Sample records for accumulate lipid reserves

  1. THE SOURCE OF LIPID ACCUMULATION IN L CELLS

    PubMed Central

    Bensch, Klaus G.; King, Donald W.; Socolow, Edward L.

    1961-01-01

    Strain L cells accumulate lipid, concurrent with cessation of protein synthesis, in the stationary phase of growth from the extracellular medium and as a result of de novo synthesis. Cells which have been more severely damaged with an amino acid analogue also accumulate lipid from the extracellular medium, but synthesize very little lipid from labeled acetate. The possible roles which lipid accumulation may play in the cell are discussed. PMID:19866577

  2. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  3. Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species.

    PubMed

    Yao, Shuo; Brandt, Anders; Egsgaard, Helge; Gjermansen, Claes

    2012-12-01

    Triacylglycerols, an energy storage compound in microalgae, are known to be accumulated after nitrogen starvation of microalgae cells. Microalgae could be of importance for future biodiesel production due to their fast growth rate and high oil content. In collections of temperature sensitive mutants of Chlamydomonas reinhardtii and Chlorella vulgaris, nine out of fourty-one mutants in C. reinhardtii and eleven out of fifty-three mutants in C. vulgaris contained increased amounts of neutral lipids, predominantly as triacylglycerols. Upon temperature induced cell-cycle arrest, these mutants showed enlarged cellular volume compared with the wild type. The C. reinhardtii mutants were analyzed further and one type of mutants displayed a shift in lipid composition from polar membrane lipids to neutral lipids after a temperature up-shift, while the second type of mutants accumulated more total lipid per cell, predominantly as neutral lipids as compared with the wild type. Three C. reinhardtii mutants were analyzed further and found to be arrested after DNA synthesis but prior to cell division in the cell cycle. These mutants will be useful in order to further understand neutral lipid accumulation in microalgae and suggest possibilities for biodiesel production by specific induction of lipid accumulation in miroalgal cultures by cell-cycle inhibition. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xie, Guo-Jun; Ren, Nan-Qi

    2014-10-01

    Effects of Fe(3+) (0-0.12 g/L), Mg(2+) (0-0.73 g/L) and Ca(2+) (0-0.98 g/L) on the biomass and lipid accumulation of heterotrophic microalgae were investigated in dark environment. The biomass and lipid production exhibited an increasing trend with increasing the concentrations of metal ions. In cultures with 1.2 × 10(-3) g/L Fe(3+), 7.3 × 10(-3) g/L Mg(2+) and 9.8 × 10(-4) g/L Ca(2+), the maximum biomass, total lipid content and lipid productivity reached 3.49 g/L, 47.4% and 275.7 mg/L/d, respectively. More importantly, EDTA addition (1.0 × 10(-3) g/L) could enhance the solubility of metal ions (iron and calcium) and increase their availability by microalgae, which evidently promote the lipid accumulation. Compared with the control, the total lipid content and lipid productivity increased 28.2% and 29.7%, respectively. These show that appropriate concentrations of metal ions and EDTA in the culture medium were beneficial to lipid accumulation of heterotrophic Scenedesmus sp. cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Bicarbonate trigger for inducing lipid accumulation in algal systems

    DOEpatents

    Gardner, Robert; Peyton, Brent; Cooksey, Keith E.

    2015-08-04

    The present invention provides bicarbonate containing and/or bicarbonate-producing compositions and methods to induce lipid accumulation in an algae growth system, wherein the algae growth system is under light-dark cycling condition. By adding said compositions at a specific growth stage, said methods lead to much higher lipid accumulation and/or significantly reduced total time required for accumulating lipid in the algae growth system.

  6. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    PubMed

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Blockade of lipid accumulation by silibinin in adipocytes and zebrafish.

    PubMed

    Suh, Hyung Joo; Cho, So Young; Kim, Eun Young; Choi, Hyeon-Son

    2015-02-05

    Silibinin is a compound present mainly in milk thistle. In this study, we investigated the mechanism by which silibinin suppresses adipogenesis of 3T3-L1 cells, and evaluated the anti-adipogenic effect of silibinin in zebrafish. Silibinin reduced lipid accumulation by downregulating adipogenic factors, such as, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer binding protein α (C/EBPα), and fatty acid-binding protein 4 (FABP4). The reduction of these adipogenic protein levels was associated with the regulation of early adipogenic factors, such as, C/EBPβ and Krüppel-like factor 2 (KLF2), and was reflected in downregulation of lipid synthetic enzymes. Silibinin arrested cells in the G0/G1 phase of the cell cycle, accompanied by downregulation of cyclins and upregulation of p27, a cell cycle inhibitor. These results correlated with the finding of deactivation of extracellular signal-regulated kinase (ERK) and AKT, a serine/threonine-specific kinase. In addition, silibinin activated AMP-activated protein kinase α (AMPKα) to inhibit fatty acid synthesis. As observed in 3T3-L1 cells, silibinin inhibited lipid accumulation in zebrafish with the reduction of adipogenic factors and triglyceride levels. Our data revealed that silibinin inhibited lipid accumulation in 3T3-L1 cells and zebrafish, and this inhibitory effect was associated with abrogation of early adipogenesis via regulation of cell cycle and AMPKα signaling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Clusterin deficiency induces lipid accumulation and tissue damage in kidney.

    PubMed

    Heo, Jung-Yoon; Kim, Ji-Eun; Dan, Yongwook; Kim, Yong-Woon; Kim, Jong-Yeon; Cho, Kyu Hyang; Bae, Young Kyung; Im, Seung-Soon; Liu, Kwang-Hyeon; Song, In-Hwan; Kim, Jae-Ryong; Lee, In-Kyu; Park, So-Young

    2018-05-01

    Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease. © 2018 Society for Endocrinology.

  9. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions.

    PubMed

    Takeshita, Tsuyoshi; Ota, Shuhei; Yamazaki, Tomokazu; Hirata, Aiko; Zachleder, Vilém; Kawano, Shigeyuki

    2014-04-01

    The microalgae family Chlorella species are known to accumulate starch and lipids. Although nitrogen or phosphorous deficiencies promote starch and lipids formation in many microalgae, these deficiencies also limit their growth and productivity. Therefore, the Chlorellaceae strains were attempted to increase starch and lipids productivity under high-light-intensity conditions (600-μmol photons m(-2)s(-1)). The 12:12-h light-dark (LD) cycle conditions elicited more stable growth than the continuous light (LL) conditions, whereas the starch and lipids yields increased in LL conditions. The amount of starch and lipids per cell increased in Chlorella viscosa and Chlorella vulgaris in sulfur-deficient medium, and long-chain fatty acids with 20 or more carbon atoms accumulated in cells grown in sulfur-deficient medium. Accumulation of starch and lipids was investigated in eight strains. The accumulation was strain-dependent, and varied according to the medium and light conditions. Five of the eight Chlorella strains exhibited similar accumulation patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. (13)C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides.

    PubMed

    Zhao, Lina; Zhang, Huaiyuan; Wang, Liping; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2015-12-01

    The oleaginous fungus Mucor circinelloides is of industrial interest because it can produce high levels of polyunsaturated fatty acid γ-linolenic acid. M. circinelloides CBS 277.49 is able to accumulate less than 15% of cell dry weight as lipids, while M. circinelloides WJ11 can accumulate lipid up to 36%. In order to better understand the mechanisms behind the differential lipid accumulation in these two strains, tracer experiments with (13)C-glucose were performed with the growth of M. circinelloides and subsequent gas chromatography-mass spectrometric detection of (13)C-patterns in proteinogenic amino acids was carried out to identify the metabolic network topology and estimate intracellular fluxes. Our results showed that the high oleaginous strain WJ11 had higher flux of pentose phosphate pathway and malic enzyme, lower flux in tricarboxylic acid cycle, higher flux in glyoxylate cycle and ATP: citrate lyase, together, it might provide more NADPH and substrate acetyl-CoA for fatty acid synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Oleaginous yeasts from Antarctica: Screening and preliminary approach on lipid accumulation.

    PubMed

    Viñarta, Silvana C; Angelicola, M Virginia; Barros, J Maximiliano; Fernández, Pablo M; Mac Cormak, Walter; Aybar, Manuel J; de Figueroa, Lucía I C

    2016-12-01

    The capability of 17 Rhodotorula spp. isolated from Antarctica to accumulate intracellular lipids in nitrogen-limited medium was investigated. As results, 10 isolates were selected by Nile red staining, while 12 isolates were selected as oleaginous by analysis of total lipid content (20.4-73%, w/w of dry biomass). The higher lipid production and accumulation was exhibited for six strains belonging to three species of Rhodotorula (Rhodotorula glutinis, Rhodotorula glacialis, and Rhodotorula laryngis). This is the first report where R. laryngis have been identified within oleaginous specie. Lipid accumulation was evaluated comparatively in two nitrogen-limited glucose-based media (MI and MII). MI (low C/N ratio) was more suitable for biomass and lipid production while in MII (high C/N ratio) total lipid content was improved. R. glutinis R4, R. glacialis R15, and R. glutinis R48 showed high lipid concentrations (4.65-6.93 g L -1 ) and they were able to accumulate large amounts of lipids per gram of biomass (47-77%, w/w). A similar profile in fatty acids composition and content of neutral lipids to vegetable oils was observed, indicating that lipids produced by oleaginous Antarctic yeasts can be considered an alternative feedstock for biodiesel production. Antarctica represents an important source of oleaginous yeasts with adaptive capabilities to accumulate considerable amounts of lipids with biotechnological interest at 15 °C and 25 °C. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Association of Lipid Accumulation Product with Cardio-Metabolic Risk Factors in Postmenopausal Women.

    PubMed

    Namazi Shabestari, Alireza; Asadi, Mojgan; Jouyandeh, Zahra; Qorbani, Mostafa; Kelishadi, Roya

    2016-06-01

    The lipid accumulation product is a novel, safe and inexpensive index of central lipid over accumulation based on waist circumference and fasting concentration of circulating triglycerides. This study was designed to investigate the ability of lipid accumulation product to predict Cardio-metabolic risk factors in postmenopausal women. In this Cross-sectional study, 264 postmenopausal women by using convenience sampling method were selected from menopause clinic in Tehran. Cardio-metabolic risk factors were measured, and lipid accumulation product (waist-58×triglycerides [nmol/L]) was calculated. Optimal cut-off point of lipid accumulation product for predicting metabolic syndrome was estimated by ROC (Receiver-operating characteristic) curve analysis. Metabolic syndrome was diagnosed in 41.2% of subjects. Optimal cut-off point of lipid accumulation product for predicting metabolic syndrome was 47.63 (sensitivity:75%; specificity:77.9%). High lipid accumulation product increases risk of all Cardio-metabolic risk factors except overweight, high Total Cholesterol, high Low Density Lipoprotein Cholesterol and high Fasting Blood Sugar in postmenopausal women. Our findings show that lipid accumulation product is associated with metabolic syndrome and some Cardio-metabolic risk factors Also lipid accumulation product may have been a useful tool for predicting cardiovascular disease and metabolic syndrome risk in postmenopausal women.

  13. Effect of diurnal temperature difference on lipid accumulation and development in Calanus sinicus (Copepoda: Calanoida)

    NASA Astrophysics Data System (ADS)

    Zhou, Konglin; Sun, Song

    2017-07-01

    Calanus sinicus, the dominant copepod in the Yellow Sea, develops a large oil sac in late spring to prepare for over-summering in the Yellow Sea Cold Water Mass (YSCWM). The lipid accumulation mechanism for the initiation of over-summering is unknown. Here, we cultured C3 copepodites at four constant temperatures (10, 13, 16, and 19°C) and at three temperature regimes that mimicked the temperature variations experienced during diurnal vertical migration (10-13°C, 10-16°C, and 10-19°C) for 18 days to explore the effects of temperature differences on copepod development and lipid accumulation. C. sinicus stored more lipid at low than at high temperatures. A diurnal temperature difference (10-16°C and 10-19°C) promoted greater lipid accumulation (1.9-2.1 times) than a constant temperature of either 16°C or 19°C, by reducing the energy cost at colder temperatures and lengthening copepodite development. Thereafter, the lipid reserve supported gonad development after final molting. Only one male developed in these experiments. This highly female-skewed sex ratio may have been the result of the monotonous microalgae diet fed to the copepodites. This study provides the first evidence that diurnal temperature differences may promote lipid accumulation in C. sinicus, and provides a foundation for future investigations into the mechanisms involved in over-summering in the YSCWM.

  14. Synchronized growth and neutral lipid accumulation in Chlorella sorokiniana FC6 IITG under continuous mode of operation.

    PubMed

    Kumar, Vikram; Muthuraj, Muthusivaramapandian; Palabhanvi, Basavaraj; Das, Debasish

    2016-01-01

    Synchronized growth and neutral lipid accumulation with high lipid productivity under mixotrophic growth of the strain Chlorella sorokiniana FC6 IITG was achieved via manipulation of substrates feeding mode and supplementation of lipid elicitors in the growth medium. Screening and optimization of lipid elicitors resulted in lipid productivity of 110.59mgL(-1)day(-1) under the combined effect of lipid inducers sodium acetate and sodium chloride. Fed-batch cultivation of the strain in bioreactor with intermittent feeding of limiting nutrients and lipid inducer resulted in maximum biomass and lipid productivity of 2.08 and 0.97gL(-1)day(-1) respectively. Further, continuous production of biomass with concomitant lipid accumulation was demonstrated via continuous feeding of BG11 media supplemented with lipid inducers sodium acetate and sodium chloride. The improved biomass and lipid productivity in chemostat was found to be 2.81 and 1.27gL(-1)day(-1) respectively operated at a dilution rate of 0.54day(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tertmore » adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not

  16. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors.

    PubMed

    Feng, Pingzhong; Deng, Zhongyang; Hu, Zhengyu; Fan, Lu

    2011-11-01

    Culturing microalgae using natural sunlight is an effective way to reduce the cost of microalgae-based biodiesel production. In order to evaluate the feasibility of culturing Chlorella zofingiensis outdoors for biodiesel production, effects of nitrogen limitation and initial cell concentration on growth and lipid accumulation of this alga were investigated in 60 L flat plate photobioreactors outdoors. The highest μmax and biomass productivity obtained was 0.994 day(-1) and 58.4 mg L(-1)day(-1), respectively. The lipid content was much higher (54.5% of dry weight) under nitrogen limiting condition than under nitrogen sufficient condition (27.3%). With the increasing initial cell concentrations, the lipid contents declined, while lipid concentrations and productivities increased. The highest lipid content, lipid concentration, and lipid productivity obtained was 54.5%, 536 mg L(-1) and 22.3 mg L(-1)day(-1), respectively. This study demonstrated that it was possible to culture C. zofingiensis under outdoor conditions for producing biodiesel feedstock. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.

    PubMed

    Kesaano, Maureen; Gardner, Robert D; Moll, Karen; Lauchnor, Ellen; Gerlach, Robin; Peyton, Brent M; Sims, Ronald C

    2015-03-01

    Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Uridine prevents tamoxifen-induced liver lipid droplet accumulation

    PubMed Central

    2014-01-01

    Background Tamoxifen, an agonist of estrogen receptor, is widely prescribed for the prevention and long-term treatment of breast cancer. A side effect of tamoxifen is fatty liver, which increases the risk for non-alcoholic fatty liver disease. Prevention of tamoxifen-induced fatty liver has the potential to improve the safety of long-term tamoxifen usage. Methods Uridine, a pyrimidine nucleoside with reported protective effects against drug-induced fatty liver, was co-administered with tamoxifen in C57BL/6J mice. Liver lipid levels were evaluated with lipid visualization using coherent anti-Stokes Raman scatting (CARS) microscopy, biochemical assay measurement of triacylglyceride (TAG), and liquid chromatography coupled with mass spectrometry (LC-MS) measurement of membrane phospholipid. Blood TAG and cholesterol levels were measured. Mitochondrial respiration of primary hepatocytes in the presence of tamoxifen and/or uridine was evaluated by measuring oxygen consumption rate with an extracellular flux analyzer. Liver protein lysine acetylation profiles were evaluated with 1D and 2D Western blots. In addition, the relationship between endogenous uridine levels, fatty liver, and tamoxifen administration was evaluated in transgenic mice UPase1−/−and UPase1-TG. Results Uridine co-administration prevented tamoxifen-induced liver lipid droplet accumulation in mice. The most prominent effect of uridine co-administration with tamoxifen was the stimulation of liver membrane phospholipid biosynthesis. Uridine had no protective effect against tamoxifen-induced impairment to mitochondrial respiration of primary hepatocytes or liver TAG and cholesterol export. Uridine had no effect on tamoxifen-induced changes to liver protein acetylation profile. Transgenic mice UPase1−/−with increased pyrimidine salvage activity were protected against tamoxifen-induced liver lipid droplet accumulation. In contrast, UPase1-TG mice with increased pyrimidine catabolism activity had

  19. Uridine prevents tamoxifen-induced liver lipid droplet accumulation.

    PubMed

    Le, Thuc T; Urasaki, Yasuyo; Pizzorno, Giuseppe

    2014-05-23

    Tamoxifen, an agonist of estrogen receptor, is widely prescribed for the prevention and long-term treatment of breast cancer. A side effect of tamoxifen is fatty liver, which increases the risk for non-alcoholic fatty liver disease. Prevention of tamoxifen-induced fatty liver has the potential to improve the safety of long-term tamoxifen usage. Uridine, a pyrimidine nucleoside with reported protective effects against drug-induced fatty liver, was co-administered with tamoxifen in C57BL/6J mice. Liver lipid levels were evaluated with lipid visualization using coherent anti-Stokes Raman scatting (CARS) microscopy, biochemical assay measurement of triacylglyceride (TAG), and liquid chromatography coupled with mass spectrometry (LC-MS) measurement of membrane phospholipid. Blood TAG and cholesterol levels were measured. Mitochondrial respiration of primary hepatocytes in the presence of tamoxifen and/or uridine was evaluated by measuring oxygen consumption rate with an extracellular flux analyzer. Liver protein lysine acetylation profiles were evaluated with 1D and 2D Western blots. In addition, the relationship between endogenous uridine levels, fatty liver, and tamoxifen administration was evaluated in transgenic mice UPase1-/-and UPase1-TG. Uridine co-administration prevented tamoxifen-induced liver lipid droplet accumulation in mice. The most prominent effect of uridine co-administration with tamoxifen was the stimulation of liver membrane phospholipid biosynthesis. Uridine had no protective effect against tamoxifen-induced impairment to mitochondrial respiration of primary hepatocytes or liver TAG and cholesterol export. Uridine had no effect on tamoxifen-induced changes to liver protein acetylation profile. Transgenic mice UPase1-/-with increased pyrimidine salvage activity were protected against tamoxifen-induced liver lipid droplet accumulation. In contrast, UPase1-TG mice with increased pyrimidine catabolism activity had intrinsic liver lipid droplet

  20. Mycobacterium tuberculosis Uses Host Triacylglycerol to Accumulate Lipid Droplets and Acquires a Dormancy-Like Phenotype in Lipid-Loaded Macrophages

    PubMed Central

    Daniel, Jaiyanth; Sirakova, Tatiana D.; Kolattukudy, Pappachan E.

    2011-01-01

    Two billion people are latently infected with Mycobacterium tuberculosis (Mtb). Mtb-infected macrophages are likely to be sequestered inside the hypoxic environments of the granuloma and differentiate into lipid-loaded macrophages that contain triacylglycerol (TAG)-filled lipid droplets which may provide a fatty acid-rich host environment for Mtb. We report here that human peripheral blood monocyte-derived macrophages and THP-1 derived macrophages incubated under hypoxia accumulate Oil Red O-staining lipid droplets containing TAG. Inside such hypoxic, lipid-loaded macrophages, nearly half the Mtb population developed phenotypic tolerance to isoniazid, lost acid-fast staining and accumulated intracellular lipid droplets. Dual-isotope labeling of macrophage TAG revealed that Mtb inside the lipid-loaded macrophages imports fatty acids derived from host TAG and incorporates them intact into Mtb TAG. The fatty acid composition of host and Mtb TAG were nearly identical suggesting that Mtb utilizes host TAG to accumulate intracellular TAG. Utilization of host TAG by Mtb for lipid droplet synthesis was confirmed when fluorescent fatty acid-labeled host TAG was utilized to accumulate fluorescent lipid droplets inside the pathogen. Deletion of the Mtb triacylglycerol synthase 1 (tgs1) gene resulted in a drastic decrease but not a complete loss in both radiolabeled and fluorescent TAG accumulation by Mtb suggesting that the TAG that accumulates within Mtb is generated mainly by the incorporation of fatty acids released from host TAG. We show direct evidence for the utilization of the fatty acids from host TAG for lipid metabolism inside Mtb. Taqman real-time PCR measurements revealed that the mycobacterial genes dosR, hspX, icl1, tgs1 and lipY were up-regulated in Mtb within hypoxic lipid loaded macrophages along with other Mtb genes known to be associated with dormancy and lipid metabolism. PMID:21731490

  1. Using Brillouin microspectroscopy to characterize adipocytes' response to lipid droplet accumulation

    NASA Astrophysics Data System (ADS)

    Troyanova-Wood, Maria; Coker, Zachary; Traverso, Andrew; Yakovlev, Vladislav V.

    2017-02-01

    Obesity and overweight are accompanied by an enlargement of adipocytes, which is commonly related to the increasing number or size of lipid droplets within the cells. Some studies have shown that the accumulation of lipid droplets within adipocytes results in their increased stiffness. Recently, Brillouin microspectroscopy has been introduced as a nondestructive method of imaging the elasticity of cells. Unlike other imaging modalities, it is capable of assessing the elastic properties on both tissue- and cell levels. In this study, Brillouin spectroscopy was used to measure the elasticity changes in response to accumulation of lipid droplets within adipocyte during adipogenesis. The cell line used in the study is 3T3-L1, with chemically-induced differentiation from pre-adipocytes to mature adipocytes. The Brillouin shift measurements of the cells before and after differentiation indicate that the stiffness of adipocytes increases due to accumulation of lipid droplets. The results are in agreement with previous atomic force microscopy (AFM) nanoindentation studies. Brillouin microspectroscopy is a technique suitable for measuring the changes of elasticity of adipocytes in response to lipid droplet accumulation.

  2. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae.

    PubMed

    Wase, Nishikant; Tu, Boqiang; Allen, James W; Black, Paul N; DiRusso, Concetta C

    2017-08-01

    Microalgae are proposed as feedstock organisms useful for producing biofuels and coproducts. However, several limitations must be overcome before algae-based production is economically feasible. Among these is the ability to induce lipid accumulation and storage without affecting biomass yield. To overcome this barrier, a chemical genetics approach was employed in which 43,783 compounds were screened against Chlamydomonas reinhardtii , and 243 compounds were identified that increase triacylglyceride (TAG) accumulation without terminating growth. Identified compounds were classified by structural similarity, and 15 were selected for secondary analyses addressing impacts on growth fitness, photosynthetic pigments, and total cellular protein and starch concentrations. TAG accumulation was verified using gas chromatography-mass spectrometry quantification of total fatty acids, and targeted TAG and galactolipid measurements were performed using liquid chromatography-multiple reaction monitoring/mass spectrometry. These results demonstrated that TAG accumulation does not necessarily proceed at the expense of galactolipid. Untargeted metabolite profiling provided important insights into pathway shifts due to five different compound treatments and verified the anabolic state of the cells with regard to the oxidative pentose phosphate pathway, Calvin cycle, tricarboxylic acid cycle, and amino acid biosynthetic pathways. Metabolite patterns were distinct from nitrogen starvation and other abiotic stresses commonly used to induce oil accumulation in algae. The efficacy of these compounds also was demonstrated in three other algal species. These lipid-inducing compounds offer a valuable set of tools for delving into the biochemical mechanisms of lipid accumulation in algae and a direct means to improve algal oil content independent of the severe growth limitations associated with nutrient deprivation. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. Controlling lipid accumulation in cereal grains.

    PubMed

    Barthole, Guillaume; Lepiniec, Loïc; Rogowsky, Peter M; Baud, Sébastien

    2012-04-01

    Plant oils have so far been mostly directed toward food and feed production. Nowadays however, these oils are more and more used as competitive alternatives to mineral hydrocarbon-based products. This increasing demand for vegetable oils has led to a renewed interest in elucidating the metabolism of storage lipids and its regulation in various plant systems. Cereal grains store carbon in the form of starch in a large endosperm and as oil in an embryo of limited size. Complementary studies on kernel development and metabolism have paved the way for breeding or engineering new varieties with higher grain oil content. This could be achieved either by increasing the relative proportion of the oil-rich embryo within the grain, or by enhancing oil synthesis and accumulation in embryonic structures. For instance, diacylglycerol acyltransferase (DGAT) that catalyses the ultimate reaction in the biosynthesis of triacylglycerol appears to be a promising target for increasing oil content in maize embryos. Similarly, over-expression of the maize transcriptional regulators ZmLEAFY COTYLEDON1 and ZmWRINKLED1 efficiently stimulates oil accumulation in the kernels of transgenic lines. Redirecting carbon from starch to oil in the endosperm, though not yet realized, is discussed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Effects of dissolved oxygen level on cell growth and total lipid accumulation in the cultivation of Rhodotorula glutinis.

    PubMed

    Yen, Hong-Wei; Zhang, Zhiyong

    2011-07-01

    The total amount of lipids produced in Rhodotorula glutinis is a subject which has attracted increasing attention due to the potential biodiesel conversion from these microbial oils. The effects of the dissolved oxygen (DO) level in lipid accumulation were examined in this study. Variations of different medium volumes (30, 40 and 50ml) and shaking speed (60, 150 and 210rpm) in the flask trials were adopted to explore the DO effects on lipid production. All of the results revealed that a low DO could retard cell growth, while enhancing lipid accumulation. The 5l-fermentor results also confirm that a low DO (25 ± 10%) batch could have higher lipid content than that of high DO batch (60 ± 10%). Nevertheless, the DO level would not obviously affect the lipid composition profile. Oleic acid (C18:1) was the primary fatty acid in both batches. Due to the slow biomass growth rate resulting from the low DO, a two-stage DO controlled strategy (consisting of a high DO stage and following a low DO stage) was performed to improve the cell growth and lipid accumulation simultaneously. However, the strategy was not successful on the enhancement of total lipid production as compared to other batches. Conclusively, even a low DO could retard cell growth; the total production of lipids in the batch with low DO was higher that of the high DO batch due to the enhancement of lipid accumulation. Therefore, the batch operation of R. glutinis at the low DO was suggested for the purpose of lipid production. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    DOE PAGES

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob; ...

    2015-12-02

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 minmore » that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid

  6. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia de Lomana, Adrian Lopez; Schäuble, Sascha; Valenzuela, Jacob

    Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 minmore » that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. In conclusion, in this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid

  7. The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs.

    PubMed

    Liu, Tingting; Liu, Fei; Wang, Chao; Wang, Zhenyao; Li, Yuqin

    2017-05-01

    This study attempted at maximizing biomass and lipid accumulation in Chlorella vulgaris by supplementation of natural abscisic acid (ABA) or synthetic 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) hormone analogs. Amongst three tested additives, NAA-treatment performed remarkable promoting effect on cell growth and lipid biosynthesis. The favorable lipid productivity (418.6mg/L/d) of NAA-treated cells showed 1.48 and 2.24 times more than that of 2,4-D and ABA. NAA-treatment also positively modified the proportions of saturated (C16:0 and C18:0) and monounsaturated fatty acids (C18:1) which were prone to high-quality biofuels-making. Further, NAA-treatment manipulated endogenous phytohormones metabolism leading to the elevated levels of indole-3-acetic acid, jasmonic acid, and salicylic acid and such hormone accumulation might be indispensable for signal transduction in regulating cell growth and lipid biosynthesis in microalgae. In addition, the economic-feasibility and eco-friendly estimation of NAA additive indicated the higher possibilities in developing affordable and scalable microalgal lipids for biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Lipid Accumulation from Glucose and Xylose in an Engineered, Naturally Oleaginous Strain of Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoshaug, Eric P; Van Wychen, Stefanie R; Zhang, Min

    Saccharomyces cerevisiae, a well-known industrial yeast for alcoholic fermentation, is not historically known to accumulate lipids. Four S. cerevisiae strains used in industrial applications were screened for their ability to accumulate neutral lipids. Only one, D5A, was found to accumulate up to 20% dry cell weight (dcw) lipids. This strain was further engineered by knocking out ADP-activated serine/threonine kinase (SNF1) which increased lipid accumulation to 35% dcw lipids. In addition, we engineered D5A to utilize xylose and found that D5A accumulates up to 37% dcw lipids from xylose as the sole carbon source. Further we over-expressed different diacylglycerol acyltransferase (DGA1)more » genes and boosted lipid accumulation to 50%. Fatty acid speciation showed that 94% of the extracted lipids consisted of 5 fatty acid species, C16:0 (palmitic), C16:1n7 (palmitoleic), C18:0 (stearic), C18:1n7 (vaccenic), and C18:1n9 (oleic), while the relative distributions changed depending on growth conditions. In addition, this strain accumulated lipids concurrently with ethanol production.« less

  9. Soybean GmMYB73 promotes lipid accumulation in transgenic plants

    PubMed Central

    2014-01-01

    Background Soybean is one of the most important oil crops. The regulatory genes involved in oil accumulation are largely unclear. We initiated studies to identify genes that regulate this process. Results One MYB-type gene GmMYB73 was found to display differential expression in soybean seeds of different developing stages by microarray analysis and was further investigated for its functions in lipid accumulation. GmMYB73 is a small protein with single MYB repeat and has similarity to CPC-like MYB proteins from Arabidopsis. GmMYB73 interacted with GL3 and EGL3, and then suppressed GL2, a negative regulator of oil accumulation. GmMYB73 overexpression enhanced lipid contents in both seeds and leaves of transgenic Arabidopsis plants. Seed length and thousand-seed weight were also promoted. GmMYB73 introduction into the Arabidopsis try cpc double mutant rescued the total lipids, seed size and thousand-seed weight. GmMYB73 also elevated lipid levels in seeds and leaves of transgenic Lotus, and in transgenic hairy roots of soybean plants. GmMYB73 promoted PLDα1 expression, whose promoter can be bound and inhibited by GL2. PLDα1 mutation reduced triacylglycerol levels mildly in seeds but significantly in leaves of Arabidopsis plants. Conclusions GmMYB73 may reduce GL2, and then release GL2-inhibited PLDα1 expression for lipid accumulation. Manipulation of GmMYB73 may potentially improve oil production in legume crop plants. PMID:24655684

  10. Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in Yarrowia lipolytica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerkhoven, Eduard J.; Kim, Young-Mo; Wei, Siwei

    ABSTRACT The yeastYarrowia lipolyticais a potent accumulator of lipids, and lipogenesis in this organism can be influenced by a variety of factors, such as genetics and environmental conditions. Using a multifactorial study, we elucidated the effects of both genetic and environmental factors on regulation of lipogenesis inY. lipolyticaand identified how two opposite regulatory states both result in lipid accumulation. This study involved comparison of a strain overexpressing diacylglycerol acyltransferase (DGA1) with a control strain grown under either nitrogen or carbon limitation conditions. A strong correlation was observed between the responses on the transcript and protein levels. Combination ofDGA1overexpression with nitrogen limitationmore » resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered a contradictory role for TORC1 in controlling lipid accumulation, likely mediated through 2-isopropylmalate and a Leu3-like transcription factor. IMPORTANCEThe ubiquitous metabolism of lipids involves refined regulation, and an enriched understanding of this regulation would have wide implications. Various factors can influence lipid metabolism, including the environment and genetics. We demonstrated, using a multi-omics and multifactorial experimental setup, that multiple factors affect lipid accumulation in the yeastYarrowia lipolytica. Using integrative analysis, we identified novel interactions between nutrient restriction and genetic factors involving regulators that are highly conserved among eukaryotes. Given that lipid metabolism is involved in many

  11. 2-(2-Bromophenyl)-formononetin and 2-heptyl-formononetin are PPARγ partial agonists and reduce lipid accumulation in 3T3-L1 adipocytes.

    PubMed

    Andersen, Charlotte; Kotowska, Dorota; Tortzen, Christian G; Kristiansen, Karsten; Nielsen, John; Petersen, Rasmus Koefoed

    2014-11-01

    Isoflavones are bioactive compounds that have been shown to decrease lipid accumulation in vitro. However, the knowledge of the isoflavone formononetin is limited. The aim of the study was to assess the effects of formononetin and its two synthetic analogues, 2-(2-bromophenyl)-formononetin and 2-heptyl-formononetin, on lipid accumulation in 3T3-L1 adipocytes and investigate possible mechanisms. Formononetin and the two analogues were added day 0-8 or day 8-10 of the differentiation period, and lipid accumulation, glycerol release and gene expression were measured. Additionally, competitive peroxisome proliferator-activated receptor (PPAR)-γ binding assay, PPARγ transactivation assay and Western blot for phosphorylated AMP-activated protein kinase (AMPK) were performed. Chronic treatment (day 0-8) with formononetin increased lipid accumulation, whereas the two analogues decreased lipid accumulation partly due to decreased differentiation. The two analogues, but not formononetin, also decreased lipid content in mature adipocytes. 2-Heptyl-formononetin increased glycerol release and lipolytic gene expression and decreased lipogenic gene expression. Formononetin did not bind to or activate PPARγ whereas both analogues bound to the receptor and behaved as PPARγ partial agonists in the transactivation assay. Neither of the compounds affected phosphorylation of AMPK. In conclusion, the analogues of formononetin decreased lipid accumulation possibly in part by acting as PPARγ partial agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica.

    PubMed

    Ochoa-Estopier, Abril; Guillouet, Stéphane E

    2014-01-20

    Lipid accumulation in oleaginous yeasts is triggered by nutrient imbalance in the culture medium between the carbon source in excess and the nitrogen source in limiting concentration. However Yarrowia lipolytica when cultivated on glucose as the sole carbon source, mainly produces citric acid upon nitrogen limitation over lipid accumulation (only 5-10% triacylglycerol). Therefore for developing bioprocess for the production of triacylglycerol from renewable carbon source as glucose it is of first importance to control this imbalance in order to avoid citric acid production during TAG accumulation. Using D-stat cultivation system, where the N/C was linearly decreased using a constant change rate we were able to identify the N/C ratio inducing TAG accumulation (0.085NmolCmol(-1)) and citric acid (0.021NmolCmol(-1)). We therefore demonstrated that it was possible to accumulate lipids without excretion citric acid as long as the N/C was within this indicated range. Moreover enzyme specific activities measurement during the D-stat indicated that ATP-citrate lyase, malic enzyme and acetyl-coA carboxylase were strongly induced at the onset of lipid accumulation and showed different patterns when citric acid was excreted. Our results give relevant information for future industrial bioprocess development concerning the production of lipids using renewable carbohydrate substrates as an alternative way to produce synthons for fuel or chemical industry. By controlling the N/C over the fermentation process on glucose Y. lipolytica can accumulate lipids without excreting citric acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production.

    PubMed

    Espinosa-Gonzalez, Isabel; Parashar, Archana; Bressler, David C

    2014-03-01

    This study proposes a novel alternative for the utilization of whey permeate, a by-product stream from the dairy industry, as the feedstock for the biomass and lipid production of the microalgae Chlorella protothecoides. Glucose and galactose from the pre-hydrolyzed whey permeate were used as main carbon sources in a base mineral media for establishing batch and fed batch cultures. Batch cultures reached a biomass production of 9.1±0.2g/L with a total lipid accumulation of 42.0±6.6% (dry weight basis), while in the fed batch cultures 17.2±1.3g/L of biomass with 20.5±0.3% lipid accumulation (dry weight basis) were obtained. A third strategy for the direct utilization of whey permeate was investigated by simultaneous saccharification and fermentation (SSF), wherein, 7.3±1.3g/L of biomass with 49.9±3.3% lipid accumulation (dry weight basis) was obtained in batch mode using immobilized enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp.

    PubMed

    Praveenkumar, Ramasamy; Kim, Bohwa; Lee, Jiye; Vijayan, Durairaj; Lee, Kyubock; Nam, Bora; Jeon, Sang Goo; Kim, Dong-Myung; Oh, You-Kwan

    2016-11-01

    Effective enhancement of neutral lipid (especially triacylglycerol, TAG) content in microalgae is an important issue for commercialization of microalgal biorefineries. Pressure is a key physical factor affecting the morphological, physiological, and biochemical behaviors of organisms. In this paper, we report a new stress-based method for induction of TAG accumulation in microalgae (specifically, Chlorella sp. KR-1 and Ch. sp. AG20150) by very-short-duration application of mild pressure. Pressure treatments of 10-15bar for 2h resulted in a considerable, ∼55% improvement of the 10-100g/Lcells' TAG contents compared with the untreated control. The post-pressure-treatment increase of cytoplasmic TAG granules was further confirmed by transmission electron microscopy (TEM). Notwithstanding the increased TAG content, the total lipid content was not changed by pressurization, implying that pressure stress possibly induces rapid remodeling/transformation of algal lipids rather than de novo biosynthesis of TAG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation.

    PubMed

    Fan, Jianhua; Zheng, Lvhong

    2017-09-01

    Salt stress has been proven very effective in enhancing the lipid content among many photoautotrophically grown microalgae species including marine and freshwater algae. Nevertheless, its effect on heterotrophic grown cells and lipid accumulation is scarcely known. This study sought to demonstrate a new train of thought for cost-effective biofuels production by heterotrophic culture of Chlamydomonas reinhardtii coupling with subsequent salt and light stress. NaCl treatments (25-200 mM) gradually suppressed the cell growth. After one day's acclimation, the cells restored slow growth with light supplement (200 μmol/m2/s) in low salt concentration (0-50 mM). However, high concentration of NaCl (200 mM) dose caused permanent damage, with over 47% cells death after 3 days treatment. The highest lipid content of 35.8% and lipid productivity of 28.6 mg/L/d were achieved by 50 mM NaCl stress and light treatment upon heterotrophic grown cells. Cells lost their green pigmentation and became yellowish under 100-200 mM NaCl conditions, whereas cells grown in 0-50 mM NaCl retained their dark-green pigmentation. Variable-to-maximum fluorescence ratio (Fv/Fm) and non-photochemical quenching (NPQ) value were markedly influenced under salt and light stress, indicating that severe inhibition of photosynthetic ability was occurred. Moreover, we further demonstrated the dynamic changes of cell growth and lipid accumulation would potentially be caused by the increase of intracellular redox state. To our knowledge, this study is the first instance in which C. reinhardtii was applied to oil accumulation by using combination of heterotrophic culture and multiple stress, and opened up a new territory for the further development of microalgae-based biofuels production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.

    PubMed

    Woodworth, Benjamin D; Mead, Rebecca L; Nichols, Courtney N; Kolling, Derrick R J

    2015-03-01

    Microalgae are an attractive biofuel feedstock because of their high lipid to biomass ratios, lipid compositions that are suitable for biodiesel production, and the ability to grow on varied carbon sources. While algae can grow autotrophically, supplying an exogenous carbon source can increase growth rates and allow heterotrophic growth in the absence of light. Time course analyses of dextrose-supplemented Chlorella vulgaris batch cultures demonstrate that light availability directly influences growth rate, chlorophyll production, and total lipid accumulation. Parallel photomixotrophic and heterotrophic cultures grown to stationary phase reached the same amount of biomass, but total lipid content was higher for algae grown in the presence of light (an average of 1.90 mg/mL vs. 0.77 mg/mL over 5 days of stationary phase growth). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Sugar versus fat: elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica.

    PubMed

    Bhutada, Govindprasad; Kavšcek, Martin; Ledesma-Amaro, Rodrigo; Thomas, Stéphane; Rechberger, Gerald N; Nicaud, Jean-Marc; Natter, Klaus

    2017-05-01

    Triacylglycerol (TAG) and glycogen are the two major metabolites for carbon storage in most eukaryotic organisms. We investigated the glycogen metabolism of the oleaginous Yarrowia lipolytica and found that this yeast accumulates up to 16% glycogen in its biomass. Assuming that elimination of glycogen synthesis would result in an improvement of lipid accumulation, we characterized and deleted the single gene coding for glycogen synthase, YlGSY1. The mutant was grown under lipogenic conditions with glucose and glycerol as substrates and we obtained up to 60% improvement in TAG accumulation compared to the wild-type strain. Additionally, YlGSY1 was deleted in a background that was already engineered for high lipid accumulation. In this obese background, TAG accumulation was also further increased. The highest lipid content of 52% was found after 3 days of cultivation in nitrogen-limited glycerol medium. Furthermore, we constructed mutants of Y. lipolytica and Saccharomyces cerevisiae that are deleted for both glycogen and TAG synthesis, demonstrating that the ability to store carbon is not essential. Overall, this work showed that glycogen synthesis is a competing pathway for TAG accumulation in oleaginous yeasts and that deletion of the glycogen synthase has beneficial effects on neutral lipid storage. © FEMS 2017.

  18. Reversal of intramyocellular lipid accumulation by lipophagy and a p62-mediated pathway.

    PubMed

    Lam, T; Harmancey, R; Vasquez, H; Gilbert, B; Patel, N; Hariharan, V; Lee, A; Covey, M; Taegtmeyer, H

    2016-01-01

    We have previously observed the reversal of lipid droplet deposition in skeletal muscle of morbidly obese patients following bariatric surgery. We now investigated whether activation of autophagy is the mechanism underlying this observation. For this purpose, we incubated rat L6 myocytes over a period of 6 days with long-chain fatty acids (an equimolar, 1.0 mM, mixture of oleate and palmitate in the incubation medium). At day 6, the autophagic inhibitor (bafilomycin A1, 200 nM) and the autophagic activator (rapamycin, 1 μM) were added separately or in combination for 48 h. Intracellular triglyceride (TG) accumulation was visualized and quantified colorimetrically. Protein markers of autophagic flux (LC3 and p62) and cell death (caspase-3 cleavage) were measured by immunoblotting. Inhibition of autophagy by bafilomycin increased TG accumulation and also increased lipid-mediated cell death. Conversely, activation of autophagy by rapamycin reduced both intracellular lipid accumulation and cell death. Unexpectedly, treatment with both drugs added simultaneously resulted in decreased lipid accumulation. In this treatment group, immunoblotting revealed p62 degradation (autophagic flux), immunofluorescence revealed the colocalization of p62 with lipid droplets, and co-immunoprecipitation confirmed the interaction of p62 with ADRP (adipose differentiation-related protein), a lipid droplet membrane protein. Thus the association of p62 with lipid droplet turnover suggests a novel pathway for the breakdown of lipid droplets in muscle cells. In addition, treatment with rapamycin and bafilomycin together also suggested the export of TG into the extracellular space. We conclude that lipophagy promotes the clearance of lipids from myocytes and switches to an alternative, p62-mediated, lysosomal-independent pathway in the context of chronic lipid overload (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).

  19. The lipid accumulation product as a useful index for identifying abnormal glucose regulation in young Korean women.

    PubMed

    Oh, J-Y; Sung, Y-A; Lee, H J

    2013-04-01

    The lipid accumulation product, a combination of waist circumference and triglycerides concentration, has been suggested as a better marker for abnormal glucose regulation than BMI. We aimed to compare the lipid accumulation product and BMI as useful markers for abnormal glucose regulation in young Korean women. The lipid accumulation product was calculated using the formula [waist circumference (cm) - 58] × triglycerides (mmol/l). Glucose tolerance status was determined using a 75-g oral glucose tolerance test in 2810 Korean women aged 18-39 years from the general population. The prevalence of abnormal glucose regulation was 6.8% (isolated impaired fasting glucose 1.8%, isolated impaired glucose tolerance 4.0%; impaired fasting glucose + impaired glucose tolerance 0.4% and diabetes mellitus 0.6%). According to the quintile distributions of the lipid accumulation product and BMI, women with a lipid accumulation product quintile greater than their BMI quintile exhibited significantly greater areas under the curve and higher levels of 2-h post-load glucose, insulin, homeostasis model analysis of insulin resistance and lipid profiles than did women with a BMI quintile greater than their lipid accumulation product quintile. Multiple logistic regression revealed that the lipid accumulation product exhibited a higher odds ratio for abnormal glucose regulation than did BMI after adjusting for age, systolic blood pressure, HDL cholesterol, previous history of gestational diabetes and family history of diabetes (odds ratios 3.5 and 2.6 of the highest vs. the lowest quintiles of lipid accumulation product and BMI, respectively). The lipid accumulation product could be useful for identifying the young Korean women with abnormal glucose regulation. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  20. Mechanisms of Action of Compounds That Enhance Storage Lipid Accumulation in Daphnia magna

    PubMed Central

    2016-01-01

    Accumulation of storage lipids in the crustacean Daphnia magna can be altered by a number of exogenous and endogenous compounds, like 20-hydroxyecdysone (natural ligand of the ecdysone receptor, EcR), methyl farnesoate, pyrirproxyfen (agonists of the methyl farnesoate receptor, MfR), and tributyltin (agonist of the retinoid X acid receptor, RXR). This effect, analogous to the obesogenic disruption in mammals, alters Daphnia’s growth and reproductive investment. Here we propose that storage lipid accumulation in droplets is regulated in Daphnia by the interaction between the nuclear receptor heterodimer EcR:RXR and MfR. The model was tested by determining changes in storage lipid accumulation and on gene transcription in animals exposed to different effectors of RXR, EcR, and MfR signaling pathways, either individually or in combination. RXR, EcR, and MfR agonists increased storage lipid accumulation, whereas fenarimol and testosterone (reported inhibitors of ecdysteroid synthesis and an EcR antagonist, respectively) decreased it. Joint effects of mixtures with fenarimol, testosterone, and ecdysone were antagonistic, mixtures of juvenoids showed additive effects following a concentration addition model, and combinations of tributyltin with juvenoids resulted in greater than additive effects. Co-exposures of ecdysone with juvenoids resulted in deregulation of ecdysone- and farnesoid-regulated genes, accordingly with the observed changes in lipid accumulation These results indicate the requirement of ecdysone binding to the EcR:RXR:MfR complex to regulate lipid storage and that an excess of ecdysone disrupts the whole process, probably by triggering negative feedback mechanisms. PMID:27993043

  1. Beneficial Effect of Bis(Hinokitiolato)Zn Complex on High-fat Diet-induced Lipid Accumulation in Mouse Liver and Kidney.

    PubMed

    Naito, Yuki; Yoshikawa, Yutaka; Yoshizawa, Katsuhiko; Takenouchi, Akiko; Yasui, Hiroyuki

    2017-01-01

    Metabolic syndrome-induced lifestyle-related diseases include diabetes mellitus (DM) and hypertension, and Zn-based compounds have effects on DM. We aimed to investigate the ameliorating effects of bis(hinokitiolato)Zn, [Zn(hkt) 2 ] on lipid metabolism in the liver and kidney, histopathologically. We used a high-fat diet (HFD)-fed C57BL/6J mouse model and administered a diet containing 10-20 mg Zn/kg body weight (BW) or 20 mg pioglitazone/kg BW as the positive control. After the treatments, we collected blood, liver, and kidney samples and morphologically evaluated the mouse organs for fat accumulation. After a 4-month HFD administration, ectopic fat deposition was detected in the liver and kidney. Furthermore, Zn accumulation in the liver and kidney increased following [Zn(hkt) 2 ] treatment, that reduced lipid accumulations and lipid toxicity in these tissues. The results of this study suggest that [Zn(hkt) 2 ] could be a novel anti-dyslipidaemia compound for treating diet-induced obesity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production.

    PubMed

    Sacristán de Alva, Manuel; Luna-Pabello, Víctor M; Cadena, Erasmo; Ortíz, Edgar

    2013-10-01

    The green microalga Scenedesmus acutus was cultivated in two different municipal wastewater discharges (pre- and post-treated), and was compared to a culture medium with basic nutrients (20% of N, P, K), in order to study the simultaneous potential of nutrient removal and lipid accumulation ability. The highest level of nutrient removal was found in the pretreated wastewater discharge (achieving a high removal of phosphorus [66%] and organic nitrogen [94%]). Likewise, better results on biomass productivity and lipid accumulation were found in cultures using pretreated wastewater compared to enriched medium, obtaining 79.9 mg/L, and 280 mg/L, respectively. Since the best results were found in pretreated wastewater, the biodiesel preparation was performed using said medium at small-scale. After cultivation, 249.4 mg/L of biodiesel were obtained. According to this analysis, S. acutus could be used for wastewater treatment producing biomass with a suitable content of lipids, convenient for biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Novel Genetic Tools to Accelerate Our Understanding of Photosynthesis and Lipid Accumulation

    DTIC Science & Technology

    2014-08-20

    understanding of photosynthesis and lipid accumulation Martin C. Jonikas, Ph.D. Carnegie Institution for Science, Department of Plant Biology 260...knowledge of algal lipid metabolism and photosynthesis . Advances in our basic understanding of these processes will facilitate genetic engineering of...algae to improve lipid yields. Currently, one of the greatest roadblocks in the study of algal photosynthesis and lipid metabolism is the slow pace of

  4. Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation.

    PubMed

    Sakarika, Myrsini; Kornaros, Michael

    2016-11-01

    The goal of the present study was to investigate the pH range that can support the growth of C. vulgaris, and, more specifically, to identify the optimal pH for the microalga's growth, under heterotrophic conditions. Furthermore, the effect of pH on the accumulation of intracellular lipids was studied. A wide range of pH values was tested using the respective buffer solutions. The optimal pH for biomass growth and lipid accumulation under sulfur limitation was found to be 7.5, resulting in maximum specific growth rate of 0.541days(-1) and maximum total lipid content of 53.43%ggDW(-1). The fatty acid composition of C. vulgaris was found to be unrelated to pH, as the lipid content did not present significant variations in the pH values tested. The fatty acid profile was mainly composed of monounsaturated fatty acids (MUFAs) with the dominant one being oleic acid (C18:1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides.

    PubMed

    Zhao, Lina; Cánovas-Márquez, José T; Tang, Xin; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Garre, Victoriano; Song, Yuanda; Ratledge, Colin

    2016-02-01

    Fatty acid biosynthesis in oleaginous fungi requires the supply of reducing power, NADPH, and the precursor of fatty acids, acetyl-CoA, which is generated in the cytosol being produced by ATP: citrate lyase which requires citrate to be, transported from the mitochondrion by the citrate/malate/pyruvate transporter. This transporter, which is within the mitochondrial membrane, transports cytosolic malate into the mitochondrion in exchange for mitochondrial citrate moving into the cytosol (Fig. 1). The role of malate transporter in lipid accumulation in oleaginous fungi is not fully understood, however. Therefore, the expression level of the mt gene, coding for a malate transporter, was manipulated in the oleaginous fungus Mucor circinelloides to analyze its effect on lipid accumulation. The results showed that mt overexpression increased the lipid content for about 70 % (from 13 to 22 % dry cell weight, CDW), whereas the lipid content in mt knockout mutant decreased about 27 % (from 13 to 9.5 % CDW) compared with the control strain. Furthermore, the extracellular malate concentration was decreased in the mt overexpressing strain and increased in the mt knockout strain compared with the wild-type strain. This work suggests that the malate transporter plays an important role in regulating lipid accumulation in oleaginous fungus M. circinelloides.

  6. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    NASA Astrophysics Data System (ADS)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  7. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    PubMed Central

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  8. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.

    Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposuremore » to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells.

  9. Modified Lipoprotein-Derived Lipid Particles Accumulate in Human Stenotic Aortic Valves

    PubMed Central

    Lehti, Satu; Käkelä, Reijo; Hörkkö, Sohvi; Kummu, Outi; Helske-Suihko, Satu; Kupari, Markku; Werkkala, Kalervo; Kovanen, Petri T.; Öörni, Katariina

    2013-01-01

    In aortic stenosis plasma lipoprotein-derived lipids accumulate in aortic valves. Here, we first compared the lipid compositions of stenotic aortic valves and atherosclerotic plaque cores. Both pathological tissues were found to be enriched in cholesteryl linoleate, a marker of extracellularly accumulated lipoproteins. In addition, a large proportion of the phospholipids were found to contain arachidonic acid, the common precursor of a number of proinflammatory lipid mediators. Next, we isolated and characterized extracellular lipid particles from human stenotic and non-stenotic control valves, and compared them to plasma lipoproteins from the same subjects. The extracellular valvular lipid particles were isolated from 15 stenotic and 14 non-stenotic aortic valves. Significantly more apoB-100-containing lipid particles were found in the stenotic than in the non-stenotic valves. The majority of the lipid particles isolated from the non-stenotic valves had sizes (23±6.2 nm in diameter) similar to those of plasma low density lipoprotein (LDL) (22±1.5 nm), while the lipid particles from stenotic valves were not of uniform size, their sizes ranging from 18 to more than 500 nm. The lipid particles showed signs of oxidative modifications, and when compared to isolated plasma LDL particles, the lipid particles isolated from the stenotic valves had a higher sphingomyelin/phosphatidylcholine –ratio, and also higher contents of lysophosphatidylcholine and unesterified cholesterol. The findings of the present study reveal, for the first time, that in stenotic human aortic valves, infiltrated plasma lipoproteins have undergone oxidative and lipolytic modifications, and become fused and aggregated. The generated large lipid particles may contribute to the pathogenesis of human aortic stenosis. PMID:23762432

  10. Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: Effect of different nutrient limitation strategies.

    PubMed

    Sakarika, Myrsini; Kornaros, Michael

    2017-11-01

    The present study aimed at: (1) determining the effect of sulfur addition on biomass growth and (2) assessing the effect of sulfur, phosphorus and nitrogen limitation on lipid accumulation by C. vulgaris SAG 211-11b. The sulfur cellular content was more than two-fold higher under nitrogen and phosphorus limitation (0.52% and 0.54%ww -1 , respectively) compared to sulfur requirements (0.20%ww -1 ) under sulfur limiting conditions. The nitrogen needs are significantly lower (2.81-3.35%ww -1 ) when compared to other microalgae and become 23% lower under nitrogen or phosphorus limitation. The microalga exhibited substrate inhibition above 30gL -1 initial glucose concentration. Sulfur limitation had the most significant effect on lipid accumulation, resulting in maximum total lipid content of 53.43±3.93%gg DW -1 . In addition to enhancing lipid productivity, adopting the optimal nutrient limitation strategy can result in cost savings by avoiding unnecessary nutrient additions and eliminate the environmental burden due to wasted resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    USDA-ARS?s Scientific Manuscript database

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  12. Quinoline-glycomimetic conjugates reducing lipogenesis and lipid accumulation in hepatocytes.

