Sample records for accumbens cortical glutamate

  1. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis

    PubMed Central

    Heinsbroek, J. A.; Gipson, C. D.; Kupchik, Y. M.; Spencer, S.; Smith, A. C. W.; Roberts-Wolfe, D.; Kalivas, P. W.

    2016-01-01

    The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances. PMID:27363441

  2. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis.

    PubMed

    Scofield, M D; Heinsbroek, J A; Gipson, C D; Kupchik, Y M; Spencer, S; Smith, A C W; Roberts-Wolfe, D; Kalivas, P W

    2016-07-01

    The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. [Changes in glutamate release in the rat nucleus accumbens during food and pain reinforcement].

    PubMed

    Saul'skaia, N B; Mikhaĭlova, M O; Pudovkina, O L; Gorbachevskaia, A I

    2000-01-01

    In vivo microdialysis combined with HPLC-EC analysis was used to monitor extracellular glutamate in the n. accumbens of Sprague-Dawley rats during footshock and food delivery. The footshock presentation resulted in a delayed increase in extracellular glutamate level, whereas the food intake caused its decrease. The intra-accumbens infusion of glutamate reuptake blocker D,L-threo-beta-hydroxiaspartate (1 mM) completely prevented the food-induced decrease in glutamate level. The intra-accumbens infusion of sodium channel blocker tetrodotoxin (1 microM) led to an increase in glutamate extracellular level in the n. accumbens in response to food intake. The results suggest that the food-induced decrease in glutamate extracellular level in the n. accumbens occurs due to an enhancement of high-affinity glutamate uptake that is probably under the neuronal control during feeding.

  4. [Vesicular and nonvesicular glutamate release in the nucleus accumbens during a forced switch in behavioral strategy].

    PubMed

    Saul'skaia, N B; Mikhaĭlova, M O

    2004-01-01

    By means of in vivo microdialysis combined with HPLC analysis, we have shown that glutamate extracellular level in the rat n. accumbens increases during a forced switch in behavioral strategy. When infused in the n. accumbens, a Na+ channel blocker tetrodotoxin (TTX, 1 microM) completely prevents this increase whereas a potent cystine/glutamate exchanger blocker (S)-4-carboxyphenylglycine ((S)-4-CPG, 5 microM) has no effect. In contrast, TT (1 microM), infused in the n. accumbens, fails to significantly alter basal level of extracellular glutamate in this region whereas (S)-4-CPG (5 microM) produced a significant decrease. Our data suggest that basal and factional glutamate releases in the n. accumbens are differently regulated. The source of basal glutamate release is a non-vesicular release via cystine/glutamate exchanger. Functional glutamate release observed during a forced switch in behavioral strategy derives from vesicular synaptic pool.

  5. Nicergoline enhances glutamate uptake via glutamate transporters in rat cortical synaptosomes.

    PubMed

    Nishida, Atsushi; Iwata, Hiroshi; Kudo, Yukitsuka; Kobayashi, Tsutomu; Matsuoka, Yuzo; Kanai, Yoshikatsu; Endou, Hitoshi

    2004-06-01

    To elucidate the mechanisms of neuroprotective action of nicergoline, we examined its effect on glutamate transport in rat cortical synaptosomes and cloned glutamate transporters. In synaptosomes, nicergoline enhanced the glutamate uptake at 1-10 microM in standard medium and suppressed the increase of extracellular glutamate by reversed transport in low Na(+) medium. Apparent increase of extracellular glutamate concentration by dihydrokinate, an inhibitor of glial glutamate transporter GLT-1, was antagonized by nicergoline. In Xenopus oocytes expressing mouse neuronal glutamate transporter (mEAAC1), the glutamate-induced inward current was enhanced by nicergoline. These results suggest that nicergoline reduces the extracellular glutamate concentration through its effect on glutamate transporters.

  6. Vesicular and non-vesicular glutamate release in the nucleus accumbens in conditions of a forced change of behavioral strategy.

    PubMed

    Saul'skaya, N B; Mikhailova, M O

    2005-09-01

    Studies on Sprague-Dawley rats used intracerebral dialysis and high-performance liquid chromatography to identify sources of glutamate release into the intercellular space of the nucleus accumbens during forced correction of food-related behavior, i.e., on presentation to the feeding rat of a conditioned signal previously combined with a pain stimulus or on replacement of a food reinforcement with an inedible food substitute. The results showed that glutamate release observed in the nucleus accumbens during these tests can be prevented by tetrodotoxin (1 microM), which blocks exocytosis, but not by (S)-4-carboxyphenylglycine (5 microM), which blocks non-vesicular glutamate release. Conversely, administration of (S)-4-carboxyphenylglycine halved baseline glutamate release, while administration of tetrodotoxin had no effect on this process. These data provide evidence that different mechanisms control glutamate release into the intercellular space of this nucleus in baseline conditions and in conditions of evoked correction of feeding behavior: the source of baseline glutamate release is non-vesicular glutamate release, while glutamate release seen during forced correction of feeding behavior results from increases in synaptic release.

  7. Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection

    PubMed Central

    Litvak, Vladimir; Rutledge, Robb B.; Zaehle, Tino; Schmitt, Friedhelm C.; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J.

    2015-01-01

    The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181–190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection. PMID:25878159

  8. Tetrodotoxin-dependent glutamate release in the rat nucleus accumbens during concurrent presentation of appetitive and conditioned aversive stimuli.

    PubMed

    Saulskaya, Natalia B; Soloviova, Nina A

    2004-12-30

    In vivo microdialysis combined with a high-performance liquid chromatography was used to monitor extracellular glutamate (GLU) levels in the nucleus accumbens (N.Acc) of Sprague-Dawley rats during their behavioral responses to the concurrent presentation of appetitive and conditioned aversive stimuli. The presentation of a highly palatable diet followed by a tone previously paired with footshock to rats trained to take a pellet of the diet under these experimental conditions resulted in a marked and short lasting increase in extracellular glutamate, whereas the tone alone had no effect. A similar increase of the glutamate release was observed during the presentation of a piece of rubber instead of the diet. In both cases, the increase in extracellular glutamate was completely prevented by intra-accumbal infusions through the dialysis probe of 1 microM tetrodotoxin (a voltage-dependent Na(+) channel blocker), whereas (S)-4-carboxyphenylglycine (a cystine/glutamate exchange blocker, 5 microM) had no effect. The data obtained suggest that behavioral responses to unpredicted change in motivational value of expected reward appear to be associated with an increase of the extracellular glutamate level in the nucleus accumbens, and impulse-dependent synaptic release, rather than non-vesicular glutamate release via cystine/glutamate exchange, is responsible for this phenomenon.

  9. Differential effects of natural rewards and pain on vesicular glutamate transporter expression in the nucleus accumbens.

    PubMed

    Tukey, David S; Lee, Michelle; Xu, Duo; Eberle, Sarah E; Goffer, Yossef; Manders, Toby R; Ziff, Edward B; Wang, Jing

    2013-07-09

    Pain and natural rewards such as food elicit different behavioral effects. Both pain and rewards, however, have been shown to alter synaptic activities in the nucleus accumbens (NAc), a key component of the brain reward system. Mechanisms by which external stimuli regulate plasticity at NAc synapses are largely unexplored. Medium spiny neurons (MSNs) from the NAc receive excitatory glutamatergic inputs and modulatory dopaminergic and cholinergic inputs from a variety of cortical and subcortical structures. Glutamate inputs to the NAc arise primarily from prefrontal cortex, thalamus, amygdala, and hippocampus, and different glutamate projections provide distinct synaptic and ultimately behavioral functions. The family of vesicular glutamate transporters (VGLUTs 1-3) plays a key role in the uploading of glutamate into synaptic vesicles. VGLUT1-3 isoforms have distinct expression patterns in the brain, but the effects of external stimuli on their expression patterns have not been studied. In this study, we use a sucrose self-administration paradigm for natural rewards, and spared nerve injury (SNI) model for chronic pain. We examine the levels of VGLUTs (1-3) in synaptoneurosomes of the NAc in these two behavioral models. We find that chronic pain leads to a decrease of VGLUT1, likely reflecting decreased projections from the cortex. Pain also decreases VGLUT3 levels, likely representing a decrease in projections from GABAergic, serotonergic, and/or cholinergic interneurons. In contrast, chronic consumption of sucrose increases VGLUT3 in the NAc, possibly reflecting an increase from these interneuron projections. Our study shows that natural rewards and pain have distinct effects on the VGLUT expression pattern in the NAc, indicating that glutamate inputs to the NAc are differentially modulated by rewards and pain.

  10. Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection.

    PubMed

    Stenner, Max-Philipp; Litvak, Vladimir; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J

    2015-07-01

    The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181-190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection. Copyright © 2015 the American Physiological Society.

  11. Interactions between the nucleus accumbens and auditory cortices predict music reward value.

    PubMed

    Salimpoor, Valorie N; van den Bosch, Iris; Kovacevic, Natasa; McIntosh, Anthony Randal; Dagher, Alain; Zatorre, Robert J

    2013-04-12

    We used functional magnetic resonance imaging to investigate neural processes when music gains reward value the first time it is heard. The degree of activity in the mesolimbic striatal regions, especially the nucleus accumbens, during music listening was the best predictor of the amount listeners were willing to spend on previously unheard music in an auction paradigm. Importantly, the auditory cortices, amygdala, and ventromedial prefrontal regions showed increased activity during listening conditions requiring valuation, but did not predict reward value, which was instead predicted by increasing functional connectivity of these regions with the nucleus accumbens as the reward value increased. Thus, aesthetic rewards arise from the interaction between mesolimbic reward circuitry and cortical networks involved in perceptual analysis and valuation.

  12. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake

    PubMed Central

    Seif, Taban; Chang, Shao-Ju; Simms, Jeffrey A; Gibb, Stuart L; Dadgar, Jahan; Chen, Billy T; Harvey, Brandon K; Ron, Dorit; Messing, Robert O; Bonci, Antonello; Hopf, F Woodward

    2014-01-01

    Compulsive drinking despite serious adverse medical, social and economic consequences is a characteristic of alcohol use disorders in humans. Although frontal cortical areas have been implicated in alcohol use disorders, little is known about the molecular mechanisms and pathways that sustain aversion-resistant intake. Here, we show that nucleus accumbens core (NAcore) NMDA-type glutamate receptors and medial prefrontal (mPFC) and insula glutamatergic inputs to the NAcore are necessary for aversion-resistant alcohol consumption in rats. Aversion-resistant intake was associated with a new type of NMDA receptor adaptation, in which hyperpolarization-active NMDA receptors were present at mPFC and insula but not amygdalar inputs in the NAcore. Accordingly, inhibition of Grin2c NMDA receptor subunits in the NAcore reduced aversion-resistant alcohol intake. None of these manipulations altered intake when alcohol was not paired with an aversive consequence. Our results identify a mechanism by which hyperpolarization-active NMDA receptors under mPFC- and insula-to-NAcore inputs sustain aversion-resistant alcohol intake. PMID:23817545

  13. Cortical cholinergic deficiency enhances amphetamine-induced dopamine release in the accumbens but not striatum.

    PubMed

    Mattsson, Anna; Olson, Lars; Svensson, Torgny H; Schilström, Björn

    2007-11-01

    Cholinergic dysfunction has been implicated as a putative contributing factor in the pathogenesis of schizophrenia. Recently, we showed that cholinergic denervation of the neocortex in adult rats leads to a marked increase in the behavioral response to amphetamine. The main objective of this study was to investigate if the enhanced locomotor response to amphetamine seen after cortical cholinergic denervation was paralleled by an increased amphetamine-induced release of dopamine in the nucleus accumbens and/or striatum. The corticopetal cholinergic projections were lesioned by intraparenchymal infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of adult rats. Amphetamine-induced dopamine release in the nucleus accumbens or striatum was monitored by in vivo microdialysis 2 to 3 weeks after lesioning. We found that cholinergic denervation of the rat neocortex leads to a significantly increased amphetamine-induced dopamine release in the nucleus accumbens. Interestingly, the cholinergic lesion did not affect amphetamine-induced release of dopamine in the striatum. The enhanced amphetamine-induced dopamine release in the nucleus accumbens in the cholinergically denervated rats could be reversed by administration of the muscarinic agonist oxotremorine, but not nicotine, prior to the amphetamine challenge, suggesting that loss of muscarinic receptor stimulation is likely to have caused the observed effect. The results suggest that abnormal responsiveness of dopamine neurons can be secondary to cortical cholinergic deficiency. This, in turn, might be of relevance for the pathophysiology of schizophrenia and provides a possible link between cholinergic disturbances and alteration of dopamine transmission.

  14. Modafinil attenuates reinstatement of cocaine seeking: role for cystine-glutamate exchange and metabotropic glutamate receptors.

    PubMed

    Mahler, Stephen V; Hensley-Simon, Megan; Tahsili-Fahadan, Pouya; LaLumiere, Ryan T; Thomas, Charles; Fallon, Rebecca V; Kalivas, Peter W; Aston-Jones, Gary

    2014-01-01

    Modafinil may be useful for treating stimulant abuse, but the mechanisms by which it acts to do so are unknown. Indeed, a primary effect of modafinil is to inhibit dopamine transport, which typically promotes rather than inhibits motivated behavior. Therefore, we examined the role of nucleus accumbens extracellular glutamate and the group II metabotropic glutamate receptor (mGluR2/3) in modafinil effects. One group of rats was trained to self-administer cocaine for 10 days and extinguished, then given priming injections of cocaine to elicit reinstatement. Modafinil (300 mg/kg, intraperitoneal) inhibited reinstated cocaine seeking (but did not alter extinction responding by itself), and this effect was prevented by pre-treatment with bilateral microinjections of the mGluR2/3 antagonist LY-341495 (LY) into nucleus accumbens core. No reversal of modafinil effects was seen after unilateral accumbens core LY, or bilateral LY in the rostral pole of accumbens. Next, we sought to explore effects of modafinil on extracellular glutamate levels in accumbens after chronic cocaine. Separate rats were administered non-contingent cocaine, and after 3 weeks of withdrawal underwent accumbens microdialysis. Modafinil increased extracellular accumbens glutamate in chronic cocaine, but not chronic saline-pre-treated animals. This increase was prevented by reverse dialysis of cystine-glutamate exchange or voltage-dependent calcium channel antagonists. Voltage-dependent sodium channel blockade partly attenuated the increase in glutamate, but mGluR1 blockade did not. We conclude that modafinil increases extracellular glutamate in nucleus accumbens from glial and neuronal sources in cocaine-exposed rats, which may be important for its mGluR2/3-mediated antirelapse properties. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  15. Control of cortical neuronal migration by glutamate and GABA

    PubMed Central

    Luhmann, Heiko J.; Fukuda, A.; Kilb, W.

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  16. Decursinol and decursin protect primary cultured rat cortical cells from glutamate-induced neurotoxicity.

    PubMed

    Kang, So Young; Kim, Young Choong

    2007-06-01

    We previously reported six neuroprotective decursinol derivatives, coumarins from Angelica gigas (Umbelliferae) roots. To elucidate the action patterns of decursinol derivatives, we investigated the neuroprotective effects of decursinol and decursin, which showed highly significant activity and were major constituents of A. gigas, using primary cultures of rat cortical cells in-vitro. At concentrations of 0.1-10.0 microM, both decursinol and decursin exerted a significant neuroprotective activity pretreatment and throughout treatment. In addition, decursin had a neuroprotective impact in the post-treatment paradigm implying that decursin might possess different action mechanisms from that of decursinol in the protection of neurons against glutamate injury. Both decursinol and decursin effectively reduced the glutamate-induced increased intracellular calcium ([Ca(2+)](i)) in cortical cells, suggesting that these two coumarins may exert neuroprotection by reducing calcium influx by overactivation of glutamate receptors. This suggestion was supported by the result that decursinol and decursin protected neurons against kainic acid (KA)-induced neurotoxicity better than against that induced by N-methyl-D-aspartate (NMDA). Moreover, both decursinol and decursin significantly prevented glutamate-induced decreases in glutathione, a cellular antioxidant, and glutathione peroxidase activity. In addition, both compounds efficiently reduced the overproduction of cellular peroxide in glutamate-injured cortical cells. These results suggested that both decursinol and decursin protected primary cultured rat cortical cells against glutamate-induced oxidative stress by both reducing calcium influx and acting on the cellular antioxidative defence system. Moreover, decursin is considered to probably have a different action mechanism from that of decursinol in protecting cortical cells against glutamate injury.

  17. Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources.

    PubMed

    Omelchenko, N; Sesack, S R

    2007-05-25

    Dopamine and GABA neurons in the ventral tegmental area project to the nucleus accumbens and prefrontal cortex and modulate locomotor and reward behaviors as well as cognitive and affective processes. Both midbrain cell types receive synapses from glutamate afferents that provide an essential control of behaviorally-linked activity patterns, although the sources of glutamate inputs have not yet been completely characterized. We used antibodies against the vesicular glutamate transporter subtypes 1 and 2 (VGlut1 and VGlut2) to investigate the morphology and synaptic organization of axons containing these proteins as putative markers of glutamate afferents from cortical versus subcortical sites, respectively, in rats. We also characterized the ventral tegmental area cell populations receiving VGlut1+ or VGlut2+ synapses according to their transmitter phenotype (dopamine or GABA) and major projection target (nucleus accumbens or prefrontal cortex). By light and electron microscopic examination, VGlut2+ as opposed to VGlut1+ axon terminals were more numerous, had a larger average size, synapsed more proximally, and were more likely to form convergent synapses onto the same target. Both axon types formed predominantly asymmetric synapses, although VGlut2+ terminals more often formed synapses with symmetric morphology. No absolute selectivity was observed for VGlut1+ or VGlut2+ axons to target any particular cell population. However, the synapses onto mesoaccumbens neurons more often involved VGlut2+ terminals, whereas mesoprefrontal neurons received relatively equal synaptic inputs from VGlut1+ and VGlut2+ profiles. The distinct morphological features of VGlut1 and VGlut2 positive axons suggest that glutamate inputs from presumed cortical and subcortical sources, respectively, differ in the nature and intensity of their physiological actions on midbrain neurons. More specifically, our findings imply that subcortical glutamate inputs to the ventral tegmental area

  18. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    PubMed Central

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  19. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats

    PubMed Central

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats. PMID:28280461

  20. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats.

    PubMed

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.

  1. Functional changes in glutamate transporters and astrocyte biophysical properties in a rodent model of focal cortical dysplasia

    PubMed Central

    Campbell, Susan L.; Hablitz, John J.; Olsen, Michelle L.

    2014-01-01

    Cortical dysplasia is associated with intractable epilepsy and developmental delay in young children. Recent work with the rat freeze-induced focal cortical dysplasia (FCD) model has demonstrated that hyperexcitability in the dysplastic cortex is due in part to higher levels of extracellular glutamate. Astrocyte glutamate transporters play a pivotal role in cortical maintaining extracellular glutamate concentrations. Here we examined the function of astrocytic glutamate transporters in a FCD model in rats. Neocortical freeze lesions were made in postnatal day (PN) 1 rat pups and whole cell electrophysiological recordings and biochemical studies were performed at PN 21–28. Synaptically evoked glutamate transporter currents in astrocytes showed a near 10-fold reduction in amplitude compared to sham operated controls. Astrocyte glutamate transporter currents from lesioned animals were also significantly reduced when challenged exogenously applied glutamate. Reduced astrocytic glutamate transport clearance contributed to increased NMDA receptor-mediated current decay kinetics in lesioned animals. The electrophysiological profile of astrocytes in the lesion group was also markedly changed compared to sham operated animals. Control astrocytes demonstrate large-amplitude linear leak currents in response to voltage-steps whereas astrocytes in lesioned animals demonstrated significantly smaller voltage-activated inward and outward currents. Significant decreases in astrocyte resting membrane potential and increases in input resistance were observed in lesioned animals. However, Western blotting, immunohistochemistry and quantitative PCR demonstrated no differences in the expression of the astrocytic glutamate transporter GLT-1 in lesioned animals relative to controls. These data suggest that, in the absence of changes in protein or mRNA expression levels, functional changes in astrocytic glutamate transporters contribute to neuronal hyperexcitability in the FCD model

  2. Green Tea Polyphenols Attenuated Glutamate Excitotoxicity via Antioxidative and Antiapoptotic Pathway in the Primary Cultured Cortical Neurons.

    PubMed

    Cong, Lin; Cao, Chang; Cheng, Yong; Qin, Xiao-Yan

    2016-01-01

    Green tea polyphenols are a natural product which has antioxidative and antiapoptotic effects. It has been shown that glutamate excitotoxicity induced oxidative stress is linked to neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In this study we explored the neuroprotective effect of green teen polyphenols against glutamate excitotoxicity in the primary cultured cortical neurons. We found that green tea polyphenols protected against glutamate induced neurotoxicity in the cortical neurons as measured by MTT and TUNEL assays. Green tea polyphenols were then showed to inhibit the glutamate induced ROS release and SOD activity reduction in the neurons. Furthermore, our results demonstrated that green tea polyphenols restored the dysfunction of mitochondrial pro- or antiapoptotic proteins Bax, Bcl-2, and caspase-3 caused by glutamate. Interestingly, the neuroprotective effect of green tea polyphenols was abrogated when the neurons were incubated with siBcl-2. Taken together, these results demonstrated that green tea polyphenols protected against glutamate excitotoxicity through antioxidative and antiapoptotic pathways.

  3. Fluctuations in Nucleus Accumbens Extracellular Glutamate and Glucose during Motivated Glucose-drinking Behavior: Dissecting the Neurochemistry of Reward

    PubMed Central

    Wakabayashi, Ken T.; Myal, Stephanie E.; Kiyatkin, Eugene A.

    2015-01-01

    While motivated behavior involves multiple neurochemical systems, few studies have focused on the role of glutamate, the brain’s excitatory neurotransmitter, and glucose, the energetic substrate of neural activity in reward-related neural processes. Here, we used high-speed amperometry with enzyme-based substrate-sensitive and control, enzyme-free biosensors to examine second-scale fluctuations in the extracellular levels of these substances in the nucleus accumbens shell during glucose-drinking behavior in trained rats. Glutamate rose rapidly after the presentation of a glucose-containing cup and before the initiation of drinking (reward seeking), decreased more slowly to levels below baseline during consumption (sensory reward), and returned to baseline when the ingested glucose reached the brain (metabolic reward). When water was substituted for glucose, glutamate rapidly increased with cup presentation and in contrast to glucose drinking, increased above baseline after rats tasted the water and refused to drink further. Therefore, extracellular glutamate show distinct changes associated with key events of motivated drinking behavior and opposite dynamics during sensory and metabolic components of reward. In contrast to glutamate, glucose increased at each stimulus and behavioral event, showing a sustained elevation during the entire behavior and a robust post-ingestion rise that correlated with the gradual return of glutamate levels to their baseline. By comparing active drinking with passive intra-gastric glucose delivery, we revealed that fluctuations in extracellular glucose are highly dynamic, reflecting a balance between rapid delivery due to neural activity, intense metabolism, and the influence of ingested glucose reaching the brain. PMID:25393775

  4. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes.

    PubMed

    Shen, Yao; Tian, Yueyang; Shi, Xiaojie; Yang, Jianbo; Ouyang, Li; Gao, Jieqiong; Lu, Jianxin

    2014-08-01

    Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Fluctuations in nucleus accumbens extracellular glutamate and glucose during motivated glucose-drinking behavior: dissecting the neurochemistry of reward.

    PubMed

    Wakabayashi, Ken T; Myal, Stephanie E; Kiyatkin, Eugene A

    2015-02-01

    While motivated behavior involves multiple neurochemical systems, few studies have focused on the role of glutamate, the brain's excitatory neurotransmitter, and glucose, the energetic substrate of neural activity in reward-related neural processes. Here, we used high-speed amperometry with enzyme-based substrate-sensitive and control, enzyme-free biosensors to examine second-scale fluctuations in the extracellular levels of these substances in the nucleus accumbens shell during glucose-drinking behavior in trained rats. Glutamate rose rapidly after the presentation of a glucose-containing cup and before the initiation of drinking (reward seeking), decreased more slowly to levels below baseline during consumption (sensory reward), and returned to baseline when the ingested glucose reached the brain (metabolic reward). When water was substituted for glucose, glutamate rapidly increased with cup presentation and in contrast to glucose drinking, increased above baseline after rats tasted the water and refused to drink further. Therefore, extracellular glutamate show distinct changes associated with key events of motivated drinking behavior and opposite dynamics during sensory and metabolic components of reward. In contrast to glutamate, glucose increased at each stimulus and behavioral event, showing a sustained elevation during the entire behavior and a robust post-ingestion rise that correlated with the gradual return of glutamate levels to their baseline. By comparing active drinking with passive intra-gastric glucose delivery, we revealed that fluctuations in extracellular glucose are highly dynamic, reflecting a balance between rapid delivery because of neural activity, intense metabolism, and the influence of ingested glucose reaching the brain. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. L-pyroglutamic acid protects rat cortical neurons against sodium glutamate-induced injury.

    PubMed

    Xiao, X Q; Liu, G Q

    1999-08-01

    To evaluate the effects of L-pyroglutamic acid (L-PGA, L-5-oxo-2-pyrrolidinecaroxylic acid) on sodium glutamate-induced neurotoxicity in rat cortical neurons. In primary cortical cultures from 16-d-old fetal rat, neuronal viability and contents of nitrite in the bathing medium after transient exposure to sodium glutamate (Glu) were measured; with Fura 2-AM as an intracellular calcium indicator, AR-CM-MIC cation measurement system was used to examine cytosolic free calcium ([Ca2+]i). L-PGA 10-80 mumol.L-1, inhibited Glu (500 mumol.L-1)-induced neuronal loss in a concentration-dependent manner with IC50 value of (41 +/- 9) mumol.L-1 (95% confidence limits: 30.3-54.7 mumol.L-1). L-PGA also attenuated Glu-induced NO release. L-PGA 1, 3, 10, 30, and 100 mumol.L-1 depressed Glu-caused [Ca2+]i elevation by 20.5%, 34.4%, 47.7%, 70.6%, and 80.4%, respectively. L-PGA protects cortical neurons against Glu-induced neurotoxity which may be related to inhibition of NO formation or suppression of the rise in [Ca2+]i.

  7. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro.

    PubMed

    Yavas, Ersin; Young, Andrew M J

    2017-02-15

    The N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine, induces behavioral changes in rodents mimicking symptoms of schizophrenia, possibly mediated through dysregulation of glutamatergic control of mesolimbic dopamine release. We tested the hypothesis that NMDA receptor activation modulates accumbens dopamine release, and that phencyclidine pretreatment altered this modulation. NMDA caused a receptor-specific, dose-dependent decrease in electrically stimulated dopamine release in nucleus accumbens brain slices. This decrease was unaffected by picrotoxin, making it unlikely to be mediated through GABAergic neurones, but was decreased by the metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-sulfonophenylglycine, indicating that NMDA activates mechanisms controlled by these receptors to decrease stimulated dopamine release. The effect of NMDA was unchanged by in vivo pretreatment with phencyclidine (twice daily for 5 days), with a washout period of at least 7 days before experimentation, which supports the hypothesis that there is no enduring direct effect of PCP at NMDA receptors after this pretreatment procedure. We propose that NMDA depression of accumbal dopamine release is mediated by metabotropic glutamate receptors located pre- or perisynaptically, and suggest that NMDA evoked increased extrasynaptic spillover of glutamate is sufficient to activate these receptors that, in turn, inhibit dopamine release. Furthermore, we suggest that enduring functional changes brought about by subchronic phencyclidine pretreatment, modeling deficits in schizophrenia, are downstream effects consequent on chronic blockade of NMDA receptors, rather than direct effects on NMDA receptors themselves.

  8. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors.

    PubMed

    Hsu, Wei-Lun; Chung, Hui-Wen; Wu, Chih-Yueh; Wu, Huei-Ing; Lee, Yu-Tao; Chen, En-Chan; Fang, Weilun; Chang, Yen-Chung

    2015-08-21

    Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. By analyzing the metabolic incorporation of azidohomoalanine, a methionine analogue, in newly synthesized proteins, we find that glutamate treatments up-regulate protein translation not only in intact rat cortical neurons in culture but also in the axons emitting from cortical neurons before making synapses with target cells. The process by which glutamate stimulates local translation in axons begins with the binding of glutamate to the ionotropic AMPA receptors and metabotropic glutamate receptor 1 and members of group 2 metabotropic glutamate receptors on the plasma membrane. Subsequently, the activated mammalian target of rapamycin (mTOR) signaling pathway and the rise in Ca(2+), resulting from Ca(2+) influxes through calcium-permeable AMPA receptors, voltage-gated Ca(2+) channels, and transient receptor potential canonical channels, in axons stimulate the local translation machinery. For comparison, the enhancement effects of brain-derived neurotrophic factor (BDNF) on the local protein synthesis in cortical axons were also studied. The results indicate that Ca(2+) influxes via transient receptor potential canonical channels and activated the mTOR pathway in axons also mediate BDNF stimulation to local protein synthesis. However, glutamate- and BDNF-induced enhancements of translation in axons exhibit different kinetics. Moreover, Ca(2+) and mTOR signaling appear to play roles carrying different weights, respectively, in transducing glutamate- and BDNF-induced enhancements of axonal translation. Thus, our results indicate that exposure to transient increases of glutamate and more lasting increases of BDNF would stimulate local protein synthesis in migrating axons en route to their targets in the developing brain. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors*

    PubMed Central

    Hsu, Wei-Lun; Chung, Hui-Wen; Wu, Chih-Yueh; Wu, Huei-Ing; Lee, Yu-Tao; Chen, En-Chan; Fang, Weilun; Chang, Yen-Chung

    2015-01-01

    Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. By analyzing the metabolic incorporation of azidohomoalanine, a methionine analogue, in newly synthesized proteins, we find that glutamate treatments up-regulate protein translation not only in intact rat cortical neurons in culture but also in the axons emitting from cortical neurons before making synapses with target cells. The process by which glutamate stimulates local translation in axons begins with the binding of glutamate to the ionotropic AMPA receptors and metabotropic glutamate receptor 1 and members of group 2 metabotropic glutamate receptors on the plasma membrane. Subsequently, the activated mammalian target of rapamycin (mTOR) signaling pathway and the rise in Ca2+, resulting from Ca2+ influxes through calcium-permeable AMPA receptors, voltage-gated Ca2+ channels, and transient receptor potential canonical channels, in axons stimulate the local translation machinery. For comparison, the enhancement effects of brain-derived neurotrophic factor (BDNF) on the local protein synthesis in cortical axons were also studied. The results indicate that Ca2+ influxes via transient receptor potential canonical channels and activated the mTOR pathway in axons also mediate BDNF stimulation to local protein synthesis. However, glutamate- and BDNF-induced enhancements of translation in axons exhibit different kinetics. Moreover, Ca2+ and mTOR signaling appear to play roles carrying different weights, respectively, in transducing glutamate- and BDNF-induced enhancements of axonal translation. Thus, our results indicate that exposure to transient increases of glutamate and more lasting increases of BDNF would stimulate local protein synthesis in migrating axons en route to their targets in the developing brain. PMID:26134564

  10. Metabotropic glutamate receptor modulation of dopamine release in the nucleus accumbens shell is unaffected by phencyclidine pretreatment: In vitro assessment using fast-scan cyclic voltammetry rat brain slices.

    PubMed

    Gupta, Ishan; Young, Andrew M J

    2018-05-15

    The non-competitive glutamate antagonist, phencyclidine is used in rodents to model behavioural deficits see in schizophrenia. Importantly, these deficits endure long after the cessation of short-term chronic treatment (sub-chronic), indicating that the drug treatment causes long-term changes in the physiology and/or chemistry of the brain. There is evidence that this may occur through glutamatergic modulation of mesolimbic dopamine release, perhaps involving metabotropic glutamate receptors (mGluR). This study sought to investigate the effect of sub-chronic phencyclidine pretreatment on modulation of dopamine neurotransmission by metabotropic glutamate receptors 2 and 5 (mGluR2 and mGluR5) in the nucleus accumbens shell in vitro, with the hypothesis that phencyclidine pretreatment would disrupt the mGluR-mediated modulation of dopamine release. We showed that the orthosteric mGluR2 agonist LY379268 (0.1 µM, 1 µM and 10 µM) and mGluR5 positive allosteric modulator CDPPB (1 µM and 10 µM) both attenuated potassium-evoked dopamine release, underscoring their role in modulating dopamine neurotransmission in the nucleus accumbens. Sub-chronic PCP treatment, which caused cognitive deficits measured by performance in the novel object recognition task, modelling aspects of behavioral deficits seen in schizophrenia, induced neurobiological changes that enhanced dopamine release in the nucleus accumbens, but had no effect on mGluR2 or mGluR5 mediated changes in dopamine release. Therefore it is unlikely that schizophrenia-related behavioural changes seen after sub-chronic phencyclidine pre-treatment are mediated through mGluR modulation of dopamine release. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Inducible Nitric Oxide Inhibitors Block NMDA Antagonist-Stimulated Motoric Behaviors and Medial Prefrontal Cortical Glutamate Efflux

    PubMed Central

    Bergstrom, Hadley C.; Darvesh, Altaf S.; Berger, S. P.

    2015-01-01

    Nitric oxide (NO) plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA)-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS) for studying the neurobehavioral effects of non-competitive NMDA-antagonist stimulants such as dizocilpine (MK-801) and phencyclidine (PCP). This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS) aminoguanidine (AG) and (-)-epigallocatechin-3-gallate (EGCG) in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG, or vehicle prior to receiving NMDA antagonists MK-801, PCP, or a conventional psychostimulant (cocaine) and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex (mPFC) was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated mPFC glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in “green tea” and chocolate) may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia. PMID:26696891

  12. Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats.

    PubMed

    Das, Sujan C; Yamamoto, Bryan K; Hristov, Alexandar M; Sari, Youssef

    2015-10-01

    Alteration of glutamatergic-neurotransmission is a hallmark of alcohol dependence. We have previously reported that chronic ethanol-drinking downregulated glutamate transporter 1 (GLT-1) in nucleus accumbens (NAc) in male P rats in a manner that was reversed by ceftriaxone treatment. However, the effect of ceftriaxone on extracellular glutamate concentrations in NAc after chronic ethanol-drinking has not yet been studied. In the present study, male P rats were treated with ceftriaxone (100 mg/kg/day, i.p.) for five consecutive days following five-weeks of free choice ethanol (15% and 30%) drinking. In vivo microdialysis was performed to measure the extracellular glutamate concentrations in NAc and the effect of blockade of GLT-1 with dihydrokainic acid (DHK) on extracellular glutamate in NAc of ceftriaxone-treated rats was determined. Ceftriaxone treatment attenuated ethanol intake as well as ethanol preference. Extracellular glutamate was significantly higher in NAc after five-weeks of ethanol drinking in saline-treated compared to water control rats. Ceftriaxone treatment blocked the increase extracellular glutamate produced by ethanol intake. Blockade of GLT-1 by DHK reversed the effects of ceftriaxone on glutamate and implicated the role of GLT-1 in the normalization of extracellular glutamate by ceftriaxone. In addition, GLT-1 protein was decreased in ethanol exposed animals and ceftriaxone treatment reversed this deficit. Ceftriaxone treatment also increased glutamine synthetase activity in NAc but not in PFC as compared to ethanol drinking saline-treated rats. Our present study demonstrates that ceftriaxone treatment prevents ethanol drinking in part through normalization of extracellular glutamate concentrations in NAc of male P rats via GLT-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia.

    PubMed

    Hoftman, Gil D; Dienel, Samuel J; Bazmi, Holly H; Zhang, Yun; Chen, Kehui; Lewis, David A

    2018-04-15

    Visuospatial working memory (vsWM), which is impaired in schizophrenia, requires information transfer across multiple nodes in the cerebral cortex, including visual, posterior parietal, and dorsolateral prefrontal regions. Information is conveyed across these regions via the excitatory projections of glutamatergic pyramidal neurons located in layer 3, whose activity is modulated by local inhibitory gamma-aminobutyric acidergic (GABAergic) neurons. Key properties of these neurons differ across these cortical regions. Consequently, in schizophrenia, alterations in the expression of gene products regulating these properties could disrupt vsWM function in different ways, depending on the region(s) affected. Here, we quantified the expression of markers of glutamate and GABA neurotransmission selectively in layer 3 of four cortical regions in the vsWM network from 20 matched pairs of schizophrenia and unaffected comparison subjects. In comparison subjects, levels of glutamate transcripts tended to increase, whereas GABA transcript levels tended to decrease, from caudal to rostral, across cortical regions of the vsWM network. Composite measures across all transcripts revealed a significant effect of region, with the glutamate measure lowest in the primary visual cortex and highest in the dorsolateral prefrontal cortex, whereas the GABA measure showed the opposite pattern. In schizophrenia subjects, the expression levels of many of these transcripts were altered. However, this disease effect differed across regions, such that the caudal-to-rostral increase in the glutamate measure was blunted and the caudal-to-rostral decline in the GABA measure was enhanced in the illness. Differential alterations in layer 3 glutamate and GABA neurotransmission across cortical regions may contribute to vsWM deficits in schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Increased Extracellular Glutamate In the Nucleus Accumbens Promotes Excessive Ethanol Drinking in Ethanol Dependent Mice

    PubMed Central

    Griffin III, William C; Haun, Harold L; Hazelbaker, Callan L; Ramachandra, Vorani S; Becker, Howard C

    2014-01-01

    Using a well-established model of ethanol dependence and relapse, this study examined adaptations in glutamatergic transmission in the nucleus accumbens (NAc) and their role in regulating voluntary ethanol drinking. Mice were first trained to drink ethanol in a free-choice, limited access (2 h/day) paradigm. One group (EtOH mice) received repeated weekly cycles of chronic intermittent ethanol (CIE) exposure with intervening weeks of test drinking sessions, whereas the remaining mice (CTL mice) were similarly treated but did not receive CIE treatment. Over repeated cycles of CIE exposure, EtOH mice exhibited significant escalation in drinking (up to ∼3.5 g/kg), whereas drinking remained relatively stable at baseline levels (2–2.5 g/kg) in CTL mice. Using in vivo microdialysis procedures, extracellular glutamate (GLUEX) levels in the NAc were increased approximately twofold in EtOH mice compared with CTL mice, and this difference was observed 7 days after final CIE exposure, indicating that this hyperglutamatergic state persisted beyond acute withdrawal. This finding prompted additional studies examining the effects of pharmacologically manipulating GLUEX in the NAc on ethanol drinking in the CIE model. The non-selective glutamate reuptake antagonist, threo-β-benzyloxyaspartate (TBOA), was bilaterally microinjected into the NAc and found to dose-dependently increase drinking in nondependent (CTL) mice to levels attained by dependent (EtOH) mice. TBOA also further increased drinking in EtOH mice. In contrast, reducing glutamatergic transmission in the NAc via bilateral injections of the metabotropic glutamate receptor-2/3 agonist LY379268 reduced drinking in dependent (EtOH) mice to nondependent (CTL) levels, whereas having a more modest effect in decreasing ethanol consumption in CTL mice. Taken together, these data support an important role of glutamatergic transmission in the NAc in regulating ethanol drinking. Additionally, these results indicate that

  15. Transport mechanism of L-[14C]glutamate in cortical slices and synaptosomes of rabbits exposed to brain ischemia and reperfusion.

    PubMed

    Solyakov, L; Dobrota, D; Drany, O; Vachova, M; Machac, S; Mezesova, V; Bachurin, S; Lombardi, V

    1995-01-01

    Changes in the functioning of the glutamatergic system in rabbit brain were studied after partial brain ischemia and reperfusion. In vitro studies were conducted relating to the release of L-[14C]glutamate from cortical brain slices, L-[14C]glutamate uptake in synaptosomes, and 45Ca uptake in synaptosomes. It was found that basal release of L-[14C]glutamate from rabbit brain cortical slices after 30 min of partial ischemia and 1 d of reperfusion was essentially without change compared to the control values. After 3 d of reperfusion, there was an increase in basal release of L-[14C]glutamate from rabbit brain cortical slices. K+ stimulated release of L-[14C]glutamate in normal Krebs-Ringer medium was essentially the same in the control group and in the experimental group after 30 min of ischemia. The K+ stimulated release of L-[14C]glutamate independent of calcium was increased to 145% after 30 min of ischemia and 1 d of reperfusion. The decreased Km value at the glutamate transporter may have contributed to this difference. Kinetic parameters of the L-[14C]glutamate uptake (Km and Vmax) in synaptosomes from rabbit brain were significantly lower after 30 min of ischemia. The authors discovered that during the reperfusion period, Vmax was almost the same as in the control group. The activity of the Na+/Ca2+ exchanger in synaptosomes of rat brain was about 70% of the control values after 30 min of ischemia and 72 h of reperfusion. According to our results, increased L-[14C]glutamate release after 30 min of ischemia appears to be the result of higher intracellular calcium concentration and possibly also of a higher uptake of glutamate.

  16. Gamma-vinyl GABA increases nonvesicular release of GABA and glutamate in the nucleus accumbens in rats via action on anion channels and GABA transporters

    PubMed Central

    Peng, Xiao-Qing; Gardner, Eliot L.

    2013-01-01

    Rationale γ-Amino butyric acid (GABA) is a well-characterized inhibitory neurotransmitter in the central nervous system, which may also stimulate nonvesicular release of other neurotransmitters under certain conditions. We have recently reported that γ-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, elevates extracellular GABA but fails to alter dopamine release in the nucleus accumbens (NAc). Objectives Here, we investigated the mechanism(s) by which GVG elevates extracellular GABA levels and whether GVG also alters glutamate release in the NAc. Materials and methods In vivo microdialysis was used to simultaneously measure extracellular NAc GABA and glutamate before and after GVG administration in freely moving rats. Results Systemic administration of GVG or intra-NAc local perfusion of GVG significantly increased extracellular NAc GABA and glutamate. GVG-enhanced GABA was completely blocked by intra-NAc local perfusion of 5-nitro-2, 3-(phenylpropylamino)-benzoic acid (NPPB), a selective anion channel blocker and partially blocked by SKF89976A, a type 1 GABA transporter inhibitor. GVG-enhanced glutamate was completely blocked by NPPB or SKF89976A. Tetrodotoxin, a voltage-dependent Na+-channel blocker, failed to alter GVG-enhanced GABA and glutamate. Conclusions These data suggest that GVG-enhanced extracellular GABA and glutamate are mediated predominantly by the opening of anion channels and partially by the reversal of GABA transporters. Enhanced extracellular glutamate may functionally attenuate the pharmacological action of GABA and prevent enhanced GABA-induced excess inhibition. PMID:20033132

  17. Reduced dopamine and glutamate neurotransmission in the nucleus accumbens of quinpirole-sensitized rats hints at inhibitory D2 autoreceptor function.

    PubMed

    Escobar, Angélica P; Cornejo, Francisca A; Olivares-Costa, Montserrat; González, Marcela; Fuentealba, José A; Gysling, Katia; España, Rodrigo A; Andrés, María E

    2015-09-01

    Dopamine from the ventral tegmental area and glutamate from several brain nuclei converge in the nucleus accumbens (NAc) to drive motivated behaviors. Repeated activation of D2 receptors with quinpirole (QNP) induces locomotor sensitization and compulsive behaviors, but the mechanisms are unknown. In this study, in vivo microdialysis and fast scan cyclic voltammetry in adult anesthetized rats were used to investigate the effect of repeated QNP on dopamine and glutamate neurotransmission within the NAc. Following eight injections of QNP, a significant decrease in phasic and tonic dopamine release was observed in rats that displayed locomotor sensitization. Either a systemic injection or the infusion of QNP into the NAc decreased dopamine release, and the extent of this effect was similar in QNP-sensitized and control rats, indicating that inhibitory D2 autoreceptor function is maintained despite repeated activation of D2 receptors and decreased dopamine extracellular levels. Basal extracellular levels of glutamate in the NAc were also significantly lower in QNP-treated rats than in controls. Moreover, the increase in NAc glutamate release induced by direct stimulation of medial prefrontal cortex was significantly lower in QNP-sensitized rats. Together, these results indicate that repeated activation of D2 receptors disconnects NAc from medial prefrontal cortex and ventral tegmental area. Repeated administration of the dopamine D2 receptor agonist quinpirole (QNP) induces locomotor sensitization. We found that the NAc of QNP-sensitized rats has reduced glutamate levels coming from prefrontal cortex together with a decreased phasic and tonic dopamine neurotransmission but a conserved presynaptic D2 receptor function. We suggest that locomotor sensitization is because of increased affinity state of D2 post-synaptic receptors. © 2015 International Society for Neurochemistry.

  18. Amphetamine regulation of acetylcholine and gamma-aminobutyric acid in nucleus accumbens.

    PubMed

    Lindefors, N; Hurd, Y L; O'Connor, W T; Brené, S; Persson, H; Ungerstedt, U

    1992-01-01

    In situ hybridization histochemistry and in vivo microdialysis were combined to study the effect of amphetamine on the expression of choline acetyltransferase and glutamate decarboxylase67 mRNA and in vivo release of acetylcholine and GABA in rat medial nucleus accumbens. Differential effects on acetylcholine and GABA neurons by a single challenge injection of amphetamine (1.5 mg/kg, s.c.) were apparent in saline-pretreated and amphetamine-pretreated (same dose, twice daily for the previous seven days) rats. Extracellular acetylcholine levels were increased up to 50% over a prolonged period following both single and repeated amphetamine. In contrast, extracellular concentrations of GABA were gradually decreased to half the control values, but only in rats receiving repeated amphetamine. Although the increase of acetylcholine release was not associated with any change in choline acetyltransferase mRNA levels, the number of neurons expressing high levels of glutamate decarboxylase67 mRNA was decreased (28%) following repeated injections. Thus we suggest that amphetamine decreases extracellular GABA levels by a slow mechanism, associated with the decreased expression of glutamate decarboxylase67 mRNA in a subpopulation of densely labeled neurons in the medial nucleus accumbens. The delayed response by GABA to amphetamine may reflect supersensitivity in the activity of postsynaptic gamma-aminobutyric acid-containing neurons in nucleus accumbens as a consequence of the repeated amphetamine treatment.

  19. Cortical ionotropic glutamate receptor antagonism protects against methamphetamine-induced striatal neurotoxicity.

    PubMed

    Gross, N B; Duncker, P C; Marshall, J F

    2011-12-29

    Binge administration of the psychostimulant drug, methamphetamine (mAMPH), produces long-lasting structural and functional abnormalities in the striatum. mAMPH binges produce nonexocytotic release of dopamine (DA), and mAMPH-induced activation of excitatory afferent inputs to cortex and striatum is evidenced by elevated extracellular glutamate (GLU) in both regions. The mAMPH-induced increases in DA and GLU neurotransmission are thought to combine to injure striatal DA nerve terminals of mAMPH-exposed brains. Systemic pretreatment with either competitive or noncompetitive N-methyl-D-aspartic acid (NMDA) antagonists protects against mAMPH-induced striatal DA terminal damage, but the locus of these antagonists' effects has not been determined. Here, we applied either the NMDA receptor antagonist, (dl)-amino-5-phosphonovaleric acid (AP5), or the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, dinitroquinoxaline-2,3-dione (DNQX), directly to the dura mater over frontoparietal cortex to assess their effects on mAMPH-induced cortical and striatal immediate-early gene (c-fos) expression. In a separate experiment we applied AP5 or DNQX epidurally in the same cortical location of rats during a binge regimen of mAMPH and assessed mAMPH-induced striatal dopamine transporter (DAT) depletions 1 week later. Our results indicate that both ionotropic glutamate receptor antagonists reduced the mAMPH-induced Fos expression in cerebral cortex regions near the site of epidural application and reduced Fos immunoreactivity in striatal regions innervated by the affected cortical regions. Also, epidural application of the same concentration of either antagonist during a binge mAMPH regimen blunted the mAMPH-induced striatal DAT depletions with a topography similar to its effects on Fos expression. These findings demonstrate that mAMPH-induced dopaminergic injury depends upon cortical NMDA and AMPA receptor activation and suggest the involvement of the

  20. Synaptic Glutamate Spillover Due to Impaired Glutamate Uptake Mediates Heroin Relapse

    PubMed Central

    Scofield, Michael D.; Boger, Heather; Hensley, Megan; Kalivas, Peter W.

    2014-01-01

    Reducing the enduring vulnerability to relapse is a therapeutic goal in treating drug addiction. Studies with animal models of drug addiction show a marked increase in extrasynaptic glutamate in the core subcompartment of the nucleus accumbens (NAcore) during reinstated drug seeking. However, the synaptic mechanisms linking drug-induced changes in extrasynaptic glutamate to relapse are poorly understood. Here, we discovered impaired glutamate elimination in rats extinguished from heroin self-administration that leads to spillover of synaptically released glutamate into the nonsynaptic extracellular space in NAcore and investigated whether restoration of glutamate transport prevented reinstated heroin seeking. Through multiple functional assays of glutamate uptake and analyzing NMDA receptor-mediated currents, we show that heroin self-administration produced long-lasting downregulation of glutamate uptake and surface expression of the transporter GLT-1. This downregulation was associated with spillover of synaptic glutamate to extrasynaptic NMDA receptors within the NAcore. Ceftriaxone restored glutamate uptake and prevented synaptic glutamate spillover and cue-induced heroin seeking. Ceftriaxone-induced inhibition of reinstated heroin seeking was blocked by morpholino-antisense targeting GLT-1 synthesis. These data reveal that the synaptic glutamate spillover in the NAcore results from reduced glutamate transport and is a critical pathophysiological mechanism underling reinstated drug seeking in rats extinguished from heroin self-administration. PMID:24741055

  1. Xenon reduces glutamate-, AMPA-, and kainate-induced membrane currents in cortical neurones.

    PubMed

    Dinse, A; Föhr, K J; Georgieff, M; Beyer, C; Bulling, A; Weigt, H U

    2005-04-01

    The anaesthetic, analgesic, and neuroprotective effects of xenon (Xe) are believed to be mediated by a block of the NMDA (N-methyl-D-aspartate) receptor channel. Interestingly, the clinical profile of the noble gas differs markedly from that of specific NMDA receptor antagonists. The aim of this study was, therefore, to investigate whether Xe might be less specific, also inhibiting the two other subtypes of glutamate receptor channels, such as the alpha-amino-3-hydroxy-5-methyl-4-isoxazolole propionate (AMPA) and kainate receptors. The study was performed on voltage-clamped cortical neurones from embryonic mice and SH-SY5Y cells expressing GluR6 kainate receptors. Drugs were applied by a multi-barreled fast perfusion system. Xe, dissolved at approximately 3.45 mM in aqueous solution, diminished the peak and even more the plateau of AMPA and glutamate induced currents. At the control EC(50) value for AMPA (29 microM) these reductions were by about 40 and 56% and at 3 mM glutamate the reductions were by 45 and 66%, respectively. Currents activated at the control EC(50) value for kainate (57 microM) were inhibited by 42%. Likewise, Xe showed an inhibitory effect on kainate-induced membrane currents of SH-SY5Y cells transfected with the GluR6 subunit of the kainate receptor. Xe reduced kainate-induced currents by between 35 and 60%, depending on the kainate concentration. Xe blocks not only NMDA receptors, but also AMPA and kainate receptors in cortical neurones as well as GluR6-type receptors expressed in SH-SY5Y cells. Thus, Xe seems to be rather non-specific as a channel blocker and this may contribute to the analgesic and anaesthetic potency of Xe.

  2. Ibogaine alters synaptosomal and glial glutamate release and uptake.

    PubMed

    Leal, M B; Emanuelli, T; Porciúncula, L D; Souza, D O; Elisabetsky, E

    2001-02-12

    Ibogaine has aroused expectations as a potentially innovative medication for drug addiction. It has been proposed that antagonism of the NMDA receptor by ibogaine may be one of the mechanisms underlying its antiaddictive properties; glutamate has also been implicated in ibogaine-induced neurotoxicity. We here report the effects of ibogaine on [3H]glutamate release and uptake in cortical and cerebellar synaptosomes, as well as in cortical astrocyte cultures, from mice and rats. Ibogaine (2-1000 microM) had no effects on glutamate uptake or release by rat synaptosomes. However, ibogaine (500-1000 microM) significantly inhibited the glutamate uptake and stimulated the release of glutamate by cortical (but not cerebellar) synaptosomes of mice. In addition, ibogaine (1000 microM) nearly abolished glutamate uptake by cortical astrocyte cultures from rats and mice. The data provide direct evidence of glutamate involvement in ibogaine-induced neurotoxicity.

  3. Cocaine-induced neuroadaptations in glutamate transmission

    PubMed Central

    Schmidt, Heath D.; Pierce, R. Christopher

    2017-01-01

    A growing body of evidence indicates that repeated exposure to cocaine leads to profound changes in glutamate transmission in limbic nuclei, particularly the nucleus accumbens. This review focuses on preclinical studies of cocaine-induced behavioral plasticity, including behavioral sensitization, self-administration, and the reinstatement of cocaine seeking. Behavioral, pharmacological, neurochemical, electrophysiological, biochemical, and molecular biological changes associated with cocaine-induced plasticity in glutamate systems are reviewed. The ultimate goal of these lines of research is to identify novel targets for the development of therapies for cocaine craving and addiction. Therefore, we also outline the progress and prospects of glutamate modulators for the treatment of cocaine addiction. PMID:20201846

  4. Effect of thiopental sodium on the release of glutamate and gamma-aminobutyric acid from rats prefrontal cortical synaptosomes.

    PubMed

    Liu, Hongliang; Yao, Shanglong

    2004-01-01

    To investigate the effect of thiopental sodium on the release of glutamate and gamma-aminobutyric acid (GABA) from synaptosomes in the prefrontal cortex, synaptosomes were made, the spontaneous release and the evoked release by 30 mmol/L KCl or 20 micromol/L veratridine of glutamate and GABA were performed under various concentrations of thiopental sodium (10-300 micromol/L), glutamate and GABA concentrations were determined by reversed-phase high-performance liquid chromatography. Our results showed that spontaneous release and evoked release of glutamate were significantly inhibited by 30 micromol/L, 100 micromol/L and 300 micromol/L thiopental sodium, IC50 of thiopental sodium was 25.8 +/- 2.3 micromol/L for the spontaneous release, 23.4 +/- 2.4 micromol/L for KCl-evoked release, and 24.3 +/- 1.8 micromol/L for veratridine-evoked release. But GABA spontaneous release and evoked release were unaffected. The study showed that thiopental sodium with clinically related concentrations could inhibit the release of glutamate, but had no effect on the release of GABA from rats prefrontal cortical synaptosomes.

  5. Modulatory Effects of Metabotropic Glutamate Receptors on Local Cortical Circuits

    PubMed Central

    De Pasquale, Roberto; Sherman, S. Murray

    2012-01-01

    Glutamatergic pathways in various thalamic and cortical circuits have been classified into two types: Class 1 and Class 2, where it has been suggested that Class 1 carries main information for processing and Class 2 is mainly modulatory. We now extend this to the local circuitry of visual cortex of the mouse by demonstrating the modulatory actions on the Class 1 pathway from layer 4 to layers 2/3 of a Class 2 input from adjacent locations in layers 2/3. We found that this Class 2 input produces a long lasting hyperpolarization and suppresses the initial responses of input from layer 4 and that this involves the postsynaptic activation of Group II metabotropic glutamate receptors. This modulation also shifts the paired pulse ratio of the layer 4 input from depression to facilitation. PMID:22623682

  6. Decreased occipital cortical glutamate levels in response to successful cognitive-behavioral therapy and pharmacotherapy for major depressive disorder.

    PubMed

    Abdallah, Chadi G; Niciu, Mark J; Fenton, Lisa R; Fasula, Madonna K; Jiang, Lihong; Black, Anne; Rothman, Douglas L; Mason, Graeme F; Sanacora, Gerard

    2014-01-01

    Previous studies have demonstrated that antidepressant medication and electroconvulsive therapy increase occipital cortical γ-aminobutyric acid (GABA) in major depressive disorder (MDD), but a small pilot study failed to show a similar effect of cognitive-behavioral therapy (CBT) on occipital GABA. In light of these findings we sought to determine if baseline GABA levels predict treatment response and to broaden the analysis to other metabolites and neurotransmitters in this larger study. A total of 40 MDD outpatients received baseline proton magnetic resonance spectroscopy (1H-MRS), and 30 subjects completed both pre- and post-CBT 1H-MRS; 9 CBT nonresponders completed an open-label medication phase followed by an additional/3rd 1H-MRS. The magnitude of treatment response was correlated with occipital amino acid neurotransmitter levels. Baseline GABA did not predict treatment outcome. Furthermore, there was no significant effect of CBT on GABA levels. However, we found a significant group × time interaction (F1, 28 = 6.30, p = 0.02), demonstrating reduced glutamate in CBT responders, with no significant glutamate change in CBT nonresponders. These findings corroborate the lack of effect of successful CBT on occipital cortical GABA levels in a larger sample. A reduction in glutamate levels following treatment, on the other hand, correlated with successful CBT and antidepressant medication response. Based on this finding and other reports, decreased occipital glutamate may be an antidepressant response biomarker. Healthy control comparator and nonintervention groups may shed light on the sensitivity and specificity of these results.

  7. Metabotropic Glutamate Receptor 5 Activity in the Nucleus Accumbens Is Required for the Maintenance of Ethanol Self-Administration in a Rat Genetic Model of High Alcohol Intake

    PubMed Central

    Besheer, Joyce; Grondin, Julie J.M.; Cannady, Reginald; Sharko, Amanda C.; Faccidomo, Sara; Hodge, Clyde W.

    2010-01-01

    Background Systemic modulation of Group I and II metabotropic glutamate receptors (mGluRs) regulate ethanol self-administration in a variety of animal models. Although these receptors are expressed in reward-related brain regions, the anatomical specificity of their functional involvement in ethanol self-administration remains to be characterized. This study sought to evaluate the functional role of Group I (mGluR5) and Group II (mGluR2/3) in mesocorticolimbic brain regions in ethanol self-administration. Methods Alcohol-preferring (P) rats, a genetic model of high alcohol drinking, were trained to self-administer ethanol (15% v/v) versus water in operant conditioning chambers. Effects of brain site-specific infusion of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and the mGluR2/3 agonist were then assessed on the maintenance of self-administration. Results Microinjection of the mGluR5 antagonist MPEP in the nucleus accumbens reduced ethanol self-administration at a dose that did not alter locomotor activity. By contrast, infusion of the mGluR2/3 agonist LY379268 in the nucleus accumbens reduced self-administration and produced nonspecific reductions in locomotor activity. The mGluR5 involvement showed anatomical specificity as evidenced by lack of effect of MPEP infusion in the dorsomedial caudate or medial prefrontal cortex on ethanol self-administration. To determine reinforcer specificity, P-rats were trained to self-administer sucrose (.4% w/v) versus water, and effects of intra-accumbens MPEP were tested. The MPEP did not alter sucrose self-administration or motor behavior. Conclusions These results suggest that mGluR5 activity specifically in the nucleus accumbens is required for the maintenance of ethanol self-administration in individuals with genetic risk for high alcohol consumption. PMID:19897175

  8. Metabotropic glutamate receptor 5 activity in the nucleus accumbens is required for the maintenance of ethanol self-administration in a rat genetic model of high alcohol intake.

    PubMed

    Besheer, Joyce; Grondin, Julie J M; Cannady, Reginald; Sharko, Amanda C; Faccidomo, Sara; Hodge, Clyde W

    2010-05-01

    Systemic modulation of Group I and II metabotropic glutamate receptors (mGluRs) regulate ethanol self-administration in a variety of animal models. Although these receptors are expressed in reward-related brain regions, the anatomical specificity of their functional involvement in ethanol self-administration remains to be characterized. This study sought to evaluate the functional role of Group I (mGluR5) and Group II (mGluR2/3) in mesocorticolimbic brain regions in ethanol self-administration. Alcohol-preferring (P) rats, a genetic model of high alcohol drinking, were trained to self-administer ethanol (15% v/v) versus water in operant conditioning chambers. Effects of brain site-specific infusion of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and the mGluR2/3 agonist were then assessed on the maintenance of self-administration. Microinjection of the mGluR5 antagonist MPEP in the nucleus accumbens reduced ethanol self-administration at a dose that did not alter locomotor activity. By contrast, infusion of the mGluR2/3 agonist LY379268 in the nucleus accumbens reduced self-administration and produced nonspecific reductions in locomotor activity. The mGluR5 involvement showed anatomical specificity as evidenced by lack of effect of MPEP infusion in the dorsomedial caudate or medial prefrontal cortex on ethanol self-administration. To determine reinforcer specificity, P-rats were trained to self-administer sucrose (.4% w/v) versus water, and effects of intra-accumbens MPEP were tested. The MPEP did not alter sucrose self-administration or motor behavior. These results suggest that mGluR5 activity specifically in the nucleus accumbens is required for the maintenance of ethanol self-administration in individuals with genetic risk for high alcohol consumption. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Cortical Gamma-Aminobutyric Acid and Glutamate in Posttraumatic Stress Disorder and Their Relationships to Self-Reported Sleep Quality

    PubMed Central

    Meyerhoff, Dieter J.; Mon, Anderson; Metzler, Thomas; Neylan, Thomas C.

    2014-01-01

    Study Objectives: To test if posttraumatic stress disorder (PTSD) is associated with low brain gamma-aminobutyric acid (GABA) levels and if reduced GABA is mediated by poor sleep quality. Design: Laboratory study using in vivo proton magnetic resonance spectroscopy (1H MRS) and behavioral testing. Setting: VA Medical Center Research Service, Psychiatry and Radiology. Patients or Participants: Twenty-seven patients with PTSD (PTSD+) and 18 trauma-exposed controls without PTSD (PTSD−), recruited from United States Army reservists, Army National Guard, and mental health clinics. Interventions: None. Measurements and Results: 1H MRS at 4 Tesla yielded spectra from three cortical brain regions. In parieto-occipital and temporal cortices, PTSD+ had lower GABA concentrations than PTSD−. As expected, PTSD+ had higher depressive and anxiety symptom scores and a higher Insomnia Severity Index (ISI) score. Higher ISI correlated with lower GABA and higher glutamate levels in parieto-occipital cortex and tended to correlate with lower GABA in the anterior cingulate. The relationship between parieto-occipital GABA and PTSD diagnosis was fully mediated through insomnia severity. Lower N-acetylaspartate and glutamate concentrations in the anterior cingulate cortex correlated with higher arousal scores, whereas depressive and anxiety symptoms did generally not influence metabolite concentrations. Conclusions: Low brain gamma-aminobutyric acid (GABA) concentration in posttraumatic stress disorder (PTSD) is consistent with most findings in panic and social anxiety disorders. Low GABA associated with poor sleep quality is consistent with the hyperarousal theory of both primary insomnia and PTSD. Our data demonstrate that poor sleep quality mediates low parieto-occipital GABA in PTSD. The findings have implications for PTSD treatment approaches. Citation: Meyerhoff DJ, Mon A, Metzler T, Neylan TC. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and

  10. EFFECT OF INTERFERON-α ON CORTICAL GLUTAMATE IN PATIENTS WITH HEPATITIS C: A PROTON MRS STUDY

    PubMed Central

    Taylor, Matthew J; Godlewska, Beata; Near, Jamie; Christmas, David; Potokar, John; Collier, Jane; Klenerman, Paul; Barnes, Eleanor; Cowen, Philip J

    2013-01-01

    Background The development of depressive symptomatology is a recognised complication of treatment with the cytokine, interferon-α, and has been seen as supporting inflammatory theories of the pathophysiology of major depression. Major depression has been associated with changes in glutamatergic activity and recent formulations of interferon-induced depression have implicated neurotoxic influences which could also lead to changes in glutamate function. The present study used magnetic resonance spectroscopy (MRS) to measure both glutamate and its major metabolite, glutamine in patients with hepatitis C who received treatment with pegylated-interferon-α and ribavirin. Methods MRS measurements of glutamate and glutamine were taken from a 25×20×20mm voxel including pregenual anterior cingulate cortex in 12 patients before and after 4-6 weeks treatment with interferon. Results Interferon treatment led to an increase in cortical levels of glutamine (p= 0.02) and a significant elevation in the ratio of glutamine to glutamate (p<.01). Further, changes in glutamine level correlated significantly with ratings of depression and anxiety at the time of the second scan. Conclusions We conclude that treatment with interferon-α is associated with MRS-visible changes in glutamatergic metabolism. However, the changes seen differ from those reported in major depression which suggests that the pathophysiology of interferon-induced depression may be distinct from that of major depression more generally. PMID:23659574

  11. Individual Differences in Dopamine Efflux in Nucleus Accumbens Shell and Core during Instrumental Learning

    ERIC Educational Resources Information Center

    Cheng, Jingjun; Feenstra, Matthijs G. P.

    2006-01-01

    Combined activation of dopamine D1- and NMDA-glutamate receptors in the nucleus accumbens has been strongly implicated in instrumental learning, the process in which an individual learns that a specific action has a wanted outcome. To assess dopaminergic activity, we presented rats with two sessions (30 trials each) of a one-lever appetitive…

  12. Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism.

    PubMed

    Huang, Mei; Panos, John J; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Meltzer, Herbert Y

    2014-03-01

    Atypical antipsychotic drugs (AAPDs) have been suggested to be more effective in improving cognitive impairment in schizophrenia than typical APDs, a conclusion supported by differences in receptor affinities and neurotransmitter efflux in the cortex and the hippocampus. More potent serotonin (5-HT)2A than dopamine (DA) D2 receptors antagonism, and direct or indirect 5-HT1A agonism, characterize almost all AAPDs. Blonanserin, an AAPD, has slightly greater affinity for D2 than 5-HT2A receptors. Using microdialysis and ultra performance liquid chromatography-mass spectrometry/mass spectrometry, we compared the abilities of the typical APD, haloperidol, three AAPDs, blonanserin, lurasidone, and olanzapine, and a selective 5-HT1A partial agonist, tandospirone, and all, except haloperidol, were found to ameliorate the cognitive deficits produced by the N-methyl-d-aspartate antagonist, phencyclidine, altering the efflux of neurotransmitters and metabolites in the rat cortex and nucleus accumbens. Blonanserin, lurasidone, olanzapine, and tandospirone, but not haloperidol, increased the efflux of cortical DA and its metabolites, homovanillic acid and 3,4-dihydroxyphenylacetic acid. Olanzapine and lurasidone increased the efflux of acetylcholine; lurasidone increased glutamate as well. None of the compounds significantly altered the efflux of 5-HT or its metabolite, 5-hydroxyindole acetic acid, or GABA, serine, and glycine. The ability to increase cortical DA efflux was the only shared effect of the compounds which ameliorates the deficit in cognition in rodents following phencyclidine. © 2013 International Society for Neurochemistry.

  13. Differential Molecular Targets for Neuroprotective Effect of Chlorogenic Acid and its Related Compounds Against Glutamate Induced Excitotoxicity and Oxidative Stress in Rat Cortical Neurons.

    PubMed

    Rebai, Olfa; Belkhir, Manel; Sanchez-Gomez, María Victoria; Matute, Carlos; Fattouch, Sami; Amri, Mohamed

    2017-12-01

    The present study has been designed to explore the molecular mechanism and signaling pathway targets of chlorogenic acid (CGA) and its main hydrolysates, caffeic (CA) and quinic acid in the protective effect against glutamate-excitotoxicity. For this purpose 8-DIV cortical neurons in primary culture were exposed to 50 μM L-glutamic acid plus 10 µM glycine, with or without 10-100 μM tested compounds. Chlorogenic acid and caffeic acid via their antioxidant properties inhibited cell death induced by glutamate in dose depended manner. However, quinic acid slightly protects neurons at a higher dose. DCF, JC-1 and Ca 2+ sensitive fluorescent dye fura-2, were used to measure intracellular ROS accumulation, mitochondrial membrane potential integration and intracellular calcium concentration [Ca 2+ ] i . Results indicate that similarly, CGA acts as a protective agent against glutamate-induced cortical neurons injury by suppressing the accumulation of endogenous ROS and restore the mitochondrial membrane potential, activate the enzymatic antioxidant system by the increase levels of SOD activity and modulate the rise of intracellular calcium levels by increasing the rise of intracellular concentrations of Ca 2+ caused by glutamate overstimulation. PKC signaling cascade appear to be engaged in this protective mechanism. Interseling, CGA and CA also exhibit antiapoptotic properties against glutamate-induced cleaved activation of pro-caspases; caspase 1,8 and 9 and calpain (PD 150606,Calpeptin and MDL 28170).These data suggest that neuroprotective activity of CGA ester may occurs throught its hydrolysate,the caffeic acid and its interaction with intracellular molecules suggesting that CGA exert its neuroprotection via its caffeoly acid group that might potentially be used as a therapeutic agent in neurodegeneratives disorders associated with glutamate excitotoxicity.

  14. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    PubMed

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Salivary kynurenic acid response to psychological stress: inverse relationship to cortical glutamate in schizophrenia.

    PubMed

    Chiappelli, Joshua; Rowland, Laura M; Notarangelo, Francesca M; Wijtenburg, S Andrea; Thomas, Marian A R; Pocivavsek, Ana; Jones, Aaron; Wisner, Krista; Kochunov, Peter; Schwarcz, Robert; Hong, L Elliot

    2018-04-18

    Frontal glutamatergic synapses are thought to be critical for adaptive, long-term stress responses. Prefrontal cortices, including the anterior cingulate cortex (ACC) contribute to stress perception and regulation, and are involved in top-down regulation of peripheral glucocorticoid and inflammatory responses to stress. Levels of kynurenic acid (KYNA) in saliva increase in response to psychological stress, and this stress-induced effect may be abnormal in people with schizophrenia. Here we test the hypothesis that ACC glutamatergic functioning may contribute to the stress-induced salivary KYNA response in schizophrenia. In 56 patients with schizophrenia and 58 healthy controls, our results confirm that levels of KYNA in saliva increase following psychological stress. The magnitude of the effect correlated negatively with proton magnetic resonance spectroscopy (MRS) glutamate + glutamine (r = -.31, p = .017) and glutamate (r = -0.27, p = .047) levels in the ACC in patients but not in the controls (all p ≥ .45). Although, a causal relationship cannot be ascertained in this cross-sectional study, these findings suggest a potentially meaningful link between central glutamate levels and kynurenine pathway response to stress in individuals with schizophrenia.

  16. Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens

    PubMed Central

    Reynolds, Sheila M; Berridge, Kent C

    2009-01-01

    The nucleus accumbens mediates both appetitive motivation for rewards and fearful motivation toward threats, which are generated in part by glutamate-related circuits organized in a keyboard fashion. At rostral sites of the medial shell, localized glutamate disruptions typically generate intense appetitive behaviors in rats, but the disruption incrementally generates fearful behaviors as microinjection sites move more caudally. We found that exposure to stressful environments caused caudal fear-generating zones to expand rostrally, filling ~90% of the shell. Conversely, a preferred home environment caused fear-generating zones to shrink and appetitive-generating zones to expand caudally, filling ~90% of the shell. Thus, the emotional environments retuned the generation of motivation in corticolimbic circuits. PMID:18344996

  17. Glutamate and GABA contributions to medial prefrontal cortical activity to emotion: implications for mood disorders.

    PubMed

    Stan, Ana D; Schirda, Claudiu V; Bertocci, Michele A; Bebko, Genna M; Kronhaus, Dina M; Aslam, Haris A; LaBarbara, Eduard J; Tanase, Costin; Lockovich, Jeanette C; Pollock, Myrna H; Stiffler, Richelle S; Phillips, Mary L

    2014-09-30

    The dorsomedial prefrontal cortex (MdPFC) and anterior cingulate cortices (ACC) play a critical role in implicit emotion regulation; however the understanding of the specific neurotransmitters that mediate such role is lacking. In this study, we examined relationships between MdPFC concentrations of two neurotransmitters, glutamate and γ-amino butyric acid (GABA), and BOLD activity in ACC during performance of an implicit facial emotion-processing task. Twenty healthy volunteers, aged 20-35 years, were scanned while performing an implicit facial emotion-processing task, whereby presented facial expressions changed from neutral to one of the four emotions: happy, anger, fear, or sad. Glutamate concentrations were measured before and after the emotion-processing task in right MdPFC using magnetic resonance spectroscopy (MRS). GABA concentrations were measured in bilateral MdPFC after the emotion-processing task. Multiple regression models were run to determine the relative contribution of glutamate and GABA concentration, age, and gender to BOLD signal in ACC to each of the four emotions. Multiple regression analyses revealed a significant negative correlation between MdPFC GABA concentration and BOLD signal in subgenual ACC (p<0.05, corrected) to sad versus shape contrast. For the anger versus shape contrast, there was a significant negative correlation between age and BOLD signal in pregenual ACC (p<0.05, corrected) and a positive correlation between MdPFC glutamate concentration (pre-task) and BOLD signal in pregenual ACC (p<0.05, corrected). Our findings are the first to provide insight into relationships between MdPFC neurotransmitter concentrations and ACC BOLD signal, and could further understanding of molecular mechanisms underlying emotion processing in healthy and mood-disordered individuals. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Activation of NMDA receptors reduces metabotropic glutamate receptor-induced long-term depression in the nucleus accumbens via a CaMKII-dependent mechanism.

    PubMed

    Huang, Chiung-Chun; Hsu, Kuei-Sen

    2012-12-01

    Glutamate is the major excitatory neurotransmitter in the brain and exerts its actions through two distinct types of receptors, ionotropic and metabotropic glutamate receptors (mGluR). Although functional interplay between ionotropic N-methyl-d-aspartate receptors (NMDAR) and mGluR has been convincingly demonstrated in native and recombinant systems, the mechanism by which NMDAR activation leads to modulation of mGluR function has yet to be elucidated. Using whole-cell patch-clamp recordings in mouse nucleus accumbens (NAc) slices, we found that tetanic stimulation (TS) of excitatory afferents with a naturally occurring frequency (10 min at 13 Hz) reliably induces a mGluR1/5-dependent long-term depression (mGluR1/5-LTD) of excitatory synaptic transmission. Blockade of NMDAR during but not after TS showed enhanced mGluR1/5-LTD induction, which is associated with its antagonism of TS-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation. The ability of NMDAR antagonists to promote mGluR1/5-LTD induction was mimicked by a selective CaMKII inhibitor KN-62. However, the induction of mGluR1/5-LTD by bath-applied agonist (S)-3,5-dihydrophenylglycine was not affected by NMDAR blockade. We also observed that NMDAR or CaMKII blockade during TS significantly blunted TS-induced increased serine/threonine phosphorylation of the scaffold protein Homer1b/c and resulted in an increased interaction of mGluR5 with the Homer1b/c. These results indicate that synaptically released glutamate during TS of excitatory afferents can activate both NMDAR and mGluR1/5 in NAc neurons concomitantly and that activation of NMDAR may stimulate CaMKII-mediated phosphorylation of Homer1b/c and impair the interaction between mGluR5 and Homer1b/c, thereby attenuating mGluR1/5-LTD induction. This study provides a novel molecular mechanism by which NMDAR could regulate mGluR5 function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Effects of sarizotan on the corticostriatal glutamate pathways.

    PubMed

    Antonelli, Tiziana; Fuxe, Kjell; Tomasini, Maria C; Bartoszyk, Gerd D; Seyfried, Christoph A; Tanganelli, Sergio; Ferraro, Luca

    2005-12-01

    The effects of sarizotan, a 5-HT(1A) agonist with additional affinity for D(3) and D(4) receptors, have been studied on the corticostriatal glutamate pathways using dual-probe microdialysis in the awake rat. Sarizotan given systemically (0.1-10 mg/kg s.c.) or perfused into the motor cortex (10 microM) produced 20-30% reduction of cortical and striatal glutamate levels. The inhibitory effects of the systemic sarizotan on cortical and striatal glutamate levels were counteracted by intracortical perfusion with the 5-HT(1A) antagonist WAY100135 (10 microM). These findings suggest that the anti-dyskinetic properties of sarizotan could be mediated via its 5-HT(1A) agonist actions in the motor cortex, leading to reduced activity in the corticostriatal glutamate pathways with reduced activation of the striatopallidal GABA pathway mediating motor inhibition. Synapse 58:193-199, 2005. (c) 2005 Wiley-Liss, Inc.

  20. Effects of Orally Administered Augmentin on Glutamate Transporter 1, Cystine-glutamate Exchanger Expression as well as Ethanol Intake in Alcohol-Preferring Rats

    PubMed Central

    Hakami, Alqassem Y.; Alshehri, Fahad S.; Althobaiti, Yusuf S.; Sari, Youssef

    2016-01-01

    Alcohol dependence is associated with deficits in glutamate uptake and impairment of glutamate homeostasis in different brain reward regions. Glutamate transporter subtype 1 (GLT-1), cystine-glutamate exchanger (xCT) and glutamate/aspartate transporter (GLAST) are the key players in regulating extracellular glutamate concentration in the brain. Parenteral treatment with ceftriaxone, β-lactam antibiotic, has been reported to attenuate ethanol consumption and reinstatement to cocaine-seeking behavior, in part, by restoring the expression of GLT-1 and xCT in mesocorticolimbic brain regions in rats. In this study, we focus to test Augmentin (amoxicillin/clavulanate), which can be administered orally to subjects. Therefore, we examined the effects of orally administered Augmentin on ethanol intake as well as GLT-1, xCT and GLAST expression in alcohol-preferring (P) rats. We found that orally administered Augmentin significantly attenuated ethanol consumption in P rats as compared to the vehicle-treated group. Importantly, the attenuation in ethanol consumption was associated with a significant upregulation of GLT-1 and xCT expression in nucleus accumbens (NAc) and prefrontal cortex (PFC). There was no effect of oral Augmentin on GLAST expression in either NAc or PFC. These findings present strong evidence that oral administration of Augmentin can be used as an alternative to parenteral administration. PMID:27993695

  1. Effects of orally administered Augmentin on glutamate transporter 1, cystine-glutamate exchanger expression and ethanol intake in alcohol-preferring rats.

