease in the neurons was found in the superior cervical ganglia of the animals. No loss of sensory, nodose and dorsal root ganglia, neurons was observed at the highest dose of DHIT. In contrast, the immunotoxin, 192-saporin (142 micrograms/kg), lesioned all three ganglia. To assess the sympathectomy, 2 wk after treatment (285 micrograms/kg), rats were anesthetized with urethane (1 g/kg) and cannulated in the femoral artery and vein. DHIT-treated animals' basal systolic blood pressure and heart rate were significantly lower than controls. Basal plasma norepinephrine levels were 41% lower in DHIT-treated animals than controls. Tyramine-stimulated release of norepinephrine in DHIT-treated rats was 27% of controls. Plasma epinephrine levels of DHIT animals were not reduced. DHIT-treated animals exhibited a 2-fold hypersensitivity to the alpha-adrenergic agonist phenylephrine. We conclude that DHIT selectively delivered saporin to noradrenergic neurons resulting in destruction of these neurons. Anti-dopamine beta-hydroxylase immunotoxin administration produces a rapid, irreversible sympathectomy.

  13. Infantile parkinsonism-dystonia: a dopamine “transportopathy”

    PubMed Central

    Blackstone, Craig

    2009-01-01

    The dopamine transporter (DAT) retrieves the neurotransmitter dopamine from the synaptic cleft at dopaminergic synapses. Variations in solute carrier family 6A, member 3 (SLC6A3/DAT1), the human gene encoding DAT, have been implicated in attention deficit hyperactivity and bipolar disorders, and DAT is a prominent site of action for drugs such as amphetamines and cocaine. In this issue of the JCI, Kurian et al. report that an autosomal recessive infantile parkinsonism-dystonia is caused by loss-of-function mutations in DAT that impair dopamine reuptake (see the related article beginning on page 1595). Though this might be predicted to result in dopamine excess in the synaptic cleft, it likely also causes depletion of presynaptic dopamine stores and possibly downregulation of postsynaptic dopamine receptor function, resulting in impairments in dopaminergic neurotransmission consistent with the clinical presentation. This is the first report of a genetic alteration in DAT function underlying a parkinsonian disorder. PMID:19504720

  14. Vitamin D3: A Role in Dopamine Circuit Regulation, Diet-Induced Obesity, and Drug Consumption.

    PubMed

    Trinko, Joseph R; Land, Benjamin B; Solecki, Wojciech B; Wickham, Robert J; Tellez, Luis A; Maldonado-Aviles, Jaime; de Araujo, Ivan E; Addy, Nii A; DiLeone, Ralph J

    2016-01-01

    The influence of micronutrients on dopamine systems is not well defined. Using mice, we show a potential role for reduced dietary vitamin D3 (cholecalciferol) in promoting diet-induced obesity (DIO), food intake, and drug consumption while on a high fat diet. To complement these deficiency studies, treatments with exogenous fully active vitamin D3 (calcitriol, 10 µg/kg, i.p.) were performed. Nondeficient mice that were made leptin resistant with a high fat diet displayed reduced food intake and body weight after an acute treatment with exogenous calcitriol. Dopamine neurons in the midbrain and their target neurons in the striatum were found to express vitamin D3 receptor protein. Acute calcitriol treatment led to transcriptional changes of dopamine-related genes in these regions in naive mice, enhanced amphetamine-induced dopamine release in both naive mice and rats, and increased locomotor activity after acute amphetamine treatment (2.5 mg/kg, i.p.). Alternatively, mice that were chronically fed either the reduced D3 high fat or chow diets displayed less activity after acute amphetamine treatment compared with their respective controls. Finally, high fat deficient mice that were trained to orally consume liquid amphetamine (90 mg/L) displayed increased consumption, while nondeficient mice treated with calcitriol showed reduced consumption. Our findings suggest that reduced dietary D3 may be a contributing environmental factor enhancing DIO as well as drug intake while eating a high fat diet. Moreover, these data demonstrate that dopamine circuits are modulated by D3 signaling, and may serve as direct or indirect targets for exogenous calcitriol.

  15. Dopamine reward prediction error coding.

    PubMed

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  16. Dopamine reward prediction error coding

    PubMed Central

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377

  17. GH in the dwarf dopaminergic D2 receptor knockout mouse: somatotrope population, GH release, and responsiveness to GH-releasing factors and somatostatin.

    PubMed

    García-Tornadú, Isabel; Rubinstein, Marcelo; Gaylinn, Bruce D; Hill, David; Arany, Edith; Low, Malcolm J; Díaz-Torga, Graciela; Becu-Villalobos, Damasia

    2006-09-01

    Recently, the importance of the dopaminergic D2 receptor (D2R) subtype in normal body growth and neonatal GH secretion has been highlighted. Disruption of D2R alters the GHRH-GH-IGF-I axis and impairs body growth in adult male mice. The D2R knockout (KO) dwarf mouse has not been well characterized; we therefore sought to determine somatotrope function in the adult pituitary. Using immunohistochemistry and confocal microscopy, we found a significant decrease in the somatotrope population in pituitaries from KO mice (P=0.043), which was paralleled by a decreased GH output from pituitary cells cultured in vitro. In cells from adult mice the response amplitude to GHRH differed between genotypes (lower in KO), but this difference was less dramatic after taking into account the lower basal release and hormone content in the KO cells. Furthermore, there were no significant differences in cAMP generation in response to GHRH between genotypes. By Western blot, GHRH-receptor in pituitary membranes from KO mice was reduced to 46% of the level found in wildtype (WT) mice (P=0.016). Somatostatin induced a concentration-dependent decrease in GH and prolactin (PRL) secretion in both genotypes, and 1x10(-7) M ghrelin released GH in cells from both genotypes (P=0.017) in a proportionate manner to basal levels. These results suggest that KO somatotropes maintain a regulated secretory function. Finally, we tested the direct effect of dopamine on GH and PRL secretion in cells from both genotypes at 20 days and 6 months of life. As expected, we found that dopamine could reduce PRL levels at both ages in WT mice but not in KO mice, but there was no consistent effect of the neurotransmitter on GH release in either genotype at the ages studied. The present study demonstrates that in the adult male D2R KO mouse, there is a reduction in pituitary GH content and secretory activity. Our results point to an involvement of D2R signaling at the hypothalamic level as dopamine did not release GH

  18. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain.

    PubMed

    Volkow, N D; Wang, G; Fowler, J S; Logan, J; Gerasimov, M; Maynard, L; Ding, Y; Gatley, S J; Gifford, A; Franceschi, D

    2001-01-15

    Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug in children for the treatment of attention deficit hyperactivity disorder (ADHD), yet the mechanisms responsible for its therapeutic effects are poorly understood. Whereas methylphenidate blocks the dopamine transporter (main mechanism for removal of extracellular dopamine), it is unclear whether at doses used therapeutically it significantly changes extracellular dopamine (DA) concentration. Here we used positron emission tomography and [(11)C]raclopride (D2 receptor radioligand that competes with endogenous DA for binding to the receptor) to evaluate whether oral methylphenidate changes extracellular DA in the human brain in 11 healthy controls. We showed that oral methylphenidate (average dose 0.8 +/- 0.11 mg/kg) significantly increased extracellular DA in brain, as evidenced by a significant reduction in B(max)/K(d) (measure of D2 receptor availability) in striatum (20 +/- 12%; p < 0.0005). These results provide direct evidence that oral methylphenidate at doses within the therapeutic range significantly increases extracellular DA in human brain. This result coupled with recent findings of increased dopamine transporters in ADHD patients (which is expected to result in reductions in extracellular DA) provides a mechanistic framework for the therapeutic efficacy of methylphenidate. The increase in DA caused by the blockade of dopamine transporters by methylphenidate predominantly reflects an amplification of spontaneously released DA, which in turn is responsive to environmental stimulation. Because DA decreases background firing rates and increases signal-to-noise in target neurons, we postulate that the amplification of weak DA signals in subjects with ADHD by methylphenidate would enhance task-specific signaling, improving attention and decreasing distractibility. Alternatively methylphenidate-induced increases in DA, a neurotransmitter involved with motivation and reward, could

  19. THE MYSTERIOUS MOTIVATIONAL FUNCTIONS OF MESOLIMBIC DOPAMINE

    PubMed Central

    Salamone, John D.; Correa, Mercè

    2012-01-01

    Summary Nucleus accumbens dopamine is known to play a role in motivational processes, and dysfunctions of mesolimbic dopamine may contribute to motivational symptoms of depression and other disorders, as well as features of substance abuse. Although it has become traditional to label dopamine neurons as “reward” neurons, this is an over-generalization, and it is important to distinguish between aspects of motivation that are differentially affected by dopaminergic manipulations. For example, accumbens dopamine does not mediate primary food motivation or appetite, but is involved in appetitive and aversive motivational processes including behavioral activation, exertion of effort, approach behavior, sustained task engagement, Pavlovian processes and instrumental learning. In this review, we discuss the complex roles of dopamine in behavioral functions related to motivation. PMID:23141060

  20. Stimulation of the medial amygdala enhances medial preoptic dopamine release: implications for male rat sexual behavior.

    PubMed

    Dominguez, J M; Hull, E M

    2001-11-02

    Increased dopamine (DA) in the medial preoptic area (MPOA) facilitates male sexual behavior. A major source of innervation to the MPOA is the medial amygdala (MeA). We now report that chemical stimulation of the MeA enhanced levels of extracellular MPOA DA in anesthetized male rats. These results suggest that DA activity in the MPOA can be regulated by input from the MeA to the MPOA.