    PubMed

    Palit, Subhadeep; Mukherjee, Sanghamitra; Niyogi, Sougata; Banerjee, Anindyajit; Patra, Dipendu; Chakraborty, Amit; Chakrabarti, Saikat; Chakrabarti, Partha; Dutta, Sanjay

    2018-06-13

    Non-alcoholic fatty liver disease (NAFLD) characterized by excess accumulation of triglyceride in hepatocyte is the major cause of chronic liver disease worldwide and no approved drug is available. The mechanistic target of rapamycin complexes (mTORC) have been implicated to promote lipogenesis and fat accumulation in liver and thus serve as attractive drug targets. Generation of no or low cytotoxic mTOR inhibitors are required as the existing cytotoxic mTOR inhibitors are not useful for NAFLD therapy. We have synthesized novel compounds based on the privileged ATP site binder quinoline scaffold conjugated to glucose and galactosamine derivatives that have significantly low cytotoxicity yet having strong mTORC1 inhibitory activity at low micromolar concentrations. These compounds also effectively inhibit the rate of lipogenesis and lipid accumulation in cultured hepatocytes. This is the first report of glycomimetic-quinoline derivatives that reduce lipid load in hepatocytes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Lipid accumulation and utilization by oocytes and eggs of Rhodnius prolixus.

    PubMed

    Santos, Rachel; Rosas-Oliveira, Rafael; Saraiva, Felipe B; Majerowicz, David; Gondim, Katia C

    2011-05-01

    Insect eggs must contain the necessary nutrients for embryonic growth. In this article, we investigated the accumulation of triacylglycerol (TAG) in growing oocytes and its utilization during embryonic development. TAG makes up about 60% of the neutral lipids in oocytes and accumulates as oocytes grow, from 2.2 ± 0.1 µg in follicles containing 1.0 mm length oocytes to 10.2 ± 0.8 µg in 2.0 mm length oocytes. Lipophorin (Lp), the hemolymphatic lipoprotein, radioactively labeled in free fatty acid (FFA) or diacylglycerol (DAG), was used to follow the transport of these lipids to the ovary. Radioactivity from both lipid classes accumulated in the oocytes, which was abolished at 4°C. The capacity of the ovary to receive FFA or DAG from Lp varied according to time after a blood meal and reached a maximum around the second day. (3) H-DAG supplied by Lp to the ovaries was used in the synthesis of TAG as, 48 hr after injection, most of the radioactivity was found in TAG (85.7% of labeling in neutral lipids). During embryogenesis, lipid stores were mobilized, and the TAG content decreased from 16.4 ± 2.1 µg/egg on the first day to 10.0 ± 1.3 µg on day 15, just before hatching. Of these, 7.4 ± 0.9 µg were found in the newly emerged nymphs. In unfertilized eggs, the TAG content did not change. Although the TAG content decreased during embryogenesis, the relative lipid composition of the egg did not change. The amount of TAG in the nymph slowly decreased during the days after hatching. © 2011 Wiley Periodicals, Inc.

  14. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jun; Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4)more » which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.« less

  15. Impaired lipid accumulation in the liver of Tsc2-heterozygous mice during liver regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obayashi, Yoko, E-mail: youko_oobayashi@ajinomoto.com; Campbell, Jean S.; Fausto, Nelson

    Highlights: •Tuberin phosphorylation correlated with mTOR activation in early liver regeneration. •Liver regeneration in the Tsc2+/− mice was not enhanced. •The Tsc2+/− livers failed to accumulate lipid bodies during liver regeneration. •Mortality rate increased in Tsc2+/− mice after partial hepatectomy. •Tuberin plays a critical role in hepatic lipid accumulation to support regeneration. -- Abstract: Tuberin is a negative regulator of mTOR pathway. To investigate the function of tuberin during liver regeneration, we performed 70% hepatectomy on wild-type and Tsc2+/− mice. We found the tuberin phosphorylation correlated with mTOR activation during early liver regeneration in wild-type mice. However, liver regeneration inmore » the Tsc2+/− mice was not enhanced. Instead, the Tsc2+/− livers failed to accumulate lipid bodies, and this was accompanied by increased mortality. These findings suggest that tuberin plays a critical role in liver energy balance by regulating hepatocellular lipid accumulation during early liver regeneration. These effects may influence the role of mTORC1 on cell growth and proliferation.« less

  16. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.

    PubMed

    Liu, Hui; Wang, Cuiping; Komatsu, Setsuko; He, Mingxia; Liu, Gongshe; Shen, Shihua

    2013-10-08

    To characterize the metabolic signatures of lipid accumulation in Jatropha curcas seeds, comparative proteomic technique was employed to profile protein changes during the seed development. Temporal changes in comparative proteome were examined using gels-based proteomic technique at six developmental stages for lipid accumulation. And 104 differentially expressed proteins were identified by MALDI-TOF/TOF tandem mass spectrometry. These protein species were classified into 10 functional categories, and the results demonstrated that protein species related to energy and metabolism were notably accumulated and involved in the carbon flux to lipid accumulation that occurs primarily from early to late stage in seed development. Glycolysis and oxidative pentose phosphate pathways were the major pathways of producing carbon flux, and the glucose-6-phosphate and triose-phosphate are the major carbon source for fatty acid synthesis. Lipid analysis revealed that fatty acid accumulation initiated 25days after flowering at the late stage of seed development of J. curcas. Furthermore, C16:0 was initially synthesized as the precursor for the elongation to C18:1 and C18:2 in the developing seeds of J. curcas. Together, the metabolic signatures on protein changes in seed development provide profound knowledge and perspective insights into understanding lipid network in J. curcas. Due to the abundant oil content in seeds, Jatropha curcas seeds are being considered as the ideal materials for biodiesel. Although several studies had carried out the transcriptomic project to study the genes expression profiles in seed development of J. curcas, these ESTs hadn't been confirmed by qRT-PCR. Yet, the seed development of J. curcas had been described for a pool of developing seeds instead of being characterized systematically. Moreover, cellular metabolic events are also controlled by protein-protein interactions, posttranslational protein modifications, and enzymatic activities which

  17. Assessment of storage lipid accumulation patterns in eucalanoid copepods from the eastern tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Cass, Christine J.; Daly, Kendra L.; Wakeham, Stuart G.

    2014-11-01

    Members of the copepod family Eucalanidae are widely distributed throughout the world's oceans and have been noted for their accumulation of storage lipids in high- and low-latitude environments. However, little is known about the lipid composition of eucalanoid copepods in low-latitude environments. The purpose of this study was to examine fatty acid and alcohol profiles in the storage lipids (wax esters and triacylglycerols) of Eucalanus inermis, Rhincalanus rostrifrons, R. nasutus, Pareucalanus attenuatus, and Subeucalanus subtenuis, collected primarily in the eastern tropical north Pacific near the Tehuantepec Bowl and Costa Rica Dome regions, noted for its oxygen minimum zone, during fall 2007 and winter 2008/2009. Adult copepods and particulate material were collected in the upper 50 m and from 200 to 300 m in the upper oxycline. Lipid profiles of particulate matter were generated to help ascertain information on ecological strategies of these species and on differential accumulation of dietary and modified fatty acids in the wax ester and triacylglycerol storage lipid components of these copepods in relation to their vertical distributions around the oxygen minimum zone. Additional data on phospholipid fatty acid and sterol/fatty alcohol fractions were also generated to obtain a comprehensive lipid data set for each sample. Rhincalanus spp. accumulated relatively large amounts of storage lipids (31-80% of dry mass (DM)), while E. inermis had moderate amounts (2-9% DM), and P. attenuatus and S. subtenuis had low quantities of storage lipid (0-1% DM). E. inermis and S. subtenuis primarily accumulated triacylglycerols (>90% of storage lipids), while P. attenuatus and Rhincalanus spp. primarily accumulated wax esters (>84% of storage lipids). Based on previously generated molecular phylogenies of the Eucalanidae family, these results appear to support genetic predisposition as a major factor explaining why a given species accumulates primarily triacylglycerols

  18. Proteomic analysis of Chlorella vulgaris: Potential targets for enhanced lipid accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarnieri, Michael T.; Nag, Ambarish; Yang, Shihui

    2013-11-01

    Oleaginous microalgae are capable of producing large quantities of fatty acids and triacylglycerides. As such, they are promising feedstocks for the production of biofuels and bioproducts. Genetic strain-engineering strategies offer a means to accelerate the commercialization of algal biofuels by improving the rate and total accumulation of microalgal lipids. However, the industrial potential of these organisms remains to be met, largely due to the incomplete knowledgebase surrounding the mechanisms governing the induction of algal lipid biosynthesis. Such strategies require further elucidation of genes and gene products controlling algal lipid accumulation. In this study, we have set out to examine thesemore » mechanisms and identify novel strain-engineering targets in the oleaginous microalga, Chlorella vulgaris. Comparative shotgun proteomic analyses have identified a number of novel targets, including previously unidentified transcription factors and proteins involved in cell signaling and cell cycle regulation. These results lay the foundation for strain-improvement strategies and demonstrate the power of translational proteomic analysis.« less

  19. Increased lipid droplet accumulation associated with a peripheral sensory neuropathy.

    PubMed

    Marshall, Lee L; Stimpson, Scott E; Hyland, Ryan; Coorssen, Jens R; Myers, Simon J

    2014-04-01

    Hereditary sensory neuropathy type 1 (HSN-1) is an autosomal dominant neurodegenerative disease caused by missense mutations in the SPTLC1 gene. The SPTLC1 protein is part of the SPT enzyme which is a ubiquitously expressed, critical and thus highly regulated endoplasmic reticulum bound membrane enzyme that maintains sphingolipid concentrations and thus contributes to lipid metabolism, signalling, and membrane structural functions. Lipid droplets are dynamic organelles containing sphingolipids and membrane bound proteins surrounding a core of neutral lipids, and thus mediate the intracellular transport of these specific molecules. Current literature suggests that there are increased numbers of lipid droplets and alterations of lipid metabolism in a variety of other autosomal dominant neurodegenerative diseases, including Alzheimer's and Parkinson's disease. This study establishes for the first time, a significant increase in the presence of lipid droplets in HSN-1 patient-derived lymphoblasts, indicating a potential connection between lipid droplets and the pathomechanism of HSN-1. However, the expression of adipophilin (ADFP), which has been implicated in the regulation of lipid metabolism, was not altered in lipid droplets from the HSN-1 patient-derived lymphoblasts. This appears to be the first report of increased lipid body accumulation in a peripheral neuropathy, suggesting a fundamental molecular linkage between a number of neurodegenerative diseases.

  20. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.

    PubMed

    Li, Qing; Shao, Jianhua; Tang, Shaohua; Shen, Qingwen; Wang, Tiehu; Chen, Wenling; Hong, Yueyun

    2015-01-01

    Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  1. Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells: a potential role for reducing lipid accumulation.

    PubMed

    Kim, Hae-Suk; Montana, Vedrana; Jang, Hyun-Ju; Parpura, Vladimir; Kim, Jeong-a

    2013-08-02

    Epigallocatechin gallate (EGCG) is a major polyphenol in green tea that has beneficial effects in the prevention of cardiovascular disease. Autophagy is a cellular process that protects cells from stressful conditions. To determine whether the beneficial effect of EGCG is mediated by a mechanism involving autophagy, the roles of the EGCG-stimulated autophagy in the context of ectopic lipid accumulation were investigated. Treatment with EGCG increased formation of LC3-II and autophagosomes in primary bovine aortic endothelial cells (BAEC). Activation of calmodulin-dependent protein kinase kinase β was required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation was significantly impaired by knockdown of calmodulin-dependent protein kinase kinase β. This effect is most likely due to cytosolic Ca(2+) load. To determine whether EGCG affects palmitate-induced lipid accumulation, the effects of EGCG on autophagic flux and co-localization of lipid droplets and autophagolysosomes were examined. EGCG normalized the palmitate-induced impairment of autophagic flux. Accumulation of lipid droplets by palmitate was markedly reduced by EGCG. Blocking autophagosomal degradation opposed the effect of EGCG in ectopic lipid accumulation, suggesting the action of EGCG is through autophagosomal degradation. The mechanism for this could be due to the increased co-localization of lipid droplets and autophagolysosomes. Co-localization of lipid droplets with LC3 and lysosome was dramatically increased when the cells were treated with EGCG and palmitate compared with the cells treated with palmitate alone. Collectively, these findings suggest that EGCG regulates ectopic lipid accumulation through a facilitated autophagic flux and further imply that EGCG may be a potential therapeutic reagent to prevent cardiovascular complications.

  2. Using lipidomics to reveal details of lipid accumulation in developing seeds from oilseed rape (Brassica napus L.).

    PubMed

    Woodfield, Helen K; Cazenave-Gassiot, Amaury; Haslam, Richard P; Guschina, Irina A; Wenk, Markus R; Harwood, John L

    2018-03-01

    With dwindling available agricultural land, concurrent with increased demand for oil, there is much current interest in raising oil crop productivity. We have been addressing this issue by studying the regulation of oil accumulation in oilseed rape (Brassica napus L). As part of this research we have carried out a detailed lipidomic analysis of developing seeds. The molecular species distribution in individual lipid classes revealed quite distinct patterns and showed where metabolic connections were important. As the seeds developed, the molecular species distributions changed, especially in the period of early (20days after flowering, DAF) to mid phase (27DAF) of oil accumulation. The patterns of molecular species of diacylglycerol, phosphatidylcholine and acyl-CoAs were used to predict the possible relative contributions of diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase to triacylglycerol production. Our calculations suggest that DGAT may hold a more important role in influencing the molecular composition of TAG. Enzyme selectivity had an important influence on the final molecular species patterns. Our data contribute significantly to our understanding of lipid accumulation in the world's third most important oil crop. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Inference and interrogation of a coregulatory network in the context of lipid accumulation in Yarrowia lipolytica.

    PubMed

    Trébulle, Pauline; Nicaud, Jean-Marc; Leplat, Christophe; Elati, Mohamed

    2017-01-01

    Complex phenotypes, such as lipid accumulation, result from cooperativity between regulators and the integration of multiscale information. However, the elucidation of such regulatory programs by experimental approaches may be challenging, particularly in context-specific conditions. In particular, we know very little about the regulators of lipid accumulation in the oleaginous yeast of industrial interest Yarrowia lipolytica . This lack of knowledge limits the development of this yeast as an industrial platform, due to the time-consuming and costly laboratory efforts required to design strains with the desired phenotypes. In this study, we aimed to identify context-specific regulators and mechanisms, to guide explorations of the regulation of lipid accumulation in Y. lipolytica . Using gene regulatory network inference, and considering the expression of 6539 genes over 26 time points from GSE35447 for biolipid production and a list of 151 transcription factors, we reconstructed a gene regulatory network comprising 111 transcription factors, 4451 target genes and 17048 regulatory interactions (YL-GRN-1) supported by evidence of protein-protein interactions. This study, based on network interrogation and wet laboratory validation (a) highlights the relevance of our proposed measure, the transcription factors influence, for identifying phases corresponding to changes in physiological state without prior knowledge (b) suggests new potential regulators and drivers of lipid accumulation and (c) experimentally validates the impact of six of the nine regulators identified on lipid accumulation, with variations in lipid content from +43.2% to -31.2% on glucose or glycerol.

  4. Regulatory effects of curcumin on lipid accumulation in monocytes/macrophages

    USDA-ARS?s Scientific Manuscript database

    Recent evidence suggests potential benefits from phytochemicals and micronutrients in protecting against oxidative and lipid-mediated damage, but the molecular mechanisms of these actions are still unclear. Here we investigated whether the dietary polyphenol curcumin can modulate the accumulation of...

  5. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover

    PubMed Central

    Sitepu, Irnayuli R.; Jin, Mingjie; Fernandez, J. Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L.

    2015-01-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Pre-culturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals. PMID:25052467

  6. Involvement of autophagy and apoptosis and lipid accumulation in sclerotial morphogenesis of Morchella importuna.

    PubMed

    He, Peixin; Wang, Ke; Cai, Yingli; Hu, Xiaolong; Zheng, Yan; Zhang, Junjie; Liu, Wei

    2018-06-01

    Sclerotial formation is a key phase of the morel life cycle and lipids have been recorded as the main cytoplasmic reserves in sclerotia of Morchella fungi without any experimental verification. In this study, the ultrastructural features of the undifferentiated mycelia stage (MS) and three main sclerotial differentiation states (sclerotial initial [SI], sclerotial development [SD] and sclerotial maturation [SM]) were compared by transmission electron microscopy. The nature of the energy-rich substance in hypha and sclerotium of Morchella importuna was qualitatively investigated by confocal laser scanning microscopy and quantitatively studied by extraction of lipids. Sclerotia were observed to form from the repeated branching and enlargement of either terminal hyphae or subordinate hyphal branches, indicating a complex type of sclerotial development. Autophagy and apoptosis were involved in the sclerotial metamorphosis of the cultivated strain of M. importuna. During the SI phase, the characteristic features of autophagy (vacuolation, coalescence of small vacuoles, existence of autophagosomes and engulfment of autophagosomes by vacuoles) were observed. At the SD phase, apoptotic characteristics (condensation of the cytoplasm and nucleus, shrinkage of plasma membrane, extensive plasma membrane blebbing and existence of phagosomes) could be seen in some developing sclerotial cells. In the final stage of sclerotial morphogensis, the sclerotial cells showed a necrotic mode of cell death. In addition, confocal laser imaging studies of live cells indicated that the energy-rich substance in morel hyphae and sclerotia was lipid. The lipid content in sclerotia was significantly more than that in hyphal cells. To the best of our knowledge, this is the first detailed ultrastructural description highlighting the involvement of autophagy and apoptosis in sclerotial metamorphosis of Morchella species and lipid accumulation during morel sclerotial development was also first

  7. Systems analysis of phosphate-limitation-induced lipid accumulation by the oleaginous yeast Rhodosporidium toruloides.

    PubMed

    Wang, Yanan; Zhang, Sufang; Zhu, Zhiwei; Shen, Hongwei; Lin, Xinping; Jin, Xiang; Jiao, Xiang; Zhao, Zongbao Kent

    2018-01-01

    Lipid accumulation by oleaginous microorganisms is of great scientific interest and biotechnological potential. While nitrogen limitation has been routinely employed, low-cost raw materials usually contain rich nitrogenous components, thus preventing from efficient lipid production. Inorganic phosphate (Pi) limitation has been found sufficient to promote conversion of sugars into lipids, yet the molecular basis of cellular response to Pi limitation and concurrent lipid accumulation remains elusive. Here, we performed multi-omic analyses of the oleaginous yeast Rhodosporidium toruloides to shield lights on Pi-limitation-induced lipid accumulation. Samples were prepared under Pi-limited as well as Pi-repleted chemostat conditions, and subjected to analysis at the transcriptomic, proteomic, and metabolomic levels. In total, 7970 genes, 4212 proteins, and 123 metabolites were identified. Results showed that Pi limitation facilitates up-regulation of Pi-associated metabolism, RNA degradation, and triacylglycerol biosynthesis while down-regulation of ribosome biosynthesis and tricarboxylic acid cycle. Pi limitation leads to dephosphorylation of adenosine monophosphate and the allosteric activator of isocitrate dehydrogenase key to lipid biosynthesis. It was found that NADPH, the key cofactor for fatty acid biosynthesis, is limited due to reduced flux through the pentose phosphate pathway and transhydrogenation cycle and that this can be overcome by over-expression of an endogenous malic enzyme. These phenomena are found distinctive from those under nitrogen limitation. Our data suggest that Pi limitation activates Pi-related metabolism, RNA degradation, and TAG biosynthesis while inhibits ribosome biosynthesis and TCA cycle, leading to enhanced carbon fluxes into lipids. The information greatly enriches our understanding on microbial oleaginicity and Pi-related metabolism. Importantly, systems data may facilitate designing advanced cell factories for production of lipids

  8. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors

    PubMed Central

    2014-01-01

    Background Microalgae can accumulate considerable amounts of lipids under different nutrient-deficient conditions, making them as one of the most promising sustainable sources for biofuel production. These inducible processes provide a powerful experimental basis for fully understanding the mechanisms of physiological acclimation, lipid hyperaccumulation and gene expression in algae. In this study, three nutrient-deficiency strategies, viz nitrogen-, phosphorus- and iron-deficiency were applied to trigger the lipid hyperaccumulation in an oleaginous Chlorella pyrenoidosa. Regular patterns of growth characteristics, lipid accumulation, physiological parameters, as well as the expression patterns of lipid biosynthesis-related genes were fully analyzed and compared. Results Our results showed that all the nutrient stress conditions could enhance the lipid content considerably compared with the control. The total lipid and neutral lipid contents exhibit the most marked increment under nitrogen deficiency, achieving 50.32% and 34.29% of dry cell weight at the end of cultivation, respectively. Both photosynthesis indicators and reactive oxygen species parameters reveal that physiological stress turned up when exposed to nutrient depletions. Time-course transcript patterns of lipid biosynthesis-related genes showed that diverse expression dynamics probably contributes to the different lipidic phenotypes under stress conditions. By analyzing the correlation between lipid content and gene expression level, we pinpoint several genes viz. rbsL, me g6562, accA, accD, dgat g2354, dgat g3280 and dgat g7063, which encode corresponding enzymes or subunits of malic enzyme, ACCase and diacylglycerol acyltransferase in the de novo TAG biosynthesis pathway, are highly related to lipid accumulation and might be exploited as target genes for genetic modification. Conclusion This study provided us not only a comprehensive picture of adaptive mechanisms from physiological perspective, but

  9. LipiD-QuanT: a novel method to quantify lipid accumulation in live cells.

    PubMed

    Varinli, Hilal; Osmond-McLeod, Megan J; Molloy, Peter L; Vallotton, Pascal

    2015-11-01

    Lipid droplets (LDs) are the main storage organelles for triglycerides. Elucidation of lipid accumulation mechanisms and metabolism are essential to understand obesity and associated diseases. Adipogenesis has been well studied in murine 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell lines. However, most techniques for measuring LD accumulation are either not quantitative or can be destructive to samples. Here, we describe a novel, label-free LD quantification technique (LipiD-QuanT) to monitor lipid dynamics based on automated image analysis of phase contrast microscopy images acquired during in vitro human adipogenesis. We have applied LipiD-QuanT to measure LD accumulation during differentiation of SGBS cells. We demonstrate that LipiD-QuanT is a robust, nondestructive, time- and cost-effective method compared with other triglyceride accumulation assays based on enzymatic digest or lipophilic staining. Further, we applied LipiD-QuanT to measure the effect of four potential pro- or antiobesogenic substances: DHA, rosiglitazone, elevated levels of D-glucose, and zinc oxide nanoparticles. Our results revealed that 2 µmol/l rosiglitazone treatment during adipogenesis reduced lipid production and caused a negative shift in LD diameter size distribution, but the other treatments showed no effect under the conditions used here. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana.

    PubMed

    Sun, Zhilan; Chen, Yi-Feng; Du, Jianchang

    2016-02-01

    Supplying microalgae with extra CO2 is a promising means for improving lipid production. The molecular mechanisms involved in lipid accumulation under conditions of elevated CO2, however, remain to be fully elucidated. To understand how elevated CO2 improves lipid production, we performed sequencing of Chlorella sorokiniana LS-2 cellular transcripts during growth and compared transcriptional dynamics of genes involved in carbon flow from CO2 to triacylglycerol. These analyses identified the majority genes of carbohydrate metabolism and lipid biosynthesis pathways in C. sorokiniana LS-2. Under high doses of CO2 , despite down-regulation of most de novo fatty acid biosynthesis genes, genes involved in carbohydrate metabolic pathways including carbon fixation, chloroplastic glycolysis, components of the pyruvate dehydrogenase complex (PDHC) and chloroplastic membrane transporters were upexpressed at the prolonged lipid accumulation phase. The data indicate that lipid production is largely independent of de novo fatty acid synthesis. Elevated CO2 might push cells to channel photosynthetic carbon precursors into fatty acid synthesis pathways, resulting in an increase of overall triacylglycerol generation. In support of this notion, genes involved in triacylglycerol biosynthesis were substantially up-regulated. Thus, elevated CO2 may influence regulatory dynamics and result in increased carbon flow to triacylglycerol, thereby providing a feasible approach to increase lipid production in microalgae. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor.

    PubMed

    Liao, Qiang; Sun, Yahui; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun

    2017-11-01

    Interval between adjacent planar waveguides and light intensity emitted from waveguide surface were the primary two factors affecting light distribution characteristics in the planar waveguide flat-plate photobioreactor (PW-PBR). In this paper, the synergy effect between light and nitrate in the PW-PBR was realized to simultaneously enhance microalgae growth and lipid accumulation. Under an interval of 10mm between adjacent planar waveguides, 100% of microalgae cells in regions between adjacent waveguides could be illuminated. Chlorella vulgaris growth and lipid accumulation were synchronously elevated as light intensities emitted from planar waveguide surface increasing. With an identical initial nitrate concentration of 18mM, the maximum lipid content (41.66% in dry biomass) and lipid yield (2200.25mgL -1 ) were attained under 560μmolm -2 s -1 , which were 86.82% and 133.56% higher relative to those obtained under 160μmolm -2 s -1 , respectively. The PW-PBR provides a promising way for microalgae lipid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. LipiD-QuanT: a novel method to quantify lipid accumulation in live cells[S

    PubMed Central

    Varinli, Hilal; Osmond-McLeod, Megan J.; Molloy, Peter L.; Vallotton, Pascal

    2015-01-01

    Lipid droplets (LDs) are the main storage organelles for triglycerides. Elucidation of lipid accumulation mechanisms and metabolism are essential to understand obesity and associated diseases. Adipogenesis has been well studied in murine 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell lines. However, most techniques for measuring LD accumulation are either not quantitative or can be destructive to samples. Here, we describe a novel, label-free LD quantification technique (LipiD-QuanT) to monitor lipid dynamics based on automated image analysis of phase contrast microscopy images acquired during in vitro human adipogenesis. We have applied LipiD-QuanT to measure LD accumulation during differentiation of SGBS cells. We demonstrate that LipiD-QuanT is a robust, nondestructive, time- and cost-effective method compared with other triglyceride accumulation assays based on enzymatic digest or lipophilic staining. Further, we applied LipiD-QuanT to measure the effect of four potential pro- or antiobesogenic substances: DHA, rosiglitazone, elevated levels of D-glucose, and zinc oxide nanoparticles. Our results revealed that 2 µmol/l rosiglitazone treatment during adipogenesis reduced lipid production and caused a negative shift in LD diameter size distribution, but the other treatments showed no effect under the conditions used here. PMID:26330056

  13. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway.

    PubMed

    Wang, Jun; Si, Yanfang; Wu, Chen; Sun, Lu; Ma, Yudong; Ge, Aili; Li, Baomin

    2012-10-17

    Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of

  14. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to

  15. Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice.

    PubMed

    Xu, Jialin; Donepudi, Ajay C; More, Vijay R; Kulkarni, Supriya R; Li, Liya; Guo, Liangran; Yan, Bingfang; Chatterjee, Tapan; Weintraub, Neal; Slitt, Angela L

    2015-02-01

    To evaluate whether Nrf2 deficiency impacts insulin resistance and lipid accumulation in liver and white adipose tissue. Lep(ob/ob) mice (OB) with targeted Nrf2 deletion (OB-Nrf2KO) were generated. Pathogenesis of obesity and type 2 diabetes was measured in C57BL/6J, Nrf2KO, OB, and OB-Nrf2KO mice. Hepatic lipid content, lipid clearance, and very low-density lipoprotein (VLDL) secretion were determined between OB and OB-Nrf2KO mice. OB-Nrf2KO mice exhibited decreased white adipose tissue mass and decreased adipogenic and lipogenic gene expression compared with OB mice. Nrf2 deficiency prolonged hyperglycemia in response to glucose challenge, which was paralleled by reduced insulin-stimulated Akt phosphorylation. In OB mice, Nrf2 deficiency decreased hepatic lipid accumulation, decreased peroxisome proliferator-activated receptor γ expression and nicotinamide adenine dinucleotide phosphate (NADPH) content, and enhanced VLDL secretion. However, this observation was opposite in lean mice. Additionally, OB-Nrf2KO mice exhibited increased plasma triglyceride content, decreased HDL-cholesterol content, and enhanced apolipoprotein B expression, suggesting Nrf2 deficiency caused dyslipidemia in these mice. Nrf2 deficiency in Lep(ob/ob) mice reduced white adipose tissue mass and prevented hepatic lipid accumulation but induced insulin resistance and dyslipidemia. This study indicates a dual role of Nrf2 during metabolic dysregulation-increasing lipid accumulation in liver and white adipose tissue but preventing lipid accumulation in obese mice. © 2014 The Obesity Society.

  16. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis

    DOE PAGES

    Pomraning, Kyle R.; Wei, Siwei; Karagiosis, Sue A.; ...

    2015-04-23

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shiftmore » in amino acid metabolism. We also report that Y. lipolytica secretes disaccharides early in batch culture and reabsorbs them when extracellular glucose is depleted. Exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains.« less

  17. Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris.

    PubMed

    Lohman, Egan J; Gardner, Robert D; Pedersen, Todd; Peyton, Brent M; Cooksey, Keith E; Gerlach, Robin

    2015-01-01

    Large-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO2. Life cycle analyses have concluded that costs associated with supplying CO2 to algal cultures are significant contributors to the overall energy consumption. A two-phase optimal growth and lipid accumulation scenario is presented, which (1) enhances the growth rate and (2) the triacylglyceride (TAG) accumulation rate in the oleaginous Chlorophyte Chlorella vulgaris strain UTEX 395, by growing the organism in the presence of low concentrations of NaHCO3 (5 mM) and controlling the pH of the system with a periodic gas sparge of 5 % CO2 (v/v). Once cultures reached the desired cell densities, which can be "fine-tuned" based on initial nutrient concentrations, cultures were switched to a lipid accumulation metabolism through the addition of 50 mM NaHCO3. This two-phase approach increased the specific growth rate of C. vulgaris by 69 % compared to cultures sparged continuously with 5 % CO2 (v/v); further, biomass productivity (g L(-1) day(-1)) was increased by 27 %. Total biodiesel potential [assessed as total fatty acid methyl ester (FAME) produced] was increased from 53.3 to 61 % (FAME biomass(-1)) under the optimized conditions; biodiesel productivity (g FAME L(-1) day(-1)) was increased by 7.7 %. A bicarbonate salt screen revealed that American Chemical Society (ACS) and industrial grade NaHCO3 induced the highest TAG accumulation (% w/w), whereas Na2CO3 did not induce significant TAG accumulation. NH4HCO3 had a negative effect on cell health presumably due to ammonia toxicity. The raw, unrefined form of trona, NaHCO3∙Na2CO3 (sodium sesquicarbonate) induced TAG accumulation, albeit to a slightly lower extent than the more refined forms of sodium bicarbonate. The strategic addition of sodium bicarbonate was found to enhance growth and lipid accumulation rates in

  18. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils.

    PubMed

    Wen, Bei; Wu, Yali; Zhang, Hongna; Liu, Yu; Hu, Xiaoyu; Huang, Honglin; Zhang, Shuzhen

    2016-09-01

    The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in seven species of plants from biosolids-amended soils were investigated. The PFOS and PFOA root concentration factors (Croot/Csoil) ranged from 1.37 to 4.68 and 1.69 to 10.3 (ng/groot)/(ng/gsoil), respectively, while the translocation factors (Cshoot/Croot) ranged from 0.055 to 0.16 and 0.093 to 1.8 (ng/gshoot)/(ng/groot), respectively. The PFOS and PFOA accumulations in roots correlated positively with root protein contents (P < 0.05), while negatively with root lipid contents (P < 0.05). These suggested the promotion effects of protein and inhibition effects of lipid on root uptake. The translocation factors correlated positively with the ratios between protein contents in shoots to those in roots (P < 0.05), showing the importance of protein on PFOS and PFOA translocation. This study is the first to reveal the different roles of protein and lipid in the accumulation and distribution of PFOS and PFOA in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    PubMed

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. FTO promotes SREBP1c maturation and enhances CIDEC transcription during lipid accumulation in HepG2 cells.

    PubMed

    Chen, Ao; Chen, Xiaodong; Cheng, Shiqiang; Shu, Le; Yan, Meiping; Yao, Lun; Wang, Binyu; Huang, Shuguang; Zhou, Lei; Yang, Zaiqing; Liu, Guoquan

    2018-05-01

    The fat mass and obesity-associated (FTO) gene is tightly related to body weight and fat mass, and plays a pivotal role in regulating lipid accumulation in hepatocytes. However, the mechanisms underlying its function are poorly understood. Sterol regulatory element binding protein-1c (SREBP1c) is a transcription factor that regulates lipogenesis. Cell death-inducing DFFA (DNA fragmentation factor-α)-like effector c (CIDEC) plays a crucial role in lipid droplets (LDs) size controlling and lipid accumulation. In this report, we first observed that FTO overexpression in HepG2 cells resulted in an increase of lipogenesis and up-regulation of SREBP1c and CIDEC, two key regulatory factors in lipogenesis. In contrast, FTO knockdown in HepG2 cells resulted in a decrease of lipogenesis and down-regulation of SREBP1c and CIDEC expression. Moreover, SREBP1c knockdown resulted in a decrease of lipogenesis in HepG2 cells with FTO overexpression. In addition, FTO demethylation defect mutant presented less transcription of the key genes, and less nuclear translocation and maturation of SREBP1c. Further investigation demonstrated that overexpression of SREBP1c in HepG2 cells also promoted high CIDEC expression. Luciferase reporter assays showed that SREBP1c significantly stimulated CIDEC gene promoter activity. Finally, CIDEC knockdown reduced SREBP1c-induced lipogenesis. In conclusion, our studies suggest that FTO increased the lipid accumulation in hepatocytes by increasing nuclear translocation of SREBP1c and SREBP1c maturation, thus improving the transcriptional activity of LD-associated protein CIDEC. Our studies may provide new mechanistic insight into nonalcoholic fatty liver disease (NAFLD) mediated by FTO. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid.

    PubMed

    Zhao, Xuebing; Peng, Feng; Du, Wei; Liu, Canming; Liu, Dehua

    2012-08-01

    Microbial lipid produced using yeast fermentation with inexpensive carbon sources such as lignocellulosic hydrolyzate can be an alternative feedstock for biodiesel production. Several inhibitors that can be generated during acid hydrolysis of lignocellulose were added solely or together into the culture medium to study their individual inhibitory actions and their synergistic effects on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides. When the inhibitors were present in isolation in the medium, to obtain a high cell biomass accumulation, the concentrations of formic acid, acetic acid, furfural and vanillin should be lower than 2, 5, 0.5 and 1.5 g/L, respectively. However, the synergistic effects of these compounds could dramatically decrease the minimum critical inhibitory concentrations leading to significant growth and lipid production inhibitions. Unlike the above-cited inhibitors, sodium lignosulphonate had no negative influence on biomass accumulation when its concentration was in the range of 0.5-2.0 g/L; in effect, it was found to facilitate cell growth and sugar-to-lipid conversion. The fatty acid compositional profile of the yeast lipid was in the compositional range of various plant oils and animal tallow. Finally, the crude yeast lipid from bagasse hydrolyzate could be well converted into fatty acid methyl ester (FAME, biodiesel) by enzymatic transesterification in a tert-butanol system with biodiesel yield of 67.2% and lipid-to-biodiesel conversion of 88.4%.

  2. Additive effects of dexamethasone and palmitate on hepatic lipid accumulation and secretion.

    PubMed

    Harasim-Symbor, Ewa; Konstantynowicz-Nowicka, Karolina; Chabowski, Adrian

    2016-11-01

    Synthetic and natural glucocorticoids are able to highly modify liver lipid metabolism, which is possibly associated with nonalcoholic fatty liver disease development. We have assessed the changes in lipid and sphingolipid contents in hepatocytes, lipid composition and saturation status as well as the expression of proteins involved in fatty acid transport after both dexamethasone and palmitate treatments. The experiments were conducted on primary rat hepatocytes, incubated with dexamethasone and/or palmitic acid during short (16 h) and prolonged (40 h) exposure. Intracellular and extracellular lipid and sphingolipid contents were assessed by gas liquid chromatography and high-performance liquid chromatography, respectively. The expression of selected proteins was estimated by Western blotting. Short and prolonged exposure to dexamethasone combined with palmitic acid resulted in increased expression of fatty acid transporters, which was subsequently reflected by excessive intracellular accumulation of triacylglycerols and ceramide. The expression of microsomal transfer protein and cassette transporter was also significantly increased after dexamethasone and palmitate treatment, which was in accordance with elevated extracellular lipid and sphingolipid contents. Our data showed additive effects of dexamethasone and palmitate on protein-dependent fatty acid uptake in primary hepatocytes, resulting in the increased accumulation of triacylglycerols and sphingolipids. Moreover, the combined treatment altered fatty acid composition and diminished triacylglycerols desaturation index. Importantly, we observed that additive effects on both increased microsomal transport protein expression as well as elevated export of triacylglycerols, which may be relevant as a liver protective mechanism. © 2016 Society for Endocrinology.

  3. Effects of feeding outer bran fraction of rice on lipid accumulation and fecal excretion in rats.

    PubMed

    Ijiri, Daichi; Nojima, Tsutomu; Kawaguchi, Mana; Yamauchi, Yoko; Fujita, Yoshikazu; Ijiri, Satoru; Ohtsuka, Akira

    2015-01-01

    Outer bran fraction of rice (OBFR) contains higher concentrations of crude fiber, γ-oryzanol, and phytic acid compared to whole rice bran (WRB). In this study, we examined the effects of feeding OBFR on lipid accumulation and fecal excretion in rats. Twenty-one male rats at seven-week-old were divided into a control group and two treatment groups. The control group was fed a control diet, and the treatment groups were fed OBFR- or WRB-containing diet for 21 days. There was no significant difference in growth performance. Feeding OBFR diet increased fecal number and weight accompanied by increased fecal lipid content, while it did not affect mRNA expressions encoding lipid metabolism-related protein in liver. In addition, feeding OBFR-diet decreased the abdominal fat tissue weight and improved plasma lipid profiles, while WRB-containing diet did not affect them. These results suggested that feeding OBFR-diet might prevent lipid accumulation via enhancing fecal lipid excretion in rats.

  4. Accumulation of Polychlorinated Biphenyls in Adipocytes: Selective Targeting to Lipid Droplets and Role of Caveolin-1

    PubMed Central

    Bourez, Sophie; Le Lay, Soazig; Van den Daelen, Carine; Louis, Caroline; Larondelle, Yvan; Thomé, Jean-Pierre; Schneider, Yves-Jacques; Dugail, Isabelle; Debier, Cathy

    2012-01-01

    Background Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that preferentially accumulate in lipid-rich tissues of contaminated organisms. Although the adipose tissue constitutes a major intern reservoir of PCBs and recent epidemiological studies associate PCBs to the development of obesity and its related disorders, little is known about the mechanisms involved in their uptake by the adipose tissue and their intracellular localization in fat cells. Methodology/Principal Findings We have examined the intracellular distribution of PCBs in mouse cultured adipocytes and tested the potential involvement of caveolin-1, an abundant adipocyte membrane protein, in the uptake of these compounds by fat cells. We show that 2,4,4′-trichlorobiphenyl (PCB-28), 2,3′,4,4′,5-pentachlorobiphenyl (PCB-118) and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB-153) congeners rapidly and extensively accumulate in 3T3-L1 or mouse embryonic fibroblast (MEF) derived cultured adipocytes. The dynamics of accumulation differed between the 3 congeners tested. By subcellular fractionation of primary adipocytes, we demonstrate that these pollutants were almost exclusively recovered within the lipid droplet fraction and practically not associated to cell membranes. The absence of caveolin-1 expression in primary adipocytes from cav-1 deficient mice did not modify lipid droplet selective targeting of PCBs. In cav-1 KO MEF differentiated adipocytes, PCB accumulation was decreased, which correlated with reduced cell triglyceride content. Conversely, adenoviral mediated cav-1 overexpressing in 3T3-L1 cells, which had no impact on total cell lipid content, did not change PCB accumulation. Conclusion/Significance Our data indicate that caveolin-1 per se is not required for selective PCB accumulation, but rather point out a primary dependence on adipocyte triglyceride content. If the crucial role of lipid droplets in energy homeostasis is considered, the almost exclusive

  5. Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice

    PubMed Central

    Borg, Melissa L; Omran, Simin Fallah; Weir, Jacquelyn; Meikle, Peter J; Watt, Matthew J

    2012-01-01

    Obesity is characterised by increased storage of fatty acids in an expanded adipose tissue mass and in peripheral tissues such as the skeletal muscle and liver, where it is associated with the development of insulin resistance. Insulin resistance also develops in the central nervous system with high-fat feeding. The capacity for hypothalamic cells to accumulate/store lipids, and the effects of obesity remain undefined. The aims of this study were (1) to examine hypothalamic lipid content in mice with increased dietary fat intake and in obese ob/ob mice fed a low-fat diet, and (2) to determine whether endurance exercise training could reduce hypothalamic lipid accumulation in high-fat fed mice. Male C57BL/6 mice were fed a low- (LFD) or high-fat diet (HFD) for 12 weeks; ob/ob mice were maintained on a chow diet. HFD-exercise (HFD-ex) mice underwent 12 weeks of high-fat feeding with 6 weeks of treadmill exercise training (increasing from 30 to 70 min day−1). Hypothalamic lipids were assessed by unbiased mass spectrometry. The HFD increased body mass and hepatic lipid accumulation, and induced glucose intolerance, while the HFD-ex mice had reduced body weight and improved glucose tolerance. A total of 335 lipid molecular species were identified and quantified. Lipids known to induce insulin resistance, including ceramide (22%↑), diacylglycerol (25%↑), lysophosphatidylcholine (17%↑), cholesterol esters (60%↑) and dihexosylceramide (33%↑), were increased in the hypothalamus of HFD vs. LFD mice. Hypothalamic lipids were unaltered with exercise training and in the ob/ob mice, suggesting that obesity per se does not alter hypothalamic lipids. Overall, hypothalamic lipid accumulation is regulated by dietary lipid content and is refractory to change with endurance exercise training. PMID:22674717

  6. Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice.

    PubMed

    Borg, Melissa L; Omran, Simin Fallah; Weir, Jacquelyn; Meikle, Peter J; Watt, Matthew J

    2012-09-01

    Obesity is characterised by increased storage of fatty acids in an expanded adipose tissue mass and in peripheral tissues such as the skeletal muscle and liver, where it is associated with the development of insulin resistance. Insulin resistance also develops in the central nervous system with high-fat feeding. The capacity for hypothalamic cells to accumulate/store lipids, and the effects of obesity remain undefined. The aims of this study were (1) to examine hypothalamic lipid content in mice with increased dietary fat intake and in obese ob/ob mice fed a low-fat diet, and (2) to determine whether endurance exercise training could reduce hypothalamic lipid accumulation in high-fat fed mice. Male C57BL/6 mice were fed a low- (LFD) or high-fat diet (HFD) for 12 weeks; ob/ob mice were maintained on a chow diet. HFD-exercise (HFD-ex) mice underwent 12 weeks of high-fat feeding with 6 weeks of treadmill exercise training (increasing from 30 to 70 min day(-1)). Hypothalamic lipids were assessed by unbiased mass spectrometry. The HFD increased body mass and hepatic lipid accumulation, and induced glucose intolerance, while the HFD-ex mice had reduced body weight and improved glucose tolerance. A total of 335 lipid molecular species were identified and quantified. Lipids known to induce insulin resistance, including ceramide (22%↑), diacylglycerol (25%↑), lysophosphatidylcholine (17%↑), cholesterol esters (60%↑) and dihexosylceramide (33%↑), were increased in the hypothalamus of HFD vs. LFD mice. Hypothalamic lipids were unaltered with exercise training and in the ob/ob mice, suggesting that obesity per se does not alter hypothalamic lipids. Overall, hypothalamic lipid accumulation is regulated by dietary lipid content and is refractory to change with endurance exercise training.

  7. Accumulation of unsaturated lipids in monocytes during early phase pyrogen tolerance.

    PubMed

    Szewczenko-Pawlikowski, M; Kozak, W

    2000-04-12

    This paper presents data that inspired a new explanation for the mechanism of early phase endotoxin tolerance. Rabbits injected intravenously with LPS from Salmonella abortus developed a two-phase fever (6 h) and monophasic hyperlipidemia of very low density lipoproteins (two consecutive days). If during these days rabbits were injected with the same dose of LPS at 24-h intervals, the second phase of fever disappeared, i.e. early phase pyrogenic tolerance was obtained. This was correlated with a decrease of lipoprotein hyperlipidemia (measured 1.5 h after LPS injection) and an accumulation of lipids rich in double bonds in monocytes (measured 3.5 h after LPS injection). Results showed that the degree of unsaturation of acyl chains (AC) in monocytes (AC/DB, DB=double bonds) is negatively correlated (r=-0.72) with fever response (fever index). The authors maintain that a gradual increase in monocyte membrane fluidity is an adaptation to repeated exposure of monocytes to lipid A and is responsible for the progressive desensitization of monocytes to endotoxin. It is suggested that disorders of this mechanism lead to an accumulation of abnormal quantities of saturated lipids and cholesterol within macrophages, which, as foam cells, are the starting point for atherosclerosis pathology.

  8. Ocimum basilicum ethanolic extract decreases cholesterol synthesis and lipid accumulation in human macrophages.

    PubMed

    Bravo, Elena; Amrani, Souliman; Aziz, Mohammed; Harnafi, Hicham; Napolitano, Mariarosaria

    2008-12-01

    Macrophage lipid accumulation induced by low density lipoproteins (LDL) plays a pivotal role in atherosclerotic plaque development. Previous work showed that Ocimum basilicum extract, used as hypocholesterolemic agent by traditional medicine in Morocco, has hypolipidemic activity in rat acute hyperlipimidemia. This study investigated the effects of ethanolic extract of O. basilicum on lipid accumulation in human macrophages. As modification of LDL increase atherogenicity of the particles we evaluated the effects of the extract on LDL oxidation. The extract caused a dose-related increase of LDL-resistance to Cu(2+)-induced oxidation. Furthermore, at the dose of 60 microg/ml, significantly decreases the accumulation of macrophage lipid droplets induced by modified LDL evaluated as by red-oil staining. Cholesterol esterification and triacylglycerol synthesis in the cells were not affected. Macrophage treatment with 60 microg/ml, but not 20 microg/ml, of the extract reduced newly synthesized unesterified cholesterol by about 60% and decreased scavenger receptors activity by about 20-30%, evaluated by the internalization of cholesterol carried by [(3)H]CE-aggregated-LDL. The results suggest that O. basilicum ethanolic extract has the capability to reduce foam cell formation through the reduction of cholesterol synthesis and the modulation of the activity of surface scavenger receptors.

  9. Effective role of medium supplementation in microalgal lipid accumulation.

    PubMed

    Fazeli Danesh, Azadeh; Mooij, Peter; Ebrahimi, Sirous; Kleerebezem, Robbert; van Loosdrecht, Mark

    2018-05-01

    The present study investigated the interaction between starch and lipid accumulation in a green microalgae enrichment culture. The objective was to optimize the lipid content by manipulation of the medium in regular batch culture. Two medium designs were evaluated: First a high ortho-P concentration with vitamin supplementary (Pi-vitamins supplemented medium), second normal growth medium (control). Both media contained a low amount of nitrogen which was consumed during batch growth in three days. The batch experiments continued for another 4 days with the absence of soluble nitrogen in the medium. When the mixed microalgal culture was incubated in the Pi-vitamin supplemented medium, the lipid, and starch content of the culture increased within the first 3 days to 102.0 ± 5.2 mg/L (12.7 ± 0.6% of DW) and 31.7 ± 1.6 mg/L (4.0 ± 0.2% of DW), respectively. On the last day of the experiment, the lipid, and starch content in Pi-vitamin medium increased to 663.1 ± 32.5 mg/L (33.4 ± 1.6% of DW) and 127.5 ± 5.2 mg/L (6.4 ± 0.3% of DW). However, the lipid and starch content in the control process, reached to 334.7 ± 16.4 mg/L (20.1 ± 1.0% of DW) and 94.3 ± 4.6 mg/L (5.7 ± 0.3% of DW), respectively. The high Pi-vitamin medium induced storing lipid formation clearly while the starch formation was not affected. The lipid contents reported here are among the high reported in the literature, note that already under full growth conditions significant lipid levels occurred in the algal enrichment culture. The high lipid productivity of the reported mixed microalgae culture provides an efficient route for efficient algal biodiesel production. © 2018 Wiley Periodicals, Inc.

  10. Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy.

    PubMed

    Li, Yuqin; Mu, Jinxiu; Chen, Di; Xu, Hua; Han, Fangxin

    2015-05-01

    A structured heterotrophic-iron (II) induction (HII) strategy was proposed to enhance lipid accumulation in oleaginous Chlorella protothecoides. C. protothecoides subjected to heterotrophic-iron (II) induction achieved a favorable lipid accumulation up to 62 % and a maximum lipid productivity of 820.17 mg/day, representing 2.78-fold and 3.64-fold increase respectively over heterotrophic cultivation alone. HII-induced cells produced significantly elevated levels of 16:0, 18:1(Δ9), and 18:2(Δ9,12) fatty acids (over 90 %). The lipid contents and plant lipid-like fatty acid compositions exhibit the potential of HII-induced C. protothecoides as biodiesel feedstock. Furthermore, 31 altered proteins in HII-induced algal cells were successfully identified. These differentially expressed proteins were assigned into nine molecular function categories, including carbohydrate metabolism, lipid biosynthesis, Calvin cycle, cellular respiration, photosynthesis, energy and transport, protein biosynthesis, regulate and defense, and unclassified. Analysis using the Kyoto encyclopedia of genes and genomes and gene ontology annotation showed that malic enzyme, acyltransferase, and ACP were key metabolic checkpoints found to modulate lipid accumulation in C. protothecoides. The results provided possible applications of HII cultivation strategy in other microalgal species and new possibilities in developing genetic and metabolic engineering microalgae for desirable lipid productivity.

  11. Gravimetric enrichment of high lipid and starch accumulating microalgae.

    PubMed

    Hassanpour, Morteza; Abbasabadi, Mahsa; Ebrahimi, Sirous; Hosseini, Maryam; Sheikhbaglou, Ahmad

    2015-11-01

    This study presents gravimetric enrichment of mixed culture to screen starch and lipid producing species separately in a sequencing batch reactor. In the enriched starch-producing mixed culture photobioreactor, the starch content at the end of steady state batch became 3.42 times the beginning of depletion. Whereas in the enriched lipid-producing photobioreactor, the lipid content at the end of steady state batch became 3 times the beginning of famine phase. The obtained results revealed that the gravimetric enrichment is a suitable screening method for specific production of storage compounds in none-sterile large-scaled condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondala, Andro; Hernandez, Rafael; French, Todd

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2%more » w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.« less

  13. In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish

    PubMed Central

    Fang, Longhou; Green, Simone R.; Baek, Ji Sun; Lee, Sang-Hak; Ellett, Felix; Deer, Elena; Lieschke, Graham J.; Witztum, Joseph L.; Tsimikas, Sotirios; Miller, Yury I.

    2011-01-01

    Oxidative modification of LDL is an early pathological event in the development of atherosclerosis. Oxidation events such as malondialdehyde (MDA) formation may produce specific, immunogenic epitopes. Indeed, antibodies to MDA-derived epitopes are widely used in atherosclerosis research and have been demonstrated to enable cardiovascular imaging. In this study, we engineered a transgenic zebrafish with temperature-inducible expression of an EGFP-labeled single-chain human monoclonal antibody, IK17, which binds to MDA-LDL, and used optically transparent zebrafish larvae for imaging studies. Feeding a high-cholesterol diet (HCD) supplemented with a red fluorescent lipid marker to the transgenic zebrafish resulted in vascular lipid accumulation, quantified in live animals using confocal microscopy. After heat shock–induced expression of IK17-EGFP, we measured the time course of vascular accumulation of IK17-specific MDA epitopes. Treatment with either an antioxidant or a regression diet resulted in reduced IK17 binding to vascular lesions. Interestingly, homogenates of IK17-EGFP–expressing larvae bound to MDA-LDL and inhibited MDA-LDL binding to macrophages. Moreover, sustained expression of IK17-EGFP effectively prevented HCD-induced lipid accumulation in the vascular wall, suggesting that the antibody itself may have therapeutic effects. Thus, we conclude that HCD-fed zebrafish larvae with conditional expression of EGFP-labeled oxidation-specific antibodies afford an efficient method of testing dietary and/or other therapeutic antioxidant strategies that may ultimately be applied to humans. PMID:22105168

  14. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation.

    PubMed

    Aguilar, Lucero Romero; Pardo, Juan Pablo; Lomelí, Mónica Montero; Bocardo, Oscar Ivan Luqueño; Juárez Oropeza, Marco A; Guerra Sánchez, Guadalupe

    2017-10-01

    In many organisms, the growth under nitrogen-deprivation or a poor nitrogen source impacts on the carbon flow distribution and causes accumulation of neutral lipids, which are stored as lipid droplets (LDs). Efforts are in progress to find the mechanism of LDs synthesis and degradation, and new organisms capable of accumulating large amounts of lipids for biotechnological applications. In this context, when Ustilago maydis was cultured in the absence of a nitrogen source, there was a large accumulation of lipid bodies containing mainly triacylglycerols. The most abundant fatty acids in lipid bodies at the stationary phase were palmitic, linoleic, and oleic acids, and they were synthesized de novo by the fatty-acid synthase. In regard to the production of NADPH for the synthesis of fatty acids, the cytosolic NADP + -dependent isocitrate dehydrogenase and the glucose-6-phosphate and 6-phosphogluconate dehydrogenases couple showed the highest specific activities, with a lower activity of the malic enzyme. The ATP-citrate lyase activity was not detected in any of the culture conditions, which points to a different mechanism for the transfer of acetyl-CoA into the cytosol. Protein and RNA contents decreased when U. maydis was grown without a nitrogen source. Due to the significant accumulation of triacylglycerols and the particular composition of fatty acids, U. maydis can be considered an alternative model for biotechnological applications.