    PubMed

    Hakami, Alqassem Y; Alshehri, Fahad S; Althobaiti, Yusuf S; Sari, Youssef

    2017-03-01

    Alcohol dependence is associated with deficits in glutamate uptake and impairment of glutamate homeostasis in different brain reward regions. Glutamate transporter subtype 1 (GLT-1), cystine-glutamate exchanger (xCT) and glutamate/aspartate transporter (GLAST) are one of the key players in regulating extracellular glutamate concentration in the brain. Parenteral treatment with ceftriaxone, β-lactam antibiotic, has been reported to attenuate ethanol consumption and reinstatement to cocaine-seeking behavior, in part, by restoring the expression of GLT-1 and xCT in mesocorticolimbic brain regions in rats. In this study, we focused to test Augmentin (amoxicillin/clavulanate), which can be administered orally to subjects. Therefore, we examined the effects of orally administered Augmentin on ethanol intake as well as GLT-1, xCT and GLAST expression in male alcohol-preferring (P) rats. We found that orally administered Augmentin significantly attenuated ethanol consumption in P rats as compared to the vehicle-treated group. Importantly, the attenuation in ethanol consumption was associated with a significant upregulation of GLT-1 and xCT expression in nucleus accumbens (NAc) and prefrontal cortex (PFC). There was no effect of orally administered Augmentin on GLAST expression in either NAc or PFC. These findings present strong evidence that oral administration of Augmentin can be used as an alternative to parenteral treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens.

    PubMed

    Bardo, M T

    1998-01-01

    Multiple lines of research have implicated the mesolimbic dopamine system in drug reward measured by either the drug self-administration or conditioned place preference paradigm. The present review summarizes recent work that examines the neuropharmacological mechanisms by which drugs impinge on this dopaminergic neural circuitry, as well as other systems that provide input and output circuits to the mesolimbic dopamine system. Studies examining the effect of selective agonist and antagonist drugs administered systemically have indicated that multiple neurotransmitters are involved, including dopamine, serotonin, acetylcholine, glutamate, GABA, and various peptides. Direct microinjection studies have also provided crucial evidence indicating that, in addition to the mesolimbic dopamine system, other structures play a role in drug reward, including the ventral pallidum, amygdala, hippocampus, hypothalamus, and pedunculopontine tegmental nucleus. GABAergic circuitry descending from the nucleus accumbens to the pedunculopontine tegmental nucleus via the ventral pallidum appears to be especially important in directing the behavioral sequelae associated with reward produced by various drugs of abuse. However, activation of the reward circuitry is achieved differently for various drugs of abuse. With amphetamine and cocaine, initiation of reward is controlled within the nucleus accumbens and prefrontal cortex, respectively. With opiates, initiation of reward involves the ventral tegmental area, nucleus accumbens, hippocampus, and hypothalamus. It is not clear presently if these multiple anatomical structures mediate opiate reward by converging on a single output system or multiple output systems.

  3. Cortical functional hyperconnectivity in a mouse model of depression and selective network effects of ketamine.

    PubMed

    McGirr, Alexander; LeDue, Jeffrey; Chan, Allen W; Xie, Yicheng; Murphy, Timothy H

    2017-08-01

    See Huang and Liston (doi:10.1093/awx166) for a scientific commentary on this article.Human depression is associated with glutamatergic dysfunction and alterations in resting state network activity. However, the indirect nature of human in vivo glutamate and activity assessments obscures mechanistic details. Using the chronic social defeat mouse model of depression, we determine how mesoscale glutamatergic networks are altered after chronic stress, and in response to the rapid acting antidepressant, ketamine. Transgenic mice (Ai85) expressing iGluSnFR (a recombinant protein sensor) permitted real-time in vivo selective characterization of extracellular glutamate and longitudinal imaging of mesoscale cortical glutamatergic functional circuits. Mice underwent chronic social defeat or a control condition, while spontaneous cortical activity was longitudinally sampled. After chronic social defeat, we observed network-wide glutamate functional hyperconnectivity in defeated animals, which was confirmed with voltage sensitive dye imaging in an independent cohort. Subanaesthetic ketamine has unique effects in defeated animals. Acutely, subanaesthetic ketamine induces large global cortical glutamate transients in defeated animals, and an elevated subanaesthetic dose resulted in sustained global increase in cortical glutamate. Local cortical inhibition of glutamate transporters in naïve mice given ketamine produced a similar extracellular glutamate phenotype, with both glutamate transients and a dose-dependent accumulation of glutamate. Twenty-four hours after ketamine, normalization of depressive-like behaviour in defeated animals was accompanied by reduced glutamate functional connectivity strength. Altered glutamate functional connectivity in this animal model confirms the central role of glutamate dynamics as well as network-wide changes after chronic stress and in response to ketamine. © The Author (2017). Published by Oxford University Press on behalf of the

  4. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and their relationships to self-reported sleep quality.

    PubMed

    Meyerhoff, Dieter J; Mon, Anderson; Metzler, Thomas; Neylan, Thomas C

    2014-05-01

    To test if posttraumatic stress disorder (PTSD) is associated with low brain gamma-aminobutyric acid (GABA) levels and if reduced GABA is mediated by poor sleep quality. Laboratory study using in vivo proton magnetic resonance spectroscopy (1H MRS) and behavioral testing. VA Medical Center Research Service, Psychiatry and Radiology. Twenty-seven patients with PTSD (PTSD+) and 18 trauma-exposed controls without PTSD (PTSD-), recruited from United States Army reservists, Army National Guard, and mental health clinics. None. 1H MRS at 4 Tesla yielded spectra from three cortical brain regions. In parieto-occipital and temporal cortices, PTSD+ had lower GABA concentrations than PTSD-. As expected, PTSD+ had higher depressive and anxiety symptom scores and a higher Insomnia Severity Index (ISI) score. Higher ISI correlated with lower GABA and higher glutamate levels in parieto-occipital cortex and tended to correlate with lower GABA in the anterior cingulate. The relationship between parieto-occipital GABA and PTSD diagnosis was fully mediated through insomnia severity. Lower N-acetylaspartate and glutamate concentrations in the anterior cingulate cortex correlated with higher arousal scores, whereas depressive and anxiety symptoms did generally not influence metabolite concentrations. Low brain gamma-aminobutyric acid (GABA) concentration in posttraumatic stress disorder (PTSD) is consistent with most findings in panic and social anxiety disorders. Low GABA associated with poor sleep quality is consistent with the hyperarousal theory of both primary insomnia and PTSD. Our data demonstrate that poor sleep quality mediates low parieto-occipital GABA in PTSD. The findings have implications for PTSD treatment approaches.

  5. Effect of serum on intracellular calcium homeostasis and survival of primary cortical and hippocampal CA1 neurons following brief glutamate treatment.

    PubMed

    Uto, A; Dux, E; Hossmann, K A

    1994-12-01

    Glutamate neurotoxicity was studied in primary neuronal cultures prepared from rat cerebral cortex and hippocampal CA1 sector. Neurons were cultivated with 5% native horse serum and then exposed to 0.1 or 1.0 mM glutamate for 5 min. Subsequently, neurons were allowed to recover for 24 hours either in the presence or in the absence of 5% native horse serum. In the absence of serum, neurons showed morphological signs of degeneration and exhibited marked loss of vitality as tested by vital staining and release of lactate dehydrogenase (LDH). In contrast, when neurons were cultivated in the presence of serum, no degenerative changes were seen and the neurons survived. Heat inactivated serum did not prevent neuronal death but addition of basic fibroblast growth factor (bFGF) or transforming growth factor-beta 1 (TGF-beta 1) had the same protective effect as native serum. Measurements of intracellular calcium activity ([Ca2+]i) with the indicator dye fura-2 revealed a sharp increase during glutamate exposure. In the absence of serum, [Ca2+]i returned to near control within 5 min but it secondarily increased after 1 hour to almost the same level as during glutamate exposure. This delayed increase was more pronounced in CA1 than in cortical neurons, it correlated linearly with the initial rise during glutamate exposure, and it was greatly reduced in the presence of serum. These observations suggest that glutamate neurotoxicity in vitro is a function of the delayed and not of the primary rise of intracellular calcium activity, and that trophic factors prevent neurotoxicity by attenuating this delayed response.

  6. Cortical Regulation of Striatal Medium Spiny Neuron Dendritic Remodeling in Parkinsonism: Modulation of Glutamate Release Reverses Dopamine Depletion–Induced Dendritic Spine Loss

    PubMed Central

    Garcia, Bonnie G.; Neely, M. Diana

    2010-01-01

    Striatal medium spiny neurons (MSNs) receive glutamatergic afferents from the cerebral cortex and dopaminergic inputs from the substantia nigra (SN). Striatal dopamine loss decreases the number of MSN dendritic spines. This loss of spines has been suggested to reflect the removal of tonic dopamine inhibitory control over corticostriatal glutamatergic drive, with increased glutamate release culminating in MSN spine loss. We tested this hypothesis in two ways. We first determined in vivo if decortication reverses or prevents dopamine depletion–induced spine loss by placing motor cortex lesions 4 weeks after, or at the time of, 6-hydroxydopamine lesions of the SN. Animals were sacrificed 4 weeks after cortical lesions. Motor cortex lesions significantly reversed the loss of MSN spines elicited by dopamine denervation; a similar effect was observed in the prevention experiment. We then determined if modulating glutamate release in organotypic cocultures prevented spine loss. Treatment of the cultures with the mGluR2/3 agonist LY379268 to suppress corticostriatal glutamate release completely blocked spine loss in dopamine-denervated cultures. These studies provide the first evidence to show that MSN spine loss associated with parkinsonism can be reversed and point to suppression of corticostriatal glutamate release as a means of slowing progression in Parkinson's disease. PMID:20118184

  7. Norepinephrine in the Medial Pre-frontal Cortex Supports Accumbens Shell Responses to a Novel Palatable Food in Food-Restricted Mice Only

    PubMed Central

    Latagliata, Emanuele Claudio; Puglisi-Allegra, Stefano; Ventura, Rossella; Cabib, Simona

    2018-01-01

    Previous findings from this laboratory demonstrate: (1) that different classes of addictive drugs require intact norepinephrine (NE) transmission in the medial pre Frontal Cortex (mpFC) to promote conditioned place preference and to increase dopamine (DA) tone in the nucleus accumbens shell (NAc Shell); (2) that only food-restricted mice require intact NE transmission in the mpFC to develop conditioned preference for a context associated with milk chocolate; and (3) that food-restricted mice show a significantly larger increase of mpFC NE outflow then free fed mice when experiencing the palatable food for the first time. In the present study we tested the hypothesis that only the high levels of frontal cortical NE elicited by the natural reward in food restricted mice stimulate mesoaccumbens DA transmission. To this aim we investigated the ability of a first experience with milk chocolate to increase DA outflow in the accumbens Shell and c-fos expression in striatal and limbic areas of food–restricted and ad-libitum fed mice. Moreover, we tested the effects of a selective depletion of frontal cortical NE on both responses in either feeding group. Only in food-restricted mice milk chocolate induced an increase of DA outflow beyond baseline in the accumbens Shell and a c-fos expression larger than that promoted by a novel inedible object in the nucleus accumbens. Moreover, depletion of frontal cortical NE selectively prevented both the increase of DA outflow and the large expression of c-fos promoted by milk chocolate in the NAc Shell of food-restricted mice. These findings support the conclusion that in food-restricted mice a novel palatable food activates the motivational circuit engaged by addictive drugs and support the development of noradrenergic pharmacology of motivational disturbances. PMID:29434542

  8. Nucleus accumbens GABAergic inhibition generates intense eating and fear that resists environmental retuning and needs no dopamine

    PubMed Central

    Richard, Jocelyn M.; Plawecki, Andrea M.; Berridge, Kent C.

    2013-01-01

    Intense fearful behavior and/or intense appetitive eating behavior can be generated by localized amino acid inhibitions along a rostrocaudal anatomical gradient within medial shell of nucleus accumbens of the rat. This can be produced by microinjections in medial shell of either the GABAA agonist muscimol (mimicking intrinsic GABAergic inputs) or the AMPA antagonist DNQX (disrupting corticolimbic glutamate inputs). At rostral sites in medial shell, each drug robustly stimulates appetitive eating and food intake, whereas at more caudal sites the same drugs instead produce increasingly fearful behaviors such as escape, distress vocalizations, and defensive treading (an antipredator behavior rodents emit to snakes and scorpions). Previously we showed that intense motivated behaviors generated by glutamate blockade require local endogenous dopamine and can be modulated in valence by environmental ambience. Here we investigated whether GABAergic generation of intense appetitive and fearful motivations similarly depends on local dopamine signals, and whether the valence of motivations generated by GABAergic inhibition can also be retuned by changes in environmental ambience. We report that the answer to both questions is ‘no’. Eating and fear generated by GABAergic inhibition of accumbens shell does not need endogenous dopamine. Also, the appetitive/fearful valence generated by GABAergic muscimol microinjections resists environmental retuning and is determined almost purely by rostrocaudal anatomical placement. These results suggest that NAc GABAergic release of fear and eating are relatively independent of modulatory dopamine signals, and more anatomically pre-determined in valence balance than release of the same intense behaviors by glutamate disruptions. PMID:23551138

  9. Alterations in L-Glutamate Binding in Alzheimer's and Huntington's Diseases

    NASA Astrophysics Data System (ADS)

    Greenamyre, J. Timothy; Penney, John B.; Young, Anne B.; D'Amato, Constance J.; Hicks, Samuel P.; Shoulson, Ira

    1985-03-01

    Brain sections from patients who had died with senile dementia of the Alzheimer's type (SDAT), Huntington's disease (HD), or no neurologic disease were studied by autoradiography to measure sodium-independent L-[3H]glutamate binding. In brain sections from SDAT patients, glutamate binding was normal in the caudate, putamen, and claustrum but was lower than normal in the cortex. The decreased cortical binding represented a reduction in numbers of binding sites, not a change in binding affinity, and appeared to be the result of a specific decrease in numbers of the low-affinity quisqualate binding site. No significant changes in cortical binding of other ligands were observed. In brains from Huntington's disease patients, glutamate binding was lower in the caudate and putamen than in the same regions of brains from control and SDAT patients but was normal in the cortex. It is possible that development of positron-emitting probes for glutamate receptors may permit diagnosis of SDAT in vivo by means of positron emission tomographic scanning.

  10. Pharmacological Blockade of Serotonin 5-HT7 Receptor Reverses Working Memory Deficits in Rats by Normalizing Cortical Glutamate Neurotransmission

    PubMed Central

    Bonaventure, Pascal; Aluisio, Leah; Shoblock, James; Boggs, Jamin D.; Fraser, Ian C.; Lord, Brian; Lovenberg, Timothy W.; Galici, Ruggero

    2011-01-01

    The role of 5-HT7 receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT7 antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg) significantly reversed the deficits induced by MK-801 (0.1 mg/kg) but augmented the deficit induced by scopolamine (0.06 mg/kg). The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT7 receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission. PMID:21701689

  11. High glutamate attenuates S100B and LDH outputs from rat cortical slices enhanced by either oxygen-glucose deprivation or menadione.

    PubMed

    Demircan, Celaleddin; Gül, Zülfiye; Büyükuysal, R Levent

    2014-07-01

    One hour incubation of rat cortical slices in a medium without oxygen and glucose (oxygen-glucose deprivation, OGD) increased S100B release to 6.53 ± 0.3 ng/ml/mg protein from its control value of 3.61 ± 0.2 ng/ml/mg protein. When these slices were then transferred to a medium containing oxygen and glucose (reoxygenation, REO), S100B release rose to 344 % of its control value. REO also caused 192 % increase in lactate dehydrogenase (LDH) leakage. Glutamate added at millimolar concentration into the medium decreased OGD or REO-induced S100B release and REO-induced LDH leakage. Alpha-ketoglutarate, a metabolic product of glutamate, was found to be as effective as glutamate in decreasing the S100B and LDH outputs. Similarly lactate, 2-ketobutyrate and ethyl pyruvate, a lipophilic derivative of pyruvate, also exerted a glutamate-like effect on S100B and LDH outputs. Preincubation with menadione, which produces H2O2 intracellularly, significantly increased S100B and LDH levels in normoxic medium. All drugs tested in the present study, with the exception of pyruvate, showed a complete protection against menadione preincubation. Additionally, each OGD-REO, menadione or H2O2-induced mitochondrial energy impairments determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining and OGD-REO or menadione-induced increases in reactive oxygen substances (ROS) determined by 2,7-dichlorofluorescin diacetate (DCFH-DA) were also recovered by glutamate. Interestingly, H2O2-induced increase in fluorescence intensity derived from DCFH-DA in a slice-free physiological medium was attenuated significantly by glutamate and alpha-keto acids. All these drug actions support the conclusion that high glutamate, such as alpha-ketoglutarate and other keto acids, protects the slices against OGD- and REO-induced S100B and LDH outputs probably by scavenging ROS in addition to its energy substrate metabolite property.

  12. The Marine Guanidine Alkaloid Crambescidin 816 Induces Calcium Influx and Cytotoxicity in Primary Cultures of Cortical Neurons through Glutamate Receptors.

    PubMed

    Mendez, Aida G; Juncal, Andrea Boente; Silva, Siguara B L; Thomas, Olivier P; Martín Vázquez, Víctor; Alfonso, Amparo; Vieytes, Mercedes R; Vale, Carmen; Botana, Luís M

    2017-07-19

    Crambescidin 816 is a guanidine alkaloid produced by the sponge Crambe crambe with known antitumoral activity. While the information describing the effects of this alkaloid in central neurons is scarce, Cramb816 is known to block voltage dependent calcium channels being selective for L-type channels. Moreover, Cramb816 reduced neuronal viability through an unknown mechanism. Here, we aimed to describe the toxic activity of Cramb816 in cortical neurons. Since calcium influx is considered the main mechanism responsible for neuronal cell death, the effects of Cramb816 in the cytosolic calcium concentration of cortical neurons were studied. The alkaloid decreased neuronal viability and induced a dose-dependent increase in cytosolic calcium that was also related to the presence of calcium in the extracellular media. The increase in calcium influx was age dependent, being higher in younger neurons. Moreover, this effect was prevented by glutamate receptor antagonists, which did not fully block the cytotoxic effect of Cramb816 after 24 h of treatment but completely prevented Cramb816 cytotoxicity after 10 min exposure. Therefore, the findings presented herein provide new insights into the cytotoxic effect of Cramb816 in cortical neurons.

  13. A Single Brain-Derived Neurotrophic Factor Infusion into the Dorsomedial Prefrontal Cortex Attenuates Cocaine Self-Administration-Induced Phosphorylation of Synapsin in the Nucleus Accumbens during Early Withdrawal

    PubMed Central

    Sun, Wei-Lun; Eisenstein, Sarah A.; Zelek-Molik, Agnieszka

    2015-01-01

    Background: Dysregulation in the prefrontal cortex-nucleus accumbens pathway has been implicated in cocaine addiction. We have previously demonstrated that one intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor (BDNF) infusion immediately following the last cocaine self-administration session caused a long-lasting inhibition of cocaine-seeking and normalized the cocaine-induced disturbance of glutamate transmission in the nucleus accumbens after extinction and a cocaine prime. However, the molecular mechanism mediating the brain-derived neurotrophic factor effect on cocaine-induced alterations in extracellular glutamate levels is unknown. Methods: In the present study, we determined the effects of brain-derived neurotrophic factor on cocaine-induced changes in the phosphorylation of synapsin (p-synapsin), a family of presynaptic proteins that mediate synaptic vesicle mobilization, in the nucleus accumbens during early withdrawal. Results: Two hours after cocaine self-administration, p-synapsin Ser9 and p-synapsin Ser62/67, but not p-synapsin Ser603, were increased in the nucleus accumbens. At 22 hours, only p-synapsin Ser9 was still elevated. Elevations at both time points were attenuated by an intra-dorsomedial prefrontal cortex brain-derived neurotrophic factor infusion immediately after the end of cocaine self-administration. Brain-derived neurotrophic factor also reduced cocaine self-administration withdrawal-induced phosphorylation of the protein phosphatase 2A C-subunit, suggesting that brain-derived neurotrophic factor disinhibits protein phosphatase 2A C-subunit, consistent with p-synapsin Ser9 dephosphorylation. Further, co-immunoprecipitation demonstrated that protein phosphatase 2A C-subunit and synapsin are associated in a protein-protein complex that was reduced after 2 hours of withdrawal from cocaine self-administration and reversed by brain-derived neurotrophic factor. Conclusions: Taken together, these findings demonstrate that

  14. Neuroprotective Effects of Glutamate Antagonists and Extracellular Acidity

    NASA Astrophysics Data System (ADS)

    Kaku, David A.; Giffard, Rona G.; Choi, Dennis W.

    1993-06-01

    Glutamate antagonists protect neurons from hypoxic injury both in vivo and in vitro, but in vitro studies have not been done under the acidic conditions typical of hypoxia-ischemia in vivo. Consistent with glutamate receptor antagonism, extracellular acidity reduced neuronal death in murine cortical cultures that were deprived of oxygen and glucose. Under these acid conditions, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionate-kainate antagonists further reduced neuronal death, such that some neurons tolerated prolonged oxygen and glucose deprivation almost as well as did astrocytes. Neuroprotection induced by this combination exceeded that induced by glutamate antagonists alone, suggesting that extracellular acidity has beneficial effects beyond the attenuation of ionotropic glutamate receptor activation.

  15. Altered morphology of the nucleus accumbens in persistent developmental stuttering.

    PubMed

    Neef, Nicole E; Bütfering, Christoph; Auer, Tibor; Metzger, F Luise; Euler, Harald A; Frahm, Jens; Paulus, Walter; Sommer, Martin

    2018-03-01

    Neuroimaging studies in persistent developmental stuttering repeatedly report altered basal ganglia functions. Together with thalamus and cerebellum, these structures mediate sensorimotor functions and thus represent a plausible link between stuttering and neuroanatomy. However, stuttering is a complex, multifactorial disorder. Besides sensorimotor functions, emotional and social-motivational factors constitute major aspects of the disorder. Here, we investigated cortical and subcortical gray matter regions to study whether persistent developmental stuttering is also linked to alterations of limbic structures. The study included 33 right-handed participants who stutter and 34 right-handed control participants matched for sex, age, and education. Structural images were acquired using magnetic resonance imaging to estimate volumetric characteristics of the nucleus accumbens, hippocampus, amygdala, pallidum, putamen, caudate nucleus, and thalamus. Volumetric comparisons and vertex-based shape comparisons revealed structural differences. The right nucleus accumbens was larger in participants who stutter compared to controls. Recent theories of basal ganglia functions suggest that the nucleus accumbens is a motivation-to-movement interface. A speaker intends to reach communicative goals, but stuttering can derail these efforts. It is therefore highly plausible to find alterations in the motivation-to-movement interface in stuttering. While behavioral studies of stuttering sought to find links between the limbic and sensorimotor system, we provide the first neuroimaging evidence of alterations in the limbic system. Thus, our findings might initialize a unified neurobiological framework of persistent developmental stuttering that integrates sensorimotor and social-motivational neuroanatomical circuitries. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Ventral tegmental ionotropic glutamate receptor stimulation of nucleus accumbens tonic dopamine efflux blunts hindbrain-evoked phasic neurotransmission: implications for dopamine dysregulation disorders.

    PubMed

    Tye, S J; Miller, A D; Blaha, C D

    2013-11-12

    Activation of glutamate receptors within the ventral tegmental area (VTA) stimulates extrasynaptic (basal) dopamine release in terminal regions, including the nucleus accumbens (NAc). Hindbrain inputs from the laterodorsal tegmental nucleus (LDT) are critical for elicitation of phasic VTA dopamine cell activity and consequent transient dopamine release. This study investigated the role of VTA ionotropic glutamate receptor (iGluR) stimulation on both basal and LDT electrical stimulation-evoked dopamine efflux in the NAc using in vivo chronoamperometry and fixed potential amperometry in combination with stearate-graphite paste and carbon fiber electrodes, respectively. Intra-VTA infusion of the iGluR agonists (±)-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA; 1 μg/μl) or N-methyl-d-aspartic acid (NMDA; 2 μg/μl) enhanced basal NAc dopamine efflux. This iGluR-mediated potentiation of basal dopamine efflux was paralleled by an attenuation of LDT-evoked transient NAc dopamine efflux, suggesting that excitation of basal activity effectively inhibited the capacity of hindbrain afferents to elicit transient dopamine efflux. In line with this, post-NMDA infusion of the dopamine D2 autoreceptor (D2R) agonist quinpirole (1 μg/μl; intra-VTA) partially recovered NMDA-mediated attenuation of LDT-evoked NAc dopamine, while concurrently attenuating NMDA-mediated potentiation of basal dopamine efflux. Post-NMDA infusion of quinpirole (1 μg/μl) alone attenuated basal and LDT-evoked dopamine efflux. Taken together, these data reveal that hyperstimulation of basal dopamine transmission can stunt hindbrain burst-like stimulation-evoked dopamine efflux. Inhibitory autoreceptor mechanisms within the VTA help to partially recover the magnitude of phasic dopamine efflux, highlighting the importance of both iGluRs and D2 autoreceptors in maintaining the functional balance of tonic and phasic dopamine neurotransmission. Dysregulation of this balance may have important

  17. AMPA/Kainate, NMDA, and Dopamine D1 Receptor Function in the Nucleus Accumbens Core: A Context-Limited Role in the Encoding and Consolidation of Instrumental Memory

    ERIC Educational Resources Information Center

    Hernandez, Pepe J.; Andrzejewski, Matthew E.; Sadeghian, Kenneth; Panksepp, Jules B.; Kelley, Ann E.

    2005-01-01

    Neural integration of glutamate- and dopamine-coded signals within the nucleus accumbens (NAc) is a fundamental process governing cellular plasticity underlying reward-related learning. Intra-NAc core blockade of NMDA or D1 receptors in rats impairs instrumental learning (lever-pressing for sugar pellets), but it is not known during which phase of…

  18. Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats.

    PubMed

    Wang, Xiao-Fei; Zhao, Tai-Yun; Su, Rui-Bin; Wu, Ning; Li, Jin

    2016-12-01

    Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.

  19. E-p-Methoxycinnamic acid protects cultured neuronal cells against neurotoxicity induced by glutamate

    PubMed Central

    Kim, So Ra; Sung, Sang Hyun; Jang, Young Pyo; Markelonis, George J; Oh, Tae H; Kim, Young Choong

    2002-01-01

    We previously reported that four new phenylpropanoid glycosides and six known cinnamate derivatives isolated from roots of Scrophularia buergeriana Miquel (Scrophulariaceae) protected cultured cortical neurons from neurotoxicity induced by glutamate. Here, we have investigated the structure-activity relationships in the phenylpropanoids using our primary culture system. The α,β-unsaturated ester moiety and the para-methoxy group in the phenylpropanoids appeared to play a vital role in neuroprotective activity. This suggested that E-p-methoxycinnamic acid (E-p-MCA) might be a crucial component for their neuroprotective activity within the phenylpropanoid compounds. E-p-MCA significantly attenuated glutamate-induced neurotoxicity when added prior to an excitotoxic glutamate challenge. The neuroprotective activity of E-p-MCA appeared to be more effective in protecting neurons against neurotoxicity induced by NMDA than from that induced by kainic acid. E-p-MCA inhibited the binding of [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine to their respective binding sites on rat cortical membranes. However, even high concentrations of E-p-MCA failed to inhibit completely [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine binding. Indeed, E-p-MCA diminished the calcium influx that routinely accompanies glutamate-induced neurotoxicity, and inhibited the subsequent overproduction of nitric oxide and cellular peroxide in glutamate-injured neurons. Thus, our results suggest that E-p-MCA exerts significant protective effects against neurodegeneration induced by glutamate in primary cultures of cortical neurons by an action suggestive of partial glutamatergic antagonism. PMID:11877337

  20. A postmortem analysis of NMDA ionotropic and group 1 metabotropic glutamate receptors in the nucleus accumbens in schizophrenia.

    PubMed

    Lum, Jeremy S; Millard, Samuel J; Huang, Xu-Feng; Ooi, Lezanne; Newell, Kelly A

    2018-03-01

    The nucleus accumbens (NAcc) has been implicated in the pathology and treatment of schizophrenia. Recent postmortem evidence suggests a hyperglutamatergic state in the NAcc. With the present study we aimed to explore possible glutamatergic alterations in the NAcc of a large schizophrenia cohort. We performed immunoblots on postmortem NAcc samples from 30 individuals who had schizophrenia and 30 matched controls. We examined the protein expression of primary glutamatergic receptors, including the N -methyl-D-aspartate (NMDA) receptor (NR1, NR2A and NR2B subunits) and the group 1 metabotropic glutamate receptor (mGluR1 and mGluR5; dimeric and monomeric forms). In addition, we measured the group 1 mGluR endogenous regulators, neurochondrin and Homer1b/c, which have recently been implicated in the pathophysiology of schizophrenia. Protein levels of glutamatergic receptors and endogenous regulators were not significantly different between the controls and individuals who had schizophrenia. Furthermore, mGluR5, but not mGluR1, showed a positive association with NMDA receptor subunits, suggesting differential interactions between these receptors in this brain region. Investigation of these proteins in antipsychotic-naive individuals, in addition to the subregions of the NAcc and subcellular fractions, will strengthen future studies. The present study does not provide evidence for glutamatergic abnormalities within the NAcc of individuals with schizophrenia. Taken together with the results of previous studies, these findings suggest NMDA receptors and group 1 mGluRs are altered in a brain region-dependent manner in individuals with schizophrenia. The differential associations between mGluR1, mGluR5 and NMDA receptors observed in this study warrant further research into the interactions of these proteins and the implications for the therapeutic and adverse effect profile of glutamatergic-based novel therapeutics.

  1. A postmortem analysis of NMDA ionotropic and group 1 metabotropic glutamate receptors in the nucleus accumbens in schizophrenia.

    PubMed

    Lum, Jeremy S; Millard, Samuel J; Huang, Xu-Feng; Ooi, Lezanne; Newell, Kelly A

    2017-10-06

    The nucleus accumbens (NAcc) has been implicated in the pathology and treatment of schizophrenia. Recent postmortem evidence suggests a hyperglutamatergic state in the NAcc. With the present study we aimed to explore possible glutamatergic alterations in the NAcc of a large schizophrenia cohort. We performed immunoblots on postmortem NAcc samples from 30 individuals who had schizophrenia and 30 matched controls. We examined the protein expression of primary glutamatergic receptors, including the N -methyl-D-aspartate (NMDA) receptor (NR1, NR2A and NR2B subunits) and the group 1 metabotropic glutamate receptor (mGluR1 and mGluR5; dimeric and monomeric forms). In addition, we measured the group 1 mGluR endogenous regulators, neurochondrin and Homer1b/c, which have recently been implicated in the pathophysiology of schizophrenia. Protein levels of glutamatergic receptors and endogenous regulators were not significantly different between the controls and individuals who had schizophrenia. Furthermore, mGluR5, but not mGluR1, showed a positive association with NMDA receptor subunits, suggesting differential interactions between these receptors in this brain region. Investigation of these proteins in antipsychotic-naive individuals, in addition to the subregions of the NAcc and subcellular fractions, will strengthen future studies. The present study does not provide evidence for glutamatergic abnormalities within the NAcc of individuals with schizophrenia. Taken together with the results of previous studies, these findings suggest NMDA receptors and group 1 mGluRs are altered in a brain region-dependent manner in individuals with schizophrenia. The differential associations between mGluR1, mGluR5 and NMDA receptors observed in this study warrant further research into the interactions of these proteins and the implications for the therapeutic and adverse effect profile of glutamatergic-based novel therapeutics.

  2. Influence of Volatile Anesthesia on the Release of Glutamate and other Amino Acids in the Nucleus Accumbens in a Rat Model of Alcohol Withdrawal: A Pilot Study

    PubMed Central

    Seidemann, Thomas; Spies, Claudia; Morgenstern, Rudolf; Wernecke, Klaus-Dieter; Netzhammer, Nicolai

    2017-01-01

    Background Alcohol withdrawal syndrome is a potentially life-threatening condition, which can occur when patients with alcohol use disorders undergo general anesthesia. Excitatory amino acids, such as glutamate, act as neurotransmitters and are known to play a key role in alcohol withdrawal syndrome. To understand this process better, we investigated the influence of isoflurane, sevoflurane, and desflurane anesthesia on the profile of excitatory and inhibitory amino acids in the nucleus accumbens (NAcc) of alcohol-withdrawn rats (AWR). Methods Eighty Wistar rats were randomized into two groups of 40, pair-fed with alcoholic or non-alcoholic nutrition. Nutrition was withdrawn and microdialysis was performed to measure the activity of amino acids in the NAcc. The onset time of the withdrawal syndrome was first determined in an experiment with 20 rats. Sixty rats then received isoflurane, sevoflurane, or desflurane anesthesia for three hours during the withdrawal period, followed by one hour of elimination. Amino acid concentrations were measured using chromatography and results were compared to baseline levels measured prior to induction of anesthesia. Results Glutamate release increased in the alcohol group at five hours after the last alcohol intake (p = 0.002). After 140 min, desflurane anesthesia led to a lower release of glutamate (p < 0.001) and aspartate (p = 0.0007) in AWR compared to controls. GABA release under and after desflurane anesthesia was also significantly lower in AWR than controls (p = 0.023). Over the course of isoflurane anesthesia, arginine release decreased in AWR compared to controls (p < 0.001), and aspartate release increased after induction relative to controls (p20min = 0.015 and p40min = 0.006). However, amino acid levels did not differ between the groups as a result of sevoflurane anesthesia. Conclusions Each of three volatile anesthetics we studied showed different effects on excitatory and inhibitory amino acid concentrations. Under

  3. Influence of Volatile Anesthesia on the Release of Glutamate and other Amino Acids in the Nucleus Accumbens in a Rat Model of Alcohol Withdrawal: A Pilot Study.

    PubMed

    Seidemann, Thomas; Spies, Claudia; Morgenstern, Rudolf; Wernecke, Klaus-Dieter; Netzhammer, Nicolai

    2017-01-01

    Alcohol withdrawal syndrome is a potentially life-threatening condition, which can occur when patients with alcohol use disorders undergo general anesthesia. Excitatory amino acids, such as glutamate, act as neurotransmitters and are known to play a key role in alcohol withdrawal syndrome. To understand this process better, we investigated the influence of isoflurane, sevoflurane, and desflurane anesthesia on the profile of excitatory and inhibitory amino acids in the nucleus accumbens (NAcc) of alcohol-withdrawn rats (AWR). Eighty Wistar rats were randomized into two groups of 40, pair-fed with alcoholic or non-alcoholic nutrition. Nutrition was withdrawn and microdialysis was performed to measure the activity of amino acids in the NAcc. The onset time of the withdrawal syndrome was first determined in an experiment with 20 rats. Sixty rats then received isoflurane, sevoflurane, or desflurane anesthesia for three hours during the withdrawal period, followed by one hour of elimination. Amino acid concentrations were measured using chromatography and results were compared to baseline levels measured prior to induction of anesthesia. Glutamate release increased in the alcohol group at five hours after the last alcohol intake (p = 0.002). After 140 min, desflurane anesthesia led to a lower release of glutamate (p < 0.001) and aspartate (p = 0.0007) in AWR compared to controls. GABA release under and after desflurane anesthesia was also significantly lower in AWR than controls (p = 0.023). Over the course of isoflurane anesthesia, arginine release decreased in AWR compared to controls (p < 0.001), and aspartate release increased after induction relative to controls (p20min = 0.015 and p40min = 0.006). However, amino acid levels did not differ between the groups as a result of sevoflurane anesthesia. Each of three volatile anesthetics we studied showed different effects on excitatory and inhibitory amino acid concentrations. Under desflurane anesthesia, both glutamate

  4. Extrasynaptic Glutamate Receptor Activation as Cellular Bases for Dynamic Range Compression in Pyramidal Neurons

    PubMed Central

    Oikonomou, Katerina D.; Short, Shaina M.; Rich, Matthew T.; Antic, Srdjan D.

    2012-01-01

    Repetitive synaptic stimulation overcomes the ability of astrocytic processes to clear glutamate from the extracellular space, allowing some dendritic segments to become submerged in a pool of glutamate, for a brief period of time. This dynamic arrangement activates extrasynaptic NMDA receptors located on dendritic shafts. We used voltage-sensitive and calcium-sensitive dyes to probe dendritic function in this glutamate-rich location. An excess of glutamate in the extrasynaptic space was achieved either by repetitive synaptic stimulation or by glutamate iontophoresis onto the dendrites of pyramidal neurons. Two successive activations of synaptic inputs produced a typical NMDA spike, whereas five successive synaptic inputs produced characteristic plateau potentials, reminiscent of cortical UP states. While NMDA spikes were coupled with brief calcium transients highly restricted to the glutamate input site, the dendritic plateau potentials were accompanied by calcium influx along the entire dendritic branch. Once initiated, the glutamate-mediated dendritic plateau potentials could not be interrupted by negative voltage pulses. Activation of extrasynaptic NMDA receptors in cellular compartments void of spines is sufficient to initiate and support plateau potentials. The only requirement for sustained depolarizing events is a surplus of free glutamate near a group of extrasynaptic receptors. Highly non-linear dendritic spikes (plateau potentials) are summed in a highly sublinear fashion at the soma, revealing the cellular bases of signal compression in cortical circuits. Extrasynaptic NMDA receptors provide pyramidal neurons with a function analogous to a dynamic range compression in audio engineering. They limit or reduce the volume of “loud sounds” (i.e., strong glutamatergic inputs) and amplify “quiet sounds” (i.e., glutamatergic inputs that barely cross the dendritic threshold for local spike initiation). Our data also explain why consecutive cortical UP

  5. Glutamate and Its Receptors as Therapeutic Targets for Migraine.

    PubMed

    Hoffmann, Jan; Charles, Andrew

    2018-04-01

    There is substantial evidence indicating a role for glutamate in migraine. Levels of glutamate are higher in the brain and possibly also in the peripheral circulation in migraine patients, particularly during attacks. Altered blood levels of kynurenines, endogenous modulators of glutamate receptors, have been reported in migraine patients. Population genetic studies implicate genes that are involved with glutamate signaling in migraine, and gene mutations responsible for familial hemiplegic migraine and other familial migraine syndromes may influence glutamate signaling. Animal studies indicate that glutamate plays a key role in pain transmission, central sensitization, and cortical spreading depression. Multiple therapies that target glutamate receptors including magnesium, topiramate, memantine, and ketamine have been reported to have efficacy in the treatment of migraine, although with the exception of topiramate, the evidence for the efficacy of these therapies is not strong. Also, because all of these therapies have other mechanisms of action, it is not possible to conclude that the efficacy of these drugs is entirely due to their effects on glutamate receptors. Further studies are needed to more clearly delineate the possible roles of glutamate and its specific receptor subtypes in migraine and to identify new ways of targeting glutamate for migraine therapy.

  6. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalmers, D.T.; Dewar, D.; Graham, D.I.

    1990-02-01

    Involvement of cortical glutamatergic mechanisms in senile dementia of the Alzheimer type (SDAT) has been investigated with quantitative ligand-binding autoradiography. The distribution and density of Na(+)-dependent glutamate uptake sites and glutamate receptor subtypes--kainate, quisqualate, and N-methyl-D-aspartate--were measured in adjacent sections of frontal cortex obtained postmortem from six patients with SDAT and six age-matched controls. The number of senile plaques was determined in the same brain region. Binding of D-(3H)aspartate to Na(+)-dependent uptake sites was reduced by approximately 40% throughout SDAT frontal cortex relative to controls, indicating a general loss of glutamatergic presynaptic terminals. (3H)Kainate receptor binding was significantly increased bymore » approximately 70% in deep layers of SDAT frontal cortex compared with controls, whereas this binding was unaltered in superficial laminae. There was a positive correlation (r = 0.914) between kainate binding and senile plaque number in deep cortical layers. Quisqualate receptors, as assessed by 2-amino-3-hydroxy-5-(3H)methylisoxazole-4-propionic acid binding, were unaltered in SDAT frontal cortex compared with controls. There was a small reduction (25%) in N-methyl-D-aspartate-sensitive (3H)glutamate binding only in superficial cortical layers of SDAT brains relative to control subjects. (3H)Glutamate binding in SDAT subjects was unrelated to senile plaque number in superficial cortical layers (r = 0.104). These results indicate that in the presence of cortical glutamatergic terminal loss in SDAT plastic alterations occur in some glutamate receptor subtypes but not in others.« less

  7. GABA and glutamate in schizophrenia: a 7 T ¹H-MRS study.

    PubMed

    Marsman, Anouk; Mandl, René C W; Klomp, Dennis W J; Bohlken, Marc M; Boer, Vincent O; Andreychenko, Anna; Cahn, Wiepke; Kahn, René S; Luijten, Peter R; Hulshoff Pol, Hilleke E

    2014-01-01

    Schizophrenia is characterized by loss of brain volume, which may represent an ongoing pathophysiological process. This loss of brain volume may be explained by reduced neuropil rather than neuronal loss, suggesting abnormal synaptic plasticity and cortical microcircuitry. A possible mechanism is hypofunction of the NMDA-type of glutamate receptor, which reduces the excitation of inhibitory GABAergic interneurons, resulting in a disinhibition of glutamatergic pyramidal neurons. Disinhibition of pyramidal cells may result in excessive stimulation by glutamate, which in turn could cause neuronal damage or death through excitotoxicity. In this study, GABA/creatine ratios, and glutamate, NAA, creatine and choline concentrations in the prefrontal and parieto-occipital cortices were measured in 17 patients with schizophrenia and 23 healthy controls using proton magnetic resonance spectroscopy at an ultra-high magnetic field strength of 7 T. Significantly lower GABA/Cr ratios were found in patients with schizophrenia in the prefrontal cortex as compared to healthy controls, with GABA/Cr ratios inversely correlated with cognitive functioning in the patients. No significant change in the GABA/Cr ratio was found between patients and controls in the parieto-occipital cortex, nor were levels of glutamate, NAA, creatine, and choline differed in patients and controls in the prefrontal and parieto-occipital cortices. Our findings support a mechanism involving altered GABA levels distinguished from glutamate levels in the medial prefrontal cortex in schizophrenia, particularly in high functioning patients. A (compensatory) role for GABA through altered inhibitory neurotransmission in the prefrontal cortex may be ongoing in (higher functioning) patients with schizophrenia.

  8. Neurons of human nucleus accumbens.

    PubMed

    Sazdanović, Maja; Sazdanović, Predrag; Zivanović-Macuzić, Ivana; Jakovljević, Vladimir; Jeremić, Dejan; Peljto, Amir; Tosevski, Jovo

    2011-08-01

    Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I--fusiform neurons; type II--fusiform neurons with lateral dendrite, arising from a part of the cell body; type III--pyramidal-like neuron; type IV--multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV--multipolar neurons. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV--multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  9. Cortical Photostimulation Technology for Vision Prosthesis

    DTIC Science & Technology

    2017-05-01

    Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...SUPPLEMENTARY NOTES 14. ABSTRACT The overall goal of the project is to evaluate the feasibility of using photochemical stimulation of cortical neurons as the...glutamate, which can directly stimulate cortical neurons. The new caged molecule has an absorption peak in the visible wavelength range, at 458 nm

  10. Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking

    PubMed Central

    Scofield Michael, D.; Boger Heather, A.; Smith Rachel, J.; Li, Hao; Haydon Philip, G.; Kalivas Peter, W.

    2015-01-01

    Background Glial cells of the central nervous system directly influence neuronal activity by releasing neuroactive small molecules, including glutamate. Long-lasting cocaine-induced reductions in extracellular glutamate in the nucleus accumbens core (NAcore) affect synaptic plasticity responsible for relapse vulnerability. Methods We transduced NAcore astrocytes with an AAV viral vector expressing hM3Dq (Gq) DREADD under control of the glial fibrillary acidic protein (GFAP) promoter in 62 male Sprague Dawley rats, 4 dnSNARE mice and 4 wild type littermates. Using glutamate biosensors we measured NAcore glutamate levels following intracranial or systemic administration of clozapine-N-oxide (CNO), and tested the ability of systemic CNO to inhibit reinstated cocaine or sucrose seeking following self-administration (SA) and extinction training. Results Administration of CNO in GFAP-Gq-DREADD transfected animals increased NAcore extracellular glutamate levels in vivo. The glial origin of released glutamate was validated by an absence of CNO-mediated release in mice expressing a dominant-negative SNARE variant in glia. Also, CNO-mediated release was relatively insensitive to N-type calcium channel blockade. Systemic administration of CNO inhibited cue-induced reinstatement of cocaine seeking in rats extinguished from cocaine, but not sucrose SA. The capacity to inhibit reinstated cocaine-seeking was prevented by systemic administration of the group II metabotropic glutamate receptor (mGluR2/3) antagonist LY341495. Conclusions DREADD-mediated glutamate gliotransmission inhibited cue-induced reinstatement of cocaine seeking by stimulating release-regulating mGluR2/3 autoreceptors to inhibit cue-induced synaptic glutamate spillover. PMID:25861696

  11. Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: implications for schizophrenia.

    PubMed

    Curley, Allison A; Eggan, Stephen M; Lazarus, Matt S; Huang, Z Josh; Volk, David W; Lewis, David A

    2013-02-01

    Markers of GABA neurotransmission are altered in multiple regions of the neocortex in individuals with schizophrenia. Lower levels of glutamic acid decarboxylase 67 (GAD67) mRNA and protein, which is responsible for most cortical GABA synthesis, are accompanied by lower levels of GABA membrane transporter 1 (GAT1) mRNA. These alterations are thought to be most prominent in the parvalbumin (PV)-containing subclass of interneurons, which also contain lower levels of PV mRNA. Since GAT1 and PV each reduce the availability of GABA at postsynaptic receptors, lower levels of GAT1 and PV mRNAs have been hypothesized to represent compensatory responses to an upstream reduction in cortical GABA synthesis in schizophrenia. However, such cause-and-effect hypotheses cannot be directly tested in a human illness. Consequently, we used two mouse models with reduced GAD67 expression specifically in PV neurons (PV(GAD67+/-)) or in all interneurons (GABA(GAD67+/-)) and quantified GAD67, GAT1 and PV mRNA levels using methods identical to those employed in studies of schizophrenia. Cortical levels of PV or GAT1 mRNAs were not altered in PV(GAD67+/-) mice during postnatal development or in adulthood. Furthermore, cellular analyses confirmed the predicted reduction in GAD67 mRNA, but failed to show a deficit in PV mRNA in these animals. Levels of PV and GAT1 mRNAs were also unaltered in GABA(GAD67+/-) mice. Thus, mouse lines with cortical reductions in GAD67 mRNA that match or exceed those present in schizophrenia, and that differ in the developmental timing and cell type-specificity of the GAD67 deficit, failed to provide proof-of-concept evidence that lower PV and GAT1 expression in schizophrenia are a consequence of lower GAD67 expression. Together, these findings suggest that the correlated decrements in cortical GAD67, PV and GAT1 mRNAs in schizophrenia may be a common consequence of some other upstream factor. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Peri-adolescent drinking of ethanol and/or nicotine modulates astroglial glutamate transporters and metabotropic glutamate receptor-1 in female alcohol-preferring rats.

    PubMed

    Alasmari, Fawaz; Bell, Richard L; Rao, P S S; Hammad, Alaa M; Sari, Youssef

    2018-07-01

    Impairment in glutamate neurotransmission mediates the development of dependence upon nicotine (NIC) and ethanol (EtOH). Previous work indicates that continuous access to EtOH or phasic exposure to NIC reduces expression of the glutamate transporter-1 (GLT-1) and cystine/glutamate antiporter (xCT) but not the glutamate/aspartate transporter (GLAST). Additionally, metabotropic glutamate receptors (mGluRs) expression was affected following exposure to EtOH or NIC. However, little is known about the effects of EtOH and NIC co-consumption on GLT-1, xCT, GLAST, and mGluR1 expression. In this study, peri-adolescent female alcohol preferring (P) rats were given binge-like access to water, sucrose (SUC), SUC-NIC, EtOH, or EtOH-NIC for four weeks. The present study determined the effects of these reinforcers on GLT-1, xCT, GLAST, and mGluR1 expression in the nucleus accumbens (NAc), hippocampus (HIP) and prefrontal cortex (PFC). GLT-1 and xCT expression were decreased in the NAc following both SUC-NIC and EtOH-NIC. In addition, only xCT expression was downregulated in the HIP in both of these latter groups. Also, glutathione peroxidase (GPx) activity in the HIP was reduced following SUC, SUC-NIC, EtOH, and EtOH-NIC consumption. Similar to previous work, GLAST expression was not altered in any brain region by any of the reinforcers. However, mGluR1 expression was increased in the NAc in the SUC-NIC, EtOH, and EtOH-NIC groups. These results indicate that peri-adolescent binge-like drinking of EtOH or SUC with or without NIC may exert differential effects on astroglial glutamate transporters and receptors. Our data further parallel some of the previous findings observed in adult rats. Copyright © 2018. Published by Elsevier Inc.

  13. Connexin-deficiency affects expression levels of glial glutamate transporters within the cerebrum.

    PubMed

    Unger, Tina; Bette, Stefanie; Zhang, Jiong; Theis, Martin; Engele, Jürgen

    2012-01-06

    The glial glutamate transporter subtypes, GLT-1/EAAT-2 and GLAST/EAAT-1 clear the bulk of extracellular glutamate and are severely dysregulated in various acute and chronic brain diseases. Despite the previous identification of several extracellular factors modulating glial glutamate transporter expression, our knowledge of the regulatory network controlling glial glutamate transport in health and disease still remains incomplete. In studies with cultured cortical astrocytes, we previously obtained evidence that glial glutamate transporter expression is also affected by gap junctions/connexins. To assess whether gap junctions would likewise control the in vivo expression of glial glutamate transporters, we have now assessed their expression levels in brains of conditional Cx43 knockout mice, total Cx30 knockouts, as well as Cx43/Cx30 double knockouts. We found that either knocking out Cx30, Cx43, or both increases GLT-1/EAAT-2 protein levels in the cerebral cortex to a similar extent. By contrast, GLAST/EAAT-1 protein levels maximally increased in cerebral cortices of Cx30/Cx43 double knockouts, implying that gap junctions differentially affect the expression of GLT-1/EAAT-2 and GLAST/EAAT-1. Quantitative PCR analysis further revealed that increases in glial glutamate transporter expression are brought about by transcriptional and translational/posttranslational processes. Moreover, GLT-1/EAAT-2- and GLAST/EAAT-1 protein levels remained unchanged in the hippocampi of Cx43/Cx30 double knockouts when compared to Cx43fl/fl controls, indicating brain region-specific effects of gap junctions on glial glutamate transport. Since astrocytic gap junction coupling is affected in various forms of brain injuries, our findings point to gap junctions/connexins as important regulators of glial glutamate turnover in the diseased cerebral cortex. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Protection from glutamate-induced excitotoxicity by memantine

    PubMed Central

    Kutzing, Melinda K.; Luo, Vincent; Firestein, Bonnie L.

    2014-01-01

    This study investigates whether the uncompetitive NMDA receptor antagonist, memantine, is able to protect dissociated cortical neurons from glutamate-induced excitotoxicity (GIE). Treatment with glutamate resulted in a significant loss of synchronization of neuronal activity as well as a significant increase in the duration of synchronized bursting events (SBEs). By administering memantine at the same time as glutamate, we were able to completely prevent these changes to the neuronal activity. Pretreatment with memantine was somewhat effective in preventing changes to the culture synchronization but was unable to fully protect the synchronization of electrical activity between neurons that showed high levels of synchronization prior to injury. Additionally, memantine pretreatment was unable to prevent the increase in the duration of SBEs caused by GIE. Thus, the timing of memantine treatment is important for conferring neuroprotection against glutamate-induced neurotoxicity. Finally, we found that GIE leads to a significant increase in the burst duration. Our data suggest that this may be due to an alteration in the inhibitory function of the neurons. PMID:22203191

  15. Inter-individual differences in serotonin and glutamate co-transmission reflect differentiation in context-induced conditioned 50-kHz USVs response after morphine withdrawal.

    PubMed

    Hamed, Adam; Kursa, Miron Bartosz

    2018-05-17

    A growing body of research provides compelling evidence that in rats 50-kHz USVs are a form of expression of positive emotions. Context-induced 50-kHz USVs emission is variable among rats, indicating individual differences in contextual response bound up with pharmacological reward. The aims of this study were to: extract the most important neurotransmitters related to context-induced conditioned 50-kHz USVs response; find biological basis of existing inter-individual differences in context-induced conditioned 50-kHz USVs response; create a model of all-to-all neurotransmitters correlations. The data collected here confirms that re-exposure to the context of morphine administration after the withdrawal period increases the level of 50-kHz USVs and this contextual response is associated with elevated serotonin concentrations in amygdala, hippocampus and mPFC and with increased Glu/Gln ratio in nucleus accumbens. The concentration of serotonin increases simultaneously in amygdala, nucleus accumbens and hippocampus. Moreover, 5-HT concentration in amygdala is bound up with glutamate level in this structure as well as in hippocampus. Furthermore, Glu/Gln ratio in nucleus accumbens has strong associations with Glu/Gln ratio simultaneously in VTA, amygdala, striatum and hippocampus. All-to-all-analysis indicate that concentration of glutamate in hippocampus is proportional to glutamate in VTA and GABA concentration in the hippocampus. We have also demonstrated that Glu/GABA ratio in VTA and amygdala was elevated after post withdrawal re-exposure to the pharmacological reward paired context. Presented analysis indicates a strong correlation between serotonergic and glutamatergic systems in context-induced conditioned response. The strength of this co-transmission correlates with the number of 50-kHz USVs emitted in response to morphine-paired context.

  16. Second-By-Second Analysis of Alpha 7 Nicotine Receptor Regulation of Glutamate Release in the Prefrontal Cortex of Awake Rats

    PubMed Central

    Konradsson-Geuken, Åsa; Gash, Clelland R.; Alexander, Kathleen; Pomerleau, Francois; Huettl, Peter; Gerhardt, Greg A.; Bruno, John P.

    2009-01-01

    Summary These experiments utilized an enzyme-based microelectrode selective for the second-by-second detection of extracellular glutamate to reveal the α7-based nicotinic modulation of glutamate release in the prefrontal cortex (PFC) of freely moving rats. Rats received intra-cortical infusions of the non-selective nicotinic agonist nicotine (1.0 μg/0.4 μL) or the selective α7 agonist choline (2.0 mM/0.4 μL). The selectivity of drug-induced glutamate release was assessed in subgroups of animals pre-treated with the α7 antagonist, α-bungarotoxin (α-BGT, 10 μM) or kynurenine (10 μM) the precursor of the astrocyte-derived, negative allosteric α7 modulator kynurenic acid. Local administration of nicotine increased glutamate signals (maximum amplitude = 4.3 ± 0.6 μM) that were cleared to baseline levels in 493 ± 80 sec. Pre-treatment with α-BGT or kynurenine attenuated nicotine-induced glutamate by 61% and 60%, respectively. Local administration of choline also increased glutamate signals (maximum amplitude = 6.3 ± 0.9 μM). In contrast to nicotine-evoked glutamate release, choline-evoked signals were cleared more quickly (28 ± 6 sec) and pre-treatment with α-BGT or kynurenine completely blocked the stimulated glutamate release. Using a method that reveals the temporal dynamics of in vivo glutamate release and clearance, these data indicate a nicotinic modulation of cortical glutamate release that is both α7 – and non-α7-mediated. Furthermore, these data may also provide a mechanism underlying the recent focus on α7 full and partial agonists as therapeutic agents in the treatment of cortically-mediated cognitive deficits in schizophrenia. PMID:19637277

  17. Subcortical atrophy is associated with cognitive impairment in mild Parkinson disease: a combined investigation of volumetric changes, cortical thickness, and vertex-based shape analysis.

    PubMed

    Mak, E; Bergsland, N; Dwyer, M G; Zivadinov, R; Kandiah, N

    2014-12-01

    The involvement of subcortical deep gray matter and cortical thinning associated with mild Parkinson disease remains poorly understood. We assessed cortical thickness and subcortical volumes in patients with Parkinson disease without dementia and evaluated their associations with cognitive dysfunction. The study included 90 patients with mild Parkinson disease without dementia. Neuropsychological assessments classified the sample into patients with mild cognitive impairment (n = 25) and patients without cognitive impairment (n = 65). Volumetric data for subcortical structures were obtained by using the FMRIB Integrated Registration and Segmentation Tool while whole-brain, gray and white matter volumes were estimated by using Structural Image Evaluation, with Normalization of Atrophy. Vertex-based shape analyses were performed to investigate shape differences in subcortical structures. Vertex-wise group differences in cortical thickness were also assessed. Volumetric comparisons between Parkinson disease with mild cognitive impairment and Parkinson disease with no cognitive impairment were performed by using ANCOVA. Associations of subcortical structures with both cognitive function and disease severity were assessed by using linear regression models. Compared with Parkinson disease with no cognitive impairment, Parkinson disease with mild cognitive impairment demonstrated reduced volumes of the thalamus (P = .03) and the nucleus accumbens (P = .04). Significant associations were found for the nucleus accumbens and putamen with performances on the attention/working memory domains (P < .05) and nucleus accumbens and language domains (P = .04). The 2 groups did not differ in measures of subcortical shape or in cortical thickness. Patients with Parkinson disease with mild cognitive impairment demonstrated reduced subcortical volumes, which were associated with cognitive deficits. The thalamus, nucleus accumbens, and putamen may serve as potential biomarkers for

  18. The activation of metabotropic glutamate 5 receptors in the rat ventral tegmental area increases dopamine extracellular levels.

    PubMed

    Ferrada, Carla; Sotomayor-Zárate, Ramón; Abarca, Jorge; Gysling, Katia

    2017-01-01

    The mesocorticolimbic circuit projects to the prefrontal cortex, hippocampus, amygdala, and nucleus accumbens, among others, and it originates in the dopaminergic neurons of the ventral tegmental area (VTA). The VTA receives glutamatergic inputs from the prefrontal cortex and several subcortical regions. The glutamate released activates dopaminergic neurons and its action depends on the activation of ionotropic and metabotropic glutamate receptors. VTA dopaminergic neurons release dopamine (DA) from axon terminals in the innervated regions and somatodendritically in the VTA itself. DA release in the VTA is directly correlated with the activity of dopaminergic neurons. We hypothesized that metabotropic glutamate 5 receptors (mGlu5) directly regulate the activity of VTA dopaminergic neurons. To test this hypothesis, the extracellular levels of VTA DA and glutamate were studied by in-vivo microdialysis after an intra-VTA perfusion of (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), selective mGlu5 agonist. We observed that CHPG induced a significant increase in VTA DA and glutamate extracellular levels. To determine whether the effect of CHPG on DA levels is because of the increase in glutamate release, we perfused kynurenic acid, an ionotropic glutamate receptor antagonist, through the probe. Our results showed that kynurenic acid did not block the ability of CHPG to cause DA release. Thus, our results suggest that CHPG acts directly on mGlu5 in dopaminergic neurons to induce the release of DA.

  19. Regulation of /sup 3/H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalev, G.I.; Hetey, L.

    1987-06-01

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain.

  20. Distinct Neurochemical Adaptations Within the Nucleus Accumbens Produced by a History of Self-Administered vs Non-Contingently Administered Intravenous Methamphetamine

    PubMed Central

    Lominac, Kevin D; Sacramento, Arianne D; Szumlinski, Karen K; Kippin, Tod E

    2012-01-01

    Methamphetamine is a highly addictive psychomotor stimulant yet the neurobiological consequences of methamphetamine self-administration remain under-characterized. Thus, we employed microdialysis in rats trained to self-administer intravenous (IV) infusions of methamphetamine (METH-SA) or saline (SAL) and a group of rats receiving non-contingent IV infusions of methamphetamine (METH-NC) at 1 or 21 days withdrawal to determine the dopamine and glutamate responses in the nucleus accumbens (NAC) to a 2 mg/kg methamphetamine intraperitoneal challenge. Furthermore, basal NAC extracellular glutamate content was assessed employing no net-flux procedures in these three groups at both time points. At both 1- and 21-day withdrawal points, methamphetamine elicited a rise in extracellular dopamine in SAL animals and this effect was sensitized in METH-NC rats. However, METH-SA animals showed a much greater sensitized dopamine response to the drug challenge compared with the other groups. Additionally, acute methamphetamine decreased extracellular glutamate in both SAL and METH-NC animals at both time-points. In contrast, METH-SA rats exhibited a modest and delayed rise in glutamate at 1-day withdrawal and this rise was sensitized at 21 days withdrawal. Finally, no net-flux microdialysis revealed elevated basal glutamate and increased extraction fraction at both withdrawal time-points in METH-SA rats. Although METH-NC rats exhibited no change in the glutamate extraction fraction, they exhibited a time-dependent elevation in basal glutamate levels. These data illustrate for the first time that a history of methamphetamine self-administration produces enduring changes in NAC neurotransmission and that non-pharmacological factors have a critical role in the expression of these methamphetamine-induced neurochemical adaptations. PMID:22030712

  1. Metabolic activation of amygdala, lateral septum and accumbens circuits during food anticipatory behavior.

    PubMed

    Olivo, Diana; Caba, Mario; Gonzalez-Lima, Francisco; Rodríguez-Landa, Juan F; Corona-Morales, Aleph A

    2017-01-01

    When food is restricted to a brief fixed period every day, animals show an increase in temperature, corticosterone concentration and locomotor activity for 2-3h before feeding time, termed food anticipatory activity. Mechanisms and neuroanatomical circuits responsible for food anticipatory activity remain unclear, and may involve both oscillators and networks related to temporal conditioning. Rabbit pups are nursed once-a-day so they represent a natural model of circadian food anticipatory activity. Food anticipatory behavior in pups may be associated with neural circuits that temporally anticipate feeding, while the nursing event may produce consummatory effects. Therefore, we used New Zealand white rabbit pups entrained to circadian feeding to investigate the hypothesis that structures related to reward expectation and conditioned emotional responses would show a metabolic rhythm anticipatory of the nursing event, different from that shown by structures related to reward delivery. Quantitative cytochrome oxidase histochemistry was used to measure regional brain metabolic activity at eight different times during the day. We found that neural metabolism peaked before nursing, during food anticipatory behavior, in nuclei of the extended amygdala (basolateral, medial and central nuclei, bed nucleus of the stria terminalis), lateral septum and accumbens core. After pups were fed, however, maximal metabolic activity was expressed in the accumbens shell, caudate, putamen and cortical amygdala. Neural and behavioral activation persisted when animals were fasted by two cycles, at the time of expected nursing. These findings suggest that metabolic activation of amygdala-septal-accumbens circuits involved in temporal conditioning may contribute to food anticipatory activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  3. Sensorineural Deafness and Seizures in Mice Lacking Vesicular Glutamate Transporter 3

    PubMed Central

    Seal, Rebecca P.; Akil, Omar; Yi, Eunyoung; Weber, Christopher M.; Grant, Lisa; Yoo, Jong; Clause, Amanda; Kandler, Karl; Noebels, Jeffrey L; Glowatzki, Elisabeth; Lustig, Lawrence R.; Edwards, Robert H.

    2008-01-01

    Summary The expression of unconventional vesicular glutamate transporter VGLUT3 by neurons known to release a different classical transmitter has suggested novel roles for signaling by glutamate. However, this distribution, along with the localization of VGLUT3 to dendrites and its occurrence outside the nervous system, has raised questions about whether the protein actually contributes to glutamate release. We now report that mice lacking VGLUT3 are profoundly deaf due to the absence of glutamate release from hair cells at the first synapse in the auditory pathway. Inner hair cells of the cochlea start to express VGLUT3 shortly before birth, and the early degeneration of some cochlear ganglion neurons in knock-out mice indicates an important developmental role for the glutamate released by hair cells before the onset of hearing. In addition, the mice exhibit primary, generalized epilepsy that is accompanied by remarkably little or no change in ongoing motor behavior. VGLUT3 thus contributes to the exocytotic release of glutamate, and the glutamate released has an essential role in both function and development of the auditory pathway, as well as in the control of cortical excitability. PMID:18215623

  4. Dysregulation of Corticostriatal Ascorbate Release and Glutamate Uptake in Transgenic Models of Huntington's Disease

    PubMed Central

    2013-01-01

    Abstract Significance: Dysregulation of cortical and striatal neuronal processing plays a critical role in Huntington's disease (HD), a dominantly inherited condition that includes a progressive deterioration of cognitive and motor control. Growing evidence indicates that ascorbate (AA), an antioxidant vitamin, is released into striatal extracellular fluid when glutamate is cleared after its release from cortical afferents. Both AA release and glutamate uptake are impaired in the striatum of transgenic mouse models of HD owing to a downregulation of glutamate transporter 1 (GLT1), the protein primarily found on astrocytes and responsible for removing most extracellular glutamate. Improved understanding of an AA–glutamate interaction could lead to new therapeutic strategies for HD. Recent Advances: Increased expression of GLT1 following treatment with ceftriaxone, a beta-lactam antibiotic, increases striatal glutamate uptake and AA release and also improves the HD behavioral phenotype. In fact, treatment with AA alone restores striatal extracellular AA to wild-type levels in HD mice and not only improves behavior but also improves the firing pattern of neurons in HD striatum. Critical Issues: Although evidence is growing for an AA-glutamate interaction, several key issues require clarification: the site of action of AA on striatal neurons; the precise role of GLT1 in striatal AA release; and the mechanism by which HD interferes with this role. Future Directions: Further assessment of how the HD mutation alters corticostriatal signaling is an important next step. A critical focus is the role of astrocytes, which express GLT1 and may be the primary source of extracellular AA. Antioxid. Redox Signal. 19, 2115–2128. PMID:23642110

  5. Effects of (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline on glutamate transporter 1 and cysteine/glutamate exchanger as well as ethanol drinking behavior in male, alcohol-preferring rats.

    PubMed

    Aal-Aaboda, Munaf; Alhaddad, Hasan; Osowik, Francis; Nauli, Surya M; Sari, Youssef

    2015-06-01

    Alcohol consumption is largely associated with alterations in the extracellular glutamate concentrations in several brain reward regions. We recently showed that glutamate transporter 1 (GLT-1) is downregulated following chronic exposure to ethanol for 5 weeks in alcohol-preferring (P) rats and that upregulation of the GLT-1 levels in nucleus accumbens and prefrontal cortex results, in part, in attenuating ethanol consumption. Cystine glutamate antiporter (xCT) is also downregulated after chronic ethanol exposure in P rats, and its upregulation could be valuable in attenuating ethanol drinking. This study examines the effect of a synthetic compound, (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), on ethanol drinking and expressions of GLT-1 and xCT in the amygdala and the hippocampus of P rats. P rats were exposed to continuous free-choice access to water, 15% and 30% ethanol, and food for 5 weeks, after which they received treatments of MS-153 or vehicle for 5 days. The results show that MS-153 treatment significantly reduces ethanol consumption. It was revealed that GLT-1 and xCT expressions were downregulated in both the amygdala and the hippocampus of ethanol-vehicle-treated rats (ethanol-vehicle group) compared with water-control animals. MS-153 treatment upregulated GLT-1 and xCT expressions in these brain regions. These findings demonstrate an important role for MS-153 in these glutamate transporters for the attenuation of ethanol-drinking behavior. © 2015 Wiley Periodicals, Inc.

  6. Modulatory effects of Ampicillin/Sulbactam on glial glutamate transporters and metabotropic glutamate receptor 1 as well as reinstatement to cocaine-seeking behavior.

    PubMed

    Hammad, Alaa M; Alasmari, Fawaz; Althobaiti, Yusuf S; Sari, Youssef

    2017-08-14

    Glutamatergic system has an important role in cocaine-seeking behavior. Studies have reported that chronic exposure to cocaine induces downregulation of glutamate transporter-1 (GLT-1) and cystine/glutamate exchanger (xCT) in the central reward brain regions. Ceftriaxone, a β-lactam antibiotic, restored GLT-1 expression and consequently reduced cue-induced reinstatement of cocaine-seeking behavior. In this study, we investigated the reinstatement to cocaine (20mg/kg, i.p.) seeking behavior using a conditioned place preference (CPP) paradigm in male alcohol-preferring (P) rats. In addition, we investigated the effects of Ampicillin/Sulbactam (AMP/SUL) (200mg/kg, i.p.), a β-lactam antibiotic, on cocaine-induced reinstatement. We also investigated the effects of AMP/SUL on the expression of glial glutamate transporters and metabotropic glutamate receptor 1 (mGluR1) in the nucleus accumbens (NAc) core and shell and the dorsomedial prefrontal cortex (dmPFC). We found that AMP/SUL treatment reduced cocaine-triggered reinstatement. This effect was associated with a decrease in locomotor activity. Moreover, GLT-1 and xCT were downregulated in the NAc core and shell, but not in the dmPFC, following cocaine-primed reinstatement. However, cocaine exposure increased the expression of mGluR1 in the NAc core, but not in the NAc shell or dmPFC. Importantly, AMP/SUL treatment normalized GLT-1 and xCT expression in the NAc core and shell; however, the drug normalized mGluR1 expression in the NAc core only. Additionally, AMP/SUL increased the expression of GLT-1 and xCT in the dmPFC as compared to the water naïve group. These findings demonstrated that glial glutamate transporters and mGluR1 in the mesocorticolimbic area could be potential therapeutic targets for the attenuation of reinstatement to cocaine-seeking behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Towards a glutamate hypothesis of depression

    PubMed Central

    Sanacora, Gerard; Treccani, Giulia; Popoli, Maurizio

    2011-01-01

    Half a century after the first formulation of the monoamine hypothesis, compelling evidence implies that long-term changes in an array of brain areas and circuits mediating complex cognitive-emotional behaviors represent the biological underpinnings of mood/anxiety disorders. A large number of clinical studies suggest that pathophysiology is associated with dysfunction of the predominant glutamatergic system, malfunction in the mechanisms regulating clearance and metabolism of glutamate, and cytoarchitectural/morphological maladaptive changes in a number of brain areas mediating cognitive-emotional behaviors. Concurrently, a wealth of data from animal models have shown that different types of environmental stress enhance glutamate release/transmission in limbic/cortical areas and exert powerful structural effects, inducing dendritic remodeling, reduction of synapses and possibly volumetric reductions resembling those observed in depressed patients. Because a vast majority of neurons and synapses in these areas and circuits use glutamate as neurotransmitter, it would be limiting to maintain that glutamate is in some way ‘involved’ in mood/anxiety disorders; rather it should be recognized that the glutamatergic system is a primary mediator of psychiatric pathology and, potentially, also a final common pathway for the therapeutic action of antidepressant agents. A paradigm shift from a monoamine hypothesis of depression to a neuroplasticity hypothesis focused on glutamate may represent a substantial advancement in the working hypothesis that drives research for new drugs and therapies. Importantly, despite the availability of multiple classes of drugs with monoamine-based mechanisms of action, there remains a large percentage of patients who fail to achieve a sustained remission of depressive symptoms. The unmet need for improved pharmacotherapies for treatment-resistant depression means there is a large space for the development of new compounds with novel

  8. Expression of messenger RNAs encoding ionotropic glutamate receptors in rat brain: regulation by haloperidol.

    PubMed

    Brené, S; Messer, C; Nestler, E J

    1998-06-01

    In situ hybridization was used to study the regional distribution of messenger RNAs encoding ionotropic glutamate receptor subtypes in the rat brain's dopaminergic cell body regions and their forebrain projection areas. Short oligonucleotide probes specific for the messenger RNAs encoding the flip or flop splice forms of the GluR1 and GluR2 AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) receptor subunits, or for the messenger RNAs encoding the N-methyl-D-aspartate R1 subunit, were used. Significant differences were seen in the relative messenger RNA levels, and the distribution of the flip and flop splice forms, of GluR1 and GluR2. In the dopaminergic cell groups of the substantia nigra pars compacta and the ventral tegmental area, the flip form of both GluR1 and GluR2 dominated over the flop form. Similarly, in the core division of the nucleus accumbens, GluR1 and GluR2 flip forms dominated over the flop forms. In contrast, in the accumbens shell, the GluR1 and GluR2 flop forms dominated over the flip forms. As a comparison to the AMPA receptor subunits, N-methyl-D-aspartate R1 messenger RNA was relatively evenly distributed in all the regions analysed. The results demonstrate a heterogeneous distribution of the flip and flop splice forms of GluR1 and GluR2 in the brain's dopaminergic pathways, which could contribute to physiological differences in regulation of the pathways by glutamatergic neurotransmission. We also studied regulation of glutamate receptor subunit expression in these regions by antipsychotic drugs, based on previous reports of altered levels of subunit immunoreactivity after drug treatment. Chronic administration of the typical antipsychotic drug, haloperidol, caused a small but significant induction of GluR2 flip messenger RNA in the dorsolateral caudate putamen. This effect was not seen after chronic administration of the atypical antipsychotic drug, clozapine. Significant drug regulation of the other glutamate receptor subunits

  9. Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle.

    PubMed

    Hertz, Leif; Rothman, Douglas L

    2016-01-01

    The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.

  10. Reward Activates Stimulus-Specific and Task-Dependent Representations in Visual Association Cortices

    PubMed Central

    Muller, Timothy; Yeung, Nick; Waszak, Florian

    2014-01-01

    Humans reliably learn which actions lead to rewards. One prominent question is how credit is assigned to environmental stimuli that are acted upon. Recent functional magnetic resonance imaging (fMRI) studies have provided evidence that representations of rewarded stimuli are activated upon reward delivery, providing possible eligibility traces for credit assignment. Our study sought evidence of postreward activation in sensory cortices satisfying two conditions of instrumental learning: postreward activity should reflect the stimulus category that preceded reward (stimulus specificity), and should occur only if the stimulus was acted on to obtain reward (task dependency). Our experiment implemented two tasks in the fMRI scanner. The first was a perceptual decision-making task on degraded face and house stimuli. Stimulus specificity was evident as rewards activated the sensory cortices associated with face versus house perception more strongly after face versus house decisions, respectively, particularly in the fusiform face area. Stimulus specificity was further evident in a psychophysiological interaction analysis wherein face-sensitive areas correlated with nucleus accumbens activity after face-decision rewards, whereas house-sensitive areas correlated with nucleus accumbens activity after house-decision rewards. The second task required participants to make an instructed response. The criterion of task dependency was fulfilled as rewards after face versus house responses activated the respective association cortices to a larger degree when faces and houses were relevant to the performed task. Our study is the first to show that postreward sensory cortex activity meets these two key criteria of credit assignment, and does so independently from bottom-up perceptual processing. PMID:25411489

  11. Memory in multiple sclerosis is linked to glutamate concentration in grey matter regions

    PubMed Central

    Muhlert, Nils; Atzori, Matteo; De Vita, Enrico; Thomas, David L; Samson, Rebecca S; Wheeler-Kingshott, Claudia A M; Geurts, Jeroen J G; Miller, David H; Thompson, Alan J; Ciccarelli, Olga

    2014-01-01

    Objective Glutamate is the principal excitatory neurotransmitter and is involved in normal brain function. Cognitive impairment is common in multiple sclerosis (MS), and understanding its mechanisms is crucial for developing effective treatments. We used structural and metabolic brain imaging to test two hypotheses: (i) glutamate levels in grey matter regions are abnormal in MS, and (ii) patients show a relationship between glutamate concentration and memory performance. Methods Eighteen patients with relapsing-remitting MS and 17 healthy controls were cognitively assessed and underwent 1H-magnetic resonance spectroscopy at 3 T to assess glutamate levels in the hippocampus, thalamus, cingulate and parietal cortices. Regression models investigated the association between glutamate concentration and memory performance independently of magnetisation transfer ratio values and grey matter lesions withint he same regions, and whole-brain grey matter volume. Results Patients had worse visual and verbal memory than controls. A positive relationship between glutamate levels in the hippocampal, thalamic and cingulate regions and visuospatial memory was detected in patients, but not in healthy controls. Conclusions The relationship between memory and glutamate concentration, which is unique to MS patients, suggests the reliance of memory on glutamatergic systems in MS. PMID:24431465

  12. Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques.

    PubMed

    Yamashita, Akiko; Fuchs, Eberhard; Taira, Masato; Yamamoto, Takamitsu; Hayashi, Motoharu

    2012-06-01

    Previously, we demonstrated decreased expression of somatostatin mRNA in aged macaque brain, particularly in the prefrontal cortex. To investigate whether or not this age-dependent decrease in mRNA is related to morphological changes, we analyzed somatostatin cells in the cerebra of aged Japanese macaques and compared them with those in rats and tree shrews, the latter of which are closely related to primates. Brains of aged macaques, tree shrews, and rats were investigated by immunohistochemistry with special emphasis on somatostatin. We observed degenerating somatostatin-immunoreactive cells in the cortices of aged macaques and tree shrews. Somatostatin-immunoreactive senile plaque-like structures were found in areas 6 and 8 and in the nucleus accumbens of macaques, as well as in the nucleus accumbens and the cortex of aged tree shrews, where amyloid accumulations were observed. Somatostatin degenerations may be related to amyloid accumulations and may play roles in impairments of cognitive functions during aging. © 2012 John Wiley & Sons A/S.