  1. Electro-triggering and electrochemical monitoring of dopamine exocytosis from a single cell by using ultrathin electrodes based on Au nanowires

    NASA Astrophysics Data System (ADS)

    Kang, Mijeong; Yoo, Seung Min; Gwak, Raekeun; Eom, Gayoung; Kim, Jihwan; Lee, Sang Yup; Kim, Bongsoo

    2015-12-01

    A sophisticated set of an Au nanowire (NW) stimulator-Au NW detector system is developed for electrical cell stimulation and electrochemical analysis of subsequent exocytosis with very high spatial resolution. Dopamine release from a rat pheochromocytoma cell is more stimulated by a more negative voltage pulse. This system could help to improve the therapeutic efficacy of electrotherapies by providing valuable information on their healing mechanism.A sophisticated set of an Au nanowire (NW) stimulator-Au NW detector system is developed for electrical cell stimulation and electrochemical analysis of subsequent exocytosis with very high spatial resolution. Dopamine release from a rat pheochromocytoma cell is more stimulated by a more negative voltage pulse. This system could help to improve the therapeutic efficacy of electrotherapies by providing valuable information on their healing mechanism. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06021d

  2. Reward system and addiction: what dopamine does and doesn't do.

    PubMed

    Di Chiara, Gaetano; Bassareo, Valentina

    2007-02-01

    Addictive drugs share with palatable food the property of increasing extracellular dopamine (DA), preferentially in the nucleus accumbens shell rather than in the core. However, by acting directly on the brain, drugs bypass the adaptive mechanisms (habituation) that constrain the responsiveness of accumbens shell DA to food reward, abnormally facilitating Pavlovian incentive learning and promoting the acquisition of abnormal DA-releasing properties by drug conditioned stimuli. Thus, whereas Pavlovian food conditioned stimuli release core but not shell DA, drug conditioned stimuli do the opposite, releasing shell but not core DA. This process, which results in the acquisition of excessive incentive-motivational properties by drug conditioned stimuli, initiates the drug addiction process. Neuroadaptive processes related to the chronic influence of drugs on subcortical DA might secondarily impair the function of prefronto-striatal loops, resulting in impairments in impulse control and decision making that form the basis for the compulsive feature of drug seeking and its relapsing character.

  3. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee

    PubMed Central

    Mustard, Julie A.; Pham, Priscilla M.; Smith, Brian H.

    2009-01-01

    Determining the specific molecular pathways through which dopamine affects behavior has been complicated by the presence of multiple dopamine receptor subtypes that couple to different second messenger pathways. The observation of freely moving adult bees in an arena was used to investigate the role of dopamine signaling in regulating the behavior of the honey bee. Dopamine or the dopamine receptor antagonist flupenthixol was injected into the hemolymph of worker honey bees. Significant differences between treated and control bees were seen for all behaviors (walking, stopped, upside down, grooming, flying and fanning), and behavioral shifts were dependent on drug dosage and time after injection. To examine the role of dopamine signaling through a specific dopamine receptor in the brain, RNA interference was used to reduce expression levels of a D1-like receptor, AmDOP2. Injection of Amdop2 dsRNA into the mushroom bodies reduced the levels of Amdop2 mRNA and produced significant changes in the amount of time honey bees spent performing specific behaviors with reductions in time spent walking offset by increases in grooming or time spent stopped. Taken together these results establish that dopamine plays an important role in regulating motor behavior of the honey bee. PMID:19945462

  4. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee.

    PubMed

    Mustard, Julie A; Pham, Priscilla M; Smith, Brian H

    2010-04-01

    Determining the specific molecular pathways through which dopamine affects behavior has been complicated by the presence of multiple dopamine receptor subtypes that couple to different second messenger pathways. The observation of freely moving adult bees in an arena was used to investigate the role of dopamine signaling in regulating the behavior of the honey bee. Dopamine or the dopamine receptor antagonist flupenthixol was injected into the hemolymph of worker honey bees. Significant differences between treated and control bees were seen for all behaviors (walking, stopped, upside down, grooming, flying and fanning), and behavioral shifts were dependent on drug dosage and time after injection. To examine the role of dopamine signaling through a specific dopamine receptor in the brain, RNA interference was used to reduce expression levels of a D1-like receptor, AmDOP2. Injection of Amdop2 dsRNA into the mushroom bodies reduced the levels of Amdop2 mRNA and produced significant changes in the amount of time honey bees spent performing specific behaviors with reductions in time spent walking offset by increases in grooming or time spent stopped. Taken together these results establish that dopamine plays an important role in regulating motor behavior of the honey bee. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors.

    PubMed

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-02-01

    Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [(3)H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. [(3)H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. © 2014 The British Pharmacological Society.

  6. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors

    PubMed Central

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-01-01

    Background and Purpose Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). Experimental Approach The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [3H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. Key Results [3H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Conclusions and Implications Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. PMID:25339241

  7. High Fat Diet Augments Amphetamine Sensitization in Mice: Role of Feeding Pattern, Obesity, and Dopamine Terminal Changes

    PubMed Central

    Fordahl, Steve C.; Locke, Jason L.; Jones, Sara R.

    2016-01-01

    High fat (HF) diet-induced obesity has been shown to augment behavioral responses to psychostimulants that target the dopamine system. The purpose of this study was to characterize dopamine terminal changes induced by a HF diet that correspond with enhanced locomotor sensitization to amphetamine. C57BL/6J mice had limited (2hr 3d/week) or extended (24h 7d/week) access to a HF diet or standard chow for six weeks. Mice were then repeatedly exposed to amphetamine (AMPH), and their locomotor responses to an amphetamine challenge were measured. Fast scan cyclic voltammetry was used to identify changes in dopamine terminal function after AMPH exposure. Exposure to a HF diet reduced dopamine uptake and increased locomotor responses to acute, high-dose AMPH administration compared to chow fed mice. Microdialysis showed elevated extracellular dopamine in the nucleus accumbens (NAc) coincided with enhanced locomotion after acute AMPH in HF-fed mice. All mice exhibited locomotor sensitization to amphetamine, but both extended and limited access to a HF diet augmented this response. Neither HF-fed group showed the robust amphetamine sensitization-induced increases in dopamine release, reuptake, and amphetamine potency observed in chow fed animals. However, the potency of amphetamine as an uptake inhibitor was significantly elevated after sensitization in mice with extended (but not limited) access to HF. Conversely, after amphetamine sensitization, mice with limited (but not extended) access to HF displayed reduced autoreceptor sensitivity to the D2/D3 agonist quinpirole. Additionally, we observed reduced membrane dopamine transporter (DAT) levels after HF, and a shift in DAT localization to the cytosol was detected with limited access to HF. This study showed that different patterns of HF exposure produced distinct dopamine terminal adaptations to repeated AMPH, which differed from chow fed mice, and enhanced sensitization to AMPH. Locomotor sensitization in chow fed mice

  8. TIDAL WAVES: Network mechanisms in the neuroendocrine control of prolactin release.

    PubMed

    Lyons, David J; Broberger, Christian

    2014-10-01

    Neuroendocrine tuberoinfundibular dopamine (TIDA) neurons tonically inhibit pituitary release of the hormone, prolactin. Through the powerful actions of prolactin in promoting lactation and maternal behaviour while suppressing sexual drive and fertility, TIDA neurons play a key role in reproduction. We summarize insights from recent in vitro studies into the membrane properties and network behaviour of TIDA neurons including the observations that TIDA neurons exhibit a robust oscillation that is synchronized between cells and depends on intact gap junction communication. Comparisons are made with phasic firing patterns in other neuronal populations. Modulators involved in the control of lactation - including serotonin, thyrotropin-releasing hormone and prolactin itself - have been shown to change the electrical behaviour of TIDA cells. We propose that TIDA discharge mode may play a central role in tuning the amount of dopamine delivered to the pituitary and hence circulating prolactin concentrations in different reproductive states and pathological conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The area postrema (AP) and the parabrachial nucleus (PBN) are important sites for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the nucleus accumbens (NAc).

    PubMed

    Whiting, Lynda; McCutcheon, James E; Boyle, Christina N; Roitman, Mitchell F; Lutz, Thomas A

    2017-07-01

    The pancreatic hormone amylin and its agonist salmon calcitonin (sCT) act via the area postrema (AP) and the lateral parabrachial nucleus (PBN) to reduce food intake. Investigations of amylin and sCT signaling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) suggest that the eating inhibitory effect of amylin is, in part, mediated through the mesolimbic 'reward' pathway. Indeed, administration of the sCT directly to the VTA decreased phasic dopamine release (DA) in the NAc. However, it is not known if peripheral amylin modulates the mesolimbic system directly or whether this occurs via the AP and PBN. To determine whether and how peripheral amylin or sCT affect mesolimbic reward circuitry we utilized fast scan cyclic voltammetry under anesthesia to measure phasic DA release in the NAc evoked by electrical stimulation of the VTA in intact, AP lesioned and bilaterally PBN lesioned rats. Amylin (50μg/kg i.p.) did not change phasic DA responses compared to saline control rats. However, sCT (50μg/kg i.p.) decreased evoked DA release to VTA-stimulation over 1h compared to saline treated control rats. Further investigations determined that AP and bilateral PBN lesions abolished the ability of sCT to suppress evoked phasic DA responses to VTA-stimulation. These findings implicate the AP and the PBN as important sites for peripheral sCT to decrease evoked DA release in the NAc and suggest that these nuclei may influence hedonic and motivational processes to modulate food intake. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. History of childhood adversity is positively associated with ventral striatal dopamine responses to amphetamine.