  15. FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation

    PubMed Central

    Yan, Xiaoqing; Chen, Jun; Zhang, Chi; Zhou, Shanshan; Zhang, Zhiguo; Chen, Jing; Feng, Wenke; Li, Xiaokun; Tan, Yi

    2015-01-01

    Fibroblast growth factor 21 (FGF21) plays an important role in energy homoeostasis. The unaddressed question of FGF21’s effect on the development and progression of diabetic cardiomyopathy (DCM) is investigated here with FGF21 knockout (FGF21KO) diabetic mice. Type 1 diabetes was induced in both FGF21KO and C57BL/6J wild-type (WT) mice via streptozotocin. At 1, 2 and 4 months after diabetes onset, the plasma FGF21 levels were significantly decreased in WT diabetic mice compared to controls. There was no significant difference between FGF21KO and WT diabetic mice in blood glucose and triglyceride levels. FGF21KO diabetic mice showed earlier and more severe cardiac dysfunction, remodelling and oxidative stress, as well as greater increase in cardiac lipid accumulation than WT diabetic mice. Western blots showed that increased cardiac lipid accumulation was accompanied by further increases in the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its target protein CD36, along with decreases in the phosphorylation of AMP-activated protein kinase and the expression of hexokinase II and peroxisome proliferator-activated receptor gamma co-activator 1α in the heart of FGF21KO diabetic mice compared to WT diabetic mice. Our results demonstrate that FGF21 deletion-aggravated cardiac lipid accumulation is likely mediated by cardiac Nrf2-driven CD36 up-regulation, which may contribute to the increased cardiac oxidative stress and remodelling, and the eventual development of DCM. These findings suggest that FGF21 may be a therapeutic target for the treatment of DCM. PMID:25823710

  16. Absence of correlation between oxysterol accumulation in lipid raft microdomains, calcium increase, and apoptosis induction on 158N murine oligodendrocytes.

    PubMed

    Ragot, Kévin; Mackrill, John J; Zarrouk, Amira; Nury, Thomas; Aires, Virginie; Jacquin, Agnès; Athias, Anne; Pais de Barros, Jean-Paul; Véjux, Anne; Riedinger, Jean-Marc; Delmas, Dominique; Lizard, Gérard

    2013-07-01

    There is some evidence that oxidized derivatives of cholesterol, 7-ketocholesterol (7KC) and 7β-hydroxycholesterol (7βOHC), are increased in the plasma of patients with neurodegenerative diseases associated with demyelinization of the central nervous system (CNS). It was therefore of interest to investigate the effects of these oxysterols on oligodendrocytes, the myelin-forming cells in the CNS. To this end, 158N murine oligodendrocytes were treated with 7KC or 7βOHC inducing an apoptotic mode of cell death characterized by condensation/fragmentation of the nuclei, dephosphorylation of Akt and GSK3, mitochondrial depolarization involving Mcl-1, and caspase-3 activation. In contrast, under treatment with 27-hydroxycholesterol (27OHC), no cell death was observed. When the cells were stained with Fura-2, no significant Ca(2+) rise was found with the different oxysterols, whereas strong signals were detected with ionomycin used as positive control. At concentrations which induced apoptosis, 7KC but not 7βOHC accumulated in lipid rafts. Although not cytotoxic, 27OHC was mainly detected in lipid rafts. It is noteworthy that α-tocopherol (but not ellagic acid and resveratrol) was able to counteract 7KC- and 7βOHC-induced apoptosis and to decrease the accumulation of 7KC and 27OHC in lipid rafts. Thus, in 158N cells, the ability of oxysterols to trigger a mode of cell death by apoptosis involving GSK-3 and caspase-3 activation is independent of the increase in the Ca(2+) level and of their accumulation in lipid raft microdomains. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions.

    PubMed

    Wada, Youichiro; Sugiyama, Akira; Yamamoto, Takashi; Naito, Makoto; Noguchi, Noriko; Yokoyama, Shinji; Tsujita, Maki; Kawabe, Yoshiki; Kobayashi, Mika; Izumi, Akashi; Kohro, Takahide; Tanaka, Toshiya; Taniguchi, Hirokazu; Koyama, Hidenori; Hirano, Ken-ichi; Yamashita, Shizuya; Matsuzawa, Yuji; Niki, Etsuo; Hamakubo, Takao; Kodama, Tatsuhiko

    2002-10-01

    The effect of a variety of hypoxic conditions on lipid accumulation in smooth muscle cells (SMCs) was studied in an arterial wall coculture and monocultivation model. Low density lipoprotein (LDL) was loaded under various levels of oxygen tension. Oil red O staining of rabbit and human SMCs revealed that lipid accumulation was greater under lower oxygen tension. Cholesterol esters were shown to accumulate in an oxygen tension-dependent manner by high-performance liquid chromatographic analysis. Autoradiograms using radiolabeled LDL indicated that LDL uptake was more pronounced under hypoxia. This result holds in the case of LDL receptor-deficient rabbit SMCs. However, cholesterol biosynthesis and cellular cholesterol release were unaffected by oxygen tension. Hypoxia significantly increases LDL uptake and enhances lipid accumulation in arterial SMCs, exclusive of LDL receptor activity. Although the molecular mechanism is not clear, the model is useful for studying lipid accumulation in arterial wall cells and the difficult-to-elucidate events in the initial stage of atherogenesis.

  18. Process strategies to maximize lipid accumulations of novel yeast in acid and base treated hydrolyzates

    USDA-ARS?s Scientific Manuscript database

    Oleaginous yeasts can accumulate up to 70% of cell biomass as lipids, predominantly as triacylglycerols. Yeast lipid fatty acid profiles have been reported to be similar to that of vegetable oils and consist primarily of oleic, palmitic, stearic, and linoleic acids. This capability provides the oppo...

  19. Choline and betaine ameliorate liver lipid accumulation induced by vitamin B6 deficiency in rats.

    PubMed

    Kitagawa, Erina; Yamamoto, Tatsuya; Fujishita, Mayuko; Ota, Yuki; Yamamoto, Kohei; Nakagawa, Tomoyuki; Hayakawa, Takashi

    2017-02-01

    We investigated the efficacy of supplementing the diet with choline or betaine in ameliorating lipid accumulation induced by vitamin B 6 (B 6 ) deficiency in rat liver. Male Wistar rats were fed a control, B 6 -deficient, choline-supplemented (2, 4, or 6 g choline bitartrate/kg diet) B 6 -deficient diet or betaine-supplemented (1, 2, or 4 g betaine anhydrous/kg diet) B 6 -deficient diet for 35 d; all diets contained 9 g L-methionine (Met)/kg diet. Choline or betaine supplementation attenuated liver lipid deposition and restored plasma lipid profiles to control levels. These treatments restored the disruptions in Met metabolism and the phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio induced by B 6 deficiency in liver microsomes. These results suggest that choline and betaine ameliorated liver lipid accumulation induced by B 6 deficiency via recovery of Met metabolism and very low-density lipoprotein secretion by restoring the supply of PC derived from PE.

  20. Comparison of Lipid Accumulation Product Index with Body Mass Index and Waist Circumference as a Predictor of Metabolic Syndrome in Indian Population.

    PubMed

    Ray, Lopamudra; Ravichandran, Kandasamy; Nanda, Sunil Kumar

    2018-06-01

    Metabolic syndrome (MetS), which confers a high risk for cardiovascular diseases, needs early diagnosis and treatment to reduce morbidity and mortality. Lipid accumulation product index has been reported to be an inexpensive marker of visceral fat and metabolic syndrome. This study aimed to evaluate lipid accumulation product index as a marker for metabolic syndrome in the Indian population where the prevalence of the condition is steadily increasing. A hospital-based, case-control study was conducted with 72 diagnosed cases of metabolic syndrome and 79 control subjects. In all the participants, body mass index (BMI) and lipid accumulation product index were calculated. The difference between cases and controls in BMI, waist circumference (WC), and lipid accumulation product index was assessed by Mann-Whitney U test/unpaired t-test. Associations of BMI, WC, and lipid accumulation product index with metabolic syndrome were compared by multiple logistic regression analysis and receiver operating characteristic analysis. BMI, WC, and lipid accumulation product index were significantly higher in metabolic syndrome (P < 0.05). Although all were independently associated with metabolic syndrome, lipid accumulation product index had the highest prediction accuracy. The parameter also had a high area under curve of 0.901 (95% confidence interval 0.85-0.95) and a high sensitivity (76.4%), specificity (91.1%), positive predictive value (88.7%), and negative predictive value (80.9%) for detection of metabolic syndrome. In the Indian population, lipid accumulation product index is a better predictor of metabolic syndrome compared to BMI and WC and should be incorporated in laboratory reports as early, accurate, and inexpensive indicator of metabolic syndrome.

  1. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice.

    PubMed

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan; Kim, Hyung Sik; Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung; Oh, Seon-Hee; Jun, Dae Won; Lee, Byung-Hoon

    2017-02-01

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. microRNA-212 promotes lipid accumulation and attenuates cholesterol efflux in THP-1 human macrophages by targeting SIRT1.

    PubMed

    Miao, Haiwei; Zeng, Honghui; Gong, Hui

    2018-02-15

    Macrophage foam cell formation is a key initiating event in the pathogenesis of atherosclerosis. This work was conducted to determine the role of microRNA (miR)-212 in the transformation of foam cells from macrophages. We examined the expression of miR-212 in atherosclerotic lesions in an apoE-deficient (apoE -/- ) mouse model. The effects of miR-212 overexpression and knockdown on lipid accumulation and cholesterol homeostasis in THP-1 macrophages after exposure to oxidized low-density lipoprotein (oxLDL). The mechanism underlying the activity of miR-212 was explored. It was found that miR-212 was downregulated in atherosclerotic lesions and macrophages from apoE -/- mice fed high-fat diet, compared to the equivalents from apoE -/- mice fed standard diet. Overexpression of miR-212 promoted lipid accumulation in oxLDL-treated THP-1 macrophages, whereas miR-212 depletion exerted an opposite effect. Macrophage cholesterol efflux to apolipoprotein A-I was significantly reduced by miR-212, which was accompanied by reduced ABCA1 expression. Mechanistically, miR-212 targeted sirtuin 1 (SIRT1) to repress the expression of ABCA1 in THP-1 macrophages. Rescue experiments confirmed that co-expression of SIRT1 attenuated lipid accumulation and restored cholesterol efflux in miR-212-overexpressing THP-1 macrophages. Collectively, miR-212 facilitates macrophage foam cell formation and suppresses ABCA1-dependent cholesterol efflux through downregulation of SIRT1. Targeting miR-212 may provide a potential therapeutic strategy for atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Growth and lipid accumulation in three Chlorella strains from different regions in response to diurnal temperature fluctuations.

    PubMed

    Yang, Weinan; Zou, Shanmei; He, Meilin; Fei, Cong; Luo, Wei; Zheng, Shiyan; Chen, Bo; Wang, Changhai

    2016-02-01

    It was economically feasible to screen strains adaptive to wide temperature fluctuation for outdoor cultivation without temperature control. In this research, three Chlorella strains from arctic glacier, desert soil and temperate native lake were isolated and identified. The growth, biochemical composition, lipid content and fatty acid composition of each strain cultured under the mode of diurnal temperature fluctuations were compared. All the three Chlorella strains showed desirable abilities of accumulating lipid under diurnal temperature fluctuations and their fatty acid profiles were suitable for biodiesel production, although the growth and biochemical composition were seemed to be region-specific. The highest lipid content was at 51.83±2.49% DW, 42.80±2.97% DW and 36.13±2.27% DW under different temperature fluctuation of 11 °C, 25 °C, 7 °C, respectively. The results indicated that the three Chlorella strains could be promising biodiesel feedstock for outdoor cultivation by the cultural mode of diurnal temperature fluctuations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. How did nature engineer the highest surface lipid accumulation among plants? Exceptional expression of acyl-lipid-associated genes for the assembly of extracellular triacylglycerol by Bayberry (Myrica pensylvanica) fruits.

    PubMed

    Simpson, Jeffrey P; Thrower, Nicholas; Ohlrogge, John B

    2016-09-01

    Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that produces and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves, which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae1[OPEN

    PubMed Central

    2017-01-01

    Microalgae are proposed as feedstock organisms useful for producing biofuels and coproducts. However, several limitations must be overcome before algae-based production is economically feasible. Among these is the ability to induce lipid accumulation and storage without affecting biomass yield. To overcome this barrier, a chemical genetics approach was employed in which 43,783 compounds were screened against Chlamydomonas reinhardtii, and 243 compounds were identified that increase triacylglyceride (TAG) accumulation without terminating growth. Identified compounds were classified by structural similarity, and 15 were selected for secondary analyses addressing impacts on growth fitness, photosynthetic pigments, and total cellular protein and starch concentrations. TAG accumulation was verified using gas chromatography-mass spectrometry quantification of total fatty acids, and targeted TAG and galactolipid measurements were performed using liquid chromatography-multiple reaction monitoring/mass spectrometry. These results demonstrated that TAG accumulation does not necessarily proceed at the expense of galactolipid. Untargeted metabolite profiling provided important insights into pathway shifts due to five different compound treatments and verified the anabolic state of the cells with regard to the oxidative pentose phosphate pathway, Calvin cycle, tricarboxylic acid cycle, and amino acid biosynthetic pathways. Metabolite patterns were distinct from nitrogen starvation and other abiotic stresses commonly used to induce oil accumulation in algae. The efficacy of these compounds also was demonstrated in three other algal species. These lipid-inducing compounds offer a valuable set of tools for delving into the biochemical mechanisms of lipid accumulation in algae and a direct means to improve algal oil content independent of the severe growth limitations associated with nutrient deprivation. PMID:28652262

  6. Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation

    PubMed Central

    Giorni, Paola; Dall’Asta, Chiara; Reverberi, Massimo; Scala, Valeria; Ludovici, Matteo; Cirlini, Martina; Galaverna, Gianni; Fanelli, Corrado; Battilani, Paola

    2015-01-01

    Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host–pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question—“Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?”—is still open. PMID:26378580

  7. Ginsenoside Rb2 Alleviates Hepatic Lipid Accumulation by Restoring Autophagy via Induction of Sirt1 and Activation of AMPK.

    PubMed

    Huang, Qi; Wang, Ting; Yang, Liu; Wang, He-Yao

    2017-05-19

    Although Panax ginseng is a famous traditional Chinese medicine and has been widely used to treat a variety of metabolic diseases including hyperglycemia, hyperlipidemia, and hepatosteatosis, the effective mediators and molecular mechanisms remain largely unknown. In this study we found that ginsenoside Rb2, one of the major ginsenosides in Panax ginseng, was able to prevent hepatic lipid accumulation through autophagy induction both in vivo and in vitro. Treatment of male db/db mice with Rb2 significantly improved glucose tolerance, decreased hepatic lipid accumulation, and restored hepatic autophagy. In vitro, Rb2 (50 µmol/L) obviously increased autophagic flux in HepG2 cells and primary mouse hepatocytes, and consequently reduced the lipid accumulation induced by oleic acid in combination with high glucose. Western blotting analysis showed that Rb2 partly reversed the high fatty acid in combination with high glucose (OA)-induced repression of autophagic pathways including AMP-activated protein kinase (AMPK) and silent information regulator 1 (sirt1). Furthermore, pharmacological inhibition of the sirt1 or AMPK pathways attenuated these beneficial effects of Rb2 on hepatic autophagy and lipid accumulation. Taken together, these results suggested that Rb2 alleviated hepatic lipid accumulation by restoring autophagy via the induction of sirt1 and activation of AMPK, and resulted in improved nonalcoholic fatty liver disease (NAFLD) and glucose tolerance.

  8. Application of growth-phase based light-feeding strategies to simultaneously enhance Chlorella vulgaris growth and lipid accumulation.

    PubMed

    Sun, Yahui; Liao, Qiang; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun; Fu, Jingwei; Li, Jun

    2018-05-01

    Considering the variations of optimal light intensity required by microalgae cells along with growth phases, growth-phase light-feeding strategies were proposed and verified in this paper, aiming at boosting microalgae lipid productivity from the perspective of light conditions optimization. Experimental results demonstrate that under an identical time-averaged light intensity, the light-feeding strategies characterized by stepwise incremental light intensities showed a positive effect on biomass and lipid accumulation. The lipid productivity (235.49 mg L -1  d -1 ) attained under light-feeding strategy V (time-averaged light intensity: 225 μmol m -2  s -1 ) was 52.38% higher over that obtained under a constant light intensity of 225 μmol m -2  s -1 . Subsequently, based on light-feeding strategy V, microalgae lipid productivity was further elevated to 312.92 mg L -1  d -1 employing a two-stage based light-feeding strategy V 560 (time-averaged light intensity: 360 μmol m -2  s -1 ), which was 79.63% higher relative to that achieved under a constant light intensity of 360 μmol m -2  s -1 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes.

    PubMed

    Lin, Xiaofen; Li, Yi; Leung, Polly Hangmei; Li, Jiashen; Hu, Junyan; Liu, Xuan; Li, Zhi

    2016-05-01

    Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39°C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4h exposure to cooler temperatures of 31-33°C (P<0.01). ROS, chemically reactive molecules containing oxygen, are currently understood to be a major contributor to oxidantive stress in obesity. Additionally, cooler temperatures (31-33°C) could improve the size of lipid droplets in 3T3-L1 adipocytes (P<0.01), but no significant effect was generated by temperature change on lipid droplets in palmitate-treated adipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (P<0.01), it still does not positively modulate lipid droplet size (P>0.05) and remedy the palmitate damage induced cell death (P<0.01). These findings provide preliminary support for potential interventions based on temperature manipulation for cell metabolism of adipocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Puerarin promotes ABCA1-mediated cholesterol efflux and decreases cellular lipid accumulation in THP-1 macrophages.

    PubMed

    Li, Cong-Hui; Gong, Duo; Chen, Ling-Yan; Zhang, Min; Xia, Xiao-Dan; Cheng, Hai-Peng; Huang, Chong; Zhao, Zhen-Wang; Zheng, Xi-Long; Tang, Xiao-Er; Tang, Chao-Ke

    2017-09-15

    It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Reactive Oxygen Species-Mediated Cellular Stress Response and Lipid Accumulation in Oleaginous Microorganisms: The State of the Art and Future Perspectives

    PubMed Central

    Shi, Kun; Gao, Zhen; Shi, Tian-Qiong; Song, Ping; Ren, Lu-Jing; Huang, He; Ji, Xiao-Jun

    2017-01-01

    Microbial oils, which are mainly extracted from yeasts, molds, and algae, have been of considerable interest as food additives and biofuel resources due to their high lipid content. While these oleaginous microorganisms generally produce only small amounts of lipids under optimal growth conditions, their lipid accumulation machinery can be induced by environmental stresses, such as nutrient limitation and an inhospitable physical environmental. As common second messengers of many stress factors, reactive oxygen species (ROS) may act as a regulator of cellular responses to extracellular environmental signaling. Furthermore, increasing evidence indicates that ROS may act as a mediator of lipid accumulation, which is associated with dramatic changes in the transcriptome, proteome, and metabolome. However, the specific mechanisms of ROS involvement in the crosstalk between extracellular stress signaling and intracellular lipid synthesis require further investigation. Here, we summarize current knowledge on stress-induced lipid biosynthesis and the putative role of ROS in the control of lipid accumulation in oleaginous microorganisms. Understanding such links may provide guidance for the development of stress-based strategies to enhance microbial lipid production. PMID:28507542

  12. Lipids, oxidized lipids, oxidation-specific epitopes, and Age-related Macular Degeneration.

    PubMed

    Handa, James T; Cano, Marisol; Wang, Lei; Datta, Sayantan; Liu, Tongyun

    2017-04-01

    Age-related Macular Degeneration (AMD) is the leading cause of blindness among the elderly in western societies. While antioxidant micronutrient treatment is available for intermediate non-neovascular disease, and effective anti-vascular endothelial growth factor treatment is available for neovascular disease, treatment for early AMD is lacking due to an incomplete understanding of the early molecular events. The role of lipids, which accumulate in the macula, and their oxidation, has emerged as an important factor in disease development. These oxidized lipids can either directly contribute to tissue injury or react with amine on proteins to form oxidation-specific epitopes, which can induce an innate immune response. If inadequately neutralized, the inflammatory response from these epitopes can incite tissue injury during disease development. This review explores how the accumulation of lipids, their oxidation, and the ensuing inflammatory response might contribute to the pathogenesis of AMD. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder . Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Lipid and protein accumulation in developing seeds of three lupine species: Lupinus luteus L., Lupinus albus L., and Lupinus mutabilis Sweet.

    PubMed

    Borek, Slawomir; Pukacka, Stanisława; Michalski, Krzysztof; Ratajczak, Lech

    2009-01-01

    A comparative study was carried out on the dynamics of lipid accumulation in developing seeds of three lupine species. Lupine seeds differ in lipid content; yellow lupine (Lupinus luteus L.) seeds contain about 6%, white lupine (Lupinus albus L.) 7-14%, and Andean lupine (Lupinus mutabilis Sweet) about 20% of lipids by dry mass. Cotyledons from developing seeds were isolated and cultured in vitro for 96 h on Heller medium with 60 mM sucrose (+S) or without sucrose (-S). Each medium was additionally enriched with 35 mM asparagine or 35 mM NaNO3. Asparagine caused an increase in protein accumulation and simultaneously decreased the lipid content, but nitrate increased accumulation of both protein and lipid. Experiments with [1-14C]acetate and [2-14C]acetate showed that the decrease in lipid accumulation in developing lupine seeds resulted from exhaustion of lipid precursors rather than from degradation or modification of the enzymatic apparatus. The carbon atom from the C-1 position of acetate was liberated mainly as CO2, whereas the carbon atom from the C-2 position was preferentially used in anabolic pathways. The dominant phospholipid in the investigated lupine seed storage organs was phosphatidylcholine. The main fatty acid in yellow lupine cotyledons was linoleic acid, in white lupine it was oleic acid, and in Andean lupine it was both linoleic and oleic acids. The relationship between stimulation of lipid and protein accumulation by nitrate in developing lupine cotyledons and enhanced carbon flux through glycolysis caused by the inorganic nitrogen form is discussed.

  14. Effect of Trichlorfon on Hepatic Lipid Accumulation in Crucian Carp Carassius auratus gibelio

    PubMed Central

    Xu, WeiNa; Liu, WenBin; Shao, XianPing; Jiang, GuangZhen; Li, XianngFei

    2012-01-01

    This study evaluated the toxic effects of the organophosphate pesticide trichlorfon on hepatic lipid accumulation in crucian carp Carassius auratus gibelio. Seventy-five fish were divided into five groups (each group in triplicate), and then exposed to 0, 0.5, 1.0, 2.0, and 4.0 mg/L of trichlorfon and fed with commercial feed for 30 d. At the end of the experiment, plasma and hepatic lipid metabolic biochemical status were analyzed. Triglyceride contents were significantly (P < 0.05) increased in liver but decreased in plasma after 1.0, 2.0, and 4.0 mg/L trichlorfon treatments. Plasma insulin contents were markedly (P < 0.05) increased when trichlorfon concentrations were 0.5, 1.0, and 4.0 mg/L. There were no significant differences in hepatic hormone-sensitive lipase contents between the trichlorfon-treated fish and the controls. Hepatic cyclic adenosine 3′, 5′-monophosphate, very-low-density lipoprotein, and apolipoprotein B100 contents were decreased in the fish when trichlorfon concentration was 2.0 mg/L. Furthermore, electron microscope observations showed rough endoplasmic reticulum dilatation and mitochondrial vacuolization in hepatocytes with trichlorfon exposure. On the basis of morphological and physiological evidence, trichlorfon influenced crucian carp hepatic pathways of lipid metabolism and hepatocellular ultrastructure, which resulted in lipid accumulation in the liver. PMID:22897202

  15. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis.

    PubMed

    Li, Zhi; Sun, Hanxiao; Mo, Xuemei; Li, Xiuying; Xu, Bo; Tian, Peng

    2013-06-01

    The oleaginous yeast Rhodotorula glutinis has been known to be a potential feedstock for lipid production. In the present study, we investigated the enhancement of expression of malic enzyme (ME; NADP(+) dependent; EC 1.1.1.40) from Mucor circinelloides as a strategy to improve lipid content inside the yeast cells. The 26S rDNA and 5.8S rDNA gene fragments isolated from Rhodotorula glutinis were used for homologous integration of ME gene into R. glutinis chromosome under the control of the constitutively highly expressed gene phosphoglycerate kinase 1 to achieve stable expression. We demonstrated that by increasing the expression of the foreign ME gene in R. glutinis, we successfully improved the lipid content by more than twofold. At the end of lipid accumulation phrase (96 h) in the transformants, activity of ME was increased by twofold and lipid content of the yeast cells was increased from 18.74 % of the biomass to 39.35 %. Simultaneously, there were no significant differences in fatty acid profiles between the wild-type strain and the recombinant strain. Over 94 % of total fatty acids were C16:0, C18:0, C16:1, C18:1, and C18:2. Our results indicated that heterologous expression of NADP(+)-dependent ME involved in fatty acid biosynthesis indeed increased the lipid accumulation in the oleaginous yeast R. glutinis.

  16. Arrhythmia causes lipid accumulation and reduced glucose uptake.

    PubMed

    Lenski, Matthias; Schleider, Gregor; Kohlhaas, Michael; Adrian, Lucas; Adam, Oliver; Tian, Qinghai; Kaestner, Lars; Lipp, Peter; Lehrke, Michael; Maack, Christoph; Böhm, Michael; Laufs, Ulrich

    2015-01-01

    Atrial fibrillation (AF) is characterized by irregular contractions of atrial cardiomyocytes and increased energy demand. The aim of this study was to characterize the influence of arrhythmia on glucose and fatty acid (FA) metabolism in cardiomyocytes, mice and human left atrial myocardium. Compared to regular pacing, irregular (pseudo-random variation at the same number of contractions/min) pacing of neonatal rat cardiomyocytes induced shorter action potential durations and effective refractory periods and increased diastolic [Ca(2+)]c. This was associated with the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and AMP-activated protein kinase (AMPK). Membrane expression of fatty acid translocase (FAT/CD36) and (14)C-palmitic acid uptake were augmented while membrane expression of glucose transporter subtype 4 (GLUT-4) as well as (3)H-glucose uptake were reduced. Inhibition of AMPK and CaMKII prevented these arrhythmia-induced metabolic changes. Similar alterations of FA metabolism were observed in a transgenic mouse model (RacET) for spontaneous AF. Consistent with these findings samples of left atrial myocardium of patients with AF compared to matched samples of patients with sinus rhythm showed up-regulation of CaMKII and AMPK and increased membrane expression of FAT/CD36, resulting in lipid accumulation. These changes of FA metabolism were accompanied by decreased membrane expression of GLUT-4, increased glycogen content and increased expression of the pro-apoptotic protein bax. Irregular pacing of cardiomyocytes increases diastolic [Ca(2+)]c and activation of CaMKII and AMPK resulting in lipid accumulation, reduced glucose uptake and increased glycogen synthesis. These metabolic changes are accompanied by an activation of pro-apoptotic signalling pathways.

  17. Boosting accumulation of neutral lipids in Rhodosporidium kratochvilovae HIMPA1 grown on hemp (Cannabis sativa Linn) seed aqueous extract as feedstock for biodiesel production.

    PubMed

    Patel, Alok; Pravez, Mohammad; Deeba, Farha; Pruthi, Vikas; Singh, Rajesh P; Pruthi, Parul A

    2014-08-01

    Hemp seeds aqueous extract (HSAE) was used as cheap renewable feedstocks to grow novel oleaginous yeast Rhodosporidium kratochvilovae HIMPA1 isolated from Himalayan permafrost soil. The yeast showed boosted triglyceride (TAG) accumulation in the lipid droplets (LDs) which were transesterified to biodiesel. The sonicated HSAE prepared lacked toxic inhibitors and showed enhanced total lipid content and lipid yield 55.56%, 8.39±0.57g/l in comparison to 41.92%, 6.2±0.8g/l from industrially used glucose synthetic medium, respectively. Supersized LDs (5.95±1.02μm) accumulated maximum TAG in sonicated HSAE grown cells were visualized by fluorescent BODIPY (505/515nm) stain. GC-MS analysis revealed unique longer carbon chain FAME profile containing Arachidic acid (C20:0) 5%, Behenic acid (C22:0) 9.7%, Heptacosanoic acid (C27:0) 14.98%, for the first time in this yeast when grown on industrially competent sonicated HSAE, showing more similarity to algal oils. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  18. Non-polar lipids accumulate during storage of transfusion products and do not contribute to the onset of transfusion-related acute lung injury.

    PubMed

    Peters, A L; Vervaart, M A T; van Bruggen, R; de Korte, D; Nieuwland, R; Kulik, W; Vlaar, A P J

    2017-01-01

    The accumulation of non-polar lipids arachidonic acid, 5-hydroxyeicosatetraenoic acid (HETE), 12-HETE and 15-HETE during storage of transfusion products may play a role in the onset of transfusion-related acute lung injury (TRALI), a syndrome of respiratory distress after transfusion. We investigated non-polar lipid accumulation in red blood cells (RBCs) stored for 42 days, plasma stored for 7 days at either 4 or 20°C and platelet (PLT) transfusion products stored for 7 days. Furthermore, we investigated whether transfusion of RBCs with increased levels of non-polar lipids induces TRALI in a 'two-hit' human volunteer model. All products were produced following Dutch Blood Bank protocols and are according to European standards. Non-polar lipids were measured with high-performance liquid chromotography followed by mass spectrometry. All non-polar lipids increased in RBCs after 21 days of storage compared to baseline. The non-polar lipid concentration in plasma increased significantly, and the increase was even more pronounced in products stored at 20°C. In platelets, baseline levels of 5-HETE and 15-HETE were higher than in RBCs or plasma. However, the non-polar lipids did not change significantly during storage of PLT products. Infusion of RBCs with increased levels of non-polar lipids did not induce TRALI in LPS-primed human volunteers. We conclude that non-polar lipids accumulate in RBC and plasma transfusion products and that accumulation is temperature dependent. Accumulation of non-polar lipids does not appear to explain the onset of TRALI (Dutch Trial Register - NTR4455). © 2016 International Society of Blood Transfusion.

  19. Lipid and protein accumulation in developing seeds of three lupine species: Lupinus luteus L., Lupinus albus L., and Lupinus mutabilis Sweet

    PubMed Central

    Borek, Sławomir; Pukacka, Stanisława; Michalski, Krzysztof; Ratajczak, Lech

    2009-01-01

    A comparative study was carried out on the dynamics of lipid accumulation in developing seeds of three lupine species. Lupine seeds differ in lipid content; yellow lupine (Lupinus luteus L.) seeds contain about 6%, white lupine (Lupinus albus L.) 7–14%, and Andean lupine (Lupinus mutabilis Sweet) about 20% of lipids by dry mass. Cotyledons from developing seeds were isolated and cultured in vitro for 96 h on Heller medium with 60 mM sucrose (+S) or without sucrose (–S). Each medium was additionally enriched with 35 mM asparagine or 35 mM NaNO3. Asparagine caused an increase in protein accumulation and simultaneously decreased the lipid content, but nitrate increased accumulation of both protein and lipid. Experiments with [1-14C]acetate and [2-14C]acetate showed that the decrease in lipid accumulation in developing lupine seeds resulted from exhaustion of lipid precursors rather than from degradation or modification of the enzymatic apparatus. The carbon atom from the C-1 position of acetate was liberated mainly as CO2, whereas the carbon atom from the C-2 position was preferentially used in anabolic pathways. The dominant phospholipid in the investigated lupine seed storage organs was phosphatidylcholine. The main fatty acid in yellow lupine cotyledons was linoleic acid, in white lupine it was oleic acid, and in Andean lupine it was both linoleic and oleic acids. The relationship between stimulation of lipid and protein accumulation by nitrate in developing lupine cotyledons and enhanced carbon flux through glycolysis caused by the inorganic nitrogen form is discussed. PMID:19635747

  20. Dual-5α-Reductase Inhibition Promotes Hepatic Lipid Accumulation in Man.

    PubMed

    Hazlehurst, Jonathan M; Oprescu, Andrei I; Nikolaou, Nikolaos; Di Guida, Riccardo; Grinbergs, Annabel E K; Davies, Nigel P; Flintham, Robert B; Armstrong, Matthew J; Taylor, Angela E; Hughes, Beverly A; Yu, Jinglei; Hodson, Leanne; Dunn, Warwick B; Tomlinson, Jeremy W

    2016-01-01

    5α-Reductase 1 and 2 (SRD5A1, SRD5A2) inactivate cortisol to 5α-dihydrocortisol in addition to their role in the generation of DHT. Dutasteride (dual SRD5A1 and SRD5A2 inhibitor) and finasteride (selective SRD5A2 inhibitor) are commonly prescribed, but their potential metabolic effects have only recently been identified. Our objective was to provide a detailed assessment of the metabolic effects of SRD5A inhibition and in particular the impact on hepatic lipid metabolism. We conducted a randomized study in 12 healthy male volunteers with detailed metabolic phenotyping performed before and after a 3-week treatment with finasteride (5 mg od) or dutasteride (0.5 mg od). Hepatic magnetic resonance spectroscopy (MRS) and two-step hyperinsulinemic euglycemic clamps incorporating stable isotopes with concomitant adipose tissue microdialysis were used to evaluate carbohydrate and lipid flux. Analysis of the serum metabolome was performed using ultra-HPLC-mass spectrometry. The study was performed in the Wellcome Trust Clinical Research Facility, Queen Elizabeth Hospital, Birmingham, United Kingdom. Incorporation of hepatic lipid was measured with MRS. Dutasteride, not finasteride, increased hepatic insulin resistance. Intrahepatic lipid increased on MRS after dutasteride treatment and was associated with increased rates of de novo lipogenesis. Adipose tissue lipid mobilization was decreased by dutasteride. Analysis of the serum metabolome demonstrated that in the fasted state, dutasteride had a significant effect on lipid metabolism. Dual-SRD5A inhibition with dutasteride is associated with increased intrahepatic lipid accumulation.

  1. Effects of Trophic Modes, Carbon Sources, and Salinity on the Cell Growth and Lipid Accumulation of Tropic Ocean Oilgae Strain Desmodesmus sp. WC08.

    PubMed

    Zhao, Zhenyu; Ma, Shasha; Li, Ang; Liu, Pinghuai; Wang, Meng

    2016-10-01

    The effects of trophic modes, carbon sources, and salinity on the growth and lipid accumulation of a marine oilgae Desmodesmus sp. WC08 in different trophic cultures were assayed by single factor experiment based on the blue-green algae medium (BG-11). The results implied that biomass and lipid accumulation culture process were optimized depending on the tophic modes, sorts, and concentration of carbon sources and salinity in the cultivation. There was no significant difference in growth or lipid accumulation with Na 2 CO 3 amendment or NaHCO 3 amendment. However, Na 2 CO 3 amendment did enhance the biomass and lipid accumulation to some extent. The highest Desmodesmus sp. WC08 biomass and lipid accumulation was achieved in the growth medium with photoautotrophic cultivation, 0.08 g L -1 Na 2 CO 3 amendment and 15 g L -1 sea salt, respectively.

  2. Mechanisms of Lipid Accumulation in the Bone Morphogenetic Protein Receptor Type 2 Mutant Right Ventricle

    PubMed Central

    Brittain, Evan L.; Fessel, Joshua P.; Penner, Niki; Atkinson, James; Funke, Mitch; Grueter, Carrie; Jerome, W. Gray; Freeman, Michael; Newman, John H.; West, James; Hemnes, Anna R.

    2016-01-01

    Rationale: In heritable pulmonary arterial hypertension with germline mutation in the bone morphogenetic protein receptor type 2 (BMPR2) gene, right ventricle (RV) dysfunction is associated with RV lipotoxicity; however, the underlying mechanism for lipid accumulation is not known. Objectives: We hypothesized that lipid accumulation in cardiomyocytes with BMPR2 mutation occurs owing to alterations in lipid transport and impaired fatty acid oxidation (FAO), which is exacerbated by a high-lipid (Western) diet (WD). Methods: We used a transgenic mouse model of pulmonary arterial hypertension with mutant BMPR2 and generated a cardiomyocyte cell line with BMPR2 mutation. Electron microscopy and metabolomic analysis were performed on mouse RVs. Measurements and Main Results: By metabolomics analysis, we found an increase in long-chain fatty acids in BMPR2 mutant mouse RVs compared with controls, which correlated with cardiac index. BMPR2-mutant cardiomyocytes had increased lipid compared with controls. Direct measurement of FAO in the WD-fed BMPR2-mutant RV showed impaired palmitate-linked oxygen consumption, and metabolomics analysis showed reduced indices of FAO. Using both mutant BMPR2 mouse RVs and cardiomyocytes, we found an increase in the uptake of 14C-palmitate and fatty acid transporter CD36 that was further exacerbated by WD. Conclusions: Taken together, our data suggest that impaired FAO and increased expression of the lipid transporter CD36 are key mechanisms underlying lipid deposition in the BMPR2-mutant RV, which are exacerbated in the presence of dietary lipids. These findings suggest important features leading to RV lipotoxicity in pulmonary arterial hypertension and may point to novel areas of therapeutic intervention. PMID:27077479

  3. Long-term ketogenic diet contributes to glycemic control but promotes lipid accumulation and hepatic steatosis in type 2 diabetic mice.

    PubMed

    Zhang, Xiaoyu; Qin, Juliang; Zhao, Yihan; Shi, Jueping; Lan, Rong; Gan, Yunqiu; Ren, Hua; Zhu, Bing; Qian, Min; Du, Bing

    2016-04-01

    The ketogenic diet (KD) has been widely used in weight and glycemic control, although potential side effects of long-term KD treatment have caused persistent concern. In this study, we hypothesized that the KD would ameliorate the progression of diabetes but lead to disruptions in lipid metabolism and hepatic steatosis in a mouse model of diabetes. In type 2 diabetic mouse model, mice were fed a high-fat diet and administered streptozotocin treatment before given the test diets for 8 weeks. Subsequently, ameliorated glucose and insulin tolerance in KD-fed diabetic mice was found, although the body weight of high-fat diet- and KD-fed mice was similar. Interestingly, the weight of adipose tissue in KD mice was greater than in the other groups. The KD diet resulted in higher serum triacylglycerol and cholesterol levels in diabetic mice. Moreover, the KD-fed mice showed greater hepatic lipid accumulation. Mice fed the KD showed significant changes in several key genes such as sterol regulatory element-binding protein, fibroblast growth factor 21, and peroxisome proliferator-activated receptor α, which are all important in metabolism. In summary, KD ameliorates glucose and insulin tolerance in a mouse model of diabetes, but severe hepatic lipid accumulation and hepatic steatosis were observed, which should be considered carefully in the long-term application of KD. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. [The accumulation of lipid peroxidation products in the eye structures of mice under whole-body x-ray irradiation].

    PubMed

    Sakina, N L; Dontsov, A E; Afanas'ev, G G; Ostrovski, M A; Pelevina, I I

    1990-01-01

    In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Schiff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation.

  5. Effects of fundamental nutrient stresses on the lipid accumulation profiles in two diatom species Thalassiosira weissflogii and Chaetoceros muelleri.

    PubMed

    Lin, Qun; Zhuo, Wen-Hao; Wang, Xin-Wei; Chen, Chang-Ping; Gao, Ya-Hui; Liang, Jun-Rong

    2018-05-22

    Microalgae are considered as attractive feedstocks for biofuel production nowadays because of their high lipid contents and easy cultivation. In the present study, two diatoms, Thalassiosira weissflogii and Chaetoceros muelleri, were cultured under various nutrient-limitation conditions to explore their comprehensive lipid accumulation profiles for further commercialization. In T. weissflogii, the highest neutral lipid accumulation and highest lipid productivity (14.28 mg L -1  day -1 ) were both recorded under P-limitation. In C. muelleri, the highest lipid content (35.03% of dry cell weight), highest neutral lipid accumulation, and highest lipid productivity (29.07 mg L -1  day -1 ) were all recorded under N-limitation. Besides, the predominant fatty acids of T. weissflogii and C. muelleri were myristic acid (C14:0), palmitic acid (C16:0), and palmitoleic acid (C16:1), with the amounts of 58.4-74.4 and 74.1-87.7% of the total fatty acids, respectively. Moreover, nutrient limitations led to a lower proportion of polyunsaturated fatty acids (PUFA) than that of saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) in both species. The ratios of (SFA + MUFA) to PUFA were from 1.65 to 3.01 in T. weissflogii, and up to 3.61 to 8.59 in C. muelleri. Our results suggested the feasibility of C. muelleri as biodiesel feedstock due to its more suitable fatty acid composition and higher lipid productivity compared to T. weissflogii.

  6. Lipid accumulation, oxidative stress and immune-related molecules affected by tributyltin exposure in muscle tissues of rare minnow (Gobiocypris rarus).

    PubMed

    Zhang, Jiliang; Zhang, Chunnuan; Ma, Dongdong; Liu, Min; Huang, Shuntao

    2017-12-01

    Tributyltin (TBT) is reported to induce adipogenesis in fish, which might affect nutritional qualities and health status. Muscle tissues account for the majority of body mass, and have been described as a major site of fat deposition and an immunologically active organ. Therefore, the present study aims to evaluate whether chronic exposures of TBT, at environmental concentrations of 1, 10 and 100 ng/L, affects lipid accumulation, oxidative stress and immune status in muscle tissues of rare minnow (Gobiocypris rarus). After 60 d of exposure, TBT increased contents of total lipid, total cholesterol, triglyceride and fatty acids in muscle tissues. Interestingly, TBT exposure disrupted fatty acid composition and increased contents of unsaturated fatty acids (such as eicosapentaenoic acid and docosahexaenoic acid) in muscle tissues, which might be a response to preserve membrane functions from TBT exposure. Meanwhile, the concentrations of hepatic fatty acid desaturase 2 (Δ6-desaturase) and stearoyl-CoA desaturase (Δ9-desaturase) were increased after TBT exposure, which might contribute the increase of unsaturated fatty acids. Furthermore, TBT increased muscle lipid peroxidation products, antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), and the expression of immune-related molecules (tumor necrosis factor alpha, interleukin 1 beta and nuclear factor kappa B) in muscle tissues. The disruption of TBT on the lipid accumulation, oxidative stress and immune-toxic effects in muscle tissues of fish might reduce nutritional qualities, and affect growth and health status, which might pose a constant and serious threat to fish and result in economic loss in aquaculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Chalcones suppress fatty acid-induced lipid accumulation through a LKB1/AMPK signaling pathway in HepG2 cells.

    PubMed

    Zhang, Tianshun; Yamamoto, Norio; Ashida, Hitoshi

    2014-06-01

    Excessive lipid accumulation in the liver has been proposed to cause hyperlipidemia, diabetes and fatty liver disease. 4-Hydroxyderricin (4HD), xanthoangelol (XAG), cardamonin (CAR) and flavokawain B (FKB) are chalcones that have exhibited various biological effects against obesity, inflammation, and diabetes; however, little is known about the inhibitory effects of these chalcones on fatty liver disease. In the present study, we investigated the ability of 4HD, XAG, CAR, and FKB to reduce lipid accumulation in hepatocytes. When HepG2 cells were treated with a mixture of fatty acids (FAs; palmitic acid : oleic acid = 1 : 2 ratio), significant lipid accumulation was observed. Under the same experimental conditions, addition of chalcones at 5 μM significantly suppressed the FA-induced lipid accumulation. We found that the expression of sterol regulatory element-binding protein-1 (SREBP-1), a key molecule involved in lipogenesis, was decreased in these chalcone-treated cells. We also found that these chalcones increased the expression of peroxisome proliferator-activated receptor α (PPARα), which is involved in FA oxidation. Moreover, these chalcones increased phosphorylation of AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1), upstream regulators of SREBP-1 and PPARα. We confirmed that an AMPK inhibitor, compound C, reversed chalcone-induced changes in SREBP-1 and PPARα expression in the HepG2 cells. Collectively, we found that 4HD, XAG, CAR, and XAG attenuated lipid accumulation through activation of the LKB1/AMPK signaling pathway in HepG2 cells.

  8. Systematic development of a two-stage fed-batch process for lipid accumulation in Rhodotorula glutinis.

    PubMed

    Lorenz, Eric; Runge, Dennis; Marbà-Ardébol, Anna-Maria; Schmacht, Maximilian; Stahl, Ulf; Senz, Martin

    2017-03-20

    The application of oleaginous yeast cells as feed supplement, for instance in aqua culture, can be a meaningful alternative for fish meal and oil additives. Therefore, a two-stage fed-batch process split into growth and lipogenesis phase was systematically developed to enrich the oleaginous yeast Rhodotorula glutinis Rh-00301 with high amounts of lipids at industrial relevant biomasses. Thereby, the different carbon sources glucose, sucrose and glycerol were investigated concerning their abilities to serve as a suited raw material for growth and/or lipid accumulation. With the background of economic efficiency C/N ratios of 40, 50 and 70 were investigated as well. It became apparent that glycerol is an improper carbon source most likely because of the passive diffusion of this compound caused by absence of active transporters. The opposite was observed for sucrose, which is the main carbon source in molasses. Finally, an industrially applicable process was successfully established that ensures biomasses of 106±2gL -1 combined with an attractive lipid content of 63±6% and a high lipid-substrate yield (Y L/S ) of 0.18±0.02gg -1 in a short period of time (84h). Furthermore, during these studies a non-negligible formation of the by-product glycerol was detected. This characteristic of R. glutinis is discussed related to other oleaginous yeasts, where glycerol formation is absent. Nevertheless, due to modifications in the feeding procedure, the formation of glycerol could have been reduced but not avoided. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Identification of lipids that accumulate during the routine storage of prestorage leukoreduced red blood cells and cause acute lung injury

    PubMed Central

    Silliman, Christopher C.; Moore, Ernest E.; Kelher, Marguerite R.; Khan, Samina Y.; Gellar, Lauren; Elzi, David J.

    2011-01-01

    BACKGROUND Lipids accumulate during the storage of red blood cells (RBCs), prime neutrophils (PMNs), and have been implicated in transfusion-related acute lung injury (TRALI). These lipids are composed of two classes: nonpolar lipids and lysophosphatidylcholines based on their retention time on separation by high-pressure liquid chromatography. Prestorage leukoreduction significantly decreases white blood cell and platelet contamination of RBCs; therefore, it is hypothesized that prestorage leukoreduction changes the classes of lipids that accumulate during storage, and these lipids prime PMNs and induce acute lung injury (ALI) as the second event in a two-event in vivo model. STUDY DESIGN AND METHODS RBC units were divided: 50% was leukoreduced (LR-RBCs), stored, and sampled on Day 1 and at the end of storage, Day 42. Priming activity was evaluated on isolated PMNs, and the purified lipids from Day 1 or Day 42 were used as the second event in the in vivo model. RESULTS The plasma and lipids from RBCs and LR-RBCs primed PMNs, and the LR-RBC activity decreased with longer storage. Unlike RBCs, nonpolar lipids comprised the PMN-priming activity from stored LR-RBCs. Mass spectroscopy identified these lipids as arachidonic acid and 5-, 12-, and 15-hydroxyeicsotetranoic acid. At concentrations from Day 42, but not Day 1, three of four of these lipids individually, and the mixture, primed PMNs. The mixture also caused ALI as the second event in a two-event model of TRALI. CONCLUSION We conclude that the nonpolar lipids that accumulate during LR-RBC storage may represent the agents responsible for antibody-negative TRALI. PMID:21615744

  10. LpxK Is Essential for Growth of Acinetobacter baumannii ATCC 19606: Relationship to Toxic Accumulation of Lipid A Pathway Intermediates

    PubMed Central

    Wei, Jun-Rong; Richie, Daryl L.; Mostafavi, Mina; Metzger, Louis E.; Rath, Christopher M.; Sawyer, William S.; Takeoka, Kenneth T.

    2017-01-01

    ABSTRACT Acinetobacter baumannii ATCC 19606 can grow without lipid A, the major component of lipooligosaccharide. However, we previously reported that depletion of LpxH (the fourth enzyme in the lipid A biosynthetic pathway) prevented growth of this strain due to toxic accumulation of lipid A pathway intermediates. Here, we explored whether a similar phenomenon occurred with depletion of LpxK, a kinase that phosphorylates disaccharide 1-monophosphate (DSMP) at the 4′ position to yield lipid IVA. An A. baumannii ATCC 19606 derivative with LpxK expression under the control of an isopropyl β-d-1-thiogalactopyranoside (IPTG)-regulated expression system failed to grow without induction, indicating that LpxK is essential for growth. Light and electron microscopy of LpxK-depleted cells revealed morphological changes relating to the cell envelope, consistent with toxic accumulation of lipid A pathway intermediates disrupting cell membranes. Using liquid chromatography-mass spectrometry (LCMS), cellular accumulation of the detergent-like pathway intermediates DSMP and lipid X was shown. Toxic accumulation was further supported by restoration of growth upon chemical inhibition of LpxC (upstream of LpxK and the first committed step of lipid A biosynthesis) using CHIR-090. Inhibitors of fatty acid synthesis also abrogated the requirement for LpxK expression. Growth rescue with these inhibitors was possible on Mueller-Hinton agar but not on MacConkey agar. The latter contains outer membrane-impermeable bile salts, suggesting that despite growth restoration, the cell membrane permeability barrier was not restored. Therefore, LpxK is essential for growth of A. baumannii, since loss of LpxK causes accumulation of detergent-like pathway intermediates that inhibit cell growth. IMPORTANCE Acinetobacter baumannii is a Gram-negative pathogen for which new therapies are needed. The lipid A biosynthetic pathway has several potential enzyme targets for the development of anti

  11. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells

    NASA Astrophysics Data System (ADS)

    Nunn, Abigail D. G.; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-06-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome.

  12. Lipid Accumulation during the Establishment of Kleptoplasty in Elysia chlorotica

    PubMed Central

    Pelletreau, Karen N.; Weber, Andreas P. M.; Weber, Katrin L.; Rumpho, Mary E.

    2014-01-01

    The establishment of kleptoplasty (retention of “stolen plastids”) in the digestive tissue of the sacoglossan Elysia chlorotica Gould was investigated using transmission electron microscopy. Cellular processes occurring during the initial exposure to plastids were observed in laboratory raised animals ranging from 1–14 days post metamorphosis (dpm). These observations revealed an abundance of lipid droplets (LDs) correlating to plastid abundance. Starvation of animals resulted in LD and plastid decay in animals <5 dpm that had not yet achieved permanent kleptoplasty. Animals allowed to feed on algal prey (Vaucheria litorea C. Agardh) for 7 d or greater retained stable plastids resistant to cellular breakdown. Lipid analysis of algal and animal samples supports that these accumulating LDs may be of plastid origin, as the often algal-derived 20∶5 eicosapentaenoic acid was found in high abundance in the animal tissue. Subsequent culturing of animals in dark conditions revealed a reduced ability to establish permanent kleptoplasty in the absence of photosynthetic processes, coupled with increased mortality. Together, these data support an important role of photosynthetic lipid production in establishing and stabilizing this unique animal kleptoplasty. PMID:24828251

  13. MAB_3551c encodes the primary triacylglycerol synthase involved in lipid accumulation in Mycobacterium abscessus.

    PubMed

    Viljoen, Albertus; Blaise, Mickael; de Chastellier, Chantal; Kremer, Laurent

    2016-11-01

    Slow growing pathogenic mycobacteria utilize host-derived lipids and accumulate large amounts of triacylglycerol (TAG) in the form of intracytoplasmic lipid inclusions (ILI), serving as a source of carbon and energy during prolonged infection. Mycobacterium abscessus is an emerging and rapidly growing species capable to induce severe and chronic pulmonary infections. However, whether M. abscessus, like Mycobacterium tuberculosis, possesses the machinery to acquire and store host lipids, remains unaddressed. Herein, we aimed at deciphering the contribution of the seven putative M. abscessus TAG synthases (Tgs) in TAG synthesis/accumulation thanks to a combination of genetic and biochemical techniques and a well-defined foamy macrophage (FM) model along with electron microscopy. Targeted gene deletion and functional complementation studies identified the MAB_3551c product, Tgs1, as the major Tgs involved in TAG production. Tgs1 exhibits a preference for long acyl-CoA substrates and site-directed mutagenesis demonstrated that His144 and Gln145 are essential for enzymatic activity. Importantly, in the lipid-rich intracellular context of FM, M. abscessus formed large ILI in a Tgs1-dependent manner. This supports the ability of M. abscessus to assimilate host lipids and the crucial role of Tgs1 in intramycobacterial TAG production, which may represent important mechanisms for long-term storage of a rich energy supply. © 2016 John Wiley & Sons Ltd.

  14. Statistical analysis and modeling of pelletized cultivation of Mucor circinelloides for microbial lipid accumulation.

    PubMed

    Xia, Chunjie; Wei, Wei; Hu, Bo

    2014-04-01

    Microbial oil accumulation via oleaginous fungi has some potential benefits because filamentous fungi can form pellets during cell growth and these pellets are easier to harvest from the culture broth than individual cells. This research studied the effect of various culture conditions on the pelletized cell growth of Mucor circinelloides and its lipid accumulation. The results showed that cell pelletization was positively correlated to biomass accumulation; however, pellet size was negatively correlated to the oil content of the fungal biomass, possibly due to the mass transfer barriers generated by the pellet structure. How to control the size of the pellet is the key to the success of the pelletized microbial oil accumulation process.

  15. Accumulation of petroleum hydrocarbons in intracellular lipid bodies of the freshwater diatom Synedra acus subsp. radians.

    PubMed

    Shishlyannikov, Sergey M; Nikonova, Alyona A; Klimenkov, Igor V; Gorshkov, Alexander G

    2017-01-01

    The accumulation of hydrophobic compounds by phytoplankton plays a crucial role in the biogeochemical cycle of persistent organic pollutants (POPs) in aquatic environments. We studied the accumulation of polycyclic aromatic hydrocarbons (PAHs) in the freshwater diatom Synedra acus subsp. radians during its cultivation with crude oil hydrocarbons, using epifluorescent and laser confocal microscopy as well as gas chromatography-mass spectrometry (GC/MS) analysis. Our results revealed that in the presence of crude oil or an extract of a crude oil/n-hexane solution (light oil), S. acus subsp. radians accumulated PAHs in its lipid bodies. During cultivation in the presence of a crude oil/n-hexane solution, the cells selectively accumulated C12-C18 alkanes, with a preference for C15 and C16 homologues. The length of n-alkane hydrocarbon chains accumulated in cells was similar to the acyl chains of fatty acids of the diatom. We therefore suggest that the insertion of n-alkanes into the membrane lipid bilayer promotes the transmembrane transport of PAH in diatoms. Our results confirm the hypothesis that diatoms play a role in the elimination of hydrophobic hydrocarbons from aquatic systems.