  13. Glutathione and glutamate in schizophrenia: a 7T MRS study.

    PubMed

    Kumar, Jyothika; Liddle, Elizabeth B; Fernandes, Carolina C; Palaniyappan, Lena; Hall, Emma L; Robson, Siân E; Simmonite, Molly; Fiesal, Jan; Katshu, Mohammad Z; Qureshi, Ayaz; Skelton, Michael; Christodoulou, Nikolaos G; Brookes, Matthew J; Morris, Peter G; Liddle, Peter F

    2018-06-22

    In schizophrenia, abnormal neural metabolite concentrations may arise from cortical damage following neuroinflammatory processes implicated in acute episodes. Inflammation is associated with increased glutamate, whereas the antioxidant glutathione may protect against inflammation-induced oxidative stress. We hypothesized that patients with stable schizophrenia would exhibit a reduction in glutathione, glutamate, and/or glutamine in the cerebral cortex, consistent with a post-inflammatory response, and that this reduction would be most marked in patients with "residual schizophrenia", in whom an early stage with positive psychotic symptoms has progressed to a late stage characterized by long-term negative symptoms and impairments. We recruited 28 patients with stable schizophrenia and 45 healthy participants matched for age, gender, and parental socio-economic status. We measured glutathione, glutamate and glutamine concentrations in the anterior cingulate cortex (ACC), left insula, and visual cortex using 7T proton magnetic resonance spectroscopy (MRS). Glutathione and glutamate were significantly correlated in all three voxels. Glutamine concentrations across the three voxels were significantly correlated with each other. Principal components analysis (PCA) produced three clear components: an ACC glutathione-glutamate component; an insula-visual glutathione-glutamate component; and a glutamine component. Patients with stable schizophrenia had significantly lower scores on the ACC glutathione-glutamate component, an effect almost entirely leveraged by the sub-group of patients with residual schizophrenia. All three metabolite concentration values in the ACC were significantly reduced in this group. These findings are consistent with the hypothesis that excitotoxicity during the acute phase of illness leads to reduced glutathione and glutamate in the residual phase of the illness.

  14. Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons.

    PubMed

    Lemus-Molina, Yeny; Sánchez-Gómez, Maria Victoria; Delgado-Hernández, René; Matute, Carlos

    2009-11-01

    Overstimulation of ionotropic glutamate receptors causes excitotoxic neuronal death contributing to neurodegenerative disorders. Massive influx of calcium in excitotoxicity provokes alterations in the membrane potential of mitochondria and increases the production of reactive oxygen species. Here we report that Mangifera indica L. extracts (MiE) prevent glutamate-induced excitotoxicity in primary cultured neurons of the rat cerebral cortex. To evaluate the effects of MiE on excitotoxicity, cells were stimulated with L-glutamic acid (50 microM; 10 min) alone or in the presence of MiE. Maximal protection (56%) was obtained with 2.5 microg/mL of MiE. In turn, we measured the effects of MiE on excitotoxic-induced oxidative stress and mitochondrial depolarization by fluorimetry using 5,6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and tetramethylrhodamine, respectively. Both parameters were effectively reduced by MiE at concentrations which showed neuroprotection. Mangiferin, an antioxidant polyphenol which is a major component of MiE, was also effective in preventing neuronal death, oxidative stress and mitochondrial depolarization. Maximal protection (64%) was obtained at 12.5 microg/mL of mangiferin which also attenuated oxidative stress and mitochondrial depolarization at the neuroprotective concentrations. Together, these results indicate that MiE is an efficient neuroprotector of excitotoxic neuronal death, indicates that mangiferin carries a substantial part of the antioxidant and neuroprotective activity of MiE, and that this natural extract has therapeutic potential to treat neurodegenerative disorders.

  15. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings.

    PubMed

    Suchak, Sachin K; Baloyianni, Nicoletta V; Perkinton, Michael S; Williams, Robert J; Meldrum, Brian S; Rattray, Marcus

    2003-02-01

    The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.

  16. Evidence for involvement of nitric oxide and GABAB receptors in MK-801- stimulated release of glutamate in rat prefrontal cortex

    PubMed Central

    Roenker, Nicole L.; Gudelsky, Gary A.; Ahlbrand, Rebecca; Horn, Paul S.; Richtand, Neil M.

    2012-01-01

    Systemic administration of NMDA receptor antagonists elevates extracellular glutamate within prefrontal cortex. The cognitive and behavioral effects of NMDA receptor blockade have direct relevance to symptoms of schizophrenia, and recent studies demonstrate an important role for nitric oxide and GABAB receptors in mediating the effects of NMDA receptor blockade on these behaviors. We sought to extend those observations by directly measuring the effects of nitric oxide and GABAB receptor mechanisms on MK-801-induced glutamate release in the prefrontal cortex. Systemic MK-801 injection (0.3 mg/kg) to male Sprague-Dawley rats significantly increased extracellular glutamate levels in prefrontal cortex, as determined by microdialysis. This effect was blocked by pretreatment with the nitric oxide synthase inhibitor L-NAME (60 mg/kg). Reverse dialysis of the nitric oxide donor SNAP (0.5 – 5 mM) directly into prefrontal cortex mimicked the effect of systemic MK-801, dose-dependently elevating cortical extracellular glutamate. The effect of MK-801 was also blocked by systemic treatment with the GABAB receptor agonist baclofen (5 mg/kg). In combination, these data suggest increased nitric oxide formation is necessary for NMDA antagonist-induced elevations of extracellular glutamate in the prefrontal cortex. Additionally, the data suggest GABAB receptor activation can modulate the NMDA antagonist-induced increase in cortical glutamate release. PMID:22579658

  17. The Nucleus Accumbens and Pavlovian Reward Learning

    PubMed Central

    Day, Jeremy J.

    2011-01-01

    The ability to form associations between predictive environmental events and rewarding outcomes is a fundamental aspect of learned behavior. This apparently simple ability likely requires complex neural processing evolved to identify, seek, and utilize natural rewards and redirect these activities based on updated sensory information. Emerging evidence from both animal and human research suggests that this type of processing is mediated in part by the nucleus accumbens and a closely associated network of brain structures. The nucleus accumbens is required for a number of reward-related behaviors, and processes specific information about reward availability, value, and context. Additionally, this structure is critical for the acquisition and expression of most Pavlovian stimulus-reward relationships, and cues that predict rewards produce robust changes in neural activity in the nucleus accumbens. While processing within the nucleus accumbens may enable or promote Pavlovian reward learning in natural situations, it has also been implicated in aspects of human drug addiction, including the ability of drug-paired cues to control behavior. This article will provide a critical review of the existing animal and human literature concerning the role of the NAc in Pavlovian learning with non-drug rewards and consider some clinical implications of these findings. PMID:17404375

  18. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits.

    PubMed

    Salamone, J D; Correa, M; Farrar, A; Mingote, S M

    2007-04-01

    Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation. The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry. The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior. Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression.

  19. Small-molecule inhibitors at the PSD-95/nNOS interface protect against glutamate-induced neuronal atrophy in primary cortical neurons.

    PubMed

    Doucet, M V; O'Toole, E; Connor, T; Harkin, A

    2015-08-20

    Glutamate and nitric oxide (NO) are important regulators of dendrite and axon development in the central nervous system. Excess glutamatergic stimulation is a feature of many pathological conditions and manifests in neuronal atrophy and shrinkage with eventual neurodegeneration and cell death. Here we demonstrate that treatment of cultured primary cortical rat neurons for 24h with glutamate (500μM) or N-methyl-d-aspartate (NMDA) (100-500μM) combined with glycine suppresses neurite outgrowth. A similar reduction of neurite outgrowth was observed with the NO precursor l-arginine and NO donor sodium nitroprusside (SNP) (100 and 300μM). The NMDA-receptor (NMDA-R) antagonists ketamine and MK-801 (10nM) counteracted the NMDA/glycine-induced reduction in neurite outgrowth and the neuronal NO synthase (nNOS) inhibitor 1-[2-(trifluoromethyl)phenyl] imidazole (TRIM) (100nM) counteracted both the NMDA/glycine and l-arginine-induced decreases in neurite outgrowth. Furthermore, targeting soluble guanylate cyclase (sGC), a downstream target of NO, with the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10μM) also protected against l-arginine-induced decreases in neurite outgrowth. Since the NMDA-R is functionally coupled to nNOS via the postsynaptic protein 95kDa (PSD-95), inhibitors of the PSD-95/nNOS interaction were tested for their ability to protect against glutamate-induced suppression in neurite outgrowth. Treatment with the small-molecule inhibitors of the PSD-95/nNOS interface 2-((1H-benzo[d] [1,2,3]triazol-5-ylamino) methyl)-4,6-dichlorophenol (IC87201) (10 and 100nM) and 4-(3,5-dichloro-2-hydroxy-benzylamino)-2-hydroxybenzoic acid (ZL-006) (10 and 100nM) attenuated NMDA/glycine-induced decreases in neurite outgrowth. These data support the hypothesis that targeting the NMDA-R/PSD-95/nNOS interaction downstream of NMDA-R promotes neurotrophic effects by preventing neurite shrinkage in response to excess glutamatergic stimulation. The PSD-95/n

  20. Acquisition and expression of conditioned taste aversion differentially affects extracellular signal regulated kinase and glutamate receptor phosphorylation in rat prefrontal cortex and nucleus accumbens

    PubMed Central

    Marotta, Roberto; Fenu, Sandro; Scheggi, Simona; Vinci, Stefania; Rosas, Michela; Falqui, Andrea; Gambarana, Carla; De Montis, M. Graziella; Acquas, Elio

    2014-01-01

    Conditioned taste aversion (CTA) can be applied to study associative learning and its relevant underpinning molecular mechanisms in discrete brain regions. The present study examined, by immunohistochemistry and immunocytochemistry, the effects of acquisition and expression of lithium-induced CTA on activated Extracellular signal Regulated Kinase (p-ERK) in the prefrontal cortex (PFCx) and nucleus accumbens (Acb) of male Sprague-Dawley rats. The study also examined, by immunoblotting, whether acquisition and expression of lithium-induced CTA resulted in modified levels of phosphorylation of glutamate receptor subunits (NR1 and GluR1) and Thr34- and Thr75-Dopamine-and-cAMP-Regulated PhosphoProtein (DARPP-32). CTA acquisition was associated with an increase of p-ERK-positive neurons and phosphorylated NR1 receptor subunit (p-NR1) in the PFCx, whereas p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels were not changed in this brain region. CTA expression increased the number of p-ERK-positive neurons in the shell (AcbSh) and core (AcbC) but left unmodified p-NR1, p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels. Furthermore, post-embedding immunogold quantitative analysis in AcbSh revealed that CTA expression significantly increased nuclear p-ERK immunostaining as well as p-ERK-labeled axo-spinous contacts. Overall, these results indicate that ERK and NR1, but not GluR1 and DARPP-32, are differentially phosphorylated as a consequence of acquisition and expression of aversive associative learning. Moreover, these results confirm that CTA represents an useful approach to study the molecular basis of associative learning in rats and suggest the involvement of ERK cascade in learning-associated synaptic plasticity. PMID:24847227

  1. Plasticity of Astrocytic Coverage and Glutamate Transporter Expression in Adult Mouse Cortex

    PubMed Central

    Steiner, Pascal; Hirling, Harald; Welker, Egbert; Knott, Graham W

    2006-01-01

    Astrocytes play a major role in the removal of glutamate from the extracellular compartment. This clearance limits the glutamate receptor activation and affects the synaptic response. This function of the astrocyte is dependent on its positioning around the synapse, as well as on the level of expression of its high-affinity glutamate transporters, GLT1 and GLAST. Using Western blot analysis and serial section electron microscopy, we studied how a change in sensory activity affected these parameters in the adult cortex. Using mice, we found that 24 h of whisker stimulation elicited a 2-fold increase in the expression of GLT1 and GLAST in the corresponding cortical column of the barrel cortex. This returns to basal levels 4 d after the stimulation was stopped, whereas the expression of the neuronal glutamate transporter EAAC1 remained unaltered throughout. Ultrastructural analysis from the same region showed that sensory stimulation also causes a significant increase in the astrocytic envelopment of excitatory synapses on dendritic spines. We conclude that a period of modified neuronal activity and synaptic release of glutamate leads to an increased astrocytic coverage of the bouton–spine interface and an increase in glutamate transporter expression in astrocytic processes. PMID:17048987

  2. An alarm pheromone reduces ventral tegmental area-nucleus accumbens shell responsivity.

    PubMed

    Gutiérrez-García, Ana G; Contreras, Carlos M; Saldivar-Lara, Mauricio

    2018-06-21

    2-Heptanone (methyl n-amyl ketone) is a ketone that produces alarm reactions in insects (e.g., bees and ants). As an olfactory stimulus, 2-heptanone produces anxiety reactions in the short term and despair in the long term in rodent models. Among the anatomical connections of the olfactory system that integrate behavioral responses, connections between the amygdala and nucleus accumbens are important, which in turn form a circuit with the ventral tegmental area (VTA). 2-Heptanone increases the firing rate of amygdala neurons without participation of the vomeronasal organ. The olfactory amygdala-VTA-nucleus accumbens circuit may integrate defensive behaviors, but the possible actions of 2-heptanone on the responsivity of VTA-nucleus accumbens connections have not yet been explored. In the present study, multiunit activity recordings were obtained in adult Wistar rats from the core and shell subregions of the nucleus accumbens during electrical stimulation of the VTA under basal conditions and later during simultaneous stimulation of the VTA and olfactory exposure to 2-heptanone. 2-Heptanone reduced the responsivity of the VTA-nucleus accumbens shell but did not influence the responsivity of the VTA-nucleus accumbens core. The lower VTA-nucleus accumbens shell excitability may be related to a primary defensive warning when exposed to an alarm pheromone. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Virally mediated increased neurotensin 1 receptor in the nucleus accumbens decreases behavioral effects of mesolimbic system activation.

    PubMed

    Cáceda, Ricardo; Kinkead, Becky; Owens, Michael J; Nemeroff, Charles B

    2005-12-14

    Dopamine receptor agonist and NMDA receptor antagonist activation of the mesolimbic dopamine system increases locomotion and disrupts prepulse inhibition of the acoustic startle response (PPI), paradigms frequently used to study both the pharmacology of antipsychotic drugs and drugs of abuse. In rats, virally mediated overexpression of the neurotensin 1 (NT1) receptor in the nucleus accumbens antagonized d-amphetamine- and dizocilpine-induced PPI disruption, hyperlocomotion, and D-amphetamine-induced rearing. The NT receptor antagonist SR 142948A [2-[[5-(2,6-dimethoxyphenyl)-1-(4-N-(3-dimethylaminopropyl)-N-methylcarbamoyl)-2-isopropylphenyl)-1H-pyrazole-3-carbonyl]amino] adamantane-2-carboxylic acid, hydrochloride] blocked inhibition of dizocilpine-induced hyperlocomotion mediated by overexpression of the NT1 receptor. Together, these results suggest that increased nucleus accumbens NT neurotransmission, via the NT1 receptor, can decrease the effects of activation of the mesolimbic dopamine system and disruption of the glutamatergic input from limbic cortices, resembling the action of the atypical antipsychotic drug clozapine. In contrast to clozapine, virally mediated overexpression of the NT1 receptor in the nucleus accumbens had prolonged protective effects (up to 4 weeks after viral injection) without perturbing baseline PPI and locomotor behaviors. These data further confirm the NT1 receptor as the receptor mediating the antistimulant- and antipsychotic-like properties of NT and provide rationale for the development of NT1 receptor agonists as novel antipsychotic drugs. In addition, the NT1 receptor vector might be a valuable tool for understanding the mechanism of action of antipsychotic drugs and drugs of abuse and may have potential therapeutic applications.

  4. Anthocyanins extracted from black soybean seed coat protect primary cortical neurons against in vitro ischemia.

    PubMed

    Bhuiyan, Mohammad Iqbal Hossain; Kim, Joo Youn; Ha, Tae Joung; Kim, Seong Yun; Cho, Kyung-Ok

    2012-01-01

    The present study investigated the neuroprotective effects of anthocyanins extracted from black soybean (cv. Cheongja 3, Glycine max (L.) MERR.) seed coat against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Lactate dehydrogenase (LDH) release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assays were employed to assess cell membrane damage and viability of primary neurons, respectively. OGD-induced cell death in 7 d in vitro primary cortical neurons was found to be OGD duration-dependent, and approximately 3.5 h of OGD resulted in ≈60% cell death. Treatment with black soybean anthocyanins dose-dependently prevented membrane damage and increased the viability of primary neurons that were exposed to OGD. Glutamate-induced neuronal cell death was dependent on the glutamate concentration at relatively low concentrations and the number of days the cells remained in culture. Interestingly, black soybean anthocyanins did not protect against glutamate-induced neuronal cell death. They did, however, inhibit the excessive generation of reactive oxygen species (ROS) and preserve mitochondrial membrane potential (MMP) in primary neurons exposed to OGD. In agreement with the neuroprotective effect of crude black soybean anthocyanins, purified cyanidin-3-glucoside (C3G), the major component of anthocyanins, also offered dose-dependent neuroprotection against OGD-induced neuronal cell death. Moreover, black soybean C3G markedly prevented excessive generation of ROS and preserved MMP in primary neurons that were exposed to OGD. Collectively, these results suggest that the neuroprotection of primary rat cortical neurons by anthocyanins that were extracted from black soybean seed coat might be mediated through oxidative stress inhibition and MMP preservation but not through glutamate-induced excitotoxicity attenuation.

  5. [The potential of group II metabotropic glutamate receptor antagonists as a novel antidepressant].

    PubMed

    Chaki, Shigeyuki

    2012-08-01

    Recently, abnormalities of glutamatergic transmission have been implicated in the pathophysiology of depression. Moreover, both ketamine, an NMDA receptor antagonist, and riluzole, a modulator of glutamatergic, transmission have been reported to be effective for the treatment of patients with treatment-refractory depression. Based on these findings, extensive studies to develop agents acting on glutamatergic transmission have been conducted. Glutamate receptors are divided into two main subtypes, ionotropic glutamate receptors and metabotropic glutamate (mGlu) receptors, both of which have subtypes. Of these, much attention has been paid to mGlu2/3 receptors. mGlu2/3 receptor antagonists such as MGS0039 and LY341495 have been reported to exert antidepressant effects in animal models of depression including the forced swim test, tail suspension test, learned helplessness paradigm, olfactory bulmectomy model and isolation rearing model, and to enhance serotonin release in the prefrontal cortex and dopamine release in the nucleus accumbens. Moreover, activation of AMPA receptor and mTOR signaling have been suggested to be involved in the antidepressant effects of mGlu2/3 receptor antagonists, as demonstrated in the actions of ketamine. Thus, mGlu2/3 receptor antagonists may share some neural networks with ketamine in exerting their antidepressant effects. In addition, the potential of other agents targeting glutamatergic transmission for novel antidepressants is being investigated.

  6. A thalamic input to the nucleus accumbens mediates opiate dependence.

    PubMed

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction.

  7. Phosphene Perception Relates to Visual Cortex Glutamate Levels and Covaries with Atypical Visuospatial Awareness.

    PubMed

    Terhune, Devin B; Murray, Elizabeth; Near, Jamie; Stagg, Charlotte J; Cowey, Alan; Cohen Kadosh, Roi

    2015-11-01

    Phosphenes are illusory visual percepts produced by the application of transcranial magnetic stimulation to occipital cortex. Phosphene thresholds, the minimum stimulation intensity required to reliably produce phosphenes, are widely used as an index of cortical excitability. However, the neural basis of phosphene thresholds and their relationship to individual differences in visual cognition are poorly understood. Here, we investigated the neurochemical basis of phosphene perception by measuring basal GABA and glutamate levels in primary visual cortex using magnetic resonance spectroscopy. We further examined whether phosphene thresholds would relate to the visuospatial phenomenology of grapheme-color synesthesia, a condition characterized by atypical binding and involuntary color photisms. Phosphene thresholds negatively correlated with glutamate concentrations in visual cortex, with lower thresholds associated with elevated glutamate. This relationship was robust, present in both controls and synesthetes, and exhibited neurochemical, topographic, and threshold specificity. Projector synesthetes, who experience color photisms as spatially colocalized with inducing graphemes, displayed lower phosphene thresholds than associator synesthetes, who experience photisms as internal images, with both exhibiting lower thresholds than controls. These results suggest that phosphene perception is driven by interindividual variation in glutamatergic activity in primary visual cortex and relates to cortical processes underlying individual differences in visuospatial awareness. © The Author 2015. Published by Oxford University Press.

  8. Induction of Fos expression in the rat forebrain after intragastric administration of monosodium L-glutamate, glucose and NaCl.

    PubMed

    Otsubo, H; Kondoh, T; Shibata, M; Torii, K; Ueta, Y

    2011-11-24

    l-glutamate, an umami taste substance, is a key molecule coupled to a food intake signaling pathway. Furthermore, recent studies have unveiled new roles for dietary glutamate on gut-brain axis communication via activation of gut glutamate receptors and subsequent vagus nerve. In the present study, we mapped activation sites of the rat forebrain after intragastric load of 60 mM monosodium l-glutamate (MSG) by measurement of Fos protein, a functional marker of neuronal activation. The same concentration of d-glucose (sweet) and NaCl (salty) was used as controls. MSG administration exclusively produced enhanced Fos expression in four hypothalamic regions (the medial preoptic area, lateral hypothalamic area, dorsomedial nucleus, and arcuate nucleus). On the other hand, glucose administration exclusively enhanced Fos induction in the nucleus accumbens. Both MSG and glucose enhanced Fos induction in three brain regions (the habenular nucleus, paraventricular nucleus, and central nucleus of the amygdala). However, MSG induced Fos inductions were more potent than those of glucose in the habenular nucleus and paraventricular nucleus. Importantly, the present study identified for the first time two brain areas (the paraventricular and arcuate hypothalamic nuclei) that are more potently activated by intragastric MSG loads compared with glucose and NaCl. Overall, our results suggest significant activation of a neural network comprising the habenular nucleus, amygdala, and the hypothalamic subnuclei following intragastric load with glutamate. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Selective Deletion of Astroglial FMRP Dysregulates Glutamate Transporter GLT1 and Contributes to Fragile X Syndrome Phenotypes In Vivo.

    PubMed

    Higashimori, Haruki; Schin, Christina S; Chiang, Ming Sum R; Morel, Lydie; Shoneye, Temitope A; Nelson, David L; Yang, Yongjie

    2016-07-06

    How the loss of fragile X mental retardation protein (FMRP) in different brain cell types, especially in non-neuron glial cells, induces fragile X syndrome (FXS) phenotypes has just begun to be understood. In the current study, we generated inducible astrocyte-specific Fmr1 conditional knock-out mice (i-astro-Fmr1-cKO) and restoration mice (i-astro-Fmr1-cON) to study the in vivo modulation of FXS synaptic phenotypes by astroglial FMRP. We found that functional expression of glutamate transporter GLT1 is 40% decreased in i-astro-Fmr1-cKO somatosensory cortical astrocytes in vivo, which can be fully rescued by the selective re-expression of FMRP in astrocytes in i-astro-Fmr1-cON mice. Although the selective loss of astroglial FMRP only modestly increases spine density and length in cortical pyramidal neurons, selective re-expression of FMRP in astrocytes significantly attenuates abnormal spine morphology in these neurons of i-astro-Fmr1-cON mice. Moreover, we found that basal protein synthesis levels and immunoreactivity of phosphorylated S6 ribosomal protein (p-s6P) is significantly increased in i-astro-Fmr1-cKO mice, while the enhanced cortical protein synthesis observed in Fmr1 KO mice is mitigated in i-astro-Fmr1-cON mice. Furthermore, ceftriaxone-mediated upregulation of surface GLT1 expression restores functional glutamate uptake and attenuates enhanced neuronal excitability in Fmr1 KO mice. In particular, ceftriaxone significantly decreases the growth rate of abnormally accelerated body weight and completely corrects spine abnormality in Fmr1 KO mice. Together, these results show that the selective loss of astroglial FMRP contributes to cortical synaptic deficits in FXS, presumably through dysregulated astroglial glutamate transporter GLT1 and impaired glutamate uptake. These results suggest the involvement of astrocyte-mediated mechanisms in the pathogenesis of FXS. Previous studies to understand how the loss of function of fragile X mental retardation

  10. Dipeptide Piracetam Analogue Noopept Improves Viability of Hippocampal HT-22 Neurons in the Glutamate Toxicity Model.

    PubMed

    Antipova, T A; Nikolaev, S V; Ostrovskaya, P U; Gudasheva, T A; Seredenin, S B

    2016-05-01

    Effect of noopept (N-phenylacetyl-prolylglycine ethyl ester) on viability of neurons exposed to neurotoxic action of glutamic acid (5 mM) was studied in vitro in immortalized mouse hippocampal HT-22 neurons. Noopept added to the medium before or after glutamic acid improved neuronal survival in a concentration range of 10-11-10-5 M. Comparison of the effective noopept concentrations determined in previous studies on cultured cortical and cerebellar neurons showed that hippocampal neurons are more sensitive to the protective effect of noopept.

  11. [Mediolateral gradient of the nucleus accumbens nitrergic activation during exploratory behavior].

    PubMed

    Saul'skaia, N B; Sudorgina, P V

    2012-04-01

    In Sprague-Dawley rats, by means of in vivo microdialysis combined with HPLC analysis it has been shown that an exploratory behavior in a new environment is accompanied by a rise in extracellular levels of citrulline (an NO co-product) in the mediolateral regions of the n. accumbens with the maximum observed in the medial n. accumbens. Infusions of 7-nitroindazole (0.5 mM), a neuronal NO synthase inhibitor, into the medial n. accumbens prevented the exploration-induced rise of extracellular citrulline levels in this area. The second presentation of the same chamber did not produce any significant changes of extracellular citrulline levels in the medial n. accumbens, although there was a tendency of a small increase. The presentation of a familiar chamber did not affect citrulline extracellular levels in this area. The data obtained indicate for the first time that exploratory activity in a new environment is accompanied by the nitrergic activation in the entire n. accumbens with the maximal activation in the medial part of this brain area.

  12. Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity

    PubMed Central

    Guan, Sudong; Zhu, Yan; Wang, Jin-Hui

    2015-01-01

    Background Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in acidosis-induced GABAergic neuron injury. Results Experiments were done at GABAergic cells and astrocytes in mouse cortical slices. To identify astrocytic involvement in acidosis-induced impairment, we induced the acidification in single GABAergic neuron by infusing proton intracellularly or in both neurons and astrocytes by using proton extracellularly. Compared the effects of intracellular acidification and extracellular acidification on GABAergic neurons, we found that their active intrinsic properties and synaptic outputs appeared more severely impaired in extracellular acidosis than intracellular acidosis. Meanwhile, extracellular acidosis deteriorated glutamate transporter currents on the astrocytes and upregulated excitatory synaptic transmission on the GABAergic neurons. Moreover, the antagonists of glutamate NMDA-/AMPA-receptors partially reverse extracellular acidosis-induced injury in the GABAergic neurons. Conclusion Our studies suggest that acidosis leads to the dysfunction of cortical GABAergic neurons by astrocyte-mediated excitotoxicity, in addition to their metabolic changes as indicated previously. PMID:26474076

  13. Prefrontal cortical network activity: Opposite effects of psychedelic hallucinogens and D1/D5 dopamine receptor activation

    PubMed Central

    Lambe, Evelyn K.; Aghajanian, George K.

    2007-01-01

    The fine-tuning of network activity provides a modulating influence on how information is processed and interpreted in the brain. Here, we use brain slices of rat prefrontal cortex to study how recurrent network activity is affected by neuromodulators known to alter normal cortical function. We previously determined that glutamate spillover and stimulation of extrasynaptic NMDA receptors are required to support hallucinogen-induced cortical network activity. Since microdialysis studies suggest that psychedelic hallucinogens and dopamine D1/D5 receptor agonists have opposite effects on extracellular glutamate in prefrontal cortex, we hypothesized that these two families of psychoactive drugs would have opposite effects on cortical network activity. We found that network activity can be enhanced by DOI (a psychedelic hallucinogen that is a partial agonist of serotonin 5-HT2A/2C receptors) and suppressed by the selective D1/D5 agonist SKF 38393. This suppression could be mimicked by direct activation of adenylyl cyclase with forskolin or by addition of a cAMP analog. These findings are consistent with previous work showing that activation of adenylyl cyclase can upregulate neuronal glutamate transporters, thereby decreasing synaptic spillover of glutamate. Consistent with this hypothesis, a low concentration of the glutamate transporter inhibitor TBOA restored electrically-evoked recurrent activity in the presence of a selective D1/D5 agonist, whereas recurrent activity in the presence of a low level of the GABAA antagonist bicuculline was not resistant to suppression by the D1/D5 agonist. The tempering of network UP states by D1/D5 receptor activation may have implications for the proposed use of D1/D5 agonists in the treatment of schizophrenia. PMID:17293055

  14. Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens.

    PubMed

    Sellings, Laurie H L; Baharnouri, Golriz; McQuade, Lindsey E; Clarke, Paul B S

    2008-07-01

    Forebrain dopamine plays a critical role in motivated behavior. According to the classic view, mesolimbic dopamine selectively guides behavior motivated by positive reinforcers. However, this has been challenged in favor of a wider role encompassing aversively motivated behavior. This controversy is particularly striking in the case of nicotine, with opposing claims that either the rewarding or the aversive effect of nicotine is critically dependent on mesolimbic dopamine transmission. In the present study, the effects of 6-hydroxydopamine lesions of nucleus accumbens core vs. medial shell on intravenous nicotine conditioned place preference and conditioned taste aversion were examined in male adult rats. Dopaminergic denervation in accumbens medial shell was associated with decreased nicotine conditioned place preference. Conversely, denervation in accumbens core was associated with an increase in conditioned place preference. In addition, dopaminergic denervation of accumbens core but not medial shell abolished conditioned taste aversion for nicotine. We conclude that nucleus accumbens core and medial shell dopaminergic innervation exert segregated effects on rewarding and aversive effects of nicotine. More generally, our findings indicate that dopaminergic transmission may mediate or enable opposing motivational processes within functionally distinct domains of the accumbens.

  15. L-phenylalanyl-L-glutamate-stimulated, chloride-dependent glutamate binding represents glutamate sequestration mediated by an exchange system.

    PubMed

    Kessler, M; Petersen, G; Vu, H M; Baudry, M; Lynch, G

    1987-04-01

    Stimulation of glutamate binding by the dipeptide L-phenylalanyl-L-glutamate (Phe-Glu) was inhibited by the peptidase inhibitor bestatin, suggesting that the stimulation was caused by glutamate liberated from the dipeptide and not by the dipeptide itself. It further suggests that this form of glutamate binding should be reinterpreted as glutamate sequestration and that stimulation of binding both by dipeptides and after preincubation with high concentrations of glutamate is likely to be due to counterflow accumulation. Several other criteria indicate that most of glutamate binding stimulated by chloride represents glutamate sequestration: Binding is reduced when the osmolarity of the incubation medium is increased, when membranes incubated with [3H]glutamate are lysed before filtration, and when membranes are made permeable by transient exposure to saponin. Moreover, dissociation of bound glutamate after a 100-fold dilution of the incubation medium is accelerated about 50 times by the addition of glutamate to the dilution medium. This result would be anomalous if glutamate were bound to a receptor site; it suggests instead that glutamate is transported in and out of membrane vesicles by a transport system that preferentially mediates exchange between internal and external glutamate. Glutamate binding contains a component of glutamate sequestration even when measured in the absence of chloride. Sequestration is adequately abolished only after treating membranes with detergents; even extensive lysis, sonication, and freezing/thawing may be insufficient.

  16. Researching glutamate – induced cytotoxicity in different cell lines: a comparative/collective analysis/study

    PubMed Central

    Kritis, Aristeidis A.; Stamoula, Eleni G.; Paniskaki, Krystallenia A.; Vavilis, Theofanis D.

    2015-01-01

    Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed. PMID:25852482

  17. 7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings.

    PubMed

    Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P; Boer, Vincent O; Klomp, Dennis W J; Cahn, Wiepke; Kahn, René S; Neggers, Sebastiaan F W

    2017-03-15

    The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia, and 24 healthy nonrelatives. Glutamate, glutamine, and GABA were measured cortically and subcortically in bilateral basal ganglia and occipital cortex. Patients with schizophrenia had reduced cortical GABA compared with healthy relatives and the combined sample of healthy relatives and healthy nonrelatives, suggesting that altered GABAergic systems in schizophrenia are associated with either disease state or medication effects. Reduced cortical glutamine relative to healthy control subjects was observed in patients with schizophrenia and the combined sample of healthy relatives and patients with schizophrenia, suggesting that altered glutamatergic metabolite levels are associated with illness liability. No group differences were found in the basal ganglia. Taken together, these findings are consistent with alterations in GABAergic and glutamatergic systems in patients with schizophrenia and provide novel insights into these systems in healthy relatives. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Ferulic Acid Suppresses Glutamate Release Through Inhibition of Voltage-Dependent Calcium Entry in Rat Cerebrocortical Nerve Terminals

    PubMed Central

    Lin, Tzu Yu; Lu, Cheng Wei; Huang, Shu-Kuei

    2013-01-01

    Abstract This study investigated the effects and possible mechanism of ferulic acid, a naturally occurring phenolic compound, on endogenous glutamate release in the nerve terminals of the cerebral cortex in rats. Results show that ferulic acid inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). The effect of ferulic acid on the evoked glutamate release was prevented by chelating the extracellular Ca2+ ions, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Ferulic acid suppressed the depolarization-induced increase in a cytosolic-free Ca2+ concentration, but did not alter 4-AP–mediated depolarization. Furthermore, the effect of ferulic acid on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na+/Ca2+ exchange. These results show that ferulic acid inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca2+ entry. PMID:23342970

  19. Glutamate induces the elongation of early dendritic protrusions via mGluRs in wild type mice, but not in fragile X mice.

    PubMed

    Cruz-Martín, Alberto; Crespo, Michelle; Portera-Cailliau, Carlos

    2012-01-01

    Fragile X syndrome (FXS), the most common inherited from of autism and mental impairment, is caused by transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein FMRP. Dendritic spines of cortical pyramidal neurons in affected individuals are abnormally immature and in Fmr1 knockout (KO) mice they are also abnormally unstable. This could result in defects in synaptogenesis, because spine dynamics are critical for synapse formation. We have previously shown that the earliest dendritic protrusions, which are highly dynamic and might serve an exploratory role to reach out for axons, elongate in response to glutamate. Here, we tested the hypothesis that this process is mediated by metabotropic glutamate receptors (mGluRs) and that it is defective in Fmr1 KO mice. Using time-lapse imaging with two-photon microscopy in acute brain slices from early postnatal mice, we find that early dendritic protrusions in layer 2/3 neurons become longer in response to application of glutamate or DHPG, a Group 1 mGluR agonist. Blockade of mGluR5 signaling, which reverses some adult phenotypes of KO mice, prevented the glutamate-mediated elongation of early protrusions. In contrast, dendritic protrusions from KO mice failed to respond to glutamate. Thus, absence of FMRP may impair the ability of cortical pyramidal neurons to respond to glutamate released from nearby pre-synaptic terminals, which may be a critical step to initiate synaptogenesis and stabilize spines.

  20. Calpain-GRIP Signaling in Nucleus Accumbens Core Mediates the Reconsolidation of Drug Reward Memory.

    PubMed

    Liang, Jie; Li, Jia-Li; Han, Ying; Luo, Yi-Xiao; Xue, Yan-Xue; Zhang, Yàn; Zhang, Yán; Zhang, Li-Bo; Chen, Man-Li; Lu, Lin; Shi, Jie

    2017-09-13

    Exposure to drug-paired cues causes drug memories to be in a destabilized state and interfering with memory reconsolidation can inhibit relapse. Calpain, a calcium-dependent neutral cysteine protease, is involved in synaptic plasticity and the formation of long-term fear memory. However, the role of calpain in the reconsolidation of drug reward memory is still unknown. In the present study, using a conditioned place preference (CPP) model, we found that exposure to drug-paired contextual stimuli induced the activation of calpain and decreased the expression of glutamate receptor interacting protein 1 (GRIP1) in the nucleus accumbens (NAc) core, but not shell, of male rats. Infusions of calpain inhibitors in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory and blocked retrieval-induced calpain activation and GRIP1 degradation. The suppressive effect of calpain inhibitors on the expression of drug-induced CPP lasted for at least 14 d. The inhibition of calpain without retrieval 6 h after retrieval or after exposure to an unpaired context had no effects on the expression of reward memory. Calpain inhibition after retrieval also decreased cocaine seeking in a self-administration model and this effect did not recover spontaneously after 28 d. Moreover, the knock-down of GRIP1 expression in the NAc core by lentivirus-mediated short-hairpin RNA blocked disruption of the reconsolidation of drug cue memories that was induced by calpain inhibitor treatment. These results suggest that calpain activity in the NAc core is crucial for the reconsolidation of drug reward memory via the regulation of GRIP1 expression. SIGNIFICANCE STATEMENT Calpain plays an important role in synaptic plasticity and long-term memory consolidation, however, its role in the reconsolidation of drug cue memory remains unknown. Using conditioned place preference and self-administration procedures, we found that exposure to drug-paired cues induced the

  1. Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways.

    PubMed

    Moutsimilli, Larissa; Farley, Severine; El Khoury, Marie-Anne; Chamot, Christophe; Sibarita, Jean-Baptiste; Racine, Victor; El Mestikawy, Salah; Mathieu, Flavie; Dumas, Sylvie; Giros, Bruno; Tzavara, Eleni T

    2008-03-01

    Recently the two vesicular-glutamate-transporters VGLUT1 and VGLUT2 have been cloned and characterized. VGLUT1 and VGLUT2 together label all glutamatergic neurons, but because of their distinct expression patterns in the brain they facilitate our ability to define between a VGLUT1-positive cortical and a VGLUT2-positive subcortical glutamatergic systems. We have previously demonstrated an increased cortical VGLUT1 expression as marker of antidepressant activity. Here, we assessed the effects of different psychotropic drugs on brain VGLUT2 mRNA and protein expression. The typical antipsychotic haloperidol, and the atypicals clozapine and risperidone increased VGLUT2 mRNA selectively in the central medial/medial parafascicular, paraventricular and intermediodorsal thalamic nuclei; VGLUT2 protein was accordingly amplified in paraventricular and ventral striatum and in prefrontal cortex. The antidepressants fluoxetine and desipramine and the sedative anxiolytic diazepam had no effect. These results highlight the implication of thalamo-limbic glutamatergic pathways in the action of antipsychotics. Increased VGLUT2 expression in these neurons might constitute a marker for antipsychotic activity and subcortical glutamate neurotransmission might be a possible novel target for future generation antipsychotics.

  2. Dual regulation of Ca2+-dependent glutamate release from astrocytes: vesicular glutamate transporters and cytosolic glutamate levels.

    PubMed

    Ni, Yingchun; Parpura, Vladimir

    2009-09-01

    Vesicular glutamate transporters (VGLUTs) are responsible for vesicular glutamate storage and exocytotic glutamate release in neurons and astrocytes. Here, we selectively and efficiently overexpressed individual VGLUT proteins (VGLUT1, 2, or 3) in solitary astrocytes and studied their effects on mechanical stimulation-induced Ca2+-dependent glutamate release. Neither VGLUT1 nor VGLUT2 overexpression changed the amount of glutamate release, whereas overexpression of VGLUT3 significantly enhanced Ca2+-dependent glutamate release from astrocytes. None of the VGLUT overexpression affected mechanically induced intracellular Ca2+ increase. Inhibition of glutamine synthetase activity by L-methionine sulfoximine in astrocytes, which leads to increased cytosolic glutamate concentration, greatly increased their mechanically induced Ca2+-dependent glutamate release, without affecting intracellular Ca2+ dynamics. Taken together, these data indicate that both VGLUT3 and the cytosolic concentration of glutamate are key limiting factors in regulating the Ca2+-dependent release of glutamate from astrocytes.

  3. Metabotropic Glutamate 7 (mGlu7) Receptor: A Target for Medication Development for the Treatment of Cocaine Dependence

    PubMed Central

    Li, Xia; Xi, Zheng-Xiong; Markou, Athina

    2013-01-01

    Brain glutamate has been shown to play an important role in reinstatement to drug seeking, a behavior considered to be of relevance to relapse to drug taking in humans. Therefore, glutamate receptors, in particular metabotropic glutamate (mGlu) receptors, have become important targets for medication development for the treatment of drug dependence. In this review article, we focus on the mGlu7 receptor subtype, and discuss recent findings with AMN082, a selective mGlu7 receptor allosteric agonist, in animal models with relevance to drug dependence. Systemic or local administration of AMN082 into the nucleus accumbens (NAc), a critical brain region involved in reward and drug dependence processes, inhibited the reinforcing and motivational effects of cocaine, heroin and ethanol, as assessed by the intravenous drug self-administration procedure. In addition, AMN082 inhibited the reward-enhancing effects induced by cocaine, as assessed in the intracranial self-stimulation procedure, and cocaine- or cue-induced reinstatement of drug-seeking behavior. In vivo microdialysis studies indicated that systemic or intra-NAc administration of AMN082 significantly decreased extracellular γ-aminobutyric acid (GABA) and elevated extracellular glutamate, but had no effect on extracellular dopamine in the NAc, suggesting that a non-dopaminergic mechanism underlies the effects of AMN082 on the actions of cocaine. Further, data indicated that AMN082-induced changes in glutamate were the net effect of two actions: one is the direct inhibition of glutamate release by activation of mGlu7 receptors on glutamatergic neurons; another is the indirect increases of glutamate release mediated by decreases in GABA transmission. These increases in extracellular glutamate functionally antagonized cocaine-induced inhibition of NAc-ventral pallidum GABAergic neurotransmission, and therefore, the rewarding effects of cocaine. In addition, elevated extracellular glutamate activated presynaptic mGlu2

  4. Effects of repeated cocaine exposure and withdrawal on voluntary ethanol drinking, and the expression of glial glutamate transporters in mesocorticolimbic system of P rats.

    PubMed

    Hammad, Alaa M; Althobaiti, Yusuf S; Das, Sujan C; Sari, Youssef

    2017-07-01

    Glutamatergic neurotransmission within the brain's reward circuits plays a major role in the reinforcing properties of both ethanol and cocaine. Glutamate homeostasis is regulated by several glutamate transporters, including glutamate transporter type 1 (GLT-1), cystine/glutamate transporter (xCT), and glutamate aspartate transporter (GLAST). Cocaine exposure has been shown to induce a dysregulation in glutamate homeostasis and a decrease in the expression of GLT-1 and xCT in the nucleus accumbens (NAc). In this study, alcohol preferring (P) rats were exposed to free-choice of ethanol (15% and 30%) and/or water for five weeks. On Week 6, rats were administered (i.p.) cocaine (10 and 20mg/kg) or saline for 12 consecutive days. This study tested two groups of rats: the first group was euthanized after seven days of repeated cocaine i.p. injection, and the second group was deprived from cocaine for five days and euthanized at Day 5 after cocaine withdrawal. Only repeated cocaine (20mg/kg, i.p.) exposure decreased ethanol intake from Day 3 through Day 8. Co-exposure of cocaine and ethanol decreased the relative mRNA expression and the expression of GLT-1 in the NAc but not in the medial prefrontal cortex (mPFC). Importantly, co-exposure of cocaine and ethanol decreased relative expression of xCT in the NAc but not in the mPFC. Our findings demonstrated that chronic cocaine exposure affects ethanol intake; and ethanol and cocaine co-abuse alters the expression of glial glutamate transporters. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Infralimbic prefrontal cortex interacts with nucleus accumbens shell to unmask expression of outcome-selective Pavlovian-to-instrumental transfer

    PubMed Central

    Keistler, Colby; Barker, Jacqueline M.

    2015-01-01

    Although several studies have examined the subcortical circuitry underlying Pavlovian-to-instrumental transfer (PIT), the role of medial prefrontal cortex in this behavior is largely unknown. Elucidating the cortical contributions to PIT will be key for understanding how reward-paired cues control behavior in both adaptive and maladaptive context (i.e., addiction). Here we use bilateral lesions in a rat model to show that infralimbic prefrontal cortex (ilPFC) is necessary for appropriate expression of PIT. Further, we show that ilPFC mediates this effect via functional connectivity with nucleus accumbens shell (NAcS). Together, these data provide the first demonstration that a specific cortico-striatal circuit is necessary for cue-invigorated reward seeking during specific PIT. PMID:26373829

  6. Interactions between estrogen receptors and metabotropic glutamate receptors and their impact on drug addiction in females.

    PubMed

    Tonn Eisinger, Katherine R; Gross, Kellie S; Head, Brian P; Mermelstein, Paul G

    2018-03-10

    Estrogen receptors α and β (ERα and ERβ) have a unique relationship with metabotropic glutamate receptors (mGluRs) in the female rodent brain such that estradiol is able to recruit intracellular G-protein signaling cascades to influence neuronal physiology, structure, and ultimately behavior. While this association between ERs and mGluRs exists in many cell types and brain regions, its effects are perhaps most striking in the nucleus accumbens (NAc). This review will discuss the original characterization of ER/mGluR signaling and how estradiol activity in the NAc confers increased sensitivity to drugs of abuse in females through this mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex

    PubMed Central

    Wu, Long-Jun; Kim, Susan S; Li, Xiangyao; Zhang, Fuxing; Zhuo, Min

    2009-01-01

    Functional human brain imaging studies have indicated the essential role of cortical regions, such as the anterior cingulate cortex (ACC), in romantic love and sex. However, the neurobiological basis of how the ACC neurons are activated and engaged in sexual attraction remains unknown. Using transgenic mice in which the expression of green fluorescent protein (GFP) is controlled by the promoter of the activity-dependent gene c-fos, we found that ACC pyramidal neurons are activated by sexual attraction. The presynaptic glutamate release to the activated neurons is increased and pharmacological inhibition of neuronal activities in the ACC reduced the interest of male mice to female mice. Our results present direct evidence of the critical role of the ACC in sexual attraction, and long-term increases in glutamate mediated excitatory transmission may contribute to sexual attraction between male and female mice. PMID:19419552

  8. Prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 increases glutamate uptake through overexpression of GLT1 and EAAC1 glutamate transporter subtypes in rat frontal cerebral cortex.

    PubMed

    Castaldo, Pasqualina; Magi, Simona; Gaetani, Silvana; Cassano, Tommaso; Ferraro, Luca; Antonelli, Tiziana; Amoroso, Salvatore; Cuomo, Vincenzo

    2007-09-01

    Prenatal exposure to the CB1 receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)-pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone) mesylate (WIN) at a daily dose of 0.5 mg/kg, and Delta9-tetrahydrocannabinol (Delta9-THC) at a daily dose of 5 mg/kg, reduced dialysate glutamate levels in frontal cerebral cortex of adolescent offspring (40-day-old) with respect to those born from vehicle-treated mothers. WIN treatment induced a statistically significant enhancement of Vmaxl-[3H]glutamate uptake, whereas it did not modify glutamate Km, in frontal cerebral cortex synaptosomes of adolescent rats. Western blotting analysis, performed either in membrane proteins derived from homogenates and in proteins extracted from synaptosomes of frontal cerebral cortex, revealed that prenatal WIN exposure enhanced the expression of glutamate transporter 1 (GLT1) and excitatory amino acid carrier 1 (EAAC1). Moreover, immunocytochemical analyses of frontal cortex area revealed a more intense GLT1 and EAAC1 immunoreactivity (ir) distribution in the WIN-treated group. Collectively these results show that prenatal exposure to the cannabinoid CB1 receptor agonist WIN increases expression and functional activity of GLT1 and EAAC1 glutamate transporters (GluTs) associated to a decrease of cortical glutamate outflow, in adolescent rats. These findings may contribute to explain the mechanism underlying the cognitive impairment observed in the offspring of mothers who used marijuana during pregnancy.

  9. Effect of cannabis on glutamate signalling in the brain: A systematic review of human and animal evidence.

    PubMed

    Colizzi, Marco; McGuire, Philip; Pertwee, Roger G; Bhattacharyya, Sagnik

    2016-05-01

    Use of cannabis or delta-9-tetrahydrocannabinol (Δ9-THC), its main psychoactive ingredient, is associated with psychotic symptoms or disorder. However, the neurochemical mechanism that may underlie this psychotomimetic effect is poorly understood. Although dopaminergic dysfunction is generally recognized as the final common pathway in psychosis, evidence of the effects of Δ9-THC or cannabis use on dopaminergic measures in the brain is equivocal. In fact, it is thought that cannabis or Δ9-THC may not act on dopamine firing directly but indirectly by altering glutamate neurotransmission. Here we systematically review all studies examining acute and chronic effects of cannabis or Δ9-THC on glutamate signalling in both animals and man. Limited research carried out in humans tends to support the evidence that chronic cannabis use reduces levels of glutamate-derived metabolites in both cortical and subcortical brain areas. Research in animals tends to consistently suggest that Δ9-THC depresses glutamate synaptic transmission via CB1 receptor activation, affecting glutamate release, inhibiting receptors and transporters function, reducing enzyme activity, and disrupting glutamate synaptic plasticity after prolonged exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain*

    PubMed Central

    Hou, Sheng Tao; Jiang, Susan X.; Zaharia, L. Irina; Han, Xiumei; Benson, Chantel L.; Slinn, Jacqueline; Abrams, Suzanne R.

    2016-01-01

    Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (−)-PA in mouse and rat brains. (−)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (−)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (−)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (−)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (−)-PA level in the brain reduced ischemic brain injury, whereas reducing the (−)-PA level using a monoclonal antibody against (−)-PA increased ischemic injury. Collectively, these studies showed for the first time that (−)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury. PMID:27864367

  11. Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain.

    PubMed

    Hou, Sheng Tao; Jiang, Susan X; Zaharia, L Irina; Han, Xiumei; Benson, Chantel L; Slinn, Jacqueline; Abrams, Suzanne R

    2016-12-30

    Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (-)-PA in mouse and rat brains. (-)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (-)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (-)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (-)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (-)-PA level in the brain reduced ischemic brain injury, whereas reducing the (-)-PA level using a monoclonal antibody against (-)-PA increased ischemic injury. Collectively, these studies showed for the first time that (-)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Nucleus Accumbens AMPA Receptors Are Necessary for Morphine-Withdrawal-Induced Negative-Affective States in Rats

    PubMed Central

    Russell, Shayla E.; Puttick, Daniel J.; Sawyer, Allison M.; Potter, David N.; Mague, Stephen; Carlezon, William A.

    2016-01-01

    Dependence is a hallmark feature of opiate addiction and is defined by the emergence of somatic and affective withdrawal signs. The nucleus accumbens (NAc) integrates dopaminergic and glutamatergic inputs to mediate rewarding and aversive properties of opiates. Evidence suggests that AMPA glutamate-receptor-dependent synaptic plasticity within the NAc underlies aspects of addiction. However, the degree to which NAc AMPA receptors (AMPARs) contribute to somatic and affective signs of opiate withdrawal is not fully understood. Here, we show that microinjection of the AMPAR antagonist NBQX into the NAc shell of morphine-dependent rats prevented naloxone-induced conditioned place aversions and decreases in sensitivity to brain stimulation reward, but had no effect on somatic withdrawal signs. Using a protein cross-linking approach, we found that the surface/intracellular ratio of NAc GluA1, but not GluA2, increased with morphine treatment, suggesting postsynaptic insertion of GluA2-lacking AMPARs. Consistent with this, 1-naphthylacetyl spermine trihydrochloride (NASPM), an antagonist of GluA2-lacking AMPARs, attenuated naloxone-induced decreases in sensitivity to brain stimulation reward. Naloxone decreased the surface/intracellular ratio and synaptosomal membrane levels of NAc GluA1 in morphine-dependent rats, suggesting a compensatory removal of AMPARs from synaptic zones. Together, these findings indicate that chronic morphine increases synaptic availability of GluA1-containing AMPARs in the NAc, which is necessary for triggering negative-affective states in response to naloxone. This is broadly consistent with the hypothesis that activation of NAc neurons produces acute aversive states and raises the possibility that inhibiting AMPA transmission selectively in the NAc may have therapeutic value in the treatment of addiction. SIGNIFICANCE STATEMENT Morphine dependence and withdrawal result in profound negative-affective states that play a major role in the

  13. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    PubMed

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to

  14. Altered medial temporal activation related to local glutamate levels in subjects with prodromal signs of psychosis.

    PubMed

    Valli, Isabel; Stone, James; Mechelli, Andrea; Bhattacharyya, Sagnik; Raffin, Marie; Allen, Paul; Fusar-Poli, Paolo; Lythgoe, David; O'Gorman, Ruth; Seal, Marc; McGuire, Philip

    2011-01-01

    Both medial temporal cortical dysfunction and perturbed glutamatergic neurotransmission are regarded as fundamental pathophysiological features of psychosis. However, although animal models of psychosis suggest that these two abnormalities are interrelated, their relationship in humans has yet to be investigated. We used a combination of functional magnetic resonance imaging and magnetic resonance spectroscopy to investigate the relationship between medial temporal activation during an episodic memory task and local glutamate levels in 22 individuals with an at-risk mental state for psychosis and 14 healthy volunteers. We observed a significant between-group difference in the coupling of medial temporal activation with local glutamate levels. In control subjects, medial temporal activation during episodic encoding was positively associated with medial temporal glutamate. However, in the clinical population, medial temporal activation was reduced, and the relationship with glutamate was absent. In individuals at high risk of psychosis, medial temporal dysfunction seemed related to a loss of the normal relationship with local glutamate levels. This study provides the first evidence that links medial temporal dysfunction with the central glutamate system in humans and is consistent with evidence that drugs that modulate glutamatergic transmission might be useful in the treatment of psychosis. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Only extra-high dose of ketamine affects l-glutamate-induced intracellular Ca(2+) elevation and neurotoxicity.

    PubMed

    Shibuta, Satoshi; Morita, Tomotaka; Kosaka, Jun; Kamibayashi, Takahiko; Fujino, Yuji

    2015-09-01

    The neurotoxic effects of anesthetics on the developing brain are a concern. Although most of the anesthetics are GABAA agonists or NMDA antagonists, the differences in these effects on prospective glutamate-neurotoxicity in the brain is not fully understood. We examined the degree of L-glutamate-induced intracellular calcium ([Ca(2+)]i) elevation and neurotoxicity in neurons exposed to anesthetics. Primary cortical neurons from E17 rats were preincubated with 1-100 μM of ketamine or thiopental sodium (TPS) for the first 72 h of culturing. Two weeks later, the neurons were exposed to L-glutamate. The extent of glutamate toxicity was evaluated using Ca(2+)-imaging and morphological experiments. Preincubation with 100 μM ketamine but not with other concentrations of ketamine and TPS for the first 72 h in culture significantly enhanced L-glutamate-induced [Ca(2+)]i elevation 2 weeks later. Morphology experiments showed that vulnerability to L-glutamate-mediated neurotoxicity was only altered in neurons preincubated with 100 μM ketamine but not with TPS. Although preincubation with high concentration of ketamine showed enhancement of L-glutamate-induced [Ca(2+)]i elevation 2 weeks later, long-term exposure to TPS or ketamine at clinical doses during developmental periods may not result in a dose-related potentiation of exogenous glutamate-induced neurotoxicity, once the intravenous anesthetics are discontinued. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Scavenging of blood glutamate for enhancing brain-to-blood glutamate efflux.

    PubMed

    Li, Yunhong; Hou, Xiaolin; Qi, Qi; Wang, Le; Luo, Lan; Yang, Shaoqi; Zhang, Yumei; Miao, Zhenhua; Zhang, Yanli; Wang, Fei; Wang, Hongyan; Huang, Weidong; Wang, Zhenhai; Shen, Ying; Wang, Yin

    2014-01-01

    The presence of excess glutamate in the brain interstitial fluid characterizes several acute pathological conditions of the brain, including traumatic brain injury and stroke. It has been demonstrated that it is possible to eliminate excess glutamate in the brain by decreasing blood glutamate levels and, accordingly, accelerating the brain-to-blood glutamate efflux. It is feasible to accomplish this process by activating blood resident enzymes in the presence of the respective glutamate cosubstrates. In the present study, several glutamate cosubstrates and cofactors were studied in an attempt to identify the optimal conditions to reduce blood glutamate levels. The administration of a mixture of 1 mM pyruvate and oxaloacetate (Pyr/Oxa) for 1 h decreased blood glutamate levels by ≤50%. The addition of lipoamide to this mixture resulted in a further reduction in blood glutamate levels of >80%. In addition, in vivo experiments showed that lipoamide together with Pyr/Oxa is able to decrease blood glutamate levels to a greater extent than Pyr/Oxa alone, and accordingly, this enhances the glutamate efflux from the brain to the blood. These results may outline a novel neuroprotective strategy with increased effectiveness for the removal of excess brain glutamate in various neurodegenerative conditions.

  17. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex

    PubMed Central

    Lu, Cheng-Wei; Huang, Shu-Kuei; Wang, Su-Jane

    2013-01-01

    Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by the chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca2+ concentration. Involvement of the Cav2.1 (P/Q-type) channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type) channel blocker ω-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK) inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK/synapsin I signaling

  18. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.

    PubMed

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-12-24

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.

  19. The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization.

    PubMed

    Hübel, Niklas; Hosseini-Zare, Mahshid S; Žiburkus, Jokūbas; Ullah, Ghanim

    2017-10-01

    Simultaneous changes in ion concentrations, glutamate, and cell volume together with exchange of matter between cell network and vasculature are ubiquitous in numerous brain pathologies. A complete understanding of pathological conditions as well as normal brain function, therefore, hinges on elucidating the molecular and cellular pathways involved in these mostly interdependent variations. In this paper, we develop the first computational framework that combines the Hodgkin-Huxley type spiking dynamics, dynamic ion concentrations and glutamate homeostasis, neuronal and astroglial volume changes, and ion exchange with vasculature into a comprehensive model to elucidate the role of glutamate uptake in the dynamics of spreading depolarization (SD)-the electrophysiological event underlying numerous pathologies including migraine, ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hematoma, and trauma. We are particularly interested in investigating the role of glutamate in the duration and termination of SD caused by K+ perfusion and oxygen-glucose deprivation. Our results demonstrate that glutamate signaling plays a key role in the dynamics of SD, and that impaired glutamate uptake leads to recovery failure of neurons from SD. We confirm predictions from our model experimentally by showing that inhibiting astrocytic glutamate uptake using TFB-TBOA nearly quadruples the duration of SD in layers 2-3 of visual cortical slices from juvenile rats. The model equations are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles or a combination of these principles and known physiological facts. Accordingly, we claim that our approach can be used as a future guide to investigate the role of glutamate, ion concentrations, and dynamics cell volume in other brain pathologies and normal brain function.

  20. Facebook usage on smartphones and gray matter volume of the nucleus accumbens.

    PubMed

    Montag, Christian; Markowetz, Alexander; Blaszkiewicz, Konrad; Andone, Ionut; Lachmann, Bernd; Sariyska, Rayna; Trendafilov, Boris; Eibes, Mark; Kolb, Julia; Reuter, Martin; Weber, Bernd; Markett, Sebastian

    2017-06-30

    A recent study has implicated the nucleus accumbens of the ventral striatum in explaining why online-users spend time on the social network platform Facebook. Here, higher activity of the nucleus accumbens was associated with gaining reputation on social media. In the present study, we touched a related research field. We recorded the actual Facebook usage of N=62 participants on their smartphones over the course of five weeks and correlated summary measures of Facebook use with gray matter volume of the nucleus accumbens. It appeared, that in particular higher daily frequency of checking Facebook on the smartphone was robustly linked with smaller gray matter volumes of the nucleus accumbens. The present study gives additional support for the rewarding aspects of Facebook usage. Moreover, it shows the feasibility to include real life behavior variables in human neuroscientific research. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. SELECTIVE POTENTIATION OF THE METABOTROPIC GLUTAMATE RECEPTOR SUBTYPE 2 BLOCKS PHENCYCLIDINE-INDUCED HYPERLOCOMOTION AND BRAIN ACTIVATION

    PubMed Central

    HACKLER, E. A.; BYUN, N. E.; JONES, C. K.; WILLIAMS, J. M.; BAHEZA, R.; SENGUPTA, S.; GRIER, M. D.; AVISON, M.; CONN, P. J.; GORE, J. C.

    2013-01-01

    Previous preclinical and clinical studies have demonstrated the efficacy of group II metabotropic glutamate receptor (mGluR) agonists as potential antipsychotics. Recent studies utilizing mGluR2-, mGluR3-, and double knockout mice support that the antipsychotic effects of those compounds are mediated by mGluR2. Indeed, biphenyl indanone-A (BINA), an allosteric potentiator of mGluR2, is effective in experimental models of psychosis, blocking phencyclidine (PCP)-induced hyperlocomotion and prepulse inhibition deficits in mice. In this study, we administered the NMDA receptor antagonist PCP (5.6 mg/kg i.p.) to rats, an established animal model predictive of schizophrenia. Here, we show that BINA (32 mg/kg i.p.) attenuated PCP-induced locomotor activity in rats. Using behaviorally relevant doses of BINA and PCP, we performed pharmacological magnetic resonance imaging (phMRI) to assess the specific brain regions that underlie the psychotomimetic effects of PCP, and examined how BINA modulated the PCP-induced functional changes in vivo. In anesthetized rats, acute administration of PCP produced robust, sustained blood oxygenation level-dependent (BOLD) activation in specific cortical, limbic, thalamic, and striatal regions. Pretreatment with BINA suppressed the amplitude of the BOLD response to PCP in the prefrontal cortex, caudaute–putamen, nucleus accumbens, and mediodorsal thalamus. Our results show key brain structures underlying PCP-induced behaviors in a preclinical model of schizophrenia, and, importantly, its reversal by potentiation of mGluR2 by BINA, revealing specific brain regions functionally involved in its pharmacological action. Finally, our findings bolster the growing body of evidence that mGluR2 is a viable target for the treatment of schizophrenia. PMID:20350588

  2. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain.

    PubMed

    Peng, Yingyun; Zhang, Tao; Mu, Wanmeng; Miao, Ming; Jiang, Bo

    2016-01-15

    Bacillus methylotrophicus SK19.001 is a glutamate-independent strain that produces poly(γ-glutamic acid) (γ-PGA), a polymer of D- and L-glutamic acids that possesses applications in food, the environment, agriculture, etc. This study was undertaken to explore the synthetic pathway of intracellular L- and D-glutamic acid in SK19.001 by investigating the effects of tricarboxylic acid cycle intermediates and different amino acids as metabolic precursors on the production of γ-PGA and analyzing the activities of the enzymes involved in the synthesis of L- and D-glutamate. Tricarboxylic acid cycle intermediates and amino acids could participate in the synthesis of γ-PGA via independent pathways in SK19.001. L-Aspartate aminotransferase, L-glutaminase and L-glutamate synthase were the enzymatic sources of L-glutamate. Glutamate racemase was responsible for the formation of D-glutamate for the synthesis of γ-PGA, and the synthetase had stereoselectivity for glutamate substrate. The enzymatic sources of L-glutamate were investigated for the first time in the glutamate-independent γ-PGA-producing strain, and multiple enzymatic sources of L-glutamate were verified in SK19.001, which will benefit efforts to improve production of γ-PGA with metabolic engineering strategies. © 2015 Society of Chemical Industry.

  3. Brain glutamate in medication-free depressed patients: a proton MRS study at 7 Tesla.

    PubMed

    Godlewska, Beata R; Masaki, Charles; Sharpley, Ann L; Cowen, Philip J; Emir, Uzay E

    2017-12-11

    The possible role of glutamate in the pathophysiology and treatment of depression is of intense current interest. Proton magnetic resonance spectroscopy (MRS) enables the detection of glutamate in the living human brain and meta-analyses of previous MRS studies in depressed patients have suggested that glutamate levels are decreased in anterior brain regions. Nevertheless, at conventional magnetic field strengths [1.5-3 Tesla (T)], it is difficult to separate glutamate from its metabolite and precursor, glutamine, with the two often being measured together as Glx. In contrast, MRS at 7 T allows clear spectral resolution of glutamate and glutamine. We studied 55 un-medicated depressed patients and 50 healthy controls who underwent MRS scanning at 7 T with voxels placed in anterior cingulate cortex, occipital cortex and putamen (PUT). Neurometabolites were calculated using the unsuppressed water signal as a reference. Compared with controls, depressed patients showed no significant difference in glutamate in any of the three voxels studied; however, glutamine concentrations in the patients were elevated by about 12% in the PUT (p < 0.001). The increase in glutamine in PUT is of interest in view of the postulated role of the basal ganglia in the neuropsychology of depression and is consistent with elevated activity in the descending cortical glutamatergic innervation to the PUT. The basal ganglia have rarely been the subject of MRS investigations in depressed patients and further MRS studies of these structures in depression are warranted.

  4. Synthetic cathinone MDPV downregulates glutamate transporter subtype I (GLT-1) and produces rewarding and locomotor-activating effects that are reduced by a GLT-1 activator

    PubMed Central

    Gregg, Ryan A.; Hicks, Callum; Nayak, Sunil U.; Tallarida, Christopher S.; Nucero, Paul; Reitz, Allen B.; Smith, Garry R.; Rawls, Scott M.

    2016-01-01

    Synthetic cathinones produce dysregulation of monoamine systems, but their effects on the glutamate system and the influence of glutamate on behavioral effects related to cathinone abuse are unknown. A principal regulator of glutamate homeostasis is glutamate transporter subtype 1 (GLT-1), an astrocytic protein that clears glutamate from the extracellular space and influences behavioral effects of established psychostimulants. We hypothesized that repeated administration of the synthetic cathinone, MDPV (3,4-methylenedioxypyrovalerone), would affect GLT-1 expression in the corticolimbic circuit, and that a GLT-1 activator (ceftriaxone, CTX) would reduce rewarding and locomotor-stimulant effects of MDPV in rats. GLT-1 protein expression in the nucleus accumbens (NAcc), but not prefrontal cortex (PFC), was decreased following withdrawal (2, 5 and 10 days) from repeated MDPV treatment, but not immediately after the last MDPV injection. CTX (200 mg/kg) pretreatment did not affect acute locomotor activation produced by MDPV (0.5, 1, 3 mg/kg). However, CTX (200 mg/kg) administered during a 7-day MDPV treatment paradigm attenuated the development of MDPV-induced sensitization of repetitive movements in rats challenged with MDPV following 11 days of drug abstinence. Pretreatment with CTX (200 mg/kg) during a 4-day MDPV (2 mg/kg) conditioned place preference (CPP) paradigm reduced the development of place preference produced by MDPV. The present data demonstrate dysregulation of corticolimbic glutamate transport systems during withdrawal from chronic MDPV exposure, and show that a GLT-1 transporter activator disrupts behavioral effects of MDPV that are related to synthetic cathinone abuse. PMID:27085607

  5. Role of cyclophilin D-dependent mitochondrial permeability transition in glutamate-induced calcium deregulation and excitotoxic neuronal death

    PubMed Central

    Li, Viacheslav; Brustovetsky, Tatiana; Brustovetsky, Nickolay

    2009-01-01

    In the present study we tested the hypothesis that the cyclophilin D-dependent (CyD) mitochondrial permeability transition (CyD-mPT) plays an important role in glutamate-triggered delayed calcium deregulation (DCD) and excitotoxic neuronal death. We used cultured cortical neurons from wild-type C57BL/6 and cyclophilin D knockout mice (Ppif-/-). Induction of the mPT was identified by following the rapid secondary acidification of mitochondrial matrices monitored with mitochondrially targeted pH-sensitive yellow fluorescent protein. Suppression of the CyD-mPT due to genetic CyD ablation deferred DCD and mitochondrial depolarization, and increased the survival rate after exposure of neurons to 10μM glutamate, but not to 100μM glutamate. Ca2+ influx into Ppif-/- neurons was not diminished in comparison with WT neurons judging by 45Ca accumulation. In both types of neurons, 100μM glutamate produced greater Ca2+ influx than 10μM glutamate. We hypothesize that greater Ca2+ influx produced by higher glutamate rapidly triggered the CyD-independent mPT in both WT and Ppif-/- neurons equalizing their responses to supra-physiologic excitotoxic insults. In neurons exposed to moderate but pathophysiologically-relevant glutamate concentrations, an induction of the CyD-mPT appears to play an important role in mitochondrial injury contributing to DCD and cell death. PMID:19236863

  6. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    PubMed

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  7. Lycopene depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebrocortical nerve terminals.

    PubMed

    Lu, Cheng-Wei; Hung, Chi-Feng; Jean, Wei-Horng; Lin, Tzu-Yu; Huang, Shu-Kuei; Wang, Su-Jane

    2018-05-01

    Lycopene is a natural dietary carotenoid that was reported to exhibit a neuroprotective profile. Considering that excitotoxicity and cell death induced by glutamate are involved in many brain disorders, the effect of lycopene on glutamate release in rat cerebrocortical nerve terminals and the possible mechanism involved in such effect was investigated. We observed here that lycopene inhibited 4-aminopyridine (4-AP)-evoked glutamate release and intrasynaptosomal Ca 2+ concentration elevation. The inhibitory effect of lycopene on 4-AP-evoked glutamate release was markedly reduced in the presence of the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was insensitive to the intracellular Ca 2+ -release inhibitors dantrolene and CGP37157. Furthermore, in the presence of the protein kinase C inhibitors GF109203X and Go6976, the action of lycopene on evoked glutamate release was prevented. These results are the first to suggest that lycopene inhibits glutamate release from rat cortical synaptosomes by suppressing presynaptic Ca 2+ entry and protein kinase C activity.

  8. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits

    PubMed Central

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-01-01

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits. DOI: http://dx.doi.org/10.7554/eLife.10056.001 PMID:26705334

  9. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tzu-Yu; Department of Mechanical Engineering, Yuan Ze University, Taoyuan, 320, Taiwan; Lu, Cheng-Wei

    2012-09-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K{sup +} channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca{sup 2+} ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect onmore » hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca{sup 2+} concentration ([Ca{sup 2+}]{sub C}), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na{sup +}/Ca{sup 2+} exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca{sup 2+} entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from

  10. Glutamate/GABA+ ratio is associated with the psychosocial domain of autistic and schizotypal traits.

    PubMed

    Ford, Talitha C; Nibbs, Richard; Crewther, David P

    2017-01-01

    The autism and schizophrenia spectra overlap to a large degree in the social and interpersonal domains. Similarly, abnormal excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) neurotransmitter concentrations have been reported for both spectra, with the interplay of these neurotransmitters important for cortical excitation to inhibition regulation. This study investigates whether these neurotransmitter abnormalities are specific to the shared symptomatology, and whether the degree of abnormality increases with increasing symptom severity. Hence, the relationship between the glutamate/GABA ratio and autism and schizophrenia spectrum traits in an unmedicated, subclinical population was investigated. A total of 37 adults (19 female, 18 male) aged 18-38 years completed the Autism Spectrum Quotient (AQ) and Schizotypal Personality Questionnaire (SPQ), and participated in the resting state proton magnetic resonance spectroscopy study in which sequences specific for quantification of glutamate and GABA+ concentration were applied to a right and left superior temporal voxel. There were significant, moderate, positive relationships between right superior temporal glutamate/GABA+ ratio and AQ, SPQ and AQ+SPQ total scores (p<0.05), SPQ subscales Social Anxiety, No Close Friend, Constricted Affect, Odd Behaviour, Odd Speech, Ideas of Reference and Suspiciousness, and AQ subscales Social Skills, Communication and Attention Switching (p<0.05); increased glutamate/GABA+ coinciding with higher scores on these subscales. Only the relationships between glutamate/GABA+ ratio and Social Anxiety, Constricted Affect, Social Skills and Communication survived multiple comparison correction (p< 0.004). Left superior temporal glutamate/GABA+ ratio reduced with increasing restricted imagination (p<0.05). These findings demonstrate evidence for an association between excitatory/inhibitory neurotransmitter concentrations and symptoms that are shared between the autism and

  11. Imbalance between Glutamate and GABA in Fmr1 Knockout Astrocytes Influences Neuronal Development

    PubMed Central

    Wang, Lu; Wang, Yan; Zhou, Shimeng; Yang, Liukun; Shi, Qixin; Li, Yujiao; Zhang, Kun; Yang, Le; Zhao, Minggao; Yang, Qi

    2016-01-01

    Fragile X syndrome (FXS) is a form of inherited mental retardation that results from the absence of the fragile X mental retardation protein (FMRP), the product of the Fmr1 gene. Numerous studies have shown that FMRP expression in astrocytes is important in the development of FXS. Although astrocytes affect neuronal dendrite development in Fmr1 knockout (KO) mice, the factors released by astrocytes are still unclear. We cultured wild type (WT) cortical neurons in astrocyte-conditioned medium (ACM) from WT or Fmr1 KO mice. Immunocytochemistry and Western blotting were performed to detect the dendritic growth of both WT and KO neurons. We determined glutamate and γ-aminobutyric acid (GABA) levels using high-performance liquid chromatography (HPLC). The total neuronal dendritic length was reduced when cultured in the Fmr1 KO ACM. This neurotoxicity was triggered by an imbalanced release of glutamate and GABA from Fmr1 KO astrocytes. We found increased glutaminase and GABA transaminase (GABA-T) expression and decreased monoamine oxidase B expression in Fmr1 KO astrocytes. The elevated levels of glutamate contributed to oxidative stress in the cultured neurons. Vigabatrin (VGB), a GABA-T inhibitor, reversed the changes caused by glutamate and GABA release in Fmr1 KO astrocytes and the abnormal behaviors in Fmr1 KO mice. Our results indicate that the imbalance in the astrocytic glutamate and GABA release may be involved in the neuropathology and the underlying symptoms of FXS, and provides a therapeutic target for treatment. PMID:27517961

  12. Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1988-01-01

    Intracerebral dialysis was used to monitor extracellular fluid from rat striatum and nucleus accumbens following the intraperitoneal administration of tyrosine. Dopamine concentrations in dialysates from both the striatum and the nucleus accumbens increased significantly in response to the tyrosine. The magnitude of the tyrosine effect was greater in the nucleus accumbens than in the striatum. Hence, mesolimbic dopaminergic neurons may be especially responsive to precursor availability.

  13. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  14. The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity

    PubMed Central

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-01-01

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke. PMID:25387075

  15. Individual differences in the forced swimming test and neurochemical kinetics in the rat brain.

    PubMed

    Sequeira-Cordero, Andrey; Mora-Gallegos, Andrea; Cuenca-Berger, Patricia; Fornaguera-Trías, Jaime

    2014-04-10

    Individual differences in the forced swimming test (FST) could be associated with differential temporal dynamics of gene expression and neurotransmitter activity. We tested juvenile male rats in the FST and classified the animals into those with low and high immobility according to the amount of immobility time recorded in FST. These groups and a control group which did not undergo the FST were sacrificed either 1, 6 or 24 h after the test. We analyzed the expression of the CRF, CRFR1, BDNF and TrkB in the prefrontal cortex, hippocampus and nucleus accumbens as well as norepinephrine, dopamine, serotonin, glutamate, GABA and glutamine in the hippocampus and nucleus accumbens. Animals with low immobility showed significant reductions of BDNF expression across time points in both the prefrontal cortex and the nucleus accumbens when compared with non-swim control. Moreover, rats with high immobility only showed a significant decrease of BDNF expression in the prefrontal cortex 6h after the FST. Regarding neurotransmitters, only accumbal dopamine turnover and hippocampal glutamate content showed an effect of individual differences (i.e. animals with low and high immobility), whereas nearly all parameters showed significant differences across time points. Correlational analyses suggest that immobility in the FST, probably reflecting despair, is related to prefrontal cortical BDNF and to the kinetics observed in several other neurochemical parameters. Taken together, our results suggest that individual differences observed in depression-like behavior can be associated not only with changes in the concentrations of key neurochemical factors but also with differential time courses of such factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Invigoration of reward-seeking by cue and proximity encoding in the nucleus accumbens

    PubMed Central

    McGinty, Vincent B.; Lardeux, Sylvie; Taha, Sharif A.; Kim, James J.; Nicola, Saleem M.

    2014-01-01

    Summary A key function of the nucleus accumbens is to promote vigorous reward-seeking, but the corresponding neural mechanism has not been identified despite many years of research. Here we study cued flexible approach behavior, a form of reward-seeking that strongly depends on the accumbens, and we describe a robust, single-cell neural correlate of behavioral vigor in the excitatory response of accumbens neurons to reward-predictive cues. Well before locomotion begins, this cue-evoked excitation predicts both the movement initiation latency and speed of subsequent flexible approach responses, but not of stereotyped, inflexible responses. Moreover, the excitation simultaneously signals the subject’s proximity to the approach target, a signal that appears to mediate greater response vigor on trials that begin with the subject closer to the target. These results demonstrate a neural mechanism for response invigoration whereby accumbens neuronal encoding of reward availability and target proximity together drive the onset and speed of reward-seeking locomotion. PMID:23764290

  17. Effect of beta-phenylethylamine on extracellular concentrations of dopamine in the nucleus accumbens and prefrontal cortex.