    PubMed

    Oswald, Lynn M; Wand, Gary S; Kuwabara, Hiroto; Wong, Dean F; Zhu, Shijun; Brasic, James R

    2014-06-01

    Childhood exposure to severe or chronic trauma is an important risk factor for the later development of adult mental health problems, such as substance abuse. Even in nonclinical samples of healthy adults, persons with a history of significant childhood adversity seem to experience greater psychological distress than those without this history. Evidence from rodent studies suggests that early life stress may impair dopamine function in ways that increase risks for drug abuse. However, the degree to which these findings translate to other species remains unclear. This study was conducted to examine associations between childhood adversity and dopamine and subjective responses to amphetamine in humans. Following intake assessment, 28 healthy male and female adults, aged 18-29 years, underwent two consecutive 90-min positron emission tomography studies with high specific activity [(11)C]raclopride. The first scan was preceded by intravenous saline; the second by amphetamine (AMPH 0.3 mg/kg). Consistent with prior literature, findings showed positive associations between childhood trauma and current levels of perceived stress. Moreover, greater number of traumatic events and higher levels of perceived stress were each associated with higher ventral striatal dopamine responses to AMPH. Findings of mediation analyses further showed that a portion of the relationship between childhood trauma and dopamine release may be mediated by perceived stress. Overall, results are consistent with preclinical findings suggesting that early trauma may lead to enhanced sensitivity to psychostimulants and that this mechanism may underlie increased vulnerability for drug abuse.

  11. Feeding-associated alterations in striatal neurotransmitter release

    NASA Technical Reports Server (NTRS)

    Acworth, I. N.; Ressler, K.; Wurtman, R. J.

    1989-01-01

    Published evidence suggests a role for dopaminergic (DA) brain pathways in feeding-associated behaviors. Using the novel technique of brain microdialysis of striatal extracellular fluid (ECF) as an index of DA release, Church et al. described increases in levels of DA when animals had limited access to pellets, but not with free access. Dopamine release from the nucleus accumbens did increase with free access to pellets post starvation or after food reward. We used permanently implanted microdialysis probes to measure ECF levels of DA, DOPAC, HVA, and large neutral amino acids (LNAA) for up to 72 hours after implantation among rats experiencing different dietary regimens.

  12. Exposure to the Polybrominated Diphenyl Ether Mixture DE-71 Damages the Nigrostriatal Dopamine System: Role of Dopamine Handling in Neurotoxicity

    PubMed Central

    Bradner, Joshua M.; Suragh, Tiffany A.; Wilson, W. Wyatt; Lazo, Carlos R.; Stout, Kristen A.; Kim, Hye Mi; Wang, Min Z.; Walker, Douglas I.; Pennell, Kurt D.; Richardson, Jason R.; Miller, Gary W.; Caudle, W. Michael

    2013-01-01

    In the last several decades polybrominated diphenyl ethers (PBDEs) have replaced the previously banned polychlorinated biphenyls (PCBs) in multiple flame retardant utilities. As epidemiological and laboratory studies have suggested PCBs as a risk factor for Parkinson’s disease (PD), the similarities between PBDEs and PCBs suggest that PBDEs have the potential to be neurotoxic to the dopamine system. The purpose of this study was to evaluate the neurotoxic effects of the PBDE mixture, DE-71, on the nigrostriatal dopamine system and address the role of altered dopamine handling in mediating this neurotoxicity. Using an in vitro model system we found DE-71 effectively caused cell death in a dopaminergic cell line as well as reducing the number of TH+ neurons isolated from VMAT2 WT and LO animals. Assessment of DE-71 neurotoxicity in vivo demonstrated significant deposition of PBDE congeners in the brains of mice, leading to reductions in striatal dopamine and dopamine handling, as well as reductions in the striatal dopamine transporter (DAT) and VMAT2. Additionally, DE-71 elicited a significant locomotor deficit in the VMAT2 WT and LO mice. However, no change was seen in TH expression in dopamine terminal or in the number of dopamine neurons in the substantia nigra pars compacta (SNpc). To date, these are the first data to demonstrate that exposure to PBDEs disrupts the nigrostriatal dopamine system. Given their similarities to PCBs, additional laboratory and epidemiological research should be considered to assess PBDEs as a potential risk factor for PD and other neurological disorders. PMID:23287494

  13. Acetylcholine release in the mesocorticolimbic dopamine system during cocaine seeking: conditioned and unconditioned contributions to reward and motivation.

    PubMed

    You, Zhi-Bing; Wang, Bin; Zitzman, Dawnya; Wise, Roy A

    2008-09-03

    Microdialysis was used to assess the contribution to cocaine seeking of cholinergic input to the mesocorticolimbic dopamine system in ventral tegmental area (VTA). VTA acetylcholine (ACh) was elevated in animals lever pressing for intravenous cocaine and in cocaine-experienced and cocaine-naive animals passively receiving similar "yoked" injections. In cocaine-trained animals, the elevations comprised an initial (first hour) peak to approximately 160% of baseline and a subsequent plateau of 140% of baseline for the rest of the cocaine intake period. In cocaine-naive animals, yoked cocaine injections raised ACh levels to the 140% plateau but did not cause the initial 160% peak. In cocaine-trained animals that received unexpected saline (extinction conditions) rather than the expected cocaine, the initial peak was seen but the subsequent plateau was absent. VTA ACh levels played a causal role and were not just a correlate of cocaine seeking. Blocking muscarinic input to the VTA increased cocaine intake; the increase in intake offset the decrease in cholinergic input, resulting in the same VTA dopamine levels as were seen in the absence of the ACh antagonists. Increased VTA ACh levels (resulting from 10 microM VTA neostigmine infusion) increased VTA dopamine levels and reinstated cocaine seeking in cocaine-trained animals that had undergone extinction; these effects were strongly attenuated by local infusion of a muscarinic antagonist and weakly attenuated by a nicotinic antagonist. These findings identify two cholinergic responses to cocaine self-administration, an unconditioned response to cocaine itself and a conditioned response triggered by cocaine-predictive cues, and confirm that these cholinergic responses contribute to the control of cocaine seeking.

  14. Involvement of the Cannabinoid CB1 Receptor in Modulation of Dopamine Output in the Prefrontal Cortex Associated with Food Restriction in Rats

    PubMed Central

    Biggio, Francesca; Utzeri, Cinzia; Lallai, Valeria; Licheri, Valentina; Lutzu, Stefano; Mostallino, Maria Cristina; Secci, Pietro Paolo; Biggio, Giovanni; Sanna, Enrico

    2014-01-01

    Increase in dopamine output on corticolimbic structures, such as medial prefrontal cortex (mPFC) and nucleus accumbens, has been related to reward effects associated with palatable food or food presentation after a fasting period. The endocannabinoid system regulates feeding behavior through a modulatory action on different neurotransmitter systems, including the dopaminergic system. To elucidate the involvement of type 1 cannabinoid receptors in the regulation of dopamine output in the mPFC associated with feeding in hungry rats, we restricted the food availability to a 2-h period daily for 3 weeks. In food-restricted rats the extracellular dopamine concentration in the mPFC increased starting 80 min before food presentation and returned to baseline after food removal. These changes were attenuated in animals treated with the CB1 receptor antagonist SR141716. To better understand how food restriction can change the response of mesocortical dopaminergic neurons, we studied several components of the neuronal circuit that regulates dopamine output in the mPFC. Patch-clamp experiments revealed that the inhibitory effect of the CB1 receptor agonist WIN 55,212-2 on GABAergic sIPSC frequency was diminished in mPFC neurons of FR compared to fed ad libitum rats. The basal sIPSC frequency resulted reduced in mPFC neurons of food-restricted rats, suggestive of an altered regulation of presynaptic GABA release; these changes were accompanied by an enhanced excitability of mPFC and ventral tegmental area neurons. Finally, type 1 cannabinoid receptor expression in the mPFC was reduced in food-restricted rats. Together, our data support an involvement of the endocannabinoid system in regulation of dopamine release in the mPFC through changes in GABA inhibitory synapses and suggest that the emphasized feeding-associated increase in dopamine output in the mPFC of food-restricted rats might be correlated with an altered expression and function of type 1 cannabinoid receptor in this

  15. Involvement of the cannabinoid CB1 receptor in modulation of dopamine output in the prefrontal cortex associated with food restriction in rats.

    PubMed

    Dazzi, Laura; Talani, Giuseppe; Biggio, Francesca; Utzeri, Cinzia; Lallai, Valeria; Licheri, Valentina; Lutzu, Stefano; Mostallino, Maria Cristina; Secci, Pietro Paolo; Biggio, Giovanni; Sanna, Enrico

    2014-01-01

    Increase in dopamine output on corticolimbic structures, such as medial prefrontal cortex (mPFC) and nucleus accumbens, has been related to reward effects associated with palatable food or food presentation after a fasting period. The endocannabinoid system regulates feeding behavior through a modulatory action on different neurotransmitter systems, including the dopaminergic system. To elucidate the involvement of type 1 cannabinoid receptors in the regulation of dopamine output in the mPFC associated with feeding in hungry rats, we restricted the food availability to a 2-h period daily for 3 weeks. In food-restricted rats the extracellular dopamine concentration in the mPFC increased starting 80 min before food presentation and returned to baseline after food removal. These changes were attenuated in animals treated with the CB1 receptor antagonist SR141716. To better understand how food restriction can change the response of mesocortical dopaminergic neurons, we studied several components of the neuronal circuit that regulates dopamine output in the mPFC. Patch-clamp experiments revealed that the inhibitory effect of the CB1 receptor agonist WIN 55,212-2 on GABAergic sIPSC frequency was diminished in mPFC neurons of FR compared to fed ad libitum rats. The basal sIPSC frequency resulted reduced in mPFC neurons of food-restricted rats, suggestive of an altered regulation of presynaptic GABA release; these changes were accompanied by an enhanced excitability of mPFC and ventral tegmental area neurons. Finally, type 1 cannabinoid receptor expression in the mPFC was reduced in food-restricted rats. Together, our data support an involvement of the endocannabinoid system in regulation of dopamine release in the mPFC through changes in GABA inhibitory synapses and suggest that the emphasized feeding-associated increase in dopamine output in the mPFC of food-restricted rats might be correlated with an altered expression and function of type 1 cannabinoid receptor in this

  16. Sex differences in the relationship of regional dopamine release to affect and cognitive function in striatal and extrastriatal regions using positron emission tomography and [¹⁸F]fallypride.