  16. Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline.

    PubMed

    Dhir, Bhupinder; Sharmila, P; Saradhi, P Pardha

    2004-02-10

    Investigations were carried out to evaluate if hydrophytes (viz. Ceratophyllum, Wolffia, and Hydrilla) can be used as markers to assess the level of heavy metal pollution in aquatic bodies. The potential of these hydrophytes for lipid peroxidation and accumulation of proline in response to cadmium (Cd2+) pollution was studied. Hydrophytes were raised in artificial pond water (APW) supplemented with various levels of Cd2+. Interestingly, unlike mesophytes none of the hydrophytes showed ability to accumulate proline. Infact, in response to Cd2+ pollution hydrophytes exhibited a decline in proline levels in comparison to controls but mesophytes (viz. Brassica juncea, Vigna radiata and Triticum aestivum) showed progressive increase in the level of proline with increase in the extent of Cd2+ pollution. Mesophytes showed six to nine-fold increase in the level of proline in response to 1 mM Cd2+. The potential of the above hydrophytes for lipid peroxidation was also low under Cd2+ stress. In contrast, as expected a significant enhancement in the lipid peroxidation was observed in all three mesophytes in response to their exposure to Cd2+. About two-fold increase in production of malondialdehyde (a cytotoxic product of lipid peroxidation) was recorded in mesophytes exposed to 1 mM Cd2+. However, a decline in chlorophyll (Chl a and Chl b) levels was recorded in response to Cd2+pollution both in hydrophytes as well as mesophytes. In summary, hydrophytes neither have potential to accumulate proline nor have ability to accelerate lipid peroxidation under heavy metal stress. This suggests that the adaptive mechanism(s) existing in hydrophytes to tackle heavy metal stress is distinct from that in mesophytes.

  17. Converting lignin derived phenolic aldehydes into microbial lipid by Trichosporon cutaneum.

    PubMed

    Hu, Mingshan; Wang, Juan; Gao, Qiuqiang; Bao, Jie

    2018-06-18

    Lignin is one of the major components of lignocellulose biomass and chemically degrades into phenolic aldehydes including 4-hydroxybenzaldehyde, vanillin, and syringaldehyde. No lipid accumulation from the phenolic aldehydes by oleaginous microbes had been succeeded. Compared with vanillin and syringaldehyde, T. cutaneum ACCC 20271 have better tolerance to 4-hydroxybenzaldehyde. 4-Hydroxybenzaldehyde was found to be able as the substrate for lipid accumulation, while vanillin and syringaldehyde were only converted to less toxic phenolic alcohols and acids without observable lipid accumulation, perhaps due to the space shelling of methoxyl group(s) in the structures. A long term fed batch fermentation of 4-hydroxybenzaldehyde accumulated 0.85 g L -1 of lipid, equivalent to 0.039 g lipid per gram of 4-hydroxybenzaldehyde substrate, approximately 3.7 folds greater than the control without 4-hydroxybenzaldehyde addition. The fatty acid composition well met the need for biodiesel synthesis. The preliminary pathway from 4-hydroxybenzaldehyde to lipid was predicted. This study took the first experimental trial on utilizing phenolic aldehydes as the sole carbon sources for microbial lipid accumulation by T. cutaneum ACCC 20271. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Inhibitory effects of ethyl acetate-soluble fraction from morus alba on lipid accumulation in 3T3-L1 cells.

    PubMed

    Park, Hee-Sook; Shim, Soon-Mi; Kim, Gun-Hee

    2013-11-01

    Fruits of mulberry (Morus alba) have been widely used for therapeutic purposes in Asian countries for centuries. Treatment of 3T3-L1 cells with ethanolic extracts of M. alba decreased adipocyte differentiation at 100 microg/mL by 18.6%. Treatment suppressed mRNA levels of PPARgamma and C/EBPalpha expression in 3T3-L1 cells. However, the extract did not change free glycerol release from mature adipocytes. Thus, M. alba inhibited lipid accumulation by regulating transcription factors in 3T3-L1 adipocytes without a lipolytic effect. Among the soluble- fractions, the ethyl acetate-soluble fraction had the highest antiadipogenic effects on 3T3-L1 cells. This fraction decreasing intracellular lipid accumulation by 38.5% in response to treatment with 100 microg/mL. In addition, HPLC analysis of the ethyl acetate-soluble fraction of M. alba contained 167.7 microM of protocatechulic acid in 1 mg/mL of fraction, which inhibited lipid accumulation by 44.8% in response to treatment with 100 microM. From these results, M. alba is a possible candidate for regulating lipid accumulation in obesity.

  19. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms.

    PubMed

    Meng, Xin; Yang, Jianming; Cao, Yujin; Li, Liangzhi; Jiang, Xinglin; Xu, Xin; Liu, Wei; Xian, Mo; Zhang, Yingwei

    2011-08-01

    Unlike many oleaginous microorganisms, E. coli only maintains a small amount of natural lipids in cells, impeding its utility to overproduce fatty acids. In this study, acetyl-CoA carboxylase (ACC) from Acinetobacter calcoaceticus was expressed in E. coli to redirect the carbon flux to the generation of malonyl-CoA, which resulted in a threefold increase in intracellular lipids. Moreover, providing a high level of NADPH by overexpressing malic enzyme and adding malate to the culture medium resulted in a fourfold increase in intracellular lipids (about 197.74 mg/g). Co-expression of ACC and malic enzyme resulted in 284.56 mg/g intracellular lipids, a 5.6-fold increase compared to the wild-type strain. This study provides some attractive strategies for increasing lipid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms, which could aid the development of a prokaryotic fatty acid producer.

  20. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions.

    PubMed

    Wu, Siguo; Zhao, Xin; Shen, Hongwei; Wang, Qian; Zhao, Zongbao K

    2011-01-01

    Novel biochemical approaches remain to be developed to improve microbial lipid technology. This study demonstrated that sulfate limitation was effective to promote accumulating substantial amounts of intracellular lipid by the oleaginous yeast Rhodosporidium toruloides Y4. When it was cultivated using a medium with an initial carbon-to-sulfur (C/S) molar ratio of 46,750, cellular lipid content reached up to 58.3%. The time courses of cell growth, lipid accumulation and nutrient depletion were analyzed and discussed in terms of lipid biosynthesis. Moreover, lipid accumulation under sulfate-limited conditions was effective regardless of the presence of a high concentration of nitrogen sources. Thus, lipid contents almost held constant at near 57% in the media with an initial C/S molar ratio of 11,380 although the carbon-to-nitrogen molar ratio ranged from 28.3 to 5.7. Taken together, our results established the sulfate-limitation approach to control lipid biosynthesis, which should be valuable to explore nitrogen-rich raw materials as the feedstock for lipid production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells.

    PubMed

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N; Dietzgen, Ralf G; Roberts-Thomson, Sarah J; Gidley, Michael J; Monteith, Gregory R

    2013-02-26

    Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.

  2. Characterization of polysaccharides with marked inhibitory effect on lipid accumulation in Pleurotus eryngii.

    PubMed

    Chen, Jingjing; Yong, Yangyang; Xing, Meichun; Gu, Yifan; Zhang, Zhao; Zhang, Shizhu; Lu, Ling

    2013-09-12

    Mushrooms have a great potential for the production of useful bioactive metabolites. To explore the bioactive compounds from edible mushrooms for interfering with the development of macrophage-derived foam cells, which is recognized as the hallmark of early atherosclerosis, eight types of mushrooms polysaccharides had been selected to be tested. Consequently, different mushrooms polysaccharides displayed diverse component profiles. Of polysaccharides that we tested, the Pleurotus eryngii polysaccharide had the strongest inhibitory effect on lipid accumulation. Furthermore, through fractionation of DEAE-52 and Sephadex G-100, the polysaccharide from P. eryngii had been successfully purified and identified. By the analysis of IR, GC, and HPLC, the purified polysaccharide was estimated to be 30-38 kDa for the average molecular weight with the monosaccharide composition mainly composed of D-types of mannose, glucose and galactose. Findings presented in this report firstly provide direct evidence, which links the purified polysaccharide moiety with the biological function in foam-cell model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Jinlida granule inhibits palmitic acid induced-intracellular lipid accumulation and enhances autophagy in NIT-1 pancreatic β cells through AMPK activation.

    PubMed

    Wang, Dingkun; Tian, Min; Qi, Yuan; Chen, Guang; Xu, Lijun; Zou, Xin; Wang, Kaifu; Dong, Hui; Lu, Fuer

    2015-02-23

    TOR and the up-regulation of TSC1 and LC3-II proteins expression. However, when AMPK phosphorylation was inhibited by Compound C, JLDG supplementation did not exhibit any effect on the expression of these AMPK downstream molecules in NIT-1 cells. The results suggest that JLDG could reduce intracellular lipid accumulation and enhance the autophagy in NIT-1 pancreatic β cells cultured with PA. The mechanism is possibly mediated by AMPK activation. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Effects and mechanisms of apolipoprotein A-V on the regulation of lipid accumulation in cardiomyocytes.

    PubMed

    Luo, Jun; Xu, Li; Li, Jiang; Zhao, Shuiping

    2018-03-12

    Apolipoprotein (apo) A-V is a key regulator of triglyceride (TG) metabolism. We investigated effects of apoA-V on lipid metabolism in cardiomyocytes in this study. We first examined whether apoA-V can be taken up by cardiomyocytes and whether low density lipoprotein receptor family members participate in this process. Next, triglyceride (TG) content and lipid droplet changes were detected at different concentrations of apoA-V in normal and lipid-accumulation cells in normal and obese animals. Finally, we tested the levels of fatty acids (FAs) taken up into cardiomyocytes and lipid secretion through [ 14 C]-oleic acid. Our results show that heart tissue has apoA-V protein, and apoA-V is taken up by cardiomyocytes. When HL-1 cells were transfected with low density lipoprotein receptor (LDLR)-related protein 1(LRP1) siRNA, apoA-V intake decreased by 53% (P<0.05), while a 37% lipid accumulation in HL-1 cells remain unchanged. ApoA-V localized to the cytoplasm and was associated with lipid droplets in HL-1 cells. A 1200 and 1800 ng/mL apoA-V intervention decreased TG content by 28% and 45% in HL-1 cells, respectively and decreased TG content by 39% in mouse heart tissue (P<0.05). However, apoA-V had no effects on TG content in either normal HL-1 cells or mice. The levels of FAs taken up into cardiomyocytes decreased by 43% (P < 0.05), and the levels of TG and cholesterol ester secretion increased by 1.2-fold and 1.6-fold, respectively (P < 0.05). ApoA-V is a novel regulator of lipid metabolism in cardiomyocytes.

  5. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 andmore » mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.« less

  6. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease.

    PubMed

    Lin, Yi; Ding, Dongxiao; Huang, Qiansheng; Liu, Qiong; Lu, Haoyang; Lu, Yanyang; Chi, Yulang; Sun, Xia; Ye, Guozhu; Zhu, Huimin; Wei, Jie; Dong, Sijun

    2017-09-01

    Exposure to Bisphenol A (BPA) has been associated with the development of nonalcoholic fatty liver disease (NAFLD) but the underlying mechanism remains unclear. Given that microRNA (miRNA) is recognized as a key regulator of lipid metabolism and a potential mediator of environmental cues, this study was designed to explore whether exposure to BPA-triggered abnormal steatosis and lipid accumulation in the liver could be modulated by miR-192. We showed that male post-weaning C57BL/6 mice exposed to 50μg/kg/day of BPA by oral gavage for 90days displayed a NAFLD-like phenotype. In addition, we found in mouse liver and human HepG2 cells that BPA-induced hepatic steatosis and lipid accumulation were associated with decreased expression of miR-192, upregulation of SREBF1 and a series of genes involved in de novo lipogenesis. Downregulation of miR-192 in BPA-exposed hepatocytes could be due to defective pre-miR-192 processing by DROSHA. Using HepG2 cells, we further confirmed that miR-192 directly acted on the 3'UTR of SREBF1, contributing to dysregulation of lipid homeostasis in hepatocytes. MiR-192 mimic and lentivirus-mediated overexpression of miR-192 improved BPA-induced hepatic steatosis by suppressing SREBF1. Lastly, we noted that lipid accumulation was not a strict requirement for developing insulin resistance in mice after BPA treatment. In conclusion, this study demonstrated a novel mechanism in which NAFLD associated with BPA exposure arose from alterations in the miR-192-SREBF1 axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel.

    PubMed

    Cheirsilp, Benjamas; Louhasakul, Yasmi

    2013-08-01

    Two strategies of converting industrial wastes to microbial lipid and direct transesterification of obtained lipid into biodiesel were attempted. Several oleaginous yeasts were cultivated on industrial wastes. The yeasts grew well on the wastes with low C/N ratio (i.e. serum latex) but accumulated high lipid content only when the wastes had a high C/N ratio (i.e. palm oil mill effluent and crude glycerol). The yeast lipids have similar fatty acid composition to that of plant oil indicating their potential use as biodiesel feedstocks. The combination of these wastes and two-phase cultivation for cell growth and lipid accumulation improved lipid productivity of the selected yeast. The direct transesterification process that eliminates cell drying and lipid extraction steps, gave comparable yield of biodiesel (fatty acid methyl ester >70% within 1h) to that of conventional method. These two successful strategies may contribute greatly to industrializing oil production from microbes and industrial wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Micronutrients-fortified rapeseed oil improves hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet

    PubMed Central

    2013-01-01

    Intake of high-fat diet is associated with increased fatty livers. Hepatic lipid accumulation and oxidative stress are key pathophysiological mechanisms in this disease. Micronutrients polyphenols, tocopherols and phytosterols in rapeseed exert potential benefit to hepatoprotection, but most of these micronutrients are removed by the traditional refining process. The purpose of the present study was to determine whether rapeseed oil fortified with these micronutrients can decrease hepatic lipid accumulation and oxidative stress induced by high-fat diet. Sprague–Dawley rats received rodent diet contained 20% fat whose source was refined rapeseed oil (RRO) or fortified RRO with low, middle and high quantities of these micronutrients for 10 weeks. Intake of RRO caused a remarkable hepatic steatosis. Micronutrients supplementation was effective in reducing steatosis as well as total triglyceride and total cholesterol contents in liver. These micronutrients also significantly increased hepatic antioxidant defense capacities, as evaluated by the significant elevation in the activities of SOD and GPx as well as the level of GSH, and the significant decline in lipid peroxidation. These findings suggest that rapeseed oil fortified with micronutrients polyphenols, tocopherols and phytosterols may contribute to prevent fatty livers such as nonalcoholic fatty liver disease by ameliorating hepatic lipid accumulation and oxidative stress. PMID:23510587

  9. Step changes in leaf oil accumulation via iterative metabolic engineering.

    PubMed

    Vanhercke, Thomas; Divi, Uday K; El Tahchy, Anna; Liu, Qing; Mitchell, Madeline; Taylor, Matthew C; Eastmond, Peter J; Bryant, Fiona; Mechanicos, Anna; Blundell, Cheryl; Zhi, Yao; Belide, Srinivas; Shrestha, Pushkar; Zhou, Xue-Rong; Ral, Jean-Philippe; White, Rosemary G; Green, Allan; Singh, Surinder P; Petrie, James R

    2017-01-01

    Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a previously established Nicotiana tabacum line, accumulating up to 15% (dry weight) of the storage lipid triacylglycerol in leaf tissue. To overcome this metabolic bottleneck, we either silenced the SDP1 lipase or overexpressed the Arabidopsis thaliana LEC2 transcription factor in this transgenic background. Both strategies independently resulted in the accumulation of 30-33% triacylglycerol in leaf tissues. Our results demonstrate that the combined optimization of de novo fatty acid biosynthesis, storage lipid assembly and lipid turnover in leaf tissue results in a major overhaul of the plant central carbon allocation and lipid metabolism. The resulting further step changes in oil accumulation in the entire plant biomass offers the possibility of delivering yields that outperform current oilseed crops. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Cellular uptake and metabolism of curcuminoids in monocytes/macrophages: regulatory effects on lipid accumulation

    USDA-ARS?s Scientific Manuscript database

    We previously showed that curcumin (CUR) may increase lipid accumulation in cultured THP-1 monocytes/macrophages, but tetrahydrocurcumin (THC), an in vivo metabolite of CUR, had no such effect. In the present study, we have hypothesized that different cellular uptake and/or metabolism of CUR and THC...

  11. MicroRNA-186 promotes macrophage lipid accumulation and secretion of pro-inflammatory cytokines by targeting cystathionine γ-lyase in THP-1 macrophages.

    PubMed

    Yao, Yan; Zhang, Xin; Chen, Hai-Peng; Li, Liang; Xie, Wei; Lan, Gang; Zhao, Zhen-Wang; Zheng, Xi-Long; Wang, Zong-Bao; Tang, Chao-Ke

    2016-07-01

    Several studies suggest that cardiomyocyte-enriched miR-186 is involved in cardiac injury and myocardial infarction, and also plays an important role in atherosclerotic diseases, but the underlying mechanism is unknown. Cystathionine-γ-lyase (CSE) is the predominant enzyme to produce H2S in the cardiovascular system. Here, miR-186 was identified to bind to the 3'UTR of CSE. In this study, we aimed at exploring whether miR-186 affects lipid accumulation and secretion of pro-inflammatory cytokines by targeting CSE and its underlying mechanism in human THP-1 macrophages and peripheral blood monocyte-derived macrophages (PBMDM). PBMDM just as a control group for the comparison with the THP-1 macrophages. MiR-186 target genes, CSE 3'UTR sequence and free energy were predicted and analyzed by bioinformatics analyses and dual-luciferase reporter assays. The expression of CSE mRNA and protein were measured by real-time quantitative PCR and western blot analyses. The lipid accumulation in THP-1 macrophages was detected by high performance liquid chromatography (HPLC). The effects of miR-186 on secretion of IL-6, IL-1β and TNF-α were examined by ELISA. Endogenous H2S was detected by spectrophotometry. Using small interfering RNA (siRNA) approach to decrease the expression of CSE protein and mRNA. We found that miR-186 directly inhibited CSE protein and mRNA expression through targeting CSE 3'UTR by bioinformatics analyses and dual-luciferase reporter assays. HPLC assays showed that miR-186 increased the lipid accumulation in human THP-1 macrophages. We also showed that miR-186 enhanced secretion of pro-inflammatory cytokines in human THP-1 macrophages. Using siRNA approach, we found that CSE siRNA could inhibit the miR-186 inhibitor-induced decrease in the expression of LPL protein and mRNA in human THP-1 macrophages, which was accompanied a decrease in the level of H2S. MicroRNA-186 promotes macrophage lipid accumulation and pro-inflammatory cytokine secretion by

  12. Lipid accumulation in human breast cancer cells injured by iron depletors.

    PubMed

    De Bortoli, Maida; Taverna, Elena; Maffioli, Elisa; Casalini, Patrizia; Crisafi, Francesco; Kumar, Vikas; Caccia, Claudio; Polli, Dario; Tedeschi, Gabriella; Bongarzone, Italia

    2018-04-03

    Current insights into the effects of iron deficiency in tumour cells are not commensurate with the importance of iron in cell metabolism. Studies have predominantly focused on the effects of oxygen or glucose scarcity in tumour cells, while attributing insufficient emphasis to the inadequate supply of iron in hypoxic regions. Cellular responses to iron deficiency and hypoxia are interlinked and may strongly affect tumour metabolism. We examined the morphological, proteomic, and metabolic effects induced by two iron chelators-deferoxamine (DFO) and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT)-on MDA-MB-231 and MDA-MB-157 breast cancer cells. These chelators induced a cytoplasmic massive vacuolation and accumulation of lipid droplets (LDs), eventually followed by implosive, non-autophagic, and non-apoptotic death similar to methuosis. Vacuoles and LDs are generated by expansion of the endoplasmic reticulum (ER) based on extracellular fluid import, which includes unsaturated fatty acids that accumulate in LDs. Typical physiological phenomena associated with hypoxia are observed, such as inhibition of translation, mitochondrial dysfunction, and metabolic remodelling. These survival-oriented changes are associated with a greater expression of epithelial/mesenchymal transcription markers. Iron starvation induces a hypoxia-like program able to scavenge nutrients from the extracellular environment, and cells assume a hypertrophic phenotype. Such survival strategy is accompanied by the ER-dependent massive cytoplasmic vacuolization, mitochondrial dysfunctions, and LD accumulation and then evolves into cell death. LDs containing a greater proportion of unsaturated lipids are released as a consequence of cell death. The consequence of the disruption of iron metabolism in tumour tissue and the effects of LDs on intercellular communication, cancer-inflammation axis, and immunity remain to be explored. Considering the potential benefits, these are crucial

  13. Tauroursodeoxycholic Acid Attenuates Lipid Accumulation in Endoplasmic Reticulum-Stressed Macrophages

    PubMed Central

    Hua, Yinan; Kandadi, Machender R.; Zhu, Meijun; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Background/Aim Recent evidence suggests that endoplasmic reticulum (ER) stress provoked under diabetic conditions augments the expression of scavenger receptors on macrophages, promoting the uptake of oxidized low-density lipoprotein (ox-LDL) uptake and atherogenesis. The aim of the present study was to test the hypothesis that the chemical chaperone tauroursodeoxycholic acid (TUDCA) attenuates lipid accumulation in macrophages subjected to ER stress. Methods Cultured human macrophages were subjected to ER-stress by treating them with tunicamycin. Lipid-uptake by macrophages subjected to ER-stress in the presence or absence of TUDCA was assessed by oil red O staining and by assessing the cellular uptake of Dil-ox-LDL by fluorescence measurement. Protein levels and phosphorylation status of ER stress markers, insulin-signalling molecules and scavenger receptor were assessed by Western blotting. Results Treatment of cultured human macrophages with the ER-stressor tunicamycin caused an increase in the protein levels of CD-36, and augmentation of lipid-uptake both of which were inhibited by TUDCA. TUDCA-treatment inhibited tunicamycin-induced ER-stress as evidenced by the attenuation of phosphorylation of eukaryotic translation initiation factor-2α and glucose reactive protein-78. In addition, TUDCA improved insulin signaling in macrophages by augmenting Akt-phosphorylation and blunting c-Jun N-terminal kinase activity. Conclusion Inhibition of macrophage ER-stress may represent a potential strategy in preventing atherogenesis under diabetic conditions. PMID:19834331

  14. Nanoparticle-mediated intracellular lipid accumulation during C2C12 cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp; Haniu, Hisao, E-mail: hhaniu@shinshu-u.ac.jp

    2011-03-25

    Research highlights: {yields} HTT2800 has a significant effect on intracellular lipid accumulation. {yields} HTT2800 reduced muscle-specific genes and led to the emergence of adipocyte-related genes. {yields} HT2800 converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells. -- Abstract: In this report, we sought to elucidate whether multiwall carbon nanotubes are involved in the modulation of the proliferation and differentiation of the skeletal muscle cell line C2C12. Skeletal muscle is a major mass peripheral tissue that accounts for 40% of total body weight and 50% of energy consumption. We focused on the differentiation pathway of myoblasts after exposuremore » to a vapor-grown carbon fiber, HTT2800, which is one of the most highly purified carbon nanotubes. This treatment leads in parallel to the expression of a typical adipose differentiation program. We found that HTT2800 stimulated intracellular lipid accumulation in C2C12 cells. We have also shown by quantified PCR analysis that the expression of adipose-related genes was markedly upregulated during HTT2800 exposure. Taken together, these results suggest that HTT2800 specifically converts the differentiation pathway of C2C12 myoblasts to that of adipoblast-like cells.« less

  15. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation.

    PubMed

    Yen, Hong-Wei; Chen, Pin-Wen; Chen, Li-Juan

    2015-05-01

    In this co-culture of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus, microalgae potentially acts as an oxygen generator for the growth of aerobic yeast while the yeast mutually provides CO2 to the microalgae as both carry out the production of lipids. To explore the synergistic effects of co-cultivation on the cells growth and total lipids accumulation, several co-culture process parameters including the carbon source concentration, temperature and dissolved oxygen level would be firstly investigated in the flask trials. The results of co-culture in a 5L photobioreactor revealed that about 40-50% of biomass increased and 60-70% of total lipid increased was observed as compared to the single culture batches. Besides the synergistic effects of gas utilization, the providing of trace elements to each other after the natural cells lysis was believed to be another benefit to the growth of the overall co-culture system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Accumulation of Reserve Carbohydrate by Rumen Protozoa and Bacteria in Competition for Glucose

    PubMed Central

    Denton, Bethany L.; Diese, Leanne E.; Firkins, Jeffrey L.

    2014-01-01

    The aim of this study was to determine if rumen protozoa could form large amounts of reserve carbohydrate compared to the amounts formed by bacteria when competing for glucose in batch cultures. We separated large protozoa and small bacteria from rumen fluid by filtration and centrifugation, recombined equal protein masses of each group into one mixture, and subsequently harvested (reseparated) these groups at intervals after glucose dosing. This method allowed us to monitor reserve carbohydrate accumulation of protozoa and bacteria individually. When mixtures were dosed with a moderate concentration of glucose (4.62 or 5 mM) (n = 2 each), protozoa accumulated large amounts of reserve carbohydrate; 58.7% (standard error of the mean [SEM], 2.2%) glucose carbon was recovered from protozoal reserve carbohydrate at time of peak reserve carbohydrate concentrations. Only 1.7% (SEM, 2.2%) was recovered in bacterial reserve carbohydrate, which was less than that for protozoa (P < 0.001). When provided a high concentration of glucose (20 mM) (n = 4 each), 24.1% (SEM, 2.2%) of glucose carbon was recovered from protozoal reserve carbohydrate, which was still higher (P = 0.001) than the 5.0% (SEM, 2.2%) glucose carbon recovered from bacterial reserve carbohydrate. Our novel competition experiments directly demonstrate that mixed protozoa can sequester sugar away from bacteria by accumulating reserve carbohydrate, giving protozoa a competitive advantage and stabilizing fermentation in the rumen. Similar experiments could be used to investigate the importance of starch sequestration. PMID:25548053

  17. Effects of plant growth regulators on the growth and lipid accumulation of Nannochloropsis oculata (droop) Hibberd

    NASA Astrophysics Data System (ADS)

    Trinh, Cam Tu; Tran, Thanh Huong; Bui, Trang Viet

    2017-09-01

    Nannochloropsis oculata cells were grown in f/2 modified medium of Chiu et al. (2009) supplemented with the plant growth regulators in different concentrations. Lipid accumulation of N. oculata cells was evaluated by using Nile Red dye and Fiji Image J with Analyze Particles. Indole-3-acetic acid (IAA) stimulated the increase of cell density in rapid growth phase (day 6) at high concentration (0.75 mg/L) and in slow growth phase (day 10) at lower concentration (0.50 mg/L). IAA, gibberellic acid (GA3) and zeatin increased content of chlorophyll a, in particular, in f/2 modified medium supplemented with 0.5 mg/L zeatin at the 10th day of culture. Roles of plant growth regulators in growth and lipid accumulation of N. oculata were discussed.

  18. Triiodothyronine enhances accumulation of intracellular lipids in adipocytes through thyroid hormone receptor α via direct and indirect mechanisms.

    PubMed

    Gambo, Yurina; Matsumura, Miki; Fujimori, Ko

    2016-08-15

    Triiodothyronine (T3) enhanced the expression of adipogenic and lipogenic genes with elevation of the intracellular lipids through thyroid hormone receptor (TR) α in mouse 3T3-L1 cells. However, the transcription of the SREBP-1c and HSL genes was decreased by T3. Such T3-mediated alterations were negated by TRα siRNA. Chromatin immunoprecipitation assay showed that the binding of TRα to the TR-responsive element (TRE) of the FAS promoter was elevated by T3. In contrast, the ability of TRα to bind to the TRE of the SREBP-1c promoter was decreased by T3. In addition, the binding of SREBP-1c to the SRE of the HSL promoter was lowered by T3. These results indicate that T3 increased the accumulation of intracellular lipids by enhancing the expression of the FAS gene through direct binding of TRα to the FAS promoter and simultaneously lowered the amount of lipolysis via reduced binding of T3-decreased SREBP-1c to the HSL promoter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Accumulation of reserve carbohydrate by rumen protozoa and bacteria in competition for glucose.

    PubMed

    Denton, Bethany L; Diese, Leanne E; Firkins, Jeffrey L; Hackmann, Timothy J

    2015-03-01

    The aim of this study was to determine if rumen protozoa could form large amounts of reserve carbohydrate compared to the amounts formed by bacteria when competing for glucose in batch cultures. We separated large protozoa and small bacteria from rumen fluid by filtration and centrifugation, recombined equal protein masses of each group into one mixture, and subsequently harvested (reseparated) these groups at intervals after glucose dosing. This method allowed us to monitor reserve carbohydrate accumulation of protozoa and bacteria individually. When mixtures were dosed with a moderate concentration of glucose (4.62 or 5 mM) (n = 2 each), protozoa accumulated large amounts of reserve carbohydrate; 58.7% (standard error of the mean [SEM], 2.2%) glucose carbon was recovered from protozoal reserve carbohydrate at time of peak reserve carbohydrate concentrations. Only 1.7% (SEM, 2.2%) was recovered in bacterial reserve carbohydrate, which was less than that for protozoa (P < 0.001). When provided a high concentration of glucose (20 mM) (n = 4 each), 24.1% (SEM, 2.2%) of glucose carbon was recovered from protozoal reserve carbohydrate, which was still higher (P = 0.001) than the 5.0% (SEM, 2.2%) glucose carbon recovered from bacterial reserve carbohydrate. Our novel competition experiments directly demonstrate that mixed protozoa can sequester sugar away from bacteria by accumulating reserve carbohydrate, giving protozoa a competitive advantage and stabilizing fermentation in the rumen. Similar experiments could be used to investigate the importance of starch sequestration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Mitochondrial-Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation.

    PubMed

    Lee, Hui-Young; Lee, Jae Sung; Alves, Tiago; Ladiges, Warren; Rabinovitch, Peter S; Jurczak, Michael J; Choi, Cheol Soo; Shulman, Gerald I; Samuel, Varman T

    2017-08-01

    We explored the role of reactive oxygen species (ROS) in the pathogenesis of muscle insulin resistance. We assessed insulin action in vivo with a hyperinsulinemic-euglycemic clamp in mice expressing a mitochondrial-targeted catalase (MCAT) that were fed regular chow (RC) or a high-fat diet (HFD) or underwent an acute infusion of a lipid emulsion. RC-fed MCAT mice were similar to littermate wild-type (WT) mice. However, HFD-fed MCAT mice were protected from diet-induced insulin resistance. In contrast, an acute lipid infusion caused muscle insulin resistance in both MCAT and WT mice. ROS production was decreased in both HFD-fed and lipid-infused MCAT mice and cannot explain the divergent response in insulin action. MCAT mice had subtly increased energy expenditure and muscle fat oxidation with decreased intramuscular diacylglycerol (DAG) accumulation, protein kinase C-θ (PKCθ) activation, and impaired insulin signaling with HFD. In contrast, the insulin resistance with the acute lipid infusion was associated with increased muscle DAG content in both WT and MCAT mice. These studies suggest that altering muscle mitochondrial ROS production does not directly alter the development of lipid-induced insulin resistance. However, the altered energy balance in HFD-fed MCAT mice protected them from DAG accumulation, PKCθ activation, and impaired muscle insulin signaling. © 2017 by the American Diabetes Association.

  1. Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level.

    PubMed

    Tang, Xin; Zan, Xinyi; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda; Ratledge, Colin

    2016-02-11

    The oleaginous fungus, Mucor circinelloides, is attracting considerable interest as it produces oil rich in γ-linolenic acid. Nitrogen (N) deficiency is a common strategy to trigger the lipid accumulation in oleaginous microorganisms. Although a simple pathway from N depletion in the medium to lipid accumulation has been elucidated at the enzymatic level, global changes at protein levels upon N depletion have not been investigated. In this study, we have systematically analyzed the changes at the levels of protein expression in M. circinelloides WJ11, a high lipid-producing strain (36 %, lipid/cell dry weight), during lipid accumulation. Proteomic analysis demonstrated that N depletion increased the expression of glutamine synthetase, involved in ammonia assimilation, for the supply of cellular nitrogen but decreased the metabolism of amino acids. Upon N deficiency, many proteins (e.g., fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase) involved in glycolytic pathway were up-regulated while proteins involved in the tricarboxylic acid cycle (e.g., isocitrate dehydrogenase, succinyl-CoA ligase, succinate dehydrogenase, fumarate hydratase) were down-regulated, indicating this activity was retarded thereby leading to a greater flux of carbon into fatty acid biosynthesis. Moreover, glucose-6-phosphate dehydrogenase, transaldolase and transketolase, which participate in the pentose phosphate pathway, were up-regulated, leading to the increased production of NADPH, the reducing power for fatty acid biosynthesis. Furthermore, protein and nucleic acid metabolism were down-regulated and some proteins involved in energy metabolism, signal transduction, molecular chaperone and redox homeostasis were up-regulated upon N depletion, which may be the cellular response to the stress produced by the onset of N deficiency. N limitation increased those expressions of the proteins involved in ammonia assimilation but decreased that

  2. Cell growth and lipid accumulation of a microalgal mutant Scenedesmus sp. Z-4 by combining light/dark cycle with temperature variation.

    PubMed

    Ma, Chao; Zhang, Yan-Bo; Ho, Shih-Hsin; Xing, De-Feng; Ren, Nan-Qi; Liu, Bing-Feng

    2017-01-01

    The light/dark cycle is one of the most important factors affecting the microalgal growth and lipid accumulation. Biomass concentration and lipid productivity could be enhanced by optimization of light/dark cycles, and this is considered an effective control strategy for microalgal cultivation. Currently, most research on effects of light/dark cycles on algae is carried out under autotrophic conditions and little information is about the effects under mixotrophic cultivation. At the same time, many studies related to mixotrophic cultivation of microalgal strains, even at large scale, have been performed to obtain satisfactory biomass and lipid production. Therefore, it is necessary to investigate cellular metabolism under autotrophic and mixotrophic conditions at different light/dark cycles. Even though microalgal lipid production under optimal environmental factors has been reported by some researchers, the light/dark cycle and temperature are regarded as separate parameters in their studies. In practical cases, light/dark cycling and temperature variation during the day occur simultaneously. Therefore, studies about the combined effects of light/dark cycles and temperature variation on microalgal lipid production are of practical value, potentially providing significant guidelines for large-scale microalgal cultivation under natural conditions. In this work, cell growth and lipid accumulation of an oleaginous microalgal mutant, Scenedesmus sp. Z-4, were investigated at five light/dark cycles (0 h/24 h, 8 h/16 h, 12 h/12 h, 16 h/8 h, and 24 h/0 h) in batch culture. The results showed that the optimal light/dark cycle was 12 h/12 h, when maximum lipid productivity rates of 56.8 and 182.6 mg L -1  day -1 were obtained under autotrophic and mixotrophic cultivation, respectively. Poor microalgal growth and lipid accumulation appeared in the light/dark cycles of 0 h/24 h and 24 h/0 h under autotrophic condition. Prolonging the light duration was

  3. Zanthoxylum ailanthoides Suppresses Oleic Acid-Induced Lipid Accumulation through an Activation of LKB1/AMPK Pathway in HepG2 Cells

    PubMed Central

    Kwon, Eun-Bin; Kang, Myung-Ji; Kim, Soo-Yeon; Lee, Yong-Moon; Lee, Mi-Kyeong; Yuk, Heung Joo; Ryu, Hyung Won; Lee, Su Ui

    2018-01-01

    Zanthoxylum ailanthoides (ZA) has been used as folk medicines in East Asian and recently reported to have several bioactivity; however, the studies of ZA on the regulation of triacylglycerol (TG) biosynthesis have not been elucidated yet. In this study, we examined whether the methanol extract of ZA (ZA-M) could reduce oleic acid- (OA-) induced intracellular lipid accumulation and confirmed its mode of action in HepG2 cells. ZA-M was shown to promote the phosphorylation of AMPK and its upstream LKB1, followed by reduction of lipogenic gene expressions. As a result, treatment of ZA-M blocked de novo TG biosynthesis and subsequently mitigated intracellular neutral lipid accumulation in HepG2 cells. ZA-M also inhibited OA-induced production of reactive oxygen species (ROS) and TNF-α, suggesting that ZA-M possess the anti-inflammatory feature in fatty acid over accumulated condition. Taken together, these results suggest that ZA-M attenuates OA-induced lipid accumulation and inflammation through the activation of LKB1/AMPK signaling pathway in HepG2 cells. PMID:29507591

  4. Zanthoxylum ailanthoides Suppresses Oleic Acid-Induced Lipid Accumulation through an Activation of LKB1/AMPK Pathway in HepG2 Cells.

    PubMed

    Kwon, Eun-Bin; Kang, Myung-Ji; Kim, Soo-Yeon; Lee, Yong-Moon; Lee, Mi-Kyeong; Yuk, Heung Joo; Ryu, Hyung Won; Lee, Su Ui; Oh, Sei-Ryang; Moon, Dong-Oh; Lee, Hyun-Sun; Kim, Mun-Ock

    2018-01-01

    Zanthoxylum ailanthoides (ZA) has been used as folk medicines in East Asian and recently reported to have several bioactivity; however, the studies of ZA on the regulation of triacylglycerol (TG) biosynthesis have not been elucidated yet. In this study, we examined whether the methanol extract of ZA (ZA-M) could reduce oleic acid- (OA-) induced intracellular lipid accumulation and confirmed its mode of action in HepG2 cells. ZA-M was shown to promote the phosphorylation of AMPK and its upstream LKB1, followed by reduction of lipogenic gene expressions. As a result, treatment of ZA-M blocked de novo TG biosynthesis and subsequently mitigated intracellular neutral lipid accumulation in HepG2 cells. ZA-M also inhibited OA-induced production of reactive oxygen species (ROS) and TNF- α , suggesting that ZA-M possess the anti-inflammatory feature in fatty acid over accumulated condition. Taken together, these results suggest that ZA-M attenuates OA-induced lipid accumulation and inflammation through the activation of LKB1/AMPK signaling pathway in HepG2 cells.

  5. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives

    PubMed Central

    2015-01-01

    In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century. PMID:24628496

  6. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives.

    PubMed

    Garay, Luis A; Boundy-Mills, Kyria L; German, J Bruce

    2014-04-02

    In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century.

  7. TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis.

    PubMed

    Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao

    2015-09-01

    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Low-carbohydrate diets reduce lipid accumulation and arterial inflammation in guinea pigs fed a high-cholesterol diet.

    PubMed

    Leite, Jose O; DeOgburn, Ryan; Ratliff, Joseph; Su, Randy; Smyth, Joan A; Volek, Jeff S; McGrane, Mary M; Dardik, Alan; Fernandez, Maria Luz

    2010-04-01

    Low-carbohydrate diets (LCD) efficiently induce weight loss and favorably affect plasma lipids, however, the effect of LCD on atherosclerosis is still argued. To evaluate the effect of LCD on the prevention of atherosclerosis. Twenty guinea pigs were fed either a LCD or a low-fat diet (LFD) in combination with high-cholesterol (0.25g/100g) for 12 weeks. The percentage energy of macronutrient distribution was 10:65:25 for carbohydrate:fat:protein for the LCD, and 55:20:25 for the LFD. Plasma lipids were measured using colorimetric assays. Plasma and aortic oxidized (oxLDL) were quantified using ELISA methods. Inflammatory cytokines were measured in aortic homogenates using an immunoassay. H&E stained sections of aortic sinus and Schultz stained sections of carotid arteries were examined. LDL cholesterol was lower in the LCD compared to the LFD group (71.9+/-34.8 vs. 81.7+/-26.9mg/dL; p=0.039). Aortic cholesterol was also lower in the LCD (4.98+/-1.3mg/g) compared to the LFD group (6.68+/-2.0mg/g); p<0.05. The Schultz staining method confirmed less aortic cholesterol accumulation in the LCD group. Plasma oxLDL did not differ between groups, however, aortic oxLDL was 61% lower in the LCD compared to the LFD group (p=0.045). There was a positive correlation (r=0.63, p=0.03) between oxLDL and cholesterol concentration in the aorta of LFD group, which was not observed in LCD group (r=-0.05, p=0.96). Inflammatory markers were reduced in guinea pigs from the LCD group (p<0.05) and they were correlated with the decreases in oxLDL in aorta. These results suggest that LCD not only decreases lipid deposition, but also prevents the accumulation of oxLDL and reduces inflammatory cytokines within the arterial wall and may prevent atherosclerosis. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  9. The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains.

    PubMed

    Wu, Guanxun; Gao, Zhengquan; Du, Huanmin; Lin, Bin; Yan, Yuchen; Li, Guoqiang; Guo, Yanyun; Fu, Shenggui; Wei, Gongxiang; Wang, Miaomiao; Cui, Meng; Meng, Chunxiao

    2018-03-27

    Sustainable renewable energy is being hotly debated globally because the continued use of finite fossil fuels is now widely recognized as being unsustainable. Microalgae potentially offer great opportunities for resolving this challenge. Abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) are involved in regulating many physiological properties and have been widely used in higher plants. To test if phytohormones have an impact on accumulating lipid for microalgae, ABA, JA and SA were used to induce two Chlorella strains in the present study. The results showed 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L JA, led strain C. vulgaris ZF strain to produce a 45%, 42% and 49% lipid content that was 1.8-, 1.7- and 2.0-fold that of controls, respectively. For FACHB 31 (number 31 of the Freshwater Algae Culture Collection at the Institute of Hydrobiology, Chinese Academy of Sciences), the addition of 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L, JA produced 33%, 30% and 38% lipid content, which was 1.8-, 1.6- and 2.1-fold that of controls, respectively. As for lipid productivity, 1.0 mg/L ABA increased the lipid productivity of C. vulgaris ZF strain and FACHB-31 by 123% and 44%; 10 mg/L SA enhanced lipid productivity by 100% and 33%; the best elicitor, 0.5 mg/L JA, augmented lipid productivity by 127% and 75% compared to that of controls, respectively. The results above suggest that the three phytohormones at physiological concentrations play crucial roles in inducing lipid accumulation in Chlorella.

  10. Atorvastatin reduces lipid accumulation in the liver by activating protein kinase A-mediated phosphorylation of perilipin 5.

    PubMed

    Gao, Xing; Nan, Yang; Zhao, Yuanlin; Yuan, Yuan; Ren, Bincheng; Sun, Chao; Cao, Kaiyu; Yu, Ming; Feng, Xuyang; Ye, Jing

    2017-12-01

    Statins have been proven to be effective in treating non-alcoholic fatty liver disease (NAFLD). Recently, it was reported that statins decreased the hepatic expression of perilipin 5 (Plin5), a lipid droplet (LD)-associated protein, which plays critical roles in regulating lipid accumulation and lipolysis in liver. However, the function and regulation mechanism of Plin5 have not yet been well-established in NAFLD treatment with statins. In this study, we observed that atorvastatin moderately reduced the expression of Plin5 in livers without changing the protein level of Plin5 in the hepatic LD fraction of mice fed with high-fat diet (HFD). Intriguingly, atorvastatin stimulated the PKA-mediated phosphorylation of Plin5 and reduced the triglyceride (TG) accumulation in hepatocytes with overexpression of wide type (Plin5-WT) compared to serine-155 mutant Plin5 (Plin5-S155A). Moreover, PKA-stimulated FA release of purified LDs carrying Plin5-WT but not Plin5-S155A. Glucagon, a PKA activator, stimulated the phosphorylation of Plin5-WT and inhibited its interaction with CGI-58. The results indicated that atorvastatin promoted lipolysis and reduced TG accumulation in the liver by increasing PKA-mediated phosphorylation of Plin5. This new mechanism of lipid-lowering effects of atorvastatin might provide a new strategy for NAFLD treatment. Copyright © 2017. Published by Elsevier B.V.

  11. Disruption of the human CGI-58 homologue in Arabidopsis results in lipid droplet accumulation in the cytosol of plant cells

    USDA-ARS?s Scientific Manuscript database

    CGI-58 has been identified as the causative gene in the human neutral lipid storage disease called Chanarin-Dorfman Syndrome. This disorder results in accumulation of intracellular lipid droplets in non-adipose tissues. Here we show that disruption of the homologous CGI-58 gene in Arabidopsis thal...

  12. A Combination of Flaxseed Oil and Astaxanthin Improves Hepatic Lipid Accumulation and Reduces Oxidative Stress in High Fat-Diet Fed Rats

    PubMed Central

    Xu, Jiqu; Rong, Shuang; Gao, Hui; Chen, Chang; Yang, Wei; Deng, Qianchun; Huang, Qingde; Xiao, Lingyun; Huang, Fenghong

    2017-01-01

    Hepatic lipid accumulation and oxidative stress are crucial pathophysiological mechanisms for non-alcoholic fatty liver disease (NAFLD). Thus, we examined the effect of a combination of flaxseed oil (FO) and astaxanthin (ASX) on hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. ASX was dissolved in flaxseed oil (1 g/kg; FO + ASX). Animals were fed diets containing 20% fat, where the source was lard, or 75% lard and 25% FO + ASX, or 50% lard and 50% FO + ASX, or FO + ASX, for 10 weeks. Substitution of lard with FO + ASX reduced steatosis and reduced hepatic triacylglycerol and cholesterol. The combination of FO and ASX significantly decreased hepatic sterol regulatory element-binding transcription factor 1 and 3-hydroxy-3-methylglutaryl-CoA reductase but increased peroxisome proliferator activated receptor expression. FO + ASX significantly suppressed fatty acid synthase and acetyl CoA carboxylase but induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. FO + ASX also significantly elevated hepatic SOD, CAT and GPx activity and GSH, and markedly reduced hepatic lipid peroxidation. Thus, FO and ASX may reduce NAFLD by reversing hepatic steatosis and reducing lipid accumulation and oxidative stress. PMID:28335388

  13. Antidepressants Accumulate in Lipid Rafts Independent of Monoamine Transporters to Modulate Redistribution of the G Protein, Gαs.

    PubMed

    Erb, Samuel J; Schappi, Jeffrey M; Rasenick, Mark M

    2016-09-16

    Depression is a significant public health problem for which currently available medications, if effective, require weeks to months of treatment before patients respond. Previous studies have shown that the G protein responsible for increasing cAMP (Gαs) is increasingly localized to lipid rafts in depressed subjects and that chronic antidepressant treatment translocates Gαs from lipid rafts. Translocation of Gαs, which shows delayed onset after chronic antidepressant treatment of rats or of C6 glioma cells, tracks with the delayed onset of therapeutic action of antidepressants. Because antidepressants appear to specifically modify Gαs localized to lipid rafts, we sought to determine whether structurally diverse antidepressants accumulate in lipid rafts. Sustained treatment of C6 glioma cells, which lack 5-hydroxytryptamine transporters, showed marked concentration of several antidepressants in raft fractions, as revealed by increased absorbance and by mass fingerprint. Closely related molecules without antidepressant activity did not concentrate in raft fractions. Thus, at least two classes of antidepressants accumulate in lipid rafts and effect translocation of Gαs to the non-raft membrane fraction, where it activates the cAMP-signaling cascade. Analysis of the structural determinants of raft localization may both help to explain the hysteresis of antidepressant action and lead to design and development of novel substrates for depression therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malur, Anagha; Huizar, Isham; Wells, Greg

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO)more » mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as

  15. Modeling and optimization of lipid accumulation by Yarrowia lipolytica from glucose under nitrogen depletion conditions.

    PubMed

    Robles-Rodríguez, Carlos E; Muñoz-Tamayo, Rafael; Bideaux, Carine; Gorret, Nathalie; Guillouet, Stéphane E; Molina-Jouve, Carole; Roux, Gilles; Aceves-Lara, César A

    2018-05-01

    Oleaginous yeasts have been seen as a feasible alternative to produce the precursors of biodiesel due to their capacity to accumulate lipids as triacylglycerol having profiles with high content of unsaturated fatty acids. The yeast Yarrowia lipolytica is a promising microorganism that can produce lipids under nitrogen depletion conditions and excess of the carbon source. However, under these conditions, this yeast also produces citric acid (overflow metabolism) decreasing lipid productivity. This work presents two mathematical models for lipid production by Y. lipolytica from glucose. The first model is based on Monod and inhibition kinetics, and the second one is based on the Droop quota model approach, which is extended to yeast. The two models showed good agreements with the experimental data used for calibration and validation. The quota based model presented a better description of the dynamics of nitrogen and glucose dynamics leading to a good management of N/C ratio which makes this model interesting for control purposes. Then, quota model was used to evaluate, by means of simulation, a scenario for optimizing lipid productivity and lipid content. For that, a control strategy was designed by approximating the flow rates of glucose and nitrogen with piecewise linear functions. Simulation results achieved productivity of 0.95 g L -1  hr -1 and lipid content fraction of 0.23 g g -1 , which indicates that this strategy is a promising alternative for the optimization of lipid production. © 2017 Wiley Periodicals, Inc.

  16. Lysosomal Lipid Storage Diseases

    PubMed Central

    Schulze, Heike; Sandhoff, Konrad

    2011-01-01

    Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a “traffic jam.” This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement. PMID:21502308

  17. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation

    DOE PAGES

    Cai, Yingqi; Goodman, Joel M.; Pyc, Michal; ...

    2015-09-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especiallymore » SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Finally, overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets.« less

  18. Pycnogenol® inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses.

    PubMed

    Lee, Ok-Hwan; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-03-01

    Pycnogenol® is a group of flavonoids with antioxidant effects. Adipogenesis is the process of adipocyte differentiation. It causes the increase of lipids as well as ROS (reactive oxygen species). Lipid accumulation and ROS production were determined in 3 T3-L1 adipocyte, and the effect of Pycnogenol® was evaluated. Lipid accumulation was elevated in adipocyte treated with hydrogen peroxide, one of the ROS. Pycnogenol® showed an inhibitory effect on the lipid accumulation and ROS production during the adipogenesis. We also investigated the molecular events associated with ROS production and lipid accumulation. Our results showed that Pycnogenol® inhibited the mRNA expression of pro-oxidant enzymes, such as NOX4 (NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) oxidase 4), and the NADPH-producing G6PDH (glucose-6-phosphate dehydrogenase) enzyme. In addition, Pycnogenol® suppressed the mRNA abundance of adipogenic transcription factors, PPAR-γ (peroxisome proliferator-activated receptor γ) and C/EBP-α (CCAAT/enhancer binding protein α), and their target gene, aP2 (adipocyte protein 2) responsible for fatty acid transportation. On the other hand, Pycnogenol® increased the abundance of antioxidant proteins such as Cu/Zn-SOD (copper-zinc superoxide dismutase), Mn-SOD (manganese superoxide dismutase), GPx (glutathione peroxidase) and GR (glutathione reductase). Our results suggest that Pycnogenol® inhibits lipid accumulation and ROS production by regulating adipogenic gene expression and pro-/antioxidant enzyme responses in adipocytes. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Lipid content in hepatic and gonadal adipose tissue parallel aortic cholesterol accumulation in mice fed diets with different omega-6 PUFA to EPA plus DHA ratios.

    PubMed

    Wang, Shu; Matthan, Nirupa R; Wu, Dayong; Reed, Debra B; Bapat, Priyanka; Yin, Xiangling; Grammas, Paula; Shen, Chwan-Li; Lichtenstein, Alice H

    2014-04-01

    Diets with low omega (ω)-6 polyunsaturated fatty acids (PUFA) to eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) ratios have been shown to decrease aortic cholesterol accumulation and have been suggested to promote weight loss. The involvement of the liver and gonadal adipose tissue (GAT) in mediating these effects is not well understood. LDL receptor null mice were used to assess the effect of an atherogenic diet with different ω-6:EPA+DHA ratios on weight gain, hepatic and GAT lipid accumulation, and their relationship to atherosclerosis. Four groups of mice were fed a high saturated fat and cholesterol diet (HSF ω-6) alone, or with ω-6 PUFA to EPA+DHA ratios up to 1:1 for 32 weeks. Liver and GAT were collected for lipid and gene expression analysis. The fatty acid profile of liver and GAT reflected the diets. All diets resulted in similar weight gains. Compared to HSF ω-6 diet, the 1:1 ratio diet resulted in lower hepatic total cholesterol (TC) content. Aortic TC was positively correlated with hepatic and GAT TC and triglyceride. These differences were accompanied by significantly lower expression of CD36, ATP-transporter cassette A1, scavenger receptor B class 1, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), acetyl-CoA carboxylase alpha, acyl-CoA synthetase long-chain family member 5, and stearoyl-coenzyme A desaturase 1 (SCD1) in GAT, and HMGCR, SCD1 and cytochrome P450 7A1 in liver. Dietary ω-6:EPA+DHA ratios did not affect body weight, but lower ω-6:EPA+DHA ratio diets decreased liver lipid accumulation, which possibly contributed to the lower aortic cholesterol accumulation. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. LOSS OF L-FABP, SCP-2/SCP-X, OR BOTH INDUCES HEPATIC LIPID ACCUMULATION IN FEMALE MICE

    PubMed Central

    Martin, Gregory G.; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Schroeder, Friedhelm; Kier, Ann B.