    PubMed

    Murata, Mikio; Katagiri, Nobuyuki; Ishida, Kota; Abe, Kenji; Ishikawa, Masago; Utsunomiya, Iku; Hoshi, Keiko; Miyamoto, Ken-ichi; Taguchi, Kyoji

    2009-05-07

    It is known that psychostimulants stimulate dopamine transmission in the nucleus accumbens. In the present study, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor-stimulating trace amine, on dopamine concentrations in the nucleus accumbens and prefrontal cortex in freely moving rats, using an in vivo microdialysis technique. Intraperitoneal administration of beta-PEA (12.5 and 25 mg/kg) significantly increased extracellular dopamine levels in the nucleus accumbens shell. The observed increase in the dopamine concentration in nucleus accumbens shell dialysate after intraperitoneal administration of 25 mg/kg beta-PEA was inhibited by pre-treatment with a dopamine uptake inhibitor, GBR12909 (10 mg/kg, i.p.). In contrast, beta-PEA (25 mg/kg, i.p.) did not affect dopamine release in the nucleus accumbens core. Although a high dose of beta-PEA (50 mg/kg) significantly increased dopamine levels in the nucleus accumbens core, the dopamine increasing effect of beta-PEA was more potent in the nucleus accumbens shell. Systemic administration of 12.5 and 25 mg/kg beta-PEA also increased extracellular dopamine levels in the prefrontal cortex of rats. However, systemic 25 mg/kg beta-PEA-induced increases in extracellular dopamine levels were not blocked by GBR12909 within the prefrontal cortex. These results suggest that beta-PEA has a greater effect in the shell than in the core and low-dose beta-PEA stimulates dopamine release in the nucleus accumbens shell through uptake by a dopamine transporter. Similarly, beta-PEA increased extracellular dopamine levels in the prefrontal cortex. Thus, beta-PEA may increase extracellular dopamine concentrations in the mesocorticolimbic pathway.

  18. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity.

    PubMed

    Ary, Alexis W; Cozzoli, Debra K; Finn, Deborah A; Crabbe, John C; Dehoff, Marlin H; Worley, Paul F; Szumlinski, Karen K

    2012-06-01

    Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol. Published by Elsevier Inc.

  19. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity

    PubMed Central

    Ary, Alexis W.; Cozzoli, Debra K.; Finn, Deborah A.; Crabbe, John C.; Dehoff, Marlin H.; Worley, Paul F.; Szumlinski, Karen K.

    2012-01-01

    Neuronal activity-dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol. PMID:22444953

  20. Comparison of Glutamate Turnover in Nerve Terminals and Brain Tissue During [1,6-13C2]Glucose Metabolism in Anesthetized Rats.

    PubMed

    Patel, Anant B; Lai, James C K; Chowdhury, Golam I M; Rothman, Douglas L; Behar, Kevin L

    2017-01-01

    The 13 C turnover of neurotransmitter amino acids (glutamate, GABA and aspartate) were determined from extracts of forebrain nerve terminals and brain homogenate, and fronto-parietal cortex from anesthetized rats undergoing timed infusions of [1,6- 13 C 2 ]glucose or [2- 13 C]acetate. Nerve terminal 13 C fractional labeling of glutamate and aspartate was lower than those in whole cortical tissue at all times measured (up to 120 min), suggesting either the presence of a constant dilution flux from an unlabeled substrate or an unlabeled (effectively non-communicating on the measurement timescale) glutamate pool in the nerve terminals. Half times of 13 C labeling from [1,6- 13 C 2 ]glucose, as estimated by least squares exponential fitting to the time course data, were longer for nerve terminals (Glu C4 , 21.8 min; GABA C2 21.0 min) compared to cortical tissue (Glu C4 , 12.4 min; GABA C2 , 14.5 min), except for Asp C3 , which was similar (26.5 vs. 27.0 min). The slower turnover of glutamate in the nerve terminals (but not GABA) compared to the cortex may reflect selective effects of anesthesia on activity-dependent glucose use, which might be more pronounced in the terminals. The 13 C labeling ratio for glutamate-C4 from [2- 13 C]acetate over that of 13 C-glucose was twice as large in nerve terminals compared to cortex, suggesting that astroglial glutamine under the 13 C glucose infusion was the likely source of much of the nerve terminal dilution. The net replenishment of most of the nerve terminal amino acid pools occurs directly via trafficking of astroglial glutamine.

  1. Oral alprazolam acutely increases nucleus accumbens perfusion

    PubMed Central

    Wolf, Daniel H.; Pinkham, Amy E.; Satterthwaite, Theodore D.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey; Smith, Mark A.; Detre, John A.; Gur, Ruben C.; Gur, Raquel E.

    2014-01-01

    Benzodiazepines treat anxiety, but can also produce euphoric effects, contributing to abuse. Using perfusion magnetic resonance imaging, we provide the first direct evidence in humans that alprazolam (Xanax) acutely increases perfusion in the nucleus accumbens, a key reward-processing region linked to addiction. PMID:23070072

  2. Dopamine D2 Antagonist-Induced Striatal Nur77 Expression Requires Activation of mGlu5 Receptors by Cortical Afferents

    PubMed Central

    Maheux, Jérôme; St-Hilaire, Michel; Voyer, David; Tirotta, Emanuele; Borrelli, Emiliana; Rouillard, Claude; Rompré, Pierre-Paul; Lévesque, Daniel

    2012-01-01

    Dopamine D2 receptor antagonists modulate gene transcription in the striatum. However, the molecular mechanism underlying this effect remains elusive. Here we used the expression of Nur77, a transcription factor of the orphan nuclear receptor family, as readout to explore the role of dopamine, glutamate, and adenosine receptors in the effect of a dopamine D2 antagonist in the striatum. First, we investigated D2 antagonist-induced Nur77 mRNA in D2L receptor knockout mice. Surprisingly, deletion of the D2L receptor isoform did not reduce eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Next, we tested if an ibotenic acid-induced cortical lesion could block the effect of eticlopride on Nur77 expression. Cortical lesions strongly reduced eticlopride-induced striatal upregulation of Nur77 mRNA. Then, we investigated if glutamatergic neurotransmission could modulate eticlopride-induced Nur77 expression. A combination of a metabotropic glutamate type 5 (mGlu5) and adenosine A2A receptor antagonists abolished eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Direct modulation of Nur77 expression by striatal glutamate and adenosine receptors was confirmed using corticostriatal organotypic cultures. Taken together, these results indicate that blockade of postsynaptic D2 receptors is not sufficient to trigger striatal transcriptional activity and that interaction with corticostriatal presynaptic D2 receptors and subsequent activation of postsynaptic glutamate and adenosine receptors in the striatum is required. Thus, these results uncover an unappreciated role of presynaptic D2 heteroreceptors and support a prominent role of glutamate in the effect of D2 antagonists. PMID:22912617

  3. Intra-accumbens injections of the adenosine A2A agonist CGS 21680 affect effort-related choice behavior in rats

    PubMed Central

    Font, Laura; Mingote, Susana; Farrar, Andrew M.; Pereira, Mariana; Worden, Lila; Stopper, Colin; Port, Russell G.

    2009-01-01

    Rationale Nucleus accumbens dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired accumbens DA transmission reallocate their behavior away from food-reinforced activities that have high response requirements and instead select less-effortful types of food-seeking behavior. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related processes, emerging evidence also implicates adenosine A2A receptors. Objective The present work was undertaken to test the hypothesis that accumbens A2A receptor stimulation would produce effects similar to those produced by DA depletion or antagonism. Materials and methods Three experiments assessed the effects of the adenosine A2A agonist CGS 21680 on performance of a concurrent choice task (lever pressing for preferred food vs. intake of less preferred chow) that is known to be sensitive to DA antagonists and accumbens DA depletions. Results Systemic injections of CGS 21680 reduced lever pressing but did not increase feeding. In contrast, bilateral infusions of the adenosine A2A receptor agonist CGS 21680 (6.0–24.0 ng) into the nucleus accumbens decreased lever pressing for the preferred food but substantially increased consumption of the less preferred chow. Injections of CGS 21680 into a control site dorsal to the accumbens were ineffective. Conclusions Taken together, these results are consistent with the hypothesis that local stimulation of adenosine A2A receptors in nucleus accumbens produces behavioral effects similar to those induced by accumbens DA depletions. Accumbens adenosine A2A receptors appear to be a component of the brain circuitry regulating effort-related choice behavior. PMID:18491078

  4. Nonvesicular Release of Glutamate by Glial xCT Transporters Suppresses Glutamate Receptor Clustering In Vivo

    PubMed Central

    Augustin, Hrvoje; Grosjean, Yael; Chen, Kaiyun; Sheng, Qi; Featherstone, David E.

    2008-01-01

    We hypothesized that cystine/glutamate transporters (xCTs) might be critical regulators of ambient extracellular glutamate levels in the nervous system and that misregulation of this glutamate pool might have important neurophysiological and/or behavioral consequences. To test this idea, we identified and functionally characterized a novel Drosophila xCT gene, which we subsequently named “genderblind” (gb). Genderblind is expressed in a previously overlooked subset of peripheral and central glia. Genetic elimination of gb causes a 50% reduction in extracellular glutamate concentration, demonstrating that xCT transporters are important regulators of extracellular glutamate. Consistent with previous studies showing that extracellular glutamate regulates postsynaptic glutamate receptor clustering, gb mutants show a large (200–300%) increase in the number of postsynaptic glutamate receptors. This increase in postsynaptic receptor abundance is not accompanied by other obvious synaptic changes and is completely rescued when synapses are cultured in wild-type levels of glutamate. Additional in situ pharmacology suggests that glutamate-mediated suppression of glutamate receptor clustering depends on receptor desensitization. Together, our results suggest that (1) xCT transporters are critical for regulation of ambient extracellular glutamate in vivo; (2) ambient extracellular glutamate maintains some receptors constitutively desensitized in vivo; and (3) constitutive desensitization of ionotropic glutamate receptors suppresses their ability to cluster at synapses. PMID:17202478

  5. Perimovement decrease of alpha/beta oscillations in the human nucleus accumbens.

    PubMed

    Stenner, Max-Philipp; Dürschmid, Stefan; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Kaufmann, Jörn; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J; Schoenfeld, Mircea Ariel

    2016-10-01

    The human nucleus accumbens is thought to play an important role in guiding future action selection via an evaluation of current action outcomes. Here we provide electrophysiological evidence for a more direct, i.e., online, role during action preparation. We recorded local field potentials from the nucleus accumbens in patients with epilepsy undergoing surgery for deep brain stimulation. We found a consistent decrease in the power of alpha/beta oscillations (10-30 Hz) before and around the time of movements. This perimovement alpha/beta desynchronization was observed in seven of eight patients and was present both before instructed movements in a serial reaction time task as well as before self-paced, deliberate choices in a decision making task. A similar beta decrease over sensorimotor cortex and in the subthalamic nucleus has been directly related to movement preparation and execution. Our results support the idea of a direct role of the human nucleus accumbens in action preparation and execution. Copyright © 2016 the American Physiological Society.

  6. Perimovement decrease of alpha/beta oscillations in the human nucleus accumbens

    PubMed Central

    Dürschmid, Stefan; Rutledge, Robb B.; Zaehle, Tino; Schmitt, Friedhelm C.; Kaufmann, Jörn; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J.; Schoenfeld, Mircea Ariel

    2016-01-01

    The human nucleus accumbens is thought to play an important role in guiding future action selection via an evaluation of current action outcomes. Here we provide electrophysiological evidence for a more direct, i.e., online, role during action preparation. We recorded local field potentials from the nucleus accumbens in patients with epilepsy undergoing surgery for deep brain stimulation. We found a consistent decrease in the power of alpha/beta oscillations (10–30 Hz) before and around the time of movements. This perimovement alpha/beta desynchronization was observed in seven of eight patients and was present both before instructed movements in a serial reaction time task as well as before self-paced, deliberate choices in a decision making task. A similar beta decrease over sensorimotor cortex and in the subthalamic nucleus has been directly related to movement preparation and execution. Our results support the idea of a direct role of the human nucleus accumbens in action preparation and execution. PMID:27486103

  7. Glutamate transporter type 3 participates in maintaining morphine-induced conditioned place preference.

    PubMed

    Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi

    2017-03-06

    Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week-old EAAT3 knockout (EAAT3 -/- ) mice and their wild-type littermates received 3 intraperitoneal injections of 10mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4mg/kg riluzole, an EAAT activator, 30min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3 -/- mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8-9days in wild-type mice, while this extinction occurred 6days after discontinuation of morphine injection in EAAT3 -/- mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3 -/- mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Glutamate transporter type 3 participates in maintaining morphine-induced conditioned place preference

    PubMed Central

    Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi

    2017-01-01

    Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week old EAAT3 knockout (EAAT3−/−) mice and their wild-type littermates received 3 intraperitoneal injections of 10 mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5 mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4 mg/kg riluzole, an EAAT activator, 30 min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24 h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3−/− mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8 to 9 days in wild-type mice, while this extinction occurred 6 days after discontinuation of morphine injection in EAAT3−/− mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3−/− mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. PMID:28049029

  9. Cholinergic basal forebrain structures are not essential for mediation of the arousing action of glutamate.

    PubMed

    Lelkes, Zoltán; Abdurakhmanova, Shamsiiat; Porkka-Heiskanen, Tarja

    2017-09-18

    The cholinergic basal forebrain contributes to cortical activation and receives rich innervations from the ascending activating system. It is involved in the mediation of the arousing actions of noradrenaline and histamine. Glutamatergic stimulation in the basal forebrain results in cortical acetylcholine release and suppression of sleep. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing action of glutamate. To clarify this question, we administered N-methyl-D-aspartate (NMDA), a glutamate agonist, into the basal forebrain in intact rats and after destruction of the cholinergic cells in the basal forebrain with 192 immunoglobulin (Ig)G-saporin. In eight Han-Wistar rats with implanted electroencephalogram/electromyogram (EEG/EMG) electrodes and guide cannulas for microdialysis probes, 0.23 μg 192 IgG-saporin was administered into the basal forebrain, while the eight control animals received artificial cerebrospinal fluid. Two weeks later, a microdialysis probe targeted into the basal forebrain was perfused with cerebrospinal fluid on the baseline day and for 3 h with 0.3 mmNMDA on the subsequent day. Sleep-wake activity was recorded for 24 h on both days. NMDA exhibited a robust arousing effect in both the intact and the lesioned rats. Wakefulness was increased and both non-REM and REM sleep were decreased significantly during the 3-h NMDA perfusion. Destruction of the basal forebrain cholinergic neurones did not abolish the wake-enhancing action of NMDA. Thus, the cholinergic basal forebrain structures are not essential for the mediation of the arousing action of glutamate. © 2017 European Sleep Research Society.

  10. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats

    PubMed Central

    Salti, Ahmad; Kummer, Kai K.; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2016-01-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. PMID:26300300

  11. Memory Trace Reactivation and Behavioral Response during Retrieval Are Differentially Modulated by Amygdalar Glutamate Receptors Activity: Interaction between Amygdala and Insular Cortex

    ERIC Educational Resources Information Center

    Osorio-Gómez, Daniel; Guzmán-Ramos, Kioko; Bermúdez-Rattoni, Federico

    2017-01-01

    The insular cortex (IC) is required for conditioned taste aversion (CTA) retrieval. However, it remains unknown which cortical neurotransmitters levels are modified upon CTA retrieval. Using in vivo microdialysis, we observed that there were clear elevations in extracellular glutamate, norepinephrine, and dopamine in and around the center of the…

  12. Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites.

    PubMed

    Kameda, Hiroshi; Hioki, Hiroyuki; Tanaka, Yasuyo H; Tanaka, Takuma; Sohn, Jaerin; Sonomura, Takahiro; Furuta, Takahiro; Fujiyama, Fumino; Kaneko, Takeshi

    2012-03-01

    To examine inputs to parvalbumin (PV)-producing interneurons, we generated transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein specifically in the interneurons, and completely visualized their dendrites and somata. Using immunolabeling for vesicular glutamate transporter (VGluT)1, VGluT2, and vesicular GABA transporter, we found that VGluT1-positive terminals made contacts 4- and 3.1-fold more frequently with PV-producing interneurons than VGluT2-positive and GABAergic terminals, respectively, in the primary somatosensory cortex. Even in layer 4, where VGluT2-positive terminals were most densely distributed, VGluT1-positive inputs to PV-producing interneurons were 2.4-fold more frequent than VGluT2-positive inputs. Furthermore, although GABAergic inputs to PV-producing interneurons were as numerous as VGluT2-positive inputs in most cortical layers, GABAergic inputs clearly preferred the proximal dendrites and somata of the interneurons, indicating that the sites of GABAergic inputs were more optimized than those of VGluT2-positive inputs. Simulation analysis with a PV-producing interneuron model compatible with the present morphological data revealed a plausible reason for this observation, by showing that GABAergic and glutamatergic postsynaptic potentials evoked by inputs to distal dendrites were attenuated to 60 and 87%, respectively, of those evoked by somatic inputs. As VGluT1-positive and VGluT2-positive axon terminals were presumed to be cortical and thalamic glutamatergic inputs, respectively, cortical excitatory inputs to PV-producing interneurons outnumbered the thalamic excitatory and intrinsic inhibitory inputs more than two-fold in any cortical layer. Although thalamic inputs are known to evoke about two-fold larger unitary excitatory postsynaptic potentials than cortical ones, the present results suggest that cortical inputs control PV-producing interneurons at least as strongly as thalamic inputs. © 2012 The

  13. Repeated N-Acetylcysteine Administration Alters Plasticity-Dependent Effects of Cocaine

    PubMed Central

    Madayag, Aric; Lobner, Doug; Kau, Kristen S.; Mantsch, John R.; Abdulhameed, Omer; Hearing, Matthew; Grier, Mark D.; Baker, David A.

    2010-01-01

    Cocaine produces a persistent reduction in cystine-glutamate exchange via system xc- in the nucleus accumbens that may contribute to pathological glutamate signaling linked to addiction. System xc- influences glutamate neurotransmission by maintaining basal, extracellular glutamate in the nucleus accumbens which, in turn, shapes synaptic activity by stimulating group II metabotropic glutamate autoreceptors. In the present study, we tested the hypothesis that a long-term reduction in system xc- activity is part of the plasticity produced by repeated cocaine that results in the establishment of compulsive drug seeking. To test this, the cysteine prodrug N-acetylcysteine was administered prior to daily cocaine to determine the impact of increased cystine-glutamate exchange on the development of plasticity-dependent cocaine seeking. Although N-acetylcysteine administered prior to cocaine did not alter the acute effects of cocaine on self-administration or locomotor activity, it prevented behaviors produced by repeated cocaine including escalation of drug intake, behavioral sensitization, and cocaine-primed reinstatement. Because sensitization or reinstatement was not evident even 2–3 weeks after the last injection of N-acetylcysteine, we examined whether N-acetylcysteine administered prior to daily cocaine also prevented the persistent reduction in system xc- activity produced by repeated cocaine. Interestingly, N-acetylcysteine pretreatment prevented cocaine-induced changes in 35S cystine transport via system xc-, basal glutamate, and cocaine-evoked glutamate in the nucleus accumbens when assessed at least three weeks after the last N-acetylcysteine pretreatment. These findings indicate that N-acetylcysteine selectively alters plasticity-dependent behaviors and that normal system xc- activity prevents pathological changes in extracellular glutamate that may be necessary for compulsive drug seeking. PMID:18094234

  14. Quantitative analysis of pre-and postsynaptic sex differences in the nucleus accumbens

    PubMed Central

    Forlano, Paul M.; Woolley, Catherine S.

    2010-01-01

    The nucleus accumbens (NAc) plays a central role in motivation and reward. While there is ample evidence for sex differences in addiction-related behaviors, little is known about the neuroanatomical substrates that underlie these sexual dimorphisms. We investigated sex differences in synaptic connectivity of the NAc by evaluating pre- and postsynaptic measures in gonadally intact male and proestrous female rats. We used DiI labeling and confocal microscopy to measure dendritic spine density, spine head size, dendritic length and branching of medium spiny neurons (MSNs) in the NAc, and quantitative immunofluorescence to measure glutamatergic innervation using pre- (vesicular glutamate transporter 1 and 2) and postsynaptic (post synaptic density 95) markers, as well as dopaminergic innervation of the NAc. We also utilized electron microscopy to complement the above measures. Clear but subtle sex differences were identified, namely in distal dendritic spine density and the proportion of large spines on MSNs, both of which are greater in females. Sex differences in spine density and spine head size are evident in both the core and shell subregions, but are stronger in the core. This study is the first demonstration of neuroanatomical sex differences in the NAc and provides evidence that structural differences in synaptic connectivity and glutamatergic input may contribute to behavioral sex differences in reward and addiction. PMID:20151363

  15. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors

    PubMed Central

    Mikhailova, Maria A.; Bass, Caroline E.; Grinevich, Valentina P.; Chappell, Ann M.; Deal, Alex L.; Bonin, Keith D.; Weiner, Jeff L.; Gainetdinov, Raul R.; Budygin, Evgeny A.

    2016-01-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in the water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors. PMID:27421228

  16. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus.

    PubMed

    Yang, Yang; Xu-Friedman, Matthew A

    2015-06-01

    Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied "endbulb of Held" synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg(2+)) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate. Copyright © 2015 the American Physiological Society.

  17. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus

    PubMed Central

    Yang, Yang

    2015-01-01

    Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied “endbulb of Held” synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-d-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg2+) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate. PMID:25855696

  18. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders.

    PubMed

    Sanacora, Gerard; Treccani, Giulia; Popoli, Maurizio

    2012-01-01

    Half a century after the first formulation of the monoamine hypothesis, compelling evidence implies that long-term changes in an array of brain areas and circuits mediating complex cognitive-emotional behaviors represent the biological underpinnings of mood/anxiety disorders. A large number of clinical studies suggest that pathophysiology is associated with dysfunction of the predominant glutamatergic system, malfunction in the mechanisms regulating clearance and metabolism of glutamate, and cytoarchitectural/morphological maladaptive changes in a number of brain areas mediating cognitive-emotional behaviors. Concurrently, a wealth of data from animal models have shown that different types of environmental stress enhance glutamate release/transmission in limbic/cortical areas and exert powerful structural effects, inducing dendritic remodeling, reduction of synapses and possibly volumetric reductions resembling those observed in depressed patients. Because a vast majority of neurons and synapses in these areas and circuits use glutamate as neurotransmitter, it would be limiting to maintain that glutamate is in some way 'involved' in mood/anxiety disorders; rather it should be recognized that the glutamatergic system is a primary mediator of psychiatric pathology and, potentially, also a final common pathway for the therapeutic action of antidepressant agents. A paradigm shift from a monoamine hypothesis of depression to a neuroplasticity hypothesis focused on glutamate may represent a substantial advancement in the working hypothesis that drives research for new drugs and therapies. Importantly, despite the availability of multiple classes of drugs with monoamine-based mechanisms of action, there remains a large percentage of patients who fail to achieve a sustained remission of depressive symptoms. The unmet need for improved pharmacotherapies for treatment-resistant depression means there is a large space for the development of new compounds with novel mechanisms

  19. Prolonged withdrawal from cocaine self-administration affects prefrontal cortex- and basolateral amygdala-nucleus accumbens core circuits but not accumbens GABAergic local interneurons.

    PubMed

    Purgianto, Anthony; Weinfeld, Michael E; Wolf, Marina E

    2017-11-01

    Withdrawal from extended-access cocaine self-administration leads to progressive intensification ('incubation') of cocaine craving. After prolonged withdrawal (1-2 months), when craving is high, expression of incubation depends on strengthening of excitatory inputs to medium spiny neurons (MSN) of the nucleus accumbens (NAc). These excitatory inputs interact with the intra-NAc GABAergic 'microcircuit', composed of MSN axon collaterals and GABAergic interneurons. Here, we investigated whether the increased glutamatergic neurotransmission observed after prolonged withdrawal is accompanied by altered GABAergic neurotransmission, focusing on NAc core. Rats self-administered cocaine or saline (6 hours/day) and then underwent >40 days of withdrawal. First, we investigated parvalbumin positive (PV+) interneurons, GABAergic fast-spiking interneurons that regulate MSN activity. Immunohistochemical studies revealed no significant change in PV signal intensity or the number of PV+ cells in cocaine rats versus saline controls. We then screened PV and other interneuron markers using immunoblotting. We detected no changes in levels of PV, calretinin, calbindin or neuronal nitric oxide synthase. Because expression of these markers is activity dependent, our results suggest no marked changes in interneuron activity. Finally, we utilized local field potential recording, which can detect GABA-mediated alterations at the circuit level, to investigate potential changes in two circuits implicated in cocaine craving: prelimbic prefrontal cortex to NAc core and basolateral amygdala to NAc core. We detected differential adaptations in these circuits, some of which may involve GABA. Overall, our results suggest that alterations in GABA transmission may accompany incubation of cocaine craving, but they are circuit specific and less pronounced than alterations in glutamate transmission. © 2016 Society for the Study of Addiction.

  20. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    PubMed

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Contribution of different classes of glutamate receptors in the corticostriatal polysynaptic responses from striatal direct and indirect projection neurons

    PubMed Central

    2013-01-01

    Background Previous work showed differences in the polysynaptic activation of GABAergic synapses during corticostriatal suprathreshold responses in direct and indirect striatal projection neurons (dSPNs and iSPNs). Here, we now show differences and similarities in the polysynaptic activation of cortical glutamatergic synapses on the same responses. Corticostriatal contacts have been extensively studied. However, several questions remain unanswered, e.g.: what are the differences and similarities in the responses to glutamate in dSPNs and iSPNs? Does glutamatergic synaptic activation exhibits a distribution of latencies over time in vitro? That would be a strong suggestion of polysynaptic cortical convergence. What is the role of kainate receptors in corticostriatal transmission? Current-clamp recordings were used to answer these questions. One hypothesis was: if prolonged synaptic activation distributed along time was present, then it would be mainly generated from the cortex, and not from the striatum. Results By isolating responses from AMPA-receptors out of the complex suprathreshold response of SPNs, it is shown that a single cortical stimulus induces early and late synaptic activation lasting hundreds of milliseconds. Prolonged responses depended on cortical stimulation because they could not be elicited using intrastriatal stimulation, even if GABAergic transmission was blocked. Thus, the results are not explained by differences in evoked inhibition. Moreover, inhibitory participation was larger after cortical than after intrastriatal stimulation. A strong activation of interneurons was obtained from the cortex, demonstrating that polysynaptic activation includes the striatum. Prolonged kainate (KA) receptor responses were also elicited from the cortex. Responses of dSPNs and iSPNs did not depend on the cortical area stimulated. In contrast to AMPA-receptors, responses from NMDA- and KA-receptors do not exhibit early and late responses, but generate slow

  2. Glutamate Receptors within the Mesolimbic Dopamine System Mediate Alcohol Relapse Behavior.

    PubMed

    Eisenhardt, Manuela; Leixner, Sarah; Luján, Rafael; Spanagel, Rainer; Bilbao, Ainhoa

    2015-11-25

    Glutamatergic input within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior. Although this is well established for some drugs of abuse, it is not known whether glutamate receptors within the mesolimbic system are involved in mediating the addictive properties of chronic alcohol use. Here we evaluated the contribution of mesolimbic NMDARs and AMPARs in mediating alcohol-seeking responses induced by environmental stimuli and relapse behavior using four inducible mutant mouse lines lacking the glutamate receptor genes Grin1 or Gria1 in either DA transporter (DAT) or D1R-expressing neurons. We first demonstrate the lack of GluN1 or GluA1 in either DAT- or D1R-expressing neurons in our mutant mouse lines by colocalization studies. We then show that GluN1 and GluA1 receptor subunits within these neuronal subpopulations mediate the alcohol deprivation effect, while having no impact on context- plus cue-induced reinstatement of alcohol-seeking behavior. We further validated these results pharmacologically by demonstrating similar reductions in the alcohol deprivation effect after infusion of the NMDAR antagonist memantine into the nucleus accumbens and ventral tegmental area of control mice, and a rescue of the mutant phenotype via pharmacological potentiation of AMPAR activity using aniracetam. In conclusion, dopamine neurons as well as D1R-expressing medium spiny neurons and their glutamatergic inputs via NMDARs and AMPARs act in concert to influence relapse responses. These results provide a neuroanatomical and molecular substrate for relapse behavior and emphasize the importance of glutamatergic drugs in modulating relapse behavior. Here we provide genetic and pharmacological evidence that glutamate receptors within the mesolimbic dopamine system play an essential role in alcohol relapse. Using various inducible and site-specific transgenic mouse models and pharmacological validation experiments, we show that critical

  3. Modeling Early Cortical Serotonergic Deficits in Autism

    PubMed Central

    Boylan, Carolyn B.; Blue, Mary E.; Hohmann, Christine F.

    2007-01-01

    Autism is a developmental brain disorder characterized by deficits in social interaction, language and behavior. Brain imaging studies demonstrate increased cerebral cortical volumes and micro- and macroscopic neuroanatomic changes in children with this disorder. Alterations in forebrain serotonergic function may underlie the neuroanatomic and behavioral features of autism. Serotonin is involved in neuronal growth and plasticity and these actions are likely mediated via serotonergic and glutamatergic receptors. Few animal models of autism have been described that replicate both etiology and pathophysiology. We report here on a selective serotonin (5-HT) depletion model of this disorder in neonatal mice that mimics neurochemical and structural changes in cortex and, in addition, displays a behavioral phenotype consistent with autism. Newborn male and female mice were depleted of forebrain 5-HT with injections of the serotonergic neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), into the bilateral medial forebrain bundle (mfb). Behavioral testing of these animals as adults revealed alterations in social, sensory and stereotypic behaviors. Lesioned mice showed significantly increased cortical width. Serotonin immunocytochemistry showed a dramatic long-lasting depletion of 5-HT containing fibers in cerebral cortex until postnatal day (PND) 60. Autoradiographic binding to high affinity 5-HT transporters was significantly but transiently reduced in cerebral cortex of 5,7-DHT-depleted mice. AMPA glutamate receptor binding was decreased at PND 15. We hypothesize that increased cerebral cortical volume and sensorimotor, cognitive and social deficits observed in both 5-HT-depleted animals and in individuals with autism, may be the result of deficiencies in timely axonal pruning to key cerebral cortical areas. PMID:17034875

  4. Modeling early cortical serotonergic deficits in autism.

    PubMed

    Boylan, Carolyn B; Blue, Mary E; Hohmann, Christine F

    2007-01-10

    Autism is a developmental brain disorder characterized by deficits in social interaction, language and behavior. Brain imaging studies demonstrate increased cerebral cortical volumes and micro- and macro-scopic neuroanatomic changes in children with this disorder. Alterations in forebrain serotonergic function may underlie the neuroanatomic and behavioral features of autism. Serotonin is involved in neuronal growth and plasticity and these actions are likely mediated via serotonergic and glutamatergic receptors. Few animal models of autism have been described that replicate both etiology and pathophysiology. We report here on a selective serotonin (5-HT) depletion model of this disorder in neonatal mice that mimics neurochemical and structural changes in cortex and, in addition, displays a behavioral phenotype consistent with autism. Newborn male and female mice were depleted of forebrain 5-HT with injections of the serotonergic neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), into the bilateral medial forebrain bundle (mfb). Behavioral testing of these animals as adults revealed alterations in social, sensory and stereotypic behaviors. Lesioned mice showed significantly increased cortical width. Serotonin immunocytochemistry showed a dramatic long-lasting depletion of 5-HT containing fibers in cerebral cortex until postnatal day (PND) 60. Autoradiographic binding to high affinity 5-HT transporters was significantly but transiently reduced in cerebral cortex of 5,7-DHT-depleted mice. AMPA glutamate receptor binding was decreased at PND 15. We hypothesize that increased cerebral cortical volume and sensorimotor, cognitive and social deficits observed in both 5-HT-depleted animals and in individuals with autism, may be the result of deficiencies in timely axonal pruning to key cerebral cortical areas.

  5. Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells.

    PubMed

    Campana, Wendy M; Mantuano, Elisabetta; Azmoon, Pardis; Henry, Kenneth; Banki, Michael A; Kim, John H; Pizzo, Donald P; Gonias, Steven L

    2017-04-01

    In the peripheral nervous system, Schwann cells (SCs) demonstrate surveillance activity, detecting injury and undergoing trans -differentiation to support repair. SC receptors that detect peripheral nervous system injury remain incompletely understood. We used RT-PCR to profile ionotropic glutamate receptor expression in cultured SCs. We identified subunits required for assembly of N -methyl-d-aspartic acid (NMDA) receptors (NMDA-Rs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and kainate receptors. Treatment of SCs with 40-100 µM glutamate or with 0.5-1.0 µM NMDA robustly activated Akt and ERK1/2. The response was transient and bimodal; glutamate concentrations that exceeded 250 µM failed to activate cell signaling. Phosphoprotein profiling identified diverse phosphorylated proteins in glutamate-treated SCs in addition to ERK1/2 and Akt, including p70 S6-kinase, glycogen synthase kinase-3, ribosomal S6 kinase, c-Jun, and cAMP response element binding protein. Activation of SC signaling by glutamate was blocked by EGTA and dizocilpine and by silencing expression of the NMDA-R NR1 subunit. Phosphoinositide 3-kinase/PI3K functioned as an essential upstream activator of Akt and ERK1/2 in glutamate-treated SCs. When glutamate or NMDA was injected directly into crush-injured rat sciatic nerves, ERK1/2 phosphorylation was observed in myelinated and nonmyelinating SCs. Glutamate promoted SC migration by a pathway that required PI3K and ERK1/2. These results identified ionotropic glutamate receptors and NMDA-Rs, specifically, as potentially important cell signaling receptors in SCs.-Campana, W. M., Mantuano, E., Azmoon, P., Henry, K., Banki, M. A., Kim, J. H., Pizzo, D. P., Gonias, S. L. Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells. © FASEB.

  6. Atypical nucleus accumbens morphology in psychopathy: another limbic piece in the puzzle.

    PubMed

    Boccardi, Marina; Bocchetta, Martina; Aronen, Hannu J; Repo-Tiihonen, Eila; Vaurio, Olli; Thompson, Paul M; Tiihonen, Jari; Frisoni, Giovanni B

    2013-01-01

    Psychopathy has been associated with increased putamen and striatum volumes. The nucleus accumbens - a key structure in reversal learning, less effective in psychopathy - has not yet received specific attention. Moreover, basal ganglia morphology has never been explored. We examined the morphology of the caudate, putamen and accumbens, manually segmented from magnetic resonance images of 26 offenders (age: 32.5 ± 8.4) with medium-high psychopathy (mean PCL-R=30 ± 5) and 25 healthy controls (age: 34.6 ± 10.8). Local differences were statistically modeled using a surface-based radial distance mapping method (p<0.05; multiple comparisons correction through permutation tests). In psychopathy, the caudate and putamen had normal global volume, but different morphology, significant after correction for multiple comparisons, for the right dorsal putamen (permutation test: p=0.02). The volume of the nucleus accumbens was 13% smaller in psychopathy (p corrected for multiple comparisons <0.006). The atypical morphology consisted of predominant anterior hypotrophy bilaterally (10-30%). Caudate and putamen local morphology displayed negative correlation with the lifestyle factor of the PCL-R (permutation test: p=0.05 and 0.03). From these data, psychopathy appears to be associated with an atypical striatal morphology, with highly significant global and local differences of the accumbens. This is consistent with the clinical syndrome and with theories of limbic involvement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. S-(N, N-diethylcarbamoyl)glutathione (carbamathione), a disulfiram metabolite and its effect on nucleus accumbens and prefrontal cortex dopamine, GABA, and glutamate: A microdialysis study

    PubMed Central

    Faiman, Morris D.; Kaul, Swetha; Latif, Shaheen A.; Williams, Todd D.; Lunte, Craig E.

    2015-01-01

    Disulfiram (DSF), used for the treatment of alcohol use disorders (AUDs) for over six decades, most recently has shown promise for treating cocaine dependence. Although DSF’s mechanism of action in alcohol abuse is due to the inhibition of liver mitochondrial aldehyde dehydrogenase (ALDH2), its mechanism of action in the treatment of cocaine dependence is unknown. DSF is a pro-drug, forming a number of metabolites each with discrete pharmacological actions. One metabolite formed during DSF bioactivation is S-(N, N-diethylcarbamoyl) glutathione (carbamathione) (carb). We previously showed that carb affects glutamate binding. In the present studies, we employed microdialysis techniques to investigate the effect of carb administration on dopamine (DA), GABA, and glutamate (Glu) in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), two brain regions implicated in substance abuse dependence. The effect of DSF on DA, GABA, and Glu in the NAc also was determined. Both studies were carried out in male rats. Carb (20, 50, 200 mg/kg i v) in a dose-dependent manner increased DA, decreased GABA, and had a biphasic effect on Glu, first increasing and then decreasing Glu in both the NAc and mPFC. These changes all occurred concurrently. After carb administration, NAc and mPFC carb, as well as carb in plasma, were rapidly eliminated with a half-life for each approximately 4 min, while the changes in DA, GABA, and GLu in the NAc and mPFC persisted for approximately two hours. The maximal increase in carb (Cmax) in the NAc and mPFC after carb administration was dose-dependent, as was the area under the curve (AUC). DSF (200 mg/kg i p) also increased DA, decreased GABA, and had a biphasic effect on Glu in the NAc similar to that observed in the NAc after carb administration. When the cytochrome P450 inhibitor N-benzylimidazole (NBI) (20 mg/kg i p) was administered before DSF dosing, no carb could be detected in the NAc and plasma and also no changes in NAc DA, GABA

  8. [Pharmacology of glutamate sensitive synapses (I). Glutamate agonists (author's transl)].

    PubMed

    Shinozaki, H

    1982-04-01

    The actions of kainic acid, quisqualic acid, and ibotenic acid on the crayfish neuromuscular junction were described, and it was particularly interesting that the discrepancy between glutamate responses and EJPs was revealed by the use of kainic acid. On the other hand, there is increasing evidence showing that glutamate is an excitatory transmitter at the crayfish neuromuscular junction. At this stage, we are unable as yet to definitively support or reject glutamate's candidacy as the excitatory transmitter at the crayfish neuromuscular junction. The discrepancy revealed by the use of kainic acid may bring up some questions. Certainly, the differential action of kainic acid on the glutamate current and the excitatory synaptic current opens to doubt the transmitter role of glutamate. In the case of the study on a transmitter role for a substance of doubt status, the value of pharmacological studies seems to be greater in disproving than in asserting such the role. However, we have to consider the matter of the extra-junctional receptor postulated on the crayfish postsynaptic membrane as one of the major problems for pharmacological identification.

  9. Selective Interactions of Valeriana officinalis Extracts and Valerenic Acid with [H]Glutamate Binding to Rat Synaptic Membranes.

    PubMed

    Del Valle-Mojica, Lisa M; Ayala-Marín, Yoshira M; Ortiz-Sanchez, Carmen M; Torres-Hernández, Bianca A; Abdalla-Mukhaimer, Safa; Ortiz, José G

    2011-01-01

    Although GABA neurotransmission has been suggested as a mechanism for Valeriana officinalis effects, CNS depression can also be evoked by inhibition of ionotropic (iGluR) and metabotropic glutamate receptors (mGluR). In this study, we examined if aqueous valerian extract interacted with glutamatergic receptors. Freshly prepared aqueous valerian extract was incubated with rat cortical synaptic membranes in presence of 20 nM [(3)H]Glutamate. Aqueous valerian extract increased [(3)H]Glutamate binding from 1 × 10(-7) to 1 × 10(-3) mg/mL. In the presence of (2S,1'S,2'S)-2-(Carboxycyclopropyl)glycine (LCCG-I) and (2S,2'R,3'R)-2-(2',3'-Dicarboxycyclopropyl)glycine (DCG-IV), Group II mGluR agents, valerian extract markedly decreased [(3)H]Glutamate binding, while (2S)-2-amino-3-(3,5-dioxo-1,2,4-oxadiazolidin-2-yl) propanoic acid) (quisqualic acid, QA), Group I mGluR agonist, increased [(3)H]Glutamate binding. At 0.05 mg/mL aqueous valerian extract specifically interacted with kainic acid NMDA and AMPA receptors. Valerenic acid, a marker compound for Valeriana officinalis, increased the [(3)H]Glutamate binding after 1.6 × 10(-2) mg/mL, and at 0.008 mg/mL it interacted only with QA (Group I mGluR). The selective interactions of valerian extract and valerenic acid with Group I and Group II mGluR may represent an alternative explanation for the anxiolytic properties of this plant.

  10. The Metabotropic Glutamate 2/3 Receptor Agonist LY379268 Blocked Nicotine-Induced Increases in Nucleus Accumbens Shell Dopamine only in the Presence of a Nicotine-Associated Context in Rats

    PubMed Central

    D'Souza, Manoranjan S; Liechti, Matthias E; Ramirez-Niño, Ana M; Kuczenski, Ronald; Markou, Athina

    2011-01-01

    The metabotropic glutamate 2/3 (mGlu2/3) receptor agonist LY379268 ([−]-2-oxa-4-aminobicyclo [3.1.0] hexane-4,6-dicarboxylate) attenuates both nicotine self-administration and cue-induced nicotine seeking in rats. In this study, the effects of LY379268 (1 mg/kg) or saline pretreatment on nicotine-induced increases in nucleus accumbens (NAcc) shell dopamine were evaluated using in vivo microdialysis under different experimental conditions: (i) nicotine (0.4 mg/kg, base) was experimenter-administered subcutaneously to nicotine-naïve rats; (ii) nicotine was experimenter-administered either subcutaneously (0.4 mg/kg) or by a single experimenter-administered infusion (0.06 mg/kg, base) in rats with a history of nicotine self-administration (nicotine experienced) in the absence of a nicotine-associated context (ie, context and cues associated with nicotine self-administration); (iii) nicotine (0.06 mg/kg) was self-administered or experimenter-administered in nicotine-experienced rats in the presence of a nicotine-associated context. In saline-pretreated nicotine-naïve and nicotine-experienced rats, nicotine increased NAcc shell dopamine regardless of the context used for testing. Interestingly, LY379268 pretreatment blocked nicotine-induced increases in NAcc shell dopamine in nicotine-experienced rats only when tested in the presence of a nicotine-associated context. LY379268 did not block nicotine-induced increases in NAcc shell dopamine in nicotine-naïve or -experienced rats tested in the absence of a nicotine-associated context. These intriguing findings suggest that activation of mGlu2/3 receptors negatively modulates the combined effects of nicotine and nicotine-associated contexts/cues on NAcc dopamine. Thus, these data highlight a critical role for mGlu2/3 receptors in context/cue-induced drug-seeking behavior and suggest a neurochemical mechanism by which mGlu2/3 receptor agonists may promote smoking cessation by preventing relapse induced by the

  11. Cortical inhibitory and excitatory function in drug-naive generalized anxiety disorder.

    PubMed

    Li, Cheng-Ta; Lu, Chia-Feng; Lin, Hui-Ching; Huang, Ying-Zu; Juan, Chi-Hung; Su, Tung-Ping; Bai, Ya-Mei; Chen, Mu-Hong; Lin, Wei-Chen

    A growing body of evidence suggests that deficits in GABAergic inhibitory and glutamatergic excitatory neurotransmission may be involved in the core pathophysiology of generalized anxiety disorder (GAD), a disease characterized by pathological anxious worrying. The aim of the present study was to measure motor cortical excitability by paired-pulse transcranial magnetic stimulation (ppTMS) in patients with GAD. ppTMS measurements of excitation and inhibition from bilateral motor cortices were investigated in 26 right-handed GAD patients who were drug-naïve (half of them with a comorbidity of major depressive disorder) and 35 right-handed age- and sex-matched healthy controls. Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long-interval intracortical inhibition (LICI) were studied; evidence indicated that these are mainly mediated by GABA-A receptors, glutamate receptors, and GABA-B receptors, respectively. After correcting for multiple comparisons, GAD patients had significantly lower left ICF (p < 0.001, Cohen's d = 1.348) and right ICF (p = 0.001, Cohen's d = 0.963), but not SICI and LICI, than did healthy controls. No significant difference of the ICF values was found between GAD with and without depressive disorders. Multivariate linear regression analysis revealed that left ICF (B = -4.990, 95% CI = -8.821 to -1.039, p = 0.007) and group (B = 13.179, 95% CI = 10.208 to 16.149, p = 0.001) predicted anxiety symptoms significantly. The present study provided direct evidence to support that generalized anxiety disorder is characterized by impaired intra-cortical facilitation of motor cortex, suggesting glutamate-related excitatory dysfunction may play a key role in pathological anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Directed Communication between Nucleus Accumbens and Neocortex in Humans Is Differentially Supported by Synchronization in the Theta and Alpha Band.

    PubMed

    Horschig, Jörn M; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P Richard; Cools, Roshan; Denys, Damiaan; Jensen, Ole

    2015-01-01

    Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumbens and the surface electroencephalogram (EEG). Both theta and alpha oscillations were strongly coherent with the frontal and parietal EEG during the task. Theta-band coherence increased during processing of the visual stimuli. Granger causality analysis revealed that the nucleus accumbens was communicating with the neocortex primarily in the theta-band, while the cortex was communicating the nucleus accumbens in the alpha-band. These data are consistent with a model, in which theta- and alpha-band oscillations serve dissociable roles: Prior to stimulus processing, the cortex might suppress ongoing processing in the nucleus accumbens by modulating alpha-band activity. Subsequently, upon stimulus presentation, theta oscillations might facilitate the active exchange of stimulus information from the nucleus accumbens to the cortex.

  13. Continuous and intermittent transcranial magnetic theta burst stimulation modify tactile learning performance and cortical protein expression in the rat differently.

    PubMed

    Mix, Annika; Benali, Alia; Eysel, Ulf T; Funke, Klaus

    2010-11-01

    Repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability in a stimulus-frequency-dependent manner. Two kinds of theta burst stimulation (TBS) [intermittent TBS (iTBS) and continuous TBS (cTBS)] modulate human cortical excitability differently, with iTBS increasing it and cTBS decreasing it. In rats, we recently showed that this is accompanied by changes in the cortical expression of proteins related to the activity of inhibitory neurons. Expression levels of the calcium-binding protein parvalbumin (PV) and of the 67-kDa isoform of glutamic acid decarboxylase (GAD67) were strongly reduced following iTBS, but not cTBS, whereas both increased expression of the 65-kDa isoform of glutamic acid decarboxylase. In the present study, to investigate possible functional consequences, we applied iTBS and cTBS to rats learning a tactile discrimination task. Conscious rats received either verum or sham rTMS prior to the task. Finally, to investigate how rTMS and learning effects interact, protein expression was determined for cortical areas directly involved in the task and for those either not, or indirectly, involved. We found that iTBS, but not cTBS, improved learning and strongly reduced cortical PV and GAD67 expression. However, the combination of learning and iTBS prevented this effect in those cortical areas involved in the task, but not in unrelated areas. We conclude that the improved learning found following iTBS is a result of the interaction of two effects, possibly in a homeostatic manner: a general weakening of inhibition mediated by the fast-spiking interneurons, and re-established activity in those neurons specifically involved in the learning task, leading to enhanced contrast between learning-induced and background activity. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  14. Long-term exposure to endogenous levels of tributyltin decreases GluR2 expression and increases neuronal vulnerability to glutamate.

    PubMed

    Nakatsu, Yusuke; Kotake, Yaichiro; Takishita, Tomoko; Ohta, Shigeru

    2009-10-15

    Tributyltin (TBT), an endocrine-disrupting chemical, has been used commercially as a heat stabilizer, agricultural pesticide and component of antifouling paints. In this study, we investigated the effect of long-term exposure to endogenous levels of TBT on neuronal glutamate receptors. Cultured rat cortical neurons were exposed to 1-50 nM TBT for 9 days (from day 2 to day 10 in vitro). The number of neurons was reduced by long-term exposure to 50 nM TBT, but not to 1-20 nM TBT. Long-term exposure to 20 nM TBT decreased the mRNA expression of glutamate receptors NR1, NR2A, GluR1 and GluR2, and increased that of NR2B, GluR3 and GluR4. GluR2 protein was also reduced by long-term exposure to TBT. Because AMPA receptor lacking GluR2 exhibits Ca2+ permeability, we investigated whether Ca2+ influx or glutamate toxicity was affected. Indeed, glutamate-induced Ca2+ influx was increased in TBT-treated neurons. Consistent with this, neurons became more susceptible to glutamate toxicity as a result of long-term exposure to TBT and this susceptibility was abolished by an antagonist of GluR2-lacking AMPA receptor. Thus, it is suggested that long-term exposure to endogenous levels of TBT induces a decrease of GluR2 protein, causing neurons become more susceptible to glutamate toxicity.

  15. Evidence for increased glutamatergic cortical facilitation in children and adolescents with major depressive disorder.

    PubMed

    Croarkin, Paul E; Nakonezny, Paul A; Husain, Mustafa M; Melton, Tabatha; Buyukdura, Jeylan S; Kennard, Betsy D; Emslie, Graham J; Kozel, F Andrew; Daskalakis, Zafiris J

    2013-03-01

    Converging lines of evidence implicate the glutamate and γ-aminobutyric acid neurotransmitter systems in the pathophysiology of major depressive disorder. Transcranial magnetic stimulation cortical excitability and inhibition paradigms have been used to assess cortical glutamatergic and γ-aminobutyric acid-mediated tone in adults with major depressive disorder, but not in children and adolescents. To compare measures of cortical excitability and inhibition with 4 different paradigms in a group of children and adolescents with major depressive disorder vs healthy controls. Cross-sectional study examining medication-free children and adolescents (aged 9-17 years) with major depressive disorder compared with healthy controls. Cortical excitability was assessed with motor threshold and intracortical facilitation measures. Cortical inhibition was measured with cortical silent period and intracortical inhibition paradigms. University-based child and adolescent psychiatry clinic and neurostimulation laboratory. Twenty-four participants with major depressive disorder and 22 healthy controls matched for age and sex. Patients with major depressive disorder were medication naive and had moderate to severe symptoms based on an evaluation with a child and adolescent psychiatrist and scores on the Children's Depression Rating Scale-Revised. Motor threshold, intracortical facilitation, cortical silent period, and intracortical inhibition. Compared with healthy controls, depressed patients had significantly increased intracortical facilitation at interstimulus intervals of 10 and 15 milliseconds bilaterally. There were no significant group differences in cortical inhibition measures. These findings suggest that major depressive disorder in children and adolescents is associated with increased intracortical facilitation and excessive glutamatergic activity.

  16. 50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate.

    PubMed

    Cavus, Idil; Widi, Gabriel A; Duckrow, Robert B; Zaveri, Hitten; Kennard, Jeremy T; Krystal, John; Spencer, Dennis D

    2016-02-01

    The effect of electrical stimulation on brain glutamate release in humans is unknown. Glutamate is elevated at baseline in the epileptogenic hippocampus of patients with refractory epilepsy, and increases during spontaneous seizures. We examined the effect of 50 Hz stimulation on glutamate release and its relationship to interictal levels in the hippocampus of patients with epilepsy. In addition, we measured basal and stimulated glutamate levels in a subset of these patients where stimulation elicited a seizure. Subjects (n = 10) were patients with medically refractory epilepsy who were undergoing intracranial electroencephalography (EEG) evaluation in an epilepsy monitoring unit. Electrical stimulation (50 Hz) was delivered through implanted hippocampal electrodes (n = 11), and microdialysate samples were collected every 2 min. Basal glutamate, changes in glutamate efflux with stimulation, and the relationships between peak stimulation-associated glutamate concentrations, basal zero-flow levels, and stimulated seizures were examined. Stimulation of epileptic hippocampi in patients with refractory epilepsy caused increases in glutamate efflux (p = 0.005, n = 10), and 4 of ten patients experienced brief stimulated seizures. Stimulation-induced increases in glutamate were not observed during the evoked seizures, but rather were related to the elevation in interictal basal glutamate (R(2) = 0.81, p = 0.001). The evoked-seizure group had lower basal glutamate levels than the no-seizure group (p = 0.04), with no stimulation-induced change in glutamate efflux (p = 0.47, n = 4). Conversely, increased glutamate was observed following stimulation in the no-seizure group (p = 0.005, n = 7). Subjects with an atrophic hippocampus had higher basal glutamate levels (p = 0.03, n = 7) and higher stimulation-induced glutamate efflux. Electrical stimulation of the epileptic hippocampus either increased extracellular glutamate efflux or induced seizures. The magnitude of stimulated

  17. [Study of the intracerebral connections after intracortical administration of glutamate].

    PubMed

    Otellin, V A; Rybakov, V L; Grigor'ev, I P

    1980-10-01

    Various microdoses of monosubstituted sodium L-glutamate (MSG) were injected into zone AI of the cat cerebral acoustic cortex. In 2 h--14 days, it was stated light optically that the place of injection was slightly stained, and most of neurons failed to stain. At the place of MSG injection, electron microscopic investigation revealed neurons with various degree of pathologic changes up to the lethal ones. Astroglia was edematous, oligodendrocytes and pericytes had normal appearance. In field 4 and in zone AII of the acoustic cortex, separate neural cells with sharply increasing number of ribosomes and polysomes were noted. Anterograde axonal degeneration in the lesioned neurons and their terminals was revealed in frontal sections impregnated after Wiitanen. In the cortical field 7, in zones AII, AIV, Ep of the acoustic cortex, in the head of the nucleus caudatus and in the internal geniculate body, terminal boutons degenerating after the dark type and at the same time as after surgical extirpation of zone AI were revealed. Owing to the fact that the lesions are of local character and the trauma is small, it is possible to use neuronal glutamate-induced degeneration as a method for investigating intracerebral connections.

  18. Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens.

    PubMed

    Ross, Erika K; Kim, Joo Pyung; Settell, Megan L; Han, Seong Rok; Blaha, Charles D; Min, Hoon-Ki; Lee, Kendall H

    2016-03-01

    Deep brain stimulation (DBS) is a circuit-based treatment shown to relieve symptoms from multiple neurologic and neuropsychiatric disorders. In order to treat the memory deficit associated with Alzheimer's disease (AD), several clinical trials have tested the efficacy of DBS near the fornix. Early results from these studies indicated that patients who received fornix DBS experienced an improvement in memory and quality of life, yet the mechanisms behind this effect remain controversial. It is known that transmission between the medial limbic and corticolimbic circuits plays an integral role in declarative memory, and dysfunction at the circuit level results in various forms of dementia, including AD. Here, we aimed to determine the potential underlying mechanism of fornix DBS by examining the functional circuitry and brain structures engaged by fornix DBS. A multimodal approach was employed to examine global and local temporal changes that occur in an anesthetized swine model of fornix DBS. Changes in global functional activity were measured by functional MRI (fMRI), and local neurochemical changes were monitored by fast scan cyclic voltammetry (FSCV) during electrical stimulation of the fornix. Additionally, intracranial microinfusions into the nucleus accumbens (NAc) were performed to investigate the global activity changes that occur with dopamine and glutamate receptor-specific antagonism. Hemodynamic responses in both medial limbic and corticolimbic circuits measured by fMRI were induced by fornix DBS. Additionally, fornix DBS resulted in increases in dopamine oxidation current (corresponding to dopamine efflux) monitored by FSCV in the NAc. Finally, fornix DBS-evoked hemodynamic responses in the amygdala and hippocampus decreased following dopamine and glutamate receptor antagonism in the NAc. The present findings suggest that fornix DBS modulates dopamine release on presynaptic dopaminergic terminals in the NAc, involving excitatory glutamatergic input, and

  19. Hypothermia protects against oxygen-glucose deprivation-induced neuronal injury by down-regulating the reverse transport of glutamate by astrocytes as mediated by neurons.

    PubMed

    Wang, D; Zhao, Y; Zhang, Y; Zhang, T; Shang, X; Wang, J; Liu, Y; Kong, Q; Sun, B; Mu, L; Liu, X; Wang, G; Li, H

    2013-05-01

    Glutamate is the major mediator of excitotoxic neuronal death following cerebral ischemia. Under severe ischemic conditions, glutamate transporters can functionally reverse to release glutamate, thereby inducing further neuronal injury. Hypothermia has been shown to protect neurons from brain ischemia. However, the mechanism(s) involved remain unclear. Therefore, the aim of this study was to investigate the mechanism(s) mediating glutamate release during brain ischemia-reperfusion injury under hypothermic conditions. Neuron/astrocyte co-cultures were exposed to oxygen-glucose deprivation (OGD) at various temperatures for 2h, and cell viability was assayed 12h after reoxygenation. PI and MAP-2 staining demonstrated that hypothermia significantly decreased neuronal injury. Furthermore, [(3)H]-glutamate uptake assays showed that hypothermia protected rat primary cortical cultures against OGD reoxygenation-induced injury. Protein levels of the astrocytic glutamate transporter, GLT-1, which is primarily responsible for the clearance of extracellular glutamate, were also found to be reduced in a temperature-dependent manner. In contrast, expression of GLT-1 in astrocyte-enriched cultures was found to significantly increase following the addition of neuron-conditioned medium maintained at 37 °C, and to a lesser extent with neuron-conditioned medium at 33 °C. In conclusion, the neuroprotective effects of hypothermia against brain ischemia-reperfusion injury involve down-regulation of astrocytic GLT-1, which mediates the reverse transport of glutamate. Moreover, this process may be regulated by molecules secreted by stressed neurons. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Cannabis use is quantitatively associated with nucleus accumbens and amygdala abnormalities in young adult recreational users.

    PubMed

    Gilman, Jodi M; Kuster, John K; Lee, Sang; Lee, Myung Joo; Kim, Byoung Woo; Makris, Nikos; van der Kouwe, Andre; Blood, Anne J; Breiter, Hans C

    2014-04-16

    Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.

  1. Nucleus Accumbens Adenosine A2A Receptors Regulate Exertion of Effort by Acting on the Ventral Striatopallidal Pathway

    PubMed Central

    Mingote, Susana; Font, Laura; Farrar, Andrew M.; Vontell, Regina; Worden, Lila T.; Stopper, Colin M.; Port, Russell G.; Sink, Kelly S.; Bunce, Jamie G.; Chrobak, James J.; Salamone, John D.

    2009-01-01

    Goal-directed actions are sensitive to work-related response costs, and dopamine in nucleus accumbens is thought to modulate the exertion of effort in motivated behavior. Dopamine-rich striatal areas such as nucleus accumbens also contain high numbers of adenosine A2A receptors, and, for that reason, the behavioral and neurochemical effects of the adenosine A2A receptor agonist CGS 21680 [2-p-(2-carboxyethyl) phenethylamino-5′-N-ethylcarboxamidoadenosine] were investigated. Stimulation of accumbens adenosine A2A receptors disrupted performance of an instrumental task with high work demands (i.e., an interval lever-pressing schedule with a ratio requirement attached) but had little effect on a task with a lower work requirement. Immunohistochemical studies revealed that accumbens neurons that project to the ventral pallidum showed adenosine A2A receptors immunoreactivity. Moreover, activation of accumbens A2A receptors by local injections of CGS 21680 increased extracellular GABA levels in the ventral pallidum. Combined contralateral injections of CGS 21680 into the accumbens and the GABAA agonist muscimol into ventral pallidum (i.e., “disconnection” methods) also impaired response output, indicating that these structures are part of a common neural circuitry regulating the exertion of effort. Thus, accumbens adenosine A2A receptors appear to regulate behavioral activation and effort-related processes by modulating the activity of the ventral striatopallidal pathway. Research on the effort-related functions of these forebrain systems may lead to a greater understanding of pathological features of motivation, such as psychomotor slowing, anergia, and fatigue in depression. PMID:18768698

  2. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.

    PubMed

    Tian, Guangming; Wang, Qin; Wei, Xuetuan; Ma, Xin; Chen, Shouwen

    2017-04-01

    Poly-γ-glutamic acid (γ-PGA), a natural biopolymer, is widely used in cosmetics, medicine, food, water treatment, and agriculture owing to its features of moisture sequestration, cation chelation, non-toxicity and biodegradability. Intracellular glutamic acid, the substrate of γ-PGA, is a limiting factor for high yield in γ-PGA production. Bacillus subtilis and Bacillus licheniformis are both important γ-PGA producing strains, and B. subtilis synthesizes glutamic acid in vivo using the unique GOGAT/GS pathway. However, little is known about the glutamate synthesis pathway in B. licheniformis. The aim of this work was to characterize the glutamate dehydrogenase (RocG) in glutamic acid synthesis from B. licheniformis with both in vivo and in vitro experiments. By re-directing the carbon flux distribution, the rocG gene deletion mutant WX-02ΔrocG produced intracellular glutamic acid with a concentration of 90ng/log(CFU), which was only 23.7% that of the wild-type WX-02 (380ng/log(CFU)). Furthermore, the γ-PGA yield of mutant WX-02ΔrocG was 5.37g/L, a decrease of 45.3% compared to the wild type (9.82g/L). In vitro enzymatic assays of RocG showed that RocG has higher affinity for 2-oxoglutarate than glutamate, and the glutamate synthesis rate was far above degradation. This is probably the first study to reveal the glutamic acid synthesis pathway and the specific functions of RocG in B. licheniformis. The results indicate that γ-PGA production can be enhanced through improving intracellular glutamic acid synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Intra-accumbens baclofen, but not muscimol, mimics the effects of food withdrawal on feeding behaviour.

    PubMed

    Pulman, K G T; Somerville, E M; Clifton, P G

    2010-11-01

    Intra-accumbens stimulation of GABA receptors results in a robust increase in food intake. However the differential consequences of stimulating GABA(A) and GABA(B) receptors in the nucleus accumbens have not been extensively explored with respect to feeding behaviour. Here we compare the effects of the GABA(B) receptor agonist baclofen and GABA(A) receptor agonist muscimol, infused into the nucleus accumbens shell, on food intake and related behavior patterns. Baclofen (110-440 ρmol) dose dependently enhanced intake and delayed the onset of satiety within the test period as did the effects of 4-8h food withdrawal. Muscimol (220-660 ρmol) enhanced intake but also disrupted the sequence of associated behaviours at every dose tested. We conclude that GABA(B) receptors in the nucleus accumbens shell may play a role in relation to feeding motivation whereas GABA(A) receptors may, as previously suggested, have a more restricted role in relation to the motor components of approach to food and ingestion. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Cortical parvalbumin GABAergic deficits with α7 nicotinic acetylcholine receptor deletion: Implications for schizophrenia

    PubMed Central

    Lin, Hong; Hsu, Fu-Chun; Baumann, Bailey H.; Coulter, Douglas A.; Anderson, Stewart A.; Lynch, David R.

    2014-01-01

    Dysfunction of cortical parvalbumin (PV)-containing GABAergic interneurons has been implicated in cognitive deficits of schizophrenia. In humans microdeletion of the CHRNA7 (α7 nicotinic acetylcholine receptor, nAChR) gene is associated with cortical dysfunction in a broad spectrum of neurodevelopmental and neuropsychiatric disorders including schizophrenia while in mice similar deletion causes analogous abnormalities including impaired attention, working-memory and learning. However, the pathophysiological roles of α7 nAChRs in cortical PV GABAergic development remain largely uncharacterized. In both in vivo and in vitro models, we identify here that deletion of the α7 nAChR gene in mice impairs cortical PV GABAergic development and recapitulates many of the characteristic neurochemical deficits in PV-positive GABAergic interneurons found in schizophrenia. α7 nAChR null mice had decreased cortical levels of GABAergic markers including PV, Glutamic Acid Decarboxylase 65/67 (GAD65/67) and the α1 subunit of GABAA receptors, particularly reductions of PV and GAD67 levels in cortical PV-positive interneurons during late postnatal life and adulthood. Cortical GABAergic synaptic deficits were identified in the prefrontal cortex of α7 nAChR null mice and α7 nAChR null cortical cultures. Similar disruptions in development of PV-positive GABAergic interneurons and perisomatic synapses were found in cortical cultures lacking α7 nAChRs. Moreover, NMDA receptor expression was reduced in GABAergic interneurons, implicating NMDA receptor hypofunction in GABAergic deficits in α7 nAChR null mice. Our findings thus demonstrate impaired cortical PV GABAergic development and multiple characteristic neurochemical deficits reminiscent of schizophrenia in cortical PV-positive interneurons in α7 nAChR gene deletion models. This implicates crucial roles of α7 nAChRs in cortical PV GABAergic development and dysfunction in schizophrenia and other neuropsychiatric disorders. PMID

  5. Glutamate and Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  6. Chronic treatment with agomelatine or venlafaxine reduces depolarization-evoked glutamate release from hippocampal synaptosomes

    PubMed Central

    2013-01-01

    Background Growing compelling evidence from clinical and preclinical studies has demonstrated the primary role of alterations of glutamatergic transmission in cortical and limbic areas in the pathophysiology of mood disorders. Chronic antidepressants have been shown to dampen endogenous glutamate release from rat hippocampal synaptic terminals and to prevent the marked increase of glutamate overflow induced by acute behavioral stress in frontal/prefrontal cortex. Agomelatine, a new antidepressant endowed with MT1/MT2 agonist and 5-HT2C serotonergic antagonist properties, has shown efficacy at both preclinical and clinical levels. Results Chronic treatment with agomelatine, or with the reference drug venlafaxine, induced a marked decrease of depolarization-evoked endogenous glutamate release from purified hippocampal synaptic terminals in superfusion. No changes were observed in GABA release. This effect was accompanied by reduced accumulation of SNARE protein complexes, the key molecular effector of vesicle docking, priming and fusion at presynaptic membranes. Conclusions Our data suggest that the novel antidepressant agomelatine share with other classes of antidepressants the ability to modulate glutamatergic transmission in hippocampus. Its action seems to be mediated by molecular mechanisms located on the presynaptic membrane and related with the size of the vesicle pool ready for release. PMID:23895555

  7. Differential transcriptome expression in human nucleus accumbens as a function of loneliness

    PubMed Central

    Canli, Turhan; Wen, Ruofeng; Wang, Xuefeng; Mikhailik, Anatoly; Yu, Lei; Fleischman, Debra; Wilson, Robert S.; Bennett, David A.

    2017-01-01

    Loneliness is associated with impaired mental and physical health. Studies of lonely individuals reported differential expression of inflammatory genes in peripheral leukocytes and diminished activation in brain reward regions such as nucleus accumbens, but could not address gene expression in the human brain. Here, we examined genome-wide RNA expression in postmortem nucleus accumbens from donors (N = 26) with known loneliness measures. Loneliness was associated with 1 710 differentially expressed transcripts from 1 599 genes (DEGs; FDR p < 0.05, fold-change ≥ |2|, controlling for confounds) previously associated with behavioral processes, neurological disease, psychological disorders, cancer, organismal injury, and skeletal and muscular disorders, as well as networks of upstream RNA regulators. Furthermore, a number of DEGs were associated with Alzheimer’s disease genes (which was correlated with loneliness in this sample, although gene expression analyses controlled for AD diagnosis). These results identify novel targets for future mechanistic studies of gene networks in nucleus accumbens and gene regulatory mechanisms across a variety of diseases exacerbated by loneliness. PMID:27801889

  8. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models.

    PubMed

    Horder, Jamie; Petrinovic, Marija M; Mendez, Maria A; Bruns, Andreas; Takumi, Toru; Spooren, Will; Barker, Gareth J; Künnecke, Basil; Murphy, Declan G

    2018-05-25

    Autism spectrum disorder (ASD) is a pervasive neurodevelopmental syndrome with a high human and economic burden. The pathophysiology of ASD is largely unclear, thus hampering development of pharmacological treatments for the core symptoms of the disorder. Abnormalities in glutamate and GABA signaling have been hypothesized to underlie ASD symptoms, and may form a therapeutic target, but it is not known whether these abnormalities are recapitulated in humans with ASD, as well as in rodent models of the disorder. We used translational proton magnetic resonance spectroscopy ([1H]MRS) to compare glutamate and GABA levels in adult humans with ASD and in a panel of six diverse rodent ASD models, encompassing genetic and environmental etiologies. [1H]MRS was performed in the striatum and the medial prefrontal cortex, of the humans, mice, and rats in order to allow for direct cross-species comparisons in specific cortical and subcortical brain regions implicated in ASD. In humans with ASD, glutamate concentration was reduced in the striatum and this was correlated with the severity of social symptoms. GABA levels were not altered in either brain region. The reduction in striatal glutamate was recapitulated in mice prenatally exposed to valproate, and in mice and rats carrying Nlgn3 mutations, but not in rodent ASD models with other etiologies. Our findings suggest that glutamate/GABA abnormalities in the corticostriatal circuitry may be a key pathological mechanism in ASD; and may be linked to alterations in the neuroligin-neurexin signaling complex.

  9. Left nucleus accumbens atrophy in deficit schizophrenia: A preliminary study.

    PubMed

    De Rossi, Pietro; Dacquino, Claudia; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-08-30

    A question that remains to be answered is whether schizophrenia can be characterized by a single etiopathophysiology or whether separate sub-syndromes should be differentiated to define specific mechanisms for each sub-type. Individuals affected by the deficit subtype of schizophrenia (DSZ) display avolitional/amotivational features that respond poorly to conventional treatments. Characterizing DSZ from a neuroanatomical point of view may help clarify this issue and develop new treatment strategies. To determine if DSZ is associated with structural alterations in specific deep grey matter structures linked to its key clinical features, 22 DSZ patients, 22 non-deficit schizophrenia (NDSZ) patients and 22 healthy controls (HC) were recruited for a case-control cross-sectional study. High-resolution magnetic resonance imaging was performed in all subjects and volumes of deep grey matter structures were measured using FreeSurfer. DSZ patients displayed smaller left accumbens volumes compared to both NDSZ patients and HC. Moreover, age and duration of illness were significantly associated with lower volume of the left accumbens in DSZ but not in NDSZ. Findings indicate that DSZ is associated with lower volume of the nucleus accumbens in the dominant hemisphere. This is consistent with the psychopathological features and functional impairments present in DSZ and thus indicates a potential mechanism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington's disease phenotype in the R6/2 mouse.

    PubMed

    Miller, B R; Dorner, J L; Shou, M; Sari, Y; Barton, S J; Sengelaub, D R; Kennedy, R T; Rebec, G V

    2008-04-22

    The striatum, which processes cortical information for behavioral output, is a key target of Huntington's disease (HD), an autosomal dominant condition characterized by cognitive decline and progressive loss of motor control. Increasing evidence implicates deficient glutamate uptake caused by a down-regulation of GLT1, the primary astroglial glutamate transporter. To test this hypothesis, we administered ceftriaxone, a beta-lactam antibiotic known to elevate GLT1 expression (200 mg/kg, i.p., for 5 days), to symptomatic R6/2 mice, a widely studied transgenic model of HD. Relative to vehicle, ceftriaxone attenuated several HD behavioral signs: paw clasping and twitching were reduced, while motor flexibility, as measured in a plus maze, and open-field climbing were increased. Assessment of GLT1 expression in striatum confirmed a ceftriaxone-induced increase relative to vehicle. To determine if the change in behavior and GLT1 expression represented a change in striatal glutamate handling, separate groups of behaving mice were evaluated with no-net-flux microdialysis. Vehicle treatment revealed a glutamate uptake deficit in R6/2 mice relative to wild-type controls that was reversed by ceftriaxone. Vehicle-treated animals, however, did not differ in GLT1 expression, suggesting that the glutamate uptake deficit in R6/2 mice reflects dysfunctional rather than missing GLT1. Our results indicate that impaired glutamate uptake is a major factor underlying HD pathophysiology and symptomology. The glutamate uptake deficit, moreover, is present in symptomatic HD mice and reversal of this deficit by up-regulating the functional expression of GLT1 with ceftriaxone attenuates the HD phenotype.

  11. Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model

    PubMed Central

    Farinella, Matteo; Ruedt, Daniel T.; Gleeson, Padraig; Lanore, Frederic; Silver, R. Angus

    2014-01-01

    In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such ‘background’ synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5) pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a ‘balanced’ background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales. PMID:24763087

  12. Brain neuroprotection by scavenging blood glutamate.

    PubMed

    Zlotnik, Alexander; Gurevich, Boris; Tkachov, Sergei; Maoz, Ilana; Shapira, Yoram; Teichberg, Vivian I

    2007-01-01

    Excess glutamate in brain fluids characterizes acute brain insults such as traumatic brain injury and stroke. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As blood glutamate scavenging has been demonstrated to increase the efflux of excess glutamate from brain into blood, we tested the prediction that oxaloacetate-mediated blood glutamate scavenging causes neuroprotection in a pathological situation such as closed head injury (CHI), in which there is a well established deleterious increase of glutamate in brain fluids. We observed highly significant improvements of the neurological status of rats submitted to CHI following an intravenous treatment with 1 mmol oxaloacetate/100 g rat weight which decreases blood glutamate levels by 40%. No detectable therapeutic effect was obtained when rats were treated IV with 1 mmol oxaloacetate together with 1 mmol glutamate/100 g rat. The treatment with 0.005 mmol/100 g rat oxaloacetate was no more effective than saline but when it was combined with the intravenous administration of 0.14 nmol/100 g of recombinant glutamate-oxaloacetate transaminase, recovery was almost complete. Oxaloacetate provided neuroprotection when administered before CHI or at 60 min post CHI but not at 120 min post CHI. Since neurological recovery from CHI was highly correlated with the decrease of blood glutamate levels (r=0.89, P=0.001), we conclude that blood glutamate scavenging affords brain neuroprotection Blood glutamate scavenging may open now new therapeutic options.

  13. Glutamic acid as anticancer agent: An overview

    PubMed Central

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952

  14. Glutamic acid as anticancer agent: An overview.

    PubMed

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  15. Effects of Vinpocetine on mitochondrial function and neuroprotection in primary cortical neurons.

    PubMed

    Tárnok, K; Kiss, E; Luiten, P G M; Nyakas, C; Tihanyi, K; Schlett, K; Eisel, U L M

    2008-12-01

    Vinpocetine (ethyl apovincaminate), a synthetic derivative of the Vinca minor alkaloid vincamine, is widely used for the treatment of cerebrovascular-related diseases. One of the proposed mechanisms underlying its action is to protect against the cytotoxic effects of glutamate overexposure. Glutamate excitotoxicity leads to the disregulation of mitochondrial function and neuronal metabolism. As Vinpocetine has a binding affinity to the peripheral-type benzodiazepine receptor (PBR) involved in the mitochondrial transition pore complex, we investigated whether neuroprotection can be at least partially due to Vinpocetine's effects on PBRs. Neuroprotective effects of PK11195 and Ro5-4864, two drugs with selective and high affinity to PBR, were compared to Vinpocetine in glutamate excitotoxicity assays on primary cortical neuronal cultures. Vinpocetine exerted a neuroprotective action in a 1-50microM concentration range while PK11195 and Ro5-4864 were only slightly neuroprotective, especially in high (>25microM) concentrations. Combined pretreatment of neuronal cultures with Vinpocetine and PK11195 or Ro5-4864 showed increased neuroprotection in a dose-dependent manner, indicating that the different drugs may have different targets. To test this hypothesis, mitochondrial membrane potential (MMP) of cultured neurons was measured by flow cytometry. 25microM Vinpocetine reduced the decrease of mitochondrial inner membrane potential induced by glutamate exposure, but Ro5-4864 in itself was found to be more potent to block glutamate-evoked changes in MMP. Combination of Ro5-4864 and Vinpocetine treatment was found to be even more effective. In summary, the present results indicate that the neuroprotective action of vinpocetine in culture can not be explained by its effect on neuronal PBRs alone and that additional drug targets are involved.

  16. Selective Interactions of Valeriana officinalis Extracts and Valerenic Acid with [3H]Glutamate Binding to Rat Synaptic Membranes

    PubMed Central

    Del Valle-Mojica, Lisa M.; Ayala-Marín, Yoshira M.; Ortiz-Sanchez, Carmen M.; Torres-Hernández, Bianca A.; Abdalla-Mukhaimer, Safa; Ortiz, José G.

    2011-01-01

    Although GABA neurotransmission has been suggested as a mechanism for Valeriana officinalis effects, CNS depression can also be evoked by inhibition of ionotropic (iGluR) and metabotropic glutamate receptors (mGluR). In this study, we examined if aqueous valerian extract interacted with glutamatergic receptors. Freshly prepared aqueous valerian extract was incubated with rat cortical synaptic membranes in presence of 20 nM [3H]Glutamate. Aqueous valerian extract increased [3H]Glutamate binding from 1 × 10−7 to 1 × 10−3 mg/mL. In the presence of (2S,1′S,2′S)-2-(Carboxycyclopropyl)glycine (LCCG-I) and (2S,2′R,3′R)-2-(2′,3′-Dicarboxycyclopropyl)glycine (DCG-IV), Group II mGluR agents, valerian extract markedly decreased [3H]Glutamate binding, while (2S)-2-amino-3-(3,5-dioxo-1,2,4-oxadiazolidin-2-yl) propanoic acid) (quisqualic acid, QA), Group I mGluR agonist, increased [3H]Glutamate binding. At 0.05 mg/mL aqueous valerian extract specifically interacted with kainic acid NMDA and AMPA receptors. Valerenic acid, a marker compound for Valeriana officinalis, increased the [3H]Glutamate binding after 1.6 × 10−2 mg/mL, and at 0.008 mg/mL it interacted only with QA (Group I mGluR). The selective interactions of valerian extract and valerenic acid with Group I and Group II mGluR may represent an alternative explanation for the anxiolytic properties of this plant. PMID:21584239

  17. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons.

    PubMed

    Smith, Katharine R; Rajgor, Dipen; Hanley, Jonathan G

    2017-12-08

    Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca 2+ -permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase.

    PubMed

    Liang, Bo; Zhang, Shu; Lang, Qiaolin; Song, Jianxia; Han, Lihui; Liu, Aihua

    2015-07-16

    A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP(+)-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP(+) involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current-time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM-1 mM and 2-10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N=3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Spatiotemporal Imaging of Glutamate-Induced Biophotonic Activities and Transmission in Neural Circuits

    PubMed Central

    Tang, Rendong; Dai, Jiapei

    2014-01-01

    The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE), may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions) in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min). The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide), but only partly by an action potential inhibitor (TTX), an anesthetic (procaine), or the removal of intracellular and extracellular Ca2+. We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of neural

  20. Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits.