    PubMed

    Riccardi, Patrizia; Park, Sohee; Anderson, Sharlet; Doop, Mikisha; Ansari, M Sib; Schmidt, Dennis; Baldwin, Ronald

    2011-02-01

    The purpose of this study was to examine sex differences in the correlations of d-amphetamine (d-AMPH) induced displacements of [¹⁸F]fallypride in striatal and extrastriatal regions in relation to affect and cognition. Seven male and six female healthy subjects, whose mean age was 25.9 years, underwent positron emission tomography (PET) with [¹⁸F]fallypride at baseline and 3 h after a 0.43 mg/kg oral dose of d-AMPH. Percent displacements in striatal and extrastriatal regions were calculated using regions of interest (ROI) analysis and on a pixel-by-pixel basis. Subjects underwent neuropsychological testing prior to the baseline PET study and one hour after d-AMPH administration for the second PET. In order to examine the subjective effect of d-AMPH, subjects rated PANAS at baseline and after administration of amphetamine. Correlations of changes in cognition and affect with regional dopamine (DA) release revealed several significant sex related differences. The results of this study demonstrate in vivo sex related differences in the relationship of regional DA release to affect and cognitive function. Copyright © 2010 Wiley-Liss, Inc.

  17. Gray-Matter Volume, Midbrain Dopamine D2/D3 Receptors and Drug Craving in Methamphetamine Users

    PubMed Central

    Morales, Angelica A.; Kohno, Milky; Robertson, Chelsea L.; Dean, Andy C.; Mandelkern, Mark A.; London, Edythe D.

    2015-01-01

    Dysfunction of the mesocorticolimbic system plays a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [18F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, p<0.05 corrected for multiple comparisons). Craving for methamphetamine was negatively associated with gray-matter volume in the insula, prefrontal cortex, amygdala, temporal cortex, occipital cortex, cerebellum, and thalamus (p<0.05 corrected for multiple comparisons). A relationship between midbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance use disorders. PMID:25896164

  18. The oxytocin system promotes resilience to the effects of neonatal isolation on adult social attachment in female prairie voles.

    PubMed

    Barrett, C E; Arambula, S E; Young, L J

    2015-07-21

    Genes and social experiences interact to create variation in social behavior and vulnerability to develop disorders of the social domain. Socially monogamous prairie voles display remarkable diversity in neuropeptide receptor systems and social behavior. Here, we examine the interaction of early-life adversity and brain oxytocin receptor (OTR) density on adult social attachment in female prairie voles. First, pups were isolated for 3 h per day, or unmanipulated, from postnatal day 1-14. Adult subjects were tested on the partner preference (PP) test to assess social attachment and OTR density in the brain was quantified. Neonatal social isolation impaired female PP formation, without affecting OTR density. Accumbal OTR density was, however, positively correlated with the percent of time spent huddling with the partner in neonatally isolated females. Females with high accumbal OTR binding were resilient to neonatal isolation. These results are consistent with the hypothesis that parental nurturing shapes neural systems underlying social relationships by enhancing striatal OTR signaling. Thus, we next determined whether early touch, mimicking parental licking and grooming, stimulates hypothalamic OT neuron activity. Tactile stimulation induced immediate-early gene activity in OT neurons in neonates. Finally, we investigated whether pharmacologically potentiating OT release using a melanocortin 3/4 agonist, melanotan-II (10 mg kg(-1) subcutaneously), would mitigate the social isolation-induced impairments in attachment behavior. Neonatal melanotan-II administration buffered against the effects of early isolation on partner preference formation. Thus, variation in accumbal OTR density and early OT release induced by parental nurturing may moderate susceptibility to early adverse experiences, including neglect.

  19. The oxytocin system promotes resilience to the effects of neonatal isolation on adult social attachment in female prairie voles

    PubMed Central

    Barrett, C E; Arambula, S E; Young, L J

    2015-01-01

    Genes and social experiences interact to create variation in social behavior and vulnerability to develop disorders of the social domain. Socially monogamous prairie voles display remarkable diversity in neuropeptide receptor systems and social behavior. Here, we examine the interaction of early-life adversity and brain oxytocin receptor (OTR) density on adult social attachment in female prairie voles. First, pups were isolated for 3 h per day, or unmanipulated, from postnatal day 1–14. Adult subjects were tested on the partner preference (PP) test to assess social attachment and OTR density in the brain was quantified. Neonatal social isolation impaired female PP formation, without affecting OTR density. Accumbal OTR density was, however, positively correlated with the percent of time spent huddling with the partner in neonatally isolated females. Females with high accumbal OTR binding were resilient to neonatal isolation. These results are consistent with the hypothesis that parental nurturing shapes neural systems underlying social relationships by enhancing striatal OTR signaling. Thus, we next determined whether early touch, mimicking parental licking and grooming, stimulates hypothalamic OT neuron activity. Tactile stimulation induced immediate-early gene activity in OT neurons in neonates. Finally, we investigated whether pharmacologically potentiating OT release using a melanocortin 3/4 agonist, melanotan-II (10 mg kg−1 subcutaneously), would mitigate the social isolation-induced impairments in attachment behavior. Neonatal melanotan-II administration buffered against the effects of early isolation on partner preference formation. Thus, variation in accumbal OTR density and early OT release induced by parental nurturing may moderate susceptibility to early adverse experiences, including neglect. PMID:26196439

  20. Reconsidering Food Reward, Brain Stimulation, and Dopamine: Incentives Act Forward.

    PubMed

    Newquist, Gunnar; Gardner, R Allen

    2015-01-01

    In operant conditioning, rats pressing levers and pigeons pecking keys depend on contingent food reinforcement. Food reward agrees with Skinner's behaviorism, undergraduate textbooks, and folk psychology. However, nearly a century of experimental evidence shows, instead, that food in an operant conditioning chamber acts forward to evoke species-specific feeding behavior rather than backward to reinforce experimenter-defined responses. Furthermore, recent findings in neuroscience show consistently that intracranial stimulation to reward centers and dopamine release, the proposed reward molecule, also act forward to evoke inborn species-specific behavior. These results challenge longstanding views of hedonic learning and must be incorporated into contemporary learning theory.

  1. Dopamine, the medial preoptic area, and male sexual behavior.

    PubMed

    Dominguez, Juan M; Hull, Elaine M

    2005-10-15

    The medial preoptic area (MPOA), at the rostral end of the hypothalamus, is important for the regulation of male sexual behavior. Results showing that male sexual behavior is impaired following MPOA lesions and enhanced with MPOA stimulation support this conclusion. The neurotransmitter dopamine (DA) facilitates male sexual behavior in all studied species, including rodents and humans. Here, we review data indicating that the MPOA is one site where DA may act to regulate male sexual behavior. DA agonists microinjected into the MPOA facilitate sexual behavior, whereas DA antagonists impair copulation, genital reflexes, and sexual motivation. Moreover, microdialysis experiments showed increased release of DA in the MPOA as a result of precopulatory exposure to an estrous female and during copulation. DA may remove tonic inhibition in the MPOA, thereby enhancing sensorimotor integration, and also coordinate autonomic influences on genital reflexes. In addition to sensory stimulation, other factors influence the release of DA in the MPOA, including testosterone, nitric oxide, and glutamate. Here we summarize and interpret these data.

  2. PET evaluation of the dopamine system of the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, N.D.; Fowler, J.S.; Gatley, S.

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors,more » dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.« less

  3. Human dopamine receptor and its uses

    DOEpatents

    Civelli, Olivier; Van Tol, Hubert Henri-Marie

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  4. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms.

    PubMed

    Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana

    2018-01-02

    The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.

  5. Dopamine signaling and myopia development: What are the key challenges.

    PubMed

    Zhou, Xiangtian; Pardue, Machelle T; Iuvone, P Michael; Qu, Jia

    2017-11-01

    In the face of an "epidemic" increase in myopia over the last decades and myopia prevalence predicted to reach 2.5 billion people by the end of this decade, there is an urgent need to develop effective and safe therapeutic interventions to slow down this "myopia booming" and prevent myopia-related complications and vision loss. Dopamine (DA) is an important neurotransmitter in the retina and mediates diverse functions including retina development, visual signaling, and refractive development. Inspired by the convergence of epidemiological and animal studies in support of the inverse relationship between outdoor activity and risk of developing myopia and by the close biological relationship between light exposure and dopamine release/signaling, we felt it is timely and important to critically review the role of DA in myopia development. This review will revisit several key points of evidence for and against DA mediating light control of myopia: 1) the causal role of extracellular retinal DA levels, 2) the mechanism and action of dopamine D1 and D2 receptors and 3) the roles of cellular/circuit retinal pathways. We examine the experiments that show causation by altering DA, DA receptors and visual pathways using pharmacological, transgenic, or visual environment approaches. Furthermore, we critically evaluate the safety issues of a DA-based treatment strategy and some approaches to address these issues. The review identifies the key questions and challenges in translating basic knowledge on DA signaling and myopia from animal studies into effective pharmacological treatments for myopia in children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Long-term studies of dopamine agonists.