    2015-01-01

    Although roles for both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed in hepatic lipid accumulation, individually ablating these genes has been complicated by concomitant alterations in the other gene product(s). For example, ablating SCP2/SCP-x induces upregulation of L-FABP in female mice. Therefore, the impact of ablating SCP-2/SCP-x (DKO) or L-FABP (LKO) individually or both together (TKO) was examined in female mice. Loss of SCP-2/SCP-x (DKO, TKO) more so than loss of L-FABP alone (LKO) increased hepatic total lipid and total cholesterol content, especially cholesteryl ester. Hepatic accumulation of nonesterified long chain fatty acids (LCFA) and phospholipids occurred only in DKO and TKO mice. Loss of SCP-2/SCP-x (DKO, TKO) increased serum total lipid primarily by increasing triglycerides. Altered hepatic level of proteins involved in cholesterol uptake, efflux, and/or secretion was observed, but did not compensate for the loss of L-FABP, SCP-2/SCP-x or both. However, synergistic responses were not seen with the combinatorial knock out animals—suggesting that inhibiting SCP-2/SCP-x is more correlative with hepatic dysfunction than L-FABP. The DKO- and TKO-induced hepatic accumulation of cholesterol and long chain fatty acids shared significant phenotypic similarities with non-alcoholic fatty liver disease (NAFLD). PMID:26116377

  1. Optimized Rapeseed Oils Rich in Endogenous Micronutrients Protect High Fat Diet Fed Rats from Hepatic Lipid Accumulation and Oxidative Stress

    PubMed Central

    Xu, Jiqu; Liu, Xiaoli; Gao, Hui; Chen, Chang; Deng, Qianchun; Huang, Qingde; Ma, Zhonghua; Huang, Fenghong

    2015-01-01

    Micronutrients in rapeseed exert a potential benefit to hepatoprotection, but most of them are lost during the conventional refining processing. Thus some processing technologies have been optimized to improve micronutrient retention in oil. The aim of this study is to assess whether optimized rapeseed oils (OROs) have positive effects on hepatic lipid accumulation and oxidative stress induced by a high-fat diet. Methods: Rats received experiment diets containing 20% fat and refined rapeseed oil or OROs obtained with various processing technologies as lipid source. After 10 weeks of treatment, liver was assayed for lipid accumulation and oxidative stress. Results: All OROs reduced hepatic triglyceride contents. Microwave pretreatment-cold pressing oil (MPCPO) which had the highest micronutrients contents also reduced hepatic cholesterol level. MPCPO significantly decreased hepatic sterol regulatory element-binding transcription factor 1 (SREBP1) but increased peroxisome proliferator activated receptor α (PPARα) expressions, and as a result, MPCPO significantly suppressed acetyl CoA carboxylase and induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. Hepatic catalase (CAT) and glutathione peroxidase (GPx) activities as well as reduced glutathione (GSH) contents remarkably increased and lipid peroxidation levels decreased in parallel with the increase of micronutrients. Conclusion: OROs had the ability to reduce excessive hepatic fat accumulation and oxidative stress, which indicated that OROs might contribute to ameliorating nonalcoholic fatty liver induced by high-fat diet. PMID:26473919

  2. Emodin ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    PubMed

    Cao, Yanni; Chang, Shufang; Dong, Jie; Zhu, Shenyin; Zheng, Xiaoying; Li, Juan; Long, Rui; Zhou, Yuanda; Cui, Jianyu; Zhang, Ye

    2016-06-05

    Emodin, an anthraquinone derivative isolated from root and rhizome of Rheum palmatum, has been reported to have promising anti-diabetic activity. The present study was to explore the possible mechanism of emodin to ameliorate insulin resistance. Insulin resistance was induced by feeding a high fat diet to Sprague-Dawley rats. The blood glucose and lipid profiles in serum were measured by an enzymatic method, and a hyperinsulinaemic-euglycaemic clamp was used to evaluate insulin resistance. L6 cells were cultured and treated with palmitic acid and emodin. The lipid content was assayed in the soleus muscle and L6 cells by Oil Red O staining. Western blot, qRT-PCR, and immunohistochemical staining were used to detect the following in the rat soleus muscle and L6 cells: protein levels, mRNA levels of FATP1, FATP4, transporter fatty acid translocase (FAT/CD36), and plasma membrane-associated fatty acid protein (FABPpm). We found that blood glucose, triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly decreased in the emodin group. Oil Red O staining and the level of TG in skeletal muscle and L6 cells confirmed that lipid deposition decreased after treatment with emodin. Furthermore, the protein levels and mRNA levels of FATP1 in skeletal muscle and in L6 cells of rats were significantly decreased, yet the protein levels and mRNA levels of FATP4, FAT/CD36 and FABPpm did not drop off significantly. The study suggest that emodin ameliorates insulin resistance by reducing FATP1-mediated skeletal muscle lipid accumulation in rats fed a high fat diet. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Muscle-specific deletion of Prkaa1 enhances skeletal muscle lipid accumulation in mice fed a high-fat diet.

    PubMed

    Wu, Weiche; Xu, Ziye; Zhang, Ling; Liu, Jiaqi; Feng, Jie; Wang, Xinxia; Shan, Tizhong; Wang, Yizhen

    2018-05-01

    Excessive intramyocellular triacylglycerols (IMTGs, muscle lipids) are associated with the abnormal energy metabolism and insulin resistance of skeletal muscle. AMP-activated protein kinase (AMPK), a crucial cellular energy sensor, consists of α, β and γ subunits. Researchers have not clearly determined whether Prkaa1 (also known as AMPKα1) affects IMTG accumulation in skeletal muscle. Here, we show an important role of Prkaa1 in skeletal muscle lipid metabolism. Deletion of muscle Prkaa1 leads to the delayed development of skeletal muscles but does not affect glucose tolerance or insulin sensitivity in animals fed a normal diet. Notably, when animals are fed a high-fat diet, the skeletal muscle of muscle-specific Prkaa1 knockout mice accumulates more lipids than the skeletal muscle of wild-type (WT) mice, with concomitant upregulation of adipogenic gene expressions and downregulation of the expression of genes associated with mitochondrial oxidation. Muscle-specific Prkaa1 ablation also results in hyperlipidemia, which may contribute to the increased IMTG levels. Furthermore, Prkaa1 deletion activates skeletal muscle mTOR signalling, which has a central role in lipid metabolism and mitochondrial oxidation. Collectively, our study provides new insights into the role of Prkaa1 in skeletal muscle. This knowledge may contribute to the treatment of related metabolic diseases.

  4. Deficiency of iNOS-derived NO accelerates lipid accumulation-independent liver fibrosis in non-alcoholic steatohepatitis mouse model.

    PubMed

    Nozaki, Yuichi; Fujita, Koji; Wada, Koichiro; Yoneda, Masato; Kessoku, Takaomi; Shinohara, Yoshiyasu; Imajo, Kento; Ogawa, Yuji; Nakamuta, Makoto; Saito, Satoru; Masaki, Naohiko; Nagashima, Yoji; Terauchi, Yasuo; Nakajima, Atsushi

    2015-04-01

    Although many of the factors and molecules closely associated with non-alcoholic steatohepatitis (NASH) have been reported, the role of inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) on the progression of NASH remains unclear. We therefore investigated the role of iNOS-derived NO in NASH pathogenesis with a long-term follow-up study using systemic iNOS-knockout mice under high-fat diet (HFD) conditions. iNOS-knockout and wild-type mice were fed a basal or HFD for 10 or 48 weeks. Lipid accumulation, fibrosis, and inflammation were evaluated, and various factors and molecules closely associated with NASH were analyzed. Marked fibrosis and inflammation (indicators of NASH) were observed in the livers of iNOS-knockout mice compared to wild-type mice after 48 weeks of a HFD; however, lipid accumulation in iNOS-knockout mice livers was less than in the wild-type. Increased expressions of various cytokines that are transcriptionally controlled by NF-kB in iNOS-deficient mice livers were observed during HFD conditions. iNOS-derived NO may play a protective role against the progression to NASH during an HFD by preventing fibrosis and inflammation, which are mediated by NF-kB activation in Kupffer cells. A lack of iNOS-derived NO accelerates progression to NASH without excessive lipid accumulation.

  5. Lipid catabolism of invertebrate predator indicates widespread wetland ecosystem degradation

    USGS Publications Warehouse

    Anteau, Michael J.; Afton, Alan D.

    2011-01-01

    Animals frequently undergo periods when they accumulate lipid reserves for subsequent energetically expensive activities, such as migration or breeding. During such periods, daily lipid-reserve dynamics (DLD) of sentinel species can quantify how landscape modifications affect function, health, and resilience of ecosystems. Aythya affinis (Eyton 1838; lesser scaup; diving duck) are macroinvertebrate predators; they migrate through an agriculturally dominated landscape in spring where they select wetlands with the greatest food density to refuel and accumulate lipid reserves for subsequent reproduction. We index DLD by measuring plasma-lipid metabolites of female scaup (n = 459) that were refueling at 75 spring migration stopover areas distributed across the upper Midwest, USA. We also indexed DLD for females (n = 44) refueling on a riverine site (Pool 19) south of our upper Midwest study area. We found that mean DLD estimates were significantly (P<0.05) less than zero in all ecophysiographic regions of the upper Midwest, and the greatest negative value was in the Iowa Prairie Pothole region (-31.6). Mean DLD was 16.8 at Pool 19 and was markedly greater than in any region of the upper Midwest. Our results indicate that females catabolized rather than stored lipid reserves throughout the upper Midwest. Moreover, levels of lipid catabolism are alarming, because scaup use the best quality wetlands available within a given stopover area. Accordingly, these results provide evidence of wetland ecosystem degradation across this large agricultural landscape and document affects that are carried-up through several trophic levels. Interestingly, storing of lipids by scaup at Pool 19 likely reflects similar ecosystem perturbations as observed in the upper Midwest because wetland drainage and agricultural runoff nutrifies the riverine habitat that scaup use at Pool 19. Finally, our results underscore how using this novel technique to monitor DLD, of a carefully selected sentinel

  6. Hydroxynonenal-generated crosslinking fluorophore accumulation in Alzheimer disease reveals a dichotomy of protein turnover.

    PubMed

    Zhu, Xiongwei; Castellani, Rudy J; Moreira, Paula I; Aliev, Gjumrakch; Shenk, Justin C; Siedlak, Sandra L; Harris, Peggy L R; Fujioka, Hisashi; Sayre, Lawrence M; Szweda, Pamela A; Szweda, Luke I; Smith, Mark A; Perry, George

    2012-02-01

    Lipid peroxidation generates reactive aldehydes, most notably hydroxynonenal (HNE), which covalently bind amino acid residue side chains leading to protein inactivation and insolubility. Specific adducts of lipid peroxidation have been demonstrated in intimate association with the pathological lesions of Alzheimer disease (AD), suggesting that oxidative stress is a major component of AD pathogenesis. Some HNE-protein products result in protein crosslinking through a fluorescent compound similar to lipofuscin, linking lipid peroxidation and the lipofuscin accumulation that commonly occurs in post-mitotic cells such as neurons. In this study, brain tissue from AD and control patients was examined by immunocytochemistry and immunoelectron microscopy for evidence of HNE-crosslinking modifications of the type that should accumulate in the lipofuscin pathway. Strong labeling of granulovacuolar degeneration (GVD) and Hirano bodies was noted but lipofuscin did not contain this specific HNE-fluorophore. These findings directly implicate lipid crosslinking peroxidation products as accumulating not in the lesions or the lipofuscin pathways, but instead in a distinct pathway, GVD, that accumulates cytosolic proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. N-terminal lipid modification is required for the stable accumulation of CyanoQ in Synechocystis sp. PCC 6803

    DOE PAGES

    Juneau, Andrea D.; Frankel, Laurie K.; Bricker, Terry M.; ...

    2016-09-22

    Here, the CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 tomore » eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex.« less

  8. N-terminal lipid modification is required for the stable accumulation of CyanoQ in Synechocystis sp. PCC 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juneau, Andrea D.; Frankel, Laurie K.; Bricker, Terry M.

    Here, the CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 tomore » eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex.« less

  9. Transcriptome profiling identifies p53 as a key player during calreticulin deficiency: Implications in lipid accumulation.

    PubMed

    Vig, Saurabh; Talwar, Puneet; Kaur, Kirandeep; Srivastava, Rohit; Srivastava, Arvind K; Datta, Malabika

    2015-01-01

    Calreticulin (CRT) is an endoplasmic reticulum (ER) resident calcium binding protein that is involved in several cellular activities. Transcriptome analyses in CRT knockdown HepG2 cells revealed 253 altered unique genes and subsequent in silico protein-protein interaction network and MCODE clustering identified 34 significant clusters, of which p53 occupied the central hub node in the highest node-rich cluster. Toward validation, we show that CRT knockdown leads to inhibition of p53 protein levels. Both, CRT and p53 siRNA promote hepatic lipid accumulation and this was accompanied by elevated SREBP-1c and FAS levels. p53 was identified to bind at -219 bp on the SREBP-1c promoter and in the presence of CRT siRNA, there was decreased occupancy of p53 on this binding element. This was associated with increased SREBP-1c promoter activity and both, mutation in this binding site or p53 over-expression antagonised the effects of CRT knockdown. We, therefore, identify a negatively regulating p53 binding site on the SREBP-1c promoter that is critical during hepatic lipid accumulation. These results were validated in mouse primary hepatocytes and toward a physiological relevance, we report that while the levels of CRT and p53 are reduced in the fatty livers of diabetic db/db mice, SREBP-1c levels are significantly elevated. Our results suggest that decreased CRT levels might be involved in the development of a fatty liver by preventing p53 occupancy on the SREBP-1c promoter and thereby facilitating SREBP-1c up-regulation and consequently, lipid accumulation.

  10. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    PubMed

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature.

    PubMed

    Cheney, Philip P; Weisgerber, Alan W; Feuerbach, Alec M; Knowles, Michelle K

    2017-03-15

    The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl- sn -glycero-3-phosphoethanolamine (DHPE) and hexadecanoic acid (HDA), using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.

  12. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations.

    PubMed

    Posokhov, Yevgen O; Kyrychenko, Alexander

    2013-10-01

    The modulation of the properties and function of cell membranes by small volatile substances is important for many biomedical applications. Despite available experimental results, molecular mechanisms of action of inhalants and organic solvents, such as acetone, on lipid membranes remain not well understood. To gain a better understanding of how acetone interacts with membranes, we have performed a series of molecular dynamics (MD) simulations of a POPC bilayer in aqueous solution in the presence of acetone, whose concentration was varied from 2.8 to 11.2 mol%. The MD simulations of passive distribution of acetone between a bulk water phase and a lipid bilayer show that acetone favors partitioning into the water-free region of the bilayer, located near the carbonyl groups of the phospholipids and at the beginning of the hydrocarbon core of the lipid membrane. Using MD umbrella sampling, we found that the permeability barrier of ~0.5 kcal/mol exists for acetone partitioning into the membrane. In addition, a Gibbs free energy profile of the acetone penetration across a bilayer demonstrates a favorable potential energy well of -3.6 kcal/mol, located at 15-16Å from the bilayer center. The analysis of the structural and dynamics properties of the model membrane revealed that the POPC bilayer can tolerate the presence of acetone in the concentration range of 2.8-5.6 mol%. The accumulation of the higher acetone concentration of 11.2 mol% results, however, in drastic disordering of phospholipid packing and the increase in the membrane fluidity. The acetone molecules push the lipid heads apart and, hence, act as spacers in the headgroup region. This effect leads to the increase in the average headgroup area per molecule. In addition, the acyl tail region of the membrane also becomes less dense. We suggest, therefore, that the molecular mechanism of acetone action on the phospholipid bilayer has many common features with the effects of short chain alcohols, DMSO, and

  13. Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds.

    PubMed

    Larson, Tony R; Edgell, Teresa; Byrne, James; Dehesh, Katayoon; Graham, Ian A

    2002-11-01

    Several Brassica napus lines transformed with genes responsible for the synthesis of medium- or long-chain fatty acids were examined to determine limiting factor(s) for the subsequent accumulation of these fatty acids in seed lipids. Examination of a decanoic acid (10:0) accumulating line revealed a disproportionately high concentration of 10:0 CoA during seed development compared to long-chain acyl CoAs isolated from the same tissues, suggesting that poor incorporation of 10:0 CoA into seed lipids limits 10:0 fatty acid accumulation. This relationship was also seen for dodecanoyl (12:0) CoA and fatty acid in a high 12:0 line, but not for octadecanoic (18:0) CoA and fatty acid in a high 18:0 line. Comparison of 10:0 CoA and fatty acid proportions from seeds at different developmental stages for transgenic B. napus and Cuphea hookeriana, the source plant for the medium-chain thioesterase and 3-ketoacyl-ACP synthase transgenes, revealed that C. hookeriana incorporates 10:0 CoA into seed lipids more efficiently than transgenic B. napus. Furthermore, beta-oxidation and glyoxylate cycle activities were not increased above wild type levels during seed development in the 8:0/10:0 line, suggesting that lipid catabolism was not being induced in response to the elevated 10:0 CoA concentrations. Taken together, these data suggest that transgenic plants that are engineered to synthesize medium-chain fatty acids may lack the necessary mechanisms, such as specific acyltransferases, to incorporate these fatty acids efficiently into seed lipids.

  14. Preventive effect of Ibrolipim on suppressing lipid accumulation and increasing lipoprotein lipase in the kidneys of diet-induced diabetic minipigs

    PubMed Central

    2011-01-01

    Background The role of renal lipoprotein lipase (LPL) per se in kidney diseases is still controversial and obscure. The purpose of this study was to observe the preventive effects of Ibrolipim, a LPL activator, on lipid accumulation and LPL expression in the kidneys of minipigs fed a high-sucrose and high-fat diet (HSFD). Methods Male Chinese Bama minipigs were fed a control diet or HSFD with or without 0.1 g/kg/day Ibrolipim for 5 months. Body weight, plasma glucose, insulin, lipids, LPL activity, and urinary microalbumin were measured. Renal tissue was obtained for detecting LPL activity and contents of triglyceride and cholesterol, observing the renal lipid accumulation by Oil Red O staining, and examining the mRNA and protein expression of LPL by real time PCR, Western Blot and immunohistochemistry. Results Feeding HSFD to minipigs caused weight gain, hyperglycemia, hyperinsulinemia, hyperlipidemia and microalbuminuria. HSFD increased plasma LPL activity while it decreased the mRNA and protein expression and activity of LPL in the kidney. The increases in renal triglyceride and cholesterol contents were associated with the decrease in renal LPL activity of HSFD-fed minipigs. In contrast, supplementing Ibrolipim into HSFD lowered body weight, plasma glucose, insulin, triglyceride and urinary albumin concentrations while it increased plasma total cholesterol and HDL-C. Ibrolipim suppressed the renal accumulation of triglyceride and cholesterol, and stimulated the diet-induced down-regulation of LPL expression and activity in the kidney. Conclusions Ibrolipim exerts renoprotective and hypolipidemic effects via the increase in renal LPL activity and expression, and thus the increased expression and activity of renal LPL play a vital role in suppressing renal lipid accumulation and ameliorating proteinuria in diet-induced diabetic minipigs. PMID:21762526

  15. Bilirubin Binding to PPARα Inhibits Lipid Accumulation

    PubMed Central

    Stec, David E.; John, Kezia; Trabbic, Christopher J.; Luniwal, Amarjit; Hankins, Michael W.; Baum, Justin

    2016-01-01

    Numerous clinical and population studies have demonstrated that increased serum bilirubin levels protect against cardiovascular and metabolic diseases such as obesity and diabetes. Bilirubin is a potent antioxidant, and the beneficial actions of moderate increases in plasma bilirubin have been thought to be due to the antioxidant effects of this bile pigment. In the present study, we found that bilirubin has a new function as a ligand for PPARα. We show that bilirubin can bind directly to PPARα and increase transcriptional activity. When we compared biliverdin, the precursor to bilirubin, on PPARα transcriptional activation to known PPARα ligands, WY 14,643 and fenofibrate, it showed that fenofibrate and biliverdin have similar activation properties. Treatment of 3T3-L1 adipocytes with biliverdin suppressed lipid accumulation and upregulated PPARα target genes. We treated wild-type and PPARα KO mice on a high fat diet with fenofibrate or bilirubin for seven days and found that both signal through PPARα dependent mechanisms. Furthermore, the effect of bilirubin on lowering glucose and reducing body fat percentage was blunted in PPARα KO mice. These data demonstrate a new function for bilirubin as an agonist of PPARα, which mediates the protection from adiposity afforded by moderate increases in bilirubin. PMID:27071062

  16. Mercury-Pollution Induction of Intracellular Lipid Accumulation and Lysosomal Compartment Amplification in the Benthic Foraminifer Ammonia parkinsoniana

    PubMed Central

    Curzi, Davide; Cesarini, Erica; Canonico, Barbara; Giordano, Francesco M.; De Matteis, Rita; Bernhard, Joan M.; Pieretti, Nadia; Gu, Baohua; Eskelsen, Jeremy R.; Jubb, Aaron M.; Zhao, Linduo; Pierce, Eric M.; Gobbi, Pietro; Papa, Stefano; Coccioni, Rodolfo

    2016-01-01

    Heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organelle where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations. PMID:27603511

  17. Obesity-driven prepartal hepatic lipid accumulation in dairy cows is associated with increased CD36 and SREBP-1 expression.

    PubMed

    Prodanović, Radiša; Korićanac, Goran; Vujanac, Ivan; Djordjević, Ana; Pantelić, Marija; Romić, Snježana; Stanimirović, Zoran; Kirovski, Danijela

    2016-08-01

    We investigated the hypothesis that obesity in dairy cows enhanced expression of proteins involved in hepatic fatty acid uptake and metabolism. Sixteen Holstein-Friesian close-up cows were divided into 2 equal groups based on their body condition score (BCS) as optimal (3.25≤BCS≤3.5) and high (4.0≤BCS≤4.25). Intravenous glucose tolerance test (GTT) and liver biopsies were carried out at day 10 before calving. Blood samples were collected before (basal) and after glucose infusion, and glucose, insulin and non-esterified fatty acid (NEFA) levels were determined at each sample point. In addition, β-hydroxybutyrate and triglycerides levels were measured in the basal samples. The liver biopsies were analyzed for total lipid content and protein expression of insulin receptor beta (IRβ), fatty acid translocase (FAT/CD36) and sterol regulatory element-binding protein-1 (SREBP-1). Basal glucose and insulin were higher in high-BCS cows, which coincided with higher circulating triglycerides and hepatic lipid content. Clearance rate and AUC for NEFA during GTT were higher in optimal-BCS cows. The development of insulin resistance and fatty liver in obese cows was paralleled by increased hepatic expression of the IRβ, CD36 and SREBP-1. These results suggest that increased expression of hepatic CD36 and SREBP-1 is relevant in the obesity-driven lipid accumulation in the liver of dairy cows during late gestation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN

    PubMed Central

    2015-01-01

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets. PMID:26362606

  19. SUMO1 depletion prevents lipid droplet accumulation and HCV replication.

    PubMed

    Akil, Abdellah; Wedeh, Ghaith; Zahid Mustafa, Mohammad; Gassama-Diagne, Ama

    2016-01-01

    Infection by hepatitis C virus (HCV) is a major public-health problem. Chronic infection often leads to cirrhosis, steatosis, and hepatocellular carcinoma. The life cycle of HCV depends on the host cell machinery and involves intimate interaction between viral and host proteins. However, the role of host proteins in the life cycle of HCV remains poorly understood. Here, we identify the small ubiquitin-related modifier (SUMO1) as a key host factor required for HCV replication. We performed a series of cell biology and biochemistry experiments using the HCV JFH-1 (Japanese fulminate hepatitis 1) genotype 2a strain, which produces infectious particles and recapitulates all the steps of the HCV life cycle. We observed that SUMO1 is upregulated in Huh7.5 infected cells. Reciprocally, SUMO1 was found to regulate the expression of viral core protein. Moreover, knockdown of SUMO1 using specific siRNA influenced the accumulation of lipid droplets and reduced HCV replication as measured by qRT-PCR. Thus, we identify SUMO1 as a key host factor required for HCV replication. To our knowledge, this is the first report showing that SUMO1 regulates lipid droplets in the context of viral infection. Our report provides a meaningful insight into how HCV replicates and interacts with host proteins and is of significant importance for the field of HCV and RNA viruses.

  20. α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation.

    PubMed

    Wang, Mei-Lin; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2015-04-30

    The aryl hydrocarbon receptor (AhR) is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and β-naphthoflavone (BNF), inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF), an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs). Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF) (1-5 μM) for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM) from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG) accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL), estrogen receptor (ER), as well as decreased expression of AhR, AhR nuclear translocator (ARNT), cytochrome P4501B1 (CYP1B1), and nuclear factor erythroid-2-related factor (NRF-2) proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF) secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and enhanced

  1. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation

    PubMed Central

    Carroll, Jeffrey B.; Deik, Amy; Fossale, Elisa; Weston, Rory M.; Guide, Jolene R.; Arjomand, Jamshid; Kwak, Seung; Clish, Clary B.; MacDonald, Marcy E.

    2015-01-01

    The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident

  2. Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation.

    PubMed

    Benning, C; Huang, Z H; Gage, D A

    1995-02-20

    Cells of the photosynthetic bacterium Rhodobacter sphaeroides grown under phosphate-limiting conditions accumulated nonphosphorous glycolipids and lipids carrying head groups derived from amino acids. Concomitantly, the relative amount of phosphoglycerolipids decreased from 90 to 22 mol% of total polar lipids in the membranes. Two lipids, not detectable in cells grown under standard conditions, were synthesized during phosphate-limited growth. Fast atom bombardment mass spectroscopy, exact mass measurements, 1H NMR spectroscopy, sugar composition analysis, and methylation analysis of the predominant glycolipid led to the identification of the novel compound 1,2-di-O-acyl-3-O-[alpha-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyr anosyl]glycerol. The second lipid was identified as the betaine lipid 1,2-di-O-acyl-[4'-(N,N,N-trimethyl)-homoserine]glycerol by cochromatography employing an authentic standard from Chlamydomonas reinhardtii, fast atom bombardment mass spectroscopy, exact mass measurements, and 1H NMR spectroscopy. Prior to this observation, the occurrence of this lipid was thought to be restricted to lower plants and algae. Apparently, these newly synthesized nonphosphorous lipids, in addition to the sulfo- and the ornithine lipid also found in R. sphaeroides grown under optimal conditions, take over the role of phosphoglycerolipids in phosphate-deprived cells.

  3. Lipid Catabolism of Invertebrate Predator Indicates Widespread Wetland Ecosystem Degradation

    PubMed Central

    Anteau, Michael J.; Afton, Alan D.

    2011-01-01

    Animals frequently undergo periods when they accumulate lipid reserves for subsequent energetically expensive activities, such as migration or breeding. During such periods, daily lipid-reserve dynamics (DLD) of sentinel species can quantify how landscape modifications affect function, health, and resilience of ecosystems. Aythya affinis (Eyton 1838; lesser scaup; diving duck) are macroinvertebrate predators; they migrate through an agriculturally dominated landscape in spring where they select wetlands with the greatest food density to refuel and accumulate lipid reserves for subsequent reproduction. We index DLD by measuring plasma-lipid metabolites of female scaup (n = 459) that were refueling at 75 spring migration stopover areas distributed across the upper Midwest, USA. We also indexed DLD for females (n = 44) refueling on a riverine site (Pool 19) south of our upper Midwest study area. We found that mean DLD estimates were significantly (P<0.05) less than zero in all ecophysiographic regions of the upper Midwest, and the greatest negative value was in the Iowa Prairie Pothole region (-31.6). Mean DLD was 16.8 at Pool 19 and was markedly greater than in any region of the upper Midwest. Our results indicate that females catabolized rather than stored lipid reserves throughout the upper Midwest. Moreover, levels of lipid catabolism are alarming, because scaup use the best quality wetlands available within a given stopover area. Accordingly, these results provide evidence of wetland ecosystem degradation across this large agricultural landscape and document affects that are carried-up through several trophic levels. Interestingly, storing of lipids by scaup at Pool 19 likely reflects similar ecosystem perturbations as observed in the upper Midwest because wetland drainage and agricultural runoff nutrifies the riverine habitat that scaup use at Pool 19. Finally, our results underscore how using this novel technique to monitor DLD, of a carefully selected

  4. Oil body proteins sequentially accumulate throughout seed development in Brassica napus.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Valot, Benoît; d'Andréa, Sabine; Zivy, Michel; Nesi, Nathalie; Chardot, Thierry

    2011-11-15

    Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. Interaction and accumulation of manganese and cadmium in the manganese accumulator Lupinus albus.

    PubMed

    Zornoza, Pilar; Sánchez-Pardo, Beatriz; Carpena, Ramón O

    2010-09-01

    The effects of the interaction between Mn and Cd on the growth of the white lupin (Lupinus albus), uptake of these metals, their accumulation, and effects on heavy metal stress indicators were studied under glasshouse conditions. Plants were grown with and without Mn and/or Cd for 4 weeks. The absence of Mn and Cd led to lipid peroxidation-induced loss of flavonoids and anthocyanins in the roots, reduced the size of the plant canopy, and led to the appearance of proteoid roots. Sensitivity to Cd in white lupin was enhanced by a low Mn supply, despite lower Cd uptake and accumulation (leaf Mn:Cd concentration ratio <3), as evidenced by increased lipid peroxidation in the leaves and strong inhibition of growth. However, when the Mn supply was adequate, the plants showed few symptoms of Cd toxicity, even though Cd uptake and accumulation increased. A Mn:Cd ratio of up to 20 was enough to minimize Cd stress in the leaf, reflecting the plants' relative tolerance to Cd under such conditions. Irrespective of the Mn supply, the increase in antioxidant compounds observed in the roots of Cd-treated plants might act as a protective mechanism by minimizing the oxidative stress caused by Cd exposure. In summary, high leaf Mn concentrations seem to render white lupins more tolerant to Cd stress. Copyright 2010 Elsevier GmbH. All rights reserved.

  6. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  7. Herbal composition Gambigyeongsinhwan (4) from Curcuma longa, Alnus japonica, and Massa Medicata Fermentata inhibits lipid accumulation in 3T3-L1 cells and regulates obesity in Otsuka Long-Evans Tokushima Fatty rats.

    PubMed

    Roh, Jong Sung; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Park, Sun Dong; Shin, Soon Shik; Yoon, Michung

    2015-08-02

    Adipocyte lipid accumulation due to impaired fatty acid oxidation causes adipocyte hypertrophy and adipose tissue increment, leading to obesity. The aim of this study was to determine the antiobesity effects of the herbal composition Gambigyeongsinhwan (4) (GGH(4)) composed of Curcuma longa L. (Zingiberaceae), Alnus japonica (Thunb.) Steud. (Betulaceae), and the fermented traditional Korean medicine Massa Medicata Fermentata. The effects of GGH(4) and the individual components on lipid accumulation in 3T3-L1 adipocytes and body weight gain in Otsuka Long-Evans Tokushima Fatty (OLETF) rats were examined using Oil red O staining, hematoxylin and eosin staining, quantitative real-time PCR, and peroxisome proliferator-activated receptor α (PPARα) transactivation assay. GGH(4), individual components, and an active principle of Curcuma longa curcumin inhibited lipid accumulation and mRNA levels of adipocyte-specific genes (PPARγ, aP2, and C/EBPα) in 3T3-L1 adipocytes compared with control cells. Treatment with GGH(4), the individual components or curcmumin increased mRNA levels of mitochondrial (CPT-1, MCAD, and VLCAD) and peroxisomal (ACOX and thiolase) PPARα target genes. GGH(4) and the individual components also increased PPARα reporter gene expression compared with control cells. These effects were most prominent in GGH(4)-treated cells. However, the PPARα antagonist GW6471 reversed the inhibitory effects of GGH(4) on adipogenesis. An in vivo study showed that GGH(4) decreased body weight gain, adipose tissue mass, and visceral adipocyte size with increasing mRNA levels of adipose tissue PPARα target genes in OLETF rats. These results demonstrate that GGH(4) has an antiobesity effects through the inhibition of adipocyte lipid accumulation, and this process may be mediated in part through adipose PPARα activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. In vivo kinetics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant under 15% CO2 using Raman microspectroscopy.

    PubMed

    Li, Ke; Cheng, Jun; Ye, Qing; He, Yong; Zhou, Junhu; Cen, Kefa

    2017-11-01

    In vivo spatiotemporal dynamics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant induced with 15% CO 2 and high light intensity were monitored with high spatial resolution in a non-destructive and label-free manner using single-cell Raman imaging. Astaxanthin intensity increased by 3.5 times within 12h under 15% CO 2 , and the accumulation rate was 5.8 times higher than that under air. Lipids intensity under 15% CO 2 was 27% higher than that under air. The lipids initially concentrated in chloroplast under 15% CO 2 due to an increase of directly photosynthetic fatty acid, which was different from the whole-cell dispersed lipids under air. Astaxanthin produced in chloroplast first accumulated around nucleus and then spread in cytoplasmic lipids under both air and 15% CO 2 . The calculation results of kinetic models for lipids and astaxanthin evolutions showed that accumulation rate of lipids was much higher than that of astaxanthin in cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Olive Leaf Extract from Sicilian Cultivar Reduced Lipid Accumulation by Inducing Thermogenic Pathway during Adipogenesis

    PubMed Central

    Palmeri, Rosa; Monteleone, Julieta I.; Spagna, Giovanni; Restuccia, Cristina; Raffaele, Marco; Vanella, Luca; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Olive leaves contain a wide variety of phenolic compounds belonging to phenolic acids, phenolic alcohols, flavonoids, and secoiridoids, and include also many other pharmacological active compounds. They could play an important role in human diet and health because of their ability to lower blood pressure, increase coronary arteries blood flow and decrease the risk of cardiovascular diseases. The aim of this study was to investigate the effect of olive leaf extract (OLE) from Sicilian cultivar on adipogenic differentiation of human adipose derived mesenchymal stem cells and its impact on lipid metabolism. We showed that OLE treatment during adipogenic differentiation reduces inflammation, lipid accumulation and induces thermogenesis by activation of uncoupling protein uncoupling protein 1, sirtuin 1, peroxisome proliferator-activated receptor alpha, and coactivator 1 alpha. Furthermore, OLE significantly decreases the expression of molecules involved in adipogenesis and upregulates the expression of mediators involved in thermogenesis and lipid metabolism. Taken together, our results suggest that OLE may promote the brown remodeling of white adipose tissue inducing thermogenesis and improving metabolic homeostasis. PMID:27303302

  10. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants

    DOE PAGES

    Cai, Yingqi; McClinchie, Elizabeth; Price, Ann; ...

    2017-01-18

    Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. We tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids inmore » leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. Furthermore, when expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ERvesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. Our results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.« less

  11. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yingqi; McClinchie, Elizabeth; Price, Ann

    Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. We tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids inmore » leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. Furthermore, when expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ERvesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. Our results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.« less

  12. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    PubMed

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  13. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jung Hwan; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752; Lee, Yoo Jeong

    2015-05-08

    Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator ofmore » mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans. - Highlights: • PPARγ promotes MGAT1 expression in human primary hepatocytes. • PPARγ directly regulates MGAT1 promoter activity. • Human MGAT1 promoter has at least two PPARγ-binding elements. • Inhibition of MGAT1 expression attenuates hepatic lipid accumulation in humans.« less

  14. Mercury-pollution induction of intracellular lipid accumulation and lysosomal compartment amplification in the benthic foraminifer Ammonia parkinsoniana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frontalini, Fabrizio; Curzi, Davide; Cesarini, Erica

    In this study, heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organellemore » where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations.« less

  15. Mercury-pollution induction of intracellular lipid accumulation and lysosomal compartment amplification in the benthic foraminifer Ammonia parkinsoniana

    DOE PAGES

    Frontalini, Fabrizio; Curzi, Davide; Cesarini, Erica; ...

    2016-09-07

    In this study, heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organellemore » where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations.« less

  16. Whole Genome Re-Sequencing Identifies a Quantitative Trait Locus Repressing Carbon Reserve Accumulation during Optimal Growth in Chlamydomonas reinhardtii

    PubMed Central

    Goold, Hugh Douglas; Nguyen, Hoa Mai; Kong, Fantao; Beyly-Adriano, Audrey; Légeret, Bertrand; Billon, Emmanuelle; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua

    2016-01-01

    Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth. PMID:27141848

  17. Reactive Oxygen Species-Induced TXNIP Drives Fructose-Mediated Hepatic Inflammation and Lipid Accumulation Through NLRP3 Inflammasome Activation

    PubMed Central

    Zhang, Xian; Zhang, Jian-Hua; Chen, Xu-Yang; Hu, Qing-Hua; Wang, Ming-Xing; Jin, Rui; Zhang, Qing-Yu; Wang, Wei; Wang, Rong; Kang, Lin-Lin; Li, Jin-Sheng; Li, Meng

    2015-01-01

    Abstract Aims: Increased fructose consumption predisposes the liver to nonalcoholic fatty liver disease (NAFLD), but the mechanisms are elusive. Thioredoxin-interacting protein (TXNIP) links oxidative stress to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and this signaling axis may be involved in fructose-induced NAFLD. Here, we explore the role of reactive oxygen species (ROS)-induced TXNIP overexpression in fructose-mediated hepatic NLRP3 inflammasome activation, inflammation, and lipid accumulation. Results: Rats were fed a 10% fructose diet for 8 weeks and treated with allopurinol and quercetin during the last 4 weeks. Five millimolars of fructose-exposed hepatocytes (primary rat hepatocytes, rat hepatic parenchymal cells [RHPCs], HLO2, HepG2) were co-incubated with antioxidants or caspase-1 inhibitor or subjected to TXNIP or NLRP3 siRNA interference. Fructose induced NLRP3 inflammasome activation and pro-inflammatory cytokine secretion, janus-activated kinase 2/signal transducers and activators of transcription 3-mediated inflammatory signaling, and expression alteration of lipid metabolism-related genes in cultured hepatocytes and rat livers. NLRP3 silencing and caspase-1 suppression blocked these effects in primary rat hepatocytes and RHPCs, confirming that inflammasome activation alters hepatocyte lipid metabolism. Hepatocellular ROS and TXNIP were increased in animal and cell models. TXNIP silencing blocked NLRP3 inflammasome activation, inflammation, and lipid metabolism perturbations but not ROS induction in fructose-exposed hepatocytes, whereas antioxidants addition abrogated TXNIP induction and diminished the detrimental effects in fructose-exposed hepatocytes and rat livers. Innovation and Conclusions: This study provides a novel mechanism for fructose-induced NAFLD pathogenesis by which the ROS-TXNIP pathway mediates hepatocellular NLRP3 inflammasome activation, inflammation and lipid accumulation. Antioxidant

  18. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet.

    PubMed

    Xu, Li; Huang, Danping; Hu, Qiaolin; Wu, Jing; Wang, Yizhen; Feng, Jie

    2015-06-28

    To assess the effects of betaine on hepatic lipid accumulation and investigate the underlying mechanism, thirty-two male Sprague-Dawley rats weighing 100 (sd 2·50) g were divided into four groups, and started on one of four treatments: basal diet, basal diet with betaine administration, high-fat diet and high-fat diet with betaine administration. The results showed that no significant difference of body weight was found among experimental groups. Compared with high-fat diet-fed rats, a betaine supplementation decreased (P< 0·05) hepatic TAG accumulation induced by high-fat diet, which was also supported by hepatic histology results. Additionally, hepatic betaine-homocysteine methyltransferase concentration [corrected] as well as its mRNA abundance and lecithin level were found increased (P< 0·05) by betaine supplementation in both basal diet-fed rats and high-fat diet-fed rats. Betaine administration in high-fat diet-fed rats exhibited a higher (P< 0·05) concentration [corrected] of hepatic carnitine palmitoyltransferase 1 (CPT1) compared with high-fat diet-fed rats. High-fat diet inhibited (P< 0·05) the gene expression of hepatic PPARα and CPT1. However, betaine administration in high-fat diet-fed rats elevated (P< 0·05) the gene expression of PPARα and CPT1. Moreover, concentration, gene and protein expressions of hepatic fibroblast growth factor 21 (FGF21) were increased (P< 0·05) in response to betaine administration in high-fat diet group; meanwhile the gene expression of hepatic AMP-activated protein kinase was increased (P< 0·05) as well. The results suggest that betaine administration enhanced hepatic lipid export and fatty acid oxidation in high-fat diet-fed rats, thus effectively alleviating fat accumulation in the liver.

  19. Molecular target of decursins in the inhibition of lipid droplet accumulation in macrophages.

    PubMed

    Ohshiro, Taichi; Namatame, Ichiji; Lee, Eun Woo; Kawagishi, Hirokazu; Tomoda, Hiroshi

    2006-05-01

    During screening for inhibitors of lipid droplet accumulation in mouse peritoneal macrophages, two coumarins identified as decursin and decursinol angelate were isolated from the roots of Angelicae gigantis. The cellular molecular target of these inhibitors in macrophages was studied. Decursin and decursinol angelate inhibited cholesteryl ester (CE) synthesis with IC50 values of 9.7 and 10.1 microM, respectively, whereas they enhanced triacylglycerol (TG) synthesis. Lysosomal metabolism of cholesterol to CE was inhibited by the compounds, indicating that the site of inhibition is one of the steps between the exiting of cholesterol from the lysosomes and CE synthesis in the endoplasmic reticulum. Therefore, acyl-CoA:cholesterol acyltransferase (ACAT) activity in the microsomal fractions prepared from mouse macrophages was studied, and the results showed inhibition of this activity by decursin and decursinol angelate with IC50 values of 43 and 22 microM, respectively. Thus, it was concluded that the compounds inhibit macrophage ACAT activity to decrease CE synthesis, leading to a reduction of lipid droplets in macrophages.

  20. How did nature engineer the highest surface lipid accumulation among plants? Exceptional expression of acyl-lipid-associated genes for the assembly of extracellular triacylglycerol by Bayberry ( Myrica pensylvanica ) fruits

    DOE PAGES

    Simpson, Jeffrey P.; Thrower, Nicholas; Ohlrogge, John B.

    2016-02-09

    Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that producesmore » and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves,which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism.« less

  1. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yujun; Li, Jian-Dong; Yan, Chen, E-mail: Chen_Yan@urmc.rochester.edu

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatorymore » agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.« less

  2. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants.

    PubMed

    Cai, Yingqi; McClinchie, Elizabeth; Price, Ann; Nguyen, Thuy N; Gidda, Satinder K; Watt, Samantha C; Yurchenko, Olga; Park, Sunjung; Sturtevant, Drew; Mullen, Robert T; Dyer, John M; Chapman, Kent D

    2017-07-01

    Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER-vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Qin; Sha, Sha; Sun, Lei

    The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and inducedmore » hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. -- Highlights: •Liraglutide reduces lipid accumulation in hepatic steatosis both in vivo and in vitro. •Autophagy was involved in relieving effects of liraglutide on hepatic steatosis. •AMPK/mTOR pathway was involved in liraglutide-induced autophagy.« less

  4. A novel malic enzyme gene, Mime2, from Mortierella isabellina M6-22 contributes to lipid accumulation.

    PubMed

    Li, Shan; Li, Lingyan; Xiong, Xiangfeng; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing; Zhang, Qi

    2018-05-18

    This study was aimed at cloning and characterizing a novel malic enzyme (ME) gene of Mortierella isabellina M6-22 and identifying its relation with lipid accumulation. Mime2 was cloned from strain M6-22. Plasmid pET32aMIME2 was constructed to express ME of MIME2 in Escherichia coli BL21. After purification, the optimal pH and temperature of MIME2, as well as K m and V max for NADP + were determined. The effects of EDTA or metal ions (Mn 2+ , Mg 2+ , Co 2+ , Cu 2+ , Ca 2+ , or Zn 2+ ) on the enzymatic activity of MIME2 were evaluated. Besides, plasmid pRHMIME2 was created to express MIME2 in Rhodosporidium kratochvilovae YM25235, and its cell lipid content was measured by the acid-heating method. The optimal pH and temperature of MIME2 are 5.8 and 30 °C, respectively. The act ivity of MIME2 was significantly increased by Mg 2+ , Ca 2+ , or Mn 2+ at 0.5 mM but inhibited by Cu 2+ or Zn 2+ (p < 0.05). The optimal enzymatic activity of MIME2 is 177.46 U/mg, and the K m and V max for NADP + are 0.703 mM and 156.25 μg/min, respectively. Besides, Mime2 transformation significantly increased the cell lipid content in strain YM25235 (3.15 ± 0.24 vs. 2.17 ± 0.31 g/L, p < 0.01). The novel ME gene Mime2 isolated from strain M6-22 contributes to lipid accumulation in strain YM25235.

  5. TRANSPARENT TESTA GLABRA1 Regulates the Accumulation of Seed Storage Reserves in Arabidopsis1[OPEN

    PubMed Central

    Chen, Mingxun; Zhang, Bin; Li, Chengxiang; Kulaveerasingam, Harikrishna; Chew, Fook Tim; Yu, Hao

    2015-01-01

    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process. PMID:26152712

  6. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis

    PubMed Central

    Smagris, Eriks; BasuRay, Soumik; Li, John; Huang, Yongcheng; Lai, Ka-man V; Gromada, Jesper; Cohen, Jonathan C; Hobbs, Helen H

    2015-01-01

    A sequence polymorphism (rs738409, I148M) in patatin-like phospholipid domain containing protein 3 (PNPLA3) is strongly associated with nonalcoholic fatty liver disease (NAFLD), but the mechanistic basis for this association remains enigmatic. Neither ablation nor overexpression of wild-type PNPLA3 affects liver fat content in mice, whereas hepatic overexpression of the human 148M transgene causes steatosis. To determine whether the 148M allele causes fat accumulation in the liver when expressed at physiological levels, we introduced a methionine codon at position 148 of the mouse Pnpla3 gene. Knockin mice had normal levels of hepatic fat on a chow diet, but when challenged with a high-sucrose diet their liver fat levels increased 2 to 3-fold compared to wild-type littermates without any associated changes in glucose homeostasis. The increased liver fat in the knockin mice was accompanied by a 40-fold increase in PNPLA3 on hepatic lipid droplets, with no increase in hepatic PNPLA3 messenger RNA (mRNA). Similar results were obtained when the catalytic dyad of PNPLA3 was inactivated by substituting the catalytic serine with alanine (S47A). Conclusion: These data provide the first direct evidence that physiological expression of PNPLA3 148M variant causes NAFLD, and that the accumulation of catalytically inactive PNPLA3 on the surfaces of lipid droplets is associated with the accumulation of TG in the liver. (Hepatology 2015;61:108–118) PMID:24917523

  7. Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea.

    PubMed

    González-Garcinuño, Álvaro; Tabernero, Antonio; Sánchez-Álvarez, José Ma; Martin Del Valle, Eva M; Galán, Miguel A

    2014-12-01

    Discovering microalgae strains containing a high lipid yield and adequate fatty acid composition is becoming a crucial fact in algae-oil factories. In this study, two unknown strains, named Scenedesmus abundans and Chlorella ellipsoidea, have been tested for their response to different nitrogen sources, in order to determine its influence in the production of lipids. For S. abundans, autotrophic culture with ammonium nitrate offers the maximum lipid yield, obtaining up to 3.55 mg L(-1) d(-1). For C. ellipsoidea, heterotrophic culture with ammonium nitrate has been shown to be the best condition, reaching a lipid production of 9.27 mg L(-1) d(-1). Moreover, fatty acid composition obtained from these cultures meets international biodiesel standards with an important amount of C18:1, achieving 70% of total fatty acids and thus representing a potential use of these two strains at an industrial scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. [Dipeptide nootropic agent GVS-111 prevents accumulation of the lipid peroxidation products during immobilization].

    PubMed

    Lysenko, A V; Uskova, N I; Ostrovskaia, R U; Gudasheva, T A; Voronina, T A

    1997-01-01

    Immobilization of rats in a narrow plastic chamber for 24 h caused a sharp increase in the level of diene conjugates and the content of schiff bases in the synaptosomes of the brain cortex as well as accumulation of extraerythrocytic hemoglobin in blood serum. The dipeptide nootropic agent GVS-111 (ethyl ether of phenylacetylprolylglycine), when administered 15 and particularly 60 min before immobilization reduced the accumulation of these products of lipid peroxidation in the brain and blood. GVS-111 demonstrated these signs of its antioxidant effect after a single i.p. injection in doses of 0.12 and 0.5 mg/kg. Pyracetam produced a similar effect on the listed parameters in injection in a dose of 300 mg/kg for three successive days. The protective effect of the new pyracetam dipeptide analog GVS-111 in relation to activation of free-radical processes induced by immobilization is additional proof of the antistress action of this dipeptide.

  9. Measurement of Lipid Accumulation in Chlorella vulgaris via Flow Cytometry and Liquid-State ¹H NMR Spectroscopy for Development of an NMR-Traceable Flow Cytometry Protocol

    PubMed Central

    Bono Jr., Michael S.; Garcia, Ravi D.; Sri-Jayantha, Dylan V.; Ahner, Beth A.; Kirby, Brian J.

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r 2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols. PMID:26267664

  10. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    PubMed

    Bono, Michael S; Garcia, Ravi D; Sri-Jayantha, Dylan V; Ahner, Beth A; Kirby, Brian J

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.

  11. In vitro inhibition of lipid accumulation induced by oleic acid and in vivo pharmacokinetics of chitosan microspheres (CTMS) and chitosan-capsaicin microspheres (CCMS)

    PubMed Central

    Wu, Sihui; Pan, Haitao; Tan, Sirong; Ding, Chen; Huang, Guidong; Liu, Guihua; Guo, Jiao; Su, Zhengquan

    2017-01-01

    ABSTRACT Chitosan and capsaicin are compounds extracted from natural products and have been indicated to lower body weight and prevent fatty liver. However, their applications are limited by poor oral bioavailability, low compliance and some serious side effects. To solve these problems, we successfully prepared chitosan microspheres (CTMS) and chitosan-capsaicin microspheres (CCMS) in previous study. Therefore, in the present study, we evaluated the ability of CTMS and CCMS to eliminate lipid accumulation in hepatocytesand also characterized their pharmacokinetic parameters after administration. The results showed that the two microspheres could significantly reduce intracellular lipid accumulation and dose-dependently improve the triglyceride (TG) content in HepG2 cells. A pharmacokinetic study indicated that CTMS and CCMS were distributed in almost all of the measured tissues, especially liver and kidney, and that their absorption was better than those of chitosan and capsaicin. Simultaneously, the prolonged circulating half-lives, the lower clearance and higher plasma concentration of CTMS and CCMS showed that their bioavailability was effectively enhanced. All of the results indicated that the lipid accumulation inhibition of CTMS and CCMS was better than that of chitosan and capsaicin, and that these microspheres can be developed as preventive agents for fatty liver or obesity. PMID:28659743

  12. Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts.

    PubMed

    Signori, Lorenzo; Ami, Diletta; Posteri, Riccardo; Giuzzi, Andrea; Mereghetti, Paolo; Porro, Danilo; Branduardi, Paola

    2016-05-05

    accumulation by three different oleaginous yeasts. Single cell and in situ analyses allowed depicting and comparing the transition between growth and lipid accumulation occurring differently for the three different yeasts. These data provide novel information that can be exploited for screening the best cell factory, moving towards a sustainable microbial biodiesel production.

  13. Effects of chronic sugar consumption on lipid accumulation and autophagy in the skeletal muscle.

    PubMed

    De Stefanis, Daniela; Mastrocola, Raffaella; Nigro, Debora; Costelli, Paola; Aragno, Manuela

    2017-02-01

    In recent years, the increasing consumption of soft drinks containing high-fructose corn syrup or sucrose has caused a rise in fructose intake, which has been related to the epidemic of metabolic diseases. As fructose and glucose intake varies in parallel, it is still unclear what the effects of the increased consumption of the two single sugars are. In the present study, the impact of chronic consumption of glucose or fructose on skeletal muscle of healthy mice was investigated. C57BL/6J male mice received water (C), 15 % fructose (ChF) or 15 % glucose (ChG) to drink for up to 7 months. Lipid metabolism and markers of inflammation and autophagy were assessed in gastrocnemius muscle. Increased body weight and gastrocnemius muscle mass, as well as circulating glucose, insulin, and lipid plasma levels were observed in sugar-drinking mice. Although triglycerides increased in the gastrocnemius muscle of both ChF and ChG mice (+32 and +26 %, vs C, respectively), intramyocellular lipids accumulated to a significantly greater extent in ChF than in ChG animals (ChF +10 % vs ChG). Such perturbations were associated with increased muscle interleukin-6 levels (threefold of C) and with the activation of autophagy, as demonstrated by the overexpression of LC3B-II (ChF, threefold and ChG, twofold of C) and beclin-1 (ChF, sevenfold and ChG, tenfold of C). The present results suggest that intramyocellular lipids and the pro-inflammatory signaling could contribute to the onset of insulin resistance and lead to the induction of autophagy, which could be an adaptive response to lipotoxicity.

  14. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the Microalga C. sorokiniana.

    PubMed

    Rosenberg, Julian N; Kobayashi, Naoko; Barnes, Austin; Noel, Eric A; Betenbaugh, Michael J; Oyler, George A

    2014-01-01

    While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG) lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM) and heterotrophy in BBM supplemented with glucose (10 g L-1). Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18:1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18:2 relative to 18:1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L(-1) d(-1) to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L-1 d-1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis.

  15. Lipid accumulation from pinewood pyrolysates by Rhodosporidium diobovatum and Chlorella vulgaris for biodiesel production.

    PubMed

    Luque, Luis; Orr, Valerie C A; Chen, Sean; Westerhof, Roel; Oudenhoven, Stijn; Rossum, Guus van; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2016-08-01

    This study evaluated the suitability of pinewood pyrolysates as a carbon source for lipid production and cultivation of the oleaginous yeast Rhodosporidium diobovatum and the microalgae Chlorella vulgaris. Thermal decomposition of pinewood and fractional condensation were used to obtain an oil rich in levoglucosan which was upgraded to glucose by acid hydrolysis. Blending of pyrolytic sugars with pure glucose in both nitrogen rich and nitrogen limited conditions was studied for R. diobovatum, and under nitrogen limited conditions for C. vulgaris. Glucose consumption rate decreased with increasing proportions of pyrolytic sugars increasing cultivation time. While R. diobovatum was capable of growth in 100% (v/v) pyrolytic sugars, C. vulgaris growth declined rapidly in blends greater than 20% (v/v) until no growth was detected in blends >40%. Finally, the effects of pyrolysis sugars on lipid composition was evaluated and biodiesel fuel properties were estimated based on the lipid profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis.