    PubMed

    Tang, Rendong; Dai, Jiapei

    2014-01-01

    The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE), may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions) in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min). The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide), but only partly by an action potential inhibitor (TTX), an anesthetic (procaine), or the removal of intracellular and extracellular Ca(2+). We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of neural

  1. Nucleus accumbens hyperpolarization-activated cyclic nucleotide-gated channels modulate methamphetamine self-administration in rats.

    PubMed

    Cao, Dan-Ni; Song, Rui; Zhang, Shu-Zhuo; Wu, Ning; Li, Jin

    2016-08-01

    Methamphetamine addiction is believed to primarily result from increased dopamine release and the inhibition of dopamine uptake. Some evidence suggests that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play important roles in the functional modulation of dopaminergic neurons and the pathophysiology of related diseases. However, little is known about the effects of HCN channels on methamphetamine addiction. The present study investigated the role of brain HCN channels in methamphetamine addiction. Acute intracerebroventricular (i.c.v.) injection or bilateral intra-accumbens microinjections of non-selective HCN channel blocker ZD7288 (0.3125 and 0.625 μg) significantly reduced both methamphetamine (0.0125 or 0.05 mg/kg/infusion)-induced self-administration under fixed ratio 2 reinforcement and the breakpoint of methamphetamine (0.05 mg/kg/infusion) under progressive ratio reinforcement in rats. Moreover, compared with i.c.v. injection, bilateral intra-accumbens microinjections of ZD7288 exerted stronger inhibitory effects, suggesting that blockade of HCN channels in the nucleus accumbens reduced the reinforcing effects of and motivation for methamphetamine. We also found that ZD7288 (0.625 and 1.25 μg, i.c.v.) significantly decreased methamphetamine (1 mg/kg, intraperitoneal (i.p.))-induced hyperactivity with no effect on the spontaneous activity in rats. Finally, in vivo microdialysis experiments showed that the HCN channel blockade using ZD7288 (0.625 and 1.25 μg, i.c.v.) decreased methamphetamine (1 mg/kg, i.p.)-induced elevation of extracellular dopamine levels in the nucleus accumbens. These results indicate that HCN channels in the nucleus accumbens are involved in the reinforcing properties of methamphetamine and highlight the importance of HCN channels in the regulation of dopamine neurotransmission underlying methamphetamine addiction.

  2. Synaptic Phospholipid Signaling Modulates Axon Outgrowth via Glutamate-dependent Ca2+-mediated Molecular Pathways.

    PubMed

    Vogt, Johannes; Kirischuk, Sergei; Unichenko, Petr; Schlüter, Leslie; Pelosi, Assunta; Endle, Heiko; Yang, Jenq-Wei; Schmarowski, Nikolai; Cheng, Jin; Thalman, Carine; Strauss, Ulf; Prokudin, Alexey; Bharati, B Suman; Aoki, Junken; Chun, Jerold; Lutz, Beat; Luhmann, Heiko J; Nitsch, Robert

    2017-01-01

    Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous activity affected the entire entorhinal cortical network and thus led to reduced overall axon fiber numbers in the mature perforant path that is known to be important for specific memory functions. Our data show that precise regulation of early cortical activity by bioactive lipids is of critical importance for proper circuit formation. © The Author 2016. Published by Oxford University Press.

  3. mGluR5 Ablation in Cortical Glutamatergic Neurons Increases Novelty-Induced Locomotion

    PubMed Central

    Zhu, Jie; Huang, Jui-Yen; Yu, Dinghui; Justice, Nicholas J.; Lu, Hui-Chen

    2013-01-01

    The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the pathology of various neurological disorders including schizophrenia, ADHD, and autism. mGluR5-dependent synaptic plasticity has been described at a variety of neural connections and its signaling has been implicated in several behaviors. These behaviors include locomotor reactivity to novel environment, sensorimotor gating, anxiety, and cognition. mGluR5 is expressed in glutamatergic neurons, inhibitory neurons, and glia in various brain regions. In this study, we show that deleting mGluR5 expression only in principal cortical neurons leads to defective cannabinoid receptor 1 (CB1R) dependent synaptic plasticity in the prefrontal cortex. These cortical glutamatergic mGluR5 knockout mice exhibit increased novelty-induced locomotion, and their locomotion can be further enhanced by treatment with the psychostimulant methylphenidate. Despite a modest reduction in repetitive behaviors, cortical glutamatergic mGluR5 knockout mice are normal in sensorimotor gating, anxiety, motor balance/learning and fear conditioning behaviors. These results show that mGluR5 signaling in cortical glutamatergic neurons is required for precisely modulating locomotor reactivity to a novel environment but not for sensorimotor gating, anxiety, motor coordination, several forms of learning or social interactions. PMID:23940572

  4. MOG antibody–positive, benign, unilateral, cerebral cortical encephalitis with epilepsy

    PubMed Central

    Ogawa, Ryo; Takahashi, Toshiyuki; Kaneko, Kimihiko; Akaishi, Tetsuya; Takai, Yoshiki; Sato, Douglas Kazutoshi; Nishiyama, Shuhei; Misu, Tatsuro; Kuroda, Hiroshi; Aoki, Masashi; Fujihara, Kazuo

    2017-01-01

    Objective: To describe the features of adult patients with benign, unilateral cerebral cortical encephalitis positive for the myelin oligodendrocyte glycoprotein (MOG) antibody. Methods: In this retrospective, cross-sectional study, after we encountered an index case of MOG antibody–positive unilateral cortical encephalitis with epileptic seizure, we tested for MOG antibody using our in-house, cell-based assay in a cohort of 24 consecutive adult patients with steroid-responsive encephalitis of unknown etiology seen at Tohoku University Hospital (2008–2014). We then analyzed the findings in MOG antibody–positive cases. Results: Three more patients, as well as the index case, were MOG antibody–positive, and all were adult men (median age 37 years, range 23–39 years). The main symptom was generalized epileptic seizure with or without abnormal behavior or consciousness disturbance. Two patients also developed unilateral benign optic neuritis (before or after seizure). In all patients, brain MRI demonstrated unilateral cerebral cortical fluid-attenuated inversion recovery hyperintense lesions, which were swollen and corresponded to hyperperfusion on SPECT. CSF studies showed moderate mononuclear pleocytosis with some polymorphonuclear cells and mildly elevated total protein levels, but myelin basic protein was not elevated. A screening of encephalitis-associated autoantibodies, including aquaporin-4, glutamate receptor, and voltage-gated potassium channel antibodies, was negative. All patients received antiepilepsy drugs and fully recovered after high-dose methylprednisolone, and the unilateral cortical MRI lesions subsequently disappeared. No patient experienced relapse. Conclusions: These MOG antibody–positive cases represent unique benign unilateral cortical encephalitis with epileptic seizure. The pathology may be autoimmune, although the findings differ from MOG antibody–associated demyelination and Rasmussen and other known immune

  5. Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse.

    PubMed

    Salamone, J D; Correa, M; Mingote, S; Weber, S M

    2003-04-01

    For several decades, it has been suggested that dopamine (DA), especially in nucleus accumbens, mediates the primary reinforcing characteristics of natural stimuli such as food, as well as drugs of abuse. Yet, several fundamental aspects of primary food reinforcement, motivation, and appetite are left intact after interference with accumbens DA transmission. Recent studies have shown that accumbens DA is involved in responsiveness to conditioned stimuli and activational aspects of motivation. In concurrent choice tasks, accumbens DA depletions cause animals to reallocate their choice behavior in the direction of instrumental behaviors that involve less effort. Also, an emerging body of evidence has demonstrated that the effects of accumbens DA depletions on instrumental food-seeking behavior can vary greatly depending upon the task. For example, some schedules of reinforcement are insensitive to the effects of DA depletions, whereas others are highly sensitive (e.g., large fixed ratios). Accumbens DA depletions slow the rate of operant responding, blunt the rate-facilitating effects of moderate-sized ratios, and enhance the rate-suppressing effects of very large ratios (i.e., produce ratio strain). Accumbens DA may be important for enabling rats to overcome behavioral constraints, such as work-related response costs, and may be critical for the behavioral organization and conditioning processes that enable animals to engage in vigorous responses, such as barrier climbing, or to emit large numbers of responses in ratio schedules in the absence of primary reinforcement. The involvement of accumbens DA in activational aspects of motivation has implications for energy-related disorders in psychiatry, as well as aspects of drug-seeking behavior.

  6. Resting state glutamate predicts elevated pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on "rest-self overlap".

    PubMed

    Bai, Yu; Nakao, Takashi; Xu, Jiameng; Qin, Pengmin; Chaves, Pedro; Heinzel, Alexander; Duncan, Niall; Lane, Timothy; Yen, Nai-Shing; Tsai, Shang-Yueh; Northoff, Georg

    2016-01-01

    Recent studies have demonstrated neural overlap between resting state activity and self-referential processing. This "rest-self" overlap occurs especially in anterior cortical midline structures like the perigenual anterior cingulate cortex (PACC). However, the exact neurotemporal and biochemical mechanisms remain to be identified. Therefore, we conducted a combined electroencephalography (EEG)-magnetic resonance spectroscopy (MRS) study. EEG focused on pre-stimulus (e.g., prior to stimulus presentation or perception) power changes to assess the degree to which those changes can predict subjects' perception (and judgment) of subsequent stimuli as high or low self-related. MRS measured resting state concentration of glutamate, focusing on PACC. High pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power significantly correlated with both perception of stimuli judged to be highly self-related and with resting state glutamate concentrations in the PACC. In sum, our results show (i) pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power and resting state glutamate concentration to mediate rest-self overlap that (ii) dispose or incline subjects to assign high degrees of self-relatedness to perceptual stimuli.

  7. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.

    PubMed

    Lubitz, Dorit; Wendisch, Volker F

    2016-10-07

    Corynebacterium glutamicum is a well-studied bacterium which naturally overproduces glutamate when induced by an elicitor. Glutamate production is accompanied by decreased 2-oxoglutatate dehydrogenase activity. Elicitors of glutamate production by C. glutamicum analyzed to molecular detail target the cell envelope. Ciprofloxacin, an inhibitor of bacterial DNA gyrase and topoisomerase IV, was shown to inhibit growth of C. glutamicum wild type with concomitant excretion of glutamate. Enzyme assays showed that 2-oxoglutarate dehydrogenase activity was decreased due to ciprofloxacin addition. Transcriptome analysis revealed that this inhibitor of DNA gyrase increased RNA levels of genes involved in DNA synthesis, repair and modification. Glutamate production triggered by ciprofloxacin led to glutamate titers of up to 37 ± 1 mM and a substrate specific glutamate yield of 0.13 g/g. Even in the absence of the putative glutamate exporter gene yggB, ciprofloxacin effectively triggered glutamate production. When C. glutamicum wild type was cultivated under nitrogen-limiting conditions, 2-oxoglutarate rather than glutamate was produced as consequence of exposure to ciprofloxacin. Recombinant C. glutamicum strains overproducing lysine, arginine, ornithine, and putrescine, respectively, secreted glutamate instead of the desired amino acid when exposed to ciprofloxacin. Ciprofloxacin induced DNA synthesis and repair genes, reduced 2-oxoglutarate dehydrogenase activity and elicited glutamate production by C. glutamicum. Production of 2-oxoglutarate could be triggered by ciprofloxacin under nitrogen-limiting conditions.

  8. Behavioral Flexibility Is Increased by Optogenetic Inhibition of Neurons in the Nucleus Accumbens Shell during Specific Time Segments

    ERIC Educational Resources Information Center

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…

  9. [Schizophrenia and cortical GABA neurotransmission].

    PubMed

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra

  10. Methamphetamine Induces Anhedonic-Like Behavior and Impairs Frontal Cortical Energetics in Mice.

    PubMed

    Fonseca, Raquel; Carvalho, Rui A; Lemos, Cristina; Sequeira, Ana C; Pita, Inês R; Carvalho, Fábio; Silva, Carlos D; Prediger, Rui D S; Jarak, Ivana; Cunha, Rodrigo A; Fontes Ribeiro, Carlos A; Köfalvi, Attila; Pereira, Frederico C

    2017-02-01

    We recently showed that a single high dose of methamphetamine (METH) induces a persistent frontal cortical monoamine depletion that is accompanied by helpless-like behavior in mice. However, brain metabolic alterations underlying both neurochemical and mood alterations remain unknown. Herein, we aimed at characterizing frontal cortical metabolic alterations associated with early negative mood behavior triggered by METH. Adult C57BL/6 mice were injected with METH (30 mg/kg, i.p.), and their frontal cortical metabolic status was characterized after probing their mood and anxiety-related phenotypes 3 days postinjection. Methamphetamine induced depressive-like behavior, as indicated by the decreased grooming time in the splash test and by a transient decrease in sucrose preference. At this time, METH did not alter anxiety-like behavior or motor functions. Depolarization-induced glucose uptake was reduced in frontocortical slices from METH-treated mice compared to controls. Consistently, astrocytic glucose transporter (GluT1) density was lower in the METH group. A proton high rotation magic angle spinning (HRMAS) spectroscopic approach revealed that METH induced a significant decrease in N-acetyl aspartate (NAA) and glutamate levels, suggesting that METH decreased neuronal glutamatergic function in frontal cortex. We report, for the first time, that a single METH injection triggers early self-care and hedonic deficits and impairs frontal cortical energetics in mice. © 2016 John Wiley & Sons Ltd.

  11. In Vitro Functional Characterization of GET73 as Possible Negative Allosteric Modulator of Metabotropic Glutamate Receptor 5.

    PubMed

    Beggiato, Sarah; Borelli, Andrea C; Tomasini, Maria C; Castelli, M Paola; Pintori, Nicholas; Cacciaglia, Roberto; Loche, Antonella; Ferraro, Luca

    2018-01-01

    The present study was aimed to further characterize the pharmacological profile of N-[4-(trifluoromethyl) benzyl]-4-methoxybutyramide (GET73), a putative negative allosteric modulator (NAM) of metabotropic glutamate subtype 5 receptor (mGluR5) under development as a novel medication for the treatment of alcohol dependence. This aim has been accomplished by means of a series of in vitro functional assays. These assays include the measure of several down-stream signaling [intracellular Ca ++ levels, inositol phosphate (IP) formation and CREB phosphorylation (pCREB)] which are generally affected by mGluR5 ligands. In particular, GET73 (0.1 nM-10 μM) was explored for its ability to displace the concentration-response curve of some mGluR5 agonists/probes (glutamate, L-quisqualate, CHPG) in different native preparations. GET73 produced a rightward shift of concentration-response curves of glutamate- and CHPG-induced intracellular Ca ++ levels in primary cultures of rat cortical astrocytes. The compound also induced a rightward shift of concentration response curve of glutamate- and L-quisqualate-induced increase in IP turnover in rat hippocampus slices, along with a reduction of CHPG (10 mM)-induced increase in IP formation. Moreover, GET73 produced a rightward shift of concentration-response curve of glutamate-, CHPG- and L-quisqualate-induced pCREB levels in rat cerebral cortex neurons. Although the engagement of other targets cannot be definitively ruled out, these data support the view that GET73 acts as an mGluR5 NAM and support the significance of further investigating the possible mechanism of action of the compound.

  12. Coenzyme Q10 inhibits the release of glutamate in rat cerebrocortical nerve terminals by suppression of voltage-dependent calcium influx and mitogen-activated protein kinase signaling pathway.

    PubMed

    Chang, Yi; Huang, Shu-Kuei; Wang, Su-Jane

    2012-12-05

    This study investigates the effects and possible mechanism of coenzyme Q10 (CoQ10) on endogenous glutamate release in the cerebral cortex nerve terminals of rats. CoQ10 inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). CoQ10 reduced the depolarization-induced increase in cytosolic [Ca2+]c but did not alter the 4-AP-mediated depolarization. The effect of CoQ10 on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels and mitogen-activated protein kinase kinase (MEK). In addition, CoQ10 decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK. Moreover, the inhibition of glutamate release by CoQ10 was strongly attenuated in mice without synapsin I. These results suggest that CoQ10 inhibits glutamate release from cortical synaptosomes in rats through the suppression of the presynaptic voltage-dependent Ca2+ entry and ERK/synapsin I signaling pathway.

  13. Characterization of the effects of serotonin on the release of (/sup 3/H)dopamine from rat nucleus accumbens and striatal slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-05-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of (/sup 3/H)dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal /sup 3/H overflow and reduced K+-induced release of (/sup 3/H)DA from nucleus accumbens slices. The effect of serotonin on basal /sup 3/H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of (/sup 3/H)DA in the nucleus accumbens or striatum. The serotoninmore » agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of (/sup 3/H)DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.« less

  14. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons

    PubMed Central

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew CN; Swindale, Nicholas V; Murphy, Timothy H

    2017-01-01

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps. DOI: http://dx.doi.org/10.7554/eLife.19976.001 PMID:28160463

  15. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  16. Effect of starch ingestion on plasma glutamate concentrations in humans ingesting monosodium L-glutamate in soup.

    PubMed

    Stegink, L D; Filer, L J; Baker, G L

    1985-02-01

    Plasma glutamate concentrations in human subjects are markedly lower when monosodium L-glutamate is ingested in a water solution containing partially hydrolyzed starch than when ingested in water alone. This study was carried out to investigate whether starch ingested as crackers had a similar effect. Eight normal adult subjects (four male, four female) ingested three servings of a beef consommé providing 50 mg/kg body weight monosodium L-glutamate. One serving was consommé alone, the other two were accompanied by sufficient crackers to provide 0.25 or 0.5 g starch per kilogram body weight, respectively. Ingestion of consommé containing glutamate significantly increased the mean plasma glutamate concentration above baseline to a mean peak value 30 min later. The peak after consumption of 0.5 g starch per kilogram body weight, but not 0.25 g/kg body weight, was significantly lower than when consommé alone was ingested. These data indicate that simultaneous ingestion of metabolizable carbohydrate with glutamate has a marked effect on the plasma glutamate response and indicate that the threshold value for carbohydrate is greater than 0.25 g/kg body weight.

  17. Dopamine-dependent effects on basal and glutamate stimulated network dynamics in cultured hippocampal neurons.

    PubMed

    Li, Yan; Chen, Xin; Dzakpasu, Rhonda; Conant, Katherine

    2017-02-01

    Oscillatory activity occurs in cortical and hippocampal networks with specific frequency ranges thought to be critical to working memory, attention, differentiation of neuronal precursors, and memory trace replay. Synchronized activity within relatively large neuronal populations is influenced by firing and bursting frequency within individual cells, and the latter is modulated by changes in intrinsic membrane excitability and synaptic transmission. Published work suggests that dopamine, a potent modulator of learning and memory, acts on dopamine receptor 1-like dopamine receptors to influence the phosphorylation and trafficking of glutamate receptor subunits, along with long-term potentiation of excitatory synaptic transmission in striatum and prefrontal cortex. Prior studies also suggest that dopamine can influence voltage gated ion channel function and membrane excitability in these regions. Fewer studies have examined dopamine's effect on related endpoints in hippocampus, or potential consequences in terms of network burst dynamics. In this study, we record action potential activity using a microelectrode array system to examine the ability of dopamine to modulate baseline and glutamate-stimulated bursting activity in an in vitro network of cultured murine hippocampal neurons. We show that dopamine stimulates a dopamine type-1 receptor-dependent increase in number of overall bursts within minutes of its application. Notably, however, at the concentration used herein, dopamine did not increase the overall synchrony of bursts between electrodes. Although the number of bursts normalizes by 40 min, bursting in response to a subsequent glutamate challenge is enhanced by dopamine pretreatment. Dopamine-dependent potentiation of glutamate-stimulated bursting was not observed when the two modulators were administered concurrently. In parallel, pretreatment of murine hippocampal cultures with dopamine stimulated lasting increases in the phosphorylation of the

  18. Metabotropic Glutamate Receptors in the Trafficking of Ionotropic Glutamate and GABAA Receptors at Central Synapses

    PubMed Central

    Xiao, Min-Yi; Gustafsson, Bengt; Niu, Yin-Ping

    2006-01-01

    The trafficking of ionotropic glutamate (AMPA, NMDA and kainate) and GABAA receptors in and out of, or laterally along, the postsynaptic membrane has recently emerged as an important mechanism in the regulation of synaptic function, both under physiological and pathological conditions, such as information processing, learning and memory formation, neuronal development, and neurodegenerative diseases. Non-ionotropic glutamate receptors, primarily group I metabotropic glutamate receptors (mGluRs), co-exist with the postsynaptic ionotropic glutamate and GABAA receptors. The ability of mGluRs to regulate postsynaptic phosphorylation and Ca2+ concentration, as well as their interactions with postsynaptic scaffolding/signaling proteins, makes them well suited to influence the trafficking of ionotropic glutamate and GABAA receptors. Recent studies have provided insights into how mGluRs may impose such an influence at central synapses, and thus how they may affect synaptic signaling and the maintenance of long-term synaptic plasticity. In this review we will discuss some of the recent progress in this area: i) long-term synaptic plasticity and the involvement of mGluRs; ii) ionotropic glutamate receptor trafficking and long-term synaptic plasticity; iii) the involvement of postsynaptic group I mGluRs in regulating ionotropic glutamate receptor trafficking; iv) involvement of postsynaptic group I mGluRs in regulating GABAA receptor trafficking; v) and the trafficking of postsynaptic group I mGluRs themselves. PMID:18615134

  19. Impaired inhibitory control of cortical synchronization in fragile X syndrome.

    PubMed

    Paluszkiewicz, Scott M; Olmos-Serrano, Jose Luis; Corbin, Joshua G; Huntsman, Molly M

    2011-11-01

    Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by severe cognitive impairments, sensory hypersensitivity, and comorbidities with autism and epilepsy. Fmr1 knockout (KO) mouse models of FXS exhibit alterations in excitatory and inhibitory neurotransmission, but it is largely unknown how aberrant function of specific neuronal subtypes contributes to these deficits. In this study we show specific inhibitory circuit dysfunction in layer II/III of somatosensory cortex of Fmr1 KO mice. We demonstrate reduced activation of somatostatin-expressing low-threshold-spiking (LTS) interneurons in response to the group I metabotropic glutamate receptor (mGluR) agonist 3,5-dihydroxyphenylglycine (DHPG) in Fmr1 KO mice, resulting in impaired synaptic inhibition. Paired recordings from pyramidal neurons revealed reductions in synchronized synaptic inhibition and coordinated spike synchrony in response to DHPG, indicating a weakened LTS interneuron network in Fmr1 KO mice. Together, these findings reveal a functional defect in a single subtype of cortical interneuron in Fmr1 KO mice. This defect is linked to altered activity of the cortical network in line with the FXS phenotype.

  20. "Hyperglutamatergic cortico-striato-thalamo-cortical circuit" breaker drugs alleviate tics in a transgenic circuit model of Tourette׳s syndrome.

    PubMed

    Nordstrom, Eric J; Bittner, Katie C; McGrath, Michael J; Parks, Clinton R; Burton, Frank H

    2015-12-10

    The brain circuits underlying tics in Tourette׳s syndrome (TS) are unknown but thought to involve cortico/amygdalo-striato-thalamo-cortical (CSTC) loop hyperactivity. We previously engineered a transgenic mouse "circuit model" of TS by expressing an artificial neuropotentiating transgene (encoding the cAMP-elevating, intracellular A1 subunit of cholera toxin) within a small population of dopamine D1 receptor-expressing somatosensory cortical and limbic neurons that hyperactivate cortico/amygdalostriatal glutamatergic output circuits thought to be hyperactive in TS and comorbid obsessive-compulsive (OC) disorders. As in TS, these D1CT-7 ("Ticcy") transgenic mice׳s tics were alleviated by the TS drugs clonidine and dopamine D2 receptor antagonists; and their chronic glutamate-excited striatal motor output was unbalanced toward hyperactivity of the motoric direct pathway and inactivity of the cataleptic indirect pathway. Here we have examined whether these mice׳s tics are countered by drugs that "break" sequential elements of their hyperactive cortical/amygdalar glutamatergic and efferent striatal circuit: anti-serotonoceptive and anti-noradrenoceptive corticostriatal glutamate output blockers (the serotonin 5-HT2a,c receptor antagonist ritanserin and the NE alpha-1 receptor antagonist prazosin); agmatinergic striatothalamic GABA output blockers (the presynaptic agmatine/imidazoline I1 receptor agonist moxonidine); and nigrostriatal dopamine output blockers (the presynaptic D2 receptor agonist bromocriptine). Each drug class alleviates tics in the Ticcy mice, suggesting a hyperglutamatergic CSTC "tic circuit" could exist in TS wherein cortical/amygdalar pyramidal projection neurons׳ glutamatergic overexcitation of both striatal output neurons and nigrostriatal dopaminergic modulatory neurons unbalances their circuit integration to excite striatothalamic output and create tics, and illuminating new TS drug strategies. Copyright © 2015 The Authors. Published by

  1. Changes in nucleus accumbens and neostriatal c-Fos and DARPP-32 immunoreactivity during different stages of food-reinforced instrumental training.

    PubMed

    Segovia, Kristen N; Correa, Merce; Lennington, Jessica B; Conover, Joanne C; Salamone, John D

    2012-04-01

    Nucleus accumbens is involved in several aspects of instrumental behavior, motivation and learning. Recent studies showed that dopamine (DA) release in the accumbens shell was significantly increased on the first day of training on a fixed ratio (FR) 5 schedule (i.e. the transition from FR1 to FR5) compared with those rats that continued FR1 training, even though the rats on their first day of FR5 training received less food reinforcement than rats continuing on the FR1 schedule. Additionally, the second day of FR5 responding was marked by a significant increase in DA release in accumbens core. The present studies employed immunohistochemical methods to characterize the changes in cellular markers of accumbens and neostriatal neural activity that occur during various stages of food-reinforced FR5 training. c-Fos and DARPP-32 immunoreactivity in accumbens shell was significantly increased on the first day of FR5 training, while core c-Fos and DARPP-32 expression showed large increases on the second day of FR5 training. Additional studies showed that c-Fos and DARPP-32 expression in neostriatum increased after more extensive training. Double-labeling studies with immunofluorescence methods indicated that increases in accumbens c-Fos and DARPP-32 expression were primarily seen in substance-P-positive neurons. These increases in accumbens c-Fos and DARPP-32 immunoreactivity seen during the initial phases of FR training may reflect several factors, including novelty, learning, stress or the presentation of a work-related challenge to the organism. Moreover, it appears that the separate subregions of the striatal complex are differentially activated at distinct phases of instrumental training. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. alpha-Amino-3-hydroxy-5-methyl-4-isoxazole propionate attenuates glutamate-induced caspase-3 cleavage via regulation of glycogen synthase kinase 3beta.

    PubMed

    Nishimoto, Takaaki; Kihara, Takeshi; Akaike, Akinori; Niidome, Tetsuhiro; Sugimoto, Hachiro

    2008-04-01

    Preconditioning of sublethal ischemia exhibits neuroprotection against subsequent ischemia-induced neuronal death. It has been indicated that glutamate, an excitatory amino acid, is involved in the pathogenesis of ischemia-induced neuronal death or neurodegeneration. To elucidate whether prestimulation of glutamate receptor could counter ischemia-induced neuronal death or neurodegeneration, we examined the effect of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), an ionotropic subtype of glutamate receptor, on excess glutamate-induced excitotoxicity using primary cortical neuronal cultures. We found that AMPA exerted a neuroprotective effect in a time- and concentration-dependent manner. A blocker of phosphatidylinositol-3 kinase (PI3K), LY294002 (10 microM), significantly attenuated AMPA-induced protection. In addition, Ser473 of Akt/PKB, a downstream target of PI3K, was phosphorylated by AMPA administration (10 microM). Glycogen synthase kinase 3beta (GSK3beta), which has been reported to be inactivated by Akt, was phosphorylated at Ser9 by AMPA. Ser9-phosphorylated GSK3beta or inactivated form would be a key molecule for neuroprotection, insofar as lithium chloride (100 microM) and SB216763 (10 microM), inhibitors of GSK3beta, also induced phosphorylation of GSK3beta at Ser9 and exerted neuroprotection, respectively. Glutamate (100 microM) increased cleaved caspase-3, an apoptosis-related cysteine protease, and caspase-3 inhibitor (Ac-DEVD-CHO; 1 microM) blocked glutamate-induced excitotoxicity in our culture. AMPA (10 microM, 24 hr) and SB216763 (10 microM) prominently decreased glutamate-induced caspase-3 cleavage. These findings suggest that AMPA activates PI3K-Akt and subsequently inhibits GSK3beta and that inactivated GSK3beta attenuates glutamate-induced caspase-3 cleavage and neurotoxicity.

  3. Glutamate: Tastant and Neuromodulator in Taste Buds.

    PubMed

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. © 2016 American Society for Nutrition.

  4. Evidence for increased expression of the vesicular glutamate transporter, VGLUT1, by a course of antidepressant treatment.

    PubMed

    Tordera, Rosa M; Pei, Qi; Sharp, Trevor

    2005-08-01

    The therapeutic effect of a course of antidepressant treatment is believed to involve a cascade of neuroadaptive changes in gene expression leading to increased neural plasticity. Because glutamate is linked to mechanisms of neural plasticity, this transmitter may play a role in these changes. This study investigated the effect of antidepressant treatment on expression of the vesicular glutamate transporters, VGLUT1-3 in brain regions of the rat. Repeated treatment with fluoxetine, paroxetine or desipramine increased VGLUT1 mRNA abundance in frontal, orbital, cingulate and parietal cortices, and regions of the hippocampus. Immunoautoradiography analysis showed that repeated antidepressant drug treatment increased VGLUT1 protein expression. Repeated electroconvulsive shock (ECS) also increased VGLUT1 mRNA abundance in regions of the cortex and hippocampus compared to sham controls. The antidepressant drugs and ECS did not alter VGLUT1 mRNA abundance after acute administration, and no change was detected after repeated treatment with the antipsychotic agents, haloperidol and chlorpromazine. In contrast to VGLUT1, the different antidepressant treatments did not commonly increase the expression of VGLUT2 or VGLUT3 mRNA. These data suggest that a course of antidepressant drug or ECS treatment increases expression of VGLUT1, a key gene involved in the regulation of glutamate secretion.

  5. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry.

    PubMed

    Orr, Joseph M; Paschall, Courtnie J; Banich, Marie T

    2016-01-01

    A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP) consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.

  6. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.

    PubMed

    Cao, Yan; Duan, Zuoying; Shi, Zhongping

    2014-02-01

    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  7. Long-Lasting Impairment of mGluR5-Activated Intracellular Pathways in the Striatum After Withdrawal of Cocaine Self-Administration

    PubMed Central

    Hoffmann, Hanne Mette; Crouzin, Nadine; Moreno, Estefanía; Raivio, Noora; Fuentes, Silvia; McCormick, Peter J.; Vignes, Michel

    2017-01-01

    Abstract Background: Cocaine addiction continues to be a major heath concern, and despite public health intervention there is a lack of efficient pharmacological treatment options. A newly identified potential target are the group I metabotropic glutamate receptors, with allosteric modulators showing particular promise. Methods: We evaluated the capacity of group I metabotropic glutamate receptors to induce functional responses in ex vivo striatal slices from rats with (1) acute cocaine self-administration, (2) chronic cocaine self-administration, and (3) 60 days cocaine self-administration withdrawal by Western blot and extracellular recordings of synaptic transmission. Results: We found that striatal group I metabotropic glutamate receptors are the principal mediator of the mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine-induced cAMP responsive-element binding protein phosphorylation. Both acute and chronic cocaine self-administration blunted group I metabotropic glutamate receptor effects on cAMP responsive-element binding protein phosphorylation in the striatum, which correlated with the capacity to induce long-term depression, an effect that was maintained 60 days after chronic cocaine self-administration withdrawal. In the nucleus accumbens, the principal brain region mediating the rewarding effects of drugs, chronic cocaine self-administration blunted group I metabotropic glutamate receptor stimulation of extracellular signal-regulated protein kinases 1/2 and cAMP responsive-element binding protein. Interestingly, the group I metabotropic glutamate receptor antagonist/inverse-agonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride, led to a specific increase in cAMP responsive-element binding protein phosphorylation after chronic cocaine self-administration, specifically in the nucleus accumbens, but not in the striatum. Conclusions: Prolonged cocaine self-administration, through withdrawal, leads to a blunting of group I metabotropic glutamate receptor

  8. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase.

    PubMed

    Niu, Panqing; Dong, Xiaoxiang; Wang, Yuancai; Liu, Liming

    2014-06-10

    In this study, a novel strategy for α-ketoglutaric acid (α-KG) production from l-glutamic acid using recombinant l-glutamate oxidase (LGOX) was developed. First, by analyzing the molecular structure characteristics of l-glutamic acid and α-KG, LGOX was found to be the best catalyst for oxidizing the amino group of l-glutamic acid to a ketonic group without the need for exogenous cofactor. Then the LGOX gene was expressed in Escherichia coli BL21 (DE3) in a soluble and active form, and the recombinant LGOX activity reached to a maximum value of 0.59U/mL at pH 6.5, 30°C. Finally, the maximum α-KG concentration reached 104.7g/L from 110g/L l-glutamic acid in 24h, under the following optimum conditions: 1.5U/mL LGOX, 250U/mL catalase, 3mM MnCl2, 30°C, and pH 6.5. Copyright © 2014. Published by Elsevier B.V.

  9. Context-specific modulation of cocaine-induced locomotor sensitization and ERK and CREB phosphorylation in rat nucleus accumbens

    PubMed Central

    Marin, Marcelo T.; Berkow, Alexander; Golden, Sam A.; Koya, Eisuke; Planeta, Cleopatra S.; Hope, Bruce T.

    2009-01-01

    Learned associations are hypothesized to develop between drug effects and contextual stimuli during repeated drug administration to produce context-specific sensitization that is expressed only in the drug-associated environment and not in a non-drug paired environment. Neuroadaptations that mediate such context-specific behavior are largely unknown. We investigated context-specific modulation of CREB phosphorylation and four upstream kinases in nucleus accumbens that phosphorylate CREB, including ERK, PKA, CaMKII and IV. Rats received seven once daily injections of cocaine or saline in one of two distinct environments outside their home cages. Seven days later, test injections of cocaine or saline were administered in either the Paired or the Non-paired environment. CREB and ERK phosphorylation were assessed with immunohistochemistry while phosphorylation of the remaining kinases, as well as CREB and ERK, were assessed by Western blotting. Repeated cocaine administration produced context-specific sensitized locomotor responses accompanied by context-specific enhancement of the number of cocaine-induced phosphoCREB and phosphoERK immunoreactive nuclei in a minority of neurons. In contrast, CREB and CaMKIV phosphorylation in nucleus accumbens homogenates were decreased by cocaine test injections. We have recently shown that a small number of cocaine-activated accumbens neurons mediate the learned association between cocaine effects and the drug administration environment to produce context-specific sensitization. The corresponding cocaine and context-specific phosphorylation of ERK and CREB in cocaine-activated accumbens neurons in the present study suggests that this signal transduction pathway is also selectively activated in the same set of accumbens neurons. PMID:19912338

  10. Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain.

    PubMed

    Akgül, Gülcan; McBain, Chris J

    2016-10-01

    Glutamate receptor-mediated recruitment of GABAergic inhibitory interneurons is a critical determinant of network processing. Early studies observed that many, but not all, interneuron glutamatergic synapses contain AMPA receptors that are GluA2-subunit lacking and Ca(2+) permeable, making them distinct from AMPA receptors at most principal cell synapses. Subsequent studies demonstrated considerable alignment of synaptic AMPA and NMDA receptor subunit composition within specific subtypes of interneurons, suggesting that both receptor expression profiles are developmentally and functionally linked. Indeed glutamate receptor expression profiles are largely predicted by the embryonic origins of cortical interneurons within the medial and caudal ganglionic eminences of the developing telencephalon. Distinct complements of AMPA and NMDA receptors within different interneuron subpopulations contribute to the differential recruitment of functionally divergent interneuron subtypes by common afferent inputs for appropriate feed-forward and feedback inhibitory drive and network entrainment. In contrast, the lesser-studied kainate receptors, which are often present at both pre- and postsynaptic sites, appear to follow an independent developmental expression profile. Loss of specific ionotropic glutamate receptor (iGluR) subunits during interneuron development has dramatic consequences for both cellular and network function, often precipitating circuit inhibition-excitation imbalances and in some cases lethality. Here we briefly review recent findings highlighting the roles of iGluRs in interneuron development. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits.

    PubMed

    De Gois, Stéphanie; Schäfer, Martin K-H; Defamie, Norah; Chen, Chu; Ricci, Anthony; Weihe, Eberhard; Varoqui, Hélène; Erickson, Jeffrey D

    2005-08-03

    Homeostatic control of pyramidal neuron firing rate involves a functional balance of feedforward excitation and feedback inhibition in neocortical circuits. Here, we reveal a dynamic scaling in vesicular excitatory (vesicular glutamate transporters VGLUT1 and VGLUT2) and inhibitory (vesicular inhibitory amino acid transporter VIAAT) transporter mRNA and synaptic protein expression in rat neocortical neuronal cultures, using a well established in vitro protocol to induce homeostatic plasticity. During the second and third week of synaptic differentiation, the predominant vesicular transporters expressed in neocortical neurons, VGLUT1 and VIAAT, are both dramatically upregulated. In mature cultures, VGLUT1 and VIAAT exhibit bidirectional and opposite regulation by prolonged activity changes. Endogenous coregulation during development and homeostatic scaling of the expression of the transporters in functionally differentiated cultures may serve to control vesicular glutamate and GABA filling and adjust functional presynaptic excitatory/inhibitory balance. Unexpectedly, hyperexcitation in differentiated cultures triggers a striking increase in VGLUT2 mRNA and synaptic protein, whereas decreased excitation reduces levels. VGLUT2 mRNA and protein are expressed in subsets of VGLUT1-encoded neocortical neurons that we identify in primary cultures and in neocortex in situ and in vivo. After prolonged hyperexcitation, downregulation of VGLUT1/synaptophysin intensity ratios at most synapses is observed, whereas a subset of VGLUT1-containing boutons selectively increase the expression of VGLUT2. Bidirectional and opposite regulation of VGLUT1 and VGLUT2 by activity may serve as positive or negative feedback regulators for cortical synaptic transmission. Intracortical VGLUT1/VGLUT2 coexpressing neurons have the capacity to independently modulate the level of expression of either transporter at discrete synapses and therefore may serve as a plastic interface between subcortical

  12. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae.

    PubMed Central

    Avendaño, A; Deluna, A; Olivera, H; Valenzuela, L; Gonzalez, A

    1997-01-01

    It has been considered that the yeast Saccharomyces cerevisiae, like many other microorganisms, synthesizes glutamate through the action of NADP+-glutamate dehydrogenase (NADP+-GDH), encoded by GDH1, or through the combined action of glutamine synthetase and glutamate synthase (GOGAT), encoded by GLN1 and GLT1, respectively. A double mutant of S. cerevisiae lacking NADP+-GDH and GOGAT activities was constructed. This strain was able to grow on ammonium as the sole nitrogen source and thus to synthesize glutamate through an alternative pathway. A computer search for similarities between the GDH1 nucleotide sequence and the complete yeast genome was carried out. In addition to identifying its cognate sequence at chromosome XIV, the search found that GDH1 showed high identity with a previously recognized open reading frame (GDH3) of chromosome I. Triple mutants impaired in GDH1, GLT1, and GDH3 were obtained. These were strict glutamate auxotrophs. Our results indicate that GDH3 plays a significant physiological role, providing glutamate when GDH1 and GLT1 are impaired. This is the first example of a microorganism possessing three pathways for glutamate biosynthesis. PMID:9287019

  13. Effects of dopamine and glutamate on synaptic plasticity: a computational modeling approach for drug abuse as comorbidity in mood disorders.

    PubMed

    Qi, Z; Kikuchi, S; Tretter, F; Voit, E O

    2011-05-01

    Major depressive disorder (MDD) affects about 16% of the general population and is a leading cause of death in the United States and around the world. Aggravating the situation is the fact that "drug use disorders" are highly comorbid in MDD patients, and VICE VERSA. Drug use and MDD share a common component, the dopamine system, which is critical in many motivation and reward processes, as well as in the regulation of stress responses in MDD. A potentiating mechanism in drug use disorders appears to be synaptic plasticity, which is regulated by dopamine transmission. In this article, we describe a computational model of the synaptic plasticity of GABAergic medium spiny neurons in the nucleus accumbens, which is critical in the reward system. The model accounts for effects of both dopamine and glutamate transmission. Model simulations show that GABAergic medium spiny neurons tend to respond to dopamine stimuli with synaptic potentiation and to glutamate signals with synaptic depression. Concurrent dopamine and glutamate signals cause various types of synaptic plasticity, depending on input scenarios. Interestingly, the model shows that a single 0.5 mg/kg dose of amphetamine can cause synaptic potentiation for over 2 h, a phenomenon that makes synaptic plasticity of medium spiny neurons behave quasi as a bistable system. The model also identifies mechanisms that could potentially be critical to correcting modifications of synaptic plasticity caused by drugs in MDD patients. An example is the feedback loop between protein kinase A, phosphodiesterase, and the second messenger cAMP in the postsynapse. Since reward mechanisms activated by psychostimulants could be crucial in establishing addiction comorbidity in patients with MDD, this model might become an aid for identifying and targeting specific modules within the reward system and lead to a better understanding and potential treatment of comorbid drug use disorders in MDD. © Georg Thieme Verlag KG Stuttgart · New

  14. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) [Reserved] (c) Limitations, restrictions, or...

  15. 21 CFR 182.1045 - Glutamic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) [Reserved] (c) Limitations, restrictions, or...

  16. The utility of ionotropic glutamate receptor antagonists in the treatment of nociception induced by epidural glutamate infusion in rats.

    PubMed

    Osgood, Doreen B; Harrington, William F; Kenney, Elizabeth V; Harrington, J Frederick

    2013-01-01

    The authors have previously demonstrated that human herniated disc material contains high concentrations of free glutamate. In an experimental model, elevated epidural glutamate concentrations in the lumbar spine can cause a focal hyperesthetic state. Rats underwent epidural glutamate infusion in the lumbar spine by a miniosmotic pump over a 72-hour period. Some rats underwent coinfusion with glutamate and ionotropic glutamate antagonists. Nociception was assessed by von Frey fibers and by assessment of glutamate receptor expression in the corresponding dorsal horn of the spinal cord. The kainic acid antagonist, UBP 301, decreased epidural glutamate-based hyperesthesia in a dose dependent manner. Concordant with these findings, there was significant decrease in kainate receptor expression in the dorsal horn. The N-Methyl-4-isoxazoleproionic acid (NMDA) antagonist Norketamine also significantly diminished hyperesthesia and decreased receptor expression in the dorsal horn. Both UBP 301, the kainic acid receptor antagonist and Norketamine, an NMDA receptor antagonist, dampened epidural glutamate-based nociception. Focal epidural injections of Kainate or NMDA receptor antagonists could be effective treatments for disc herniation-based lumbar radiculopathy.

  17. Metabotropic glutamate receptors in the trafficking of ionotropic glutamate and GABA(A) receptors at central synapses.

    PubMed

    Xiao, Min-Yi; Gustafsson, Bengt; Niu, Yin-Ping

    2006-01-01

    The trafficking of ionotropic glutamate (AMPA, NMDA and kainate) and GABA(A) receptors in and out of, or laterally along, the postsynaptic membrane has recently emerged as an important mechanism in the regulation of synaptic function, both under physiological and pathological conditions, such as information processing, learning and memory formation, neuronal development, and neurodegenerative diseases. Non-ionotropic glutamate receptors, primarily group I metabotropic glutamate receptors (mGluRs), co-exist with the postsynaptic ionotropic glutamate and GABA(A) receptors. The ability of mGluRs to regulate postsynaptic phosphorylation and Ca(2+) concentration, as well as their interactions with postsynaptic scaffolding/signaling proteins, makes them well suited to influence the trafficking of ionotropic glutamate and GABA(A) receptors. Recent studies have provided insights into how mGluRs may impose such an influence at central synapses, and thus how they may affect synaptic signaling and the maintenance of long-term synaptic plasticity. In this review we will discuss some of the recent progress in this area: i) long-term synaptic plasticity and the involvement of mGluRs; ii) ionotropic glutamate receptor trafficking and long-term synaptic plasticity; iii) the involvement of postsynaptic group I mGluRs in regulating ionotropic glutamate receptor trafficking; iv) involvement of postsynaptic group I mGluRs in regulating GABA(A) receptor trafficking; v) and the trafficking of postsynaptic group I mGluRs themselves.

  18. Anosmia leads to a loss of gray matter in cortical brain areas.

    PubMed

    Bitter, Thomas; Gudziol, Hilmar; Burmeister, Hartmut Peter; Mentzel, Hans-Joachim; Guntinas-Lichius, Orlando; Gaser, Christian

    2010-06-01

    Chronic olfactory disorders, including the complete loss of the sense of smell (anosmia), are common. Using voxel-based morphometry (VBM) in magnetic resonance imaging (MRI), structural changes in the cerebral gray matter (GM) of a group of patients with anosmia compared with a normosmic, healthy control group were evaluated. Patients with anosmia presented a significant decrease of GM volume mainly in the nucleus accumbens with adjacent subcallosal gyrus, in the medial prefrontal cortex (MPC) including the middle and anterior cingulate cortices, and in the dorsolateral prefrontal cortex (dlPFC). These areas are part of the limbic loop of the basal ganglia and except the dlPFC secondary olfactory areas. They also play an important role in many neurological diseases. Furthermore, volume decreases in smaller areas like the piriform cortex, insular cortex, orbitofrontal cortex, hippocampus, parahippocampal gyrus, supramarginal gyrus, and cerebellum could be seen. Longer disease duration was associated with a stronger atrophy in the described areas. No local increases in the GM volume could be observed. A comparison with results of an additionally executed functional MRI study on olfaction in healthy subjects was performed to evaluate the significance of the observed atrophy areas in cerebral olfactory processing. To our knowledge, this is the first study on persisting structural changes in cortical GM volume after complete olfactory loss.

  19. Astroglial Glutamate Signaling and Uptake in the Hippocampus

    PubMed Central

    Rose, Christine R.; Felix, Lisa; Zeug, Andre; Dietrich, Dirk; Reiner, Andreas; Henneberger, Christian

    2018-01-01

    Astrocytes have long been regarded as essentially unexcitable cells that do not contribute to active signaling and information processing in the brain. Contrary to this classical view, it is now firmly established that astrocytes can specifically respond to glutamate released from neurons. Astrocyte glutamate signaling is initiated upon binding of glutamate to ionotropic and/or metabotropic receptors, which can result in calcium signaling, a major form of glial excitability. Release of so-called gliotransmitters like glutamate, ATP and D-serine from astrocytes in response to activation of glutamate receptors has been demonstrated to modulate various aspects of neuronal function in the hippocampus. In addition to receptors, glutamate binds to high-affinity, sodium-dependent transporters, which results in rapid buffering of synaptically-released glutamate, followed by its removal from the synaptic cleft through uptake into astrocytes. The degree to which astrocytes modulate and control extracellular glutamate levels through glutamate transporters depends on their expression levels and on the ionic driving forces that decrease with ongoing activity. Another major determinant of astrocytic control of glutamate levels could be the precise morphological arrangement of fine perisynaptic processes close to synapses, defining the diffusional distance for glutamate, and the spatial proximity of transporters in relation to the synaptic cleft. In this review, we will present an overview of the mechanisms and physiological role of glutamate-induced ion signaling in astrocytes in the hippocampus as mediated by receptors and transporters. Moreover, we will discuss the relevance of astroglial glutamate uptake for extracellular glutamate homeostasis, focusing on how activity-induced dynamic changes of perisynaptic processes could shape synaptic transmission at glutamatergic synapses. PMID:29386994

  20. Microbial production of poly-γ-glutamic acid.

    PubMed

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  1. Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats.

    PubMed

    Guercio, Leonardo A; Schmidt, Heath D; Pierce, R Christopher

    2015-03-15

    Stimuli previously associated with drug taking can become triggers that can elicit craving and lead to relapse of drug-seeking behavior. Here, we examined the influence of deep brain stimulation (DBS) in the nucleus accumbens shell on cue-induced reinstatement of cocaine seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.254 mg, i.v.) for 2 h daily for 21 days, with each infusion of cocaine being paired with a cue light. After 21 days of self-administration, cocaine-taking behavior was extinguished by replacing cocaine with saline in the absence of the cue light. Next, during the reinstatement phase, DBS was administered bilaterally into the nucleus accumbens shell through bipolar stainless steel electrodes immediately prior to re-exposure to cues previously associated with cocaine reinforcement. DBS continued throughout the 2 h reinstatement session. Parallel studies examined the influence of accumbens shell DBS on reinstatement induced by cues previously associated with sucrose reinforcement. Results indicated that DBS of the nucleus accumbens shell significantly attenuated cue-induced reinstatement of cocaine and sucrose seeking. Together, these results indicate that DBS of the accumbens shell disrupts cue-induced reinstatement associated with both a drug and a natural reinforcer. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Effect of metabotropic glutamate receptor-3 variants on prefrontal brain activity in schizophrenia: An imaging genetics study using multi-channel near-infrared spectroscopy.

    PubMed

    Kinoshita, Akihide; Takizawa, Ryu; Koike, Shinsuke; Satomura, Yoshihiro; Kawasaki, Shingo; Kawakubo, Yuki; Marumo, Kohei; Tochigi, Mamoru; Sasaki, Tsukasa; Nishimura, Yukika; Kasai, Kiyoto

    2015-10-01

    The glutamatergic system is essential for learning and memory through its crucial role in neural development and synaptic plasticity. Genes associated with the glutamatergic system, including metabotropic glutamate receptor (mGluR or GRM) genes, have been implicated in the pathophysiology of schizophrenia. Few studies, however, have investigated a relationship between polymorphism of glutamate-related genes and cortical function in vivo in patients with schizophrenia. We thus explored an association between genetic variations in GRM3 and brain activation driven by a cognitive task in the prefrontal cortex in patients with schizophrenia. Thirty-one outpatients with schizophrenia and 48 healthy controls participated in this study. We measured four candidate single nucleotide polymorphisms (rs274622, rs2299225, rs1468412, and rs6465084) of GRM3, and activity in the prefrontal and temporal cortices during a category version of a verbal fluency task, using a 52-channel near-infrared spectroscopy instrument. The rs274622 C carriers with schizophrenia were associated with significantly smaller prefrontal activation than patients with TT genotype. This between-genotype difference tended to be confined to the patient group. GRM3 polymorphisms are associated with prefrontal activation during cognitive task in schizophrenia. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Chronic Fluoxetine Induces Activity Changes in Recovery From Poststroke Anxiety, Depression, and Cognitive Impairment.

    PubMed

    Vahid-Ansari, Faranak; Albert, Paul R

    2018-01-01

    Poststroke depression (PSD) is a common outcome of stroke that limits recovery and is only partially responsive to chronic antidepressant treatment. In order to elucidate changes in the cortical-limbic circuitry associated with PSD and its treatment, we examined a novel mouse model of persistent PSD. Focal endothelin-1-induced ischemia of the left medial prefrontal cortex (mPFC) in male C57BL6 mice resulted in a chronic anxiety and depression phenotype. Here, we show severe cognitive impairment in spatial learning and memory in the stroke mice. The behavioral and cognitive phenotypes were reversed by chronic (4-week) treatment with fluoxetine, alone or with voluntary exercise (free-running wheel), but not by exercise alone. To assess chronic cellular activation, FosB + cells were co-labeled for markers of glutamate/pyramidal (VGluT1-3/CaMKIIα), γ-aminobutyric acid (GAD67), and serotonin (TPH). At 6 weeks poststroke versus sham (or 4 days poststroke), left mPFC stroke induced widespread FosB activation, more on the right (contralesional) than on the left side. Stroke activated glutamate cells of the mPFC, nucleus accumbens, amygdala, hippocampus, and raphe serotonin neurons. Chronic fluoxetine balanced bilateral neuronal activity, reducing total FosB and FosB/CamKII + cells (mPFC, nucleus accumbens), and unlike exercise, increasing FosB/GAD67 + cells (septum, amygdala) or both (hippocampus, raphe). In summary, chronic antidepressant but not exercise mediates recovery in this unilateral ischemic PSD model that is associated with region-specific reversal of stroke-induced pyramidal cell hyperactivity and increase in γ-aminobutyric acidergic activity. Targeted brain stimulation to restore brain activity could provide a rational approach for treating clinical PSD.

  4. Cortical compression rapidly trimmed transcallosal projections and altered axonal anterograde transport machinery.

    PubMed

    Chen, Li-Jin; Wang, Yueh-Jan; Tseng, Guo-Fang

    2017-10-24

    Trauma and tumor compressing the brain distort underlying cortical neurons. Compressed cortical neurons remodel their dendrites instantly. The effects on axons however remain unclear. Using a rat epidural bead implantation model, we studied the effects of unilateral somatosensory cortical compression on its transcallosal projection and the reversibility of the changes following decompression. Compression reduced the density, branching profuseness and boutons of the projection axons in the contralateral homotopic cortex 1week and 1month post-compression. Projection fiber density was higher 1-month than 1-week post-compression, suggesting adaptive temporal changes. Compression reduced contralateral cortical synaptophysin, vesicular glutamate transporter 1 (VGLUT1) and postsynaptic density protein-95 (PSD95) expressions in a week and the first two marker proteins further by 1month. βIII-tubulin and kinesin light chain (KLC) expressions in the corpus callosum (CC) where transcallosal axons traveled were also decreased. Kinesin heavy chain (KHC) level in CC was temporarily increased 1week after compression. Decompression increased transcallosal axon density and branching profuseness to higher than sham while bouton density returned to sham levels. This was accompanied by restoration of synaptophysin, VGLUT1 and PSD95 expressions in the contralateral cortex of the 1-week, but not the 1-month, compression rats. Decompression restored βIII-tubulin, but not KLC and KHC expressions in CC. However, KLC and KHC expressions in the cell bodies of the layer II/III pyramidal neurons partially recovered. Our results show cerebral compression compromised cortical axonal outputs and reduced transcallosal projection. Some of these changes did not recover in long-term decompression. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition.

    PubMed

    Anderson, Charles T; Kumar, Manoj; Xiong, Shanshan; Tzounopoulos, Thanos

    2017-09-09

    In many excitatory synapses, mobile zinc is found within glutamatergic vesicles and is coreleased with glutamate. Ex vivo studies established that synaptically released (synaptic) zinc inhibits excitatory neurotransmission at lower frequencies of synaptic activity but enhances steady state synaptic responses during higher frequencies of activity. However, it remains unknown how synaptic zinc affects neuronal processing in vivo. Here, we imaged the sound-evoked neuronal activity of the primary auditory cortex in awake mice. We discovered that synaptic zinc enhanced the gain of sound-evoked responses in CaMKII-expressing principal neurons, but it reduced the gain of parvalbumin- and somatostatin-expressing interneurons. This modulation was sound intensity-dependent and, in part, NMDA receptor-independent. By establishing a previously unknown link between synaptic zinc and gain control of auditory cortical processing, our findings advance understanding about cortical synaptic mechanisms and create a new framework for approaching and interpreting the role of the auditory cortex in sound processing.

  6. Olanzapine, but not clozapine, increases glutamate release in the prefrontal cortex of freely moving mice by inhibiting D-aspartate oxidase activity

    PubMed Central

    Sacchi, Silvia; Novellis, Vito De; Paolone, Giovanna; Nuzzo, Tommaso; Iannotta, Monica; Belardo, Carmela; Squillace, Marta; Bolognesi, Paolo; Rosini, Elena; Motta, Zoraide; Frassineti, Martina; Bertolino, Alessandro; Pollegioni, Loredano; Morari, Michele; Maione, Sabatino; Errico, Francesco; Usiello, Alessandro

    2017-01-01

    D-aspartate levels in the brain are regulated by the catabolic enzyme D-aspartate oxidase (DDO). D-aspartate activates NMDA receptors, and influences brain connectivity and behaviors relevant to schizophrenia in animal models. In addition, recent evidence reported a significant reduction of D-aspartate levels in the post-mortem brain of schizophrenia-affected patients, associated to higher DDO activity. In the present work, microdialysis experiments in freely moving mice revealed that exogenously administered D-aspartate efficiently cross the blood brain barrier and stimulates L-glutamate efflux in the prefrontal cortex (PFC). Consistently, D-aspartate was able to evoke L-glutamate release in a preparation of cortical synaptosomes through presynaptic stimulation of NMDA, mGlu5 and AMPA/kainate receptors. In support of a potential therapeutic relevance of D-aspartate metabolism in schizophrenia, in vitro enzymatic assays revealed that the second-generation antipsychotic olanzapine, differently to clozapine, chlorpromazine, haloperidol, bupropion, fluoxetine and amitriptyline, inhibits the human DDO activity. In line with in vitro evidence, chronic systemic administration of olanzapine induces a significant extracellular release of D-aspartate and L-glutamate in the PFC of freely moving mice, which is suppressed in Ddo knockout animals. These results suggest that the second-generation antipsychotic olanzapine, through the inhibition of DDO activity, increases L-glutamate release in the PFC of treated mice. PMID:28393897

  7. Reboxetine Enhances the Olanzapine-Induced Antipsychotic-Like Effect, Cortical Dopamine Outflow and NMDA Receptor-Mediated Transmission

    PubMed Central

    Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Björkholm, Carl; Svensson, Torgny H

    2010-01-01

    Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D2/3 antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl--aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain. PMID:20463659

  8. Characterization of beta-phenylethylamine-induced monoamine release in rat nucleus accumbens: a microdialysis study.

    PubMed

    Nakamura, M; Ishii, A; Nakahara, D

    1998-05-22

    In vivo microdialysis was used to investigate the effect of beta-phenylethylamine on extracellular levels of monoamines and their metabolites in the nucleus accumbens of conscious rats. At all doses tested (1, 10 and 100 microM), infusion of beta-phenylethylamine through the microdialysis probe significantly increased extracellular levels of dopamine in the nucleus accumbens. These increases were dose-related. The increase in dopamine levels induced by 100 microM beta-phenylethylamine was not affected by co-perfusion of 4 microM tetrodotoxin. The ability of 100 microM beta-phenylethylamine to increase the extracellular level of dopamine was comparable to that of the same dose of methamphetamine. On the other hand, beta-phenylethylamine had a much less potent enhancing effect on 5-hydroxytryptamine (5-HT) than dopamine levels. Only the highest dose (100 microM) caused a statistically significant effect on 5-HT levels. Over the dose range tested (1, 10 and 100 microM), beta-phenylethylamine had no effect on extracellular metabolite levels of dopamine and 5-HT. The results suggest that beta-phenylethylamine increases the efflux of monoamines, preferentially dopamine, without affecting monoamine metabolism, in the nucleus accumbens.

  9. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum.

    PubMed

    Feng, Jun; Quan, Yufen; Gu, Yanyan; Liu, Fenghong; Huang, Xiaozhong; Shen, Haosheng; Dang, Yulei; Cao, Mingfeng; Gao, Weixia; Lu, Xiaoyun; Wang, Yi; Song, Cunjiang; Wang, Shufang

    2017-05-22

    Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some unique features for glutamate synthesis; therefore introduction of these metabolic characters into the γ-PGA producing strain might lead to increased intracellular glutamate availability, and thus ultimate γ-PGA production. In this study, the unique glutamate synthesis features from C. glutamicum was introduced into the glutamate-independent γ-PGA producing Bacillus amyloliquefaciens NK-1 strain. After introducing the energy-saving NADPH-dependent glutamate dehydrogenase (NADPH-GDH) pathway, the NK-1 (pHT315-gdh) strain showed slightly increase (by 9.1%) in γ-PGA production. Moreover, an optimized metabolic toggle switch for controlling the expression of ɑ-oxoglutarate dehydrogenase complex (ODHC) was introduced into the NK-1 strain, because it was previously shown that the ODHC in C. glutamicum was completely inhibited when glutamate was actively produced. The obtained NK-PO1 (pHT01-xylR) strain showed 66.2% higher γ-PGA production than the NK-1 strain. However, the further combination of these two strategies (introducing both NADPH-GDH pathway and the metabolic toggle switch) did not lead to further increase of γ-PGA production but rather the resultant γ-PGA production was even lower than that in the NK-1 strain. We proposed new metabolic engineering strategies to improve the γ-PGA production in B. amyloliquefaciens. The NK-1 (pHT315-gdh) strain with the introduction of NADPH-GDH pathway showed 9.1% improvement in γ-PGA production. The NK-PO1 (pHT01-xylR) strain with the introduction of a metabolic toggle switch for controlling the expression of ODHC showed 66.2% higher

  10. Guanosine-5'-monophosphate induces cell death in rat hippocampal slices via ionotropic glutamate receptors activation and glutamate uptake inhibition.

    PubMed

    Molz, Simone; Dal-Cim, Tharine; Tasca, Carla I

    2009-12-01

    Guanine derivatives modulate the glutamatergic system through displacement of binding of glutamate to its receptors acting as antagonist of glutamate receptors in moderate to high micromolar concentrations. Guanosine-5'-monophosphate (GMP) is shown to be neuroprotective against glutamate- or oxygen/glucose deprivation-induced neurotoxicity and also against NMDA-induced apoptosis in hippocampal slices. However, in this study we are showing that high extracellular GMP concentrations (5mM) reduced cell viability in hippocampal brain slices. The toxic effect of GMP was not blocked by dipyridamole, a nucleoside transport inhibitor, nor mimicked by guanosine, suggesting an extracellular mode of action to GMP which does not involve its hydrolysis to guanosine. GMP-dependent cell damage was not blocked by P1 purinergic receptor antagonists, neither altered by adenosine A(1) or A(2A) receptor agonists. The blockage of the ionotropic glutamate receptors AMPA or NMDA, but not KA or metabotropic glutamate receptors, reversed the toxicity induced by GMP. GMP (5mM) induced a decrease in glutamate uptake into hippocampal slices, which was reversed by dl-TBOA. Therefore, GMP-induced hippocampal cell damage involves activation of ionotropic glutamate receptors and inhibition of glutamate transporters activity.

  11. Glial glutamate transporters expression, glutamate uptake, and oxidative stress in an experimental rat model of intracerebral hemorrhage.

    PubMed

    Neves, J D; Vizuete, A F; Nicola, F; Da Ré, C; Rodrigues, A F; Schmitz, F; Mestriner, R G; Aristimunha, D; Wyse, A T S; Netto, C A

    2018-06-01

    Glial glutamate transporters (EAAT1 and EAAT2), glutamate uptake, and oxidative stress are important players in the pathogenesis of ischemic brain injury. However, the changes in EAAT1 and EAAT2 expression, glutamate uptake and the oxidative profile during intracerebral hemorrhage (ICH) development have not been described. The present study sought to investigate the changes of the above-mentioned variables, as well as the Na + /K + -ATP ase and glutamine synthetase activities (as important contributors of glutamate homeostasis) and the percentage of neuronal cells after 6 h, 24 h, 72 h and 7 days of ICH. An injection of 0.2U of bacterial collagenase in the ipsilateral striatum was used to induce ICH in male Wistar rats; naïve animals were used as controls. EAAT1 and EAAT2 expression and glutamate uptake in the ipsilateral striatum were assessed. Additionally, the percentage of MAP2+ cells, Na + /K + -ATP ase and GS activities, as well as the oxidative profile were analyzed. It is shown a decrease of EAAT1 expression and glutamate uptake 6 h post-ICH, whereas EAAT2 decreased 72 h after the event; conversely EAAT2 and glutamate uptake were increased after 7 days. The oxidative stress and endogenous defense system exhibited a remarkable response at 72 h of injury. ICH also increased Na + /K + -ATP ase activity and selectively decreased GS activity, variables known to be important contributors of glial glutamate transporters activities. Altogether, present findings indicate that ICH induces different temporal EAAT1 and EAAT2 responses, culminating with an imbalance of glutamate uptake capacity, increased oxidative stress and sustained neuronal loss. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Sexual behavior induction of c-Fos in the nucleus accumbens and amphetamine-stimulated locomotor activity are sensitized by previous sexual experience in female Syrian hamsters.

    PubMed

    Bradley, K C; Meisel, R L

    2001-03-15

    Dopamine transmission in the nucleus accumbens can be activated by drugs, stress, or motivated behaviors, and repeated exposure to these stimuli can sensitize this dopamine response. The objectives of this study were to determine whether female sexual behavior activates nucleus accumbens neurons and whether past sexual experience cross-sensitizes neuronal responses in the nucleus accumbens to amphetamine. Using immunocytochemical labeling, c-Fos expression in different subregions (shell vs core at the rostral, middle, and caudal levels) of the nucleus accumbens was examined in female hamsters that had varying amounts of sexual experience. Female hamsters, given either 6 weeks of sexual experience or remaining sexually naive, were tested for sexual behavior by exposure to adult male hamsters. Previous sexual experience increased c-Fos labeling in the rostral and caudal levels but not in the middle levels of the nucleus accumbens. Testing for sexual behavior increased labeling in the core, but not the shell, of the nucleus accumbens. To validate that female sexual behavior can sensitize neurons in the mesolimbic dopamine pathway, the locomotor responses of sexually experienced and sexually naive females to an amphetamine injection were then compared. Amphetamine increased general locomotor activity in all females. However, sexually experienced animals responded sooner to amphetamine than did sexually naive animals. These data indicate that female sexual behavior can activate neurons in the nucleus accumbens and that sexual experience can cross-sensitize neuronal responses to amphetamine. In addition, these results provide additional evidence for functional differences between the shell and core of the nucleus accumbens and across its anteroposterior axis.

  13. Glutamate Dehydrogenase from Apodachlya (Oomycetes) 1

    PubMed Central

    Price, Jeffrey S.; Gleason, Frank H.

    1972-01-01

    A glutamate dehydrogenase specific for nicotinamide-adenine-dinucleotide has been purified 50-fold from Apodachlya brachynema (Leptomitales). Certain physical, chemical, and kinetic properties of this enzyme have been studied, particularly specificity for coenzymes and substrates. With glucose as the sole carbon source, the synthesis of glutamate dehydrogenase was repressed, whereas glutamate, proline, alanine, or ornithine plus aspartate as sole carbon sources induced synthesis of the enzyme. These data indicate that the function of this enzyme is primarily degradative, although there is no evidence for a nicotinamide-adenine-dinucleotide-phosphate-specific biosynthetic glutamate dehydrogenase in Apodachlya. PMID:16657902

  14. A preliminary examination of cortical neurotransmitter levels associated with heavy drinking in posttraumatic stress disorder.

    PubMed

    Pennington, David Louis; Abé, Christoph; Batki, Steven Laszlo; Meyerhoff, Dieter Johannes

    2014-12-30

    Posttraumatic stress disorder (PTSD) patients have low cortical concentrations of γ-aminobutyric acid (GABA) and elevated glutamate (Glu) as measured by proton magnetic resonance spectroscopy ((1)H MRS). Alcohol use disorder (AUD) is highly comorbid with PTSD, but the neurobiological underpinnings are largely unknown. We wanted to determine if PTSD patients with AUD have normalized cortical GABA and Glu levels in addition to metabolite alterations common to AUD. We compared brain metabolite concentrations in 10 PTSD patients with comorbid AUD (PAUD) with concentrtations in 28 PTSD patients without AUD and in 20 trauma-exposed controls (CON) without PTSD symptoms. We measured concentrations of GABA, Glu, N-acetylaspartate (NAA), creatine- (Cr) and choline-containing metabolites (Cho), and myo-Inositol (mI) in three cortical brain regions using (1)H MRS and correlated them with measures of neurocognition, insomnia, PTSD symptoms, and drinking severity. In contrast to PTSD, PAUD exhibited normal GABA and Glu concentrations in the parieto-occipital and temporal cortices, respectively, but lower Glu and trends toward higher GABA levels in the anterior cingulate cortex (ACC). Temporal NAA and Cho as well as mI in the ACC were lower in PAUD than in both PTSD and CON. Within PAUD, more cortical GABA and Glu correlated with better neurocognition. Heavy drinking in PTSD is associated with partially neutralized neurotransmitter imbalance, but also with neuronal injury commonly observed in AUD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. NO-producing compounds transform neuron responses to glutamate.

    PubMed

    D'yakonova, T L

    2000-01-01

    We have previously shown that NO increases the excitatory effects of glutamate and blocks the desensitization of neurons to glutamate in the brain of the common snail. The aim of the present work was to identify the possible effect of NO on inhibitory responses to glutamate in the neurons of this mollusk. Electrophysiological investigations were performed on three identified neurons. The results showed that glutamate (0.05-0.1 mM) initially induced hyperpolarization and blocked the spike activity of these neurons. Simultaneous exposure to glutamate and the NO donor nitroprusside or preincubation with an NO donor had the effect that cells again responded to glutamate with depolarization and excitation. The transformed excitatory response lasted several minutes and could be reproduced even after 24 h of washing. The NO synthase blocker monomethylarginine blocked the excitatory response to glutamate. Another agonist of glutamate receptors, N-methyl-D-aspartate (NMDA, 0.1-1 mM), initially had excitatory effects on these neurons; this effect was significantly enhanced after transformation of the response to glutamate by NO donors. The results obtained here show that NO is involved in transforming the inhibitory responses to glutamate to excitatory responses, and that this effect may be mediated by NMDA-type receptors.

  16. Antagonism of mGlu2/3 receptors in the nucleus accumbens prevents oxytocin from reducing cued methamphetamine seeking in male and female rats.

    PubMed

    Bernheim, Aurelien; Leong, Kah-Chung; Berini, Carole; Reichel, Carmela M

    2017-10-01

    Methamphetamine (meth) addiction is a prevalent health concern worldwide, yet remains without approved pharmacological treatments. Preclinical evidence suggests that oxytocin may decrease relapse, but the neuronal underpinnings driving this effect remain unknown. Here we investigate whether oxytocin's effect is dependent on presynaptic glutamatergic regulation in the nucleus accumbens core (NAcore) by blocking metabotropic glutamate receptors 2/3 (mGluR2/3). Male and female Sprague-Dawley rats self-administered meth or sucrose on an escalating fixed ratio, followed by extinction and cue-induced reinstatement sessions. Reinstatement tests consisted of systemic (Experiment 1) or site-specific application of the drugs into the NAcore (Experiments 2 and 3). Before reinstatement sessions, rats received LY341495, an mGluR2/3 antagonist, or its vehicle followed by a second infusion/injection of oxytocin or saline. As expected, both males and females reinstated lever pressing to meth associated cues, and LY341495 alone did not impact this behavior. Oxytocin injected systemically or infused into the NAcore decreased cued meth seeking. Importantly, combined LY341495 and oxytocin administration restored meth cued reinstatement. Interestingly, neither oxytocin nor LY341495 impacted sucrose-cued reinstatement, suggesting distinct mechanisms between meth and sucrose. These findings were consistent between males and females. Overall, we report that oxytocin reduced responding to meth-associated cues and blocking presynaptic mGluR2/3 reversed this effect. Further, oxytocin's effects were specific to meth cues as NAcore oxytocin was without an effect on sucrose cued reinstatement. Results are discussed in terms of oxytocin receptor localization in the NAcore and modulation of presynaptic regulation of glutamate in response to drug associated cues. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. [NO donors transform neuronal response to glutamate].

    PubMed

    D'iakonova, T L

    1998-10-01

    Electrophysiological experiments on three identified neurones were performed. Two NO donors, sodium nitroprusside (SNP) and sodium nitrite, as well as NO synthase inhibitor, were used. In each neurone, bath application of glutamate caused hyperpolarization and suppression of firing. Combined application of glutamate and SNP resulted in that the same cells responded to identical glutamate solutions with depolarization and excitation. Application of N-monomethyl-L-arginin (NMMA) arrested the glutamate-induced firing and depolarization. The findings suggest involvement of NO in the mechanism of transformation of glutamate-induced inhibition into excitation and a mediation of the latter by the N-methyl-D-aspartate-like receptors in the Helix brain.

  18. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Li, Jiaqi; Dong, Nan; Guan, Fanglin; Liu, Yufeng; Ma, Dongliang; Goh, Eyleen L. K.; Chen, Teng

    2016-11-01

    Methamphetamine (METH) is a highly addictive psychostimulant that elicits aberrant changes in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the nucleus accumbens of mice, indicating a potential role of METH in post-transcriptional regulations. To decipher the potential consequences of these post-transcriptional regulations in response to METH, we performed strand-specific RNA sequencing (ssRNA-Seq) to identify alterations in mRNA expression and their alternative splicing in the nucleus accumbens of mice following exposure to METH. METH-mediated changes in mRNAs were analyzed and correlated with previously reported changes in non-coding RNAs (miRNAs and lncRNAs) to determine the potential functions of these mRNA changes observed here and how non-coding RNAs are involved. A total of 2171 mRNAs were differentially expressed in response to METH with functions involved in synaptic plasticity, mitochondrial energy metabolism and immune response. 309 and 589 of these mRNAs are potential targets of miRNAs and lncRNAs respectively. In addition, METH treatment decreases mRNA alternative splicing, and there are 818 METH-specific events not observed in saline-treated mice. Our results suggest that METH-mediated addiction could be attributed by changes in miRNAs and lncRNAs and consequently, changes in mRNA alternative splicing and expression. In conclusion, our study reported a methamphetamine-modified nucleus accumbens transcriptome and provided non-coding RNA-mRNA interaction networks possibly involved in METH addiction.

  19. Glutamate-system defects behind psychiatric manifestations in a familial hemiplegic migraine type 2 disease-mutation mouse model

    PubMed Central

    Bøttger, Pernille; Glerup, Simon; Gesslein, Bodil; Illarionova, Nina B.; Isaksen, Toke J.; Heuck, Anders; Clausen, Bettina H.; Füchtbauer, Ernst-Martin; Gramsbergen, Jan B.; Gunnarson, Eli; Aperia, Anita; Lauritzen, Martin; Lambertsen, Kate L.; Nissen, Poul; Lykke-Hartmann, Karin

    2016-01-01

    Migraine is a complex brain disorder, and understanding the complexity of this prevalent disease could improve quality of life for millions of people. Familial Hemiplegic Migraine type 2 (FHM2) is a subtype of migraine with aura and co-morbidities like epilepsy/seizures, cognitive impairments and psychiatric manifestations, such as obsessive-compulsive disorder (OCD). FHM2 disease-mutations locate to the ATP1A2 gene encoding the astrocyte-located α2-isoform of the sodium-potassium pump (α2Na+/K+-ATPase). We show that knock-in mice heterozygous for the FHM2-associated G301R-mutation (α2+/G301R) phenocopy several FHM2-relevant disease traits e.g., by mimicking mood depression and OCD. In vitro studies showed impaired glutamate uptake in hippocampal mixed astrocyte-neuron cultures from α2G301R/G301R E17 embryonic mice, and moreover, induction of cortical spreading depression (CSD) resulted in reduced recovery in α2+/G301R male mice. Moreover, NMDA-type glutamate receptor antagonists or progestin-only treatment reverted specific α2+/G301R behavioral phenotypes. Our findings demonstrate that studies of an in vivo relevant FHM2 disease knock-in mouse model provide a link between the female sex hormone cycle and the glutamate system and a link to co-morbid psychiatric manifestations of FHM2. PMID:26911348

  20. Direct stimulation of pituitary prolactin release by glutamate.

    PubMed

    Login, I S

    1990-01-01

    The ability of glutamate and other excitatory amino acids to stimulate prolactin secretion when administered to adult animals is hypothesized to depend on a central site of action in the brain, but there are no data to support this position. An alternative hypothesis was tested that glutamate would stimulate prolactin release when applied directly to primary cultures of dispersed adult female rat anterior pituitary cells studied in a perifusion protocol. Glutamate increased the rate of prolactin release within two minutes in a self-limited manner. Glutamate-stimulated prolactin release was augmented about 4-fold by elimination of magnesium from the perfusate and was associated with stimulation of pituitary calcium flux. Ketamine and MK-801 both reduced the basal rate of prolactin release and abolished the effects of glutamate. Pituitary cells of 10-day-old rats responded similarly to glutamate. Exposure to glutamate did not influence subsequent responses to physiological hypothalamic secretagogues, thus the likelihood of toxicity was minimized. These results suggest that the N-methyl-D-aspartate (NMDA) subclass of the glutamate receptor complex is involved. Prolactin secretion may be regulated physiologically through a functional glutamate receptor on pituitary cells.