    PubMed

    Hubble, Jean P

    2002-02-26

    Dopamine agonists have long been used as adjunctive therapy for the treatment of Parkinson's disease (PD). In more recent years these drugs have also been proved safe and effective as initial therapy in lieu of levodopa in the treatment of PD. Long-term levodopa therapy is associated with motor complications, including fluctuating response patterns and dyskinesia. By initially introducing a dopamine agonist as symptomatic drug therapy, it may be possible to postpone the use of levodopa and delay or prevent the development of motor complications. Recently, four clinical trials have explored this hypothesis by comparing the long-term response and side effects of levodopa with dopamine agonist therapy. The drugs studied have included ropinirole, pramipexole, cabergoline, and pergolide. In each of these projects, the occurrence of motor complications, such as wearing off and dyskinesia, was significantly less in the subjects assigned to initiation of therapy with a dopamine agonist. The addition of levodopa could be postponed by many months or even several years. Therefore, these long-term studies of dopamine agonists support the initiation of a dopamine agonist instead of levodopa in an effort to postpone levodopa-related motor complications. This therapeutic approach may be particularly appropriate in PD patients with a long treatment horizon on the basis of age and general good health. The extension phase of the long-term study comparing pramipexole with levodopa is ongoing, and follow-up information may help to establish the value of this treatment strategy.

  7. Increasing kynurenine brain levels reduces ethanol consumption in mice by inhibiting dopamine release in nucleus accumbens.

    PubMed

    Giménez-Gómez, Pablo; Pérez-Hernández, Mercedes; Gutiérrez-López, María Dolores; Vidal, Rebeca; Abuin-Martínez, Cristina; O'Shea, Esther; Colado, María Isabel

    2018-06-01

    Recent research suggests that ethanol (EtOH) consumption behaviour can be regulated by modifying the kynurenine (KYN) pathway, although the mechanisms involved have not yet been well elucidated. To further explore the implication of the kynurenine pathway in EtOH consumption we inhibited kynurenine 3-monooxygenase (KMO) activity with Ro 61-8048 (100 mg/kg, i.p.), which shifts the KYN metabolic pathway towards kynurenic acid (KYNA) production. KMO inhibition decreases voluntary binge EtOH consumption and EtOH preference in mice subjected to "drinking in the dark" (DID) and "two-bottle choice" paradigms, respectively. This effect seems to be a consequence of increased KYN concentration, since systemic KYN administration (100 mg/kg, i.p.) similarly deters binge EtOH consumption in the DID model. Despite KYN and KYNA being well-established ligands of the aryl hydrocarbon receptor (AhR), administration of AhR antagonists (TMF 5 mg/kg and CH-223191 20 mg/kg, i.p.) and of an agonist (TCDD 50 μg/kg, intragastric) demonstrates that signalling through this receptor is not involved in EtOH consumption behaviour. Ro 61-8048 did not alter plasma acetaldehyde concentration, but prevented EtOH-induced dopamine release in the nucleus accumbens shell. These results point to a critical involvement of the reward circuitry in the reduction of EtOH consumption induced by KYN and KYNA increments. PNU-120596 (3 mg/kg, i.p.), a positive allosteric modulator of α7-nicotinic acetylcholine receptors, partially prevented the Ro 61-8048-induced decrease in EtOH consumption. Overall, our results highlight the usefulness of manipulating the KYN pathway as a pharmacological tool for modifying EtOH consumption and point to a possible modulator of alcohol drinking behaviour. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Flipped Phenyl Ring Orientations of Dopamine Binding with Human and Drosophila Dopamine Transporters: Remarkable Role of Three Nonconserved Residues.

    PubMed

    Yuan, Yaxia; Zhu, Jun; Zhan, Chang-Guo

    2018-03-09

    Molecular modeling and molecular dynamics simulations were performed in the present study to examine the modes of dopamine binding with human and Drosophila dopamine transporters (hDAT and dDAT). The computational data revealed flipped binding orientations of dopamine in hDAT and dDAT due to the major differences in three key residues (S149, G153, and A423 of hDAT vs A117, D121, and S422 of dDAT) in the binding pocket. These three residues dictate the binding orientation of dopamine in the binding pocket, as the aromatic ring of dopamine tends to take an orientation with both the para- and meta-hydroxyl groups being close to polar residues and away from nonpolar residues of the protein. The flipped binding orientations of dopamine in hDAT and dDAT clearly demonstrate a generally valuable insight concerning how the species difference could drastically affect the protein-ligand binding modes, demonstrating that the species difference, which is a factor rarely considered in early drug design stage, must be accounted for throughout the ligand/drug design and discovery processes in general.

  9. Decreased prefrontal cortical dopamine transmission in alcoholism.

    PubMed

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  10. Dopamine, T cells and multiple sclerosis (MS).

    PubMed

    Levite, Mia; Marino, Franca; Cosentino, Marco

    2017-05-01

    Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in

  11. Dopamine in motivational control: rewarding, aversive, and alerting

    PubMed Central

    Bromberg-Martin, Ethan S.; Matsumoto, Masayuki; Hikosaka, Okihide

    2010-01-01

    SUMMARY Midbrain dopamine neurons are well known for their strong responses to rewards and their critical role in positive motivation. It has become increasingly clear, however, that dopamine neurons also transmit signals related to salient but non-rewarding experiences such as aversive and alerting events. Here we review recent advances in understanding the reward and non-reward functions of dopamine. Based on this data, we propose that dopamine neurons come in multiple types that are connected with distinct brain networks and have distinct roles in motivational control. Some dopamine neurons encode motivational value, supporting brain networks for seeking, evaluation, and value learning. Others encode motivational salience, supporting brain networks for orienting, cognition, and general motivation. Both types of dopamine neurons are augmented by an alerting signal involved in rapid detection of potentially important sensory cues. We hypothesize that these dopaminergic pathways for value, salience, and alerting cooperate to support adaptive behavior. PMID:21144997

  12. Divergent effects of norepinephrine, dopamine and substance P on the activation, differentiation and effector functions of human cytotoxic T lymphocytes

    PubMed Central

    2009-01-01

    Background Neurotransmitters are important regulators of the immune system, with very distinct and varying effects on different leukocyte subsets. So far little is known about the impact of signals mediated by neurotransmitters on the function of CD8+ T lymphocytes. Therefore, we investigated the influence of norepinephrine, dopamine and substance P on the key tasks of CD8+ T lymphocytes: activation, migration, extravasation and cytotoxicity. Results The activation of naïve CD8+ T lymphocytes by CD3/CD28 cross-linking was inhibited by norepinephrine and dopamine, which was caused by a downregulation of interleukin (IL)-2 expression via Erk1/2 and NF-κB inhibition. Furthermore, all of the investigated neurotransmitters increased the spontaneous migratory activity of naïve CD8+ T lymphocytes with dopamine being the strongest inducer. In contrast, activated CD8+ T lymphocytes showed a reduced migratory activity in the presence of norepinephrine and substance P. With regard to extravasation we found norepinephrine to induce adhesion of activated CD8+ T cells: norepinephrine increased the interleukin-8 release from endothelium, which in turn had effect on the activated CXCR1+ CD8+ T cells. At last, release of cytotoxic granules from activated cells in response to CD3 cross-linking was not influenced by any of the investigated neurotransmitters, as we have analyzed by measuring the β-hexosamidase release. Conclusion Neurotransmitters are specific modulators of CD8+ T lymphocytes not by inducing any new functions, but by fine-tuning their key tasks. The effect can be either stimulatory or suppressive depending on the activation status of the cells. PMID:19968887

  13. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    PubMed

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  14. Atypical Dopamine Uptake Inhibitors that Provide Clues About Cocaine's Mechanism at the Dopamine Transporter

    NASA Astrophysics Data System (ADS)

    Hauck Newman, Amy; Katz, Jonathan L.

    The dopamine transporter (DAT) has been a primary target for cocaine abuse/addiction medication discovery. However predicted addiction liability and limited clinical evaluation has provided a formidable challenge for development of these agents for human use. The unique and atypical pharmacological profile of the benztropine (BZT) class of dopamine uptake inhibitors, in preclinical models of cocaine effects and abuse, has encouraged further development of these agents. Moreover, in vivo studies have challenged the original DAT hypothesis and demonstrated that DAT occupancy and subsequent increases in dopamine produced by BZT analogues are significantly delayed and long lasting, as compared to cocaine. These important and distinctive elements are critical to the lack of abuse liability among BZT analogues, and improve their potential for development as treatments for cocaine abuse and possibly other neuropsychiatric disorders.