    PubMed

    Smagris, Eriks; BasuRay, Soumik; Li, John; Huang, Yongcheng; Lai, Ka-man V; Gromada, Jesper; Cohen, Jonathan C; Hobbs, Helen H

    2015-01-01

    A sequence polymorphism (rs738409, I148M) in patatin-like phospholipid domain containing protein 3 (PNPLA3) is strongly associated with nonalcoholic fatty liver disease (NAFLD), but the mechanistic basis for this association remains enigmatic. Neither ablation nor overexpression of wild-type PNPLA3 affects liver fat content in mice, whereas hepatic overexpression of the human 148M transgene causes steatosis. To determine whether the 148M allele causes fat accumulation in the liver when expressed at physiological levels, we introduced a methionine codon at position 148 of the mouse Pnpla3 gene. Knockin mice had normal levels of hepatic fat on a chow diet, but when challenged with a high-sucrose diet their liver fat levels increased 2 to 3-fold compared to wild-type littermates without any associated changes in glucose homeostasis. The increased liver fat in the knockin mice was accompanied by a 40-fold increase in PNPLA3 on hepatic lipid droplets, with no increase in hepatic PNPLA3 messenger RNA (mRNA). Similar results were obtained when the catalytic dyad of PNPLA3 was inactivated by substituting the catalytic serine with alanine (S47A). These data provide the first direct evidence that physiological expression of PNPLA3 148M variant causes NAFLD, and that the accumulation of catalytically inactive PNPLA3 on the surfaces of lipid droplets is associated with the accumulation of TG in the liver. © 2014 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  17. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism.

    PubMed

    Zhao, Yongteng; Li, Dafei; Xu, Jun-Wei; Zhao, Peng; Li, Tao; Ma, Huixian; Yu, Xuya

    2018-07-01

    In this study, melatonin (MT) promoted lipid accumulation in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. The lipid accumulation increased 1.22- and 1.36-fold compared with a nitrogen-starved medium and a normal BG-11 medium, respectively. The maximum lipid content was 51.38%. The reactive oxygen species (ROS) level in the presence of melatonin was lower than that in the control group, likely because of the high antioxidant activities. The application of melatonin upregulated the gibberellin acid (GA) production and rbcL and accD expression levels but downregulated the abscisic acid (ABA) content and pepc expression levels. These findings demonstrated that exogenous melatonin could further improve the lipid production in Monoraphidium sp. QLY-1 by regulating antioxidant systems, signalling molecules, and lipid biosynthesis-related gene expression under nitrogen deficiency conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Lipid-load in peripheral blood mononuclear cells: Impact of food-consumption, dietary-macronutrients, extracellular lipid availability and demographic factors.

    PubMed

    Ameer, Fatima; Munir, Rimsha; Usman, Hina; Rashid, Rida; Shahjahan, Muhammad; Hasnain, Shahida; Zaidi, Nousheen

    2017-04-01

    Lipid-load in peripheral blood mononuclear cells (PBMCs) has recently gained attention of the researchers working on nutritional regulation of metabolic health. Previous works have indicated that the metabolic circuitries in the circulating PBMCs are influenced by dietary-intake and macronutrient composition of diet. In the present work, we analyzed the impact of diet and dietary macronutrients on PBMCs' lipid-load. The overall analyses revealed that dietary carbohydrates and fats combinatorially induce triglyceride accumulation in PBMCs. On the other hand, dietary fats were shown to induce significant decrease in PBMCs' cholesterol-load. The effects of various demographic factors -including age, gender and body-weight- on PBMCs' lipid-load were also examined. Body-weight and age were both shown to affect PBMC's lipid-load. Our study fails to provide any direct association between extracellular lipid availability and cholesterol-load in both, freshly isolated and cultured PBMCs. The presented work significantly contributes to the current understanding of the impact of food-consumption, dietary macronutrients, extracellular lipid availability and demographic factors on lipid-load in PBMCs. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. Ginsenosides from stems and leaves of ginseng prevent ethanol-induced lipid accumulation in human L02 hepatocytes.

    PubMed

    Hu, Chao-Feng; Sun, Li-Ping; Yang, Qin-He; Lu, Da-Xiang; Luo, Sen

    2017-06-01

    To investigate the effect of ginsenosides from stems and leaves of ginseng on ethanol-induced lipid deposition in human L02 hepatocytes. L02 cells were exposed to ethanol for 36 h and treated with or without ginsenosides. The viability of L02 cells was evaluated by methylthiazolyldiphenyl-tetrazolium bromide assay and the triglyceride (TG) content was detected. Lipid droplets were determined by oil red O staining. Intracellular reactive oxygen species (ROS) production and the mitochondrial membrane potential were tested by flow cytometry. The ATP level was measured by reverse phase high performance liquid chromatography. The expression of cytochrome p450 2E1 (CYP2E1) and peroxisome proliferator-activated receptor α (PPARα) was detected by reverse transcriptase-polymerase chain reaction and Western blotting, respectively. Ethanol exposure resulted in the increase of TG level, lipid accumulation and ROS generation, and the decrease of mitochondrial membrane potential and ATP production in the cells. However, ginsenosides significantly reduced TG content (9.69±0.22 μg/mg protein vs. 4.93±0.49 μg/mg protein, P<0.01), and ROS formation (7254.8±385.7 vs. 5825.2±375.9, P<0.01). Meanwhile, improvements in mitochondrial membrane potential (10655.33±331.34 vs. 11129.52±262.35, P<0.05) and ATP level (1.20±0.18 nmol/mg protein vs. 2.53±0.25 nmol/mg protein, P<0.01) were observed by treatment with ginsenosides. Furthermore, ginsenosides could down-regulate CYP2E1 expression (P<0.01) and upregulate PPARα expression (P<0.01) in ethanol-treated cells. Ginsenosides could prevent ethanol-induced hepatocyte steatosis in vitro related to the inhibition of oxidative stress and the improvement of mitochondrial function. In addition, the modulation of CYP2E1 and PPARα expression may also play an important role in the protective effect of ginsenosides against lipid accumulation.

  20. Utilization of simultaneous saccharification and fermentation residues as feedstock for lipid accumulation in Rhodococcus opacus.

    PubMed

    Le, Rosemary K; Das, Parthapratim; Mahan, Kristina M; Anderson, Seth A; Wells, Tyrone; Yuan, Joshua S; Ragauskas, Arthur J

    2017-09-29

    Use of oleaginous microorganisms as "micro-factories" for accumulation of single cell oils for biofuel production has increased significantly to mitigate growing energy demands, resulting in efforts to upgrade industrial waste, such as second-generation lignocellulosic residues, into potential feedstocks. Dilute-acid pretreatment (DAP) is commonly used to alter the physicochemical properties of lignocellulosic materials and is typically coupled with simultaneous saccharification and fermentation (SSF) for conversion of sugars into ethanol. The resulting DAP residues are usually processed as a waste stream, e.g. burned for power, but this provides minimal value. Alternatively, these wastes can be utilized as feedstock to generate lipids, which can be converted to biofuel. DAP-SSF residues were generated from pine, poplar, and switchgrass. High performance liquid chromatography revealed less than 0.13% monomeric sugars in the dry residue. Fourier transform infrared spectroscopy was indicative of the presence of lignin and polysaccharides. Gel permeation chromatography suggested the bacterial strains preferred molecules with molecular weight ~ 400-500 g/mol. DAP-SSF residues were used as the sole carbon source for lipid production by Rhodococcus opacus DSM 1069 and PD630 in batch fermentations. Depending on the strain of Rhodococcus employed, 9-11 lipids for PD630 and DSM 1069 were observed, at a final concentration of ~ 15 mg/L fatty acid methyl esters (FAME) detected. Though the DAP-SSF substrate resulted in low FAME titers, novel analysis of solid-state fermentations was investigated, which determined that DAP-SSF residues could be a viable feedstock for lipid generation.

  1. Accumulated lipids rather than the rigid cell walls impede the extraction of genetic materials for effective colony PCRs in Chlorella vulgaris

    PubMed Central

    2013-01-01

    Background Failure of colony PCRs in green microalga Chlorella vulgaris is typically attributed to the difficulty in disrupting its notoriously rigid cell walls for releasing the genetic materials and therefore the development of an effective colony PCR procedure in C. vulgaris presents a challenge. Results Here we identified that colony PCR results were significantly affected by the accumulated lipids rather than the rigid cell walls of C. vulgaris. The higher lipids accumulated in C. vulgaris negatively affects the effective amplification by DNA polymerase. Based on these findings, we established a simple and extremely effective colony PCR procedure in C. vulgaris. By simply pipetting/votexing the pellets of C. vulgaris in 10 ul of either TE (10 mM Tris/1 mM EDTA) or 0.2% SDS buffer at room temperature, followed by the addition of 10 ul of either hexane or Phenol:Chloroform:Isoamyl Alcohol in the same PCR tube for extraction. The resulting aqueous phase was readily PCR-amplified as genomic DNA templates as demonstrated by successful amplification of the nuclear 18S rRNA and the chloroplast rbcL gene. This colony PCR protocol is effective and robust in C. vulgaris and also demonstrates its effectiveness in other Chlorella species. Conclusions The accumulated lipids rather than the rigid cell walls of C. vulgaris significantly impede the extraction of genetic materials and subsequently the effective colony PCRs. The finding has the potential to aid the isolation of high-quality total RNAs and mRNAs for transcriptomic studies in addition to the genomic DNA isolation in Chlorella. PMID:24219401

  2. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    PubMed

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The Mammalian “Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish

    PubMed Central

    Lyssimachou, Angeliki; Santos, Joana G.; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C. Marisa R.; Teixeira, Catarina; Castro, L. Filipe C.; Santos, Miguel M.

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound. PMID:26633012

  4. Do lipids shape the eukaryotic cell cycle?

    PubMed

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration.

    PubMed

    Wang, Tao; Ge, Haiyan; Liu, Tingting; Tian, Xiwei; Wang, Zejian; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-06-20

    Salt stress as an effective stress factor that could improve the lipid content and lipid yield of glucose in the heterotrophic culture cells of Chlorella protothecoides was demonstrated in this study. The highest lipid content of 41.2% and lipid yield of 185.8mg/g were obtained when C. protothecoides was stressed under 30g/L NaCl condition at its late logarithmic growth phase. Moreover, the effects of salt and osmotic stress on lipid accumulation were comparatively analyzed, and it was found that the effects of NaCl and KCl stress had no significant differences at the same osmolarity level of 1150mOsm/kg with lipid contents of 41.7 and 40.8% as well as lipid yields of 192.9 and 186.8mg/g, respectively, whereas these results were obviously higher than those obtained under the iso-osmotic glycerol and sorbitol stresses. Furthermore, basing on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration, the superior performance of salt stress driving lipid over-synthesis was probably ascribed to the more ROS production as a result of additional ion effect besides the osmotic effect, subsequently mediating the alteration from carbohydrate storage to lipid accumulation in signal transduction process of C. protothecoides. Copyright © 2016. Published by Elsevier B.V.

  6. Tuberous Sclerosis Complex-1 Deficiency Attenuates Diet-Induced Hepatic Lipid Accumulation

    PubMed Central

    Kenerson, Heidi L.; Yeh, Matthew M.; Yeung, Raymond S.

    2011-01-01

    Non-alcoholic fatty liver disease (NAFLD) is causally linked to type 2 diabetes, insulin resistance and dyslipidemia. In a normal liver, insulin suppresses gluconeogenesis and promotes lipogenesis. In type 2 diabetes, the liver exhibits selective insulin resistance by failing to inhibit hepatic glucose production while maintaining triglyceride synthesis. Evidence suggests that the insulin pathway bifurcates downstream of Akt to regulate these two processes. Specifically, mTORC1 has been implicated in lipogenesis, but its role on hepatic steatosis has not been examined. Here, we generated mice with hepatocyte-specific deletion of Tsc1 to study the effects of constitutive mTORC1 activation in the liver. These mice developed normally but displayed mild hepatomegaly and insulin resistance without obesity. Unexpectedly, the Tsc1-null livers showed minimal signs of steatosis even under high-fat diet condition. This ‘resistant’ phenotype was reversed by rapamycin and could be overcome by the expression of Myr-Akt. Moreover, rapamycin failed to reduce hepatic triglyceride levels in models of steatosis secondary to Pten ablation in hepatocytes or high-fat diet in wild-type mice. These observations suggest that mTORC1 is neither necessary nor sufficient for steatosis. Instead, Akt and mTORC1 have opposing effects on hepatic lipid accumulation such that mTORC1 protects against diet-induced steatosis. Specifically, mTORC1 activity induces a metabolic shift towards fat utilization and glucose production in the liver. These findings provide novel insights into the role of mTORC1 in hepatic lipid metabolism. PMID:21479224

  7. Role of small-sized copepods in the lipid-driven Arctic marine food web

    NASA Astrophysics Data System (ADS)

    Daase, M.; Boissonnot, L.; Graeve, M.; Søreide, J.; Niehoff, B.

    2016-02-01

    Despite of the low individual biomass of small-sized copepods such as the calanoid Pseudocalanus minutus and the cyclopoid Oithona similis, they are extremely numerous which make them an important trophic component in Arctic marine ecosystems. Due to the strong seasonality in light and thus primary production and food availability, the accumulation of lipid reserves is a key feature in Arctic marine ecosystems. However, very few studies exist on the lipid biochemistry of small copepods such as P. minutus and O. similis. In order to investigate the importance of these species in terms of transfer of lipids from primary production to higher trophic levels, feeding experiments were conducted, based on animals from Billefjorden, a high-Arctic fjord in Svalbard, Norway. A mixture of 13C labeled flagellates and diatoms was fed to the animals and the transfer and assimilation of lipid carbon, fatty acids and fatty alcohols was analyzed with gas chromatography-IRMS technique (CSIA). The results revealed that both species were incorporating dietary lipids in high quantities. The highest accumulation occurred in P. minutus in which 54.4% of the lipids were exchanged after 21 days, whereas 9.4% were assimilated in O. similis. Hence, at least this amount of carbon was used for metabolism and replaced by feeding. The lipid composition of the copepods did not reflect exactly the algal lipids, and differed between P. minutus and O. similis. Our results suggested intrinsic preferences in the accumulation of particular fatty acids, probably related to species-specific body requirements. This emphasizes the importance of also food quality in Arctic marine systems. Due to the relatively high lipid turnover rates in particularly in P. minutus, also small copepods are important drivers of the lipid-driven Arctic marine food web.

  8. Vinpocetine attenuates lipid accumulation and atherosclerosis formation.

    PubMed

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-05-10

    Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells.

    PubMed

    Seo, Min-Jung; Lee, Ok-Hwan; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPARγ peroxisome proliferator-activated receptor-γ and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dis-mutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

  10. Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells

    PubMed Central

    Seo, Min-Jung; Lee, Ok-Hwan; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-01-01

    Gelidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPARγ peroxisome proliferator-activated receptor-γ and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dis-mutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes. PMID:24471074

  11. Houttuynia cordata attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells.

    PubMed

    Kang, Hyun; Koppula, Sushruta

    2014-01-01

    Houttuynia cordata (H. cordata) from the family Saururaceae is a perennial herb native to Southeast Asia. It possesses a range of medicinal properties to treat several disease symptoms including allergic inflammation and anaphylaxis. In the present investigation, we provided the molecular mechanisms underlying the role of H. cordata extract (HCE) in the prevention of high glucose-induced lipid accumulation in human HepG2 hepatocytes. HepG2 cells were pre-treated with various concentrations of HCE (0, 10, 20, 40, and 80 μg/mL) and treated with serum-free medium with normal glucose (5 mM) for 1 h, followed by exposure to high glucose (25 mM D-glucose) for 24 h. HCE significantly and dose-dependently attenuated lipid accumulation in human HepG2 hepatocytes when exposed to high glucose (25 mM D-glucose) (p < 0.05, p < 0.01 and p < 0.001 at 20, 40, and 80 μg/mL concentrations, respectively). Further, HCE attenuated the expression of fatty acid synthase (FAS), sterol regulatory element-binding protein-1 and glycerol 3-phosphate acyltransferases (GPATs). The adenosine monophosphate-activated protein kinase (AMPK) was also activated by HCE treatment when exposed to high glucose (25 mM D-glucose) in human HepG2 hepatocytes. This study suggests the hypolipidemic effects of HCE by the inhibition of lipid biosynthesis mediated through AMPK signaling, which may play an active role and can be developed as an anti-obesity agent.

  12. Metabolomics analysis reveals 6-benzylaminopurine as a stimulator for improving lipid and DHA accumulation of Aurantiochytriumsp.

    PubMed

    Yu, Xin-Jun; Sun, Jie; Zheng, Jian-Yong; Sun, Ya-Qi; Wang, Zhao

    2016-04-01

    Phytohormones are chemical messengers that have a positive effect on biodiesel production of microalgae at low concentrations. However, the effect of phytohormone 6-benzylaminopurine on lipid and docosahexaenoic acid (DHA) production in marine DHA-producer Aurantiochytrium has never been reported. In this study, a GC-MS-based metabolomics method combined with a multivariate analysis is applied to reveal the metabolic mechanism of 6-benzylaminopurine enhancing production of lipid and DHA in Aurantiochytrium sp.YLH70. In total, 71 metabolites were identified by GC-MS. The PCA model revealed that 76.9% of metabolite variation was related to 6-benzylaminopurine treatment, and overall metabolomics profiles between the 6-benzylaminopurine and control groups were clearly discriminated. Forty-six metabolites identified by the PLS-DA model were responsible for responding to 6-benzylaminopurine. Metabolic analysis showed that 6-benzylaminopurine could accelerate the rate of utilization of glucose in Aurantiochytrium sp. YLH70, and the metabolic flux from glycolysis, TCA cycle and mevalonate pathway to fatty acids biosynthesis was promoted. Moreover, the anti-stress mechanism in Aurantiochytrium sp.YLH70 might be induced by 6-benzylaminopurine. Metabolomics is a suitable tool to discover the metabolic mechanism for improving lipid and DHA accumulation in a microorganism. 6-benzylaminopurine has the potential to stimulate lipid and DHA production of Aurantiochytrium sp.YLH70 for industrial purposes. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  13. Egg components and hatchling lipid reserves: parental investment in kinosternid turtles from the southeastern United States.

    PubMed

    Nagle, R D; Burke, V J; Congdon, J D

    1998-05-01

    storage lipids than those that exhibit immediate emergence. However, because the species that overwinters in the nest (K. subrubrum) hatches approximately 40 days later than the species that typically does not (S. odoratus), hatchling K. subrubrum may contain higher non-polar lipid proportions than hatchling S. odoratus during similar winter time periods. Kinosternid hatchlings contain enough stored lipids to support basal maintenance costs for substantial time periods. We suggest that such reserves may be critical to hatchling survival during a period of negative energy balance, regardless of nest emergence strategy.

  14. Alteration of cellular lipids and lipid metabolism markers in RTL-W1 cells exposed to model endocrine disrupters.

    PubMed

    Dimastrogiovanni, Giorgio; Córdoba, Marlon; Navarro, Isabel; Jáuregui, Olga; Porte, Cinta

    2015-08-01

    This work investigates the suitability of the rainbow trout liver cell line (RTL-W1) as an in-vitro model to study the ability of model endocrine disrupters, namely TBT, TPT, 4-NP, BPA and DEHP, to act as metabolic disrupters by altering cellular lipids and markers of lipid metabolism. Among the tested compounds, BPA and DEHP significantly increased the intracellular accumulation of triacylglycerols (TAGs), while all the compounds -apart from TPT-, altered membrane lipids - phosphatidylcholines (PCs) and plasmalogen PCs - indicating a strong interaction of the toxicants with cell membranes and cell signaling. RTL-W1 expressed a number of genes involved in lipid metabolism that were modulated by exposure to BPA, TBT and TPT (up-regulation of FATP1 and FAS) and 4-NP and DEHP (down-regulation of FAS and LPL). Multiple and complex modes of action of these chemicals were observed in RTL-W1 cells, both in terms of expression of genes related to lipid metabolism and alteration of cellular lipids. Although further characterization is needed, this might be a useful model for the detection of chemicals leading to steatosis or other diseases associated with lipid metabolism in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Quantitative monitoring of lipid accumulation over time in cultured adipocytes as function of culture conditions: toward controlled adipose tissue engineering.

    PubMed

    Or-Tzadikario, Shira; Sopher, Ran; Gefen, Amit

    2010-10-01

    Adipose tissue engineering is investigated for native fat substitutes and wound healing model systems. Research and clinical applications of bioartificial fat require a quantitative and objective method to continuously measure adipogenesis in living cultures as opposed to currently used culture-destructive techniques that stain lipid droplet (LD) accumulation. To allow standardization, automatic quantification of LD size is further needed, but currently LD size is measured mostly manually. We developed an image processing-based method that does not require staining to monitor adipose cell maturation in vitro nondestructively using optical micrographs taken consecutively during culturing. We employed our method to monitor LD accumulation in 3T3-L1 and mesenchymal stem cells over 37 days. For each cell type, percentage of lipid area, number of droplets per cell, and droplet diameter were obtained every 2-3 days. In 3T3-L1 cultures, high insulin concentration (10 microg/mL) yielded a significantly different (p < 0.01) time course of all three outcome measures. In mesenchymal stem cell cultures, high fetal bovine serum concentration (12.5%) produced significantly more lipid area (p < 0.01). Our method was able to successfully characterize time courses and extents of adipogenesis and is useful for a wide range of applications testing the effects of biochemical, mechanical, and thermal stimulations in tissue engineering of bioartificial fat constructs.

  16. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showedmore » higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.« less

  17. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630

    DOE PAGES

    Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.; ...

    2016-02-02

    Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showedmore » higher phenol consumption rates (~20 mg/l/h) and ~2-fold higher lipid production from phenol than the wild-type strain.Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.« less

  18. Deep Sequencing of the Fruit Transcriptome and Lipid Accumulation in a Non-Seed Tissue of Chinese Tallow, a Potential Biofuel Crop.

    PubMed

    Divi, Uday K; Zhou, Xue-Rong; Wang, Penghao; Butlin, Jamie; Zhang, Dong-Mei; Liu, Qing; Vanhercke, Thomas; Petrie, James R; Talbot, Mark; White, Rosemary G; Taylor, Jennifer M; Larkin, Philip; Singh, Surinder P

    2016-01-01

    Chinese tallow (Triadica sebifera) is a valuable oilseed-producing tree that can grow in a variety of conditions without competing for food production, and is a promising biofuel feedstock candidate. The fruits are unique in that they contain both saturated and unsaturated fat present in the tallow and seed layer, respectively. The tallow layer is poorly studied and is considered only as an external fatty deposition secreted from the seed. In this study we show that tallow is in fact a non-seed cellular tissue capable of triglyceride synthesis. Knowledge of lipid synthesis and storage mechanisms in tissues other than seed is limited but essential to generate oil-rich biomass crops. Here, we describe the annotated transcriptome assembly generated from the fruit coat, tallow and seed tissues of Chinese tallow. The final assembly was functionally annotated, allowing for the identification of candidate genes and reconstruction of lipid pathways. A tallow tissue-specific paralog for the transcription factor gene WRINKLED1 (WRI1) and lipid droplet-associated protein genes, distinct from those expressed in seed tissue, were found to be active in tallow, underpinning the mode of oil synthesis and packaging in this tissue. Our data have established an excellent knowledge base that can provide genetic and biochemical insights for engineering non-seed tissues to accumulate large amounts of oil. In addition to the large data set of annotated transcripts, the study also provides gene-based simple sequence repeat and single nucleotide polymorphism markers. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Comparative Analyses of Three Chlorella Species in Response to Light and Sugar Reveal Distinctive Lipid Accumulation Patterns in the Microalga C. sorokiniana

    PubMed Central

    Barnes, Austin; Noel, Eric A.; Betenbaugh, Michael J.; Oyler, George A.

    2014-01-01

    While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG) lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM) and heterotrophy in BBM supplemented with glucose (10 g L−1). Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18∶1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18∶2 relative to 18∶1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L−1 d−1 to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L−1 d−1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis. PMID:24699196

  20. Eucommia ulmoides Oliver Extract, Aucubin, and Geniposide Enhance Lysosomal Activity to Regulate ER Stress and Hepatic Lipid Accumulation

    PubMed Central

    Lee, Hwa-Young; Lee, Geum-Hwa; Lee, Mi-Rin; Kim, Hye-Kyung; Kim, Nan-young; Kim, Seung-Hyun; Lee, Yong-Chul; Kim, Hyung-Ryong; Chae, Han-Jung

    2013-01-01

    Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE) on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER) stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia. PMID:24349058

  1. Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis.

    PubMed

    Janer, Gemma; Navarro, Juan Carlos; Porte, Cinta

    2007-09-01

    Recent studies have shown that organotin compounds affect lipid homeostasis in vertebrates, probably through interaction with RXR and/or PPARgamma receptors. Molluscs are sensitive species to the toxic effects of tributyltin (TBT), particularly to masculinization, and TBT has been recently shown to bind to molluscs RXR. Thus, we hypothesized that exposure to TBT could affect lipid homeostasis in the ramshorn snail Marisa cornuarietis. For comparative purposes, the synthetic androgen methyl-testosterone (MT) was included in the study due to its masculinization effects, but its lack of binding to the RXR receptor. M. cornuarietis was exposed to different concentrations of TBT (30, 125, 500 ng/L as Sn) and MT (30, 300 ng/L) for 100 days. Females exposed to 500 ng/L TBT showed increased percentage of lipids and increased levels of fatty acids in the digestive gland/gonad complex (2- to 3-fold). In addition, fatty acid profiles were altered in both males and females exposed to 125 and 500 ng/L TBT. These effects were not observed in females exposed to MT. Overall, this work suggest that TBT acts as a potent inducer of lipid and fatty acid accumulation in M. cornuarietis as shown in vertebrate studies earlier, and that sex differences in sensitivity do exist.

  2. Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum.

    PubMed

    Popko, Jennifer; Herrfurth, Cornelia; Feussner, Kirstin; Ischebeck, Till; Iven, Tim; Haslam, Richard; Hamilton, Mary; Sayanova, Olga; Napier, Jonathan; Khozin-Goldberg, Inna; Feussner, Ivo

    2016-01-01

    Oleaginous microalgae are considered as a promising resource for the production of biofuels. Especially diatoms arouse interest as biofuel producers since they are most productive in carbon fixation and very flexible to environmental changes in the nature. Naturally, triacylglycerol (TAG) accumulation in algae only occurs under stress conditions like nitrogen-limitation. We focused on Phaeodactylum strain Pt4 (UTEX 646), because of its ability to grow in medium with low salinity and therefore being suited when saline water is less available or for wastewater cultivation strategies. Our data show an increase in neutral lipids during nitrogen-depletion and predominantly 16:0 and 16:1(n-7) accumulated in the TAG fraction. The molecular species composition of TAG suggests a remodeling primarily from the betaine lipid diacylglyceroltrimethylhomoserine (DGTS), but a contribution of the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG) cannot be excluded. Interestingly, the acyl-CoA pool is rich in 20:5(n-3) and 22:6(n-3) in all analyzed conditions, but these fatty acids are almost excluded from TAG. Other metabolites most obviously depleted under nitrogen-starvation were amino acids, lyso-phospholipids and tricarboxylic acid (TCA) cycle intermediates, whereas sulfur-containing metabolites as dimethylsulfoniopropionate, dimethylsulfoniobutyrate and methylsulfate as well as short acyl chain carnitines, propanoyl-carnitine and butanoyl-carnitine increased upon nitrogen-starvation. Moreover, the Calvin cycle may be de-regulated since sedoheptulose accumulated after nitrogen-depletion. Together the data provide now the basis for new strategies to improve lipid production and storage in Phaeodactylum strain Pt4.

  3. Relationships of cadmium, mercury, and selenium with nutrient reserves of female lesser scaup (Aythya affinis) during winter and spring migration

    USGS Publications Warehouse

    Anteau, M.J.; Afton, A.D.; Custer, Christine M.; Custer, T.W.

    2007-01-01

    Trace elements may have important effects on body condition of ducks during spring migration, because individuals are experiencing energetically costly events (e.g., migration, nutrient reserve accumulation, pair formation, feather molt, and ovarian follicle development). We examined relationships among hepatic cadmium, mercury, and selenium concentrations (microg/g dry wt) and nutrient reserves (lipid, protein, and mineral) of female lesser scaup (Aythya affinis) during winter and spring migration at four locations within the Mississippi Flyway (LA, IL, and MN, USA, and MB, Canada). Selenium concentrations (range, 3.73-52.29 microg/g dry wt) were positively correlated with lipid reserves (F1,73 = 22.69, p < 0.001, type III partial r2 = 0.24), whereas cadmium was negatively correlated with lipid reserves (F1,73 = 6.92, p = 0.010, type III partial r2 = 0.09). The observed relationship between cadmium and lipid reserves may be cause for concern, because lipid reserves of females declined by 55 g (47%), on average, within the range of observed cadmium concentrations (0.23-7.24 microg/g dry wt), despite the relatively low cadmium concentrations detected. Mean cadmium concentrations were higher in Minnesota (1.23 microg/g dry wt) and Manitoba (1.11 microg/g dry wt) than in Louisiana (0.80 microg/g dry wt) and Illinois (0.69 microg/g dry wt). However, mean cadmium concentrations predict lipid reserves of females to be only 11 g lower, on average, in Minnesota than in Illinois. Previous research documented that lipid reserves were 100 g lower in Minnesota than in Illinois; consequently, cadmium is unlikely to be the sole cause for decreases in lipid reserves of females during late-spring migration.

  4. Antitumor Lipids--Structure, Functions, and Medical Applications.

    PubMed

    Kostadinova, Aneliya; Topouzova-Hristova, Tanya; Momchilova, Albena; Tzoneva, Rumiana; Berger, Martin R

    2015-01-01

    Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels. © 2015 Elsevier Inc. All rights reserved.

  5. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice.

    PubMed

    Saito, Tetsuo; Nishida, Miyako; Saito, Masafumi; Tanabe, Akari; Eitsuka, Takahiro; Yuan, Shi-Hua; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-10-01

    Obesity-associated insulin resistance is a major risk factor for most metabolic diseases, including dyslipidemia and type 2 diabetes. Acanthopanax senticosus (Rupr. et Maxim.) Harms (Goka) root has been used in traditional Chinese medicine for treatment of diabetes and other conditions; however, little is known about the effects of Goka fruit (GF). Goka fruit is rich in anthocyanin, which has beneficial effects on obesity and insulin resistance via activation of adenosine monophosphate-activated protein kinase (AMPK). We hypothesized that GF can improve obesity-associated insulin resistance. The aim of the present study was to investigate whether GF improves insulin resistance in high-fat diet (HFD)-induced obese mice. High-fat diet mice treated with GF (500 and 1000 mg/kg) for 12 weeks showed an improved glucose tolerance and insulin sensitivity, as well as reduced plasma insulin and liver lipid accumulation. Moreover, GF administration to HFD mice resulted in down-regulation of fatty acid synthase expression and up-regulation of cholesterol 7-alpha-hydroxylase expression in the liver. Notably, AMPK phosphorylation in the liver increased after GF administration. In summary, GF supplementation improved obesity-associated insulin resistance and hepatic lipid accumulation through modulation of AMPK activity and lipid metabolism-associated gene expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux

    PubMed Central

    2017-01-01

    Lipid accumulation within the lumen of endolysosomal vesicles is observed in various pathologies including atherosclerosis, liver disease, neurological disorders, lysosomal storage disorders, and cancer. Current methods cannot measure lipid flux specifically within the lysosomal lumen of live cells. We developed an optical reporter, composed of a photoluminescent carbon nanotube of a single chirality, that responds to lipid accumulation via modulation of the nanotube’s optical band gap. The engineered nanomaterial, composed of short, single-stranded DNA and a single nanotube chirality, localizes exclusively to the lumen of endolysosomal organelles without adversely affecting cell viability or proliferation or organelle morphology, integrity, or function. The emission wavelength of the reporter can be spatially resolved from within the endolysosomal lumen to generate quantitative maps of lipid content in live cells. Endolysosomal lipid accumulation in cell lines, an example of drug-induced phospholipidosis, was observed for multiple drugs in macrophages, and measurements of patient-derived Niemann–Pick type C fibroblasts identified lipid accumulation and phenotypic reversal of this lysosomal storage disease. Single-cell measurements using the reporter discerned subcellular differences in equilibrium lipid content, illuminating significant intracellular heterogeneity among endolysosomal organelles of differentiating bone-marrow-derived monocytes. Single-cell kinetics of lipoprotein-derived cholesterol accumulation within macrophages revealed rates that differed among cells by an order of magnitude. This carbon nanotube optical reporter of endolysosomal lipid content in live cells confers additional capabilities for drug development processes and the investigation of lipid-linked diseases. PMID:28898055

  7. Smoke Exposure Causes Endoplasmic Reticulum Stress and Lipid Accumulation in Retinal Pigment Epithelium through Oxidative Stress and Complement Activation*

    PubMed Central

    Kunchithapautham, Kannan; Atkinson, Carl; Rohrer, Bärbel

    2014-01-01

    Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD. PMID:24711457

  8. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri.

    PubMed

    Fernandes, Bruno; Teixeira, José; Dragone, Giuliano; Vicente, António A; Kawano, Shigeyuki; Bišová, Kateřina; Přibyl, Pavel; Zachleder, Vilém; Vítová, Milada

    2013-09-01

    Photosynthetic carbon partitioning into starch and neutral lipids, as well as the influence of nutrient depletion and replenishment on growth, pigments and storage compounds, were studied in the microalga, Parachlorella kessleri. Starch was utilized as a primary carbon and energy storage compound, but nutrient depletion drove the microalgae to channel fixed carbon into lipids as secondary storage compounds. Nutrient depletion inhibited both cellular division and growth and caused degradation of chlorophyll. Starch content decreased from an initial value of 25, to around 10% of dry weight (DW), while storage lipids increased from almost 0 to about 29% of DW. After transfer of cells into replenished mineral medium, growth, reproductive processes and chlorophyll content recovered within 2 days, while the content of both starch and lipids decreased markedly to 3 or less % of DW; this suggested that they were being used as a source of energy and carbon. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Growth and lipid accumulation characteristics of Scenedesmus obliquus in semi-continuous cultivation outdoors for biodiesel feedstock production.

    PubMed

    Feng, Pingzhong; Yang, Kang; Xu, Zhongbin; Wang, Zhongming; Fan, Lu; Qin, Lei; Zhu, Shunni; Shang, Changhua; Chai, Peng; Yuan, Zhenhong; Hu, Lei

    2014-12-01

    In an effort to identify suitable microalgal species for biodiesel production, seven species were isolated from various habitats and their growth characteristics were compared. The results demonstrated that a green alga Scenedesmus obliquus could grow more rapidly and synthesize more lipids than other six microalgal strains. S. obliquus grew well both indoors and outdoors, and reached higher μmax indoors than that outdoors. However, the cells achieved higher dry weight (4.36 g L(-1)), lipid content (49.6%) and productivity (183 mg L(-1) day(-1)) outdoors than in indoor cultures. During the 61 days semi-continuous cultivation outdoors, high biomass productivities (450-550 mg L(-1) day(-1)) and μmax (1.05-1.44 day(-1)) were obtained. The cells could also achieve high lipid productivities (151-193 mg L(-1) day(-1)). These results indicated that S. obliquus was promising for lipids production in semi-continuous cultivation outdoors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Energy conversion analysis of microalgal lipid production under different culture modes.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xie, Guo-Jun; Ren, Nan-Qi

    2014-08-01

    Growth and lipid production performance of Scenedesmus sp. under different culture modes were investigated. Under heterotrophic aerobic mode, algal biomass concentration and total lipid content reached 3.42 g L(-1) and 43.0 wt.%, which were much higher than those in autotrophic aerobic mode (0.55 g L(-1)/20.2 wt.%). The applied light exposure of 7.0 Wm(-2) was beneficial to biomass and lipid accumulation. Mixotrophic aerobic mode produced the highest biomass concentration of 3.84 g L(-1). The biomass was rich in lipids (51.3 wt.%) and low in proteins (17.9 wt.%) and carbohydrates (10.3 wt.%). However, lower algal biomass concentration (2.93 g L(-1)) and total lipid content (36.1 wt.%) were obtained in mixotrophic anaerobic mode. Mixotrophic aerobic mode gave the maximum heat value conversion efficiency of 45.7%. These results indicate that mixotrophic aerobic cultivation was a promising culture mode for lipid production by Scenedesmus sp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Expanding roles for lipid droplets

    PubMed Central

    Welte, Michael A.

    2015-01-01

    Summary Lipid droplets are the intracellular sites for neutral lipid storage. They are critical for lipid metabolism and energy homeostasis, and their dysfunction has been linked to many diseases. Accumulating evidence suggests that the roles lipid droplets play in biology are significantly broader than previously anticipated. Lipid droplets are the source of molecules important in the nucleus: they can sequester transcription factors and chromatin components and generate the lipid ligands for certain nuclear receptors. Lipid droplets have also emerged as important nodes for fatty acid trafficking, both inside the cell and between cells. In immunity, new roles for droplets, not directly linked to lipid metabolism, have been uncovered, as assembly platforms for specific viruses and as reservoirs for proteins that fight intracellular pathogens. Until recently, knowledge about droplets in the nervous system has been minimal, but now there are multiple links between lipid droplets and neurodegeneration: Many candidate genes for Hereditary Spastic Paraplegia also have central roles in lipid-droplet formation and maintenance, and mitochondrial dysfunction in neurons can lead to transient accumulating of lipid droplets in neighboring glial cells, an event that may, in turn, contribute to neuronal damage. As the cell biology and biochemistry of lipid droplets are increasingly well understood, the next few years should yield many new mechanistic insights into these novel functions of lipid droplets. PMID:26035793

  12. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer.

    PubMed

    Liu, Qiuping; Luo, Qing; Halim, Alexander; Song, Guanbin

    2017-08-10

    One of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism. In addition, enhancing de novo fatty acid (FA) synthesis, increasing lipid uptake and lipolysis have also been considered as means of FA acquisition in cancer cells. FAs are involved in various aspects of tumourigenesis and tumour progression. Therefore, targeting lipid metabolism is a promising therapeutic strategy for human cancer. Recent studies have shown that reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid signals during cancer progression. Moreover, accumulation of lipid droplets in cancer cells acts as a pivotal adaptive response to harmful conditions. Here, we provide a brief review of the crucial roles of FA metabolism in cancer development, and place emphasis on FA origin, utilization and storage in cancer cells. Understanding the regulation of lipid metabolism in cancer cells has important implications for exploring a new therapeutic strategy for management and treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Dynamics of biochemical components, lipid classes and energy values on gonadal development of R. philippinarum associated with the temperature and ingestion rate.

    PubMed

    Fernández-Reiriz, M J; Pérez-Camacho, A; Delgado, M; Labarta, U

    2007-08-01

    This study evaluates the effect of temperature, coupled with ingestion rate, on the dynamics of biochemical components and lipid classes in R. philippinarum. The data are discussed with regard to sexual development and energy balance. Experimental protocol developed in the present study used two groups of the clam R. philippinarum: L (temperatures of 14 degrees C and 18 degrees C) and H (temperatures of 18 degrees C and 22 degrees C). The intra-group ingestion level was similar, although the ingestion level of the clams in the group H was 2.4 times higher than group L. We observed that R. philippinarum conditioned at 18 degrees C (18L) shows higher protein content, furthermore an important loss of organic weight was observed after 48 days. In such a situation, the clams use their own reserves (carbohydrates and glycogen) for sexual development while in situations without food stress (positive energy balance) and low temperature (14 degrees C) an accumulation of reserves is produced. Strikingly dissimilar behaviour in biochemical composition was observed for the 18H and 22H treatments, both with a positive energy balance. Despite similar protein content, the highest levels of carbohydrates were observed at the lower temperature (18 degrees C). Glycogen was also higher for the 18 degrees C treatment, although the differences were significant only in the males. Although the total lipids in R. philippinarum showed no significant differences in any treatment, they became apparent and related to sex when considering the individual lipid classes. There was no variation in lipid classes in the males between the 14L and 22H treatments despite the large disparity in the degree of sexual development. However, in the females significant differences in lipid classes (phospholipids, triglycerides) were observed. The results of this study show that a positive energy balance permits R. philippinarum gonadal development and accumulation of reserves both in low and high temperature

  14. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production.

    PubMed

    Mutanda, T; Ramesh, D; Karthikeyan, S; Kumari, S; Anandraj, A; Bux, F

    2011-01-01

    Global petroleum reserves are shrinking at a fast pace, increasing the demand for alternate fuels. Microalgae have the ability to grow rapidly, and synthesize and accumulate large amounts (approximately 20-50% of dry weight) of neutral lipid stored in cytosolic lipid bodies. A successful and economically viable algae based biofuel industry mainly depends on the selection of appropriate algal strains. The main focus of bioprospecting for microalgae is to identify unique high lipid producing microalgae from different habitats. Indigenous species of microalgae with high lipid yields are especially valuable in the biofuel industry. Isolation, purification and identification of natural microalgal assemblages using conventional techniques is generally time consuming. However, the recent use of micromanipulation as a rapid isolating tool allows for a higher screening throughput. The appropriate media and growth conditions are also important for successful microalgal proliferation. Environmental parameters recorded at the sampling site are necessary to optimize in vitro growth. Identification of species generally requires a combination of morphological and genetic characterization. The selected microalgal strains are grown in upscale systems such as raceway ponds or photobireactors for biomass and lipid production. This paper reviews the recent methodologies adopted for site selection, sampling, strain selection and identification, optimization of cultural conditions for superior lipid yield for biofuel production. Energy generation routes of microalgal lipids and biomass are discussed in detail. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Mobilization of lipid reserves during germination of oat (Avena sativa L.), a cereal rich in endosperm oil.

    PubMed

    Leonova, Svetlana; Grimberg, Asa; Marttila, Salla; Stymne, Sten; Carlsson, Anders S

    2010-06-01

    Since the cereal endosperm is a dead tissue in the mature grain, beta-oxidation is not possible there. This raises the question about the use of the endosperm oil in cereal grains during germination. In this study, mobilization of lipids in different tissues of germinating oat grains was analysed using thin-layer and gas chromatography. The data imply that the oat endosperm oil [triacylglycerol (TAG)] is not a dead-end product as it was absorbed by the scutellum, either as free fatty acids (FFAs) released from TAG or as intact TAG immediately degraded to FFAs. These data were supported by light and transmission electron microscopy (LM and TEM) studies where close contact between endosperm lipid droplets and the scutellum was observed. The appearance of the fused oil in the oat endosperm changed into oil droplets during germination in areas close to the aleurone and the scutellar epithelium. However, according to the data obtained by TEM these oil droplets are unlikely to be oil bodies surrounded by oleosins. Accumulation of FFA pools in the embryo suggested further transport of FFAs from the scutellum. Noticeably high levels of TAG were also accumulated in the embryo but were not synthesized by re-esterification from imported FFAs. Comparison between two oat cultivars with different amounts of oil and starch in the endosperm suggests that an increased oil to starch ratio in oat grains does not significantly impact the germination process.

  16. Oxygen-­dependent regulation of bacterial lipid production

    DOE PAGES

    Lemmer, Kimberly C.; Dohnalkova, Alice C.; Noguera, Daniel R.; ...

    2015-05-02

    Understanding the mechanisms of lipid accumulation in microorganisms is important for several reasons. In addition to providing insight into assembly of biological membranes, lipid accumulation has important applications in the production of renewable fuels and chemicals. The photosynthetic bacterium Rhodobacter sphaeroides is an attractive organism to study lipid accumulation, as it has the somewhat unique ability to increase membrane production at low O₂ tensions. Under these conditions, R. sphaeroides develops invaginations of the cytoplasmic membrane to increase its membrane surface area for housing of the membrane-bound components of its photosynthetic apparatus. Here we use fatty acid levels as a reportermore » of membrane lipid content. We show that, under low-O₂ and anaerobic conditions, the total fatty acid content per cell increases 3-fold. We also find that the increases in the amount of fatty acid and photosynthetic pigment per cell are correlated as O₂ tensions or light intensity are changed. To ask if lipid and pigment accumulation were genetically separable, we analyzed strains with mutations in known photosynthetic regulatory pathways. While a strain lacking AppA failed to induce photosynthetic pigment-protein complex accumulation, it increased fatty acid content under low O2 conditions. We also found that an intact PrrBA pathway is required for low O2-induced fatty acid accumulation. In conclusion, our findings suggest a previously unknown role of R. sphaeroides transcriptional regulators in increasing fatty acid and phospholipid accumulation in response to decreased O₂ tension.« less

  17. Engineering of layered, lipid-encapsulated drug nanoparticles through spray-drying.

    PubMed

    Sapra, Mahak; Mayya, Y S; Venkataraman, Chandra

    2017-06-01

    Drug-containing nanoparticles have been synthesized through the spray-drying of submicron droplet aerosols by using matrix materials such as lipids and biopolymers. Understanding layer formation in composite nanoparticles is essential for the appropriate engineering of particle substructures. The present study developed a droplet-shrinkage model for predicting the solid-phase formation of two non-volatile solutes-stearic acid lipid and a set of drugs, by considering molecular volume and solubility. Nanoparticle formation was simulated to define the parameter space of material properties and process conditions for the formation of a layered structure with the preferential accumulation of the lipid in the outer layer. Moreover, lipid-drug demarcation diagrams representing a set of critical values of ratios of solute properties at which the two solutes precipitate simultaneously were developed. The model was validated through the preparation of stearic acid-isoniazid nanoparticles under controlled processing conditions. The developed model can guide the selection of solvents, lipids, and processing conditions such that drug loading and lipid encapsulation in composite nanoparticles are optimized. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle

    PubMed Central

    Vendelbo, M. H.; Clasen, B. F. F.; Treebak, J. T.; Møller, L.; Krusenstjerna-Hafstrøm, T.; Madsen, M.; Nielsen, T. S.; Stødkilde-Jørgensen, H.; Pedersen, S. B.; Jørgensen, J. O. L.; Goodyear, L. J.; Wojtaszewski, J. F. P.; Møller, N.

    2012-01-01

    During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast. PMID:22028408

  19. Glycogen synthase kinase 3-mediated voltage-dependent anion channel phosphorylation controls outer mitochondrial membrane permeability during lipid accumulation.

    PubMed

    Martel, Cecile; Allouche, Maya; Esposti, Davide Degli; Fanelli, Elena; Boursier, Céline; Henry, Céline; Chopineau, Joel; Calamita, Giuseppe; Kroemer, Guido; Lemoine, Antoinette; Brenner, Catherine

    2013-01-01

    Nonalcoholic steatosis is a liver pathology characterized by fat accumulation and severe metabolic alterations involving early mitochondrial impairment and late hepatocyte cell death. However, mitochondrial dysfunction mechanisms remain elusive. Using four models of nonalcoholic steatosis, i.e., livers from patients with fatty liver disease, ob/ob mice, mice fed a high-fat diet, and in vitro models of lipotoxicity, we show that outer mitochondrial membrane permeability is altered and identified a posttranslational modification of voltage-dependent anion channel (VDAC), a membrane channel and NADH oxidase, as a cause of early mitochondrial dysfunction. Thus, in nonalcoholic steatosis VDAC exhibits reduced threonine phosphorylation, which increases the influx of water and calcium into mitochondria, sensitizes the organelle to matrix swelling, depolarization, and cytochrome c release without inducing cell death. This also amplifies VDAC enzymatic and channel activities regulation by calcium and modifies its interaction with proteic partners. Moreover, lipid accumulation triggers a rapid lack of VDAC phosphorylation by glycogen synthase kinase 3 (GSK3). Pharmacological and genetic manipulations proved GSK3 to be responsible for VDAC phosphorylation in normal cells. Notably, VDAC phosphorylation level correlated with steatosis severity in patients. VDAC acts as an early sensor of lipid toxicity and its GSK3-mediated phosphorylation status controls outer mitochondrial membrane permeabilization in hepatosteatosis. Copyright © 2012 American Association for the Study of Liver Diseases.

  20. Extracts of black and brown rice powders improve hepatic lipid accumulation via the activation of PPARα in obese and diabetic model mice.

    PubMed

    Felix, Angelina Dr; Takahashi, Nobuyuki; Takahashi, Mami; Katsumata-Tsuboi, Rie; Satoh, Ryo; Soon Hui, Teoh; Miyajima, Katsuhiro; Nakae, Dai; Inoue, Hirofumi; Uehara, Mariko

    2017-11-01

    Rice powder extract (RPE) from black and brown rice (Oryza sativa L. indica) improves hepatic lipid accumulation in obese and diabetic model mice via peroxisomal fatty acid oxidation. RPE showed PPARα agonistic activity which did not differ between black and brown RPE despite a higher anthocyanin content in black RPE.

  1. δ-Tocopherol Reduces Lipid Accumulation in Niemann-Pick Type C1 and Wolman Cholesterol Storage Disorders*

    PubMed Central

    Xu, Miao; Liu, Ke; Swaroop, Manju; Porter, Forbes D.; Sidhu, Rohini; Finkes, Sally; Ory, Daniel S.; Marugan, Juan J.; Xiao, Jingbo; Southall, Noel; Pavan, William J.; Davidson, Cristin; Walkley, Steven U.; Remaley, Alan T.; Baxa, Ulrich; Sun, Wei; McKew, John C.; Austin, Christopher P.; Zheng, Wei

    2012-01-01

    Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are shared phenotypic characteristics of both NPC and Wolman cells. Utilizing a phenotypic screen of an approved drug collection, we found that δ-tocopherol effectively reduced lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and alleviated pathological phenotypes in both NPC1 and Wolman fibroblasts. Reduction of these abnormalities may be mediated by a δ-tocopherol-induced intracellular Ca2+ response and subsequent enhancement of lysosomal exocytosis. Consistent with a general mechanism for reduction of lysosomal lipid accumulation, we also found that δ-tocopherol reduces pathological phenotypes in patient fibroblasts from other lysosomal storage diseases, including NPC2, Batten (ceroid lipofuscinosis, neuronal 2, CLN2), Fabry, Farber, Niemann-Pick disease type A, Sanfilippo type B (mucopolysaccharidosis type IIIB, MPSIIIB), and Tay-Sachs. Our data suggest that regulated exocytosis may represent a potential therapeutic target for reduction of lysosomal storage in this class of diseases. PMID:23035117

  2. Lipid body accumulation alters calcium signaling dynamics in immune cells

    PubMed Central

    Greineisen, William E.; Speck, Mark; Shimoda, Lori M.N.; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J.; Turner, Helen

    2014-01-01

    Summary There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcεRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signalling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcεRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signalling pathway and its downstream targets. PMID:25016314

  3. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves.

    PubMed

    Siaut, Magali; Cuiné, Stéphan; Cagnon, Caroline; Fessler, Boris; Nguyen, Mai; Carrier, Patrick; Beyly, Audrey; Beisson, Fred; Triantaphylidès, Christian; Li-Beisson, Yonghua; Peltier, Gilles

    2011-01-21

    When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results highlight the importance of using

  4. Quorum sensing molecules in activated sludge could trigger microalgae lipid synthesis.

    PubMed

    Zhang, Chaofan; Li, Qingcheng; Fu, Liang; Zhou, Dandan; Crittenden, John C

    2018-05-18

    Cultivating microalgae using wastewater is an economical strategy to produce biofuel; however, microbial contamination has to be controlled strictly. Microalgae lipid accumulation can be triggered by environmental pressures, and here, we studied whether microbial contamination is the pressure for microalgae. We hypothesized this pressure was forced via cell-to-cell communication with quorum sensing molecules (QSMs). In this work, we verified the impacts of QSMs produced by activated sludge (wastewater-born microbial consortiums) on both lipid content and biomass production of the microalgae Chlorophyta sp., since in combination, they determined lipid productivity. With QSMs stress, the lipid content of Chlorophyta sp. increased by ∼84%, while biomass production decreased only slightly. Consistently, enzymes on the fatty acid synthesis pathways were generally up-regulated, while they were slightly down-regulated for DNA replication. In summary, the total lipid production improved by 86%. These results revealed the positive effects of microbial contamination on microalgae biofuel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation.

    PubMed

    Axelsen, Lene N; Lademann, Jacob B; Petersen, Jørgen S; Holstein-Rathlou, Niels-Henrik; Ploug, Thorkil; Prats, Clara; Pedersen, Henrik D; Kjølbye, Anne Louise

    2010-06-01

    Metabolic syndrome and obesity-related diseases are affecting more and more people in the Western world. The basis for an effective treatment of these patients is a better understanding of the underlying pathophysiology. Here, we characterize fructose- and fat-fed rats (FFFRs) as a new animal model of metabolic syndrome. Sprague-Dawley rats were fed a 60 kcal/100 kcal fat diet with 10% fructose in the drinking water. After 6, 12, 18, 24, 36, and 48 wk of feeding, blood pressure, glucose tolerance, plasma insulin, glucose, and lipid levels were measured. Cardiac function was examined by in vivo pressure volume measurements, and intramyocardial lipid accumulation was analyzed by confocal microscopy. Cardiac AMP-activated kinase (AMPK) and hepatic phosphoenolpyruvate carboxykinase (PEPCK) levels were measured by Western blotting. Finally, an ischemia-reperfusion study was performed after 56 wk of feeding. FFFRs developed severe obesity, decreased glucose tolerance, increased serum insulin and triglyceride levels, and an initial increased fasting glucose, which returned to control levels after 24 wk of feeding. The diet had no effect on blood pressure but decreased hepatic PEPCK levels. FFFRs showed significant intramyocardial lipid accumulation, and cardiac hypertrophy became pronounced between 24 and 36 wk of feeding. FFFRs showed no signs of cardiac dysfunction during unstressed conditions, but their hearts were much more vulnerable to ischemia-reperfusion and had a decreased level of phosphorylated AMPK at 6 wk of feeding. This study characterizes a new animal model of the metabolic syndrome that could be beneficial in future studies of metabolic syndrome and cardiac complications.

  6. Metabolomics analysis reveals 6‐benzylaminopurine as a stimulator for improving lipid and DHA accumulation of Aurantiochytriumsp.