  1. Integration between Glycolysis and Glutamate-Glutamine Cycle Flux May Explain Preferential Glycolytic Increase during Brain Activation, Requiring Glutamate

    PubMed Central

    Hertz, Leif; Chen, Ye

    2017-01-01

    The 1988 observation by Fox et al. (1988) that brief intense brain activation increases glycolysis (pyruvate formation from glucose) much more than oxidative metabolism has been abundantly confirmed. Specifically glycolytic increase was unexpected because the amount of ATP it generates is much smaller than that formed by subsequent oxidative metabolism of pyruvate. The present article shows that preferential glycolysis can be explained by metabolic processes associated with activation of the glutamate-glutamine cycle. The flux in this cycle, which is essential for production of transmitter glutamate and GABA, equals 75% of brain glucose utilization and each turn is associated with utilization of ~1 glucose molecule. About one half of the association between cycle flux and glucose metabolism occurs during neuronal conversion of glutamine to glutamate in a process similar to the malate-aspartate shuttle (MAS) except that glutamate is supplied from glutamine, not formed from α-ketoglutarate (αKG) as during operation of conventional MAS. Regular MAS function is triggered by one oxidative process in the cytosol during glycolysis causing NAD+ reduction to NADH. Since NADH cannot cross the mitochondrial membrane (MEM) for oxidation NAD+ is re-generated by conversion of cytosolic oxaloacetate (OAA) to malate, which enters the mitochondria for oxidation and in a cyclic process regenerates cytosolic OAA. Therefore MAS as well as the “pseudo-MAS” necessary for neuronal glutamate formation can only operate together with cytosolic reduction of NAD+ to NADH. The major process causing NAD+ reduction is glycolysis which therefore also must occur during neuronal conversion of glutamine to glutamate and may energize vesicular glutamate uptake which preferentially uses glycolytically derived energy. Another major contributor to the association between glutamate-glutamine cycle and glucose utilization is the need for astrocytic pyruvate to generate glutamate. Although some

  2. RANTES modulates the release of glutamate in human neocortex.

    PubMed

    Musante, Veronica; Longordo, Fabio; Neri, Elisa; Pedrazzi, Marco; Kalfas, Fotios; Severi, Paolo; Raiteri, Maurizio; Pittaluga, Anna

    2008-11-19

    The effects of the recombinant chemokine human RANTES (hRANTES) on the release of glutamate from human neocortex glutamatergic nerve endings were investigated. hRANTES facilitated the spontaneous release of d [(3)H]D-aspartate ([(3)H]DASP-) by binding Pertussis toxin-sensitive G-protein-coupled receptors (GPCRs), whose activation caused Ca(2+) mobilization from inositol trisphosphate-sensitive stores and cytosolic tyrosine kinase-mediated phosphorylations. Facilitation of release switched to inhibition when the effects of hRANTES on the 12 mM K(+)-evoked [(3)H]D-ASP exocytosis were studied. Inhibition of exocytosis relied on activation of Pertussis toxin-sensitive GPCRs negatively coupled to adenylyl cyclase. Both hRANTES effects were prevented by met-RANTES, an antagonist at the chemokine receptors (CCRs) of the CCR1, CCR3, and CCR5 subtypes. Interestingly, human neocortex glutamatergic nerve endings seem to possess all three receptor subtypes. Blockade of CCR1 and CCR5 by antibodies against the extracellular domain of CCRs prevented both the hRANTES effect on [(3)H]D-ASP release, whereas blockade of CCR3 prevented inhibition, but not facilitation, of release. The effects of RANTES on the spontaneous and the evoked release of [(3)H]D-ASP were also observed in experiments with mouse cortical synaptosomes, which may therefore represent an appropriate animal model to study RANTES-induced effects on neurotransmission. It is concluded that glutamate transmission can be modulated in opposite directions by RANTES acting at distinct CCR receptor subtypes coupled to different transduction pathways, consistent with the multiple and sometimes contrasting effects of the chemokine.

  3. Presynaptic mGlu1 and mGlu5 autoreceptors facilitate glutamate exocytosis from mouse cortical nerve endings.

    PubMed

    Musante, Veronica; Neri, Elisa; Feligioni, Marco; Puliti, Aldamaria; Pedrazzi, Marco; Conti, Valerio; Usai, Cesare; Diaspro, Alberto; Ravazzolo, Roberto; Henley, Jeremy M; Battaglia, Giuseppe; Pittaluga, Anna

    2008-09-01

    The effects of mGlu1 and mGlu5 receptor activation on the depolarization-evoked release of [3H]d-aspartate ([3H]D-ASP) from mouse cortical synaptosomes were investigated. The mGlu1/5 receptor agonist 3,5-DHPG (0.1-100microM) potentiated the K+(12mM)-evoked [3H]D-ASP overflow. The potentiation occurred in a concentration-dependent manner showing a biphasic pattern. The agonist potentiated [3H]D-ASP exocytosis when applied at 0.3microM; the efficacy of 3,5-DHPG then rapidly declined and reappeared at 30-100microM. The fall of efficacy of agonist at intermediate concentration may be consistent with 3,5-DHPG-induced receptor desensitization. Facilitation of [3H]D-ASP exocytosis caused by 0.3microM 3,5-DHPG was prevented by the selective mGlu5 receptor antagonist MPEP, but was insensitive to the selective mGlu1 receptor antagonist CPCCOEt. In contrast, CPCCOEt prevented the potentiation by 50microM 3,5-DHPG, while MPEP had minimal effect. Unexpectedly, LY 367385 antagonized both the 3,5-DHPG-induced effects. A total of 0.3microM 3,5-DHPG failed to facilitate the K+-evoked [3H]D-ASP overflow from mGlu5 receptor knockout (mGlu5-/-) cortical synaptosomes, but not from nerve terminals prepared from the cortex of animals lacking the mGlu1 receptors, the crv4/crv4 mice. On the contrary, 50microM 3,5-DHPG failed to affect the [3H]D-ASP exocytosis from cortical synaptosomes obtained from crv4/crv4 and mGlu5-/-mice. Western blot analyses in subsynaptic fractions support the existence of both mGlu1 and mGlu5 autoreceptors located presynaptically, while immunocytochemistry revealed their presence at glutamatergic terminals. We propose that mGlu1 and mGlu5 autoreceptors exist on mouse glutamatergic cortical terminals; mGlu5 receptors may represent the "high affinity" binding sites for 3,5-DHPG, while mGlu1 autoreceptors represent the "low affinity" binding sites.

  4. Acamprosate {monocalcium bis(3-acetamidopropane-1-sulfonate)} reduces ethanol-drinking behavior in rats and glutamate-induced toxicity in ethanol-exposed primary rat cortical neuronal cultures.

    PubMed

    Oka, Michiko; Hirouchi, Masaaki; Tamura, Masaru; Sugahara, Seishi; Oyama, Tatsuya

    2013-10-15

    Acamprosate, the calcium salt of bis(3-acetamidopropane-1-sulfonate), contributes to the maintenance of abstinence in alcohol-dependent patients, but its mechanism of action in the central nervous system is unclear. Here, we report the effect of acamprosate on ethanol-drinking behavior in standard laboratory Wistar rats, including voluntary ethanol consumption and the ethanol-deprivation effect. After forced ethanol consumption arranged by the provision of only one drinking bottle containing 10% ethanol, the rats were given a choice between two drinking bottles, one containing water and the other containing 10% ethanol. In rats selected for high ethanol preference, repeated oral administration of acamprosate diminished voluntary ethanol drinking. After three months of continuous access to two bottles, rats were deprived of ethanol for three days and then presented with two bottles again. After ethanol deprivation, ethanol preference was increased, and the increase was largely abolished by acamprosate. After exposure of primary neuronal cultures of rat cerebral cortex to ethanol for four days, neurotoxicity, as measured by the extracellular leakage of lactate dehydrogenase (LDH), was induced by incubation with glutamate for 1h followed by incubation in the absence of ethanol for 24h. The N-methyl-D-aspartate receptor blocker 5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine, the metabotropic glutamate receptor subtype 5 antagonist 6-methyl-2-(phenylethynyl)pyridine and the voltage-gated calcium-channel blocker nifedipine all inhibited glutamate-induced LDH leakage from ethanol-exposed neurons. Acamprosate inhibited the glutamate-induced LDH leakage from ethanol-exposed neurons more strongly than that from intact neurons. In conclusion, acamprosate showed effective reduction of drinking behavior in rats and protected ethanol-exposed neurons by multiple blocking of glutamate signaling. © 2013 Elsevier B.V. All rights reserved.

  5. Glutamate and Brain Glutaminases in Drug Addiction.

    PubMed

    Márquez, Javier; Campos-Sandoval, José A; Peñalver, Ana; Matés, José M; Segura, Juan A; Blanco, Eduardo; Alonso, Francisco J; de Fonseca, Fernando Rodríguez

    2017-03-01

    Glutamate is the principal excitatory neurotransmitter in the central nervous system and its actions are related to the behavioral effects of psychostimulant drugs. In the last two decades, basic neuroscience research and preclinical studies with animal models are suggesting a critical role for glutamate transmission in drug reward, reinforcement, and relapse. Although most of the interest has been centered in post-synaptic glutamate receptors, the presynaptic synthesis of glutamate through brain glutaminases may also contribute to imbalances in glutamate homeostasis, a key feature of the glutamatergic hypothesis of addiction. Glutaminases are the main glutamate-producing enzymes in brain and dysregulation of their function have been associated with neurodegenerative diseases and neurological disorders; however, the possible implication of these enzymes in drug addiction remains largely unknown. This mini-review focuses on brain glutaminase isozymes and their alterations by in vivo exposure to drugs of abuse, which are discussed in the context of the glutamate homeostasis theory of addiction. Recent findings from mouse models have shown that drugs induce changes in the expression profiles of key glutamatergic transmission genes, although the molecular mechanisms that regulate drug-induced neuronal sensitization and behavioral plasticity are not clear.

  6. Coordinate synaptic mechanisms contributing to olfactory cortical adaptation.

    PubMed

    Best, Aaron R; Wilson, Donald A

    2004-01-21

    Anterior piriform cortex (aPCX) neurons rapidly filter repetitive odor stimuli despite relatively maintained input from mitral cells. This cortical adaptation is correlated with short-term depression of afferent synapses, in vivo. The purpose of this study was to elucidate mechanisms underlying this nonassociative neural plasticity using in vivo and in vitro preparations and to determine its role in cortical odor adaptation. Lateral olfactory tract (LOT)-evoked responses were recorded in rat aPCX coronal slices. Extracellular and intracellular potentials were recorded before and after simulated odor stimulation of the LOT. Results were compared with in vivo intracellular recordings from aPCX layer II/III neurons and field recordings in urethane-anesthetized rats stimulated with odorants. The onset, time course, and extent of LOT synaptic depression during both in vitro electrical and in vivo odorant stimulation methods were similar. Similar to the odor specificity of cortical odor adaptation in vivo, there was no evidence of heterosynaptic depression between independent inputs in vitro. In vitro evidence suggests at least two mechanisms contribute to this activity-dependent synaptic depression: a rapidly recovering presynaptic depression during the initial 10-20 sec of the post-train recovery period and a longer lasting (approximately 120 sec) depression that can be blocked by the metabotropic glutamate receptor (mGluR) II/III antagonist (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) and by the beta-adrenergic receptor agonist isoproterenol. Importantly, in line with the in vitro findings, both adaptation of odor responses in the beta (15-35 Hz) spectral range and the associated synaptic depression can also be blocked by intracortical infusion of CPPG in vivo.

  7. Coordinate Synaptic Mechanisms Contributing to Olfactory Cortical Adaptation

    PubMed Central

    Best, Aaron R.; Wilson, Donald A.

    2008-01-01

    Anterior piriform cortex (aPCX) neurons rapidly filter repetitive odor stimuli despite relatively maintained input from mitral cells. This cortical adaptation is correlated with short-term depression of afferent synapses, in vivo. The purpose of this study was to elucidate mechanisms underlying this nonassociative neural plasticity using in vivo and in vitro preparations and to determine its role in cortical odor adaptation. Lateral olfactory tract (LOT)-evoked responses were recorded in rat aPCX coronal slices. Extracellular and intracellular potentials were recorded before and after simulated odor stimulation of the LOT. Results were compared with in vivo intracellular recordings from aPCX layer II/III neurons and field recordings in urethane-anesthetized rats stimulated with odorants. The onset, time course, and extent of LOT synaptic depression during both in vitro electrical and in vivo odorant stimulation methods were similar. Similar to the odor specificity of cortical odor adaptation in vivo, there was no evidence of heterosynaptic depression between independent inputs in vitro. In vitro evidence suggests at least two mechanisms contribute to this activity-dependent synaptic depression: a rapidly recovering presynaptic depression during the initial 10–20 sec of the post-train recovery period and a longer lasting (~120 sec) depression that can be blocked by the metabotropic glutamate receptor (mGluR) II/III antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG) and by the β-adrenergic receptor agonist isoproterenol. Importantly, in line with the in vitro findings, both adaptation of odor responses in the β (15–35 Hz) spectral range and the associated synaptic depression can also be blocked by intracortical infusion of CPPG in vivo. PMID:14736851

  8. Rat Nucleus Accumbens Core Astrocytes Modulate Reward and the Motivation to Self-Administer Ethanol after Abstinence

    PubMed Central

    Bull, Cecilia; Freitas, Kelen CC; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-01-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with

  9. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence.

    PubMed

    Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott

    2014-11-01

    Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with

  10. Specific rescue by ortho-hydroxy atorvastatin of cortical GABAergic neurons from previous oxygen/glucose deprivation: role of pCREB.

    PubMed

    Guirao, Verónica; Martí-Sistac, Octavi; DeGregorio-Rocasolano, Núria; Ponce, Jovita; Dávalos, Antoni; Gasull, Teresa

    2017-11-01

    The statin atorvastatin (ATV) given as a post-treatment has been reported beneficial in stroke, although the mechanisms involved are not well understood so far. Here, we investigated in vitro the effect of post-treatment with ATV and its main bioactive metabolite ortho-hydroxy ATV (o-ATV) on neuroprotection after oxygen and glucose deprivation (OGD), and the role of the pro-survival cAMP response element-binding protein (CREB). Post-OGD treatment of primary cultures of rat cortical neurons with o-ATV, but not ATV, provided neuroprotection to a specific subset of cortical neurons that were large and positive for glutamic acid decarboxylase (large-GAD (+) neurons, GABAergic). Significantly, only these GABAergic neurons showed an increase in phosphorylated CREB (pCREB) early after neuronal cultures were treated post-OGD with o-ATV. We found that o-ATV, but not ATV, increased the neuronal uptake of glutamate from the medium; this provides a rationale for the specific effect of o-ATV on pCREB in large-GABAergic neurons, which have a higher ratio of synaptic (pCREB-promoting) vs extrasynaptic (pCREB-reducing) N-methyl-D-aspartate (NMDA) receptors (NMDAR) than that of small-non-GABAergic neurons. When we pharmacologically increased pCREB levels post-OGD in non-GABAergic neurons, through the selective activation of synaptic NMDAR, we observed as well long-lasting neuronal survival. We propose that the statin metabolite o-ATV given post-OGD boosts the intrinsic pro-survival factor pCREB in large-GABAergic cortical neurons in vitro, this contributing to protect them from OGD. © 2017 International Society for Neurochemistry.

  11. Glutamate mediates platelet activation through the AMPA receptor

    PubMed Central

    Morrell, Craig N.; Sun, Henry; Ikeda, Masahiro; Beique, Jean-Claude; Swaim, Anne Marie; Mason, Emily; Martin, Tanika V.; Thompson, Laura E.; Gozen, Oguz; Ampagoomian, David; Sprengel, Rolf; Rothstein, Jeffrey; Faraday, Nauder; Huganir, Richard; Lowenstein, Charles J.

    2008-01-01

    Glutamate is an excitatory neurotransmitter that binds to the kainate receptor, the N-methyl-D-aspartate (NMDA) receptor, and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR). Each receptor was first characterized and cloned in the central nervous system (CNS). Glutamate is also present in the periphery, and glutamate receptors have been identified in nonneuronal tissues, including bone, heart, kidney, pancreas, and platelets. Platelets play a central role in normal thrombosis and hemostasis, as well as contributing greatly to diseases such as stroke and myocardial infarction. Despite the presence of glutamate in platelet granules, the role of glutamate during hemostasis is unknown. We now show that activated platelets release glutamate, that platelets express AMPAR subunits, and that glutamate increases agonist-induced platelet activation. Furthermore, we demonstrate that glutamate binding to the AMPAR increases intracellular sodium concentration and depolarizes platelets, which are important steps in platelet activation. In contrast, platelets treated with the AMPAR antagonist CNQX or platelets derived from GluR1 knockout mice are resistant to AMPA effects. Importantly, mice lacking GluR1 have a prolonged time to thrombosis in vivo. Our data identify glutamate as a regulator of platelet activation, and suggest that the AMPA receptor is a novel antithrombotic target. PMID:18283118

  12. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride. (b...

  13. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride. (b...

  14. Neonatal treatment with monosodium glutamate lastingly facilitates spreading depression in the rat cortex.

    PubMed

    Lima, Cássia Borges; Soares, Geórgia de Sousa Ferreira; Vitor, Suênia Marcele; Castellano, Bernardo; Andrade da Costa, Belmira Lara da Silveira; Guedes, Rubem Carlos Araújo

    2013-09-17

    Monosodium glutamate (MSG) is a neuroexcitatory amino acid used in human food to enhance flavor. MSG can affect the morphological and electrophysiological organization of the brain. This effect is more severe during brain development. Here, we investigated the electrophysiological and morphological effects of MSG in the developing rat brain by characterizing changes in the excitability-related phenomenon of cortical spreading depression (CSD) and microglial reaction. From postnatal days 1-14, Wistar rat pups received 2 or 4 g/kg MSG (groups MSG-2 and MSG-4, respectively; n=9 in each group), saline (n=10) or no treatment (naïve group; n=5) every other day. At 45-60 days, CSD was recorded on two cortical points for 4h. The CSD parameters velocity, and amplitude and duration of the negative potential change were calculated. Fixative-perfused brain sections were immunolabeled with anti-IBA-1 antibodies to identify and quantify cortical microglia. MSG-4 rats presented significantly higher velocities (4.59 ± 0.34 mm/min) than the controls (saline, 3.84 ± 0.20mm/min; naïve, 3.71 ± 0.8mm/min) and MSG-2 group (3.75 ± 0.10mm/min). The amplitude (8.8 ± 2.2 to 11.2 ± 1.9 mV) and duration (58.2 ± 7.1 to 73.6 ± 6.0s) of the negative slow potential shift was similar in all groups. MSG-treatment dose-dependently increased the microglial immunolabeling. The results demonstrate a novel, dose-dependent action of MSG in the developing brain, characterized by acceleration of CSD and significant microglial reaction in the cerebral cortex. The CSD effect indicates that MSG can influence cortical excitability, during brain development, as evaluated by CSD acceleration. Data suggest caution when consuming MSG, especially in developing organisms. © 2013.

  15. Introduction to the Glutamate-Glutamine Cycle.

    PubMed

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain 14 C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor. This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion but more recent research has seriously questioned this.This volume of Advances in Neurobiology is intended to provide a detailed discussion of recent developments in research aimed at delineating the functional roles of the cycle taking into account that in order for this system to work there must be a tight coupling between metabolism of glutamate in astrocytes, transfer of glutamine to neurons and de novo synthesis of glutamine in astrocytes. To understand this, knowledge about the activity and regulation of the enzymes and transporters involved in these processes is required and as can be seen from the table of contents these issues will be dealt with in detail in the individual chapters of the book.

  16. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment

    PubMed Central

    Rojas, Donald C.

    2014-01-01

    Glutamate is the major excitatory neurotransmitter in the brain and may be a key neurotransmitter involved in autism. Literature pertaining to glutamate and autism or related disorders (e.g., Fragile X syndrome) is reviewed in this article. Interest in glutamatergic dysfunction in autism is high due to increasing convergent evidence implicating the system in the disorder from peripheral biomarkers, neuroimaging, protein expression, genetics and animal models. Currently, there are no pharmaceutical interventions approved for autism that address glutamate deficits in the disorder. New treatments related to glutamatergic neurotransmission, however, are emerging. In addition, older glutamate-modulating medications with approved indications for use in other disorders are being investigated for re-tasking as treatments for autism. This review presents evidence in support of glutamate abnormalities in autism and the potential for translation into new treatments for the disorder. PMID:24752754

  17. Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications?

    PubMed Central

    Kuhn, Jens; Lenartz, Doris; Huff, Wolfgang; Lee, Sun-Hee; Koulousakis, Athanasios; Klosterkoetter, Joachim; Sturm, Volker

    2009-01-01

    Chronic consumption of alcohol represents one of the greatest health and socioeconomic problems worldwide. We report on a 54-year-old patient with a severe anxiety disorder and secondary depressive disorder in whom bilateral deep brain stimulation (DBS) of the nucleus accumbens was carried out. Despite the absence of desired improvement in his primary disorder, we observed a remarkable although not primarily intended alleviation of the patient’s comorbid alcohol dependency. Our case report demonstrates the extremely effective treatment of alcohol dependency by means of DBS of the nucleus accumbens and may reveal new prospects in overcoming therapy resistance in dependencies in general. PMID:21686755

  18. Thiopental sodium preserves the responsiveness to glutamate but not acetylcholine in rat primary cultured neurons exposed to hypoxia.

    PubMed

    Morita, Tomotaka; Shibuta, Satoshi; Kosaka, Jun; Fujino, Yuji

    2016-06-15

    Although many in vitro studies demonstrated that thiopental sodium (TPS) is a promising neuroprotective agent, clinical attempts to use TPS showed mainly unsatisfactory results. We investigated the neuroprotective effects of TPS against hypoxic insults (HI), and the responses of the neurons to l-glutamate and acetylcholine application. Neurons prepared from E17 Wistar rats were used after 2weeks in culture. The neurons were exposed to 12-h HI with or without TPS. HI-induced neurotoxicity was evaluated morphologically. Moreover, we investigated the dynamics of the free intracellular calcium ([Ca(2+)]i) in the surviving neurons after HI with or without TPS pretreatment following the application of neurotransmitters. TPS was neuroprotective against HI according to the morphological examinations (0.73±0.06 vs. 0.52±0.07, P=0.04). While the response to l-glutamate was maintained (0.89±0.08 vs. 1.02±0.09, P=0.60), the [Ca(2+)]i response to acetylcholine was notably impaired (0.59±0.02 vs. 0.94±0.04, P<0.01). Though TPS to cortical cultures was neuroprotective against HI morphologically, the [Ca(2+)]i response not to l-glutamate but to acetylcholine was impaired. This may partially explain the inconsistent results regarding the neuroprotective effects of TPS between experimental studies and clinical settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Using glutamate homeostasis as a target for treating addictive disorders

    PubMed Central

    Reissner, Kathryn J.; Kalivas, Peter W.

    2010-01-01

    Well-developed cellular mechanisms exist to preserve glutamate homeostasis and regulate extrasynaptic glutamate levels. Accumulating evidence indicates that disruptions in glutamate homeostasis are associated with addictive disorders. The disruptions in glutamate concentrations observed following prolonged exposure to drugs of abuse are associated with changes in the function and activity of several key components within the homeostatic control mechanism, including the cystine/glutamate exchanger xc− and the glial glutamate transporter EAAT2/GLT-1. Changes in the balance between synaptic and extrasynaptic glutamate levels in turn influence signaling through pre- and postsynaptic glutamate receptors, and thus affect synaptic plasticity and circuit-level activity. In this review we describe the evidence for impaired glutamate homestasis as a critical mediator of long-term drug-seeking behaviors, how chronic neuroadaptations in xc− and GLT-1 mediate a disruption in glutamate homeostasis, and how targeting these components restores glutamate levels and inhibits drug-seeking behaviors. PMID:20634691

  20. Ipsilateral feeding-specific circuits between the nucleus accumbens shell and the lateral hypothalamus: regulation by glutamate and GABA receptor subtypes.

    PubMed

    Urstadt, Kevin R; Kally, Peter; Zaidi, Sana F; Stanley, B Glenn

    2013-04-01

    The nucleus accumbens shell (AcbSh) and the lateral hypothalamus (LH) are both involved in the control of food intake. Activation of GABA(A) receptors or blockade of AMPA and kainate receptors within the AcbSh induces feeding, as does blockade of GABA(A) receptors or activation of NMDA receptors in the LH. Further, evidence suggests that feeding induced via the AcbSh can be suppressed by LH inhibition. However, it is unclear if this suppression is specific to feeding. Adult male Sprague-Dawley rats with 3 intracranial guide cannulas, one unilaterally into the AcbSh and two bilaterally into the LH, were used to explore this issue. DNQX (1.25 μg) or muscimol (100 ng) infused into the AcbSh unilaterally elicited feeding, and this elicited intake was suppressed by bilateral LH injection of d-AP5 (2 μg) or muscimol (25 ng). The effectiveness of d-AP5 or muscimol infusion into either the LH site ipsilateral or contralateral to the AcbSh injection was compared. Ipsilateral LH injection of d-AP5 or muscimol was significantly more effective than contralateral injection in suppressing food intake initiated by AcbSh injection of DNQX or muscimol. These results add to the prior evidence that inhibition of the LH through pharmacological modulation of NMDA or GABA(A) receptors specifically suppresses feeding initiated by AcbSh inhibition, and that these two regions communicate via an ipsilateral circuit to specifically regulate feeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Regulation of striatal nitric oxide synthesis by local dopamine and glutamate interactions

    PubMed Central

    Park, Diana J.; West, Anthony R.

    2009-01-01

    Nitric oxide (NO) is a key neuromodulator of corticostriatal synaptic transmission. We have shown previously that dopamine (DA) D1/5 receptor stimulation facilitates neuronal NO synthase (nNOS) activity in the intact striatum. To study the impact of local manipulations of D1/5 and glutamatergic NMDA receptors on striatal nNOS activity, we combined the techniques of in vivo amperometry and reverse microdialysis. Striatal NO efflux was monitored proximal to the microdialysis probe in urethane anesthetized rats during local infusion of vehicle or drug. NO efflux elicited by systemic administration of SKF-81297 was blocked following intrastriatal infusion of: 1) the D1/5 receptor antagonist SCH-23390, 2) the nNOS inhibitor 7-nitroindazole, 3) the nonspecific ionotropic glutamate receptor antagonist kynurenic acid, and 4) the selective NMDA receptor antagonist 3-phosphonopropyl-piperazine-2-carboxylic acid. Glycine coperfusion did not affect SKF-81297-induced NO efflux. Furthermore, intrastriatal infusion of SKF-81297 potentiated NO efflux evoked during electrical stimulation of the motor cortex. The facilitatory effects of cortical stimulation and SKF-81297 were both blocked by intrastriatal infusion of SCH-23390, indicating that striatal D1/5 receptor activation is necessary for the activation of nNOS by corticostriatal afferents. These studies demonstrate for the first time that reciprocal DA-glutamate interactions play a critical role in stimulating striatal nNOS activity. PMID:19799710

  2. Patch-clamp, ion-sensing, and glutamate-sensing techniques to study glutamate transport in isolated retinal glial cells.

    PubMed

    Billups, B; Szatkowski, M; Rossi, D; Attwell, D

    1998-01-01

    We have described how a combination of electrical, ion-sensing, and glutamate-sensing techniques has advanced our understanding of glutamate uptake into isolated salamander retinal glial cells. The next steps in understanding glutamate transport will inevitably depend strongly on molecular biological methods, as described elsewhere in this book, but will also require more detailed study of transporters in their normal environment, perhaps by using patch-clamping or imaging techniques to study cells in situ.

  3. Differential effects of repetitive oral administration of monosodium glutamate on interstitial glutamate concentration and muscle pain sensitivity.

    PubMed

    Shimada, Akiko; Baad-Hansen, Lene; Castrillon, Eduardo; Ghafouri, Bijar; Stensson, Niclas; Gerdle, Björn; Ernberg, Malin; Cairns, Brian; Svensson, Peter; Svensson Odont, Peter

    2015-02-01

    The aim of this study was to determine the relationship of high daily monosodium glutamate (MSG) consumption with glutamate concentrations in jaw muscle, saliva, and serum, and muscle pain sensitivity in healthy participants. A randomized, double-blinded, placebo-controlled study was conducted to investigate the effect of repetitive consumption of high-dose MSG on glutamate concentration in the masseter muscles measured by microdialysis and muscle pain sensitivity. In five contiguous experimental daily sessions, 32 healthy participants drank MSG (150 mg/kg) or NaCl (24 mg/kg) diluted with a 400 mL soda. The concentrations of glutamate before and after the ingestion were assessed in dialysate and plasma samples on the first and last days. Saliva glutamate concentration was assessed every day. Pressure pain threshold, pressure pain tolerance, autonomic parameters (heart rate, systolic and diastolic blood pressures) and reported side effects also were assessed. No significant change was noted in the baseline concentration of glutamate in the masseter muscle, blood, or saliva, but the peak concentration in the masseter muscle increased significantly between day 1 and 5. A statistically significant increase in systolic and diastolic blood pressures after MSG administration was observed, as well as a significantly higher frequency of reports of nausea and headache in the MSG group. No robust effect of MSG on muscle sensitivity was found. Interstitial glutamate concentration in the masseter muscle is not highly disturbed by excessive repetitive intake of MSG in healthy man. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The Nitric Oxide Donor SNAP-Induced Amino Acid Neurotransmitter Release in Cortical Neurons. Effects of Blockers of Voltage-Dependent Sodium and Calcium Channels

    PubMed Central

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    Background The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. Findings The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Conclusions Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons. PMID:24598811

  5. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    PubMed

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  6. Sleep/wake dependent changes in cortical glucose concentrations.

    PubMed

    Dash, Michael B; Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara

    2013-01-01

    Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  7. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    PubMed

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  8. Chronic suppression of μ-opioid receptor signaling in the nucleus accumbens attenuates development of diet-induced obesity in rats.

    PubMed

    Lenard, N R; Zheng, H; Berthoud, H-R

    2010-06-01

    To test the hypothesis that micro-opioid receptor signaling in the nucleus accumbens contributes to hedonic (over)eating and obesity. To investigate the effects of chronic micro-opioid antagonism in the nucleus accumbens core or shell on intake of a palatable diet, and the development of diet-induced obesity in rats. Chronic blockade of micro-opioid receptor signaling in the nucleus accumbens core or shell was achieved by means of repeated injections (every 4-5 days) of the irreversible receptor antagonist beta-funaltrexamine (BFNA) over 3-5 weeks. The diet consisted of either a choice of high-fat chow, chocolate-flavored Ensure and regular chow (each nutritionally complete) or regular chow only. Intake of each food item, body weight and body fat mass were monitored throughout the study. The BFNA injections aimed at either the core or shell of the nucleus accumbens resulted in significantly attenuated intake of palatable diet, body weight gain and fat accretion, compared with vehicle control injections. The injection of BFNA in the core did not significantly change these parameters in chow-fed control rats. The injection of BFNA in the core and shell differentially affected intake of the two palatable food items: in the core, BFNA significantly reduced the intake of high-fat, but not of Ensure, whereas in the shell, it significantly reduced the intake of Ensure, but not of high-fat, compared with vehicle treatment. Endogenous micro-opioid receptor signaling in the nucleus accumbens core and shell is necessary for palatable diet-induced hyperphagia and obesity to fully develop in rats. Sweet and non-sweet fatty foods may be differentially processed in subcomponents of the ventral striatum.

  9. An optimized fluorescent probe for visualizing glutamate neurotransmission.

    PubMed

    Marvin, Jonathan S; Borghuis, Bart G; Tian, Lin; Cichon, Joseph; Harnett, Mark T; Akerboom, Jasper; Gordus, Andrew; Renninger, Sabine L; Chen, Tsai-Wen; Bargmann, Cornelia I; Orger, Michael B; Schreiter, Eric R; Demb, Jonathan B; Gan, Wen-Biao; Hires, S Andrew; Looger, Loren L

    2013-02-01

    We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.

  10. Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact.

    PubMed

    Belousov, Andrei B; Wang, Yongfu; Song, Ji-Hoon; Denisova, Janna V; Berman, Nancy E; Fontes, Joseph D

    2012-08-22

    In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. Recent studies in mice showed a critical role for neuronal gap junctions in NMDA receptor-mediated excitotoxicity and ischemia-mediated neuronal death. Here, using controlled cortical impact (CCI) in adult mice, as a model of TBI, and Fluoro-Jade B staining for analysis of neuronal death, we set to determine whether neuronal gap junctions play a role in the CCI-mediated secondary neuronal death. We report that 24h post-CCI, substantial neuronal death is detected in a number of brain regions outside the injury core, including the striatum. The striatal neuronal death is reduced both in wild-type mice by systemic administration of mefloquine (a relatively selective blocker of neuronal gap junctions) and in knockout mice lacking connexin 36 (neuronal gap junction protein). It is also reduced by inactivation of group II metabotropic glutamate receptors (with LY341495) which, as reported previously, control the rapid increase in neuronal gap junction coupling following different types of neuronal injury. The results suggest that neuronal gap junctions play a critical role in the CCI-induced secondary neuronal death. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Moclobemide attenuates anoxia and glutamate-induced neuronal damage in vitro independently of interaction with glutamate receptor subtypes.

    PubMed

    Verleye, Marc; Steinschneider, Remy; Bernard, François Xavier; Gillardin, Jean-Marie

    2007-03-23

    Recent data suggested the existence of a bidirectional relation between depression and neurodegenerative diseases resulting from cerebral ischemia injury. Glutamate, a major excitatory neurotransmitter, has long been recognised to play a key role in the pathophysiology of anoxia or ischemia, due to its excessive accumulation in the extracellular space and the subsequent activation of its receptors. A characteristic response to glutamate is the increase in cytosolic Na(+) and Ca(2+) levels which is due mainly to influx from the extracellular space, with a consequent cell swelling and oxidative metabolism dysfunction. The present study examined the in vitro effects of the antidepressant and type-A monoamine oxidase inhibitor, moclobemide, in neuronal-astroglial cultures from rat cerebral cortex exposed to anoxia (for 5 and 7 h) or to glutamate (2 mM for 6 h), two in vitro models of brain ischemia. In addition, the affinity of moclobemide for the different glutamate receptor subtypes and an interaction with the cell influx of Na(+) and of Ca(2+) enhanced by veratridine and K(+) excess, respectively, were evaluated. Moclobemide (10-100 microM) included in the culture medium during anoxia or with glutamate significantly increased in a concentration-dependent manner the amount of surviving neurons compared to controls. Moclobemide displayed no binding affinity for the different glutamate receptor subtypes (IC(50)>100 microM) and did not block up to 300 microM the entry of Na(+) and of Ca(2+) activated by veratridine and K(+), respectively. These results suggest that the neuroprotective properties of moclobemide imply neither the glutamate neurotransmission nor the Na(+) and Ca(2+) channels.

  12. An examination of the roles of glutamate and sex in latent inhibition: Relevance to the glutamate hypothesis of schizophrenia?

    PubMed

    Huang, Andrew Chih Wei; Bo-Han He, Alan; Chen, Chih-Chung

    2017-10-01

    The present study examined the effects of the glutamate receptor antagonist MK-801, the glutamate receptor agonist N-methyl-D-aspartate (NMDA), and sexual dimorphism on latent inhibition to elucidate the glutamate hypothesis of schizophrenia. During the pre-exposure phase, 56 male and 65 female Wistar rats were intracerebroventricularly administered normal saline, MK-801 or NMDA, in the left ventricle and then exposed to a passive avoidance box (or a different context) in three trials over 3 days. Then, all of the rats were placed in the light compartment of the passive avoidance box and were allowed to enter the dark compartment, where they each received a footshock (1mA, 2s) in five trials over 5 days. Injections of the glutamate drugs NMDA and MK-801 did not affect latent inhibition. Sexual dimorphism did not occur in latent inhibition. The present data on the male rats indicated that the glutamate system did not affect latent inhibition, indicating that the glutamate system was not like the dopamine system in terms of mediating the positive symptoms of schizophrenia. The glutamate system might be involved in the negative and cognitive symptoms of schizophrenia. The results may provide information for novel treatments of the negative and cognitive symptoms of schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Role of the Nucleus Accumbens in Knowing when to Respond

    ERIC Educational Resources Information Center

    Singh, Teghpal; McDannald, Michael A.; Takahashi, Yuji K.; Haney, Richard Z.; Cooch, Nisha K.; Lucantonio, Federica; Schoenbaum, Geoffrey

    2011-01-01

    While knowing what to expect is important, it is equally important to know when to expect it and to respond accordingly. This is apparent even in simple Pavlovian training situations in which animals learn to respond more strongly closer to reward delivery. Here we report that the nucleus accumbens core, an area well-positioned to represent…

  14. Prefrontal glutamate correlates of methamphetamine sensitization and preference

    PubMed Central

    Lominac, Kevin D.; Quadir, Sema G.; Barrett, Hannah M.; McKenna, Courtney L.; Schwartz, Lisa M.; Ruiz, Paige N.; Wroten, Melissa G.; Campbell, Rianne R.; Miller, Bailey W.; Holloway, John J.; Travis, Katherine O.; Rajasekar, Ganesh; Maliniak, Dan; Thompson, Andrew B.; Urman, Lawrence E.; Kippin, Tod E.; Phillips, Tamara J.; Szumlinski, Karen K.

    2016-01-01

    Methamphetamine (MA) is a widely abused, highly addictive, psychostimulant that elicits pronounced deficits in neurocognitive function related to hypo-functioning of the prefrontal cortex (PFC). Our understanding of how repeated methamphetamine impacts excitatory glutamatergic transmission within the PFC is limited, as is information about the relation between PFC glutamate and addiction vulnerability/resiliency. In vivo microdialysis and immunoblotting studies characterized the effects of methamphetamine (10 injections of 2 mg/kg, IP) upon extracellular glutamate in C57BL/6J mice and upon glutamate receptor and transporter expression, within the medial PFC. Glutamatergic correlates of both genetic and idiopathic variance in MA preference/intake were determined through studies of high versus low MA-drinking selectively bred mouse lines (MAHDR versus MALDR, respectively) and inbred C57BL/6J mice exhibiting spontaneously divergent place-conditioning phenotypes. Repeated methamphetamine sensitized drug-induced glutamate release and lowered indices of NMDA receptor expression in C57BL/6J mice, but did not alter basal extracellular glutamate content or total protein expression of Homer proteins, or metabotropic or AMPA glutamate receptors. Elevated basal glutamate, blunted methamphetamine-induced glutamate release and ERK activation, as well as reduced protein expression of mGlu2/3 and Homer2a/b were all correlated biochemical traits of selection for high versus low methamphetamine drinking, and Homer2a/b levels were inversely correlated with the motivational valence of methamphetamine in C57BL/6J mice. These data provide novel evidence that repeated, low-dose, methamphetamine is sufficient to perturb pre- and post-synaptic aspects of glutamate transmission within the medial PFC and that glutamate anomalies within this region may contribute to both genetic and idiopathic variance in methamphetamine addiction vulnerability/resiliency. PMID:26742098

  15. Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia

    PubMed Central

    Ranasinghe, Sumudu; Or, Grace; Wang, Eric Y.; Ievins, Aiva; McLean, Merritt A.; Niell, Cristopher M.; Chau, Vann; Wong, Peter K. H.; Glass, Hannah C.; Sullivan, Joseph

    2015-01-01

    Survivors of preterm birth are at high risk of pervasive cognitive and learning impairments, suggesting disrupted early brain development. The limits of viability for preterm birth encompass the third trimester of pregnancy, a “precritical period” of activity-dependent development characterized by the onset of spontaneous and evoked patterned electrical activity that drives neuronal maturation and formation of cortical circuits. Reduced background activity on electroencephalogram (EEG) is a sensitive marker of brain injury in human preterm infants that predicts poor neurodevelopmental outcome. We studied a rodent model of very early hypoxic–ischemic brain injury to investigate effects of injury on both general background and specific patterns of cortical activity measured with EEG. EEG background activity is depressed transiently after moderate hypoxia–ischemia with associated loss of spindle bursts. Depressed activity, in turn, is associated with delayed expression of glutamate receptor subunits and transporters. Cortical pyramidal neurons show reduced dendrite development and spine formation. Complementing previous observations in this model of impaired visual cortical plasticity, we find reduced somatosensory whisker barrel plasticity. Finally, EEG recordings from human premature newborns with brain injury demonstrate similar depressed background activity and loss of bursts in the spindle frequency band. Together, these findings suggest that abnormal development after early brain injury may result in part from disruption of specific forms of brain activity necessary for activity-dependent circuit development. SIGNIFICANCE STATEMENT Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Poor outcomes are noted in a majority of very premature (<25 weeks gestation) newborns, resulting in death or life-long morbidity with motor, sensory, learning, behavioral

  16. N-acetylcysteine, a glutamate modulator, in the treatment of trichotillomania: a double-blind, placebo-controlled study.

    PubMed

    Grant, Jon E; Odlaug, Brian L; Kim, Suck Won

    2009-07-01

    Trichotillomania is characterized by repetitive hair pulling that causes noticeable hair loss. Data on the pharmacologic treatment of trichotillomania are limited to conflicting studies of serotonergic medications. N-acetylcysteine, an amino acid, seems to restore the extracellular glutamate concentration in the nucleus accumbens and, therefore, offers promise in the reduction of compulsive behavior. To determine the efficacy and tolerability of N-acetylcysteine in adults with trichotillomania. Twelve-week, double-blind, placebo-controlled trial. Ambulatory care center. Fifty individuals with trichotillomania (45 women and 5 men; mean [SD] age, 34.3 [12.1] years). N-acetylcysteine (dosing range, 1200-2400 mg/d) or placebo was administered for 12 weeks. Patients were assessed using the Massachusetts General Hospital Hair Pulling Scale, the Clinical Global Impression scale, the Psychiatric Institute Trichotillomania Scale, and measures of depression, anxiety, and psychosocial functioning. Outcomes were examined using analysis of variance modeling analyses and linear regression in an intention-to-treat population. Patients assigned to receive N-acetylcysteine had significantly greater reductions in hair-pulling symptoms as measured using the Massachusetts General Hospital Hair Pulling Scale (P < .001) and the Psychiatric Institute Trichotillomania Scale (P = .001). Fifty-six percent of patients "much or very much improved" with N-acetylcysteine use compared with 16% taking placebo (P = .003). Significant improvement was initially noted after 9 weeks of treatment. This study, the first to our knowledge that examines the efficacy of a glutamatergic agent in the treatment of trichotillomania, found that N-acetylcysteine demonstrated statistically significant reductions in trichotillomania symptoms. No adverse events occurred in the N-acetylcysteine group, and N-acetylcysteine was well tolerated. Pharmacologic modulation of the glutamate system may prove to be useful in

  17. Intra-accumbens baclofen, but not muscimol, increases second order instrumental responding for food reward in rats.

    PubMed

    Pulman, Kim G T; Somerville, Elizabeth M; Clifton, Peter G

    2012-01-01

    Stimulation of either GABA(A) or GABA(B) receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A) receptor agonist muscimol and GABA(B) receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol) stimulated responding but a higher dose (660 pmol) induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol) also stimulated intake of freely available chow. Muscimol (220-660 pmol) was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol) induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A) or GABA(B) receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.

  18. The Influence of Glutamate on Axonal Compound Action Potential In Vitro.

    PubMed

    Abouelela, Ahmed; Wieraszko, Andrzej

    2016-01-01

    Background  Our previous experiments demonstrated modulation of the amplitude of the axonal compound action potential (CAP) by electrical stimulation. To verify assumption that glutamate released from axons could be involved in this phenomenon, the modification of the axonal CAP induced by glutamate was investigated. Objectives  The major objective of this research is to verify the hypothesis that axonal activity would trigger the release of glutamate, which in turn would interact with specific axonal receptors modifying the amplitude of the action potential. Methods  Segments of the sciatic nerve were exposed to exogenous glutamate in vitro, and CAP was recorded before and after glutamate application. In some experiments, the release of radioactive glutamate analog from the sciatic nerve exposed to exogenous glutamate was also evaluated. Results  The glutamate-induced increase in CAP was blocked by different glutamate receptor antagonists. The effect of glutamate was not observed in Ca-free medium, and was blocked by antagonists of calcium channels. Exogenous glutamate, applied to the segments of sciatic nerve, induced the release of radioactive glutamate analog, demonstrating glutamate-induced glutamate release. Immunohistochemical examination revealed that axolemma contains components necessary for glutamatergic neurotransmission. Conclusion  The proteins of the axonal membrane can under the influence of electrical stimulation or exogenous glutamate change membrane permeability and ionic conductance, leading to a change in the amplitude of CAP. We suggest that increased axonal activity leads to the release of glutamate that results in changes in the amplitude of CAPs.

  19. Grewia tiliaefolia and its active compound vitexin regulate the expression of glutamate transporters and protect Neuro2a cells from glutamate toxicity.

    PubMed

    Malar, Dicson Sheeja; Prasanth, Mani Iyer; Shafreen, Rajamohamed Beema; Balamurugan, Krishnaswamy; Devi, Kasi Pandima

    2018-04-25

    Glutamate is a major neurotransmitter involved in several brain functions and glutamate excitotoxicity is involved in Alzheimer's disease (AD). In the current study, the neuroprotective effect of the Indian medicinal plant Grewia tiliaefolia (GT) and its active component vitexin was evaluated in Neuro-2a cells against glutamate toxicity. Neuro-2a cells were exposed to glutamate to cause excitotoxicity and the neuroprotective effect of GT and vitexin were evaluated using biochemical studies (estimation of reactive oxygen species, reactive nitrogen species, protein carbonyl content, lipid peroxidation level, mitochondrial membrane potential and caspase-3 activity), molecular docking studies, gene expression and western blot analysis. Glutamate exposure to Neuro-2a cells induced oxidative stress, loss of membrane potential, suppressed the expression of antioxidant response genes (Nrf-2, HO-1, NQO-1), glutamate transporters (GLAST-1, GLT-1) and induced the expression of NMDAR, Calpain. However, pre-treatment of cells with GT/vitexin inhibited oxidative stress mediated damage by augmenting the expression of Nrf-2/HO-1 pathway, inducing the expression of glutamate transporters and downregulating Calpain, NMDAR. Molecular docking showed that vitexin effectively binds to NMDAR and GSK-3β and thereby can inhibit their activation. GT/vitexin also inhibited glutamate induced Bax expression. Methanol extract of G. tiliaefolia and its active component vitexin can act in an antioxidant dependent mechanism as well as by regulating glutamate in mitigating the toxicity exerted by glutamate in Neuro-2a cells. Our results conclude that GT/vitexin can act as potential drug leads for the therapeutic intervention of AD. Copyright © 2017. Published by Elsevier Inc.

  20. Increased pain and muscle glutamate concentration after single ingestion of monosodium glutamate by myofascial temporomandibular disorders patients.

    PubMed

    Shimada, A; Castrillon, E E; Baad-Hansen, L; Ghafouri, B; Gerdle, B; Wåhlén, K; Ernberg, M; Cairns, B E; Svensson, P

    2016-10-01

    A randomized, double-blinded, placebo-controlled study was conducted to investigate if single monosodium glutamate (MSG) administration would elevate muscle/serum glutamate concentrations and affect muscle pain sensitivity in myofascial temporomandibular disorders (TMD) patients more than in healthy individuals. Twelve myofascial TMD patients and 12 sex- and age-matched healthy controls participated in two sessions. Participants drank MSG (150 mg/kg) or NaCl (24 mg/kg; control) diluted in 400 mL of soda. The concentration of glutamate in the masseter muscle, blood plasma and saliva was determined before and after the ingestion of MSG or control. At baseline and every 15 min after the ingestion, pain intensity was scored on a 0-10 numeric rating scale. Pressure pain threshold, pressure pain tolerance (PPTol) and autonomic parameters were measured. All participants were asked to report adverse effects after the ingestion. In TMD, interstitial glutamate concentration was significantly greater after the MSG ingestion when compared with healthy controls. TMD reported a mean pain intensity of 2.8/10 at baseline, which significantly increased by 40% 30 min post MSG ingestion. At baseline, TMD showed lower PPTols in the masseter and trapezius, and higher diastolic blood pressure and heart rate than healthy controls. The MSG ingestion resulted in reports of headache by half of the TMD and healthy controls, respectively. These findings suggest that myofascial TMD patients may be particularly sensitive to the effects of ingested MSG. WHAT DOES THIS STUDY ADD?': Elevation of interstitial glutamate concentration in the masseter muscle caused by monosodium glutamate (MSG) ingestion was significantly greater in myofascial myofascial temporomandibular disorders (TMD) patients than healthy individuals. This elevation of interstitial glutamate concentration in the masseter muscle significantly increased the intensity of spontaneous pain in myofascial TMD patients. © 2016

  1. Pharmacological stimuli decreasing nucleus accumbens dopamine can act as positive reinforcers but have a low addictive potential.

    PubMed

    Marinelli, M; Barrot, M; Simon, H; Oberlander, C; Dekeyne, A; Le Moal, M; Piazza, P V

    1998-10-01

    Opioid peptides, through mu and delta receptors, play an important part in reward. In contrast, the role of kappa receptors is more controversial. We examined the possible positive reinforcing effects of a selective kappa agonist, RU 51599, by studying intravenous self-administration in the rat. The effect of RU 51599 on dopamine release in the nucleus accumbens was also studied, as opioids and dopamine seem to interact in the mediation of reward. The behavioural and dopaminergic effects of RU 51599 were compared with those of the mu agonist heroin. Rats self-administered both RU 51599 (6.5, 20 and 60 microg/inj) and heroin (30 microg/inj) at low ratio requirement. When the ratio requirement, i.e. the number of responses necessary to receive one drug infusion, was increased, self-administration of RU 51599 rapidly extinguished, whereas self-administration of heroin was maintained. Intravenous infusion of RU 51599 (100, 200 and 400 microg) dose-dependently decreased (25, 30 and 40%, respectively) extracellular concentrations of dopamine, as measured by means of microdialysis in freely moving rats. In contrast, heroin increased accumbens dopamine (130% over baseline). These results indicate that kappa receptors, similarly to mu ones, can mediate positive reinforcing effects of opioid peptides. However, the strength of the reinforcement is very low for kappa receptors. This suggests that changes in accumbens dopamine do not correlate with the capacity of a stimulus to induce reward or aversion. In contrast, a parallel seems to exist between an increase in accumbens dopamine and the drive to reach or obtain a positive reinforcer.

  2. Excessive disgust caused by brain lesions or temporary inactivations: Mapping hotspots of nucleus accumbens and ventral pallidum

    PubMed Central

    Ho, Chao-Yi; Berridge, Kent C.

    2014-01-01

    Disgust is a prototypical type of negative affect. In animal models of excessive disgust, only a few brain sites are known in which localized dysfunction (lesions or neural inactivations) can induce intense ‘disgust reactions’ (e.g., gapes) to a normally pleasant sensation such as sweetness. Here we aimed to map forebrain candidates more precisely to identify where either local neuronal damage (excitotoxin lesions) or local pharmacological inactivation (muscimol-baclofen microinjections) caused rats to emit excessive sensory disgust reactions to sucrose. Our study compared subregions of nucleus accumbens shell, ventral pallidum, lateral hypothalamus and adjacent extended amygdala. Results indicated the posterior half of ventral pallidum to be the only forebrain site where intense sensory disgust gapes to sucrose were induced by both lesions and temporary inactivations (this site was previously identified as a hedonic hotspot for enhancements of sweetness ‘liking’). By comparison, for the nucleus accumbens, temporary GABA inactivations in the caudal half of the medial shell also generated sensory disgust but lesions never did at any site. Further, even inactivations failed to induce disgust in the rostral half of accumbens shell (which also contains a hedonic hotspot). In other structures, neither lesions nor inactivations induced disgust as long as the posterior ventral pallidum remained spared. We conclude that the posterior ventral pallidum is an especially crucial hotspot for producing excessive sensory disgust by local pharmacological/lesion dysfunction. By comparison, the nucleus accumbens appears to segregate sites for pharmacological disgust induction and hedonic enhancement into separate posterior versus rostral halves of medial shell. PMID:25229197

  3. AMN082-a metabotropic glutamate receptor type 7 allosteric agonist in the NAc facilitates extinction and inhibits the reinstatement of morphine-induced conditioned place preference in male rats.

    PubMed

    Vatankhah, Mahsaneh; Sarihi, Abdolrahman; Komaki, Alireza; Shahidi, Siamak; Haghparast, Abbas

    2018-03-29

    Nucleus accumbens (NAc) plays a primary role in opioid reward. The actions of glutamate (which is the most extensive excitatory neurotransmitter in the mammalian central nervous system) are mediated through the activation of the ionotropic and metabotropic glutamate receptors (mGluRs). Previous studies have shown the extensive distributions of the different types of mGluRs, including mGluR7, in regions that are involved in opioid reward, such as NAc. In this study, CPP was used to investigate the effect of mGluR7 on the extinction period, and the reinstatement of morphine. The animals received bilaterally microinjections of AMN082, a selective mGluR 7 allosteric agonist, into the NAc. In Experiment 1, the rats received AMN082 (1 and 5 μg/0.5 μl) during the extinction period. In Experiment 2, the CPP morphine-extinguished rats received AMN082 (1, 3 and 5 μg/0.5 μl) five minutes prior to the administration of an ineffective dosage of morphine (1 mg/kg) in order to reinstate the extinguished morphine. The results of the recorded conditioning scores in this study showed that the intra-accumbal administration of AMN08 reduced the extinction period of morphine. Moreover, the administration of AMN082 into the NAc dose-dependently inhibited the reinstatement of morphine. The findings suggested that the mGluR7 in the NAc facilitates the extinction and inhibits the reinstatement of the morphine-induced CPP that could have been mediated by an increase in the release of extracellular glutamate. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Characterization of energy and neurotransmitter metabolism in cortical glutamatergic neurons derived from human induced pluripotent stem cells: A novel approach to study metabolism in human neurons.

    PubMed

    Aldana, Blanca I; Zhang, Yu; Lihme, Maria Fog; Bak, Lasse K; Nielsen, Jørgen E; Holst, Bjørn; Hyttel, Poul; Freude, Kristine K; Waagepetersen, Helle S

    2017-06-01

    Alterations in the cellular metabolic machinery of the brain are associated with neurodegenerative disorders such as Alzheimer's disease. Novel human cellular disease models are essential in order to study underlying disease mechanisms. In the present study, we characterized major metabolic pathways in neurons derived from human induced pluripotent stem cells (hiPSC). With this aim, cultures of hiPSC-derived neurons were incubated with [U- 13 C]glucose, [U- 13 C]glutamate or [U- 13 C]glutamine. Isotopic labeling in metabolites was determined using gas chromatography coupled to mass spectrometry, and cellular amino acid content was quantified by high-performance liquid chromatography. Additionally, we evaluated mitochondrial function using real-time assessment of oxygen consumption via the Seahorse XF e 96 Analyzer. Moreover, in order to validate the hiPSC-derived neurons as a model system, a metabolic profiling was performed in parallel in primary neuronal cultures of mouse cerebral cortex and cerebellum. These serve as well-established models of GABAergic and glutamatergic neurons, respectively. The hiPSC-derived neurons were previously characterized as being forebrain-specific cortical glutamatergic neurons. However, a comparable preparation of predominantly mouse cortical glutamatergic neurons is not available. We found a higher glycolytic capacity in hiPSC-derived neurons compared to mouse neurons and a substantial oxidative metabolism through the mitochondrial tricarboxylic acid (TCA) cycle. This finding is supported by the extracellular acidification and oxygen consumption rates measured in the cultured human neurons. [U- 13 C]Glutamate and [U- 13 C]glutamine were found to be efficient energy substrates for the neuronal cultures originating from both mice and humans. Interestingly, isotopic labeling in metabolites from [U- 13 C]glutamate was higher than that from [U- 13 C]glutamine. Although the metabolic profile of hiPSC-derived neurons in vitro was

  5. Extracorporeal methods of blood glutamate scavenging: a novel therapeutic modality.

    PubMed

    Zhumadilov, Agzam; Boyko, Matthew; Gruenbaum, Shaun E; Brotfain, Evgeny; Bilotta, Federico; Zlotnik, Alexander

    2015-05-01

    Pathologically elevated glutamate concentrations in the brain's extracellular fluid are associated with several acute and chronic brain insults. Studies have demonstrated that by decreasing the concentration of glutamate in the blood, thereby increasing the concentration gradient between the brain and the blood, the rate of brain-to-blood glutamate efflux can be increased. Blood glutamate scavengers, pyruvate and oxaloacetate have shown great promise in providing neuroprotection in many animal models of acute brain insults. However, glutamate scavengers' potential systemic toxicity, side effects and pharmacokinetic properties may limit their use in clinical practice. In contrast, extracorporeal methods of blood glutamate reduction, in which glutamate is filtered from the blood and eliminated, may be an advantageous adjunct in treating acute brain insults. Here, we review the current evidence for the glutamate-lowering effects of hemodialysis, peritoneal dialysis and hemofiltration. The evidence reviewed here highlights the need for clinical trials.

  6. Wireless Instantaneous Neurotransmitter Concentration System–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring

    PubMed Central

    Agnesi, Filippo; Tye, Susannah J.; Bledsoe, Jonathan M.; Griessenauer, Christoph J.; Kimble, Christopher J.; Sieck, Gary C.; Bennet, Kevin E.; Garris, Paul A.; Blaha, Charles D.; Lee, Kendall H.

    2009-01-01

    Object In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. Methods The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal

  7. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.

    PubMed

    Agnesi, Filippo; Tye, Susannah J; Bledsoe, Jonathan M; Griessenauer, Christoph J; Kimble, Christopher J; Sieck, Gary C; Bennet, Kevin E; Garris, Paul A; Blaha, Charles D; Lee, Kendall H

    2009-10-01

    In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal model, the pig. The

  8. A Novel Corynebacterium glutamicum l-Glutamate Exporter.

    PubMed

    Wang, Yu; Cao, Guoqiang; Xu, Deyu; Fan, Liwen; Wu, Xinyang; Ni, Xiaomeng; Zhao, Shuxin; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2018-03-15

    Besides metabolic pathways and regulatory networks, transport systems are also pivotal for cellular metabolism and hyperproduction of biochemicals using microbial cell factories. The identification and characterization of transporters are therefore of great significance for the understanding and engineering of transport reactions. Herein, a novel l-glutamate exporter, MscCG2, which exists extensively in Corynebacterium glutamicum strains but is distinct from the only known l-glutamate exporter, MscCG, was discovered in an industrial l-glutamate-producing C. glutamicum strain. MscCG2 was predicted to possess three transmembrane helices in the N-terminal region and located in the cytoplasmic membrane, which are typical structural characteristics of the mechanosensitive channel of small conductance. MscCG2 has a low amino acid sequence identity (23%) to MscCG and evolved separately from MscCG with four transmembrane helices. Despite the considerable differences between MscCG2 and MscCG in sequence and structure, gene deletion and complementation confirmed that MscCG2 also functioned as an l-glutamate exporter and an osmotic safety valve in C. glutamicum Besides, transcriptional analysis showed that MscCG2 and MscCG genes were transcribed in similar patterns and not induced by l-glutamate-producing conditions. It was also demonstrated that MscCG2-mediated l-glutamate excretion was activated by biotin limitation or penicillin treatment and that constitutive l-glutamate excretion was triggered by a gain-of-function mutation of MscCG2 (A151V). Discovery of MscCG2 will enrich the understanding of bacterial amino acid transport and provide additional targets for exporter engineering. IMPORTANCE The exchange of matter, energy, and information with surroundings is fundamental for cellular metabolism. Therefore, studying transport systems that are essential for these processes is of great significance. Besides, transport systems of bacterial cells are usually related to

  9. Costimulation of AMPA and metabotropic glutamate receptors underlies phospholipase C activation by glutamate in hippocampus.

    PubMed

    Kim, Hye-Hyun; Lee, Kyu-Hee; Lee, Doyun; Han, Young-Eun; Lee, Suk-Ho; Sohn, Jong-Woo; Ho, Won-Kyung

    2015-04-22

    Glutamate, a major neurotransmitter in the brain, activates ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs, respectively). The two types of glutamate receptors interact with each other, as exemplified by the modulation of iGluRs by mGluRs. However, the other way of interaction (i.e., modulation of mGluRs by iGluRs) has not received much attention. In this study, we found that group I mGluR-specific agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) alone is not sufficient to activate phospholipase C (PLC) in rat hippocampus, while glutamate robustly activates PLC. These results suggested that additional mechanisms provided by iGluRs are involved in group I mGluR-mediated PLC activation. A series of experiments demonstrated that glutamate-induced PLC activation is mediated by mGluR5 and is facilitated by local Ca(2+) signals that are induced by AMPA-mediated depolarization and L-type Ca(2+) channel activation. Finally, we found that PLC and L-type Ca(2+) channels are involved in hippocampal mGluR-dependent long-term depression (mGluR-LTD) induced by paired-pulse low-frequency stimulation, but not in DHPG-induced chemical LTD. Together, we propose that AMPA receptors initiate Ca(2+) influx via the L-type Ca(2+) channels that facilitate mGluR5-PLC signaling cascades, which underlie mGluR-LTD in rat hippocampus. Copyright © 2015 the authors 0270-6474/15/356401-12$15.00/0.

  10. Markedly Lower Glutamic Acid Decarboxylase 67 Protein Levels in a Subset of Boutons in Schizophrenia.

    PubMed

    Rocco, Brad R; Lewis, David A; Fish, Kenneth N

    2016-06-15

    Convergent findings indicate that cortical gamma-aminobutyric acid (GABA)ergic circuitry is altered in schizophrenia. Postmortem studies have consistently found lower levels of glutamic acid decarboxylase 67 (GAD67) messenger RNA (mRNA) in the prefrontal cortex (PFC) of subjects with schizophrenia. At the cellular level, the density of GABA neurons with detectable levels of GAD67 mRNA is ~30% lower across cortical layers. Knowing how this transcript deficit translates to GAD67 protein levels in axonal boutons is important for understanding the impact it might have on GABA synthesis. In addition, because reductions in GAD67 expression before, but not after, the maturation of GABAergic boutons results in a lower density of GABAergic boutons in mouse cortical cultures, knowing if GABAergic bouton density is altered in schizophrenia would provide insight into the timing of the GAD67 deficit. PFC tissue sections from 20 matched pairs of schizophrenia and comparison subjects were immunolabeled for the vesicular GABA transporter (vGAT) and GAD67. vGAT+ bouton density did not differ between subject groups, consistent with findings that vGAT mRNA levels are unaltered in the illness and confirming that the number of cortical GABAergic boutons is not lower in schizophrenia. In contrast, in schizophrenia subjects, the proportion of vGAT+ boutons with detectable GAD67 levels (vGAT+/GAD67+ boutons) was 16% lower and mean GAD67 levels were 14% lower in the remaining vGAT+/GAD67+ boutons. Our findings suggest that GABA production is markedly reduced in a subset of boutons in the PFC of schizophrenia subjects and that this reduction likely occurs after the maturation of GABAergic boutons. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Glutamate. Its applications in food and contribution to health.

    PubMed

    Jinap, S; Hajeb, P

    2010-08-01

    This article reviews application of glutamate in food and its benefits and role as one of the common food ingredients used. Monosodium glutamate is one of the most abundant naturally occurring amino acids which frequently added as a flavor enhancer. It produced a unique taste that cannot be provided by other basic taste (saltiness, sourness, sweetness and bitterness), referred to as a fifth taste (umami). Glutamate serves some functions in the body as well, serving as an energy source for certain tissues and as a substrate for glutathione synthesis. Glutamate has the potential to enhance food intake in older individuals and dietary free glutamate evoked a visceral sensation from the stomach, intestine and portal vein. Small quantities of glutamate used in combination with a reduced amount of table salt during food preparation allow for far less salt to be used during and after cooking. Because glutamate is one of the most intensely studied food ingredients in the food supply and has been found safe, the Joint Expert Committee on Food Additives of the United Nations Food and Agriculture Organization and World Health Organization placed it in the safest category for food additives. Despite a widespread belief that glutamate can elicit asthma, migraine headache and Chinese Restaurant Syndrome (CRS), there are no consistent clinical data to support this claim. In addition, findings from the literature indicate that there is no consistent evidence to suggest that individuals may be uniquely sensitive to glutamate. 2010 Elsevier Ltd. All rights reserved.

  12. Therapeutic potential of metabotropic glutamate receptor modulators.

    PubMed

    Hovelsø, N; Sotty, F; Montezinho, L P; Pinheiro, P S; Herrik, K F; Mørk, A

    2012-03-01

    Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson's disease, Alzheimer's disease and pain.

  13. Therapeutic Potential of Metabotropic Glutamate Receptor Modulators

    PubMed Central

    Hovelsø, N; Sotty, F; Montezinho, L.P; Pinheiro, P.S; Herrik, K.F; Mørk, A

    2012-01-01

    Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson’s disease, Alzheimer’s disease and pain. PMID:22942876

  14. Synaptic function is modulated by LRRK2 and glutamate release is increased in cortical neurons of G2019S LRRK2 knock-in mice.

    PubMed

    Beccano-Kelly, Dayne A; Kuhlmann, Naila; Tatarnikov, Igor; Volta, Mattia; Munsie, Lise N; Chou, Patrick; Cao, Li-Ping; Han, Heather; Tapia, Lucia; Farrer, Matthew J; Milnerwood, Austen J

    2014-01-01

    Mutations in Leucine-Rich Repeat Kinase-2 (LRRK2) result in familial Parkinson's disease and the G2019S mutation alone accounts for up to 30% in some ethnicities. Despite this, the function of LRRK2 is largely undetermined although evidence suggests roles in phosphorylation, protein interactions, autophagy and endocytosis. Emerging reports link loss of LRRK2 to altered synaptic transmission, but the effects of the G2019S mutation upon synaptic release in mammalian neurons are unknown. To assess wild type and mutant LRRK2 in established neuronal networks, we conducted immunocytochemical, electrophysiological and biochemical characterization of >3 week old cortical cultures of LRRK2 knock-out, wild-type overexpressing and G2019S knock-in mice. Synaptic release and synapse numbers were grossly normal in LRRK2 knock-out cells, but discretely reduced glutamatergic activity and reduced synaptic protein levels were observed. Conversely, synapse density was modestly but significantly increased in wild-type LRRK2 overexpressing cultures although event frequency was not. In knock-in cultures, glutamate release was markedly elevated, in the absence of any change to synapse density, indicating that physiological levels of G2019S LRRK2 elevate probability of release. Several pre-synaptic regulatory proteins shown by others to interact with LRRK2 were expressed at normal levels in knock-in cultures; however, synapsin 1 phosphorylation was significantly reduced. Thus, perturbations to the pre-synaptic release machinery and elevated synaptic transmission are early neuronal effects of LRRK2 G2019S. Furthermore, the comparison of knock-in and overexpressing cultures suggests that one copy of the G2019S mutation has a more pronounced effect than an ~3-fold increase in LRRK2 protein. Mutant-induced increases in transmission may convey additional stressors to neuronal physiology that may eventually contribute to the pathogenesis of Parkinson's disease.

  15. Role of aminotransferases in glutamate metabolism of human erythrocytes.

    PubMed

    Ellinger, James J; Lewis, Ian A; Markley, John L

    2011-04-01

    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from α-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional (1)H-(13)C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.

  16. Activation of Pedunculopontine Glutamate Neurons Is Reinforcing

    PubMed Central

    Yoo, Ji Hoon; Zell, Vivien; Wu, Johnathan; Punta, Cindy; Ramajayam, Nivedita; Shen, Xinyi; Faget, Lauren; Lilascharoen, Varoth; Lim, Byung Kook

    2017-01-01

    Dopamine transmission from midbrain ventral tegmental area (VTA) neurons underlies behavioral processes related to motivation and drug addiction. The pedunculopontine tegmental nucleus (PPTg) is a brainstem nucleus containing glutamate-, acetylcholine-, and GABA-releasing neurons with connections to basal ganglia and limbic brain regions. Here we investigated the role of PPTg glutamate neurons in reinforcement, with an emphasis on their projections to VTA dopamine neurons. We used cell-type-specific anterograde tracing and optogenetic methods to selectively label and manipulate glutamate projections from PPTg neurons in mice. We used anatomical, electrophysiological, and behavioral assays to determine their patterns of connectivity and ascribe functional roles in reinforcement. We found that photoactivation of PPTg glutamate cell bodies could serve as a direct positive reinforcer on intracranial self-photostimulation assays. Further, PPTg glutamate neurons directly innervate VTA; photostimulation of this pathway preferentially excites VTA dopamine neurons and is sufficient to induce behavioral reinforcement. These results demonstrate that ascending PPTg glutamate projections can drive motivated behavior, and PPTg to VTA synapses may represent an important target relevant to drug addiction and other mental health disorders. SIGNIFICANCE STATEMENT Uncovering brain circuits underlying reward-seeking is an important step toward understanding the circuit bases of drug addiction and other psychiatric disorders. The dopaminergic system emanating from the ventral tegmental area (VTA) plays a key role in regulating reward-seeking behaviors. We used optogenetics to demonstrate that the pedunculopontine tegmental nucleus sends glutamatergic projections to VTA dopamine neurons, and that stimulation of this circuit promotes behavioral reinforcement. The findings support a critical role for pedunculopontine tegmental nucleus glutamate neurotransmission in modulating VTA dopamine

  17. Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Tae Hee; Dharkar, Poorva; Mayer, Mark L.

    The Drosophila larval neuromuscular junction (NMJ), at which glutamate acts as the excitatory neurotransmitter, is a widely used model for genetic analysis of synapse function and development. Despite decades of study, the inability to reconstitute NMJ glutamate receptor function using heterologous expression systems has complicated the analysis of receptor function, such that it is difficult to resolve the molecular basis for compound phenotypes observed in mutant flies. In this paper, we find that Drosophila Neto functions as an essential component required for the function of NMJ glutamate receptors, permitting analysis of glutamate receptor responses in Xenopus oocytes. Finally, in combinationmore » with a crystallographic analysis of the GluRIIB ligand binding domain, we use this system to characterize the subunit dependence of assembly, channel block, and ligand selectivity for Drosophila NMJ glutamate receptors.« less

  18. Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors

    DOE PAGES

    Han, Tae Hee; Dharkar, Poorva; Mayer, Mark L.; ...

    2015-04-27

    The Drosophila larval neuromuscular junction (NMJ), at which glutamate acts as the excitatory neurotransmitter, is a widely used model for genetic analysis of synapse function and development. Despite decades of study, the inability to reconstitute NMJ glutamate receptor function using heterologous expression systems has complicated the analysis of receptor function, such that it is difficult to resolve the molecular basis for compound phenotypes observed in mutant flies. In this paper, we find that Drosophila Neto functions as an essential component required for the function of NMJ glutamate receptors, permitting analysis of glutamate receptor responses in Xenopus oocytes. Finally, in combinationmore » with a crystallographic analysis of the GluRIIB ligand binding domain, we use this system to characterize the subunit dependence of assembly, channel block, and ligand selectivity for Drosophila NMJ glutamate receptors.« less

  19. Emerging aspects of dietary glutamate metabolism in the developing gut

    USDA-ARS?s Scientific Manuscript database

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as a flavour additive in the form of monosodium glutamate (MSG). Evidence from human and animal studies indicates that glutamate is the major oxidative fuel for the gut and that dietary glutamate is exten...

  20. A Critical Role for Protein Degradation in the Nucleus Accumbens Core in Cocaine Reward Memory

    PubMed Central

    Ren, Zhen-Yu; Liu, Meng-Meng; Xue, Yan-Xue; Ding, Zeng-Bo; Xue, Li-Fen; Zhai, Suo-Di; Lu, Lin

    2013-01-01

    The intense associative memories that develop between cocaine-paired contexts and rewarding stimuli contribute to cocaine seeking and relapse. Previous studies have shown impairment in cocaine reward memories by manipulating a labile state induced by memory retrieval, but the mechanisms that underlie the destabilization of cocaine reward memory are unknown. In this study, using a Pavlovian cocaine-induced conditioned place preference (CPP) procedure in rats, we tested the contribution of ubiquitin-proteasome system-dependent protein degradation in destabilization of cocaine reward memory. First, we found that polyubiquitinated protein expression levels and polyubiquitinated N-ethylmaleimide-sensitive fusion (NSF) markedly increased 15 min after retrieval while NSF protein levels decreased 1 h after retrieval in the synaptosomal membrane fraction in the nucleus accumbens (NAc) core. We then found that infusion of the proteasome inhibitor lactacystin into the NAc core prevented the impairment of memory reconsolidation induced by the protein synthesis inhibitor anisomycin and reversed the effects of anisomycin on NSF and glutamate receptor 2 (GluR2) protein levels in the synaptosomal membrane fraction in the NAc core. We also found that lactacystin infusion into the NAc core but not into the shell immediately after extinction training sessions inhibited CPP extinction and reversed the extinction training-induced decrease in NSF and GluR2 in the synaptosomal membrane fraction in the NAc core. Finally, infusions of lactacystin by itself into the NAc core immediately after each training session or before the CPP retrieval test had no effect on the consolidation and retrieval of cocaine reward memory. These findings suggest that ubiquitin-proteasome system-dependent protein degradation is critical for retrieval-induced memory destabilization. PMID:23303053

  1. Selective cortical VGLUT1 increase as a marker for antidepressant activity.

    PubMed

    Moutsimilli, Larissa; Farley, Severine; Dumas, Sylvie; El Mestikawy, Salah; Giros, Bruno; Tzavara, Eleni T

    2005-11-01

    The two recently characterized vesicular glutamate transporters (VGLUT) presynaptically mark and differentiate two distinct excitatory neuronal populations and thus define a cortical and a subcortical glutamatergic system (VGLUT1 and VGLUT2 positive, respectively). These two systems might be differentially implicated in brain neuropathology. Still, little is known on the modalities of VGLUT1 and VGLUT2 regulations in response to pharmacological or physiological stimuli. Given the importance of cortical neuronal activity in psychosis we investigated VGLUT1 mRNA and protein expression in response to chronic treatment with commonly prescribed psychotropic medications. We show that agents with antidepressant activity, namely the antidepressants fluoxetine and desipramine, the atypical antipsychotic clozapine, and the mood stabilizer lithium increased VGLUT1 mRNA expression in neurons of the cerebral cortex and the hippocampus and in concert enhanced VGLUT1 protein expression in their projection fields. In contrast the typical antipsychotic haloperidol, the cognitive enhancers memantine and tacrine, and the anxiolytic diazepam were without effect. We suggest that VGLUT1 could be a useful marker for antidepressant activity. Furthermore, adaptive changes in VGLUT1 positive neurons could constitute a common functional endpoint for structurally unrelated antidepressants, representing promising antidepressant targets in tracking specificity, mechanism, and onset at action.

  2. Glutamate spillover modulates GABAergic synaptic transmission in the rat midbrain periaqueductal grey via metabotropic glutamate receptors and endocannabinoid signaling.

    PubMed

    Drew, Geoffrey M; Mitchell, Vanessa A; Vaughan, Christopher W

    2008-01-23

    Glutamate spillover regulates GABAergic synaptic transmission at several CNS synapses via presynaptic ionotropic and metabotropic glutamate receptors (mGluRs). We have previously demonstrated that activation of group I-III mGluRs inhibits GABAergic transmission in the midbrain periaqueductal gray (PAG), a region involved in organizing behavioral responses to threat, stress, and pain. Here, we examined the role of glutamate spillover in the modulation of GABAergic transmission in the PAG. Using whole-cell recordings from rat PAG slices, we found that evoked IPSCs were reduced by the nonspecific glutamate transport blockers DL-threo-beta-benzyloxyaspartic acid (TBOA) and L-trans-pyrrolidine-2,4-dicarboxylic acid, but not by the glial GLT1-specific blocker dihydrokainate. In contrast, TBOA had no effect on evoked IPSCs when glutamate uptake into the postsynaptic neuron was selectively impaired. TBOA increased the paired-pulse ratio of evoked IPSCs and reduced the rate but not the amplitude of spontaneous miniature IPSCs. The effect of TBOA on evoked IPSCs was abolished by the broad-spectrum mGluR antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (100 microM), reduced by the mGluR5-specific antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and mimicked by the mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG). Furthermore, the effects of both TBOA and DHPG were reduced by the cannabinoid CB1 receptor antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (AM251). Finally, although MPEP and AM251 had no effect on single evoked IPSCs, they increased evoked IPSCs during repetitive stimulation. These results indicate that neuronal glutamate transporters limit mGluR5 activation and endocannabinoid signaling, but may be overwhelmed during conditions of elevated glutamate release. Thus, neuronal glutamate transporters play a key role in regulating endocannabinoid

  3. Estrogen Modification of Human Glutamate Dehydrogenases Is Linked to Enzyme Activation State*

    PubMed Central

    Borompokas, Nikolas; Papachatzaki, Maria-Martha; Kanavouras, Konstantinos; Mastorodemos, Vasileios; Zaganas, Ioannis; Spanaki, Cleanthe; Plaitakis, Andreas

    2010-01-01

    Mammalian glutamate dehydrogenase (GDH) is a housekeeping enzyme central to the metabolism of glutamate. Its activity is potently inhibited by GTP (IC50 = 0.1–0.3 μm) and thought to be controlled by the need of the cell in ATP. Estrogens are also known to inhibit mammalian GDH, but at relatively high concentrations. Because, in addition to this housekeeping human (h) GDH1, humans have acquired via a duplication event an hGDH2 isoform expressed in human cortical astrocytes, we tested here the interaction of estrogens with the two human isoenzymes. The results showed that, under base-line conditions, diethylstilbestrol potently inhibited hGDH2 (IC50 = 0.08 ± 0.01 μm) and with ∼18-fold lower affinity hGDH1 (IC50 = 1.67 ± 0.06 μm; p < 0.001). Similarly, 17β-estradiol showed a ∼18-fold higher affinity for hGDH2 (IC50 = 1.53 ± 0.24 μm) than for hGDH1 (IC50 = 26.94 ± 1.07 μm; p < 0.001). Also, estriol and progesterone were more potent inhibitors of hGDH2 than hGDH1. Structure/function analyses revealed that the evolutionary R443S substitution, which confers low basal activity, was largely responsible for sensitivity of hGDH2 to estrogens. Inhibition of both human GDHs by estrogens was inversely related to their state of activation induced by ADP, with the slope of this correlation being steeper for hGDH2 than for hGDH1. Also, the study of hGDH1 and hGDH2 mutants displaying different states of activation revealed that the affinity of estrogen for these enzymes correlated inversely (R = 0.99; p = 0.0001) with basal catalytic activity. Because astrocytes are known to synthesize estrogens, these hormones, by interacting potently with hGDH2 in its closed state, may contribute to regulation of glutamate metabolism in brain. PMID:20628048

  4. [Molecular organization of glutamate-sensitive chemoexcitable membranes of nerve cells. Function of glutamate-binding proteins of the central nervous system when incorporated into liposomes].