  15. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    PubMed Central

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural reward and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. PMID:24656971

  16. Dopamine agonist withdrawal syndrome: implications for patient care.

    PubMed

    Nirenberg, Melissa J

    2013-08-01

    Dopamine agonists are effective treatments for a variety of indications, including Parkinson's disease and restless legs syndrome, but may have serious side effects, such as orthostatic hypotension, hallucinations, and impulse control disorders (including pathological gambling, compulsive eating, compulsive shopping/buying, and hypersexuality). The most effective way to alleviate these side effects is to taper or discontinue dopamine agonist therapy. A subset of patients who taper a dopamine agonist, however, develop dopamine agonist withdrawal syndrome (DAWS), which has been defined as a severe, stereotyped cluster of physical and psychological symptoms that correlate with dopamine agonist withdrawal in a dose-dependent manner, cause clinically significant distress or social/occupational dysfunction, are refractory to levodopa and other dopaminergic medications, and cannot be accounted for by other clinical factors. The symptoms of DAWS include anxiety, panic attacks, dysphoria, depression, agitation, irritability, suicidal ideation, fatigue, orthostatic hypotension, nausea, vomiting, diaphoresis, generalized pain, and drug cravings. The severity and prognosis of DAWS is highly variable. While some patients have transient symptoms and make a full recovery, others have a protracted withdrawal syndrome lasting for months to years, and therefore may be unwilling or unable to discontinue DA therapy. Impulse control disorders appear to be a major risk factor for DAWS, and are present in virtually all affected patients. Thus, patients who are unable to discontinue dopamine agonist therapy may experience chronic impulse control disorders. At the current time, there are no known effective treatments for DAWS. For this reason, providers are urged to use dopamine agonists judiciously, warn patients about the risks of DAWS prior to the initiation of dopamine agonist therapy, and follow patients closely for withdrawal symptoms during dopamine agonist taper.

  17. Central l-proline attenuates stress-induced dopamine and serotonin metabolism in the chick forebrain.

    PubMed

    Hamasu, Kousuke; Shigemi, Kazutaka; Kabuki, Yusuke; Tomonaga, Shozo; Denbow, D Michael; Furuse, Mitsuhiro

    2009-08-21

    Using microdialysis, we investigated the effect of l-proline on monoamine release in the medio-rostral neostriatum/hyperstriatum ventrale (MNH) of freely moving and restricted chicks. A 30 min handling-stress resulted in a significant increase in extracellular homovallinic acid (HVA), a dopamine metabolite, and 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, in the MNH. l-Proline, perfused through the microdialysis probe into the MNH during the stressed condition, significantly attenuated the average dialysate concentration of HVA produced by handling-stress. Handling-stress resulted in a significant increase in 5-HIAA levels in the control group, which were attenuated by profusion with l-proline. l-Proline did not significantly modify basal concentrations of HVA or 5-HIAA in the MNH during control conditions. These results show that perfusion of l-proline modified the turnover/metabolism of dopamine and serotonin in the MNH caused by handling-stress.

  18. Systemic effects of low-dose dopamine during administration of cytarabine.

    PubMed

    Connelly, James; Benani, Dina J; Newman, Matthew; Burton, Bradley; Crow, Jessica; Levis, Mark

    2017-09-01

    Purpose Low-dose dopamine has been utilized to improve renal blood flow, urine output, and reduce drug-induced nephrotoxicity. The purpose of this study was to assess changes in renal function, cardiovascular adverse events, and neurologic toxicity in patients receiving cytarabine with or without low-dose dopamine. Methods A retrospective, single-center, cohort study of patients receiving cytarabine at 667 mg/m 2 /dose or greater, with or without dopamine at ≤5 mcg/kg/min. Cohorts were based upon initiation or absence of low-dose dopamine; cytarabine only, cytarabine + pre- and day of low-dose dopamine, and cytarabine + post-low-dose dopamine. Renal outcomes (urine output, serum creatinine, and creatinine clearance) were compared with baseline and between cohorts. Safety endpoints (arrhythmias, tachycardia, and neurotoxicity) were compared between cohorts based on low-dose dopamine exposure. Results There was no difference in urine output from baseline in all cohorts. Comparing cytarabine only and pre- and day of low-dose dopamine cohorts, there was no difference in urine output. In those receiving low-dose dopamine, there was no difference in serum creatinine and creatinine clearance from baseline. No arrhythmias were documented during the study period, and there was no difference in the incidence of tachycardia between groups (P = 0.66). Neurotoxicity was reported in three patients who were on low-dose dopamine. Conclusion Though variation existed in individual patients administered low-dose dopamine, the use of low-dose dopamine did not significantly impact renal function in this small sample at a single institution. In addition, low-dose dopamine did not negatively impact cardiovascular function.

  19. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration

    PubMed Central

    Mor, Danielle E.; Tsika, Elpida; Mazzulli, Joseph R.; Gould, Neal S.; Kim, Hanna; Daniels, Malcolm J.; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L.; Tan, Victor X.; Kalb, Robert G.; Caldwell, Kim A.; Caldwell, Guy A.; Wolfe, John H.; Ischiropoulos, Harry

    2018-01-01

    Parkinson’s disease is defined by the loss of dopaminergic neurons in the substantia nigra and formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated dopamine levels in addition to α-synuclein expression. Nigra-targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine without damaging neurons in non-transgenic mice. In contrast, raising dopamine in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable C. elegans models expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. The data suggest a unique mechanism linking two cardinal features of Parkinson’s disease, dopaminergic cell death and α-synuclein aggregation. PMID:28920936

  20. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    PubMed

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  1. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [18F]Fallypride.

    PubMed

    Naylor, Jennifer E; Hiranita, Takato; Matazel, Katelin S; Zhang, Xuan; Paule, Merle G; Goodwin, Amy K

    2017-10-01

    Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D 2 /D 3 receptor availability in the nonhuman primate brain with the use of the radioligand [ 18 F]fallypride and positron emission tomography (PET). Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D 2 /D 3 antagonist, [ 18 F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUV ROI /SUV cerebellum ) were calculated to compare saline and nicotine effects in each ROI. Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [ 18 F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine. Published by Elsevier B.V.

  2. Layered reward signalling through octopamine and dopamine in Drosophila.

    PubMed

    Burke, Christopher J; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott

    2012-12-20

    Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neurons. Part of the octopamine signal requires the α-adrenergic-like OAMB receptor in an identified subset of mushroom-body-targeted dopamine neurons. Octopamine triggers an increase in intracellular calcium in these dopamine neurons, and their direct activation can substitute for sugar to form appetitive memory, even in flies lacking octopamine. Analysis of the β-adrenergic-like OCTβ2R receptor reveals that octopamine-dependent reinforcement also requires an interaction with dopamine neurons that control appetitive motivation. These data indicate that sweet taste engages a distributed octopamine signal that reinforces memory through discrete subsets of mushroom-body-targeted dopamine neurons. In addition, they reconcile previous findings with octopamine and dopamine and suggest that reinforcement systems in flies are more similar to mammals than previously thought.

  3. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    PubMed Central

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  4. No association between schizophrenia and polymorphisms within the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, J.; Williams, J.; Asherson, P.

    1995-02-27

    It has been suggested that the cytochrome P450 mono-oxygenase, debrisoquine 4-hydroxylase, is involved in the catabolism and processing of neurotransmitters subsequent to their reuptake into target cells. It is also thought to be related to the dopamine transporter that acts to take released dopamine back up into presynaptic terminals. The present study used the association approach to test the hypothesis that mutations in the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT) confer susceptibility to schizophrenia. There were no differences in allele or genotype frequencies between patients and controls in the mutations causing the poor metaboliser phenotype inmore » CYP2D6. In addition there was no association found between schizophrenia and a 48 bp repeat within the 3{prime} untranslated region of DAT. 18 refs., 2 tabs.« less

  5. Effects of acute nicotine on hemodynamics and binding of [11C]raclopride to dopamine D2,3 receptors in pig brain.

    PubMed

    Cumming, Paul; Rosa-Neto, Pedro; Watanabe, Hideaki; Smith, Donald; Bender, Dirk; Clarke, Paul B S; Gjedde, Albert

    2003-07-01

    Positive reinforcing properties of nicotine and the psychostimulants have been attributed to elevated dopamine release in the basal ganglia. It is well known that the specific binding of [(11)C]raclopride to dopamine D(2,3) receptors in living striatum is reduced by cocaine and amphetamines, revealing increased competition between endogenous dopamine and [(11)C]raclopride for dopamine D(2,3) receptors. However, the sensitivity of [(11)C]raclopride binding to nicotine-induced dopamine release is less well documented. In order to provide the basis for mapping effects of nicotine, we first optimized reference tissue methods for quantifying [(11)C]raclopride binding sites in striatum of living pigs (n = 16). In the same animals, the rate of cerebral blood flow (CBF) was mapped using [(15)O]water. Neither a low dose of nicotine (50 mu kg(-1), iv) nor a high dose of nicotine (500 microg kg(-1), iv) altered CBF in the pig brain, an important condition for calculating the binding of radioligands when using a reference tissue to estimate the free ligand concentration. The methods of Logan and of Lammertsma were compared using the cerebellum or the occipital cortex as reference tissues for calculating the binding potential (pB) of [(11)C]raclolpride in brain. Irrespective of the method used, the mean undrugged baseline pB in striatum (ca. 2.0) was significantly asymmetric, with highest binding in the left caudate and right putamen. Test-retest estimates of pB were stable. Subtraction of Logan pB maps revealed that the low dose of nicotine reduced the pB of [(11)C]raclopride by 10% in a cluster of voxels in the left anteroventral striatum, but this effect did not persist after correction for multiple comparisons. The high dose of nicotine (n = 9) acutely reduced pB by 10% bilaterally in the ventral striatum; 3 h after the high nicotine dose, the reductions had shifted dorsally and caudally into the caudate and putamen. Evidently, nicotine challenge enhances the competition

  6. Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder.