    PubMed Central

    Yu, Xin‐Jun; Sun, Jie; Zheng, Jian‐Yong; Sun, Ya‐Qi

    2016-01-01

    Abstract BACKGROUND Phytohormones are chemical messengers that have a positive effect on biodiesel production of microalgae at low concentrations. However, the effect of phytohormone 6‐benzylaminopurine on lipid and docosahexaenoic acid (DHA) production in marine DHA‐producer Aurantiochytrium has never been reported. In this study, a GC‐MS‐based metabolomics method combined with a multivariate analysis is applied to reveal the metabolic mechanism of 6‐benzylaminopurine enhancing production of lipid and DHA in Aurantiochytrium sp.YLH70. RESULTS In total, 71 metabolites were identified by GC‐MS. The PCA model revealed that 76.9% of metabolite variation was related to 6‐benzylaminopurine treatment, and overall metabolomics profiles between the 6‐benzylaminopurine and control groups were clearly discriminated. Forty‐six metabolites identified by the PLS‐DA model were responsible for responding to 6‐benzylaminopurine. Metabolic analysis showed that 6‐benzylaminopurine could accelerate the rate of utilization of glucose in Aurantiochytrium sp. YLH70, and the metabolic flux from glycolysis, TCA cycle and mevalonate pathway to fatty acids biosynthesis was promoted. Moreover, the anti‐stress mechanism in Aurantiochytrium sp.YLH70 might be induced by 6‐benzylaminopurine. CONCLUSION Metabolomics is a suitable tool to discover the metabolic mechanism for improving lipid and DHA accumulation in a microorganism. 6‐benzylaminopurine has the potential to stimulate lipid and DHA production of Aurantiochytrium sp.YLH70 for industrial purposes. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:27065509

  7. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    PubMed

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  8. Induction of a reversible cardiac lipidosis by a dietary long-chain fatty acid (erucic acid). Relationship to lipid accumulation in border zones of myocardial infarcts.

    PubMed Central

    Chien, K. R.; Bellary, A.; Nicar, M.; Mukherjee, A.; Buja, L. M.

    1983-01-01

    Previous studies have demonstrated that cardiac myocytes in the border zone of acute myocardial infarction become markedly overloaded with neutral lipid during the transition from reversible to irreversible injury. To examine directly the role of these changes in neutral lipid metabolism in the development of irreversible cellular injury and associated increases in tissue Ca2+ content, the authors fed rats large amounts of a fatty acid (erucic acid) that is poorly oxidized by the heart and that subsequently accumulates as neutral lipid. Rats fed a high erucic acid (C22:1) diet in the form of 20% rapeseed oil for 3-5 days had a fourfold increase in triglyceride (49.5 +/- 3.8 SEM mg/g wet wt versus 13.6 +/- 13, n = 4) and a 60% increase in long-chain acyl CoA content (166.0 +/- 21.9 versus 91.5 +/- 9.0 nM/g wet wt, n = 4), compared with controls. However, there was no change in long-chain acyl carnitine or total phospholipid content. Histochemical studies showed accumulation of numerous lipid droplets in the myocytes, and electron microscopy revealed localization of lipid vesicles in direct contact with mitochondria, thus mimicking the lipid-laden cells in the border zone regions of acute myocardial infarcts. The acute lipidosis was reversible with either continued feeding of erucic acid for several weeks or conversion to a normal diet. It was not associated with an increased tissue Ca2+ content, nor with cell necrosis. However, continued erucic acid intake for 3 months was associated with focal myocardial degeneration and loss of myocytes. These results suggest that acute increases in neutral lipids, as found in the border zone of acute myocardial infarction, may not be the cause of progression to irreversible damage during acute myocardial injury, but that the persistent presence of similar lipid material over months may result in focal myocardial degeneration. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:6859230

  9. Localizing the lipid products of PI3Kγ in neutrophils.

    PubMed

    Norton, Laura; Lindsay, Yvonne; Deladeriere, Arnaud; Chessa, Tamara; Guillou, Hervé; Suire, Sabine; Lucocq, John; Walker, Simon; Andrews, Simon; Segonds-Pichon, Anne; Rausch, Oliver; Finan, Peter; Sasaki, Takehiko; Du, Cheng-Jin; Bretschneider, Till; Ferguson, G John; Hawkins, Phillip T; Stephens, Len

    2016-01-01

    Class I phosphoinositide 3-kinases (PI3Ks) are important regulators of neutrophil migration in response to a range of chemoattractants. Their primary lipid products PtdIns(3,4,5)P3 and PtdIns(3,4)P2 preferentially accumulate near to the leading edge of migrating cells and are thought to act as an important cue organizing molecular and morphological polarization. We have investigated the distribution and accumulation of these lipids independently in mouse neutrophils using eGFP-PH reportersand electron microscopy (EM). We found that authentic mouse neutrophils rapidly polarized their Class I PI3K signalling, as read-out by eGFP-PH reporters, both at the up-gradient leading edge in response to local stimulation with fMLP as well as spontaneously and randomly in response to uniform stimulation. EM studies revealed these events occurred at the plasma membrane, were dominated by accumulation of PtdIns(3,4,5)P3, but not PtdIns(3,4)P2, and were dependent on PI3Kγ and its upstream activation by both Ras and Gβγs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Triglyceride accumulation protects against fatty acid-induced lipotoxicity

    PubMed Central

    Listenberger, Laura L.; Han, Xianlin; Lewis, Sarah E.; Cases, Sylvaine; Farese, Robert V.; Ory, Daniel S.; Schaffer, Jean E.

    2003-01-01

    Excess lipid accumulation in non-adipose tissues is associated with insulin resistance, pancreatic β-cell apoptosis and heart failure. Here, we demonstrate in cultured cells that the relative toxicity of two common dietary long chain fatty acids is related to channeling of these lipids to distinct cellular metabolic fates. Oleic acid supplementation leads to triglyceride accumulation and is well tolerated, whereas excess palmitic acid is poorly incorporated into triglyceride and causes apoptosis. Unsaturated fatty acids rescue palmitate-induced apoptosis by channeling palmitate into triglyceride pools and away from pathways leading to apoptosis. Moreover, in the setting of impaired triglyceride synthesis, oleate induces lipotoxicity. Our findings support a model of cellular lipid metabolism in which unsaturated fatty acids serve a protective function against lipotoxicity though promotion of triglyceride accumulation. PMID:12629214

  11. Bisphenol S induces obesogenic effects through deregulating lipid metabolism in zebrafish (Danio rerio) larvae.

    PubMed

    Wang, Weiwei; Zhang, Xiaona; Wang, Zihao; Qin, Jingyu; Wang, Wei; Tian, Hua; Ru, Shaoguo

    2018-05-01

    It has been suggested that dramatic increase in obesity may be caused by growing exposure to environmental chemicals. In vitro data has suggested bisphenol S (BPS), a compound widely used in polycarbonate plastic production, can induce lipid accumulation in preadipocytes. However, the mechanisms responsible for BPS-induced obesity in vivo remain unclear. In this study, we used translucent zebrafish (Danio rerio) larvae as a model to investigate the effect of environmentally relevant BPS exposure (1, 10, and 100 μg/L from 2 h to 15 d post fertilization) on lipid accumulation, triacylglycerol (TAG) and lipoproteins content, and mRNA expression of genes involved in the regulation of lipid synthesis, transport, degradation, and storage. We also analyzed activities of two enzymes critical to TAG metabolism: lipoprotein lipase and diglyceride acyltransferase. Overfed, obese larvae were used as positive control. The results indicated that BPS-treated and overfed larvae had much higher TAG levels and visceral fat accumulation compared with control. BPS exhibited obesogenic effects by interfering with lipid metabolism as evidenced by (a) upregulation of the mRNA expression of fasn, acc1, and agpat4 genes encoding enzymes involved in the de novo synthesis of TAG in the liver, (b) downregulation of apolipoprotein expression, which should reduce TAG transport from the liver, and (c) increase in rxrα expression, which should promote visceral fat accumulation. Our study is the first to demonstrate that the obesogenic effects of BPS in zebrafish are related to the disruption of TAG metabolism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Mechanisms of intrahepatic triglyceride accumulation

    PubMed Central

    Ress, Claudia; Kaser, Susanne

    2016-01-01

    Hepatic steatosis defined as lipid accumulation in hepatocytes is very frequently found in adults and obese adolescents in the Western World. Etiologically, obesity and associated insulin resistance or excess alcohol intake are the most frequent causes of hepatic steatosis. However, steatosis also often occurs with chronic hepatitis C virus (HCV) infection and is also found in rare but potentially life-threatening liver diseases of pregnancy. Clinical significance and outcome of hepatic triglyceride accumulation are highly dependent on etiology and histological pattern of steatosis. This review summarizes current concepts of pathophysiology of common causes of hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease, chronic HCV infections, drug-induced forms of hepatic steatosis, and acute fatty liver of pregnancy. Regarding the pathophysiology of NAFLD, this work focuses on the close correlation between insulin resistance and hepatic triglyceride accumulation, highlighting the potential harmful effects of systemic insulin resistance on hepatic metabolism of fatty acids on the one side and the role of lipid intermediates on insulin signalling on the other side. Current studies on lipid droplet morphogenesis have identified novel candidate proteins and enzymes in NAFLD. PMID:26819531

  13. Classification of ginseng berry (Panax ginseng C.A. MEYER) extract using 1H NMR spectroscopy and its inhibition of lipid accumulation in 3 T3-L1 cells.

    PubMed

    Yang, Seung Ok; Park, Hae Ran; Sohn, Eun Suk; Lee, Sang Won; Kim, Hyung Don; Kim, Young Chang; Kim, Kee Hong; Na, Sae Won; Choi, Hyung-Kyoon; Arasu, Mariadhas Valan; Kim, Young Ock

    2014-11-24

    Panax ginseng is a famous traditional medicine in Korea for its beneficial effect on obesity, cardiac and liver associated diseases. The aim of this study was to investigate the metabolite in Panax ginseng (P. ginseng, Aralicaceae) berries depending on the ripen stages and evaluate its potential inhibition on adipocyte differentiation in 3 T3-L1 cells. Different ripening stage samples of P. ginseng berry were analyzed through global metabolite profiling by NMR spectroscopy. Lipid accumulation in the cells was analyzed by Oil Red O staining. The PLS-DA clearly distinguished P. ginseng berry extract (PGBE) according to the partial ripe (PR), ripe(R) and fully ripe (FR) stage. Lipid accumulation of PGBE was examined by measuring triglyceride content and Oil-Red O staining. These results suggested that the FR stage of PGBE decrease in lipid accumulation during adipocyte differentiation and the amount of threonine, asparagine, fumarate, tyraine, tyrosine, and phenylalanine increased with longer ripening of ginseng berries. Metabolite profiling of P. ginseng was identified by 1H NMR spectra. P. ginseng extract efficiently inhibits adipogenesis in 3 T3-L1 adipocytes concluded that the P. ginseng has the antiobesity properties.

  14. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood.

    PubMed

    Baars, Annemarie; Oosting, Annemarie; Engels, Eefje; Kegler, Diane; Kodde, Andrea; Schipper, Lidewij; Verkade, Henkjan J; van der Beek, Eline M

    2016-06-01

    Epidemiological studies have demonstrated protective effects of breast-feeding on childhood obesity. Differences between human milk and infant milk formula (IMF) in dietary lipid structure may contribute to this effect. In our mouse model, feeding a diet containing large lipid droplets coated with phospholipids (PL) (Nuturis®; PL of milk fat globule membrane (MFGM) fraction origin) in early life protected against excessive body fat accumulation following a diet challenge in adult life. We now set out to determine the relevance of increased droplet size and/or MFGM lipid droplet coating to the observed anti-obesogenic effects in adult life. From day 16 to 42, male mouse pups were exposed to diets with small (S) or large (L) lipid droplets (0·3 v. 2·9 µm average mode diameter, respectively), either without MFGM or with MFGM coating around the lipid droplet, resulting in four groups: S (control diet), L, Scoating and Lcoating (Nuturis® IMF diet). Mice were subsequently challenged with a Western-style diet until dissection at postnatal day 98. A non-challenged group served as reference (REF). We repeatedly determined body composition between postnatal day 42 and 98. At day 98 plasma and gene expression measurements were performed. Only the Nuturis® IMF diet (Lcoating) in early life containing MFGM-coated large lipid droplets reduced body fat mass to a level comparable with the REF group. These data support the notion that the structural aspects of lipids in human milk, for example, both lipid droplet size as well as the MFGM coating, may contribute to its reported protective effect against obesity in later life.

  15. Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production.

    PubMed

    Deeba, Farha; Pruthi, Vikas; Negi, Yuvraj S

    2016-08-01

    Paper mill sludge (PMS) was assessed as cheap renewable lignocellulosic biomass for lipid production by the oleaginous yeast Cryptococcus vishniaccii (MTCC 232). The sonicated paper mill sludge extract (PMSE) exhibited enhanced lipid yield and lipid content 7.8±0.57g/l, 53.40% in comparison to 5.5±0.8g/l, 40.44% glucose synthetic medium, respectively. The accumulated triglycerides (TAG) inside the lipid droplets (LDs) were converted to biodiesel by transesterification and thoroughly characterized using GC-MS technique. The fatty acid methyl ester (FAME) profile obtained reveals elevated content of oleic acid followed by palmitic acid, linoleic acid and stearic acid with improved oxidative stability related to biodiesel quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Betel-quid and alcohol use were associated with lipid accumulation product among male factory workers in Taiwan.

    PubMed

    Huang, Chih-Fang; Chen, Chao-Tung; Wang, Pei-Ming; Koo, Malcolm

    2015-05-01

    In this study, cardiometabolic risk associated with betel-quid, alcohol and cigarette use, based on a simple index-lipid accumulation product (LAP), was investigated in Taiwanese male factory workers. Male factory workers were recruited during their annual routine health examination at a hospital in south Taiwan. The risk of cardiometabolic disorders was estimated by the use of LAP, calculated as (waist circumference [cm]-65)×(triglyceride concentration [mmol/l]). Multiple linear regression analyses were conducted to assess the risk factors of natural logarithm-transformed LAP. Of the 815 participants, 40% (325/815) were current alcohol users, 30% (248/815) were current smokers and 7% (53/815) were current betel-quid users. Current betel-quid use, alcohol use, older age, lack of exercise and higher body mass index were found to be significant and independent factors associated with natural logarithm-transformed LAP. Betel-quid and alcohol, but not cigarette use, were independent risk factors of logarithm-transformed LAP, adjusting for age, exercise and body mass index in male Taiwanese factory workers. LAP can be considered as a simple and useful method for screening of cardiometabolic risk. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells.

    PubMed

    Jeon, Hui-Jeon; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2014-11-01

    Gelidium elegans is an edible red alga native to the intertidal area of northeastern Asia. We investigated the effect of G. elegans extract and its main flavonoids, rutin and hesperidin, on lipid accumulation and the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 3T3-L1 and RAW264.7 cells. Our data show that G. elegans extract decreased lipid accumulation and ROS/RNS production in a dose-dependent manner. The extract also inhibited the mRNA expression of adipogenic transcription factors, such as peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, while enhancing the protein expression of the antioxidant enzymes superoxide dismutases 1 and 2, glutathione peroxidase, and glutathione reductase compared with controls. In addition, lipopolysaccharide-induced nitric oxide production was significantly reduced in G. elegans extract-treated RAW264.7 cells. In analysis of the effects of G. elegans flavonoids on lipid accumulation and ROS/RNS production, only hesperidin showed an inhibitory effect on lipid accumulation and ROS production; rutin did not affect adipogenesis and ROS status. The antiadipogenic effect of hesperidin was evidenced by the downregulation of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and fatty acid binding protein 4 gene expression. Collectively, our data suggest that G. elegans is a potential food source containing antiobesity and antioxidant constituents. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

    PubMed Central

    2011-01-01

    Background When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results

  19. Lipid reserves of Lesser Scaup (Aythya affinis) migrating across a large landscape are consistent with the "Spring Condition" hypothesis

    USGS Publications Warehouse

    Anteau, M.J.; Afton, A.D.

    2009-01-01

    The “spring condition” hypothesis (SCH) states that nutrition during spring migration affects survival, reproductive success, and, ultimately, population size of migratory birds. The North American population of Lesser Scaup (Aythya affinis) has experienced a marked decline, apparently because of poor recruitment. An important prediction of the SCH is that female Lesser Scaup have low lipid reserves during spring migration. We previously reported that lipid reserves and body mass of females collected on migratory stopover areas in northwestern Minnesota in springs 2000–2001 were lower than those on the same areas in the 1980s and markedly lower than those collected at Pool 19 of the Mississippi River in 2000–2001, an important preceding stopover area. However, it was unclear whether these findings represented a site-specific result or a landscape-scale phenomenon. Accordingly, we examined lipid and body mass of 641 female Lesser Scaup migrating across seven eco-physiographic regions of Iowa, Minnesota, and North Dakota during springs 2003–2005. We found that lipids and body mass of females throughout the Upper Midwest were similar to or less than the low values documented in northwestern Minnesota in springs 2000–2001 and markedly lower than those of females at Pool 19 in springs 2000–2001. Accordingly, our results are consistent with a prediction of the SCH, because lipid and body mass of females are low throughout this large landscape, lower than at an important preceding stopover area, and lower than all historical values. Finally, our results suggest the potential for cross-seasonal influences of nutrition on recruitment and that a stronger management focus on spring migration habitats may be necessary for conservation and recovery of declining migratory birds, especially Lesser Scaup.

  20. A digital atlas of hydrocarbon accumulations within and adjacent to the National Petroleum Reserve - Alaska (NPRA)

    USGS Publications Warehouse

    Kumar, Naresh; Bird, Kenneth J.; Nelson, Philip H.; Grow, John A.; Evans, Kevin R.

    2002-01-01

    The United States Geological Survey (USGS) has initiated a project to reassess the hydrocarbon potential of the NPRA. Although exploration for hydrocarbons in the NPRA was initiated in 1944, it has taken fifty years for the first commercial discovery to be made. That discovery, the Alpine field (projected recoverable reserves of 430 million barrels), was made in 1994 along the eastern boundary of the NPRA. This field produces from a formation heretofore considered to be mostly a source rock. The Alpine discovery made such a reassessment necessary. As part of this assessment, we have compiled stratigraphic, structural, petrophysical, and seismic data related to nineteen accumulations within and nearby the NPRA. The goal is to provide basic documentation and a set of analog accumulations for the new assessment. The first two displays of this atlas consist of a location map and a stratigraphic column showing the stratigraphic settings for the primary reservoir and source rocks for these accumulations. The third display is a table listing each accumulation and providing the hydrocarbon fluid type, reservoir, operator, status, and discovery well and date for each. Compilation of basic information for each individual accumulation follows these displays. A typical compilation includes a structurecontour map on or near the reservoir horizon, a log display of the discovery well with reservoir characteristics along with figures for recoverable volumes, and one or two seismic lines across or near the accumulation.

  1. Study on Lipid Accumulation in Novel Oleaginous Yeast Naganishia liquefaciens NITTS2 Utilizing Pre-digested Municipal Waste Activated Sludge: a Low-cost Feedstock for Biodiesel Production.

    PubMed

    Selvakumar, P; Sivashanmugam, P

    2018-05-05

    The economical production of lipids is considered as an appropriate renewable alternative feedstock for biodiesel production because of the contemporary concerns on fuel crisis, climate change and food security. In this study, lipid accumulation potential of a novel oleaginous yeast isolate Naganishia liquefaciens NITTS2 by utilizing pre-digested municipal waste activated sludge (PWAS) was explored. Optimization of culture conditions was performed using response surface methodology coupled with genetic algorithm and maximum lipid content of 55.7% was obtained. The presence of lipid was visually confirmed by fluorescence microscopy and its characteristic profile was determined by GC-MS. The yeast lipid was recovered and converted into biodiesel by garbage lipase with the efficiency of 88.34 ± 1.2%, which was further analyzed by proton nuclear magnetic resonance spectroscopy. Hence, the results of this study strongly suggest the possibility of using PWAS as an efficient and low-cost resource for the production of biodiesel from the oleaginous yeast.

  2. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy.

    PubMed

    Roleda, Michael Y; Slocombe, Stephen P; Leakey, Raymond J G; Day, John G; Bell, Elanor M; Stanley, Michele S

    2013-02-01

    Commercial success of algal-based biofuels depends on growth characteristics and lipid metabolism of the production species. The oleaginous microalgae, Thalassiosira pseudonana, Odontella aurita, Nannochloropsis oculata, Isochrysis galbana, Chromulina ochromonoides, and Dunaliella tertiolecta, were cultivated under a matrix of two temperatures (10 and 20 °C) and two nutrient regimes (deplete and replete). For all species, a strong negative correlation between growth rate and lipid content was observed. Multiple stressors have no additive effect on lipid accumulation. Total oil content (fatty acid methyl esters, FAMEs, pg cell(-1)) was increased more by nutrient limitation than by temperature stress. In response to nutrient stress, N. oculata emerged as the most robust species with an increase in lipid accumulation of up to three to four-fold compared to the accumulation under nutrient sufficient conditions. Although stress conditions led to reduced fatty acid unsaturation in most taxa due to increased triacylglycerol (TAG) production, a high proportion of eicosapentaenoic acid (EPA) was maintained in O. aurita. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production.

    PubMed

    Rattanapoltee, Panida; Kaewkannetra, Pakawadee

    2014-07-01

    The aim of this study is to optimize the lipid accumulation in microalgae by using two agricultural residues of pineapple peels and sugarcane bagasse as low-cost organic carbon sources. Green microalgae Scenedesmus acutus was isolated and selected for cultivation. Effects of three initial sugar concentrations and the stage for adding sugar during cultivation on biomass and lipid production were investigated. The results clearly showed that two-stage cultivation is more suitable than one-stage. The maximum biomass concentration and productivity were obtained at 3.85 g/L and 160.42 mg/L/day when sugarcane bagasse was used. The highest lipid content and lipid yield was reached at 28.05 % and 0.93 g/L when pineapple peels were used, while in the case of sugarcane bagasse, 40.89 % and 1.24 g/L lipid content and yield were obtained. Lipid content was found in normal condition (autotrophic) at 17.71 % which was approximately 2.13-fold lower than when sugarcane bagasse was used (40.89 %). Biodiesel production via in situ transesterification was also investigated; the main fatty acids of palmitic acid and oleic acid were found. This work indicates that using agricultural residues as organic carbon sources could be able to increase lipid content and reduce the cost of biofuel production.

  4. Effect of maternal hypothyroidism during pregnancy on insulin resistance, lipid accumulation and mitochondrial dysfunction in skeletal muscle of fetal rats.

    PubMed

    Xia, Tongjia; Zhang, Xue; Wang, Youmin; Deng, Datong

    2018-05-21

    This study aimed to investigate the effect of maternal hypothyroidism during pregnancy on thyroid function of the fetal rat. Female Sprague-Dawley rats were randomized into two groups. PTU group received propylthiouracil (PTU) in drinking water for 6 weeks (n = 90), normal group received drinking normal water (n = 50). The pregnant rats were obtained and had a cesarean-section to get at gestational age of 8.5 d, 13d and 21 d, following blood samples and skeletal muscle were obtained from fetal rats. Levels of thyroid hormone, insulin, mitochondrial protein and adipokines were detected using ELISA. Western blotting was performed to analyze mitochondria and insulin signal transduction-related protein in fetal rat skeletal muscle. Immunostaining of periodic acid-Schiff (PAS) and Oil Red O was used to observe accumulation of muscle glycogen and lipid in the fetal rat. The results showed that levels of thyroid hormone, insulin, insulin signal transduction-related protein, mitochondrial protein and adipokines increased with the fetus developed, but had no statistical differences in PTU the group compared to the normal group. In conclusion, pregnant rats with hypothyroidism have not an influence on insulin resistance, lipid accumulation and mitochondrial dysfunction in skeletal muscle of fetal rats. ©2018 The Author(s).

  5. Fatty acids from membrane lipids become incorporated into lipid bodies during Myxococcus xanthus differentiation.

    PubMed

    Bhat, Swapna; Boynton, Tye O; Pham, Dan; Shimkets, Lawrence J

    2014-01-01

    Myxococcus xanthus responds to amino acid limitation by producing fruiting bodies containing dormant spores. During development, cells produce triacylglycerides in lipid bodies that become consumed during spore maturation. As the cells are starved to induce development, the production of triglycerides represents a counterintuitive metabolic switch. In this paper, lipid bodies were quantified in wild-type strain DK1622 and 33 developmental mutants at the cellular level by measuring the cross sectional area of the cell stained with the lipophilic dye Nile red. We provide five lines of evidence that triacylglycerides are derived from membrane phospholipids as cells shorten in length and then differentiate into myxospores. First, in wild type cells, lipid bodies appear early in development and their size increases concurrent with an 87% decline in membrane surface area. Second, developmental mutants blocked at different stages of shortening and differentiation accumulated lipid bodies proportionate with their cell length with a Pearson's correlation coefficient of 0.76. Third, peripheral rods, developing cells that do not produce lipid bodies, fail to shorten. Fourth, genes for fatty acid synthesis are down-regulated while genes for fatty acid degradation are up regulated. Finally, direct movement of fatty acids from membrane lipids in growing cells to lipid bodies in developing cells was observed by pulse labeling cells with palmitate. Recycling of lipids released by Programmed Cell Death appears not to be necessary for lipid body production as a fadL mutant was defective in fatty acid uptake but proficient in lipid body production. The lipid body regulon involves many developmental genes that are not specifically involved in fatty acid synthesis or degradation. MazF RNA interferase and its target, enhancer-binding protein Nla6, appear to negatively regulate cell shortening and TAG accumulation whereas most cell-cell signals activate these processes.

  6. Glucosylceramide accumulation is not confined to the lysosome in fibroblasts from patients with Gaucher disease.

    PubMed

    Fuller, Maria; Rozaklis, Tina; Lovejoy, Melanie; Zarrinkalam, Krystyna; Hopwood, John J; Meikle, Peter J

    2008-04-01

    Gaucher disease (GD) is an inborn error of glycosphingolipid metabolism resulting from a deficiency of the lysosomal enzyme beta-glucosidase leading to the accumulation of glucosylceramide (GC) in lysosomes of affected cells. In order to determine the effect of GC accumulation on intracellular lipid content in fibroblasts from patients with GD, we measured individual species of ceramide, di- and trihexosylceramide, sphingomyelin, phosphatidylcholine, phosphatidylinositol and phosphatidylglycerol using electrospray ionisation-tandem mass spectrometry. The different subspecies of each lipid class correlated with each other and were summed to give total lipid concentrations. In addition to GC, we also noted secondary elevations in other lipids, especially in type 2 GD. Sub-cellular fractionation showed that GC was not confined to the lysosome but increased throughout the cell. The sequelae of extra-lysosomal accumulation may have implications in the pathogenic mechanisms of GD by interaction with biochemical and metabolic pathways located outside the lysosome. The elevation of ceramide in confluent type 2 GD fibroblasts redistributed from its primary site of accumulation in the lysosome to the endosomal region at four-weeks post-confluence. The accumulation of lipids in the endosome and lysosome suggests both impaired trafficking of lipids and reduced capacity of the lysosome to degrade lipids.

  7. Panax red ginseng extract regulates energy expenditures by modulating PKA dependent lipid mobilization in adipose tissue.

    PubMed

    Cho, Hae-Mi; Kang, Young-Ho; Yoo, Hanju; Yoon, Seung-Yong; Kang, Sang-Wook; Chang, Eun-Ju; Song, Youngsup

    2014-05-16

    Regulation of balance between lipid accumulation and energy consumption is a critical step for the maintenance of energy homeostasis. Here, we show that Panax red ginseng extract treatments increased energy expenditures and prevented mice from diet induced obesity. Panax red ginseng extracts strongly activated Hormone Specific Lipase (HSL) via Protein Kinase A (PKA). Since activation of HSL induces lipolysis in WAT and fatty acid oxidation in brown adipose tissue (BAT), these results suggest that Panax red ginseng extracts reduce HFD induced obesity by regulating lipid mobilization. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Substance P enhances the activation of AMPK and cellular lipid accumulation in 3T3‑L1 cells in response to high levels of glucose.

    PubMed

    Dubon, Maria Jose; Byeon, Yeji; Park, Ki-Sook

    2015-12-01

    The rescue of glucose tolerance and insulin‑sensitivity in peripheral tissues, including adipose tissue, is essential in therapeutic strategies for diabetes. The present study demonstrated that substance P (SP) increases the accumulation of lipids in 3T3‑L1 cells during their differentiation into adipocytes in response to a high concentration of glucose. SP reciprocally regulated the activities of AMP‑activated protein kinase (AMPK) and Akt: SP enhanced the activation of AMPK, although the activity of Akt was downregulated. Notably, SP induced an increase in the expression level of glucose transporter 4 in the 3T3‑L1 adipocytes. Therefore, it is possible that SP leads to an increase in glucose uptake and the accumulation of lipids in adipocytes, and may contribute towards the rescue of insulin‑sensitivity in diabetes.

  9. Metabolic control analysis of developing oilseed rape (Brassica napus cv Westar) embryos shows that lipid assembly exerts significant control over oil accumulation.

    PubMed

    Tang, Mingguo; Guschina, Irina A; O'Hara, Paul; Slabas, Antoni R; Quant, Patti A; Fawcett, Tony; Harwood, John L

    2012-10-01

    Metabolic control analysis allows the study of metabolic regulation. We applied both single- and double-manipulation top-down control analysis to examine the control of lipid accumulation in developing oilseed rape (Brassica napus) embryos. The biosynthetic pathway was conceptually divided into two blocks of reactions (fatty acid biosynthesis (Block A), lipid assembly (Block B)) connected by a single system intermediate, the acyl-coenzyme A (acyl-CoA) pool. Single manipulation used exogenous oleate. Triclosan was used to inhibit specifically Block A, whereas diazepam selectively manipulated flux through Block B. Exogenous oleate inhibited the radiolabelling of fatty acids from [1-(14)C]acetate, but stimulated that from [U-14C]glycerol into acyl lipids. The calculation of group flux control coefficients showed that c. 70% of the metabolic control was in the lipid assembly block of reactions. Monte Carlo simulations gave an estimation of the error of the resulting group flux control coefficients as 0.27±0.06 for Block A and 0.73±0.06 for Block B. The two methods of control analysis gave very similar results and showed that Block B reactions were more important under our conditions. This contrasts notably with data from oil palm or olive fruit cultures and is important for efforts to increase oilseed rape lipid yields. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  10. Ganoderic Acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway.

    PubMed

    Zhu, Jing; Jin, Jie; Ding, Jiexia; Li, Siying; Cen, Panpan; Wang, Keyi; Wang, Hai; Xia, Junbo

    2018-06-25

    Obesity and its major co-morbidity, type 2 diabetes, have been an alarming epidemic prevalence without an effective treatment available. Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. Therefore, inhibition of SREBP pathway may be a useful strategy to treat obesity with type 2 diabetes. Here, we identify a small molecule, Ganoderic Acid A (GAA), inhibits the SREBP expression and decreases the cellular levels of cholesterol and fatty acid in vitro. GAA also ameliorates body weight gain and fat accumulation in liver or adipose tissues, and improves serum lipid levels and insulin sensitivity in high fat diet (HFD)-induced obese mice. Consistently, GAA regulates SREBPs target genes and metabolism associated genes in liver or adipose tissues, which may directly contribute to the lower lipid level and improvement of insulin resistance. Taken together, GAA could be a potential leading compound for development of drugs for the prevention of obesity and insulin resistance. Copyright © 2018. Published by Elsevier B.V.

  11. The growth and lipid accumulation of Scenedesmus quadricauda during batch mixotrophic/heterotrophic cultivation using xylose as a carbon source.

    PubMed

    Song, Mingming; Pei, Haiyan

    2018-05-10

    To overcome the bottlenecks of high cost and low production yields that restrict the commercial production of microalgae biodiesel, the use of xylose was evaluate by Scenedesmus quadricauda FACHB-1297, which was shown to be capable of mixotrophic and heterotrophic growth and lipid production on xylose, rich in the waste streams from pulp and paper industry, with increases in lipid productivities of 35.8-fold (mixotrophic) and 9.2-fold (heterotrophic) in comparison to photoautotrophic lipid yields. Five doses of xylose were tested to determine the effects and mechanisms of the carbon source on microalgae in mixotrophic mode. At the optimal xylose dosage of 4 g/L, the highest lipid content (38.61%) and productivity (139.55 mg/L/d) were achieved besides maximum biomass productivity (361.4 mg/L/d), nutrient removal efficiency of 68.4% (nitrogen), 97.2% (phosphorus) and 35.2% (xylose). Those indicated that S. quadricauda FACHB-1297 was suitable for further development of using xylose from certain waste streams for biofuel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Multilateral approach on enhancing economic viability of lipid production from microalgae: A review.

    PubMed

    Shin, Ye Sol; Choi, Hong Il; Choi, Jin Won; Lee, Jeong Seop; Sung, Young Joon; Sim, Sang Jun

    2018-06-01

    Microalgae have been rising as a feedstock for biofuel in response to the energy crisis. Due to a high lipid content, composed of fatty acids favorable for the biodiesel production, microalgae are still being investigated as an alternative to biodiesel. Environmental factors and process conditions can alternate the quality and the quantity of lipid produced by microalgae, which can be critical for the overall production of biodiesel. To maximize both the lipid content and the biomass productivity, it is necessary to start with robust algal strains and optimal physio-chemical properties of the culture environment in combination with a novel culture system. These accumulative approaches for cost reduction can take algal process one step closer in achieving the economic feasibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Neuroimaging of Lipid Storage Disorders

    ERIC Educational Resources Information Center

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…

  14. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    PubMed

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.

  15. Lipid accumulation product and triglycerides/glucose index are useful predictors of insulin resistance.

    PubMed

    Mazidi, Mohsen; Kengne, Andre-Pascal; Katsiki, Niki; Mikhailidis, Dimitri P; Banach, Maciej

    2018-03-01

    To investigate the association of triglycerides/glucose index (TyG index), anthropometrically predicted visceral adipose tissue (apVAT), lipid accumulation product (LAP), visceral adiposity index (VAI) and triglycerides (TG):high density lipoprotein-cholesterol (HDL-C) ratio with insulin resistance (IR) in adult Americans. This study was based on data from three NHANES cycles (2005 to 2010). The TyG index was calculated as ln [TG×fasting glucose/2]. VAI was calculated using gender-specific formulas: men [waist circumference (WC)/39.68+(1.88×body mass index (BMI)]×(TG/1.03)×(1.31/HDL-C); women: [WC/36.58+(1.89×BMI)]×(TG/0.81)×(1.52/HDL-C). LAP index was calculated as [WC-65]×[TG] in men, and [WC-58]×[TG] in women. Correlation and regression analyses accounted for the complex sampling of database. A total of 18,318 subjects was included in this analysis [mean age 47.6Years]; 48.7% (n=8918) men]. The homeostatic model assessment of insulin resistance (HOMA-IR) had a significant positive correlation with the TyG index (r=0.502), LAP (r=0.551), apVAT (r=0.454), TG:HDL-C ratio (r=0.441) and VAI (r=451) (p<0.001 for all comparisons). Bland-Altman plots showed no systematic errors. The optimal cut-off to predict HOMA-diagnosed IR was 0.473 (sensitivity=74.5% and specificity=72.7%) for LAP, 0.478 (75.9%, 71.9%) for TyG, 0.391 (70.4%, 67.1%) for VAI, 0.392 (77.1% and 62.0%) for TG:HDL-C ratio and 0.381 (63.8%, 74.8%) for apVAT. The LAP index is a simple, cheap and accurate although not perfect, surrogate marker of HOMA-diagnosed IR among adult Americans. Moreover, it has higher predictability than other screening tools which traditionally applied. Among the markers, apVAT had the highest specificity and the TG:HDL-C ratio had the highest sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Interfacial & colloidal aspects of lipid digestion.

    PubMed

    Wilde, P J; Chu, B S

    2011-06-09

    Amongst the main issues challenging the food manufacturing sector, health and nutrition are becoming increasingly important. Global concerns such as obesity, the ageing population and food security will have to be addressed. Food security is not just about assuring food supply, but is also about optimising nutritional delivery from the food that is available [1]. Therefore one challenge is to optimise the health benefits from the lipids and lipid soluble nutrients. Colloid scientists have an affinity for lipids because they are water insoluble, however this presents a challenge to the digestive system, which has to convert them to structures that are less insoluble so they are available for uptake. Despite this, the human digestive system is remarkably effective at digesting and absorbing most lipids. This is primarily driven through maximising energy intake, as lipids possess the highest calorific value, which was a survival trait to survive times of famine, but is now an underlying cause of obesity in developed countries with high food availability. The critical region here is the lipid-water interface, where the key reactions take place to solubilise lipids and lipid soluble nutrients. Digestive lipases have to adsorb to the oil water interface in order to hydrolyse triacylglycerols into fatty acids and mono glycerides, which accumulate at the interface [2], and inhibit lipase activity. Pancreatic lipase, which is responsible for the majority of lipid hydrolysis, also requires the action of bile salts and colipase to function effectively. Bile salts both aid the adsorption of co-lipase and lipase, and help solubilise the lipolysis products which have accumulated at the interface, into mixed micelles composing bile salts and a range of other lipids, to facilitate transport to the gut mucosal surface prior to uptake and absorption. The process can be affected by the lipid type, as shorter chain, fatty acids are more easily absorbed, whereas the uptake of longer

  17. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    PubMed

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Effects of conjugated linoleic acid on body fat accumulation and serum lipids in hamsters fed an atherogenic diet.

    PubMed

    Navarro, V; Zabala, A; Macarulla, M T; Fernández-Quintela, A; Rodríguez, V M; Simón, E; Portillo, M P

    2003-09-01

    Conjugated linoleic acid (CLA) refers to a mixture of naturally occurring positional and geometric isomers of linoleic acid that exist in dairy products and meat. The aim of the present work was to study the effects of c-9,t-11 and t-10,c-12 CLA isomers on body fat accumulation and serum lipids in hamsters fed an atherogenic diet. Hamsters were divided in four groups: one group was fed a chow diet (control) and the other three groups were given semi-purified atherogenic diets with 0.5% linoleic acid (LA), c-9,t-11 or t-10,c-12 CLA. Body weight and food intake were measured daily. After 6 weeks, adipose tissues from different anatomical locations and liver were dissected and weighed. Serum glucose, total cholesterol, HDL-c, LDL-c and triacylglycerol levels, as well as total and free cholesterol, triacylglycerol and phospholipid content in liver were determined by enzymatic methods. No differences in either energy intake or final body weight were found. The addition of t-10,c-12 CLA reduced fat accumulation and led to lower serum cholesterol, as compared with LA group. Nevertheless the level remained higher than in the control animals. The reduction in serum cholesterol was limited to LDL-c. This isomer also reduced triacylglycerol content in liver but did not modify serum triacylglycerol level. In summary, the present study demonstrates that t-10,c-12 CLA is the biologically active agent when anti-obesity and hypocholesterolaemic properties of CLA are considered. In contrast, the isomer c-9,t-11 has no effect on lipid metabolism in hamsters.

  19. Rapid quantification of neutral lipids and triglycerides during zebrafish embryogenesis.

    PubMed

    Yoganantharjah, Prusothman; Byreddy, Avinesh R; Fraher, Daniel; Puri, Munish; Gibert, Yann

    2017-01-01

    The zebrafish is a useful vertebrate model to study lipid metabolism. Oil Red-O (ORO) staining of zebrafish embryos, though sufficient for visualizing the localization of triglycerides, was previously inadequate to quantify neutral lipid abundance. For metabolic studies, it is crucial to be able to quantify lipids during embryogenesis. Currently no cost effective, rapid and reliable method exists to quantify the deposition of neutral lipids and triglycerides. Thin layer chromatography (TLC), gas chromatography and mass spectrometry can be used to accurately measure lipid levels, but are time consuming and costly in their use. Hence, we developed a rapid and reliable method to quantify neutral lipids and triglycerides. Zebrafish embryos were exposed to Rimonabant (Rimo) or WIN 55,212-2 mesylate (WIN), compounds previously shown to modify lipid content during zebrafish embryogenesis. Following this, ORO stain was extracted out of both the zebrafish body and yolk sac and optical density was measured to give an indication of neutral lipid and triglyceride accumulation. Embryos treated with 0.3 microM WIN resulted in increased lipid accumulation, whereas 3 microM Rimo caused a decrease in lipid accumulation during embryogenesis. TLC was performed on zebrafish bodies to validate the developed method. In addition, BODIPY free fatty acids were injected into zebrafish embryos to confirm quantification of changes in lipid content in the embryo. Previously, ORO was limited to qualitative assessment; now ORO can be used as a quantitative tool to directly determine changes in the levels of neutral lipids and triglycerides.

  20. A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid β-Oxidation, and Plant Survival under Extended Darkness.

    PubMed

    Fan, Jilian; Yu, Linhui; Xu, Changcheng

    2017-07-01

    Neutral lipid metabolism is a key aspect of intracellular homeostasis and energy balance and plays a vital role in cell survival under adverse conditions, including nutrient deprivation in yeast and mammals, but the role of triacylglycerol (TAG) metabolism in plant stress response remains largely unknown. By thoroughly characterizing mutants defective in SUGAR-DEPENDENT1 (SDP1) triacylglycerol lipase or PEROXISOMAL ABC TRANSPORTER 1 (PXA1), here we show that TAG is a key intermediate in the mobilization of fatty acids from membrane lipids for peroxisomal β-oxidation under prolonged dark treatment. Disruption of SDP1 increased TAG accumulation in cytosolic lipid droplets and markedly enhanced plant tolerance to extended darkness. We demonstrate that blocking TAG hydrolysis enhances plant tolerance to dark treatment via two distinct mechanisms. In pxa1 mutants, in which free fatty acids accumulated rapidly under extended darkness, SDP1 disruption resulted in a marked decrease in levels of cytotoxic lipid intermediates such as free fatty acids and phosphatidic acid, suggesting a buffer function of TAG accumulation against lipotoxicity under fatty acid overload. In the wild type, in which free fatty acids remained low and unchanged under dark treatment, disruption of SDP1 caused a decrease in reactive oxygen species production and hence the level of lipid peroxidation, indicating a role of TAG in protection against oxidative damage. Overall, our findings reveal a crucial role for TAG metabolism in membrane lipid breakdown, fatty acid turnover, and plant survival under extended darkness. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. Novel Lutein Loaded Lipid Nanoparticles on Porcine Corneal Distribution

    PubMed Central

    Liu, Chi-Hsien; Chiu, Hao-Che; Wu, Wei-Chi; Sahoo, Soubhagya Laxmi; Hsu, Ching-Yun

    2014-01-01

    Topical delivery has the advantages including being user friendly and cost effective. Development of topical delivery carriers for lutein is becoming an important issue for the ocular drug delivery. Quantification of the partition coefficient of drug in the ocular tissue is the first step for the evaluation of delivery efficacy. The objectives of this study were to evaluate the effects of lipid nanoparticles and cyclodextrin (CD) on the corneal lutein accumulation and to measure the partition coefficients in the porcine cornea. Lipid nanoparticles combined with 2% HPβCD could enhance lutein accumulation up to 209.2 ± 18 (μg/g) which is 4.9-fold higher than that of the nanoparticles. CD combined nanoparticles have 68% of drug loading efficiency and lower cytotoxicity in the bovine cornea cells. From the confocal images, this improvement is due to the increased partitioning of lutein to the corneal epithelium by CD in the lipid nanoparticles. The novel lipid nanoparticles could not only improve the stability and entrapment efficacy of lutein but also enhance the lutein accumulation and partition in the cornea. Additionally the corneal accumulation of lutein was further enhanced by increasing the lutein payload in the vehicles. PMID:25101172

  2. Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice.

    PubMed

    Katsumura, Masanori; Takagi, Shoko; Oya, Hana; Tamura, Shohei; Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2017-08-01

    Animal by-products can be recycled and used as sources of essential nutrients. Water-soluble heme iron (WSHI), a functional food additive for supplementing iron, is produced by processing animal blood. In this study, we investigated the effects of dietary supplementation of 3% WSHI and exercise training for 4 weeks on the accumulation of abdominal fat and lipid metabolism in mice fed high-fat diet. Exercise-trained mice had significantly less perirenal adipose tissue, whereas WSHI-fed mice tended to have less epididymal adipose tissue. In addition, total weight of abdominal adipose tissues was significantly decreased in the Exercise + WSHI group. Dietary WSHI significantly increased the messenger RNA (mRNA) levels of lipoprotein lipase and hormone-sensitive lipase. WSHI-fed mice also tended to show increased mRNA levels of adipose triglyceride lipase in their epididymal adipose tissue. Dietary WSHI also significantly decreased the mRNA levels of fatty acid oxidation-related enzymes in the liver, but did not influence levels in the Gastrocnemius muscle. Exercise training did not influence the mRNA levels of lipid metabolism-related enzymes in the epididymal adipose tissue, liver or the Gastrocnemius muscle. These findings suggest that the accumulation of abdominal fat can be efficiently decreased by the combination of dietary WSHI and exercise training in mice fed high-fat diet. © 2016 Japanese Society of Animal Science.

  3. Postprandial triglyceride-rich lipoproteins promote lipid accumulation and apolipoprotein B-48 receptor transcriptional activity in human circulating and murine bone marrow neutrophils in a fatty acid-dependent manner.

    PubMed

    Ortega-Gómez, Almudena; Varela, Lourdes M; López, Sergio; Montserrat de la Paz, Sergio; Sánchez, Rosario; Muriana, Francisco J G; Bermúdez, Beatriz; Abia, Rocío

    2017-09-01

    Postprandial triglyceride-rich lipoproteins (TRLs) promote atherosclerosis. Recent research points the bone marrow (BM) as a primary site in atherosclerosis. We elucidated how the acute administration of monounsaturated fatty acids (MUFAs) MUFAs, omega-3 polyunsaturated fatty acids (PUFAs) PUFAs and saturated fatty acids (SFAs) affects human circulating and murine BM neutrophil lipid accumulation and functionality. Postprandial hypertriglyceridemia was induced in healthy subjects and Apoe -/- mice by the acute administration of dietary fats enriched in MUFAs, PUFAs, or SFAs. Postprandial hypertriglyceridemia increased apolipoprotein-B48 receptor (ApoB48R) transcriptional activity that was linearly correlated with intracellular triglycerides (TGs) TGs accumulation in human circulating and murine BM neutrophils. MUFA and omega-3 PUFAs attenuated ApoB48R gene expression and intracellular TG accumulation compared to SFAs. TRLs induced apoB48R-dependent TG accumulation in human neutrophils ex vivo. Murine BM neutrophils showed a decrease in surface L-selectin and an increase in TNF-α and IL-1β mRNA expressions only after SFAs administration. TRLs enriched in SFAs induced BM neutrophil degranulation ex vivo suggesting cell priming/activation. Postprandial TRLs disrupts the normal biology and function of circulating and BM neutrophils. MUFA- and omega-3 PUFA-rich dietary fats such as virgin olive oil or fish oil has the potential to prevent excessive neutrophil lipid accumulation and activation by targeting the fatty acid composition of TRLs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Decreased inducibility of TNF expression in lipid-loaded macrophages

    PubMed Central

    Ares, Mikko PS; Stollenwerk, Maria; Olsson, Anneli; Kallin, Bengt; Jovinge, Stefan; Nilsson, Jan

    2002-01-01

    Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL) for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages. PMID:12366867

  5. Age-Related Inducibility of Carboxylesterases by the Antiepileptic Agent Phenobarbital and Implications in Drug Metabolism and Lipid Accumulation 1, 2

    PubMed Central

    Xiao, Da; Chen, Yi-Tzai; Yang, Dongfang; Yan, Bingfang

    2014-01-01

    Carboxylesterases (CES) constitute a class of hydrolytic enzymes that play critical roles in drug metabolism and lipid mobilization. Previous studies with a large number of human liver samples have suggested that the inducibility of carboxylesterases is inversely related with age. To directly test this possibility, neonatal (10 days of age) and adult mice were treated with the antiepileptic agent phenobarbital. The expression and hydrolytic activity were determined on six major carboxylesterases including ces1d, the ortholog of human CES1. Without exception, all carboxylesterases tested were induced to a greater extent in neonatal than adult mice. The induction was detected at mRNA, protein and catalytic levels. Ces1d was greatly induced and found to rapidly hydrolyze the antiplatelet agent clopidogrel and support the accumulation of neutral lipids. Phenobarbital represents a large number of therapeutic agents that induce drug metabolizing enzymes and transporters in a species-conserved manner. The higher inducibility of carboxylesterases in the developmental age likely represents a general phenomenon cross species including human. Consequently, individuals in the developmental age may experience greater drug-drug interactions. The greater induction of ces1d also provides a molecular explanation to the clinical observation that children on antiepileptic drugs increase plasma lipids. PMID:22513142

  6. Lipids from yeasts and fungi: physiology, production and analytical considerations.

    PubMed

    Athenaki, M; Gardeli, C; Diamantopoulou, P; Tchakouteu, S S; Sarris, D; Philippoussis, A; Papanikolaou, S

    2018-02-01

    The last years there has been a significant rise in the number of publications in the international literature that deal with the production of lipids by microbial sources (the 'single cell oils; SCOs' that are produced by the so-called 'oleaginous' micro-organisms). In the first part of the present review article, a general overview of the oleaginous micro-organisms (mostly yeasts, algae and fungi) and their potential upon the production of SCOs is presented. Thereafter, physiological and kinetic events related with the production of, mostly, yeast and fungal lipids when sugars and related substrates like polysaccharides, glycerol, etc. (the de novo lipid accumulation process) or hydrophobic substrates like oils and fats (the ex novo lipid accumulation process) were employed as microbial carbon sources, are presented and critically discussed. Considerations related with the degradation of storage lipid that had been previously accumulated inside the cells, are also presented. The interplay of the synthesis of yeast and fungal lipids with other intracellular (i.e. endopolysaccharides) or extracellular (i.e. citric acid) secondary metabolites synthesized is also presented. Finally, aspects related with the lipid extraction and lipidome analysis of the oleaginous micro-organisms are presented and critically discussed. © 2017 The Society for Applied Microbiology.

  7. Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii.

    PubMed

    Tan, Kenneth Wei Min; Lee, Yuan Kun

    2017-04-10

    Biofuel production from genetically-engineered microalgae is currently among the most widely studied strategies in generating renewable energy. However, microalgae currently suffer from low oil yields which limit the commercial feasibility of industrial-scale production. A major bottleneck in cost-efficient biofuel production from microalgae is the dilemma between biomass productivity and lipid accumulation. When grown under stressful culture conditions such as nitrogen depletion, microalgae accumulate large amounts of neutral lipids, but it comes at the expense of growth which negatively impacts overall lipid productivity. Overexpression of acyl-ACP thioesterases (TE) had been successful in increasing the production of fatty acids (FA) in prokaryotes such as E. coli and cyanobacteria, but has not been effectively tested in microalgae. In this study, we introduced a TE from D. tertiolecta (DtTE) into C. reinhardtii to investigate its effects on FA production without compromising growth. The results indicate that C. reinhardtii transformants were able to produce 63 and 94% more neutral lipids than the wild-type, which translates to an approximately 56% improvement in total lipids, without compromising growth. These findings demonstrate the cross-species functionality of TE, and provide a platform for further studies into using TE as a strategy to increase biofuel production from microalgae. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Silybin counteracts lipid excess and oxidative stress in cultured steatotic hepatic cells

    PubMed Central

    Vecchione, Giulia; Grasselli, Elena; Voci, Adriana; Baldini, Francesca; Grattagliano, Ignazio; Wang, David QH; Portincasa, Piero; Vergani, Laura

    2016-01-01

    AIM: To investigate in vitro the therapeutic effect and mechanisms of silybin in a cellular model of hepatic steatosis. METHODS: Rat hepatoma FaO cells were loaded with lipids by exposure to 0.75 mmol/L oleate/palmitate for 3 h to mimic liver steatosis. Then, the steatotic cells were incubated for 24 h with different concentrations (25 to 100 μmol/L) of silybin as phytosome complex with vitamin E. The effects of silybin on lipid accumulation and metabolism, and on indices of oxidative stress were evaluated by absorption and fluorescence microscopy, quantitative real-time PCR, Western blot, spectrophotometric and fluorimetric assays. RESULTS: Lipid-loading resulted in intracellular triglyceride (TG) accumulation inside lipid droplets, whose number and size increased. TG accumulation was mediated by increased levels of peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element-binding protein-1c (SREBP-1c). The lipid imbalance was associated with higher production of reactive oxygen species (ROS) resulting in increased lipid peroxidation, stimulation of catalase activity and activation of nuclear factor kappa-B (NF-κB). Incubation of steatotic cells with silybin 50 μmol/L significantly reduced TG accumulation likely by promoting lipid catabolism and by inhibiting lipogenic pathways, as suggested by the changes in carnitine palmitoyltransferase 1 (CPT-1), PPAR and SREBP-1c levels. The reduction in fat accumulation exerted by silybin in the steatotic cells was associated with the improvement of the oxidative imbalance caused by lipid excess as demonstrated by the reduction in ROS content, lipid peroxidation, catalase activity and NF-κB activation. CONCLUSION: We demonstrated the direct anti-steatotic and anti-oxidant effects of silybin in steatotic cells, thus elucidating at a cellular level the encouraging results demonstrated in clinical and animal studies. PMID:27468193

  9. MR-Visible Lipids and the Tumor Microenvironment

    PubMed Central

    Delikatny, E. James; Chawla, Sanjeev; Leung, Daniel-Joseph; Poptani, Harish

    2013-01-01

    MR-visible lipids or mobile lipids are defined as lipids that are observable using proton magnetic resonance spectroscopy in cells and in tissues. These MR-visible lipids are composed of triglycerides and cholesterol esters that accumulate in intracellular neutral lipid droplets, where their MR visibility is conferred as a result of the increased molecular motion available in this unique physical environment. This review will discuss factors that lead to the biogenesis of MR-visible lipids in cancer cells and in other cell types such as immune cells and fibroblasts. We focus on the accumulations of mobile lipids that are inducible in cultured cells by a number of stresses, including culture conditions and in response to activating stimuli or apoptotic cell death induced by anticancer drugs. This is compared with animal tumor models, where increases in mobile lipids are observed in response to chemo and radiotherapy, and to human tumors where mobile lipids are observed predominantly in high-grade brain tumors and in regions of necrosis. Conducive conditions for mobile lipid formation in the tumor microenvironment will be discussed including low pH, oxygen availability and the presence of inflammatory cells. It is concluded that MR-visible lipids appear in cancer cells and human tumors as a stress response. Mobile lipids stored as neutral lipid droplets may play a role in detoxification of the cell or act as an alternate energy source, especially in cancer cells, which often grow in ischemic/hypoxic environments. The role of MR-visible lipids in cancer diagnosis and assessment of treatment response both in animal models of cancer as well as human brain tumors will also be discussed. Although technical limitations exist in the accurate detection of intratumoral mobile lipids, early increases in mobile lipids after therapeutic interventions may be used as a potential biomarker for assessing treatment response in cancer. PMID:21538631

  10. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides

    PubMed Central

    Geiselman, Gina M; Ito, Masakazu; Mondo, Stephen J; Reilly, Morgann C; Cheng, Ya-Fang; Bauer, Stefan; Grigoriev, Igor V; Gladden, John M; Simmons, Blake A; Brem, Rachel B

    2018-01-01

    The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi. PMID:29521624

  11. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides

    DOE PAGES

    Coradetti, Samuel T.; Pinel, Dominic; Geiselman, Gina M.; ...