    PubMed

    Besedin, V I; Kuznetsov, A S; Dambinova, S A

    1985-03-01

    The functioning of the glutamate-binding protein of rat brain cortex synaptic membranes was studied by its incorporation into liposomes. The optimal conditions for the receptor protein incorporation were established and the kinetics of 22Na+ and 86Rb+ incorporation into the liposomes in the presence of L-glutamate were analyzed. Modelling of the CNS glutamate receptor functions was found to be dependent on the lipid composition and amount of the incorporated membrane protein. The selective transport of 22Na+ into the liposomes was stimulated in the presence of 10(-4) M glutamate. Addition of monoclonal antibodies against glutamate-binding proteins blocked the incorporation of Na+ into the liposomes. The experimental results are suggestive of the nativity of the liposome-incorporated membrane protein, which is capable of binding glutamate and regulating selective transport of Na+. It was assumed that the glutamate receptor macromolecule represents an integral complex made up of several low molecular weight subunits of glucoprotein nature that form a selective ionic channel.

  5. Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use

    PubMed Central

    Meshi, Dar; Morawetz, Carmen; Heekeren, Hauke R.

    2013-01-01

    Our reputation is important to us; we've experienced natural selection to care about our reputation. Recently, the neural processing of gains in reputation (positive social feedback concerning one's character) has been shown to occur in the human ventral striatum. It is still unclear, however, how individual differences in the processing of gains in reputation may lead to individual differences in real-world behavior. For example, in the real-world, one way that people currently maintain their reputation is by using social media websites, like Facebook. Furthermore, Facebook use consists of a social comparison component, where users observe others' behavior and can compare it to their own. Therefore, we hypothesized a relationship between the way the brain processes specifically self-relevant gains in reputation and one's degree of Facebook use. We recorded functional neuroimaging data while participants received gains in reputation, observed the gains in reputation of another person, or received monetary reward. We demonstrate that across participants, when responding to gains in reputation for the self, relative to observing gains for others, reward-related activity in the left nucleus accumbens predicts Facebook use. However, nucleus accumbens activity in response to monetary reward did not predict Facebook use. Finally, a control step-wise regression analysis showed that Facebook use primarily explains our results in the nucleus accumbens. Overall, our results demonstrate how individual sensitivity of the nucleus accumbens to the receipt of self-relevant social information leads to differences in real-world behavior. PMID:24009567

  6. Nucleus accumbens response to gains in reputation for the self relative to gains for others predicts social media use.

    PubMed

    Meshi, Dar; Morawetz, Carmen; Heekeren, Hauke R

    2013-01-01

    Our reputation is important to us; we've experienced natural selection to care about our reputation. Recently, the neural processing of gains in reputation (positive social feedback concerning one's character) has been shown to occur in the human ventral striatum. It is still unclear, however, how individual differences in the processing of gains in reputation may lead to individual differences in real-world behavior. For example, in the real-world, one way that people currently maintain their reputation is by using social media websites, like Facebook. Furthermore, Facebook use consists of a social comparison component, where users observe others' behavior and can compare it to their own. Therefore, we hypothesized a relationship between the way the brain processes specifically self-relevant gains in reputation and one's degree of Facebook use. We recorded functional neuroimaging data while participants received gains in reputation, observed the gains in reputation of another person, or received monetary reward. We demonstrate that across participants, when responding to gains in reputation for the self, relative to observing gains for others, reward-related activity in the left nucleus accumbens predicts Facebook use. However, nucleus accumbens activity in response to monetary reward did not predict Facebook use. Finally, a control step-wise regression analysis showed that Facebook use primarily explains our results in the nucleus accumbens. Overall, our results demonstrate how individual sensitivity of the nucleus accumbens to the receipt of self-relevant social information leads to differences in real-world behavior.

  7. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    PubMed

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  8. Glutamate biosensors based on diamond and graphene platforms.

    PubMed

    Hu, Jingping; Wisetsuwannaphum, Sirikarn; Foord, John S

    2014-01-01

    l-Glutamate is one of the most important neurotransmitters in the mammalian central nervous system, playing a vital role in many physiological processes and implicated in several neurological disorders, for which monitoring of dynamic levels of extracellular glutamate in the living brain tissues may contribute to medical understanding and treatments. Electrochemical sensing of glutamate has been developed recently mainly using platinum, carbon fibre and carbon nanotube electrodes. In the present work, we explore the fabrication and properties of electrochemical glutamate sensors fabricated on doped chemical vapour deposition diamond electrodes and graphene nanoplatelet structures. The sensors incorporate platinum nanoparticles to catalyse the electrooxidation of hydrogen peroxide, glutamate oxidase to oxidise glutamate, and a layer of poly-phenylenediamine to impart selectivity. The performance of the devices was compared to a similar sensor fabricated on glassy carbon. Both the diamond and the graphene sensor showed very competitive performance compared to the majority of existing electrochemical sensors. The graphene based sensor showed the best performance of the three investigated in terms of sensitivity, linear dynamic range and long term stability, whereas it was found that the diamond device showed the best limit of detection.

  9. Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content.

    PubMed

    Daniels, Richard W; Collins, Catherine A; Gelfand, Maria V; Dant, Jaime; Brooks, Elizabeth S; Krantz, David E; DiAntonio, Aaron

    2004-11-17

    Quantal size is a fundamental parameter controlling the strength of synaptic transmission. The transmitter content of synaptic vesicles is one mechanism that can affect the physiological response to the release of a single vesicle. At glutamatergic synapses, vesicular glutamate transporters (VGLUTs) are responsible for filling synaptic vesicles with glutamate. To investigate how VGLUT expression can regulate synaptic strength in vivo, we have identified the Drosophila vesicular glutamate transporter, which we name DVGLUT. DVGLUT mRNA is expressed in glutamatergic motoneurons and a large number of interneurons in the Drosophila CNS. DVGLUT protein resides on synaptic vesicles and localizes to the presynaptic terminals of all known glutamatergic neuromuscular junctions as well as to synapses throughout the CNS neuropil. Increasing the expression of DVGLUT in motoneurons leads to an increase in quantal size that is accompanied by an increase in synaptic vesicle volume. At synapses confronted with increased glutamate release from each vesicle, there is a compensatory decrease in the number of synaptic vesicles released that maintains normal levels of synaptic excitation. These results demonstrate that (1) expression of DVGLUT determines the size and glutamate content of synaptic vesicles and (2) homeostatic mechanisms exist to attenuate the excitatory effects of excess glutamate release.

  10. Arctigenin reduces neuronal responses in the somatosensory cortex via the inhibition of non-NMDA glutamate receptors.

    PubMed

    Borbély, Sándor; Jócsák, Gergely; Moldován, Kinga; Sedlák, Éva; Preininger, Éva; Boldizsár, Imre; Tóth, Attila; Atlason, Palmi T; Molnár, Elek; Világi, Ildikó

    2016-07-01

    Lignans are biologically active phenolic compounds related to lignin, produced in different plants. Arctigenin, a dibenzylbutyrolactone-type lignan, has been used as a neuroprotective agent for the treatment of encephalitis. Previous studies of cultured rat cerebral cortical neurones raised the possibility that arctigenin inhibits kainate-induced excitotoxicity. The aims of the present study were: 1) to analyse the effect of arctigenin on normal synaptic activity in ex vivo brain slices, 2) to determine its receptor binding properties and test the effect of arctigenin on AMPA/kainate receptor activation and 3) to establish its effects on neuronal activity in vivo. Arctigenin inhibited glutamatergic transmission and reduced the evoked field responses. The inhibitory effect of arctigenin on the evoked field responses proved to be substantially dose dependent. Our results indicate that arctigenin exerts its effects under physiological conditions and not only on hyper-excited neurons. Furthermore, arctigenin can cross the blood-brain barrier and in the brain it interacts with kainate sensitive ionotropic glutamate receptors. These results indicate that arctigenin is a potentially useful new pharmacological tool for the inhibition of glutamate-evoked responses in the central nervous system in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Contrasting roles for parvalbumin-expressing inhibitory neurons in two forms of adult visual cortical plasticity

    PubMed Central

    Kaplan, Eitan S; Cooke, Sam F; Komorowski, Robert W; Chubykin, Alexander A; Thomazeau, Aurore; Khibnik, Lena A; Gavornik, Jeffrey P; Bear, Mark F

    2016-01-01

    The roles played by cortical inhibitory neurons in experience-dependent plasticity are not well understood. Here we evaluate the participation of parvalbumin-expressing (PV+) GABAergic neurons in two forms of experience-dependent modification of primary visual cortex (V1) in adult mice: ocular dominance (OD) plasticity resulting from monocular deprivation and stimulus-selective response potentiation (SRP) resulting from enriched visual experience. These two forms of plasticity are triggered by different events but lead to a similar increase in visual cortical response. Both also require the NMDA class of glutamate receptor (NMDAR). However, we find that PV+ inhibitory neurons in V1 play a critical role in the expression of SRP and its behavioral correlate of familiarity recognition, but not in the expression of OD plasticity. Furthermore, NMDARs expressed within PV+ cells, reversibly inhibited by the psychotomimetic drug ketamine, play a critical role in SRP, but not in the induction or expression of adult OD plasticity. DOI: http://dx.doi.org/10.7554/eLife.11450.001 PMID:26943618

  12. BDNF-Val66Met-Polymorphism Impact on Cortical Plasticity in Schizophrenia Patients: A Proof-of-Concept Study

    PubMed Central

    Nitsche, Michael A.; Wobrock, Thomas; Bunse, Tilmann; Rein, Bettina; Herrmann, Maximiliane; Schmitt, Andrea; Nieratschker, Vanessa; Witt, Stephanie H.; Rietschel, Marcella; Falkai, Peter; Hasan, Alkomiet

    2015-01-01

    Background: Brain-derived neurotrophic factor (BDNF) has been shown to be a moderator of neuroplasticity. A frequent BDNF-polymorphism (Val66Met) is associated with impairments of cortical plasticity. In patients with schizophrenia, reduced neuroplastic responses following non-invasive brain stimulation have been reported consistently. Various studies have indicated a relationship between the BDNF-Val66Met-polymorphism and motor-cortical plasticity in healthy individuals, but schizophrenia patients have yet to be investigated. The aim of this proof-of-concept study was, therefore, to test the impact of the BDNF-Val66Met-polymorphism on inhibitory and facilitatory cortical plasticity in schizophrenia patients. Methods: Cortical plasticity was investigated in 22 schizophrenia patients and 35 healthy controls using anodal and cathodal transcranial direct-current stimulation (tDCS) applied to the left primary motor cortex. Animal and human research indicates that excitability shifts following anodal and cathodal tDCS are related to molecular long-term potentiation and long-term depression. To test motor-cortical excitability before and after tDCS, well-established single- and paired-pulse transcranial magnetic stimulation protocols were applied. Results: Our analysis revealed increased glutamate-mediated intracortical facilitation in met-heterozygotes compared to val-homozygotes at baseline. Following cathodal tDCS, schizophrenia met-heterozygotes had reduced gamma-amino-butyric-acid-mediated short-interval intracortical inhibition, whereas healthy met-heterozygotes displayed the opposite effect. The BDNF-Val66Met-polymorphism did not influence single-pulse motor-evoked potential amplitudes after tDCS. Conclusions: These preliminary findings support the notion of an association of the BDNF-Val66Met-polymorphism with observable alterations in plasticity following cathodal tDCS in schizophrenia patients. This indicates a complex interaction between inhibitory

  13. The nucleus accumbens and learning and memory.

    PubMed

    Setlow, B

    1997-09-01

    Recent research on the nucleus accumbens (NA) indicates that this brain region is involved in learning and memory processes in a way that is separable from its other well-known roles in behavior, such as motivation, reward, and locomotor activity. These findings have suggested that 1) the NA may be involved in declarative, or hippocampal formation-dependent learning and memory, and not in several other non-declarative forms of learning and memory, and 2) the NA may be selectively involved in certain stages of learning and memory. These characteristics suggest that the NA may be part of a larger striatal system which subserves acquisition and consolidation, but is not a site of long-term storage, of different forms of learning and memory.

  14. Cholinergic depletion in nucleus accumbens impairs mesocortical dopamine activation and cognitive function in rats.

    PubMed

    Laplante, François; Zhang, Zi-Wei; Huppé-Gourgues, Frédéric; Dufresne, Marc M; Vaucher, Elvire; Sullivan, Ron M

    2012-11-01

    In rats, selective depletion of the cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) results in heightened behavioural sensitivity to amphetamine and impaired sensorimotor gating processes, suggesting a hyper-responsiveness to dopamine (DA) activity in the N.Acc. We hypothesized that local cholinergic depletion may also trigger distal functional alterations, particularly in prefrontal cortex (PFC). Adult male Sprague-Dawley rats were injected bilaterally in the N.Acc. with an immunotoxin targeting choline acetyltransferase. Two weeks later, cognitive function was assessed using the delayed alternation paradigm in the T-maze. The rats were then implanted with voltammetric recording electrodes in the ventromedial PFC to measure in vivo extracellular DA release in response to mild tail pinch stress. The PFC was also examined for density of tyrosine hydroxylase (TH)-labelled varicosities. In another cohort of control and lesioned rats, we measured post mortem tissue content of DA. Depletion of cholinergic neurons (restricted to N.Acc.) significantly impaired delayed alternation performance across delay intervals. While (basal) post mortem indices of PFC DA function were unaffected by N.Acc. lesions, in vivo mesocortical DA activation was markedly reduced; this deficit correlated significantly with cognitive impairments. TH-labelled varicosities however, were unaffected in cortical layer V relative to controls. These data suggest that selective depletion of cholinergic interneurons in N.Acc. triggers widespread functional impairments in mesocorticolimbic DA function and cognition. The possible relevance of these findings is also discussed in relation to schizophrenia, where reduced density of cholinergic neurons in ventral striatum has been reported. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Protons Regulate Vesicular Glutamate Transporters through an Allosteric Mechanism.

    PubMed

    Eriksen, Jacob; Chang, Roger; McGregor, Matt; Silm, Katlin; Suzuki, Toshiharu; Edwards, Robert H

    2016-05-18

    The quantal nature of synaptic transmission requires a mechanism to transport neurotransmitter into synaptic vesicles without promoting non-vesicular efflux across the plasma membrane. Indeed, the vesicular transport of most classical transmitters involves a mechanism of H(+) exchange, which restricts flux to acidic membranes such as synaptic vesicles. However, vesicular transport of the principal excitatory transmitter glutamate depends primarily on membrane potential, which would drive non-vesicular efflux, and the role of protons is unclear. Adapting electrophysiology to record currents associated with the vesicular glutamate transporters (VGLUTs), we characterize a chloride conductance that is gated by lumenal protons and chloride and supports glutamate uptake. Rather than coupling stoichiometrically to glutamate flux, lumenal protons and chloride allosterically activate vesicular glutamate transport. Gating by protons serves to inhibit what would otherwise be substantial non-vesicular glutamate efflux at the plasma membrane, thereby restricting VGLUT activity to synaptic vesicles. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat.

    PubMed

    Zhang, Min; Balmadrid, Christian; Kelley, Ann E

    2003-04-01

    The current studies were designed to evaluate whether incentive motivation for palatable food is altered after manipulations of opioid, GABAergic, and dopaminergic transmission within the nucleus accumbens. A progressive ratio schedule was used to measure lever-pressing for sugar pellets after microinfusion of drugs into the nucleus accumbens in non-food-deprived rats. The mu opioid agonist D-Ala2, NMe-Phe4, Glyo15-enkephalin and the indirect dopamine agonist amphetamine induced a marked increase in break point and correct lever-presses; the GABA(A) agonist muscimol did not affect breakpoint or lever-presses. The data suggest that opioid, dopaminergic, and GABAergic systems within the accumbens differentially modulate food-seeking behavior through mechanisms related to hedonic evaluation of food, incentive salience, and control of motor feeding circuits, respectively.

  17. Effects of short- and long-term aripiprazole treatment on Group I mGluRs in the nucleus accumbens: Comparison with haloperidol.

    PubMed

    Lum, Jeremy S; Pan, Bo; Deng, Chao; Huang, Xu-Feng; Ooi, Lezanne; Newell, Kelly A

    2017-11-21

    The D2 receptor partial agonist, aripiprazole, has shown increased therapeutic efficacy for schizophrenia, autism and Tourette's syndrome compared to traditional antipsychotics such as the D2 receptor antagonist, haloperidol. Recent evidence suggests this superior profile may be associated with downstream effects on glutamatergic synapses. Group 1 metabotropic glutamate receptors (mGluRs) and their endogenous modulators, Norbin and Homer1, are regulated by D2 receptor activity, particularly within the nucleus accumbens (NAc), a target region of aripiprazole and haloperidol. This study sought to evaluate the effects of aripiprazole on Group 1 mGluRs, Norbin and Homer1 in the NAc, in comparison to haloperidol. Sprague-Dawley rats were orally administered daily doses of aripiprazole (2.25mg/kg), haloperidol (0.3mg/kg) or vehicle for 1 or 10-weeks. Immunoblot analyses revealed Group 1 mGluR protein levels were not altered following 1-week and 10-week aripiprazole or haloperidol treatment, compared to vehicle treated rodents. However, 1-week aripiprazole and haloperidol treatment significantly elevated Homer1a and Norbin protein expression, respectively. After 10 weeks of treatment, aripiprazole, but not haloperidol, significantly increased Norbin expression. These findings indicate the antipsychotics, aripiprazole and haloperidol, exert differential temporal effects on Norbin and Homer1 expression that may have consequences on synaptic glutamatergic transmission underlying their therapeutic profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Regulation of anxiety and initiation of sexual behavior by CREB in the nucleus accumbens

    PubMed Central

    Barrot, Michel; Wallace, Deanna L.; Bolaños, Carlos A.; Graham, Danielle L.; Perrotti, Linda I.; Neve, Rachael L.; Chambliss, Heather; Yin, Jerry C.; Nestler, Eric J.

    2005-01-01

    Sexual deficits and other behavioral disturbances such as anxiety-like behaviors can be observed in animals that have undergone social isolation, especially in species having important social interactions. Using a model of protracted social isolation in adult rats, we observed increased anxiety-like behavior and deficits in both the latency to initiate sexual behavior and the latency to ejaculate. We show, using transgenic cAMP response element (CRE)-LacZ reporter mice, that protracted social isolation also reduces CRE-dependent transcription within the nucleus accumbens. This decrease in CRE-dependent transcription can be mimicked in nonisolated animals by local viral gene transfer of a dominant negative mutant of CRE-binding protein (CREB). We previously showed that this manipulation increases anxiety-like behavior. We show here that it also impairs initiation of sexual behavior in nonisolated animals, a deficit that can be corrected by anxiolytic drug treatment. This local reduction in CREB activity, however, has no influence on ejaculation parameters. Reciprocally, we used the viral transgenic approach to overexpress CREB in the nucleus accumbens of isolated animals. We show that this local increase in CREB activity completely rescued the anxiety phenotype of the isolated animals, as well as their deficit in initiating sexual behavior, but failed to rescue the deficit in ejaculation. Our data suggest a role for the nucleus accumbens in anxiety responses and in specific aspects of sexual behavior. The results also provide insight into the molecular mechanisms by which social interactions affect brain plasticity and behavior. PMID:15923261

  19. Influence of glutamic acid enantiomers on C-mineralization.

    PubMed

    Formánek, Pavel; Vranová, Valerie; Lojková, Lea

    2015-02-01

    Seasonal dynamics in the mineralization of glutamic acid enantiomers in soils from selected ecosystems was determined and subjected to a range of treatments: ambient x elevated CO2 level and meadow x dense x thinned forest environment. Mineralization of glutamic acid was determined by incubation of the soil with 2 mg L- or D-glutamic acid g(-1) of dry soil to induce the maximum respiration rate. Mineralization of glutamic acid enantiomers in soils fluctuates over the course of a vegetation season, following a similar trend across a range of ecosystems. Mineralization is affected by environmental changes and management practices, including elevated CO2 level and thinning intensity. L-glutamic acid metabolism is more dependent on soil type as compared to metabolism of its D-enantiomer. The results support the hypothesis that the slower rate of D- compared to L- amino acid mineralization is due to different roles in anabolism and catabolism of the soil microbial community. © 2014 Wiley Periodicals, Inc.

  20. Increased vesicular glutamate transporter expression causes excitotoxic neurodegeneration.

    PubMed

    Daniels, Richard W; Miller, Bradley R; DiAntonio, Aaron

    2011-02-01

    Increases in vesicular glutamate transporter (VGLUT) levels are observed after a variety of insults including hypoxic injury, stress, methamphetamine treatment, and in genetic seizure models. Such overexpression can cause an increase in the amount of glutamate released from each vesicle, but it is unknown whether this is sufficient to induce excitotoxic neurodegeneration. Here we show that overexpression of the Drosophila vesicular glutamate transporter (DVGLUT) leads to excess glutamate release, with some vesicles releasing several times the normal amount of glutamate. Increased DVGLUT expression also leads to an age-dependent loss of motor function and shortened lifespan, accompanied by a progressive neurodegeneration in the postsynaptic targets of the DVGLUT-overexpressing neurons. The early onset lethality, behavioral deficits, and neuronal pathology require overexpression of a functional DVGLUT transgene. Thus overexpression of DVGLUT is sufficient to generate excitotoxic neuropathological phenotypes and therefore reducing VGLUT levels after nervous system injury or stress may mitigate further damage. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Flavor Preferences Conditioned by Dietary Glutamate.

    PubMed

    Ackroff, Karen; Sclafani, Anthony

    2016-07-01

    Our understanding of the molecular basis of umami taste and its appetitive qualities has been greatly aided by studies in laboratory rodents. This review describes methods for testing responses to the prototypical umami substance monosodium glutamate (MSG) in rodents. Two techniques, forced exposure to MSG and 2-bottle choice tests with ascending concentrations, were used to evaluate the responses to the taste of umami itself, and 2 other methods used oral or postoral MSG to modify the responses to other flavors. Intake and preference for MSG are enhanced in mice by experience with MSG and with other nutrients with positive postoral effects. In addition, flavor preferences are enhanced in mice and rats by gastric or intestinal MSG infusions via an associative learning process. Even mice with an impaired or absent ability to taste MSG can learn to prefer a flavor added to an MSG solution, supporting the notion that glutamate acts postorally. The more complex flavor of dashi seasoning, which includes umami substances (inosinate, glutamate), is attractive to rodents, but dashi does not condition flavor preferences. Details of the postoral glutamate detection process and the nature of the signal involved in learned preferences are still uncertain but probably involve gastric or intestinal sensors or both and vagal transmission. Some findings suggest that postoral glutamate effects may enhance food preferences in humans, but this requires further study. © 2016 American Society for Nutrition.

  2. Relationship between Increase in Astrocytic GLT-1 Glutamate Transport and Late-LTP

    ERIC Educational Resources Information Center

    Pita-Almenar, Juan D.; Zou, Shengwei; Colbert, Costa M.; Eskin, Arnold

    2012-01-01

    Na[superscript +]-dependent high-affinity glutamate transporters have important roles in the maintenance of basal levels of glutamate and clearance of glutamate during synaptic transmission. Interestingly, several studies have shown that basal glutamate transport displays plasticity. Glutamate uptake increases in hippocampal slices during early…

  3. Involvement of AMPA/Kainate Glutamate Receptor in the Extinction and Reinstatement of Morphine-Induced Conditioned Place Preference: A Behavioral and Molecular Study.

    PubMed

    Siahposht-Khachaki, Ali; Fatahi, Zahra; Yans, Asal; Khodagholi, Fariba; Haghparast, Abbas

    2017-03-01

    Glutamate receptors in mesolimbic areas such as the nucleus accumbens, ventral tegmental area, prefrontal cortex (PFC), and hippocampus (HIP) are a component of the mechanisms of drug-induced reward and can modulate the firing pattern of dopaminergic neurons in the reward system. In addition, several lines of study have indicated that cAMP response element-binding protein (CREB) and c-fos have important role in morphine-induced conditioned place preference (CPP) induced by drugs of abuse, such as morphine, cocaine, nicotine, and alcohol. Therefore, in the present study, we investigated the changes in phosphorylated CREB (p-CREB) and c-fos induction within the nucleus accumbens (NAc), HIP, and PFC after intracerebroventricular (ICV) administration of different doses of CNQX or vehicle during extinction period or reinstatement of morphine-induced CPP. In all groups, the CPP procedure was done; afterward, the conditioning scores were recorded by Ethovision software. After behavioral test recording, we dissected out the NAc, HIP, and PFC regions and measured the p-CREB/CREB ratio and c-fos level by Western blot analysis. Our results showed that administration of CNQX significantly shortened the extinction of morphine CPP. Besides, ICV microinjection of CNQX following extinction period decreased the reinstatement of morphine CPP in extinguished rats. In molecular section, in treatment group, all mentioned factors were dose-dependently decreased in comparison with vehicle group (DMSO) after ICV microinjection of different doses of CNQX but not in pre-extinction microinjection. These findings suggested that antagonism of AMPA receptor decreased p-CREB/CREB ratio and c-fos level in the PFC, NAc, and HIP. Modulation of the drug memory reconsolidation may be useful for faster extinction of drug-induced reward and attenuation of drug-seeking behavior.

  4. AMPA Receptor Plasticity in Accumbens Core Contributes to Incubation of Methamphetamine Craving.

    PubMed

    Scheyer, Andrew F; Loweth, Jessica A; Christian, Daniel T; Uejima, Jamie; Rabei, Rana; Le, Tuan; Dolubizno, Hubert; Stefanik, Michael T; Murray, Conor H; Sakas, Courtney; Wolf, Marina E

    2016-11-01

    The incubation of cue-induced drug craving in rodents provides a model of persistent vulnerability to craving and relapse in human addicts. After prolonged withdrawal, incubated cocaine craving depends on strengthening of nucleus accumbens (NAc) core synapses through incorporation of Ca 2+ -permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (CP-AMPARs). Through metabotropic glutamate receptor 1 (mGluR1)-mediated synaptic depression, mGluR1 positive allosteric modulators remove CP-AMPARs from these synapses and thereby reduce cocaine craving. This study aimed to determine if similar plasticity accompanies incubation of methamphetamine craving. Rats self-administered saline or methamphetamine under extended-access conditions. Cue-induced seeking tests demonstrated incubation of methamphetamine craving. After withdrawal periods ranging from 1 to >40 days, rats underwent one of the following procedures: 1) whole-cell patch clamp recordings to characterize AMPAR transmission, 2) intra-NAc core injection of the CP-AMPAR antagonist 1-naphthyl acetyl spermine followed by a seeking test, or 3) systemic administration of a mGluR1 positive allosteric modulator followed by a seeking test. Incubation of methamphetamine craving was associated with CP-AMPAR accumulation in NAc core, and both effects were maximal after ~1 week of withdrawal. Expression of incubated craving was decreased by intra-NAc core 1-naphthyl acetyl spermine injection or systemic mGluR1 positive allosteric modulator administration. These results are the first to demonstrate a role for the NAc in the incubation of methamphetamine craving and describe adaptations in synaptic transmission associated with this model. They establish that incubation of craving and associated CP-AMPAR plasticity occur much more rapidly during withdrawal from methamphetamine compared with cocaine. However, a common mGluR1-based therapeutic strategy may be helpful for recovering cocaine and methamphetamine

  5. Ketone bodies and brain glutamate and GABA metabolism.

    PubMed

    Daikhin, Y; Yudkoff, M

    1998-01-01

    The effects of ketone bodies on brain metabolism of glutamate and GABA were studied in three different systems: synaptosomes, cultured astrocytes and the whole animal. In synaptosomes the addition of either acetoacetate or 3-OH-butyrate was associated with diminished consumption of glutamate via transamination to aspartate and increased formation of labelled GABA from either L-[2H5-2,3,3,4, 4]glutamine or L-[15N]glutamine. There was no effect of ketone bodies on synaptosomal GABA transamination. An increase of total forebrain GABA and a diminution of aspartate was noted when mice were injected intraperitoneally with 3-OH-butyrate. In cultured astrocytes the addition of acetoacetate to the medium was associated with a significantly enhanced rate of citrate production and with a diminution in the rate of conversion of [15N]glutamate to [15N]aspartate. These data are consistent with the hypothesis that the metabolism of ketone bodies to acetyl-CoA results in a diminution of the pool of brain oxaloacetate, which is consumed in the citrate synthetase reaction (oxaloacetate + acetyl-CoA --> citrate). As less oxaloacetate is available to the aspartate aminotransferase reaction, thereby lowering the rate of glutamate transamination, more glutamate becomes accessible to the glutamate decarboxylase pathway, thereby favoring the synthesis of GABA.

  6. Rapid communication between neurons and astrocytes in primary cortical cultures.

    PubMed

    Murphy, T H; Blatter, L A; Wier, W G; Baraban, J M

    1993-06-01

    The identification of neurotransmitter receptors and voltage-sensitive ion channels on astrocytes (reviewed by Barres, 1991) has renewed interest in how these cells respond to neuronal activity. To investigate the physiology of neuron astrocyte signaling, we have employed primary cortical cultures that contain both neuronal and glial cells. As the neurons in these cultures exhibit synchronous spontaneous synaptic activity, we have used both calcium imaging and whole-cell recording techniques to identify physiological activity in astrocytes related to neuronal activity. Whole-cell voltage-clamp records from astrocytes revealed rapid inward currents that coincide with bursts of electrical activity in neighboring neurons. Calcium imaging studies demonstrate that these currents in astrocytes are not always associated with slowly propagating calcium waves. Inclusion of the dye Lucifer yellow within patch pipettes confirmed that astrocytes are extensively coupled to each other but not to adjacent neurons, indicating that the currents observed are not due to gap junction connections between these cell types. These currents do not reflect widespread diffusion of glutamate or potassium released during neuronal activity since a population of small, round, multipolar presumed glial cells that are not dye coupled to adjacent cells did not display electrical currents coincident with neuronal firing, even though they respond to locally applied glutamate and potassium. These findings indicate that, in addition to the relatively slow signaling conveyed by calcium waves, astrocytes also display rapid electrical responses to neuronal activity.

  7. Memory trace reactivation and behavioral response during retrieval are differentially modulated by amygdalar glutamate receptors activity: interaction between amygdala and insular cortex

    PubMed Central

    Osorio-Gómez, Daniel; Guzmán-Ramos, Kioko

    2017-01-01

    The insular cortex (IC) is required for conditioned taste aversion (CTA) retrieval. However, it remains unknown which cortical neurotransmitters levels are modified upon CTA retrieval. Using in vivo microdialysis, we observed that there were clear elevations in extracellular glutamate, norepinephrine, and dopamine in and around the center of the gustatory zone of the IC during CTA retrieval. Additionally, it has been reported that the amygdala–IC interaction is highly involved in CTA memory establishment. Therefore, we evaluated the effects of infusions of an AMPA receptor antagonist (CNQX) and a NMDA receptor antagonist (APV) into the amygdala on CTA retrieval and IC neurotransmitter levels. Infusion of APV into the amygdala impaired glutamate augmentation within the IC, whereas dopamine and norepinephrine levels augmentation persisted and a reliable CTA expression was observed. Conversely, CNQX infusion into the amygdala impaired the aversion response, as well as norepinephrine and dopamine augmentations in the IC. Interestingly, CNQX infusion did not affect glutamate elevation in the IC. To evaluate the functional meaning of neurotransmitters elevations within the IC on CTA response, we infused specific antagonists for the AMPA, NMDA, D1, and β-adrenergic receptor before retrieval. Results showed that activation of AMPA, D1, and β-adrenergic receptors is necessary for CTA expression, whereas NMDA receptors are not involved in the aversion response. PMID:27980072

  8. Cell-type specific increases in female hamster nucleus accumbens spine density following female sexual experience.

    PubMed

    Staffend, Nancy A; Hedges, Valerie L; Chemel, Benjamin R; Watts, Val J; Meisel, Robert L

    2014-11-01

    Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor-expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse.

  9. Cell-Type Specific Increases in Female Hamster Nucleus Accumbens Spine Density following Female Sexual Experience

    PubMed Central

    Staffend, Nancy A.; Hedges, Valerie L.; Chemel, Benjamin R.; Watts, Val J.; Meisel, Robert L.

    2013-01-01

    Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse. PMID:23934655

  10. Glutamate-Dependent Translational Control of Glutamine Synthetase in Bergmann Glia Cells.

    PubMed

    Tiburcio-Félix, Reynaldo; Escalante-López, Miguel; López-Bayghen, Bruno; Martínez, Daniel; Hernández-Kelly, Luisa C; Zinker, Samuel; Hernández-Melchor, Dinorah; López-Bayghen, Esther; Olivares-Bañuelos, Tatiana N; Ortega, Arturo

    2018-06-01

    Glutamate is the major excitatory transmitter of the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed both in neurons and in glial cells. Recent evidence has shown that glutamate uptake systems, particularly enriched in glia cells, trigger biochemical cascades in a similar fashion as receptors. A tight regulation of glutamate extracellular levels prevents neuronal overstimulation and cell death, and it is critically involved in glutamate turnover. Glial glutamate transporters are responsible of the majority of the brain glutamate uptake activity. Once internalized, this excitatory amino acid is rapidly metabolized to glutamine via the astrocyte-enriched enzyme glutamine synthetase. A coupling between glutamate uptake and glutamine synthesis and release has been commonly known as the glutamate/glutamine shuttle. Taking advantage of the established model of cultured Bergmann glia cells, in this contribution, we explored the gene expression regulation of glutamine synthetase. A time- and dose-dependent regulation of glutamine synthetase protein and activity levels was found. Moreover, glutamate exposure resulted in the transient shift of glutamine synthetase mRNA from the monosomal to the polysomal fraction. These results demonstrate a novel mode of glutamate-dependent glutamine synthetase regulation and strengthen the notion of an exquisite glia neuronal interaction in glutamatergic synapses.

  11. Excessive disgust caused by brain lesions or temporary inactivations: mapping hotspots of the nucleus accumbens and ventral pallidum.

    PubMed

    Ho, Chao-Yi; Berridge, Kent C

    2014-11-01

    Disgust is a prototypical type of negative affect. In animal models of excessive disgust, only a few brain sites are known in which localized dysfunction (lesions or neural inactivations) can induce intense 'disgust reactions' (e.g. gapes) to a normally pleasant sensation such as sweetness. Here, we aimed to map forebrain candidates more precisely, to identify where either local neuronal damage (excitotoxin lesions) or local pharmacological inactivation (muscimol/baclofen microinjections) caused rats to show excessive sensory disgust reactions to sucrose. Our study compared subregions of the nucleus accumbens shell, ventral pallidum, lateral hypothalamus, and adjacent extended amygdala. The results indicated that the posterior half of the ventral pallidum was the only forebrain site where intense sensory disgust gapes in response to sucrose were induced by both lesions and temporary inactivations (this site was previously identified as a hedonic hotspot for enhancements of sweetness 'liking'). By comparison, for the nucleus accumbens, temporary GABA inactivations in the caudal half of the medial shell also generated sensory disgust, but lesions never did at any site. Furthermore, even inactivations failed to induce disgust in the rostral half of the accumbens shell (which also contains a hedonic hotspot). In other structures, neither lesions nor inactivations induced disgust as long as the posterior ventral pallidum remained spared. We conclude that the posterior ventral pallidum is an especially crucial hotspot for producing excessive sensory disgust by local pharmacological/lesion dysfunction. By comparison, the nucleus accumbens appears to segregate sites for pharmacological disgust induction and hedonic enhancement into separate posterior and rostral halves of the medial shell. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Serum Glutamic-Oxaloacetic Transaminase (GOT) and Glutamic-Pyruvic Transaminase (GPT) Levels in Children and Adolescents with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Lin, Jin-Ding; Lin, Pei-Ying; Chen, Li-Mei; Fang, Wen-Hui; Lin, Lan-Ping; Loh, Ching-Hui

    2010-01-01

    The elevated serum glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) rate among people with intellectual disabilities (ID) is unknown and have not been sufficiently studies. The present paper aims to provide the profile of GOT and GPT, and their associated relationship with other biochemical levels of children or…

  13. Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: a primary intestinal defect?

    PubMed

    Boutry, Claire; Matsumoto, Hideki; Bos, Cécile; Moinard, Christophe; Cynober, Luc; Yin, Yulong; Tomé, Daniel; Blachier, François

    2012-10-01

    Endotoxemia affects intestinal physiology. A decrease of circulating citrulline concentration is considered as a reflection of the intestinal function. Citrulline can be produced in enterocytes notably from glutamate and glutamine. The aim of this work was to determine if glutamate, glutamine and citrulline concentrations in blood, intestine and muscle are decreased by endotoxemia, and if supplementation with glutamate or glutamine can restore normal concentrations. We induced endotoxemia in rats by an intraperitoneal injection of 0.3 mg kg(-1) lipopolysaccharide (LPS). This led to a rapid anorexia, negative nitrogen balance and a transient increase of the circulating level of IL-6 and TNF-α. When compared with the values measured in pair fed (PF) animals, almost all circulating amino acids (AA) including citrulline decreased, suggesting a decrease of intestinal function. However, at D2 after LPS injection, most circulating AA concentrations were closed to the values recorded in the PF group. At that time, among AA, only glutamate, glutamine and citrulline were decreased in gastrocnemius muscle without change in intestinal mucosa. A supplementation with 4% monosodium glutamate (MSG) or an isomolar amount of glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscle. However, MSG supplementation led to an accumulation of glutamate in the intestinal mucosa. In conclusion, endotoxemia rapidly but transiently decreased the circulating concentrations of almost all AA and more durably of glutamate, glutamine and citrulline in muscle. Supplementation with glutamate or glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscles. The implication of a loss of the intestinal capacity for AA absorption and/or metabolism in endotoxemia (as judged from decreased citrulline plasma concentration) for explaining such results are discussed.

  14. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats.

    PubMed

    Zlotnik, Alexander; Sinelnikov, Igor; Gruenbaum, Benjamin F; Gruenbaum, Shaun E; Dubilet, Michael; Dubilet, Elena; Leibowitz, Akiva; Ohayon, Sharon; Regev, Adi; Boyko, Matthew; Shapira, Yoram; Teichberg, Vivian I

    2012-01-01

    Decreasing blood glutamate concentrations after traumatic brain injury accelerates brain-to-blood glutamate efflux, leading to improved neurologic outcomes. The authors hypothesize that treatment with blood glutamate scavengers should reduce neuronal cell loss, whereas administration of glutamate should worsen outcomes. The authors performed histologic studies of neuronal survival in the rat hippocampus after traumatic brain injury and treatment with blood glutamate scavengers. Traumatic brain injury was induced on anesthetized male Sprague-Dawley rats by a standardized weight drop. Intravenous treatment groups included saline (control), oxaloacetate, pyruvate, and glutamate. Neurologic outcome was assessed using a Neurological Severity Score at 1 h, and 1, 2, 7, 14, 21, 28 days. Blood glutamate was determined at baseline and 90 min. Four weeks after traumatic brain injury, a histologic analysis of surviving neurons was performed. Oxaloacetate and pyruvate treatment groups demonstrated increased neuronal survival (oxaloacetate 2,200 ± 37, pyruvate 2,108 ± 137 vs. control 1,978 ± 46, P < 0.001, mean ± SD). Glutamate treatment revealed decreased neuronal survival (1,715 ± 48, P < 0.001). Treatment groups demonstrated favorable neurologic outcomes at 24 and 48 h (Neurological Severity Score at 24 and 48 h: 5.5 (1-8.25), 5 (1.75-7.25), P = 0.02 and 3(1-6.5), 4 (1.75-4.5), P = 0.027, median ± corresponding interquartile range). Blood glutamate concentrations were decreased in the oxaloacetate and pyruvate treatment groups. Administration of oxaloacetate and pyruvate was not shown to have any adverse effects. The authors demonstrate that the blood glutamate scavengers oxaloacetate and pyruvate provide neuroprotection after traumatic brain injury, expressed both by reduced neuronal loss in the hippocampus and improved neurologic outcomes. The findings of this study may bring about new therapeutic possibilities in a variety of clinical settings.

  15. Glutamate-Mediated Primary Somatosensory Cortex Excitability Correlated with Circulating Copper and Ceruloplasmin

    PubMed Central

    Tecchio, Franca; Assenza, Giovanni; Zappasodi, Filippo; Mariani, Stefania; Salustri, Carlo; Squitti, Rosanna

    2011-01-01

    Objective. To verify whether markers of metal homeostasis are related to a magnetoencephalographic index representative of glutamate-mediated excitability of the primary somatosensory cortex. The index is identified as the source strength of the earliest component (M20) of the somatosensory magnetic fields (SEFs) evoked by right median nerve stimulation at wrist. Method. Thirty healthy right-handed subjects (51 ± 22 years) were enrolled in the study. A source reconstruction algorithm was applied to assess the amount of synchronously activated neurons subtending the M20 and the following SEF component (M30), which is generated by two independent contributions of gabaergic and glutamatergic transmission. Serum copper, ceruloplasmin, iron, transferrin, transferrin saturation, and zinc levels were measured. Results. Total copper and ceruloplasmin negatively correlated with the M20 source strength. Conclusion. This pilot study suggests that higher level of body copper reserve, as marked by ceruloplasmin variations, parallels lower cortical glutamatergic responsiveness. PMID:22145081

  16. Good Vibrations: Cross-Frequency Coupling in the Human Nucleus Accumbens during Reward Processing

    ERIC Educational Resources Information Center

    Cohen, Michael X.; Axmacher, Nikolai; Lenartz, Doris; Elger, Christian E.; Sturm, Volker; Schlaepfer, Thomas E.

    2009-01-01

    The nucleus accumbens is critical for reward-guided learning and decision-making. It is thought to "gate" the flow of a diverse range of information (e.g., rewarding, aversive, and novel events) from limbic afferents to basal ganglia outputs. Gating and information encoding may be achieved via cross-frequency coupling, in which bursts of…

  17. A Role for Glutamate Transporters in the Regulation of Insulin Secretion

    PubMed Central

    Gammelsaeter, Runhild; Coppola, Thierry; Marcaggi, Païkan; Storm-Mathisen, Jon; Chaudhry, Farrukh A.; Attwell, David; Regazzi, Romano; Gundersen, Vidar

    2011-01-01

    In the brain, glutamate is an extracellular transmitter that mediates cell-to-cell communication. Prior to synaptic release it is pumped into vesicles by vesicular glutamate transporters (VGLUTs). To inactivate glutamate receptor responses after release, glutamate is taken up into glial cells or neurons by excitatory amino acid transporters (EAATs). In the pancreatic islets of Langerhans, glutamate is proposed to act as an intracellular messenger, regulating insulin secretion from β-cells, but the mechanisms involved are unknown. By immunogold cytochemistry we show that insulin containing secretory granules express VGLUT3. Despite the fact that they have a VGLUT, the levels of glutamate in these granules are low, indicating the presence of a protein that can transport glutamate out of the granules. Surprisingly, in β-cells the glutamate transporter EAAT2 is located, not in the plasma membrane as it is in brain cells, but exclusively in insulin-containing secretory granules, together with VGLUT3. In EAAT2 knock out mice, the content of glutamate in secretory granules is higher than in wild type mice. These data imply a glutamate cycle in which glutamate is carried into the granules by VGLUT3 and carried out by EAAT2. Perturbing this cycle by knocking down EAAT2 expression with a small interfering RNA, or by over-expressing EAAT2 or a VGLUT in insulin granules, significantly reduced the rate of granule exocytosis. Simulations of granule energetics suggest that VGLUT3 and EAAT2 may regulate the pH and membrane potential of the granules and thereby regulate insulin secretion. These data suggest that insulin secretion from β-cells is modulated by the flux of glutamate through the secretory granules. PMID:21853059

  18. Calcium regulates glutamate dehydrogenase and poly-γ-glutamic acid synthesis in Bacillus natto.

    PubMed

    Meng, Yonghong; Dong, Guiru; Zhang, Chen; Ren, Yuanyuan; Qu, Yuling; Chen, Weifeng

    2016-04-01

    To study the effect of Ca(2+) on glutamate dehydrogenase (GDH) and its role in poly-γ-glutamic acid (γ-PGA) synthesis in Bacillus natto HSF 1410. When the concentration of Ca(2+) varied from 0 to 0.1 g/l in the growth medium of B. natto HSF 1410, γ-PGA production increased from 6.8 to 9.7 g/l, while GDH specific activity and NH4Cl consumption improved from 183 to 295 U/mg and from 0.65 to 0.77 g/l, respectively. GDH with α-ketoglutarate as substrate primarily used NADPH as coenzyme with a K m of 0.08 mM. GDH was responsible for the synthesis of endogenous glutamate. The specific activity of GDH remained essentially unchanged in the presence of CaCl2 (0.05-0.2 g/l) in vitro. However, the specific activity of GDH and its expression was significantly increased by CaCl2 in vivo. Therefore, the regulation of GDH and PGA synthesis by Ca(2+) is an intracellular process. Calcium regulation may be an effective approach for producing γ-PGA on an industrial scale.

  19. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model.

    PubMed

    Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R

    2017-08-30

    Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Group 2 Metabotropic Glutamate Receptor Agonist LY379268 Rescues Neuronal, Neurochemical and Motor Abnormalities in R6/2 Huntington’s Disease Mice

    PubMed Central

    Reiner, A.; Lafferty, D.C.; Wang, H.B.; Del Mar, N.; Deng, Y.P.

    2012-01-01

    Excitotoxic injury to striatum by dysfunctional cortical input or aberrant glutamate uptake may contribute to Huntington’s Disease (HD) pathogenesis. Since corticostriatal terminals possess mGluR2/3 autoreceptors, whose activation dampens glutamate release, we tested the ability of the mGluR2/3 agonist LY379268 to improve the phenotype in R6/2 HD mice with 120–125 CAG repeats. Daily subcutaneous injection of a maximum tolerated dose (MTD) of LY379268 (20mg/kg) had no evident adverse effects in WT mice, and diverse benefits in R6/2 mice, both in a cohort of mice tested behaviorally until the end of R6/2 lifespan and in a cohort sacrificed at 10 weeks of age for blinded histological analysis. MTD LY379268 yielded a significant 11% increase in R6/2 survival, an improvement on rotarod, normalization and/or improvement in locomotor parameters measured in open field (activity, speed, acceleration, endurance, and gait), a rescue of a 15–20% cortical and striatal neuron loss, normalization of SP striatal neuron neurochemistry, and to a lesser extent enkephalinergic striatal neuron neurochemistry. Deficits were greater in male than female R6/2 mice, and drug benefit tended to be greater in males. The improvements in SP striatal neurons, which facilitate movement, are consistent with the improved movement in LY379268-treated R6/2 mice. Our data indicate that mGluR2/3 agonists may be particularly useful for ameliorating the morphological, neurochemical and motor defects observed in HD. PMID:22472187

  1. [Glutamate-binding membrane proteins from human platelets].

    PubMed

    Gurevich, V S; Popov, Iu G; Gorodinskiĭ, A I; Dambinova, S A

    1991-09-01

    Solubilization of the total membrane fraction of human platelets in a 2% solution of sodium deoxycholate and subsequent affinity chromatography on glutamate agarose resulted in two protein fractions possessing a glutamate-binding activity. As can be evidenced from radioligand binding data, the first fraction contains two types of binding sites (Kd1 = 1 microM, Bmax 1 = 100 pmol/mg of protein; Kd2 = 9.3 microMm Bmax2 = 395 pmol/mg of protein). The second fraction has only one type of binding sites (Kd = 1 microM, Bmax = = 110 pmol/mg of protein). SDS-PAAG electrophoresis revealed the presence in the first fraction of proteins with Mr of 14, 24, 56 and 155 kDa, whereas the second fraction was found to contain 14, 46, 71 and 155 kDa proteins. Solid phase immunoenzymatic analysis using poly- and monoclonal specific antibodies against mammalian brain glutamate-binding proteins revealed a marked immunochemical similarity of the isolated protein fractions with human brain synaptic membrane glutamate-binding proteins.

  2. Dyadic social interaction inhibits cocaine-conditioned place preference and the associated activation of the accumbens corridor.

    PubMed

    Zernig, Gerald; Pinheiro, Barbara S

    2015-09-01

    Impaired social interaction is a hallmark symptom of many psychiatric disorders. In substance use disorders, impaired social interaction is triply harmful (a) because addicts increasingly prefer the drug of abuse to the natural reward of drug-free social interaction, thus worsening the progression of the disease by increasing their drug consumption, (b) because treatment adherence and, consequently, treatment success itself depends on the ability of the recovering addict to maintain social interaction and adhere to treatment, and (c) because socially interacting with an individual suffering from a substance use disorder may be harmful for others. Helping the addict reorient his/her behavior away from the drug of abuse toward social interaction would therefore be of considerable therapeutic benefit. This article reviews our work on the neural basis of such a reorientation from cocaine, as a prototypical drug of abuse, toward dyadic (i.e. one-to-one) social interaction and compares our findings with the effects of other potentially beneficial interventions, that is, environmental enrichment or paired housing, on the activation of the accumbens and other brain regions involved in behavior motivated by drugs of abuse or nondrug stimuli. Our experimental models are based on the conditioned place preference paradigm. As the therapeutically most promising finding, only four 15 min episodes of dyadic social interaction were able to inhibit both the subsequent reacquisition/re-expression of preference for cocaine and the neural activation associated with this behavior, that is, an increase in the expression of the immediate early gene Early Growth Response protein 1 (EGR1, Zif268) in the nucleus accumbens, basolateral and central amygdala, and the ventral tegmental area. The time spent in the cocaine-associated conditioning compartment was correlated with the density of EGR1-activated neurons not only in the medial core (AcbCm) and medial shell (AcbShm) of the nucleus

  3. Dyadic social interaction inhibits cocaine-conditioned place preference and the associated activation of the accumbens corridor

    PubMed Central

    Pinheiro, Barbara S.

    2015-01-01

    Impaired social interaction is a hallmark symptom of many psychiatric disorders. In substance use disorders, impaired social interaction is triply harmful (a) because addicts increasingly prefer the drug of abuse to the natural reward of drug-free social interaction, thus worsening the progression of the disease by increasing their drug consumption, (b) because treatment adherence and, consequently, treatment success itself depends on the ability of the recovering addict to maintain social interaction and adhere to treatment, and (c) because socially interacting with an individual suffering from a substance use disorder may be harmful for others. Helping the addict reorient his/her behavior away from the drug of abuse toward social interaction would therefore be of considerable therapeutic benefit. This article reviews our work on the neural basis of such a reorientation from cocaine, as a prototypical drug of abuse, toward dyadic (i.e. one-to-one) social interaction and compares our findings with the effects of other potentially beneficial interventions, that is, environmental enrichment or paired housing, on the activation of the accumbens and other brain regions involved in behavior motivated by drugs of abuse or nondrug stimuli. Our experimental models are based on the conditioned place preference paradigm. As the therapeutically most promising finding, only four 15 min episodes of dyadic social interaction were able to inhibit both the subsequent reacquisition/re-expression of preference for cocaine and the neural activation associated with this behavior, that is, an increase in the expression of the immediate early gene Early Growth Response protein 1 (EGR1, Zif268) in the nucleus accumbens, basolateral and central amygdala, and the ventral tegmental area. The time spent in the cocaine-associated conditioning compartment was correlated with the density of EGR1-activated neurons not only in the medial core (AcbCm) and medial shell (AcbShm) of the nucleus

  4. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  5. Dopamine neuron dependent behaviors mediated by glutamate cotransmission

    PubMed Central

    Mingote, Susana; Chuhma, Nao; Kalmbach, Abigail; Thomsen, Gretchen M; Wang, Yvonne; Mihali, Andra; Sferrazza, Caroline; Zucker-Scharff, Ilana; Siena, Anna-Claire; Welch, Martha G; Lizardi-Ortiz, José; Sulzer, David; Moore, Holly; Gaisler-Salomon, Inna; Rayport, Stephen

    2017-01-01

    Dopamine neurons in the ventral tegmental area use glutamate as a cotransmitter. To elucidate the behavioral role of the cotransmission, we targeted the glutamate-recycling enzyme glutaminase (gene Gls1). In mice with a dopamine transporter (Slc6a3)-driven conditional heterozygous (cHET) reduction of Gls1 in their dopamine neurons, dopamine neuron survival and transmission were unaffected, while glutamate cotransmission at phasic firing frequencies was reduced, enabling a selective focus on the cotransmission. The mice showed normal emotional and motor behaviors, and an unaffected response to acute amphetamine. Strikingly, amphetamine sensitization was reduced and latent inhibition potentiated. These behavioral effects, also seen in global GLS1 HETs with a schizophrenia resilience phenotype, were not seen in mice with an Emx1-driven forebrain reduction affecting most brain glutamatergic neurons. Thus, a reduction in dopamine neuron glutamate cotransmission appears to mediate significant components of the GLS1 HET schizophrenia resilience phenotype, and glutamate cotransmission appears to be important in attribution of motivational salience. DOI: http://dx.doi.org/10.7554/eLife.27566.001 PMID:28703706

  6. Fragile X Mental Retardation Protein Regulates the Levels of Scaffold Proteins and Glutamate Receptors in Postsynaptic Densities*

    PubMed Central

    Schütt, Janin; Falley, Katrin; Richter, Dietmar; Kreienkamp, Hans-Jürgen; Kindler, Stefan

    2009-01-01

    Functional absence of fragile X mental retardation protein (FMRP) causes the fragile X syndrome, a hereditary form of mental retardation characterized by a change in dendritic spine morphology. The RNA-binding protein FMRP has been implicated in regulating postsynaptic protein synthesis. Here we have analyzed whether the abundance of scaffold proteins and neurotransmitter receptor subunits in postsynaptic densities (PSDs) is altered in the neocortex and hippocampus of FMRP-deficient mice. Whereas the levels of several PSD components are unchanged, concentrations of Shank1 and SAPAP scaffold proteins and various glutamate receptor subunits are altered in both adult and juvenile knock-out mice. With the exception of slightly increased hippocampal SAPAP2 mRNA levels in adult animals, altered postsynaptic protein concentrations do not correlate with similar changes in total and synaptic levels of corresponding mRNAs. Thus, loss of FMRP in neurons appears to mainly affect the translation and not the abundance of particular brain transcripts. Semi-quantitative analysis of RNA levels in FMRP immunoprecipitates showed that in the mouse brain mRNAs encoding PSD components, such as Shank1, SAPAP1–3, PSD-95, and the glutamate receptor subunits NR1 and NR2B, are associated with FMRP. Luciferase reporter assays performed in primary cortical neurons from knock-out and wild-type mice indicate that FMRP silences translation of Shank1 mRNAs via their 3′-untranslated region. Activation of metabotropic glutamate receptors relieves translational suppression. As Shank1 controls dendritic spine morphology, our data suggest that dysregulation of Shank1 synthesis may significantly contribute to the abnormal spine development and function observed in brains of fragile X syndrome patients. PMID:19640847

  7. Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo.

    PubMed

    Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L

    2011-12-01

    Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-(13)C(2)]-D-β-hydroxybutyrate (BHB). Time courses of (13)C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized (1)H-[(13)C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron-astrocyte) metabolic model to the (13)C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. D-β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (≈ 70:30), and followed a pattern closely similar to the metabolism of [1-(13)C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-(13)C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.

  8. Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo

    PubMed Central

    Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L

    2011-01-01

    Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-13C2]--β-hydroxybutyrate (BHB). Time courses of 13C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized 1H-[13C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron–astrocyte) metabolic model to the 13C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. -β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (∼70:30), and followed a pattern closely similar to the metabolism of [1-13C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-13C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use. PMID:21731032

  9. Distribution of Vesicular Glutamate Transporter 2 and Ionotropic Glutamate Receptors in the Auditory Ganglion and Cochlear Nuclei of Pigeons (Columba livia).

    PubMed

    Karim, M R; Atoji, Y

    2016-02-01

    Glutamate is a principal excitatory neurotransmitter in the auditory system. Our previous studies revealed localization of glutamate receptor mRNAs in the pigeon cochlear nuclei, suggesting the existence of glutamatergic input from the auditory nerve to the brainstem. This study demonstrated localization of mRNAs for vesicular glutamate transporter 2 (vGluT2) and ionotropic glutamate receptors (AMPA, kainate and NMDA) in the auditory ganglion (AG) and cochlear nuclei (magnocellular, angular and laminar nuclei). VGluT2 mRNA was intensely expressed in AG and intensely or moderately in the cochlear nuclei. The AG and cochlear nuclei showed intense-to-moderate mRNA signals for GluA2, GluA3, GluA4, GluK4 and GluN1. These results suggest that the pigeon AG neurons receives glutamatergic input from hair cells and in turn projects to the magnocellular and angular nuclei. Glutamate may play a pivotal role in the excitatory synapse transmission in the peripheral auditory pathway of birds. © 2015 Blackwell Verlag GmbH.

  10. GLUTAMATE METABOLISM IN BRUCELLA ABORTUS STRAINS OF LOW AND HIGH VIRULENCE

    PubMed Central

    Dasinger, B. L.; Wilson, J. B.

    1962-01-01

    Dasinger, B. L. (University of Wisconsin, Madison) and J. B. Wilson. Glutamate metabolism in Brucella abortus strains of low and high virulence. J. Bacteriol. 84:911–915. 1962.—Brucella abortus strains of low virulence oxidize glutamate at a high rate, whereas strains of high virulence oxidize glutamate at a relatively low rate. Results indicated that this observation was not related to differences in pathway of glutamate oxidation or to differences in total enzyme activity. Permeability studies showed that the maximal rates of glutamate accumulation were 2.8 μmoles per 2 min per g (wet wt) for a strain of high virulence and 6.2 μmoles per 2 min per g for a strain of low virulence, but equal intracellular steady-state concentrations were attained by both types of strains. Evidence is presented which suggests that the site of glutamate oxidation is separate from the pool of glutamate being measured. Unequal rates of permeability at these sites could be the reason for the differences in rate of glutamate oxidation. PMID:14028057

  11. Cortical glutathione levels in young people with bipolar disorder: a pilot study using magnetic resonance spectroscopy.

    PubMed

    Godlewska, Beata R; Yip, Sarah W; Near, Jamie; Goodwin, Guy M; Cowen, Philip J

    2014-01-01

    Glutathione (GSH) is a key scavenger for cellular free radicals, and patients with bipolar disorder may have lowered GSH levels in plasma and in post-mortem brain tissue. The objective of the current study was to use magnetic resonance spectroscopy (MRS) to measure cortical GSH levels in young people with bipolar disorder to determine if lowered GSH might be a useful biomarker of vulnerability to the illness. We studied 13 patients with DSM-IV bipolar disorder and 11 healthy age-matched controls using proton MRS in conjunction with the SPECIAL acquisition technique. Voxels were placed in prefrontal and occipital cortex. All patients were clinically euthymic at the time of study and unmedicated. GSH and other relevant neurometabolites were measured relative to creatinine. There was no difference in GSH levels between bipolar participants and controls in either prefrontal or occipital cortex. Similarly, participants showed no difference from controls in other measured cortical metabolites including γ-aminobutyric acid, glutamate and N-acetylaspartate. This pilot study suggests that levels of cortical GSH are unlikely to be a useful trait biomarker of bipolar disorder in young people with a history of relatively mild mood instability at an early stage of illness. Lowered GSH levels may be relevant to bipolar pathophysiology in more severely ill patients, particular those with significant current mood disturbance.

  12. Metabolic Control of Vesicular Glutamate Transport and Release

    PubMed Central

    Juge, Narinobu; Gray, John A.; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H.; Nicoll, Roger A.; Moriyama, Yoshinori

    2010-01-01

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl−. Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl− acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl− at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses, and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. PMID:20920794

  13. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c -

    NASA Astrophysics Data System (ADS)

    Bridges, Richard J.; Patel, Sarjubhai A.

    As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.

  14. Update on food safety of monosodium l-glutamate (MSG).

    PubMed

    Henry-Unaeze, Helen Nonye

    2017-12-01

    This evidence-based safety review of the flavor enhancer monosodium l-glutamate (MSG) was triggered by its global use and recent studies expressing some safety concerns. This article obtained information through search of evidence-based scientific databases, especially the US National Library of Medicine NIH. (A) MSG is a water-soluble salt of glutamate, a non-essential amino acid, normally synthesized in the body and prevalent in protein foods. (B) MSG is utilized world-wide for its "umami" taste and flavor enhancement qualities, (C) the human body does not discriminate between glutamate present in food and that added as seasoning, (D) glutamate metabolism is compartmentalized in the human body without reported ethnic differences, (E) glutamate does not passively cross biological membranes, (F) food glutamate is completely metabolized by gut cells as energy source and serves as key substrate for other important metabolites in the liver, (G) normal food use of MSG is dose-dependent and self-limiting without elevation in plasma glutamate, (H) the recent EFSA acceptable daily intake (30mg/kg body weight/day) is not attainable when MSG is consumed at normal dietary level, (I) scientists have not been able to consistently elicit reactions in double-blind studies with 'sensitive' individuals using MSG or placebo in food. Based on the above observations (A-I), high quality MSG is safe for all life-cycle stages without respect to ethnic origin or culinary background. MSG researchers are advised to employ appropriate scientific methodologies, consider glutamate metabolism and its normal food use before extrapolating pharmacological rodent studies to humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Flavor Preferences Conditioned by Dietary Glutamate123

    PubMed Central

    2016-01-01

    Our understanding of the molecular basis of umami taste and its appetitive qualities has been greatly aided by studies in laboratory rodents. This review describes methods for testing responses to the prototypical umami substance monosodium glutamate (MSG) in rodents. Two techniques, forced exposure to MSG and 2-bottle choice tests with ascending concentrations, were used to evaluate the responses to the taste of umami itself, and 2 other methods used oral or postoral MSG to modify the responses to other flavors. Intake and preference for MSG are enhanced in mice by experience with MSG and with other nutrients with positive postoral effects. In addition, flavor preferences are enhanced in mice and rats by gastric or intestinal MSG infusions via an associative learning process. Even mice with an impaired or absent ability to taste MSG can learn to prefer a flavor added to an MSG solution, supporting the notion that glutamate acts postorally. The more complex flavor of dashi seasoning, which includes umami substances (inosinate, glutamate), is attractive to rodents, but dashi does not condition flavor preferences. Details of the postoral glutamate detection process and the nature of the signal involved in learned preferences are still uncertain but probably involve gastric or intestinal sensors or both and vagal transmission. Some findings suggest that postoral glutamate effects may enhance food preferences in humans, but this requires further study. PMID:27422522

  16. Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine

    PubMed Central

    Baker, David. A.; Madayag, Aric; Kristiansen, Lars V.; Meador-Woodruff, James H.; Haroutunian, Vahram; Raju, Ilangovan

    2014-01-01

    Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine-glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine-glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex; an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial T-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine-glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine-glutamate exchange and group II mGluR activation. Lastly, protein levels from post mortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine-glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine-glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP. PMID:17728701

  17. A modern ionotropic glutamate receptor with a K(+) selectivity signature sequence.

    PubMed

    Janovjak, H; Sandoz, G; Isacoff, E Y

    2011-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and gates non-selective cation channels. The origins of glutamate receptors are not well understood as they differ structurally and functionally from simple bacterial ligand-gated ion channels. Here we report the discovery of an ionotropic glutamate receptor that combines the typical eukaryotic domain architecture with the 'TXVGYG' signature sequence of the selectivity filter found in K(+) channels. This receptor exhibits functional properties intermediate between bacterial and eukaryotic glutamate-gated ion channels, suggesting a link in the evolution of ionotropic glutamate receptors.

  18. Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala.

    PubMed

    Guo, Ji-Dong; O'Flaherty, Brendan M; Rainnie, Donald G

    2017-11-01

    The basolateral amygdala (BLA) is a key site for crossmodal association of sensory stimuli and an important relay in the neural circuitry of emotion. Indeed, the BLA receives substantial glutamatergic inputs from multiple brain regions including the prefrontal cortex and thalamic nuclei. Modulation of glutamatergic transmission in the BLA regulates stress- and anxiety-related behaviors. Serotonin (5-HT) also plays an important role in regulating stress-related behavior through activation of both pre- and postsynaptic 5-HT receptors. Multiple 5-HT receptors are expressed in the BLA, where 5-HT has been reported to modulate glutamatergic transmission. However, the 5-HT receptor subtype mediating this effect is not yet clear. The aim of this study was to use patch-clamp recordings from BLA neurons in an ex vivo slice preparation to examine 1) the effect of 5-HT on extrinsic sensory inputs, and 2) to determine if any pathway specificity exists in 5-HT regulation of glutamatergic transmission. Two independent input pathways into the BLA were stimulated: the external capsule to mimic cortical input, and the internal capsule to mimic thalamic input. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs) induced by stimulation of both pathways. The decrease was associated with an increase in the paired-pulse ratio and coefficient of variation of eEPSC amplitude, suggesting 5-HT acts presynaptically. Moreover, the effect of 5-HT in both pathways was mimicked by the selective 5-HT 1B receptor agonist CP93129, but not by the 5-HT 1A receptor agonist 8-OH DPAT. Similarly the effect of exogenous 5-HT was blocked by the 5-HT 1B receptor antagonist GR55562, but not affected by the 5-HT 1A receptor antagonist WAY 100635 or the 5-HT 2 receptor antagonists pirenperone and MDL 100907. Together these data suggest 5-HT gates cortical and thalamic glutamatergic inputs into the BLA by activating presynaptic 5-HT 1B receptors

  19. [Determination of glutamic acid in biological material by capillary electrophoresis].

    PubMed

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  20. Time-dependent decreases in nucleus accumbens AMPA/NMDA ratio and incubation of sucrose craving in adolescent and adult rats.

    PubMed

    Counotte, Danielle S; Schiefer, Christopher; Shaham, Yavin; O'Donnell, Patricio

    2014-04-01

    There is evidence that cue-induced sucrose seeking progressively increases after cessation of oral sucrose self-administration (incubation of sucrose craving) in both adolescent and adult rats. The synaptic plasticity changes associated with this incubation at different age groups are unknown. We assessed whether incubation of sucrose craving in rats trained to self-administer sucrose as young adolescents, adolescents, or adults is associated with changes in 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)/N-methyl-D-aspartate (NMDA) ratio (a measure of postsynaptic changes in synaptic strength) in nucleus accumbens. Three age groups initiated oral sucrose self-administration training (10 days) on postnatal day (P) 35 (young adolescents), P42 (adolescents), or P70 (adults). They were then tested for cue-induced sucrose seeking (assessed in an extinction test) on abstinence days 1 and 21. Separate groups of rats were trained to self-administer sucrose or water (a control condition), and assessed for AMPA/NMDA ratio in nucleus accumbens on abstinence days 1-3 and 21. Adult rats earned more sucrose rewards, but sucrose intake per body weight was higher in young adolescent rats. Time-dependent increases in cue-induced sucrose seeking (incubation of sucrose craving) were more pronounced in adult rats, less pronounced in adolescents, and not detected in young adolescents. On abstinence day 21, but not days 1-3, AMPA/NMDA ratio in nucleus accumbens were decreased in rats that self-administered sucrose as adults and adolescents, but not young adolescents. Our data demonstrate age-dependent changes in magnitude of incubation of sucrose craving and nucleus accumbens synaptic plasticity after cessation of sucrose self-administration.

  1. Food Application of Newly Developed Handy-type Glutamate Sensor.

    PubMed

    Mukai, Yuuka; Oikawa, Tsutomu

    2016-01-01

    Tests on physiological functions of umami have been actively conducted and a need recognized for a high-performance quantification device that is simple and cost-effective, and whose use is not limited to a particular location or user. To address this need, Ajinomoto Co. and Tanita Corp. have jointly been researching and developing a simple device for glutamate measurement. The device uses L-glutamate oxidase immobilized on a hydrogen peroxide electrode. L-glutamate in the sample is converted to α-ketoglutaric acid, which produces hydrogen peroxide. Subsequently, the electrical current from the electrochemical reaction of hydrogen peroxide is measured to determine the L-glutamate concentration. In order to evaluate its basic performance, we used this device to measure the concentration of L-glutamate standard solutions. In a concentration range of 0-1.0%, the difference from the theoretical value was minimal. The coefficient of variation (CV) value of 3 measurements was 4% or less. This shows that the device has a reasonable level of precision and accuracy. The device was also used in trial measurements of L-glutamate concentrations in food. There was a good correlation between the results obtained using the developed device and those obtained with an amino acid analyzer; the correlation coefficient was R=0.997 (n=24). In this review, we demonstrate the use of our device to measure the glutamate concentration in miso soup served daily at a home for elderly people, and other foods and ingredients.

  2. Regulation of Alcohol Extinction and Cue-Induced Reinstatement by Specific Projections among Medial Prefrontal Cortex, Nucleus Accumbens, and Basolateral Amygdala.

    PubMed

    Keistler, Colby R; Hammarlund, Emma; Barker, Jacqueline M; Bond, Colin W; DiLeone, Ralph J; Pittenger, Christopher; Taylor, Jane R

    2017-04-26

    The ability to inhibit drinking is a significant challenge for recovering alcoholics, especially in the presence of alcohol-associated cues. Previous studies have demonstrated that the regulation of cue-guided alcohol seeking is mediated by the basolateral amygdala (BLA), nucleus accumbens (NAc), and medial prefrontal cortex (mPFC). However, given the high interconnectivity between these structures, it is unclear how mPFC projections to each subcortical structure, as well as projections between BLA and NAc, mediate alcohol-seeking behaviors. Here, we evaluate how cortico-striatal, cortico-amygdalar, and amygdalo-striatal projections control extinction and relapse in a rat model of alcohol seeking. Specifically, we used a combinatorial viral technique to express diphtheria toxin receptors in specific neuron populations based on their projection targets. We then used this strategy to create directionally selective ablations of three distinct pathways after acquisition of ethanol self-administration but before extinction and reinstatement. We demonstrate that ablation of mPFC neurons projecting to NAc, but not BLA, blocks cue-induced reinstatement of alcohol seeking and neither pathway is necessary for extinction of responding. Further, we show that ablating BLA neurons that project to NAc disrupts extinction of alcohol approach behaviors and attenuates reinstatement. Together, these data provide evidence that the mPFC→NAc pathway is necessary for cue-induced reinstatement of alcohol seeking, expand our understanding of how the BLA→NAc pathway regulates alcohol behavior, and introduce a new methodology for the manipulation of target-specific neural projections. SIGNIFICANCE STATEMENT The vast majority of recovering alcoholics will relapse at least once and understanding how the brain regulates relapse will be key to developing more effective behavior and pharmacological therapies for alcoholism. Given the high interconnectivity of cortical, striatal, and limbic

  3. Regulation of Alcohol Extinction and Cue-Induced Reinstatement by Specific Projections among Medial Prefrontal Cortex, Nucleus Accumbens, and Basolateral Amygdala

    PubMed Central

    Bond, Colin W.; DiLeone, Ralph J.

    2017-01-01

    The ability to inhibit drinking is a significant challenge for recovering alcoholics, especially in the presence of alcohol-associated cues. Previous studies have demonstrated that the regulation of cue-guided alcohol seeking is mediated by the basolateral amygdala (BLA), nucleus accumbens (NAc), and medial prefrontal cortex (mPFC). However, given the high interconnectivity between these structures, it is unclear how mPFC projections to each subcortical structure, as well as projections between BLA and NAc, mediate alcohol-seeking behaviors. Here, we evaluate how cortico-striatal, cortico-amygdalar, and amygdalo-striatal projections control extinction and relapse in a rat model of alcohol seeking. Specifically, we used a combinatorial viral technique to express diphtheria toxin receptors in specific neuron populations based on their projection targets. We then used this strategy to create directionally selective ablations of three distinct pathways after acquisition of ethanol self-administration but before extinction and reinstatement. We demonstrate that ablation of mPFC neurons projecting to NAc, but not BLA, blocks cue-induced reinstatement of alcohol seeking and neither pathway is necessary for extinction of responding. Further, we show that ablating BLA neurons that project to NAc disrupts extinction of alcohol approach behaviors and attenuates reinstatement. Together, these data provide evidence that the mPFC→NAc pathway is necessary for cue-induced reinstatement of alcohol seeking, expand our understanding of how the BLA→NAc pathway regulates alcohol behavior, and introduce a new methodology for the manipulation of target-specific neural projections. SIGNIFICANCE STATEMENT The vast majority of recovering alcoholics will relapse at least once and understanding how the brain regulates relapse will be key to developing more effective behavior and pharmacological therapies for alcoholism. Given the high interconnectivity of cortical, striatal, and limbic

  4. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study.

    PubMed

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Argibay, Bárbara; Agulla, Jesús; Pérez-Mato, María; Rodríguez-González, Raquel; Brea, David; Castillo, José

    2011-06-01

    As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain-blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke.

  5. The functional divide for primary reinforcement of D-amphetamine lies between the medial and lateral ventral striatum: is the division of the accumbens core, shell, and olfactory tubercle valid?

    PubMed

    Ikemoto, Satoshi; Qin, Mei; Liu, Zhong-Hua

    2005-05-18

    When projection analyses placed the nucleus accumbens and olfactory tubercle in the striatal system, functional links between these sites began to emerge. The accumbens has been implicated in the rewarding effects of psychomotor stimulants, whereas recent work suggests that the medial accumbens shell and medial olfactory tubercle mediate the rewarding effects of cocaine. Interestingly, anatomical evidence suggests that medial portions of the shell and tubercle receive afferents from common zones in a number of regions. Here, we report results suggesting that the current division of the ventral striatum into the accumbens core and shell and the olfactory tubercle does not reflect the functional organization for amphetamine reward. Rats quickly learned to self-administer D-amphetamine into the medial shell or medial tubercle, whereas they failed to learn to do so into the accumbens core, ventral shell, or lateral tubercle. Our results suggest that primary reinforcement of amphetamine is mediated via the medial portion of the ventral striatum. Thus, the medial shell and medial tubercle are more functionally related than the medial and ventral shell or the medial and lateral tubercle. The current core-shell-tubercle scheme should be reconsidered in light of recent anatomical data and these functional findings.

  6. Metabolic control of vesicular glutamate transport and release.

    PubMed

    Juge, Narinobu; Gray, John A; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H; Nicoll, Roger A; Moriyama, Yoshinori

    2010-10-06

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Biochemical markers of striatal desensitization in cortical-limbic hyperglutamatergic TS- & OCD-like transgenic mice.

    PubMed

    O'Brien, Kylie B; Sharrief, Anjail Z; Nordstrom, Eric J; Travanty, Anthony J; Huynh, Mailee; Romero, Megan P; Bittner, Katie C; Bowser, Michael T; Burton, Frank H

    2018-04-01

    Tics and compulsions in comorbid Tourette's syndrome (TS) and obsessive-compulsive disorder (OCD) are associated with chronic hyperactivity of parallel cortico/amygdalo-striato-thalamo-cortical (CSTC) loop circuits. Comorbid TS- & OCD-like behaviors have likewise been observed in D1CT-7 mice, in which an artificial neuropotentiating transgene encoding the cAMP-elevating intracellular subunit of cholera toxin (CT) is chronically expressed selectively in somatosensory cortical & amygdalar dopamine (DA) D1 receptor-expressing neurons that activate cortico/amygdalo-striatal glutamate (GLU) output. We've now examined in D1CT-7 mice whether the chronic GLU output from their potentiated cortical/limbic CSTC subcircuit afferents associated with TS- & OCD-like behaviors elicits desensitizing neurochemical changes in the striatum (STR). Microdialysis-capillary electrophoresis and in situ hybridization reveal that the mice's chronic GLU-excited STR exhibits pharmacodynamic changes in three independently GLU-regulated measures of output neuron activation, co-excitation, and desensitization, signifying hyperactive striatal CSTC output and compensatory striatal glial and neuronal desensitization: 1) Striatal GABA, an output neurotransmitter induced by afferent GLU, is increased. 2) Striatal d-serine, a glial excitatory co-transmitter inhibited by afferent GLU, is decreased. 3) Striatal Period1 (Per1), which plays a non-circadian role in the STR as a GLU + DA D1- (cAMP-) dependent repressor thought to feedback-inhibit GLU + DA- triggered ultradian urges and motions, is transcriptionally abolished. These data imply that chronic cortical/limbic GLU excitation of the STR desensitizes its co-excitatory d-serine & DA inputs while freezing its GABA output in an active state to mediate chronic tics and compulsions - possibly in part by abolishing striatal Per1-dependent ultradian extinction of urges and motions. Copyright © 2018 The Authors. Published by Elsevier B.V. All

  8. Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex.

    PubMed

    Sonnay, Sarah; Poirot, Jordan; Just, Nathalie; Clerc, Anne-Catherine; Gruetter, Rolf; Rainer, Gregor; Duarte, João M N

    2018-03-01

    Astrocytes play an important role in glutamatergic neurotransmission, namely by clearing synaptic glutamate and converting it into glutamine that is transferred back to neurons. The rate of this glutamate-glutamine cycle (V NT ) has been proposed to couple to that of glucose utilization and of neuronal tricarboxylic acid (TCA) cycle. In this study, we tested the hypothesis that glutamatergic neurotransmission is also coupled to the TCA cycle rate in astrocytes. For that we investigated energy metabolism by means of magnetic resonance spectroscopy (MRS) in the primary visual cortex of tree shrews (Tupaia belangeri) under light isoflurane anesthesia at rest and during continuous visual stimulation. After identifying the activated cortical volume by blood oxygenation level-dependent functional magnetic resonance imaging, 1 H MRS was performed to measure stimulation-induced variations in metabolite concentrations. Relative to baseline, stimulation of cortical activity for 20 min caused a reduction of glucose concentration by -0.34 ± 0.09 µmol/g (p < 0.001), as well as a -9% ± 1% decrease of the ratio of phosphocreatine-to-creatine (p < 0.05). Then 13 C MRS during [1,6- 13 C]glucose infusion was employed to measure fluxes of energy metabolism. Stimulation of glutamatergic activity, as indicated by a 20% increase of V NT , resulted in increased TCA cycle rates in neurons by 12% ( VTCAn, p < 0.001) and in astrocytes by 24% ( VTCAg, p = 0.007). We further observed linear relationships between V NT and both VTCAn and VTCAg. Altogether, these results suggest that in the tree shrew primary visual cortex glutamatergic neurotransmission is linked to overall glucose oxidation and to mitochondrial metabolism in both neurons and astrocytes. © 2017 Wiley Periodicals, Inc.