    PubMed

    Berk, M; Dodd, S; Kauer-Sant'anna, M; Malhi, G S; Bourin, M; Kapczinski, F; Norman, T

    2007-01-01

    Rational therapeutic development in bipolar is hampered by a lack of pathophysiological model. However, there is a wealth of converging data on the role of dopamine in bipolar disorder. This paper therefore examines the possibility of a dopamine hypothesis for bipolar disorder. A literature search was conducted using standard search engines Embase, PyschLIT, PubMed and MEDLINE. In addition, papers and book chapters known to the authors were retrieved and examined for further relevant articles. Collectively, in excess of 100 articles were reviewed from which approximately 75% were relevant to the focus of this paper. Pharmacological models suggest a role of increased dopaminergic drive in mania and the converse in depression. In Parkinson's disease, administration of high-dose dopamine precursors can produce a 'maniform' picture, which switches into a depressive analogue on withdrawal. It is possible that in bipolar disorder there is a cyclical process, where increased dopaminergic transmission in mania leads to a secondary down regulation of dopaminergic receptor sensitivity over time. This may lead to a period of decreased dopaminergic transmission, corresponding with the depressive phase, and the repetition of the cycle. This model, if verified, may have implications for rational drug development.

  7. Increased Striatal Dopamine Synthesis Capacity in Gambling Addiction.

    PubMed

    van Holst, Ruth J; Sescousse, Guillaume; Janssen, Lieneke K; Janssen, Marcel; Berry, Anne S; Jagust, William J; Cools, Roshan

    2018-06-15

    The hypothesis that dopamine plays an important role in the pathophysiology of pathological gambling is pervasive. However, there is little to no direct evidence for a categorical difference between pathological gamblers and healthy control subjects in terms of dopamine transmission in a drug-free state. Here we provide evidence for this hypothesis by comparing dopamine synthesis capacity in the dorsal and ventral parts of the striatum in 13 pathological gamblers and 15 healthy control subjects. This was achieved using [ 18 F]fluoro-levo-dihydroxyphenylalanine dynamic positron emission tomography scans and striatal regions of interest that were hand-drawn based on visual inspection of individual structural magnetic resonance imaging scans. Our results show that dopamine synthesis capacity was increased in pathological gamblers compared with healthy control subjects. Dopamine synthesis was 16% higher in the caudate body, 17% higher in the dorsal putamen, and 17% higher in the ventral striatum in pathological gamblers compared with control subjects. Moreover, dopamine synthesis capacity in the dorsal putamen and caudate head was positively correlated with gambling distortions in pathological gamblers. Taken together, these results provide empirical evidence for increased striatal dopamine synthesis in pathological gambling. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. The sensory features of a food cue influence its ability to act as an incentive stimulus and evoke dopamine release in the nucleus accumbens core

    PubMed Central

    Bryan, Myranda A.; Popov, Pavlo; Scarff, Raymond; Carter, Cody; Wright, Erin; Aragona, Brandon J.; Robinson, Terry E.

    2016-01-01

    The sensory properties of a reward-paired cue (a conditioned stimulus; CS) may impact the motivational value attributed to the cue, and in turn influence the form of the conditioned response (CR) that develops. A cue with multiple sensory qualities, such as a moving lever-CS, may activate numerous neural pathways that process auditory and visual information, resulting in CRs that vary both within and between individuals. For example, CRs include approach to the lever-CS itself (rats that “sign-track”; ST), approach to the location of reward delivery (rats that “goal-track”; GT), or an “intermediate” combination of these behaviors. We found that the multimodal sensory features of the lever-CS were important to the development and expression of sign-tracking. When the lever-CS was covered, and thus could only be heard moving, STs not only continued to approach the lever location but also started to approach the food cup during the CS period. While still predictive of reward, the auditory component of the lever-CS was a much weaker conditioned reinforcer than the visible lever-CS. This plasticity in behavioral responding observed in STs closely resembled behaviors normally seen in rats classified as “intermediates.” Furthermore, the ability of both the lever-CS and the reward-delivery to evoke dopamine release in the nucleus accumbens was also altered by covering the lever—dopamine signaling in STs resembled neurotransmission observed in rats that normally only GT. These data suggest that while the visible lever-CS was attractive, wanted, and had incentive value for STs, when presented in isolation, the auditory component of the cue was simply predictive of reward, lacking incentive salience. Therefore, the specific sensory features of cues may differentially contribute to responding and ensure behavioral flexibility. PMID:27918279

  9. Amphetamine Self-Administration Attenuates Dopamine D2 Autoreceptor Function

    PubMed Central

    Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong

    2014-01-01

    Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [35S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction. PMID:24513972

  10. Amphetamine self-administration attenuates dopamine D2 autoreceptor function.

    PubMed

    Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong

    2014-07-01

    Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [(35)S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction.

  11. Dopamine and dopamine receptor D1 associated with decreased social interaction.

    PubMed

    Liu, Qiang; Shi, Jieyun; Lin, Rongfei; Wen, Tieqiao

    2017-05-01

    Deficits in social interaction are hallmarks of neurological and psychiatric disorders. However, its underlying mechanism is still unclear. Here, we show that the loss of dendritic cell factor 1 (Dcf1) in the nervous system of mice induces social interaction deficiency, autism-like behaviour, and influences social interaction via the dopamine system. Dopamine receptor D1 agonist rescues this social cognition phenotype, and improves short-term plasticity. Together, this study presents a new genetic mechanism that affects social interaction and may provide a new way to improve positive social interaction and treat autism spectrum disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Illicit dopamine transients: reconciling actions of abused drugs.

    PubMed

    Covey, Dan P; Roitman, Mitchell F; Garris, Paul A

    2014-04-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. In vitro pharmacology of aripiprazole, its metabolite and experimental dopamine partial agonists at human dopamine D2 and D3 receptors.

    PubMed

    Tadori, Yoshihiro; Forbes, Robert A; McQuade, Robert D; Kikuchi, Tetsuro

    2011-10-15

    Aripiprazole is the first dopamine D(2)/D(3) receptor partial agonist successfully developed and ultimately approved for treatment of a broad spectrum of psychiatric and neurological disorders. Aripiprazole's dopamine D(2) and serotonin 5-HT(1A) receptor partial agonist activities have been postulated to confer clinical efficacy without marked sedation, and a relatively favorable overall side-effect profile. Using aripiprazole's unique profile as a benchmark for new dopamine partial agonist development may facilitate discovery of new antipsychotics. We conducted an in vitro comparative analysis between aripiprazole, and its human metabolite OPC-14857 (7-(4-[4-(2,3-dichlorophenyl)-1-piperazinyl)butoxy)-2(1H)-quinolinone)); RGH-188 (trans-1-[4-[2-[4-(2,3-dichlorophenyl)piperazine-1-yl]ethyl]cyclohexyl]-3,3-dimethylurea), and its metabolite didesmethyl-RGH-188 (DDM-RGH-188); as well as bifeprunox, sarizotan, N-desmethylclozapine (NDMC; clozapine metabolite), and SDZ 208-912 (N-[(8α)-2-chloro-6-methylergolin-8-yl]-2,2-dimethylpropanamide). In vitro pharmacological assessment included inhibition of forskolin-stimulated cAMP accumulation and the reversal of dopamine-induced inhibition in clonal Chinese hamster ovary cell lines expressing D(2S), D(2L), D(3) Ser-9 and D(3) Gly-9 for human dopamine receptors. All test compounds behaved as dopamine D(2)/D(3) receptor partial agonists. Aripiprazole's intrinsic activity at dopamine D(2S) and D(2L) receptors was similar to that of OPC-14857 and RGH-188; lower than that of dopamine and bifeprunox; and higher than that of DDM-RGH-188, SDZ 208-912, sarizotan, and NDMC. Aripiprazole's intrinsic activity at dopamine D(3) Ser-9 and D(3) Gly-9 receptors was similar to that of OPC-14857 and sarizotan; lower than that of dopamine, bifeprunox, RGH-188 and DDM-RGH-188; and higher than that of SDZ 208-912 and NDMC. A consolidated assessment of these findings may help defining the most appropriate magnitude of intrinsic activity at

  14. Studies on the role of dopamine in the degeneration of 5-HT nerve endings in the brain of Dark Agouti rats following 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy') administration

    PubMed Central

    Colado, M I; O'Shea, E; Granados, R; Esteban, B; Martín, A B; Green, A R

    1999-01-01

    We investigated whether dopamine plays a role in the neurodegeneration of 5-hydroxytryptamine (5-HT) nerve endings occurring in Dark Agouti rat brain after 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy') administration. Haloperidol (2 mg kg−1 i.p.) injected 5 min prior and 55 min post MDMA (15 mg kg−1 i.p.) abolished the acute MDMA-induced hyperthermia and attenuated the neurotoxic loss of 5-HT 7 days later. When the rectal temperature of MDMA+haloperidol treated rats was kept elevated, this protective effect was marginal. MDMA (15 mg kg−1) increased the dopamine concentration in the dialysate from a striatal microdialysis probe by 800%. L-DOPA (25 mg kg−1 i.p., plus benserazide, 6.25 mg kg−1 i.p.) injected 2 h after MDMA (15 mg kg−1) enhanced the increase in dopamine in the dialysate, but subsequent neurodegeneration was unaltered. L-DOPA (25 mg kg−1) injected before a sub-toxic dose of MDMA (5 mg kg−1) failed to induce neurodegeneration. The MDMA-induced increase in free radical formation in the hippocampus (indicated by increased 2,3- and 2,5-dihydroxybenzoic acid in a microdialysis probe perfused with salicylic acid) was unaltered by L-DOPA. The neuroprotective drug clomethiazole (50 mg kg−1 i.p.) did not influence the MDMA-induced increase in extracellular dopamine. These data suggest that previous observations on the protective effect of haloperidol and potentiating effect of L-DOPA on MDMA-induced neurodegeneration may have resulted from effects on MDMA-induced hyperthermia. The increased extracellular dopamine concentration following MDMA may result from effects of MDMA on dopamine re-uptake, monoamine oxidase and 5-HT release rather than an ‘amphetamine-like' action on dopamine release, thus explaining why the drug does not induce degeneration of dopamine nerve endings. PMID:10193771

  15. Gastric mucosal lesions induced by complete dopamine system failure in rats. The effects of dopamine agents, ranitidine, atropine, omeprazole and pentadecapeptide BPC 157.