  9. Glutamate and asparagine cataplerosis underlie glutamine addiction in melanoma

    PubMed Central

    Ratnikov, Boris; Aza-Blanc, Pedro; Ronai, Ze'ev A.; Smith, Jeffrey W.; Osterman, Andrei L.; Scott, David A.

    2015-01-01

    Glutamine dependence is a prominent feature of cancer metabolism, and here we show that melanoma cells, irrespective of their oncogenic background, depend on glutamine for growth. A quantitative audit of how carbon from glutamine is used showed that TCA-cycle-derived glutamate is, in most melanoma cells, the major glutamine-derived cataplerotic output and product of glutaminolysis. In the absence of glutamine, TCA cycle metabolites were liable to depletion through aminotransferase-mediated α-ketoglutarate-to-glutamate conversion and glutamate secretion. Aspartate was an essential cataplerotic output, as melanoma cells demonstrated a limited capacity to salvage external aspartate. Also, the absence of asparagine increased the glutamine requirement, pointing to vulnerability in the aspartate-asparagine biosynthetic pathway within melanoma metabolism. In contrast to melanoma cells, melanocytes could grow in the absence of glutamine. Melanocytes use more glutamine for protein synthesis rather than secreting it as glutamate and are less prone to loss of glutamate and TCA cycle metabolites when starved of glutamine. PMID:25749035

  10. Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats.

    PubMed

    Ding, Zheng-Ming; Ingraham, Cynthia M; Rodd, Zachary A; McBride, William J

    2016-10-01

    Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Excitatory and inhibitory synaptic connectivity to layer V fast-spiking interneurons in the freeze lesion model of cortical microgyria

    PubMed Central

    Jin, Xiaoming; Jiang, Kewen

    2014-01-01

    A variety of major developmental cortical malformations are closely associated with clinically intractable epilepsy. Pathophysiological aspects of one such disorder, human polymicrogyria, can be modeled by making neocortical freeze lesions (FL) in neonatal rodents, resulting in the formation of microgyri. Previous studies showed enhanced excitatory and inhibitory synaptic transmission and connectivity in cortical layer V pyramidal neurons in the paramicrogyral cortex. In young adult transgenic mice that express green fluorescent protein (GFP) specifically in parvalbumin positive fast-spiking (FS) interneurons, we used laser scanning photostimulation (LSPS) of caged glutamate to map excitatory and inhibitory synaptic connectivity onto FS interneurons in layer V of paramicrogyral cortex in control and FL groups. The proportion of uncaging sites from which excitatory postsynaptic currents (EPSCs) could be evoked (hotspot ratio) increased slightly but significantly in FS cells of the FL vs. control cortex, while the mean amplitude of LSPS-evoked EPSCs at hotspots did not change. In contrast, the hotspot ratio of inhibitory postsynaptic currents (IPSCs) was significantly decreased in FS neurons of the FL cortex. These alterations in synaptic inputs onto FS interneurons may result in an enhanced inhibitory output. We conclude that alterations in synaptic connectivity to cortical layer V FS interneurons do not contribute to hyperexcitability of the FL model. Instead, the enhanced inhibitory output from these neurons may partially offset an earlier demonstrated increase in synaptic excitation of pyramidal cells and thereby maintain a relative balance between excitation and inhibition in the affected cortical circuitry. PMID:24990567

  12. Immunolocalization of vesicular glutamate transporters 1 and 2 in the rat inferior colliculus.

    PubMed

    Altschuler, R A; Tong, L; Holt, A G; Oliver, D L

    2008-06-12

    The inferior colliculus is a major relay nucleus in the ascending auditory pathways that receives multiple glutamatergic inputs. Vesicular glutamate transporters 1 and 2 (VGLUT1, VGLUT2) most often have complementary non-overlapping distributions and can be used to differentiate glutamatergic inputs. The present study therefore examined co-immunolabeling of VGLUT1 and VGLUT2 in three divisions of the rat inferior colliculus. Additional co-immunolabeling of microtubule-associated protein 2 and neuronal class III beta-tubulin provided visualization of neuronal soma and processes and allowed identification of axo-somatic versus axo-dendritic contacts. Results showed numerous VGLUT1 and 2 immunolabeled terminals in the central nucleus, lateral cortex and dorsal cortex. In all three divisions there was little to no co-containment of the two vesicular glutamate transporters indicating a complementary distribution. VGLUT1 made predominantly axo-dendritic connections in the neuropil, while VGLUT2 had many axo-somatic contacts in addition to axo-dendritic contacts. VGLUT2 immunolabeled terminals were numerous on the soma and proximal dendrites of many medium-to-large and large neurons in the central nucleus and medium to large neurons in the dorsal cortex. There were more VGLUT2 terminals than VGLUT1 in all divisions and more VGLUT2 terminals in dorsal and lateral cortices than in the central nucleus. This study shows that VGLUT1 and VGLUT2 differentiate complementary patterns of glutamatergic inputs into the central nucleus, lateral and dorsal cortex of the inferior colliculus with VGLUT1 endings predominantly on the dendrites and VGLUT2 on both dendrites and somas.

  13. Environmental enrichment alters protein expression as well as the proteomic response to cocaine in rat nucleus accumbens

    PubMed Central

    Lichti, Cheryl F.; Fan, Xiuzhen; English, Robert D.; Zhang, Yafang; Li, Dingge; Kong, Fanping; Sinha, Mala; Andersen, Clark R.; Spratt, Heidi; Luxon, Bruce A.; Green, Thomas A.

    2014-01-01

    Prior research demonstrated that environmental enrichment creates individual differences in behavior leading to a protective addiction phenotype in rats. Understanding the mechanisms underlying this phenotype will guide selection of targets for much-needed novel pharmacotherapeutics. The current study investigates differences in proteome expression in the nucleus accumbens of enriched and isolated rats and the proteomic response to cocaine self-administration using a liquid chromatography mass spectrometry (LCMS) technique to quantify 1917 proteins. Results of complementary Ingenuity Pathways Analyses (IPA) and gene set enrichment analyses (GSEA), both performed using protein quantitative data, demonstrate that cocaine increases vesicular transporters for dopamine and glutamate as well as increasing proteins in the RhoA pathway. Further, cocaine regulates proteins related to ERK, CREB and AKT signaling. Environmental enrichment altered expression of a large number of proteins implicated in a diverse number of neuronal functions (e.g., energy production, mRNA splicing, and ubiquitination), molecular cascades (e.g., protein kinases), psychiatric disorders (e.g., mood disorders), and neurodegenerative diseases (e.g., Huntington's and Alzheimer's diseases). Upregulation of energy metabolism components in EC rats was verified using RNA sequencing. Most of the biological functions and pathways listed above were also identified in the Cocaine X Enrichment interaction analysis, providing clear evidence that enriched and isolated rats respond quite differently to cocaine exposure. The overall impression of the current results is that enriched saline-administering rats have a unique proteomic complement compared to enriched cocaine-administering rats as well as saline and cocaine-taking isolated rats. These results identify possible mechanisms of the protective phenotype and provide fertile soil for developing novel pharmacotherapeutics. Proteomics data are available via

  14. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens.

    PubMed

    Rose, Jamie H; Karkhanis, Anushree N; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F; Becker, Howard C; McCool, Brian A; Jones, Sara R

    2016-05-01

    Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety

  15. A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability.

    PubMed

    Flanagan, Bronac; McDaid, Liam; Wade, John; Wong-Lin, KongFatt; Harkin, Jim

    2018-04-01

    The ability of astrocytes to rapidly clear synaptic glutamate and purposefully release the excitatory transmitter is critical in the functioning of synapses and neuronal circuits. Dysfunctions of these homeostatic functions have been implicated in the pathology of brain disorders such as mesial temporal lobe epilepsy. However, the reasons for these dysfunctions are not clear from experimental data and computational models have been developed to provide further understanding of the implications of glutamate clearance from the extracellular space, as a result of EAAT2 downregulation: although they only partially account for the glutamate clearance process. In this work, we develop an explicit model of the astrocytic glutamate transporters, providing a more complete description of the glutamate chemical potential across the astrocytic membrane and its contribution to glutamate transporter driving force based on thermodynamic principles and experimental data. Analysis of our model demonstrates that increased astrocytic glutamate content due to glutamine synthetase downregulation also results in increased postsynaptic quantal size due to gliotransmission. Moreover, the proposed model demonstrates that increased astrocytic glutamate could prolong the time course of glutamate in the synaptic cleft and enhances astrocyte-induced slow inward currents, causing a disruption to the clarity of synaptic signalling and the occurrence of intervals of higher frequency postsynaptic firing. Overall, our work distilled the necessity of a low astrocytic glutamate concentration for reliable synaptic transmission of information and the possible implications of enhanced glutamate levels as in epilepsy.

  16. VGLUT1 and VGAT are sorted to the same population of synaptic vesicles in subsets of cortical axon terminals.

    PubMed

    Fattorini, Giorgia; Verderio, Claudia; Melone, Marcello; Giovedì, Silvia; Benfenati, Fabio; Matteoli, Michela; Conti, Fiorenzo

    2009-09-01

    Glutamate and GABA mediate most of the excitatory and inhibitory synaptic transmission; they are taken up and accumulated in synaptic vesicles by specific vesicular transporters named VGLUT1-3 and VGAT, respectively. Recent studies show that VGLUT2 and VGLUT3 are co-expressed with VGAT. Because of the relevance this information has for our understanding of synaptic physiology and plasticity, we investigated whether VGLUT1 and VGAT are co-expressed in rat cortical neurons. In cortical cultures and layer V cortical terminals we observed a population of terminals expressing VGLUT1 and VGAT. Post-embedding immunogold studies showed that VGLUT1+/VGAT+ terminals formed both symmetric and asymmetric synapses. Triple-labeling studies revealed GABAergic synapses expressing VGLUT1 and glutamatergic synapses expressing VGAT. Immunoisolation studies showed that anti-VGAT immunoisolated vesicles contained VGLUT1 and anti-VGLUT1 immunoisolated vesicles contained VGAT. Finally, vesicles containing VGAT resident in glutamatergic terminals undergo active recycling. In conclusion, we demonstrate that in neocortex VGLUT1 and VGAT are co-expressed in a subset of axon terminals forming both symmetric and asymmetric synapses, that VGLUT1 and VGAT are sorted to the same vesicles and that vesicles at synapses expressing the vesicular heterotransporter participate in the exo-endocytotic cycle.

  17. Post-Translational Modification Biology of Glutamate Receptors and Drug Addiction

    PubMed Central

    Mao, Li-Min; Guo, Ming-Lei; Jin, Dao-Zhong; Fibuch, Eugene E.; Choe, Eun Sang; Wang, John Q.

    2011-01-01

    Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein–protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction. PMID:21441996

  18. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN P...

  19. Characteristics of AMPA receptor-mediated responses of cultured cortical and spinal cord neurones and their correlation to the expression of glutamate receptor subunits, GluR1-4

    PubMed Central

    Dai, Wei-Min; Egebjerg, Jan; Lambert, John D C

    2001-01-01

    Electrophysiological recordings have been used to characterize responses mediated by AMPA receptors expressed by cultured rat cortical and spinal cord neurones. The EC50 values for AMPA were 17 and 11 μM, respectively.Responses of cortical neurones to AMPA were inhibited competitively by NBQX (pKi=6.6). Lower concentrations of NBQX (⩽1 μM) also potentiated the plateau responses of spinal cord neurones to AMPA, which could be attributed to a depression of desensitization to AMPA.GYKI 52466 inhibited responses of spinal cord neurones to AMPA to about twice the extent of responses of cortical neurones.Blockade of AMPA receptor desensitization by cyclothiazide (CTZ) potentiated responses of spinal cord neurones (6.8 fold) significantly more than responses of cortical neurones (4.8 fold). Responses of cortical neurones to KA were potentiated 3.5 fold by CTZ, while responses of spinal cord neurones were unaffected.Ultra-fast applications of AMPA to outside-out patches showed responses of spinal cord neurones desensitized by 97.5% and exhibit marked inward rectification, whereas cortical neurones desensitized by 91% and exhibited slight outward rectification. The time constants of deactivation and desensitization were about twice as fast in spinal cord than cortical neurones.In cortical neurones, single-cell RT – PCR showed GluR2 and GluR1 accounted for 91% of all subunits and were expressed together in 67% of neurones, predominantly as the flip variants (78%). GluR2 was detected alone in 24% of neurones. GluR3 and GluR4 were present in only 14 and 29% of neurones, respectively. For spinal cord neurones, GluR4o was detected in 81% of neurones, whereas predominantly flop versions of GluR1, 2 and 3 were detected in 38, 13 and 13% of neurones, respectively. These expression patterns are related to the respective pharmacological and mechanistic properties. PMID:11309259

  20. Energetics of Glutamate Binding to an Ionotropic Glutamate Receptor.

    PubMed

    Yu, Alvin; Lau, Albert Y

    2017-11-22

    Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are responsible for the majority of excitatory transmission at the synaptic cleft. Mechanically speaking, agonist binding to the ligand binding domain (LBD) activates the receptor by triggering a conformational change that is transmitted to the transmembrane region, opening the ion channel pore. We use fully atomistic molecular dynamics simulations to investigate the binding process in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, an iGluR subtype. The string method with swarms of trajectories was applied to calculate the possible pathways glutamate traverses during ligand binding. Residues peripheral to the binding cleft are found to metastably bind the ligand prior to ligand entry into the binding pocket. Umbrella sampling simulations were performed to compute the free energy barriers along the binding pathways. The calculated free energy profiles demonstrate that metastable interactions contribute substantially to the energetics of ligand binding and form local minima in the overall free energy landscape. Protein-ligand interactions at sites outside of the orthosteric agonist-binding site may serve to lower the transition barriers of the binding process.

  1. Cloning and characterization of the glutamate dehydrogenase gene in Streptococcus bovis.

    PubMed

    Ando, Tasuke; Sugawara, Yoko; Nishio, Ryohei; Murakami, Miho; Isogai, Emiko; Yoneyama, Hiroshi

    2017-07-01

    Streptococcus bovis, an etiologic agent of rumen acidosis in cattle, is a rumen bacterium that can grow in a chemically defined medium containing ammonia as a sole source of nitrogen. To understand its ability to assimilate inorganic ammonia, we focused on the function of glutamate dehydrogenase. In order to identify the gene encoding this enzyme, we first amplified an internal region of the gene by using degenerate primers corresponding to hexameric family I and NAD(P) + binding motifs. Subsequently, inverse PCR was used to identify the whole gene, comprising an open reading frame of 1350 bp that encodes 449 amino acid residues that appear to have the substrate binding site of glutamate dehydrogenase observed in other organisms. Upon introduction of a recombinant plasmid harboring the gene into an Escherichia coli glutamate auxotroph lacking glutamate dehydrogenase and glutamate synthase, the transformants gained the ability to grow on minimal medium without glutamate supplementation. When cell extracts of the transformant were resolved by blue native polyacrylamide gel electrophoresis followed by activity staining, a single protein band appeared that corresponded to the size of S. bovis glutamate dehydrogenase. Based on these results, we concluded that the gene obtained encodes glutamate dehydrogenase in S. bovis. © 2016 Japanese Society of Animal Science.

  2. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study

    PubMed Central

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Argibay, Bárbara; Agulla, Jesús; Pérez-Mato, María; Rodríguez-González, Raquel; Brea, David; Castillo, José

    2011-01-01

    As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain–blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke. PMID:21266983

  3. A Glutamic Acid-Producing Lactic Acid Bacteria Isolated from Malaysian Fermented Foods

    PubMed Central

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B.; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound. PMID:22754309

  4. Two Pathways of Glutamate Fermentation by Anaerobic Bacteria

    PubMed Central

    Buckel, Wolfgang; Barker, H. A.

    1974-01-01

    Two pathways are involved in the fermentation of glutamate to acetate, butyrate, carbon dioxide, and ammonia—the methylaspartate and the hydroxyglutarate pathways which are used by Clostridium tetanomorphum and Peptococcus aerogenes, respectively. Although these pathways give rise to the same products, they are easily distinguished by different labeling patterns of the butyrate when [4-14C]glutamate is used as substrate. Schmidt degradation of the radioactive butyrate from C. tetanomorphum yielded equally labeled propionate and carbon dioxide, whereas nearly all the radioactivity of the butyrate from P. aerogenes was recovered in the corresponding propionate. This procedure was used as a test for the pathway of glutamate fermentation by 15 strains (9 species) of anaerobic bacteria. The labeling patterns of the butyrate indicate that glutamate is fermented via the methylaspartate pathway by C. tetani, C. cochlearium, and C. saccarobutyricum, and via the hydroxyglutarate pathway by Acidaminococcus fermentans, C. microsporum, Fusobacterium nucleatum, and F. fusiformis. Enzymes specific for each pathway were assayed in crude extracts of the above organisms. 3-Methylaspartase was found only in clostridia which use the methylaspartate pathway, including Clostridium SB4 and C. sticklandii, which probably degrade glutamate to acetate and carbon dioxide by using a second amino acid as hydrogen acceptor. High levels of 2-hydroxyglutarate dehydrogenase were found exclusively in organisms that use the hydroxyglutarate pathway. The data indicate that only two pathways are involved in the fermentation of glutamate by the bacteria analyzed. The methylaspartate pathway appears to be used only by species of Clostridium, whereas the hydroxyglutarate pathway is used by representatives of several genera. PMID:4813895

  5. Thiopental sodium reduces glutamate extracellular levels in rat intact prefrontal cortex.

    PubMed

    Liu, Hongliang; Yao, Shanglong

    2005-12-01

    To investigate the effect of thiopental sodium on glutamate extracellular levels in the prefrontal cortex (PFC) of rats, a microdialysis probe was inserted into the PFC, the perfusate was collected every 10 min throughout the experiment with thiopental sodium ip or perfused into the PFC locally. The concentrations of glutamate in the perfusate were determined by reversed-phase high performance liquid chromatography. Thiopental sodium 30 mg kg(-1) ip significantly decreased glutamate levels in the perfusate after 10, 20, 30, and 40 min; glutamate levels in the perfusate were also decreased from 10 to 90 min after thiopental sodium 50 mg kg(-1) ip. Thiopental sodium with concentrations of 30, 100, or 300 microM perfused into the PFC also decreased glutamate levels in the perfusate significantly. The results suggest that thiopental sodium decreases glutamate extracellular levels in rat intact PFC.

  6. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking

    PubMed Central

    Kalivas, Benjamin C.; Kalivas, Peter W.

    2016-01-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression. PMID:27069381

  7. N-Acetylcysteine Reverses Cocaine Induced Metaplasticity

    PubMed Central

    Moussawi, Khaled; Pacchioni, Alejandra; Moran, Megan; Olive, M. Foster; Gass, Justin T.; Lavin, Antonieta; Kalivas, Peter W

    2009-01-01

    Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry critical for regulating motivated behavior. RWe found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentation (LTP) and depression (LTD) in the nucleus accumbens core subregion following stimulation of prefrontal cortex. N-acetylcysteine treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). N-acetylcysteine treatment restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Cocaine self-administration induces metaplasticity that inhibits the further induction of synaptic plasticity, and this impairment can be reversed by N-acetylcysteine, a drug that also prevents relapse. PMID:19136971

  8. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking.

    PubMed

    Kalivas, Benjamin C; Kalivas, Peter W

    2016-03-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression.

  9. N-Acetylcysteine reverses cocaine-induced metaplasticity.

    PubMed

    Moussawi, Khaled; Pacchioni, Alejandra; Moran, Megan; Olive, M Foster; Gass, Justin T; Lavin, Antonieta; Kalivas, Peter W

    2009-02-01

    Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry crucial for regulating motivated behavior. We found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentiation (LTP) and long-term depression (LTD) in the nucleus accumbens core subregion after stimulation of the prefrontal cortex. N-acetylcysteine (NAC) treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). NAC treatment of rats restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Our findings show that cocaine self-administration induces metaplasticity that inhibits further induction of synaptic plasticity, and this impairment can be reversed by NAC, a drug that also prevents relapse.

  10. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism.

    PubMed

    Purcell, A E; Jeon, O H; Zimmerman, A W; Blue, M E; Pevsner, J

    2001-11-13

    Studies examining the brains of individuals with autism have identified anatomic and pathologic changes in regions such as the cerebellum and hippocampus. Little, if anything, is known, however, about the molecules that are involved in the pathogenesis of this disorder. To identify genes with abnormal expression levels in the cerebella of subjects with autism. Brain samples from a total of 10 individuals with autism and 23 matched controls were collected, mainly from the cerebellum. Two cDNA microarray technologies were used to identify genes that were significantly up- or downregulated in autism. The abnormal mRNA or protein levels of several genes identified by microarray analysis were investigated using PCR with reverse transcription and Western blotting. alpha-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)- and NMDA-type glutamate receptor densities were examined with receptor autoradiography in the cerebellum, caudate-putamen, and prefrontal cortex. The mRNA levels of several genes were significantly increased in autism, including excitatory amino acid transporter 1 and glutamate receptor AMPA 1, two members of the glutamate system. Abnormalities in the protein or mRNA levels of several additional molecules in the glutamate system were identified on further analysis, including glutamate receptor binding proteins. AMPA-type glutamate receptor density was decreased in the cerebellum of individuals with autism (p < 0.05). Subjects with autism may have specific abnormalities in the AMPA-type glutamate receptors and glutamate transporters in the cerebellum. These abnormalities may be directly involved in the pathogenesis of the disorder.

  11. Cortical tremor: a variant of cortical reflex myoclonus.

    PubMed

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  12. Glutamate-induced excitation and sensitization of nociceptors in rat glabrous skin.

    PubMed

    Du, J; Koltzenburg, M; Carlton, S M

    2001-01-01

    Anatomical studies demonstrate the presence of glutamate receptors on unmyelinated axons in peripheral cutaneous nerves. Pharmacological studies show that intraplantar injection of glutamate or glutamate agonists in the glabrous skin results in nociceptive behaviors. The present study describes a novel in vitro skin-nerve preparation using the glabrous skin from the rat hindpaw. In the first series of experiments, recordings were obtained from 141 fibers that responded to a strong mechanical search stimulus. Based on their conduction velocity they were classified as C (27%), A delta (28%) and A beta (45%) fibers. The C and A delta fibers typically exhibited sustained firing during suprathreshold mechanical stimuli whereas both rapidly (66%) and slowly (34%) adapting responses were obtained from A beta fibers. Noxious heat excited 46% of the C fibers but only 12% of the A delta units. In another series of experiments application of an ascending series of glutamate concentrations (10, 100, 300, and 1000 microM) to A delta (n=14) and C (n=19) nociceptors resulted in a significant excitation of 43% (6/14) A delta fibers and 68% (13/19) C fibers. At these concentrations, there was no excitation of A beta units (n=13). Superfusion of the receptive fields of either mechanoheat-sensitive A (AMH, n=10) or C fibers (CMH, n=12) for 2 min with 300 microM glutamate resulted in sensitization of 90% (9/10) AMH and 92% (11/12) CMH fibers to subsequent thermal stimulation. This was evidenced by a significant (1) decrease in thermal threshold for activation, (2) increase in discharge rate, and (3) increase in peak instantaneous frequencies during the second heat trial. Glutamate-induced sensitization to heat occurred in the absence of either a glutamate-induced excitation or an initial heat response. Exposure of A delta or C fibers to glutamate did not result in a decrease in von Frey thresholds. These data provide a physiological basis for the nociceptive behaviors that arise

  13. The neurochemical basis of human cortical auditory processing: combining proton magnetic resonance spectroscopy and magnetoencephalography

    PubMed Central

    Sörös, Peter; Michael, Nikolaus; Tollkötter, Melanie; Pfleiderer, Bettina

    2006-01-01

    Background A combination of magnetoencephalography and proton magnetic resonance spectroscopy was used to correlate the electrophysiology of rapid auditory processing and the neurochemistry of the auditory cortex in 15 healthy adults. To assess rapid auditory processing in the left auditory cortex, the amplitude and decrement of the N1m peak, the major component of the late auditory evoked response, were measured during rapidly successive presentation of acoustic stimuli. We tested the hypothesis that: (i) the amplitude of the N1m response and (ii) its decrement during rapid stimulation are associated with the cortical neurochemistry as determined by proton magnetic resonance spectroscopy. Results Our results demonstrated a significant association between the concentrations of N-acetylaspartate, a marker of neuronal integrity, and the amplitudes of individual N1m responses. In addition, the concentrations of choline-containing compounds, representing the functional integrity of membranes, were significantly associated with N1m amplitudes. No significant association was found between the concentrations of the glutamate/glutamine pool and the amplitudes of the first N1m. No significant associations were seen between the decrement of the N1m (the relative amplitude of the second N1m peak) and the concentrations of N-acetylaspartate, choline-containing compounds, or the glutamate/glutamine pool. However, there was a trend for higher glutamate/glutamine concentrations in individuals with higher relative N1m amplitude. Conclusion These results suggest that neuronal and membrane functions are important for rapid auditory processing. This investigation provides a first link between the electrophysiology, as recorded by magnetoencephalography, and the neurochemistry, as assessed by proton magnetic resonance spectroscopy, of the auditory cortex. PMID:16884545

  14. GABA and Glutamate Uptake and Metabolism in Retinal Glial (Müller) Cells

    PubMed Central

    Bringmann, Andreas; Grosche, Antje; Pannicke, Thomas; Reichenbach, Andreas

    2013-01-01

    Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and γ-aminobutyric acid (GABA). Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism. PMID:23616782

  15. Ionotropic and metabotropic glutamate receptor structure and pharmacology.

    PubMed

    Kew, James N C; Kemp, John A

    2005-04-01

    L: -Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS) and mediates its actions via activation of both ionotropic and metabotropic receptor families. The development of selective ligands, including competitive agonists and antagonists and positive and negative allosteric modulators, has enabled investigation of the functional roles of glutamate receptor family members. In this review we describe the subunit structure and composition of the ionotropic and metabotropic glutamate receptors and discuss their pharmacology, particularly with respect to selective tools useful for investigation of their function in the CNS. A large number of ligands are now available that are selective either for glutamate receptor subfamilies or for particular receptor subtypes. Such ligands have enabled considerable advances in the elucidation of the physiological and pathophysiological roles of receptor family members. Furthermore, efficacy in animal models of neurological and psychiatric disorders has supported the progression of several glutamatergic ligands into clinical studies. These include ionotropic glutamate receptor antagonists, which have entered clinical trials for disorders including epilepsy and ischaemic stroke, alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptor positive allosteric modulators which are under evaluation as cognitive enhancers, and metabotropic glutamate receptor 2 (mGluR2) agonists which are undergoing clinical evaluation as anxiolytics. Furthermore, preclinical studies have illustrated therapeutic potential for ligands selective for other receptor subtypes in various disorders. These include mGluR1 antagonists in pain, mGluR5 antagonists in anxiety, pain and drug abuse and mGluR5 positive allosteric modulators in schizophrenia. Selective pharmacological tools have enabled the study of glutamate receptors. However, pharmacological coverage of the family is incomplete and considerable scope remains

  16. Intramuscular temperature modulates glutamate-evoked masseter muscle pain intensity in humans.

    PubMed

    Sato, Hitoshi; Castrillon, Eduardo E; Cairns, Brian E; Bendixen, Karina H; Wang, Kelun; Nakagawa, Taneaki; Wajima, Koichi; Svensson, Peter

    2015-01-01

    To determine whether glutamate-evoked jaw muscle pain is altered by the temperature of the solution injected. Sixteen healthy volunteers participated and received injections of hot (48°C), neutral (36°C), or cold (3°C) solutions (0.5 mL) of glutamate or isotonic saline into the masseter muscle. Pain intensity was assessed with an electronic visual analog scale (eVAS). Numeric rating scale (NRS) scores of unpleasantness and temperature perception, pain-drawing areas, and pressure pain thresholds (PPTs) were also measured. Participants filled out the McGill Pain Questionnaire (MPQ). Two-way or three-way repeated measures ANOVA were used for data analyses. Injection of hot glutamate and cold glutamate solutions significantly increased and decreased, respectively, the peak pain intensity compared with injection of neutral glutamate solution. The duration of glutamate-evoked pain was significantly longer when hot glutamate was injected than when cold glutamate was injected. No significant effect of temperature on pain intensity was observed when isotonic saline was injected. No effect of solution temperature was detected on unpleasantness, heat perception, cold perception, area of pain drawings, or PPTs. There was a significantly greater use of the "numb" term in the MPQ to describe the injection of cold solutions compared to the injection of both neutral and hot solutions. Glutamate-evoked jaw muscle pain was significantly altered by the temperature of the injection solution. Although temperature perception in the jaw muscle is poor, pain intensity is increased when the muscle tissue temperature is elevated.

  17. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses.

    PubMed

    Helassa, Nordine; Dürst, Céline D; Coates, Catherine; Kerruth, Silke; Arif, Urwa; Schulze, Christian; Wiegert, J Simon; Geeves, Michael; Oertner, Thomas G; Török, Katalin

    2018-05-22

    Glutamatergic synapses display a rich repertoire of plasticity mechanisms on many different time scales, involving dynamic changes in the efficacy of transmitter release as well as changes in the number and function of postsynaptic glutamate receptors. The genetically encoded glutamate sensor iGluSnFR enables visualization of glutamate release from presynaptic terminals at frequencies up to ∼10 Hz. However, to resolve glutamate dynamics during high-frequency bursts, faster indicators are required. Here, we report the development of fast (iGlu f ) and ultrafast (iGlu u ) variants with comparable brightness but increased K d for glutamate (137 μM and 600 μM, respectively). Compared with iGluSnFR, iGlu u has a sixfold faster dissociation rate in vitro and fivefold faster kinetics in synapses. Fitting a three-state model to kinetic data, we identify the large conformational change after glutamate binding as the rate-limiting step. In rat hippocampal slice culture stimulated at 100 Hz, we find that iGlu u is sufficiently fast to resolve individual glutamate release events, revealing that glutamate is rapidly cleared from the synaptic cleft. Depression of iGlu u responses during 100-Hz trains correlates with depression of postsynaptic EPSPs, indicating that depression during high-frequency stimulation is purely presynaptic in origin. At individual boutons, the recovery from depression could be predicted from the amount of glutamate released on the second pulse (paired pulse facilitation/depression), demonstrating differential frequency-dependent filtering of spike trains at Schaffer collateral boutons. Copyright © 2018 the Author(s). Published by PNAS.

  18. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway.

    PubMed

    Hunsberger, Holly C; Rudy, Carolyn C; Batten, Seth R; Gerhardt, Greg A; Reed, Miranda N

    2015-01-01

    Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability. Pre-synaptic vesicular glutamate transporters (vGLUTs) package glutamate into vesicles before exocytosis into the synaptic cleft. Once in the extracellular space, glutamate acts on glutamate receptors. Glutamate is removed from the extracellular space by excitatory amino acid transporters, including GLT-1, predominantly localized to glia. P301L tau expression increases vGLUT expression and glutamate release, while also decreasing GLT-1 expression and glutamate clearance. © 2014

  19. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    PubMed

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Glutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus.

    PubMed

    Suryavanshi, Pratyush S; Gupta, Subhash C; Yadav, Roopali; Kesherwani, Varun; Liu, Jinxu; Dravid, Shashank M

    2016-08-01

    The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a novel role of GluD1 in regulating metabotropic glutamate receptor 5 (mGlu5) signaling in the hippocampus. Immunohistochemical analysis demonstrated colocalization of mGlu5 with GluD1 punctas in the hippocampus. Additionally, GluD1 protein coimmunoprecipitated with mGlu5 in the hippocampal membrane fraction, as well as when overexpressed in human embryonic kidney 293 cells, demonstrating that GluD1 and mGlu5 may cooperate in a signaling complex. The interaction of mGlu5 with scaffold protein effector Homer, which regulates mechanistic target of rapamycin (mTOR) signaling, was abnormal both under basal conditions and in response to mGlu1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in GluD1 knockout mice. The basal levels of phosphorylated mTOR and protein kinase B, the signaling proteins downstream of mGlu5 activation, were higher in GluD1 knockout mice, and no further increase was induced by DHPG. We also observed higher basal protein translation and an absence of DHPG-induced increase in GluD1 knockout mice. In accordance with a role of mGlu5-mediated mTOR signaling in synaptic plasticity, DHPG-induced internalization of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits was impaired in the GluD1 knockout mice. These results demonstrate that GluD1 interacts with mGlu5, and loss of GluD1 impairs normal mGlu5 signaling potentially by dysregulating coupling to its effector. These studies identify a novel role of the enigmatic GluD1 subunit in hippocampal function. Copyright © 2016 by The American Society for Pharmacology and Experimental

  1. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's Solution...

  2. GLT-1: The elusive presynaptic glutamate transporter

    PubMed Central

    Rimmele, Theresa S.; Rosenberg, Paul A.

    2016-01-01

    Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiologial significance of the expression of GLT-1 in presynaptic terminals. To elucidate the cell-type specific functions of GLT-1, a conditional knockout was generated with which to inactivate the GLT-1 gene in different cell types using Cre/lox technology. Astrocytic knockout led to an 80% reduction of GLT-1 expression, resulting in intractable seizures and early mortality as seen also in the constitutive knockout. Neuronal knockout was associated with no obvious phenotype. Surprisingly, synaptosomal uptake capacity (Vmax) was found to be significantly reduced, by 40%, in the neuronal knockout, indicating that the contribution of neuronal GLT-1 to synaptosomal uptake is disproportionate to its protein expression (5–10%). Conversely, the contribution of astrocytic GLT-1 to synaptosomal uptake was much lower than expected. In contrast, the loss of uptake into liposomes prepared from brain protein from astrocyte and neuronal knockouts was proportionate with the loss of GLT-1 protein, suggesting that a large portion of GLT-1 in astrocytic membranes in synaptosomal preparations is not functional, possibly because of a failure to reseal. These results suggest the need to reinterpret many previous studies using synaptosomal uptake to investigate glutamate transport itself as well as changes in glutamate

  3. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    PubMed

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  4. Regulation of glutamate level in rat brain through activation of glutamate dehydrogenase by Corydalis ternata.

    PubMed

    Lee, Kwan Ho; Huh, Jae-Wan; Choi, Myung-Min; Yoon, Seung Yong; Yang, Seung-Ju; Hong, Hea Nam; Cho, Sung-Woo

    2005-08-31

    When treated with protopine and alkalized extracts of the tuber of Corydalis ternata for one year, significant decrease in glutamate level and increase in glutamate dehydrogenase (GDH) activity was observed in rat brains. The expression of GDH between the two groups remained unchanged as determined by Western and Northern blot analysis, suggesting a post-translational regulation of GDH activity in alkalized extracts treated rat brains. The stimulatory effects of alkalized extracts and protopine on the GDH activity was further examined in vitro with two types of human GDH isozymes, hGDH1 (house-keeping GDH) and hGDH2 (nerve-specific GDH). Alkalized extracts and protopine activated the human GDH isozymes up to 4.8-fold. hGDH2 (nerve- specific GDH) was more sensitively affected by 1 mM ADP than hGDH1 (house-keeping GDH) on the activation by alkalized extracts. Studies with cassette mutagenesis at ADP-binding site showed that hGDH2 was more sensitively regulated by ADP than hGDH1 on the activation by Corydalis ternata. Our results suggest that prolonged exposure to Corydalis ternata may be one of the ways to regulate glutamate concentration in brain through the activation of GDH.

  5. Protective Effect of Edaravone on Glutamate-Induced Neurotoxicity in Spiral Ganglion Neurons

    PubMed Central

    Bai, Xiaohui; Zhang, Chi; Chen, Aiping; Liu, Wenwen; Li, Jianfeng; Sun, Qian

    2016-01-01

    Glutamate is an important excitatory neurotransmitter in mammalian brains, but excessive amount of glutamate can cause “excitotoxicity” and lead to neuronal death. As bipolar neurons, spiral ganglion neurons (SGNs) function as a “bridge” in transmitting auditory information from the ear to the brain and can be damaged by excessive glutamate which results in sensorineural hearing loss. In this study, edaravone, a free radical scavenger, elicited both preventative and therapeutic effects on SGNs against glutamate-induced cell damage that was tested by MTT assay and trypan blue staining. Ho.33342 and PI double staining revealed that apoptosis as well as necrosis took place during glutamate treatment, and apoptosis was the main type of cell death. Oxidative stress played an important role in glutamate-induced cell damage but pretreatment with edaravone alleviated cell death. Results of western blot demonstrated that mechanisms underlying the toxicity of glutamate and the protection of edaravone were related to the PI3K pathway and Bcl-2 protein family. PMID:27957345

  6. Selective activation of group III metabotropic glutamate receptor subtypes produces different patterns of γ-aminobutyric acid immunoreactivity and glutamate release in the retina.

    PubMed

    Guimarães-Souza, E M; Calaza, K C

    2012-12-01

    Glutamate, the major excitatory neurotransmitter in the retina, functions by activation of both ionotropic (iGluR) and metabotropic (mGluR) glutamate receptors. Group III mGluRs, except for mGluR6, are mostly found in the inner plexiform layer (IPL), and their retinal functions are not well known. Therefore, we decided to investigate the effect of mGluRIII on glutamate release and GABAergic amacrine cells in the chick retina. The nonselective mGluRIII agonist L-SOP promoted a decrease in the number of γ-aminobutyric acid (GABA)-positive cells and in the GABA immunoreactivity in all sublayers of the IPL. This effect was prevented by the antagonist MAP-4, by GAT-1 inhibitor, and by antagonists of iGluR. Under the conditions used, L-SOP did not alter endogenous glutamate release. VU0155041, an mGluR4-positive allosteric modulator, reduced GABA immunoreactivity in amacrine cells and in sublayers 2 and 4 of the IPL but evoked an increase in the glutamate released. VU0155041's effect was inhibited by the absence of calcium. AMN082, a selective mGluR7-positive allosteric modulator, also decreased GABA immunoreactivity in amacrine cells and sublayers 1, 2, and 3 and increased glutamate release, and this effect was also inhibited by calcium absence. DCPG, an mGluR8-selective agonist, did not significantly alter GABA immunoreactivity in amacrine cells or glutamate release. However, it did significantly increase GABA immunoreactivity in sublayers 4 and 5. The results suggest that mGluRIIIs are involved in the modulation of glutamate and GABA release in the retina, possibly participating in distinct visual pathways: mGluR4 might be involved with cholinergic circuitry, whereas mGluR7 and mGluR8 might participate, respectively, in the OFF and the ON pathways. Copyright © 2012 Wiley Periodicals, Inc.

  7. Biochemical and immunological changes on oral glutamate feeding in male albino rats

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Bansal, Anju; Thomas, Pauline; Sairam, M.; Sharma, S. K.; Mongia, S. S.; Singh, R.; Selvamurthy, W.

    High altitude stress leads to lipid peroxidation and free radical formation which results in cell membrane damage in organs and tissues, and associated mountain diseases. This paper discusses the changes in biochemical parameters and antibody response on feeding glutamate to male albino Sprague Dawley rats under hypoxic stress. Exposure of rats to simulated hypoxia at 7576 m, for 6 h daily for 5 consecutive days, in an animal decompression chamber at 32+/-2° C resulted in an increase in plasma malondialdehyde level with a concomitant decrease in blood glutathione (reduced) level. Supplementation of glutamate orally at an optimal dose (27 mg/kg body weight) in male albino rats under hypoxia enhanced glutathione level and decreased malondialdehyde concentration significantly. Glutamate feeding improved total plasma protein and glucose levels under hypoxia. The activities of serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) and the urea level remained elevated on glutamate supplementation under hypoxia. Glutamate supplementation increased the humoral response against sheep red blood cells (antibody titre). These results indicate a possible utility of glutamate in the amelioration of hypoxia-induced oxidative stress.

  8. Neuroprotection by stem cell factor in rat cortical neurons involves AKT and NFkappaB.

    PubMed

    Dhandapani, Krishnan M; Wade, F Marlene; Wakade, Chandramohan; Mahesh, Virendra B; Brann, Darrell W

    2005-10-01

    Stem cell factor (SCF) is a highly expressed cytokine in the central nervous system. In the present study, we demonstrate a neuroprotective role for SCF and its tyrosine kinase receptor, c-kit, against camptothecin-induced apoptosis and glutamate excitotoxicity in rat cortical neurons. This protection was blocked by pharmacological or molecular inhibition of either the MEK/ERK or PI3K/Akt signaling pathways. The importance of these pathways was further confirmed by the activation of both ERK, in a MEK-dependent manner, and Akt, via PI3K. Activation of Akt increased the binding of the p50 and p65 subunits of NFkappaB, which was also important for neuroprotection. Akt inhibition prevented NFkappaB binding, suggesting a role for Akt in SCF-induced NFkappaB. Pharmacological inhibition of NFkappaB or dominant negative IkappaB also prevented neuroprotection by SCF. SCF up-regulated the anti-apoptotic genes, bcl-2 and bcl-xL in an NFkappaB-dependent manner. Together, these findings demonstrate a neuroprotective role for SCF in cortical neurons, an effect that was mediated by Akt and ERK, as well as NFkappaB-mediated gene transcription. SCF represents a novel therapeutic target in the treatment of neurodegenerative disease.

  9. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    PubMed

    Huang, Yijen A; Grant, Jeff; Roper, Stephen

    2012-01-01

    Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  10. Glutamate Concentration in the Superior Temporal Sulcus Relates to Neuroticism in Schizophrenia.

    PubMed

    Balz, Johanna; Roa Romero, Yadira; Keil, Julian; Schubert, Florian; Ittermann, Bernd; Mekle, Ralf; Montag, Christiane; Gallinat, Jürgen; Senkowski, Daniel

    2018-01-01

    Clinical studies suggest aberrant neurotransmitter concentrations in the brains of patients with schizophrenia (SCZ). Numerous studies have indicated deviant glutamate concentrations in SCZ, although the findings are inconsistent. Moreover, alterations in glutamate concentrations could be linked to personality traits in SCZ. Here, we examined the relationships between personality dimensions and glutamate concentrations in a voxel encompassing the occipital cortex (OCC) and another voxel encompassing the left superior temporal sulcus (STS). We used proton magnetic resonance spectroscopy to examine glutamate concentrations in the OCC and the STS in 19 SCZ and 21 non-psychiatric healthy control (HC) participants. Personality dimensions neuroticism, extraversion, openness, agreeableness and conscientiousness were assessed using the NEO-FFI questionnaire. SCZ compared to HC showed higher glutamate concentrations in the STS, reduced extraversion scores, and enhanced neuroticism scores. No group differences were observed for the other personality traits and for glutamate concentrations in the OCC. For the SCZ group, glutamate concentrations in STS were negatively correlated with the neuroticism scores [ r = -0.537, p = 0.018] but this was not found in HC [ r (19) = 0.011, p = 0.962]. No other significant correlations were found. Our study showed an inverse relationship between glutamate concentrations in the STS and neuroticism scores in SCZ. Elevated glutamate in the STS might serve as a compensatory mechanism that enables patients with enhanced concentrations to control and prevent the expression of neuroticism.

  11. The testosterone metabolite 3α-Diol enhances female rat sexual motivation when infused in the nucleus accumbens shell

    PubMed Central

    Hernández, Lizaida; Barreto Estrada, Jennifer L; Ortiz, José G; Carlos Jorge, Juan

    2010-01-01

    Aim The purpose of this study was to provide a quantitative assessment of female rat sexual behaviors after acute exposure to the A-ring reduced testosterone metabolite, androstanediol (3α-Diol), through the nucleus accumbens (NA) shell. Main outcome measures Quantitative analyses of female rat sexual behaviors and assessment of protein levels for the enzyme glutamic acid decarboxylase isoform 67 (GAD67) and gephyrin, a protein that participates in the clustering of GABA-A receptors in postsynaptic cells, were accomplished. Methods Female rats were ovariectomized and primed with estrogen and progesterone to induce sexual behaviors. Females received a 3α-Diol infusion via guided cannula that aimed to the NA shell five minutes prior to a sexual encounter with a stud male. The following parameters were videotaped and measured in a frame by frame analysis: lordosis quotient (LQ), Lordosis rating (LR), frequency and duration of proceptive behaviors (hopping/darting and ear wiggling). Levels of GAD67 and gephyrin were obtained by Western blot analysis two or twenty-four hours after the sexual encounter. Results Acute exposure to 3α-Diol in the NA shell enhanced LR, ear wiggling, and hopping/darting but not LQ. Some of these behavioral effects were counteracted by co-infusion of 3α-Diol plus the GABAA-receptor antagonist GABAzine. A transient reduction of GAD67 levels in the NA shell was detected. Conclusions The testosterone metabolite 3α-Diol enhances sexual proceptivity, but not receptivity, when infused into the NA shell directly. The GABAergic system may participate in the androgen-mediated enhancement of female rat sexual motivation. PMID:20646182

  12. Development of a method to evaluate glutamate receptor function in rat barrel cortex slices.

    PubMed

    Lehohla, M; Russell, V; Kellaway, L; Govender, A

    2000-12-01

    The rat is a nocturnal animal and uses its vibrissae extensively to navigate its environment. The vibrissae are linked to a highly organized part of the sensory cortex, called the barrel cortex which contains spiny neurons that receive whisker specific thalamic input and distribute their output mainly within the cortical column. The aim of the present study was to develop a method to evaluate glutamate receptor function in the rat barrel cortex. Long Evans rats (90-160 g) were killed by cervical dislocation and decapitated. The brain was rapidly removed, cooled in a continuously oxygenated, ice-cold Hepes buffer (pH 7.4) and sliced using a vibratome to produce 0.35 mm slices. The barrel cortex was dissected from slices corresponding to 8.6 to 4.8 mm anterior to the interaural line and divided into rostral, middle and caudal regions. Depolarization-induced uptake of 45Ca2+ was achieved by incubating test slices in a high K+ (62.5 mM) buffer for 2 minutes at 35 degrees C. Potassium-stimulated uptake of 45Ca2+ into the rostral region was significantly lower than into middle and caudal regions of the barrel cortex. Glutamate had no effect. NMDA significantly increased uptake of 45Ca2+ into all regions of the barrel cortex. The technique is useful in determining NMDA receptor function and will be applied to study differences between spontaneously hypertensive rats (SHR) that are used as a model for attention deficit disorder and their normotensive control rats.

  13. Protein kinase C -dependent regulation of synaptosomal glutamate uptake under conditions of hypergravity

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Borisov, Arseniy; Sivko, Roman

    Glutamate is not only the main excitatory neurotransmitter in the mammalian CNS, but also a potent neurotoxin. Excessive concentration of ambient glutamate over activates glutamate receptors and causes neurotoxicity. Uptake of glutamate from the extracellular space into nerve cells was mediated by sodium-dependent glutamate transporters located in the plasma membrane. It was shown that the activity of glutamate transporters in rat brain nerve terminals was decreased after hypergravity (centrifugation of rats in special containers at 10 G for 1 hour). This decrease may result from the reduction in the number of glutamate transporters expressed in the plasma membrane of nerve terminals after hypergravity that was regulated by protein kinase C. The possibility of the involvement of protein kinase C in the regulation of the activity of glutamate transporters was assessed under conditions of hypergravity. The effect of protein kinase C inhibitor GF 109 203X on synaptosomal L-[14C]glutamate uptake was analysed. It was shown that the inhibitor decreased L-[14C]glutamate uptake by 15 % in control but did not influence it after hypergravity. In control, the initial velocity of L-[14C]glutamate uptake in the presence of the inhibitor decreased from 2.5 ± 0.2 nmol x min-1 x mg-1 of proteins to 2.17 ± 0.1 nmol x min-1 x mg-1 of proteins, whereas after hypergravity this value lowered from 2.05 ± 0.1 nmol x min-1 x mg-1 of proteins to 2.04 ± 0.1 nmol x min-1 x mg-1 of proteins. Thus, protein kinase C -dependent alteration in the cell surface expression of glutamate transporters may be one of the causes of a decrease in the activity of glutamate transporters after hypergravity.

  14. Ionotropic glutamate receptor expression in human white matter.

    PubMed

    Christensen, Pia Crone; Samadi-Bahrami, Zahra; Pavlov, Vlady; Stys, Peter K; Moore, G R Wayne

    2016-09-06

    Glutamate is the key excitatory neurotransmitter of the central nervous system (CNS). Its role in human grey matter transmission is well understood, but this is less clear in white matter (WM). Ionotropic glutamate receptors (iGluR) are found on both neuronal cell bodies and glia as well as on myelinated axons in rodents, and rodent WM tissue is capable of glutamate release. Thus, rodent WM expresses many of the components of the traditional grey matter neuron-to-neuron synapse, but to date this has not been shown for human WM. We demonstrate the presence of iGluRs in human WM by immunofluorescence employing high-resolution spectral confocal imaging. We found that the obligatory N-methyl-d-aspartic acid (NMDA) receptor subunit GluN1 and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA4 co-localized with myelin, oligodendroglial cell bodies and processes. Additionally, GluA4 colocalized with axons, often in distinct clusters. These findings may explain why human WM is vulnerable to excitotoxic events following acute insults such as stroke and traumatic brain injury and in more chronic inflammatory conditions such as multiple sclerosis (MS). Further exploration of human WM glutamate signalling could pave the way for developing future therapies modulating the glutamate-mediated damage in these and other CNS disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Inducible Glutamate Oxaloacetate Transaminase as a Therapeutic Target Against Ischemic Stroke

    PubMed Central

    Khanna, Savita; Briggs, Zachary

    2015-01-01

    Abstract Significance: Glutamate serves multi-faceted (patho)physiological functions in the central nervous system as the most abundant excitatory neurotransmitter and under pathological conditions as a potent neurotoxin. Regarding the latter, elevated extracellular glutamate is known to play a central role in ischemic stroke brain injury. Recent Advances: Glutamate oxaloacetate transaminase (GOT) has emerged as a new therapeutic target in protecting against ischemic stroke injury. Oxygen-sensitive induction of GOT expression and activity during ischemic stroke lowers glutamate levels at the stroke site while sustaining adenosine triphosphate levels in brain. The energy demands of the brain are among the highest of all organs underscoring the need to quickly mobilize alternative carbon skeletons for metabolism in the absence of glucose during ischemic stroke. Recent work builds on the important observation of Hans Krebs that GOT-mediated metabolism of glutamate generates tri-carboxylic acid (TCA) cycle intermediates in brain tissue. Taken together, outcomes suggest GOT may enable the transformative switch of otherwise excitotoxic glutamate into life-sustaining TCA cycle intermediates during ischemic stroke. Critical Issues: Neuroprotective strategies that focus solely on blocking mechanisms of glutamate-mediated excitotoxicity have historically failed in clinical trials. That GOT can enable glutamate to assume the role of a survival factor represents a paradigm shift necessary to develop the overall significance of glutamate in stroke biology. Future Directions: Ongoing efforts are focused to develop the therapeutic significance of GOT in stroke-affected brain. Small molecules that target induction of GOT expression and activity in the ischemic penumbra are the focus of ongoing studies. Antioxid. Redox Signal. 22, 175–186. PMID:25343301

  16. Glutamate taste and appetite in laboratory mice: physiologic and genetic analyses1234

    PubMed Central

    Bachmanov, Alexander A; Inoue, Masashi; Ji, Hong; Murata, Yuko; Tordoff, Michael G; Beauchamp, Gary K

    2009-01-01

    This article provides an overview of our studies of variation in voluntary glutamate consumption in mice. In 2-bottle preference tests, mice from the C57BL/6ByJ (B6) strain consume more monosodium l-glutamate (MSG) than do mice from the 129P3/J (129) strain. We used these mice to study physiologic and genetic mechanisms that underlie the strain differences in glutamate intake. Our genetic analyses showed that differences between B6 mice and 129 mice in MSG consumption are unrelated to strain variation in consumption of sodium or sweeteners and therefore are attributed to mechanisms specific for glutamate. These strain differences could be due to variation in responses to either taste or postingestive effects of glutamate. To examine the role of taste responsiveness, we measured MSG-evoked activity in gustatory nerves and showed that it is similar in B6 and 129 mice. On the other hand, strain-specific postingestive effects of glutamate were evident from our finding that exposure to MSG increases its consumption in B6 mice and decreases its consumption in 129 mice. We therefore examined whether B6 mice and 129 mice differ in postingestive metabolism of glutamate. We showed that, after intragastric administration of MSG, the MSG is preferentially metabolized through gluconeogenesis in B6 mice, whereas thermogenesis is the predominant process for 129 mice. We hypothesize that a process related to gluconeogenesis of the ingested glutamate generates the rewarding stimulus, which probably occurs in the liver before glucose enters the general circulation, and that the glutamate-induced postingestive thermogenesis generates an aversive stimulus. Our animal model studies raise the question of whether humans also vary in glutamate metabolism in a manner that influences their glutamate preference, consumption, and postingestive processing. PMID:19571213

  17. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.Titanium dioxide (Ti

  18. The effect of glutamate on ghrelin release in mice.

    PubMed

    Chacrabati, Rakhi; Gong, Zhi; Ikenoya, Chika; Kondo, Daisuke; Zigman, Jeffrey M; Sakai, Takafumi; Sakata, Ichiro

    2017-03-01

    Ghrelin is abundantly produced in the stomach. Here, we found that glutamate decreased ghrelin expression and release in ghrelin-producing cells, and decreased levels of food intake and plasma acyl-ghrelin in mice. Treatment with siRNA of G protein-coupled receptor, family C, group 5, member B (GPRC5B) in ghrelin-producing cell lines completely blocked the effect of glutamate-induced ghrelin suppression. In addition, glutamate inhibited ghrelin release via the extracellular signal-regulated kinase (ERK) activity pathway, and stimulated CREB2 mRNA expression in ghrelin-producing cell lines. These results suggest that glutamate inhibits ghrelin release via ERK-CREB2 pathway. These results suggest that the GPRC5B-ERK-CREB2 pathway is involved in the inhibition of ghrelin expression and secretion in ghrelin cells. © 2017 International Federation for Cell Biology.

  19. Creatine affords protection against glutamate-induced nitrosative and oxidative stress.

    PubMed

    Cunha, Mauricio P; Lieberknecht, Vicente; Ramos-Hryb, Ana Belén; Olescowicz, Gislaine; Ludka, Fabiana K; Tasca, Carla I; Gabilan, Nelson H; Rodrigues, Ana Lúcia S

    2016-05-01

    Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 μM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 μM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Glutamate-mediated excitotoxicity in schizophrenia: A review

    PubMed Central

    Plitman, Eric; Nakajima, Shinichiro; de la Fuente-Sandoval, Camilo; Gerretsen, Philip; Chakravarty, M. Mallar; Kobylianskii, Jane; Chung, Jun Ku; Caravaggio, Fernando; Iwata, Yusuke; Remington, Gary; Graff-Guerrero, Ariel

    2015-01-01

    Findings from neuroimaging studies in patients with schizophrenia suggest widespread structural changes although the mechanisms through which these changes occur are currently unknown. Glutamatergic activity appears to be increased in the early phases of schizophrenia and may contribute to these structural alterations through an excitotoxic effect. The primary aim of this review was to describe the possible role of glutamate-mediated excitotoxicity in explaining the presence of neuroanatomical changes within schizophrenia. A Medline® literature search was conducted, identifying English language studies on the topic of glutamate-mediated excitotoxicity in schizophrenia, using the terms “schizophreni*” and “glutam*” and ((“MRS” or “MRI” or “magnetic resonance”) or (“computed tomography” or “CT”)). Studies concomitantly investigating glutamatergic activity and brain structure in patients with schizophrenia were included. Results are discussed in the context of findings from preclinical studies. Seven studies were identified that met the inclusion criteria. These studies provide inconclusive support for the role of glutamate-mediated excitotoxicity in the occurrence of structural changes within schizophrenia, with the caveat that there is a paucity of human studies investigating this topic. Preclinical data suggest that an excitotoxic effect may occur as a result of a paradoxical increase in glutamatergic activity following N-methyl-D-aspartate receptor hypofunction. Based on animal literature, glutamate-mediated excitotoxicity may account for certain structural changes present in schizophrenia, but additional human studies are required to substantiate these findings. Future studies should adopt a longitudinal design and employ magnetic resonance imaging techniques to investigate whether an association between glutamatergic activity and structural changes exists in patients with schizophrenia. PMID:25159198

  1. Music and the nucleus accumbens.

    PubMed

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  2. Ribonucleic Acid Synthesis and Glutamate Excretion in Escherichia coli

    PubMed Central

    Broda, Paul

    1968-01-01

    Cultures of Escherichia coli excreted glutamate into the medium when protein synthesis was blocked in RCrel strains or when it was blocked with chloramphenicol in either RCstr or RCrel strains. Both of these conditions resulted in continued ribonucleic acid (RNA) synthesis in the absence of protein synthesis. Glutamate was also excreted by both RCstr and RCrel strains when RNA synthesis was inhibited by uracil starvation or by treatment with actinomycin D. It is proposed that, in each of these cases, glutamate excretion resulted from an increase in the permeability of the cell membrane. PMID:4973126

  3. Ligands for Ionotropic Glutamate Receptors

    PubMed Central

    Swanson, Geoffrey T.; Sakai, Ryuichi

    2010-01-01

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory synaptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors. PMID:19184587

  4. Ligands for Ionotropic Glutamate Receptors

    NASA Astrophysics Data System (ADS)

    Swanson, Geoffrey T.; Sakai, Ryuichi

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory syn-aptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors.

  5. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: evoked release of glutamate, GABA, aspartate and glutamate decarboxylase activity in control and degranulated rat hippocampus.

    PubMed

    Taupin, P; Ben-Ari, Y; Roisin, M P

    1994-05-02

    Using discontinuous density gradient centrifugation in isotonic Percoll sucrose, we have characterized two subcellular fractions (PII and PIII) enriched in mossy fiber synaptosomes and two others (SII and SIII) enriched in small synaptosomes. These synaptosomal fractions were compared with those obtained from adult hippocampus irradiated at neonatal stage to destroy granule cells and their mossy fibers. Synaptosomes were viable as judged by their ability to release aspartate, glutamate and GABA upon K+ depolarization. After irradiation, compared to the control values, the release of glutamate and GABA was decreased by 57 and 74% in the PIII fraction, but not in the other fractions and the content of glutamate, aspartate and GABA was also decreased in PIII fraction by 62, 44 and 52% respectively. These results suggest that mossy fiber (MF) synaptosomes contain and release glutamate and GABA. Measurement of the GABA synthesizing enzyme, glutamate decarboxylase, exhibited no significant difference after irradiation, suggesting that GABA is not synthesized by this enzyme in mossy fibers.

  6. Cocaine-Induced Adaptations in Cellular Redox Balance Contributes to Enduring Behavioral Plasticity

    PubMed Central

    Uys, Joachim D; Knackstedt, Lori; Hurt, Phelipe; Tew, Kenneth D; Manevich, Yefim; Hutchens, Steven; Townsend, Danyelle M; Kalivas, Peter W

    2011-01-01

    Impaired glutamate homeostasis in the nucleus accumbens has been linked to cocaine relapse in animal models, and results in part from cocaine-induced downregulation of the cystine–glutamate exchanger. In addition to regulating extracellular glutamate, the uptake of cystine by the exchanger is a rate-limiting step in the synthesis of glutathione (GSH). GSH is critical for balancing cellular redox in response to oxidative stress. Cocaine administration induces oxidative stress, and we first determined if downregulated cystine–glutamate exchange alters redox homeostasis in rats withdrawn from daily cocaine injections and then challenged with acute cocaine. Among the daily cocaine-induced changes in redox homeostasis were an increase in protein S-glutathionylation and a decrease in expression of GSH-S-transferase pi (GSTpi). To mimic reduced GSTpi, a genetic mouse model of GSTpi deletion or pharmacological inhibition of GSTpi by administering ketoprofen during daily cocaine administration was used. The capacity of cocaine to induce conditioned place preference or locomotor sensitization was augmented, indicating that reducing GSTpi may contribute to cocaine-induced behavioral neuroplasticity. Conversely, an acute cocaine challenge after withdrawal from daily cocaine elicited a marked increase in accumbens GSTpi, and the expression of behavioral sensitization to a cocaine challenge injection was inhibited by ketoprofen pretreatment; supporting a protective effect by the acute cocaine-induced rise in GSTpi. Together, these data indicate that cocaine-induced oxidative stress induces changes in GSTpi that contribute to cocaine-induced behavioral plasticity. PMID:21796101

  7. Improved Synthesis of Caged Glutamate and Caging Each Functional Group.

    PubMed

    Guruge, Charitha; Ouedraogo, Yannick P; Comitz, Richard L; Ma, Jingxuan; Losonczy, Attila; Nesnas, Nasri

    2018-05-25

    Glutamate is an excitatory neurotransmitter that controls numerous pathways in the brain. Neuroscientists make use of photoremovable protecting groups, also known as cages, to release glutamate with precise spatial and temporal control. Various cage designs have been developed and among the most effective has been the nitroindolinyl caging of glutamate. We, hereby, report an improved synthesis of one of the current leading molecules of caged glutamate, 4-carboxymethoxy-5,7-dinitroindolinyl glutamate (CDNI-Glu), which possesses efficiencies with the highest reported quantum yield of at least 0.5. We present the shortest route, to date, for the synthesis of CDNI-Glu in 4 steps, with a total reaction time of 40 h and an overall yield of 20%. We also caged glutamate at the other two functional groups, thereby, introducing two new cage designs: α-CDNI-Glu and N-CDNI-Glu. We included a study of their photocleavage properties using UV-vis, NMR, as well as a physiology experiment of a two-photon uncaging of CDNI-Glu in acute hippocampal brain slices. The newly introduced cage designs may have the potential to minimize the interference that CDNI-Glu has with the GABA A receptor. We are broadly disseminating this to enable neuroscientists to use these photoactivatable tools.

  8. Glutamate modulation of GABA transport in retinal horizontal cells of the skate

    PubMed Central

    Kreitzer, Matthew A; Andersen, Kristen A; Malchow, Robert Paul

    2003-01-01

    Transport of the amino acid GABA into neurons and glia plays a key role in regulating the effects of GABA in the vertebrate retina. We have examined the modulation of GABA-elicited transport currents of retinal horizontal cells by glutamate, the likely neurotransmitter of vertebrate photoreceptors. Enzymatically isolated external horizontal cells of skate were examined using whole-cell voltage-clamp techniques. GABA (1 mm) elicited an inward current that was completely suppressed by the GABA transport inhibitors tiagabine (10 μm) and SKF89976-A (100 μm), but was unaffected by 100 μm picrotoxin. Prior application of 100 μm glutamate significantly reduced the GABA-elicited current. Glutamate depressed the GABA dose-response curve without shifting the curve laterally or altering the voltage dependence of the current. The ionotropic glutamate receptor agonists kainate and AMPA also reduced the GABA-elicited current, and the effects of glutamate and kainate were abolished by the ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline. NMDA neither elicited a current nor modified the GABA-induced current, and metabotropic glutamate analogues were also without effect. Inhibition of the GABA-elicited current by glutamate and kainate was reduced when extracellular calcium was removed and when recording pipettes contained high concentrations of the calcium chelator BAPTA. Caffeine (5 mm) and thapsigargin (2 nm), agents known to alter intracellular calcium levels, also reduced the GABA-elicited current, but increases in calcium induced by depolarization alone did not. Our data suggest that glutamate regulates GABA transport in retinal horizontal cells through a calcium-dependent process, and imply a close physical relationship between calcium-permeable glutamate receptors and GABA transporters in these cells. PMID:12562999

  9. Glutamate Concentration in the Superior Temporal Sulcus Relates to Neuroticism in Schizophrenia

    PubMed Central

    Balz, Johanna; Roa Romero, Yadira; Keil, Julian; Schubert, Florian; Ittermann, Bernd; Mekle, Ralf; Montag, Christiane; Gallinat, Jürgen; Senkowski, Daniel

    2018-01-01

    Clinical studies suggest aberrant neurotransmitter concentrations in the brains of patients with schizophrenia (SCZ). Numerous studies have indicated deviant glutamate concentrations in SCZ, although the findings are inconsistent. Moreover, alterations in glutamate concentrations could be linked to personality traits in SCZ. Here, we examined the relationships between personality dimensions and glutamate concentrations in a voxel encompassing the occipital cortex (OCC) and another voxel encompassing the left superior temporal sulcus (STS). We used proton magnetic resonance spectroscopy to examine glutamate concentrations in the OCC and the STS in 19 SCZ and 21 non-psychiatric healthy control (HC) participants. Personality dimensions neuroticism, extraversion, openness, agreeableness and conscientiousness were assessed using the NEO-FFI questionnaire. SCZ compared to HC showed higher glutamate concentrations in the STS, reduced extraversion scores, and enhanced neuroticism scores. No group differences were observed for the other personality traits and for glutamate concentrations in the OCC. For the SCZ group, glutamate concentrations in STS were negatively correlated with the neuroticism scores [r = -0.537, p = 0.018] but this was not found in HC [r(19) = 0.011, p = 0.962]. No other significant correlations were found. Our study showed an inverse relationship between glutamate concentrations in the STS and neuroticism scores in SCZ. Elevated glutamate in the STS might serve as a compensatory mechanism that enables patients with enhanced concentrations to control and prevent the expression of neuroticism. PMID:29867621

  10. Protein phosphatase 2ACα gene knock-out results in cortical atrophy through activating hippo cascade in neuronal progenitor cells.

    PubMed

    Liu, Bo; Sun, Li-Hua; Huang, Yan-Fei; Guo, Li-Jun; Luo, Li-Shu

    2018-02-01

    Protein phosphatase 2ACα (PP2ACα), a vital member of the protein phosphatase family, has been studied primarily as a regulator for the development, growth and protein synthesis of a lot of cell types. Dysfunction of PP2ACα protein results in neurodegenerative disease; however, this finding has not been directly confirmed in the mouse model with PP2ACα gene knock-out. Therefore, in this study presented here, we generated the PP2ACα gene knock-out mouse model by the Cre-loxP targeting gene system, with the purpose to directly observe the regulatory role of PP2ACα gene in the development of mouse's cerebral cortex. We observe that knocking-out PP2ACα gene in the central nervous system (CNS) results in cortical neuronal shrinkage, synaptic plasticity impairments, and learning/memory deficits. Further study reveals that PP2ACα gene knock-out initiates Hippo cascade in cortical neuroprogenitor cells (NPCs), which blocks YAP translocation into the nuclei of NPCs. Notably, p73, directly targeted by Hippo cascade, can bind to the promoter of glutaminase2 (GLS2) that plays a dominant role in the enzymatic regulation of glutamate/glutamine cycle. Finally, we find that PP2ACα gene knock-out inhibits the glutamine synthesis through up-regulating the activity of phosphorylated-p73 in cortical NPCs. Taken together, it concludes that PP2ACα critically supports cortical neuronal growth and cognitive function via regulating the signaling transduction of Hippo-p73 cascade. And PP2ACα indirectly modulates the glutamine synthesis of cortical NPCs through targeting p73 that plays a direct transcriptional regulatory role in the gene expression of GLS2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Extrasynaptic targeting of NMDA receptors following D1 dopamine receptor activation and cocaine self-administration

    PubMed Central

    Ortinski, Pavel I.; Turner, Jill R.; Pierce, R. Christopher

    2013-01-01

    We previously showed that after repeated exposure to cocaine, D1-like dopamine receptor (D1DR) stimulation reverses plastic changes of AMPA receptor-mediated signaling in the nucleus accumbens shell. However, there is little information on the impact of cocaine self-administration on D1-NMDA receptor interactions in this brain region. Here, we assessed whether cocaine self-administration alters the effects of D1DR stimulation on synaptic and extrasynaptic NMDA receptors (NMDARs) using whole-cell patch-clamp recordings. In slices from cocaine-naïve rats, pre-treatment with a D1DR agonist decreased synaptic NMDAR receptor-mediated currents and increased the contribution of extrasynaptic NMDARs. In contrast, neither cocaine self-administration alone nor cocaine experience followed by D1DR stimulation had an effect on synaptic or extrasynaptic NMDAR signaling. Activation of extrasynaptic NMDARs relies on the availability of extracellular glutamate, which is regulated primarily by glutamate transporters. In cocaine-experienced animals, administration of a glutamate re-uptake blocker, DL-threo-β-benzyloxyaspartic acid (TBOA), revealed increased extrasynaptic NMDAR activity and stronger baseline activity of glutamate uptake transporters relative to cocaine-naïve rats. In cocaine-naïve rats, the D1DR-mediated increase in extrasynaptic NMDAR signaling was independent of the activity of glutamate re-uptake transporters. Taken together, these results indicate that cocaine experience blunts the influence of D1DRs on synaptic and extrasynaptic NMDAR signaling. Additionally, prior cocaine self-administration limits activation of the extrasynaptic NMDAR pool by increasing glutamate re-uptake. These findings outline a pattern of adaptive interactions between D1DRs and NMDARs in the nucleus accumbens shell and demonstrate up-regulation of extrasynaptic NMDAR signaling as a novel consequence of cocaine self-administration. PMID:23719812

  12. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism

    PubMed Central

    Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste

    2014-01-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719

  13. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    PubMed

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Neuroprotective effects of α-iso-cubebenol on glutamate-induced neurotoxicity.

    PubMed

    Park, Sun Young; Choi, Yung Hyun; Park, Geuntae; Choi, Young-Whan

    2015-09-01

    α-Iso-cubebenol is a natural compound isolated from Schisandra chinensis, and is reported to have beneficial bioactivity including anti-inflammatory and anti-tumor activities. Glutamate-induced oxidative neuronal damage has been implicated in a variety of neurodegenerative disorders. Here we investigated the mechanisms of α-iso-cubebenol protection of mouse hippocampus-derived neuronal cells (HT22 cells) from apoptotic cell death induced by the major excitatory neurotransmitter, glutamate. Pretreatment with α-iso-cubebenol markedly attenuated glutamate-induced loss of cell viability and release of lactate dehydrogenase), in a dose-dependent manner. α-Iso-cubebenol significantly reduced glutamate-induced intracellular reactive oxygen species and calcium accumulation. Strikingly, α-iso-cubebenol inhibited glutamate-induced mitochondrial depolarization, which releases apoptosis-inducing factor from mitochondria. α-Iso-cubebenol also suppressed glutamate-induced phosphorylation of extracellular-signal-regulated kinases. Furthermore, α-iso-cubebenol induced CREB phosphorylation and Nrf-2 nuclear accumulation and increased the promoter activity of ARE and CREB in HT22 cells. α-Iso-cubebenol also upregulated the expression of phase-II detoxifying/antioxidant enzymes such as HO-1 and NQO1. Subsequent studies revealed that the inhibitory effects of α-iso-cubebenol on glutamate-induced apoptosis were abolished by small interfering RNA-mediated knockdown of CREB and Nrf-2. These findings suggest that α-iso-cubebenol prevents excitotoxin-induced oxidative damage to neurons by inhibiting apoptotic cell death, and might be a potential preventive or therapeutic agent for neurodegenerative disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids

    PubMed Central

    Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.

    2018-01-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  16. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  17. Inhibition of the ubiquitin-proteasome activity prevents glutamate transporter degradation and morphine tolerance.

    PubMed

    Yang, Liling; Wang, Shuxing; Lim, Grewo; Sung, Backil; Zeng, Qing; Mao, Jianren

    2008-12-01

    Glutamate transporters play a crucial role in physiological glutamate homeostasis and neurotoxicity. Recently, we have shown that downregulation of glutamate transporters after chronic morphine exposure contributed to the development of morphine tolerance. In the present study, we examined whether regulation of the glutamate transporter expression with the proposed proteasome inhibitor MG-132 would contribute to the development of tolerance to repeated intrathecal (twice daily x 7 days) morphine administration in rats. The results showed that MG-132 (5 nmol) given intrathecally blocked morphine-induced glutamate transporter downregulation and the decrease in glutamate uptake activity within the spinal cord dorsal horn. Co-administration of morphine (15 nmol) with MG-132 (vehicle=1<2.5<5=10 nmol) also dose-dependently prevented the development of morphine tolerance in rats. These findings suggest that prevention of spinal glutamate transporter downregulation may regulate the glutamatergic function that has been implicated in the development of morphine tolerance. The possible relationship between MG-132-mediated regulation of glutamate transporters, ubiquitin-proteasome system, and the cellular mechanisms of morphine tolerance is discussed in light of these findings.

  18. Cortical spreading depression as a target for anti-migraine agents

    PubMed Central

    2013-01-01

    Spreading depression (SD) is a slowly propagating wave of neuronal and glial depolarization lasting a few minutes, that can develop within the cerebral cortex or other brain areas after electrical, mechanical or chemical depolarizing stimulations. Cortical SD (CSD) is considered the neurophysiological correlate of migraine aura. It is characterized by massive increases in both extracellular K+ and glutamate, as well as rises in intracellular Na+ and Ca2+. These ionic shifts produce slow direct current (DC) potential shifts that can be recorded extracellularly. Moreover, CSD is associated with changes in cortical parenchymal blood flow. CSD has been shown to be a common therapeutic target for currently prescribed migraine prophylactic drugs. Yet, no effects have been observed for the antiepileptic drugs carbamazepine and oxcarbazepine, consistent with their lack of efficacy on migraine. Some molecules of interest for migraine have been tested for their effect on CSD. Specifically, blocking CSD may play an enabling role for novel benzopyran derivative tonabersat in preventing migraine with aura. Additionally, calcitonin gene-related peptide (CGRP) antagonists have been recently reported to inhibit CSD, suggesting the contribution of CGRP receptor activation to the initiation and maintenance of CSD not only at the classic vascular sites, but also at a central neuronal level. Understanding what may be lying behind this contribution, would add further insights into the mechanisms of actions for “gepants”, which may be pivotal for the effectiveness of these drugs as anti-migraine agents. CSD models are useful tools for testing current and novel prophylactic drugs, providing knowledge on mechanisms of action relevant for migraine. PMID:23879550

  19. Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset

    PubMed Central

    Meng, Yu; Li, Gang; Wang, Li; Lin, Weili; Gilmore, John H.

    2017-01-01

    The cortical folding of the human brain is highly complex and variable across individuals. Mining the major patterns of cortical folding from modern large-scale neuroimaging datasets is of great importance in advancing techniques for neuroimaging analysis and understanding the inter-individual variations of cortical folding and its relationship with cognitive function and disorders. As the primary cortical folding is genetically influenced and has been established at term birth, neonates with the minimal exposure to the complicated postnatal environmental influence are the ideal candidates for understanding the major patterns of cortical folding. In this paper, for the first time, we propose a novel method for discovering the major patterns of cortical folding in a large-scale dataset of neonatal brain MR images (N = 677). In our method, first, cortical folding is characterized by the distribution of sulcal pits, which are the locally deepest points in cortical sulci. Because deep sulcal pits are genetically related, relatively consistent across individuals, and also stable during brain development, they are well suitable for representing and characterizing cortical folding. Then, the similarities between sulcal pit distributions of any two subjects are measured from spatial, geometrical, and topological points of view. Next, these different measurements are adaptively fused together using a similarity network fusion technique, to preserve their common information and also catch their complementary information. Finally, leveraging the fused similarity measurements, a hierarchical affinity propagation algorithm is used to group similar sulcal folding patterns together. The proposed method has been applied to 677 neonatal brains (the largest neonatal dataset to our knowledge) in the central sulcus, superior temporal sulcus, and cingulate sulcus, and revealed multiple distinct and meaningful folding patterns in each region. PMID:28229131

  20. Myricetin Inhibits the Release of Glutamate in Rat Cerebrocortical Nerve Terminals

    PubMed Central

    Chang, Yi; Chang, Chia-Ying; Huang, Shu-Kuei

    2015-01-01

    Abstract The excessive release of glutamate is a critical element in the neuropathology of acute and chronic brain disorders. The purpose of the present study was to investigate the effect and possible mechanism of myricetin, a naturally occurring flavonoid with a neuroprotective profile, on endogenous glutamate release in the nerve terminals (synaptosomes) of the rat cerebral cortex. The release of glutamate was evoked by the K+ channel blocker 4-aminopyridine (4-AP) and measured by one-line enzyme-coupled fluorometric assay. We also used a membrane potential-sensitive dye to assay the synaptosomal plasma membrane potential, and a Ca2+ indicator Fura-2 to monitor cytosolic Ca2+ concentrations ([Ca2+]C). Results show that myricetin inhibited 4-AP-evoked glutamate release, and this effect was prevented by chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor dl-threo-beta-benzyl-oxyaspartate had no effect on myricetin action. Myricetin did not alter the synaptosomal membrane potential, but decreased 4-AP-induced increases in the cytosolic free Ca2+ concentration. Furthermore, the myricetin effect on 4-AP-evoked glutamate release was prevented by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking intracellular Ca2+ release. These results suggest that myricetin inhibits glutamate release from cerebrocortical synaptosomes by attenuating voltage-dependent Ca2+ entry. This implies that the inhibition of glutamate release is an important pharmacological activity of myricetin that may play a critical role in the apparent clinical efficacy of this compound. PMID:25340625