    PubMed

    Sikiric, P; Separovic, J; Buljat, G; Anic, T; Stancic-Rokotov, D; Mikus, D; Duplancic, B; Marovic, A; Zoricic, I; Prkacin, I; Lovric-Bencic, M; Aralica, G; Ziger, T; Perovic, D; Jelovac, N; Dodig, G; Rotkvic, I; Mise, S; Seiwerth, S; Turkovic, B; Grabarevic, Z; Petek, M; Rucman, R

    2000-01-01

    Up to now, for gastric lesions potentiation or induction, as well as determination of endogenous dopamine significance, dopamine antagonist or dopamine vesicle depletor were given separately. Therefore, without combination studies, the evidence for dopamine significance remains split on either blockade of dopamine post-synaptic receptor or inhibition of dopamine storage, essentially contrasting with endogenous circumstances, where both functions could be simultaneously disturbed. For this purpose, a co-administration of reserpine and haloperidol, a dopamine granule depletor combined with a dopamine antagonist with pronounced ulcerogenic effect, was tested, and the rats were sacrificed 24 h after injurious agent(s) administration. Haloperidol (5 mg x kg(-1) b.w. i.p.), given alone, produced the lesions in all rats. Reserpine (5 mg x kg(-1) b.w. i.p.), given separately, also produced lesions. When these agents were given together, the lesions were apparently larger than in the groups injured with separate administration of either haloperidol or reserpine alone. Along with our previous results, when beneficial agents were co-administered, all dopaminomimetics (bromocriptine 10 mg, apomophine 1 mg, amphetamine 20 mg x kg(-1) i.p.) apparently attenuated the otherwise consistent haloperidol-gastric lesions. Likewise, an apparent inhibition of the reserpine-lesions was noted as well. However, if they were given in rats injured with combination of haloperidol and reserpine, their otherwise prominent beneficial effects were absent. Ranitidine (10 mg), omeprazole (10 mg), atropine (10 mg), pentadecapeptide BPC 157 (Gly-Glu-Pro-Pro-Pro-Gly-Lys-Pro-Ala-Asp-Asp-Ala-Gly-Leu-Val) (10 microg or 10 ng x kg(-1) i.p.) evidently prevented both haloperidol-gastric lesions and reserpine-gastric lesions. Confronted with potentiated lesions following a combination of haloperidol and reserpine, these agents maintained their beneficial effects, noted in the rats treated with either

  16. Scalable Nanostructured Carbon Electrode Arrays for Enhanced Dopamine Detection.

    PubMed

    Demuru, Silvia; Nela, Luca; Marchack, Nathan; Holmes, Steven J; Farmer, Damon B; Tulevski, George S; Lin, Qinghuang; Deligianni, Hariklia

    2018-04-27

    Dopamine is a neurotransmitter that modulates arousal and motivation in humans and animals. It plays a central role in the brain "reward" system. Its dysregulation is involved in several debilitating disorders such as addiction, depression, Parkinson's disease, and schizophrenia. Dopamine neurotransmission and its reuptake in extracellular space takes place with millisecond temporal and nanometer spatial resolution. Novel nanoscale electrodes are needed with superior sensitivity and improved spatial resolution to gain an improved understanding of dopamine dysregulation. We report on a scalable fabrication of dopamine neurochemical probes of a nanostructured glassy carbon that is smaller than any existing dopamine sensor and arrays of more than 6000 nanorod probes. We also report on the electrochemical dopamine sensing of the glassy carbon nanorod electrode. Compared with a carbon fiber, the nanostructured glassy carbon nanorods provide about 2× higher sensitivity per unit area for dopamine sensing and more than 5× higher signal per unit area at low concentration of dopamine, with comparable LOD and time response. These glassy carbon nanorods were fabricated by pyrolysis of a lithographically defined polymeric nanostructure with an industry standard semiconductor fabrication infrastructure. The scalable fabrication strategy offers the potential to integrate these nanoscale carbon rods with an integrated circuit control system and with other complementary metal oxide semiconductor (CMOS) compatible sensors.

  17. 5-(2-Aminopropyl)benzofuran and phenazepam demonstrate the possibility of dependence by increasing dopamine levels in the brain.

    PubMed

    Cha, Hye Jin; Lee, Kwang-Wook; Eom, Jang-Hyeon; Kim, Young-Hoon; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Kim, Hyung Soo

    2016-10-01

    Although 5-(2-aminopropyl)benzofuran (5-APB) and 7-bromo-5-(2-chlorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one (phenazepam) are being used as recreational drugs, research on their dependence liability or mechanisms of action is lacking. The present study aimed to evaluate the behavioral effects and dependence liability of these drugs using conditioned place preference and self-administration paradigms in rodents. Additionally, biochemical techniques were used to assess the substance-induced alterations in synaptosome-released dopamine. While both of the tested substances elicited increases in conditioned place preference and dopamine, neither of them facilitated self-administration, suggesting that 5-APB and phenazepam have rewarding effects, rather than reinforcing effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Noncovalent Interactions between Dopamine and Regular and Defective Graphene.

    PubMed

    Fernández, Ana C Rossi; Castellani, Norberto J

    2017-08-05

    The role of noncovalent interactions in the adsorption of biological molecules on graphene is a subject of fundamental interest regarding the use of graphene as a material for sensing and drug delivery. The adsorption of dopamine on regular graphene and graphene with monovacancies (GV) is theoretically studied within the framework of density functional theory. Several adsorption modes are considered, and notably those in which the dopamine molecule is oriented parallel or quasi-parallel to the surface are the more stable. The adsorption of dopamine on graphene implies an attractive interaction of a dispersive nature that competes with Pauli repulsion between the occupied π orbitals of the dopamine ring and the π orbitals of graphene. If dopamine adsorbs at the monovacancy in the A-B stacking mode, a hydrogen bond is produced between one of the dopamine hydroxy groups and one carbon atom around the vacancy. The electronic charge redistribution due to adsorption is consistent with an electronic drift from the graphene or GV surface to the dopamine molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Selective Deletion of GRK2 Alters Psychostimulant-Induced Behaviors and Dopamine Neurotransmission

    PubMed Central

    Daigle, Tanya L; Ferris, Mark J; Gainetdinov, Raul R; Sotnikova, Tatyana D; Urs, Nikhil M; Jones, Sara R; Caron, Marc G

    2014-01-01

    GRK2 is a G protein-coupled receptor kinase (GRK) that is broadly expressed and is known to regulate diverse types of receptors. GRK2 null animals exhibit embryonic lethality due to a severe developmental heart defect, which has precluded the study of this kinase in the adult brain. To elucidate the specific role of GRK2 in the brain dopamine (DA) system, we used a conditional gene knockout approach to selectively delete GRK2 in DA D1 receptor (D1R)-, DA D2 receptor (D2R)-, adenosine 2A receptor (A2AR)-, or DA transporter (DAT)-expressing neurons. Here we show that select GRK2-deficient mice display hyperactivity, hyposensitivity, or hypersensitivity to the psychomotor effects of cocaine, altered striatal signaling, and DA release and uptake. Mice with GRK2 deficiency in D2R-expressing neurons also exhibited increased D2 autoreceptor activity. These findings reveal a cell-type-specific role for GRK2 in the regulation of normal motor behavior, sensitivity to psychostimulants, dopamine neurotransmission, and D2 autoreceptor function. PMID:24776686

  20. A Conserved Dopamine-Cholecystokinin Signaling Pathway Shapes Context–Dependent Caenorhabditis elegans Behavior

    PubMed Central

    Bhattacharya, Raja; Touroutine, Denis; Barbagallo, Belinda; Climer, Jason; Lambert, Christopher M.; Clark, Christopher M.; Alkema, Mark J.; Francis, Michael M.

    2014-01-01

    An organism's ability to thrive in changing environmental conditions requires the capacity for making flexible behavioral responses. Here we show that, in the nematode Caenorhabditis elegans, foraging responses to changes in food availability require nlp-12, a homolog of the mammalian neuropeptide cholecystokinin (CCK). nlp-12 expression is limited to a single interneuron (DVA) that is postsynaptic to dopaminergic neurons involved in food-sensing, and presynaptic to locomotory control neurons. NLP-12 release from DVA is regulated through the D1-like dopamine receptor DOP-1, and both nlp-12 and dop-1 are required for normal local food searching responses. nlp-12/CCK overexpression recapitulates characteristics of local food searching, and DVA ablation or mutations disrupting muscle acetylcholine receptor function attenuate these effects. Conversely, nlp-12 deletion reverses behavioral and functional changes associated with genetically enhanced muscle acetylcholine receptor activity. Thus, our data suggest that dopamine-mediated sensory information about food availability shapes foraging in a context-dependent manner through peptide modulation of locomotory output. PMID:25167143