    2018-03-09

    The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted functionmore » in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. Lastly, these results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.« less

  12. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coradetti, Samuel T.; Pinel, Dominic; Geiselman, Gina M.

    The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted functionmore » in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. Lastly, these results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.« less

  13. Transcript level coordination of carbon pathways during silicon starvation-induced lipid accumulation in the diatom Thalassiosira pseudonana

    DOE PAGES

    Smith, Sarah R.; Gle, Corine; Abbriano, Raffaela M.; ...

    2016-02-04

    Diatoms are one of the most productive and successful photosynthetic taxa on Earth and possess attributes such as rapid growth rates and production of lipids, making them candidate sources of renewable fuels. Despite their significance, few details of the mechanisms used to regulate growth and carbon metabolism are currently known, hindering metabolic engineering approaches to enhance productivity. To characterize the transcript level component of metabolic regulation, genome-wide changes in transcript abundance were documented in the model diatom Thalassiosira pseudonana on a time-course of silicon starvation. Growth, cell cycle progression, chloroplast replication, fatty acid composition, pigmentation, and photosynthetic parameters were characterizedmore » alongside lipid accumulation. Extensive coordination of large suites of genes was observed, highlighting the existence of clusters of coregulated genes as a key feature of global gene regulation in T. pseudonana. The identity of key enzymes for carbon metabolic pathway inputs (photosynthesis) and outputs (growth and storage) reveals these clusters are organized to synchronize these processes. Coordinated transcript level responses to silicon starvation are probably driven by signals linked to cell cycle progression and shifts in photophysiology. A mechanistic understanding of how this is accomplished will aid efforts to engineer metabolism for development of algal-derived biofuels.« less

  14. Osthole attenuates lipid accumulation, regulates the expression of inflammatory mediators, and increases antioxidants in FL83B cells.

    PubMed

    Huang, Wen-Chung; Liao, Po-Chen; Huang, Chun-Hsun; Hu, Sindy; Huang, Shih-Chun; Wu, Shu-Ju

    2017-07-01

    Osthole is found in Cnidium monnieri (L.) and has anti-inflammatory and anti-oxidative properties. It also inhibits the proliferation of hepatocellular carcinoma cells. This study aimed to evaluate the osthole suppressive nonalcoholic fatty liver disease effects in oleic acid (OA)-induced hepatic steatosis and if it can modulate inflammatory responses and oxidative stress. FL83B cells were pretreated with OA (250μΜ) for 24h, and then added different concentrations of osthole (3-100μM) for 24h. Subsequently, lipolysis and transcription factors of adipogenesis and phosphorylation of AMP-activated protein kinase proteins were measured. In addition, cells with OA-induced steatosis were H 2 O 2 -stimulated, and then incubated with osthole to evaluated if it could suppress its progression to steatohepatitis. Osthole significantly enhanced glycerol release and lipolysis protein expression. Osthole also promoted phosphorylation of AMP-activated protein kinases and increased the activity of triglyceride lipase and hormone- sensitive lipase. Osthole suppressed the nuclear transcription factor kappa-B and the p38 mitogen-activated protein kinase pathway, and decreased the malondialdehyde concentration in FL83B cells with OA-induced steatosis that were treated with H 2 O 2 . These results suggest that osthole might suppress nonalcoholic fatty liver disease by decreasing lipid accumulation, and through its anti-oxidative and anti-inflammatory effects via blocked NF-κB and MAPK signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Dissecting metabolic behavior of lipid over-producing strain of Mucor circinelloides through genome-scale metabolic network and multi-level data integration.

    PubMed

    Vongsangnak, Wanwipa; Kingkaw, Amornthep; Yang, Junhuan; Song, Yuanda; Laoteng, Kobkul

    2018-09-05

    Lipid accumulation is an important cellular process of oleaginous microorganisms. To dissect metabolic behavior of oleaginous Zygomycetes, the lipid over-producing strain, Mucor circinelloides WJ11, was subjected for omics-scale analysis. The genome annotation was improved and used for construction of genome-scale metabolic network of WJ11 strain. Then, the quality of the metabolic network was enhanced by incorporating gene and protein expression data. In addition to the known oleaginous genes, our results showed a number of newly identified unique genes of WJ11 strain, which involved in central carbon metabolism, lipid, amino acid and nitrogen metabolisms. The systematic compilations indicated the additional metabolic routes with the involvement in supplying precursors (acetyl-CoA, NADPH and fatty acyl substrate) for fatty acid and lipid biosynthesis. Interestingly, amino acid metabolism played a substantial role in responsive mechanism of the fungal cells to nutrient imbalance circumstance through lipogenesis as the finding of reporter metabolites (l-methionine, l-glutamate, l-aspartate, l-asparagine and l-glutamine) at lipid-accumulating stage. The cooperative function of certain lipid-degrading enzymes at the particular growth stage was elucidated by integrating the metabolic networks with gene expression data. The unique feature of carotenoid biosynthetic route in WJ11 strain was also identified by protein domain analysis. Taken together, there were cross-functional metabolisms in regulating lipid biosynthesis and retaining high level of cellular lipids in the representative of lipid over-producing strains. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Antiproliferative effects of γ-tocotrienol are associated with lipid raft disruption in HER2-positive human breast cancer cells.

    PubMed

    Alawin, Osama A; Ahmed, Rayan A; Ibrahim, Baher A; Briski, Karen P; Sylvester, Paul W

    2016-01-01

    A large percentage of human breast cancers are characterized by excessive or aberrant HER2 activity. Lipid rafts are specialized microdomains within the plasma membrane that are required for HER2 activation and signal transduction. Since the anticancer activity of γ-tocotrienol is associated with suppression in HER2 signaling, studies were conducted to examine the effects of γ-tocotrienol on HER2 activation within the lipid raft microdomain in HER2-positive SKBR3 and BT474 human breast cancer cells. Treatment with 0-5μM γ-tocotrienol induced a significant dose-dependent inhibition in cancer cell growth after a 5-day culture period, and these growth inhibitory effects were associated with a reduction in HER2 dimerization and phosphorylation (activation). Phosphorylated HER2 was found to be primarily located in the lipid raft microdomain of the plasma membrane in vehicle-treated control groups, whereas γ-tocotrienol treatment significantly inhibited this effect. Assay of plasma membrane subcellular fractions showed that γ-tocotrienol also accumulates exclusively within the lipid raft microdomain. Hydroxypropyl-β-cyclodextrin (HPβCD) is an agent that disrupts lipid raft integrity. Acute exposure to 3mM HPβCD alone had no effect, whereas an acute 24-h exposure to 20μM γ-tocotrienol alone significantly decreased SKBR3 and BT474 cell viability. However, combined treatment with these agents greatly reduced γ-tocotrienol accumulation in the lipid raft microdomain and cytotoxicity. In summary, these findings demonstrate that the anticancer effects of γ-tocotrienol are associated with its accumulation in the lipid raft microdomain and subsequent interference with HER2 dimerization and activation in SKBR3 and BT474 human breast cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella.

    PubMed

    Fan, Jianhua; Xu, Hui; Luo, Yuanchan; Wan, Minxi; Huang, Jianke; Wang, Weiliang; Li, Yuanguang

    2015-03-01

    Biodiesel production by microalgae with photosynthetic CO2 biofixation is thought to be a feasible way in the field of bioenergy and carbon emission reduction. Knowledge of the carbon-concentrating mechanism plays an important role in improving microalgae carbon fixation efficiency. However, little information is available regarding the dramatic changes of cells suffered upon different environmental factors, such as CO2 concentration. The aim of this study was to investigate the growth, lipid accumulation, carbon fixation rate, and carbon metabolism gene expression under different CO2 concentrations in oleaginous Chlorella. It was found that Chlorella pyrenoidosa grew well under CO2 concentrations ranging from 1 to 20 %. The highest biomass and lipid productivity were 4.3 g/L and 107 mg/L/day under 5 % CO2 condition. Switch from high (5 %) to low (0.03 %, air) CO2 concentration showed significant inhibitory effect on growth and CO2 fixation rate. The amount of the saturated fatty acids was increased obviously along with the transition. Low CO2 concentration (0.03 %) was suitable for the accumulation of saturated fatty acids. Reducing the CO2 concentration could significantly decrease the polyunsaturated degree in fatty acids. Moreover, the carbon-concentrating mechanism-related gene expression revealed that most of them, especially CAH2, LCIB, and HLA3, had remarkable change after 1, 4, and 24 h of the transition, which suggests that Chlorella has similar carbon-concentrating mechanism with Chlamydomonas reinhardtii. The findings of the present study revealed that C. pyrenoidosa is an ideal candidate for mitigating CO2 and biodiesel production and is appropriate as a model for mechanism research of carbon sequestration.

  18. Ginger Essential Oil Ameliorates Hepatic Injury and Lipid Accumulation in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease.

    PubMed

    Lai, Yi-Syuan; Lee, Wan-Ching; Lin, Yu-En; Ho, Chi-Tang; Lu, Kuan-Hung; Lin, Shih-Hang; Panyod, Suraphan; Chu, Yung-Lin; Sheen, Lee-Yan

    2016-03-16

    The objective of this study was to investigate the hepatoprotective efficacy and mechanism of action of ginger essential oil (GEO) against the development of nonalcoholic fatty liver disease (NAFLD). Mice were maintained on either a control diet or high-fat diet (HFD) supplemented with GEO (12.5, 62.5, and 125 mg/kg) or citral (2.5 and 25 mg/kg) for 12 weeks. We demonstrated that GEO and its major component (citral) lowered HFD-induced obesity in a dose-dependent manner, accompanied by anti-hyperlipidemic effects by reducing serum free fatty acid, triglyceride, and total cholesterol levels. Moreover, liver histological results showed that administration of 62.5 and 125 mg/kg GEO and 25 mg/kg citral significantly reduced hepatic lipid accumulation. Further assessment by Western blotting and investigation of the lipid metabolism revealed that hepatic protein expression of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and cytochrome P450 2E1 (CYP2E1) were down-regulated by GEO and citral, indicating that GEO and citral suppressed HFD-stimulated lipid biosynthesis and oxidative stress. Furthermore, GEO and citral effectively enhanced the antioxidant capacities and reduced inflammatory response in mouse liver, which exerted protective effects against steatohepatitis. Collectively, GEO and citral exhibited potent hepatoprotective effects against NAFLD induced by HFD in obese mice. Thus, GEO might be an effective dietary supplement to ameliorate NAFLD-related metabolic diseases, and citral could play a vital role in its management.

  19. A two-stage process facilitating microbial lipid production from N-acetylglucosamine by Cryptococcus curvatus cultured under non-sterile conditions.

    PubMed

    Tang, Mou; Zhou, Wenting; Liu, Yi; Yan, Jiabao; Gong, Zhiwei

    2018-06-01

    N-acetylglucosamine (GlcNAc), the monomeric constituent of chitin, is rarely studied for lipid production by oleaginous species. This study demonstrated that Cryptococcus curvatus had a great capacity to convert GlcNAc into lipid with high yield using a two-stage production process. Optimal inoculum age and inoculation size strongly improved the two-stage lipid production efficiency. More interestingly, this process rendered superior lipid production under non-sterile condition. The acetate liberated from GlcNAc was consumed timely, while the NH 4 + released was rarely assimilated. Lipid titre, lipid content and lipid yield reached 9.9 g/L, 56.9% and 0.23 g/g, respectively, which were significantly higher than those from the conventional process where cell growth and lipid accumulation were coupled. The resulting lipid samples had similar fatty acid compositional profiles to those of vegetable oil, suggesting their potential for biodiesel production. These findings strongly supported the two-stage process as an attractive strategy for better techno-economics of the chitin-to-biodiesel routes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effect of intracellular lipid accumulation in a new model of non-alcoholic fatty liver disease

    PubMed Central

    2012-01-01

    Background In vitro exposure of liver cells to high concentrations of free fatty acids (FFA) results in fat overload which promotes inflammatory and fibrogenic response similar to those observed in patients with Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH). Since the mechanisms of this event have not been fully characterized, we aimed to analyze the fibrogenic stimuli in a new in vitro model of NASH. Methods HuH7 cells were cultured for 24 h in an enriched medium containing bovine serum albumin and increasing concentrations of palmitic and oleic acid at a molar ratio of 1:2 (palmitic and oleic acid, respectively). Cytotoxic effect, apoptosis, oxidative stress, and production of inflammatory and fibrogenic cytokines were measured. Results FFA induces a significant increment in the intracellular content of lipid droplets. The gene expression of interleukin-6, interleukin-8 and tumor necrosis factor alpha was significantly increased. The protein level of interleukin-8 was also increased. Intracellular lipid accumulation was associated to a significant up-regulation in the gene expression of transforming growth factor beta 1, alpha 2 macroglobulin, vascular endothelial growth factor A, connective tissue growth factor, insulin-like growth factor 2, thrombospondin 1. Flow cytometry analysis demonstrated a significant increment of early apoptosis and production of reactive oxygen species. Conclusions The exposure of hepatocytes to fatty acids elicits inflammation, increase of oxidative stress, apoptosis and production of fibrogenic cytokines. These data support a primary role of FFA in the pathogenesis of NAFLD and NASH. PMID:22380754

  1. Ultrastructural study on dynamics of lipid bodies and plastids during ripening of chili pepper fruits.

    PubMed

    Liu, Lin

    2013-03-01

    Dynamics of lipid bodies and plastids in chili pepper fruits during ripening were investigated by means of transmission electron microscopy. Mesocarp of chili pepper fruits consists of collenchyma, normal parenchyma, and huge celled parenchyma. In mature green fruits, plastids contain numerous thylakoids that are well organized into grana in collenchyma, a strikingly huge amount of starch and irregularly organized thylakoids in normal parenchyma, and simple tubes rather than thylakoids in huge celled parenchyma. These morphological features suggest that plastids are chloroplasts in collenchyma, chloroamyloplasts in normal parenchyma, proplastids in huge celled parenchyma. As fruits ripen to red, plastids in all cell types convert to chromoplasts and, concomitantly, lipid bodies accumulate in both cytoplasm and chromoplasts. Cytosolic lipid bodies are lined up in a regular layer adjacent to plasma membrane. The cytosolic lipid body consists of a core surrounded by a membrane. The core is comprised of a more electron-dense central part enclosed by a slightly less electron-dense peripheral layer. Plastidial lipid bodies in collenchyma, normal parenchyma, and endodermis initiate as plastoglobuli, which in turn convert to rod-like structures. Therefore, plastidial lipid bodies are more dynamic than cytosolic lipid bodies. Both cytosolic and plastidial lipid bodies contain rich unsaturated lipids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.

    PubMed

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2016-10-01

    Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform

  3. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor.

    PubMed

    Pruvost, J; Van Vooren, G; Cogne, G; Legrand, J

    2009-12-01

    The fresh water microalga Neochloris oleoabundans was investigated for its ability to accumulate lipids and especially triacylglycerols (TAG). A systematic study was conducted, from the determination of the growth medium to its characterization in an airlift photobioreactor. Without nutrient limitation, a maximal biomass areal productivity of 16.5 g m(-2) day(-1) was found. Effects of nitrogen starvation to induce lipids accumulation was next investigated. Due to initial N. oleoabundans total lipids high content (23% of dry weight), highest productivity was obtained without mineral limitation with a maximal total lipids productivity of 3.8 g m(-2) day(-1). Regarding TAG, an almost similar productivity was found whatever the protocol was: continuous production without mineral limitation (0.5 g m(-2) day(-1)) or batch production with either sudden or progressive nitrogen deprivation (0.7 g m(-2) day(-1)). The decrease in growth rate reduces the benefit of the important lipids and TAG accumulation as obtained in nitrogen starvation (37% and 18% of dry weight, respectively).

  4. Aloe vera gel extract attenuates ethanol-induced hepatic lipid accumulation by suppressing the expression of lipogenic genes in mice.

    PubMed

    Saito, Marie; Tanaka, Miyuki; Misawa, Eriko; Yamada, Muneo; Yamauchi, Kouji; Iwatsuki, Keiji

    2012-01-01

    We have previously reported that Aloe vera gel had hypoglycemic activity and anti-obesity effects, although the effect on alcoholic fatty liver was unclear. We examined in this present study the effect of an Aloe vera gel extract (AVGE) on hepatic lipid metabolism by using an ethanol-induced transient fatty liver mouse model. Ethanol (3 g/kg of mouse weight) was orally administered to induce an accumulation of triglyceride (TG) and increase the mRNA expression of such lipogenic genes as sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FASN) in the liver. Although ethanol ingestion caused a 5.4-fold increase in liver TG, pre-treating with AVGE (1 mg/kg/d) for 1 week significantly suppressed this elevation of the ethanol-induced liver TG level. The expression of lipogenic genes was also lower in the AVGE pre-treatment group than in the control group. This inhibitory effect on the ethanol-induced accumulation of TG was attributed to a reduction in the expression of lipogenic genes that were increased by ethanol.

  5. Fatty acids from VLDL lipolysis products induce lipid droplet accumulation in human monocytes

    PubMed Central

    den Hartigh, Laura J; Connolly-Rohrbach, Jaime E; Fore, Samantha; Huser, Thomas R; Rutledge, John C

    2010-01-01

    One mechanism by which monocytes become activated postprandially is by exposure to triglyceride (TG)-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase (LpL) at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from postprandial VLDL induce the formation of lipid-filled droplets within cultured THP-1 monocytes, characterized by coherent anti-stokes Raman spectroscopy. Organelle-specific stains revealed an association of lipid droplets with the endoplasmic reticulum, confirmed by electron microscopy. Lipid droplet formation was reduced when LpL-released fatty acids were bound by bovine serum albumin, which also reduced cellular inflammation. Furthermore, saturated fatty acids induced more lipid droplet formation in monocytes compared to mono- and polyunsaturated fatty acids. Monocytes treated with postprandial VLDL lipolysis products contained lipid droplets with more intense saturated Raman spectroscopic signals than monocytes treated with fasting VLDL lipolysis products. In addition, we found that human monocytes isolated during the peak postprandial period contain more lipid droplets compared to those from the fasting state, signifying that their development is not limited to cultured cells but also occurs in vivo. In summary, circulating free fatty acids can mediate lipid droplet formation in monocytes and potentially be used as a biomarker to assess an individual’s risk of developing atherosclerotic cardiovascular disease. PMID:20208007

  6. Lipids and lipid binding proteins: a perfect match.

    PubMed

    Glatz, Jan F C

    2015-02-01

    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Improved Productivity of Neutral Lipids in Chlorella sp. A2 by Minimal Nitrogen Supply

    PubMed Central

    Zhu, Junying; Chen, Weixian; Chen, Hui; Zhang, Xin; He, Chenliu; Rong, Junfeng; Wang, Qiang

    2016-01-01

    Nitrogen starvation is an efficient environmental pressure for increasing lipid accumulation in microalgae, but it could also significantly lower the biomass productivity, resulting in lower lipid productivity. In this study, green alga Chlorella sp. A2 was cultivated by using a minimal nitrogen supply strategy under both laboratory and outdoor cultivation conditions to evaluate biomass accumulation and lipid production. Results showed that minimal nitrogen supply could promote neutral lipid accumulation of Chlorella sp. A2 without a significant negative effect on cell growth. In laboratory cultivation mode, alga cells cultured with 18 mg L−1 d−1 urea addition could generate 74 and 416% (w/w) more neutral lipid productivity than cells cultured with regular BG11 and nitrogen starvation media, respectively. In outdoor cultivation mode, lipid productivity of cells cultured with 18 mg L−1 d−1 urea addition is approximately 10 and 88% higher than the one with regular BG11 and nitrogen starvation media, respectively. Notably, the results of photosynthetic analysis clarified that minimal nitrogen supply reduced the loss of photosynthetic capacity to keep CO2 fixation during photosynthesis for biomass production. The minimal nitrogen supply strategy for microalgae cultivation could promote neutral lipid accumulation without a significant negative effect on cell growth, resulting in a significant improvement in the lipid productivity. PMID:27148237

  8. The role of nutrient reserves for clutch formation by Northern Pintails in Alaska

    USGS Publications Warehouse

    Esler, Daniel N.; Grand, James B.

    1994-01-01

    We analyzed carcass composition of female Northern Pintails (Anas acuta) in Alaska to assess the importance of nutrient reserves for formation of first clutches (n = 85) and renests (n = 39). Habitat (tundra vs. boreal forest), hen age (yearling vs. adult), and year (1990 vs. 1991) did not affect nutrient reserve use. During formation of first clutches, Northern Pintail hens relied on lipid reserves more than any other duck species that has been studied. For much of the nesting season, lipid reserves were used to meet costs beyond those incurred by clutch formation. Date of initiation of rapid follicle growth was related to lipid reserve dynamics; lipid reserves at initiation and the rate of lipid use both declined through the season. Protein reserves declined slightly with commitment of protein to the clutch and with date of initiation of rapid follicle growth. Use of mineral reserves for first nests was negligible. Renesting females did not use nutrient reserves. Lipid reserve levels were positively related to the amount of lipid reserves needed to complete the clutch and clutch sizes predicted from a lipid dynamics model were consistent with known clutch sizes. Similar relationships did not exist for protein. We suggest that lipid reserve levels affect timing of nesting and proximately limit clutch size of Northern Pintails.

  9. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism.

    PubMed

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H; Blesso, Christopher N; Fernandez, Maria Luz

    2017-06-22

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group ( p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group ( p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls ( p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  10. Lxr-driven enterocyte lipid droplet formation delays transport of ingested lipids.

    PubMed

    Cruz-Garcia, Lourdes; Schlegel, Amnon

    2014-09-01

    Liver X receptors (Lxrs) are master regulators of cholesterol catabolism, driving the elimination of cholesterol from the periphery to the lumen of the intestine. Development of pharmacological agents to activate Lxrs has been hindered by synthetic Lxr agonists' induction of hepatic lipogenesis and hypertriglyceridemia. Elucidating the function of Lxrs in regulating enterocyte lipid handling might identify novel aspects of lipid metabolism that are pharmacologically amenable. We took a genetic approach centered on the single Lxr gene nr1h3 in zebrafish to study the role of Lxr in enterocyte lipid metabolism. Loss of nr1h3 function causes anticipated gene regulatory changes and cholesterol intolerance, collectively reflecting high evolutionary conservation of zebrafish Lxra function. Intestinal nr1h3 activation delays transport of absorbed neutral lipids, with accumulation of neutral lipids in enterocyte cytoplasmic droplets. This delay in transport of ingested neutral lipids protects animals from hypercholesterolemia and hepatic steatosis induced by a high-fat diet. On a gene regulatory level, Lxra induces expression of acsl3a, which encodes acyl-CoA synthetase long-chain family member 3a, a lipid droplet-anchored protein that directs fatty acyl chains into lipids. Forced overexpression of acls3a in enterocytes delays, in part, the appearance of neutral lipids in the vasculature of zebrafish larvae. Activation of Lxr in the intestine cell-autonomously regulates the rate of delivery of absorbed lipids by inducting a temporary lipid intestinal droplet storage depot. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. Inhibitory effects of soluble algae products (SAP) released by Scenedesmus sp. LX1 on its growth and lipid production.

    PubMed

    Zhang, Tian-Yuan; Yu, Yin; Wu, Yin-Hu; Hu, Hong-Ying

    2013-10-01

    Soluble algal products (SAP) accumulated in culture medium via water reuse may affect the growth of microalga during the cultivation. Scenedesmus sp. LX1, a freshwater microalga, was used in this study to investigate the effect of SAP on growth and lipid production of microalga. Under the SAP concentrations of 6.4-25.8 mg L(-1), maximum algal density (K) and maximum growth rate (Rmax) of Scenedesmus sp. LX1 were decreased by 50-80% and 35-70% compared with the control group, respectively. The effect of SAP on lipid accumulation of Scenedesmus sp. LX1 was non-significant. According to hydrophilic-hydrophobic and acid-base properties, SAP was fractionized into six fractions. All of the fractions could inhibit the growth of Scenedesmus sp. LX1. Organic bases (HIB, HOB) and hydrophilic acids (HIA) showed the strongest inhibition. HIA could also decrease the lipid content of Scenedesmus sp. LX1 by 59.2%. As the inhibitory effect, SAP should be seriously treated before water reuse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effects of Lactobacillus fermented soymilk and soy yogurt on hepatic lipid accumulation in rats fed a cholesterol-free diet.

    PubMed

    Kitawaki, Ryoko; Nishimura, Yuko; Takagi, Naohiro; Iwasaki, Mitsuhiro; Tsuzuki, Kimiko; Fukuda, Mitsuru

    2009-07-01

    We examined the effects of lactic acid fermented soymilk, in which part of the soymilk was replaced with okara (soy yogurt), on plasma and hepatic lipid profiles in rats fed a cholesterol-free diet. Additionally, we investigated the effects of soy yogurt on hepatic gene expression in rats using DNA microarray analysis. Male Sprague-Dawley rats aged 5 weeks (n=5/group) were fed a control diet (AIN-93) or a test diet in which 20% of the diet was replaced by soy yogurt for 7 weeks. Soy yogurt consumption did not affect body weight or adipose tissue weight as compared with control diet. In the soy yogurt group, the liver weight and hepatic triglyceride content were significantly lower than the control group, and the level of plasma cholesterol was also lower. Furthermore, DNA microarray analysis indicated that soy yogurt ingestion down-regulated the expression of the SREBP-1 gene and enzymes related to lipogenesis in the rat liver, while expression of beta-oxidation-related genes was up-regulated. These results suggest that soy yogurt is beneficial in preventing hepatic lipid accumulation in rats.

  13. Short-term fasting induces intra-hepatic lipid accumulation and decreases intestinal mass without reduced brush-border enzyme activity in mink (Mustela vison) small intestine.

    PubMed

    Bjornvad, C R; Elnif, J; Sangild, P T

    2004-11-01

    For many mammalian species short-term fasting is associated with intestinal atrophy and decreased digestive capacity. Under natural conditions, strictly carnivorous animals often experience prey scarcity during winter, and they may therefore be particularly well adapted to short-term food deprivation. To examine how the carnivorous gastrointestinal tract is affected by fasting, small-intestinal structure, brush-border enzyme activities and hepatic structure and function were examined in fed mink (controls) and mink that had been fasted for 1-10 days. During the first 1-2 days of fasting, intestinal mass decreased more rapidly than total body mass and villus heights were reduced 25-40%. In contrast, tissue-specific activity of the brush-border enzymes sucrase, maltase, lactase, aminopeptidase A and dipeptidylpeptidase IV increased 0.5- to 1.5-fold at this time, but returned to prefasting levels after 6 days of fasting. After 6-10 days of fasting there was a marked increase in the activity of hepatic enzymes and accumulation of intra-hepatic lipid vacuoles. Thus, mink may be a useful model for studying fasting-induced intestinal atrophy and adaptation as well as mechanisms involved in accumulation of intra-hepatic lipids following food deprivation in strictly carnivorous domestic mammals, such as cats and ferrets.

  14. Altered expression of CD1d molecules and lipid accumulation in the human hepatoma cell line HepG2 after iron loading.

    PubMed

    Cabrita, Marisa; Pereira, Carlos F; Rodrigues, Pedro; Cardoso, Elsa M; Arosa, Fernando A

    2005-01-01

    Iron overload in the liver may occur in clinical conditions such as hemochromatosis and nonalcoholic steatohepatitis, and may lead to the deterioration of the normal liver architecture by mechanisms not well understood. Although a relationship between the expression of ICAM-1, and classical major histocompatibility complex (MHC) class I molecules, and iron overload has been reported, no relationship has been identified between iron overload and the expression of unconventional MHC class I molecules. Herein, we report that parameters of iron metabolism were regulated in a coordinated-fashion in a human hepatoma cell line (HepG2 cells) after iron loading, leading to increased cellular oxidative stress and growth retardation. Iron loading of HepG2 cells resulted in increased expression of Nor3.2-reactive CD1d molecules at the plasma membrane. Expression of classical MHC class I and II molecules, ICAM-1 and the epithelial CD8 ligand, gp180 was not significantly affected by iron. Considering that intracellular lipids regulate expression of CD1d at the cell surface, we examined parameters of lipid metabolism in iron-loaded HepG2 cells. Interestingly, increased expression of CD1d molecules by iron-loaded HepG2 cells was associated with increased phosphatidylserine expression in the outer leaflet of the plasma membrane and the presence of many intracellular lipid droplets. These data describe a new relationship between iron loading, lipid accumulation and altered expression of CD1d, an unconventional MHC class I molecule reported to monitor intracellular and plasma membrane lipid metabolism, in the human hepatoma cell line HepG2.

  15. Ratiometric imaging of gastrodermal lipid bodies in coral-dinoflagellate endosymbiosis

    NASA Astrophysics Data System (ADS)

    Luo, Y.-J.; Wang, L.-H.; Chen, W.-N. U.; Peng, S.-E.; Tzen, J. T.-C.; Hsiao, Y.-Y.; Huang, H.-J.; Fang, L.-S.; Chen, C.-S.

    2009-03-01

    Cnidaria-dinoflagellate endosymbiosis is the phenomenon of autotrophic symbionts living inside the gastrodermal cells of their animal hosts. The molecular mechanism that regulates this association remains unclear. Using quantitative microscopy, we now provide evidence that the dynamic lipid changes in gastrodermal “lipid bodies” (LBs) reflect the symbiotic status of the host cell and its symbiont in the hermatypic coral Euphyllia glabrescens. By dual-emission ratiometric imaging with a solvatochromic fluorescent probe, Nile red (9-diethylamino-5H-benzo[α]phenoxazine-5-one), we showed that the in situ distribution of polar versus neutral lipids in LBs in living gastrodermal cells and symbionts can be analyzed. The ratio of Nile red fluorescence at red (R) versus green (G) wavelength region (i.e., R/G ratio) correlated with the relative molar ratio of polar (P) versus neutral (NP) lipids (i.e., P/NP ratio). The R/G ratio in host LBs increased after bleaching, indicating a decrease in neutral lipid accumulation in gastrodermal cells. On the other hand, neutral lipid accumulation inside the symbiont LBs resulted in gradual decreases of the R/G ratio as a result of bleaching. In comparison with the bleaching event, there was no relative lipid concentration change in host LBs under continual light or dark treatments as shown by insignificant R/G ratio shift. Patterns of R/G ratio shift in symbiont LBs were also different between corals undergoing bleaching and continual light/dark treatment. In the latter, there was little lipid accumulation in symbionts, with no resulting R/G ratio decrease. These results, demonstrating that the symbiotic status positively correlated with morphological and compositional changes of lipid bodies, not only highlight the pivotal role of LBs, but also implicate an involvement of lipid trafficking in regulating the endosymbiosis.

  16. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    PubMed Central

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H.; Blesso, Christopher N.; Fernandez, Maria Luz

    2017-01-01

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group (p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group (p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver. PMID:28640194

  17. Reversible Lipid Accumulation and Associated Division Arrest of Mycobacterium avium in Lipoprotein-Induced Foamy Macrophages May Resemble Key Events during Latency and Reactivation of Tuberculosis

    PubMed Central

    Caire-Brändli, Irène; Papadopoulos, Alexia; Malaga, Wladimir; Marais, David; Canaan, Stéphane; Thilo, Lutz

    2014-01-01

    During the dormant phase of tuberculosis, Mycobacterium tuberculosis persists in lung granulomas by residing in foamy macrophages (FM) that contain abundant lipid bodies (LB) in their cytoplasm, allowing bacilli to accumulate lipids as intracytoplasmic lipid inclusions (ILI). An experimental model of FM is presented where bone marrow-derived mouse macrophages are infected with M. avium and exposed to very-low-density lipoprotein (VLDL) as a lipid source. Quantitative analysis of detailed electron microscope observations showed the following results. (i) Macrophages became foamy, and mycobacteria formed ILI, for which host triacylglycerides, rather than cholesterol, was essential. (ii) Lipid transfer occurred via mycobacterium-induced fusion between LB and phagosomes. (iii) Mycobacteria showed a thinned cell wall and became elongated but did not divide. (iv) Upon removal of VLDL, LB and ILI declined within hours, and simultaneous resumption of mycobacterial division restored the number of mycobacteria to the same level as that found in untreated control macrophages. This showed that the presence of ILI resulted in a reversible block of division without causing a change in the mycobacterial replication rate. Fluctuation between ILI either partially or fully extending throughout the mycobacterial cytoplasm was suggestive of bacterial cell cycle events. We propose that VLDL-driven FM constitute a well-defined cellular system in which to study changed metabolic states of intracellular mycobacteria that may relate to persistence and reactivation of tuberculosis. PMID:24478064

  18. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.

    ABSTRACT Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their totalmore » lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these

  19. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production.

    PubMed

    Lemmer, Kimberly C; Zhang, Weiping; Langer, Samantha J; Dohnalkova, Alice C; Hu, Dehong; Lemke, Rachelle A; Piotrowski, Jeff S; Orr, Galya; Noguera, Daniel R; Donohue, Timothy J

    2017-05-23

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation in Rhodobacter sphaeroides By screening an R. sphaeroides Tn 5 mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCE This paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these alterations can be

  20. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    DOE PAGES

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; ...

    2017-05-23

    ABSTRACT Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their totalmore » lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals. IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase microbial lipid production. We also find that the utility of some of these

  1. A strong association between lipid accumulation product and diabetes mellitus in japanese women and men.

    PubMed

    Wakabayashi, Ichiro; Daimon, Takashi

    2014-01-01

    Lipid accumulation product (LAP) is a new continuous marker of lipid overaccumulation that predicts cardiovascular risk. The aim of this study was to determine the cutoff value for LAP and evaluate its usefulness. Using a database of results of health checkup examinations for 10,170 Japanese workers (35-40 years of age) conducted at their workplaces, the cutoff value for a high LAP was calculated by analyzing receiver-operating characteristic (ROC) curves for the relationships of LAP with hyperglycemia and diabetes. The cutoff value for LAP was 21.1 for women and 37.2 for men. The values were similar when calculated by analyzing the ROC curves for the relationships with hyperglycemia and diabetes. Using these cutoff values, the prevalence of a high LAP was calculated to be 23.7% in women and 28.8% in men. The odds ratio for diabetes in the subjects with vs. those without a high LAP, calculated after adjusting for age, smoking, alcohol consumption and regular exercise, was 19.09 (95% CI: 6.57-55.50) in women and 7.40 (95% CI: 5.10-10.75) in men. High odds ratios for hypertension (10.66 [95% CI: 7.77-14.63] in women and 7.31 [95% CI: 6.20-8.62] in men) were also obtained in the subjects with vs. those without a high LAP. Cutoff values for a high LAP in women and men were determined, and high odds ratios for diabetes and hypertension were obtained using the cutoff values for LAP. Further studies are needed to elucidate whether the proposed cutoff values are applicable to people of other ages, races and ethnicities.

  2. Studies on the regulation of lipid biosynthesis in plants: application of control analysis to soybean.

    PubMed

    Guschina, Irina A; Everard, John D; Kinney, Anthony J; Quant, Patti A; Harwood, John L

    2014-06-01

    Although there is much knowledge of the enzymology (and genes coding the proteins) of lipid biosynthesis in higher plants, relatively little attention has been paid to regulation. We have demonstrated the important role for cholinephosphate cytidylyltransferase in the biosynthesis of the major extra-plastidic membrane lipid, phosphatidylcholine. We followed this work by applying control analysis to light-induced fatty acid synthesis. This was the first such application to lipid synthesis in any organism. The data showed that acetyl-CoA carboxylase was very important, exerting about half of the total control. We then applied metabolic control analysis to lipid accumulation in important oil crops - oilpalm, olive, and rapeseed. Recent data with soybean show that the block of fatty acid biosynthesis reactions exerts somewhat more control (63%) than lipid assembly although both are clearly very important. These results suggest that gene stacks, targeting both parts of the overall lipid synthesis pathway will be needed to increase significantly oil yields in soybean. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Native and enzymatically modified wheat (Triticum aestivum L.) endogenous lipids in bread making: a focus on gas cell stabilization mechanisms.

    PubMed

    Gerits, Lien R; Pareyt, Bram; Masure, Hanne G; Delcour, Jan A

    2015-04-01

    Lipopan F and Lecitase Ultra lipases were used in straight dough bread making to study how wheat lipids affect bread loaf volume (LV) and crumb structure setting. Lipase effects on LV were dose and dough piece weight dependent. The bread quality improving mechanisms exerted by endogenous lipids were studied in terms of gluten network strengthening, which indirectly stabilizes gas cells, and in terms of direct interfacial gas cell stabilization. Unlike diacetyl tartaric esters of mono- and diacylglycerols (DATEM, used as control), lipase use did not impact dough extensibility. The effect on dough extensibility was therefore related to its lipid composition at the start of mixing. Both lipases and DATEM strongly increase the levels of polar lipids in dough liquor and their availability for and potential accumulation at gas cell interfaces. Lipases form lysolipids that emulsify other lipids. We speculate that DATEM competes with (endogenous) polar lipids for interacting with gluten proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions.

    PubMed

    Sachdeva, Neha; Kumar, G Dinesh; Gupta, Ravi Prakash; Mathur, Anshu Shankar; Manikandan, B; Basu, Biswajit; Tuli, Deepak Kumar

    2016-10-01

    The aim of the present work was to develop a mathematical model to describe the biomass and (total) lipid productivity of Chlorella pyrenoidosa NCIM 2738 under heterotrophic conditions. Biomass growth rate was predicted by Droop's cell quota model, while changes observed in cell quota (utilization) under carbon excess conditions were used for the modeling and predicting the lipid accumulation rate. The model was simulated under non-limiting (excess) carbon and limiting nitrate concentration and validated with experimental data for the culture grown in batch (flask) mode under different nitrate concentrations. The present model incorporated two modes (growth and stressed) for the prediction of endogenous lipid synthesis/induction and aimed to predict the effect and response of the microalgae under nutrient starvation (stressed) conditions. MATLAB and Genetic Algorithm were employed for the prediction and validation of the model parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The role of nutrient reserves in mallard reproduction

    USGS Publications Warehouse

    Krapu, Gary L.

    1981-01-01

    Mallard (Anas platyrhynchos) populations breeding in temperate North America obtain a significant part of the energy and lipid requirements of reproduction at sites occupied prior to arrival on the breeding grounds. Protein for egg formation, however, is obtained principally from the diet during the nesting period. Both sexes arrive heavy and fat in North Dakota but experience substantial weight loss and lipid depletion during the nesting cycle. Weight loss is most pronounced among females and averages 25% from prelaying to late incubation. Body weights of both sexes are positively correlated with carcass lipid content. The paired male draws upon lipids early in the nesting season when an activity center is being established and defended and when females are preparing to nest. The female's lipid reserves are utilized primarily during laying and early incubation. The significance of lipid reserves diminishes as the nesting season progresses, and females do not acquire substantial lipid stores prior to renesting when the initial clutch is destroyed. The magnitude of lipid reserves carried in female carcasses is positively correlated with clutch size from mid-April to early June. Protein transfer for egg formation from flight and leg muscle and body organs can account for only a small part of the protein requirement for the clutch. By utilizing lipid reserves to meet energy requirements, the female can acquire sufficient protein from the diet to produce a large initial clutch even when foods are relatively scarce, whereas the renesting female must rely entirely upon food resources available at the breeding site for its nutrient and energy requirements.

  6. Non-linear imaging techniques visualize the lipid profile of C. elegans

    NASA Astrophysics Data System (ADS)

    Mari, Meropi; Petanidou, Barbara; Palikaras, Konstantinos; Fotakis, Costas; Tavernarakis, Nektarios; Filippidis, George

    2015-07-01

    The non-linear techniques Second and Third Harmonic Generation (SHG, THG) have been employed simultaneously to record three dimensional (3D) imaging and localize the lipid content of the muscular areas (ectopic fat) of Caenorhabditis elegans (C. elegans). Simultaneously, Two-Photon Fluorescence (TPEF) was used initially to localize the stained lipids with Nile Red, but also to confirm the THG potential to image lipids successfully. In addition, GFP labelling of the somatic muscles, proves the initial suggestion of the existence of ectopic fat on the muscles and provides complementary information to the SHG imaging of the pharynx. The ectopic fat may be related to a complex of pathological conditions including type-2 diabetes, hypertension and cardiovascular diseases. The elucidation of the molecular path leading to the development of metabolic syndrome is a vital issue with high biological significance and necessitates accurate methods competent of monitoring lipid storage distribution and dynamics in vivo. THG microscopy was employed as a quantitative tool to monitor the lipid accumulation in non-adipose tissues in the pharyngeal muscles of 12 unstained specimens while the SHG imaging revealed the anatomical structure of the muscles. The ectopic fat accumulation on the pharyngeal muscles increases in wild type (N2) C. elegans between 1 and 9 days of adulthood. This suggests a correlation of the ectopic fat accumulation with the aging. Our results can provide new evidence relating the deposition of ectopic fat with aging, but also validate SHG and THG microscopy modalities as new, non-invasive tools capable of localizing and quantifying selectively lipid accumulation and distribution.

  7. Reduction of adipogenesis and lipid accumulation by Taraxacum officinale (Dandelion) extracts in 3T3L1 adipocytes: an in vitro study.

    PubMed

    González-Castejón, Marta; García-Carrasco, Belén; Fernández-Dacosta, Raquel; Dávalos, Alberto; Rodriguez-Casado, Arantxa

    2014-05-01

    In this in vitro study, we have investigated the ability of Taraxacum officinale (dandelion) to inhibit adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes. HPLC analysis of the three plant extracts used in this study-leaf and root extracts and a commercial root powder-identified caffeic and chlorogenic acids as the main phenolic constituents. Oil Red O staining and triglyceride levels analysis showed decreased lipid and triglyceride accumulation, respectively. Cytotoxicity was assessed with the MTT assay showing non-toxic effect among the concentrations tested. DNA microarray analysis showed that the extracts regulated the expression of a number of genes and long non-coding RNAs that play a major role in the control of adipogenesis. Taken together, our results indicate that the dandelion extracts used in this study may play a significant role during adipogenesis and lipid metabolism, and thus, supporting their therapeutic interest as potential candidates for the treatment of obesity. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Soy Leaf Extract Containing Kaempferol Glycosides and Pheophorbides Improves Glucose Homeostasis by Enhancing Pancreatic β-Cell Function and Suppressing Hepatic Lipid Accumulation in db/db Mice.

    PubMed

    Li, Hua; Ji, Hyeon-Seon; Kang, Ji-Hyun; Shin, Dong-Ha; Park, Ho-Yong; Choi, Myung-Sook; Lee, Chul-Ho; Lee, In-Kyung; Yun, Bong-Sik; Jeong, Tae-Sook

    2015-08-19

    This study investigated the molecular mechanisms underlying the antidiabetic effect of an ethanol extract of soy leaves (ESL) in db/db mice. Control groups (db/+ and db/db) were fed a normal diet (ND), whereas the db/db-ESL group was fed ND with 1% ESL for 8 weeks. Dietary ESL improved glucose tolerance and lowered plasma glucose, glycated hemoglobin, HOMA-IR, and triglyceride levels. The pancreatic insulin content of the db/db-ESL group was significantly greater than that of the db/db group. ESL supplementation altered pancreatic IRS1, IRS2, Pdx1, Ngn3, Pax4, Ins1, Ins2, and FoxO1 expression. Furthermore, ESL suppressed lipid accumulation and increased glucokinase activity in the liver. ESL primarily contained kaempferol glycosides and pheophorbides. Kaempferol, an aglycone of kaempferol glycosides, improved β-cell proliferation through IRS2-related FoxO1 signaling, whereas pheophorbide a, a product of chlorophyll breakdown, improved insulin secretion and β-cell proliferation through IRS1-related signaling with protein kinase A in MIN6 cells. ESL effectively regulates glucose homeostasis by enhancing IRS-mediated β-cell insulin signaling and suppressing SREBP-1-mediated hepatic lipid accumulation in db/db mice.

  9. Lipid accumulation product is related to metabolic syndrome in women with polycystic ovary syndrome.

    PubMed

    Xiang, S; Hua, F; Chen, L; Tang, Y; Jiang, X; Liu, Z

    2013-02-01

    Metabolic disturbances are common features of polycystic ovary syndrome (PCOS), which possibly enhance the risk of diabetes and cardiovascular disease. Lipid accumulation product (LAP) is an emerging cardiovascular risk factor. The aim of this study was to explore the ability of LAP to identify metabolic syndrome (MS) in PCOS women. In a cross-sectional study, anthropometric, biochemical and clinical parameters were measured in 105 PCOS women. Receiver operating characteristic (ROC) analysis was used to find out the cut-off points of LAP to predict MS. MS was categorized according to International Diabetes Federation (IDF) criteria. The prevalence of MS was 43.8% in this study. PCOS women with MS had significantly higher LAP levels compared to those without MS. LAP was highly correlated with components of MS. ROC analysis showed that LAP was a significant discriminator for MS in PCOS women, and the optimal cutoff point of LAP to predict MS was 54.2 (93.3% sensitivity, 96.7% specificity). LAP seems to be associated with MS and has a strong and reliable diagnostic accuracy for MS in PCOS women. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  10. The physics of lipid droplet nucleation, growth and budding.

    PubMed

    Thiam, Abdou Rachid; Forêt, Lionel

    2016-08-01

    Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. miR-212-5p suppresses lipid accumulation by targeting FAS and SCD1.

    PubMed

    Guo, Yajie; Yu, Junjie; Wang, Chunxia; Li, Kai; Liu, Bin; Du, Ying; Xiao, Fei; Chen, Shanghai; Guo, Feifan

    2017-10-01

    MicroRNAs, a class of small noncoding RNAs, are implicated in controlling a variety of biological processes. We have shown that leucine deprivation suppresses lipogenesis by inhibiting fatty acid synthase (FAS) expression in the liver previously; the aim of our current study is to investigate which kind of microRNA is involved in the regulation of FAS expression in response to leucine deprivation. Here, we indicated that microRNA-212-5p specifically binds to mouse FAS 3'UTR and inhibits its activity. Leucine deficiency significantly increased the mRNA levels of miR-212-5p in the livers of mice. Further studies proved that miR-212-5p also directly binds to the 3'UTR of stearoyl-CoA desaturase-1 (SCD1) to inhibit its activity. Overexpression of miR-212-5p decreases the protein levels of FAS and SCD1 in vitro and in vivo , and silencing of miR-212-5p has the opposite effects in mouse primary hepatocytes. Moreover, overexpression of miR-212-5p significantly decreases triglyceride (TG) accumulation in primary hepatocytes and in the livers of mice injected with adenovirus-mediated overexpressing of miR-212-5p (Ad-miR-212). Interestingly, inhibition of miR-212-5p reverses the suppressive effects of leucine deficiency on FAS and SCD1 expression, as well as TG accumulation in mouse primary hepatocytes. Finally, we demonstrate that leucine deficiency induces the expression of miR-212-5p in a GCN2/ATF4-dependent manner. Taken together, our results demonstrate a novel function of hepatic miR-212-5p in the regulation of lipid metabolism which represents a potential therapeutic target for the treatment of non-alcohol fatty liver diseases (NAFLD). © 2017 Society for Endocrinology.

  12. Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1.

    PubMed

    Kim, Dong-Hun; Kanaly, Robert A; Hur, Hor-Gil

    2012-12-01

    The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, reduced tellurite (Te(IV), TeO(3)(2-)) to elemental tellurium under anaerobic conditions resulting in the intracellular accumulation of needle shaped crystalline Te(0) nanorods. Fatty acid analyses showed that toxic Te(IV) increased the unsaturated fatty acid composition of the lipid components of the cell membrane, implying a deconstruction of the integrity of the cellular membrane structure. The current results suggest that dissimilatory metal reducing bacteria such as S. oneidensis MR-1 may play an important role in recycling toxic tellurium elements, and may be applied as a novel selective biological filter via the accumulation of industry-applicable rare materials, Te(0) nanorods, in the cell. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation.

    PubMed

    Lin, Hui; Cheng, Wan; Ding, Hai-tao; Chen, Xue-jiao; Zhou, Qi-fa; Zhao, Yu-hua

    2010-10-01

    Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation (SSF) was investigated. In submerged fermentation, A. oryzae A-4 accumulated lipid to 15-18.15% of biomass when pure cellulose was utilized as the sole substrate. In SSF of the wheat straw and bran mixture, A. oryzae A-4 yielded lipid of 36.6mg/g dry substrate (gds), and a cellulase activity of 1.82 FPU/gds with 25.25% of holocellulose utilization in the substrates were detected on the 6th day. The lipid yield reached 62.87 mg/gds in SSF on the 6th day under the optimized conditions from Plackett-Burman design (PBD). Cellulase secretion of A. oryzae A-4 was found to influence the lipid yield. Dilute acid pretreatment of the straw and addition of some agro-industrial wastes to the straw could enhance lipid production of A. oryzae A-4. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Dehydroepiandrosterone reduces accumulation of lipid droplets in primary chicken hepatocytes by biotransformation mediated via the cAMP/PKA-ERK1/2 signaling pathway.

    PubMed

    Li, Longlong; Ge, Chongyang; Wang, Dian; Yu, Lei; Zhao, Jinlong; Ma, Haitian

    2018-06-01

    Dehydroepiandrosterone (DHEA) is commonly used as a nutritional supplement to control fat deposition, but the mechanism of this action is poorly understood. In this study, we demonstrated that DHEA increased phosphorylation of AMP-activated protein kinase (p-AMPK). Elevated p-AMPK levels resulted in reduced expression of sterol regulatory element binding protein-1c, acetyl CoA carboxylase, fatty acid synthase and enhanced expression of peroxisome proliferators-activated receptor α and carnitine palmitoyl transferase-I, ultimately leading to the reduction of lipid droplet accumulation in primary chicken hepatocytes. We found that DHEA activates the cyclic adenosine 3', 5'-monophosphate/protein kinase A - extracellular signal-regulated kinase 1/2 (cAMP/PKA-ERK1/2) signaling pathway, which regulates the conversion of DHEA into testosterone and estradiol by increasing the 17β-hydroxysteroid dehydrogenase and aromatase protein expression. Importantly, the fat-reducing effects of DHEA are more closely associated with the conversion of DHEA into estradiol than with the action of DHEA itself as an active biomolecule, or to its alternative metabolite, testosterone. Taken together, our results indicate that DHEA is converted into active hormones through activation of the cAMP/PKA-ERK1/2 signaling pathway; the fat-reducing effects of DHEA are achieved through its conversion into estradiol, not testosterone, and not through direct action of DHEA itself, which led to the activation of the p-AMPK in primary chicken hepatocytes. These data provide novel insight into the mechanisms underlying the action of DHEA in preventing fat deposition, and suggest potential applications for DHEA treatment to control fat deposition or as an agent to treat disorders related to lipid metabolism in animals and humans. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation

    PubMed Central

    BasuRay, Soumik; Smagris, Eriks

    2017-01-01

    A sequence variation (I148M) in patatin‐like phospholipase domain‐containing protein 3 (PNPLA3) is strongly associated with fatty liver disease, but the underlying mechanism remains obscure. In this study, we used knock‐in (KI) mice (Pnpla3148M/M) to examine the mechanism responsible for accumulation of triglyceride (TG) and PNPLA3 in hepatic lipid droplets (LDs). No differences were found between Pnpla3148M/M and Pnpla3+/+ mice in hepatic TG synthesis, utilization, or secretion. These results are consistent with TG accumulation in the Pnpla3148M/M mice being caused by impaired TG mobilization from LDs. Sucrose feeding, which is required to elicit fatty liver in KI mice, led to a much larger and more persistent increase in PNPLA3 protein in the KI mice than in wild‐type (WT) mice. Inhibition of the proteasome (bortezomib), but not macroautophagy (3‐methyladenine), markedly increased PNPLA3 levels in WT mice, coincident with the appearance of ubiquitylated forms of the protein. Bortezomib did not increase PNPLA3 levels in Pnpla3148M/M mice, and only trace amounts of ubiquitylated PNPLA3 were seen in these animals. Conclusion: These results are consistent with the notion that the 148M variant disrupts ubiquitylation and proteasomal degradation of PNPLA3, resulting in accumulation of PNPLA3‐148M and impaired mobilization of TG from LDs. (Hepatology 2017;66:1111‐1124). PMID:28520213

  16. Rifampicin Lipid-Polymer hybrid nanoparticles (LIPOMER) for enhanced Peyer's patch uptake.

    PubMed

    Bachhav, Sagar S; Dighe, Vikas D; Kotak, Darsheen; Devarajan, Padma V

    2017-10-30

    The oral uptake of intact nanocarriers through Peyer's patches is an important uptake pathway. We report Rifampicin Lipid-Polymer hybrid nanoparticles (RIF-LIPOMER) using glyceryl monostearate as lipid and the mucoadhesive polymer, Gantrez, with the objective of balancing hydrophobicity and mucoadhesion for enhanced Peyer's patch uptake. RIF-LIPOMER was optimized for size, hydrophobicity, and mucoadhesion using Box-Behnken. Designed RIF-LIPOMER (RIF-LIPO-120) exhibited average particle size in the range 300-400nm with drug loading >12%. DSC and XRD confirmed complete amorphization. Contact angle and mucoadhesion force revealed that RIF-LIPO-120 exhibited greater hydrophobicity and lower mucoadhesion compared to Gantrez nanoparticles (RIF-GzNP). Comparative uptake of fluorescent labelled RIF-LIPO-120 and RIF-GzNP, through Peyer's patch following intraduodenal administration in rats, revealed the high accumulation of RIF-GzNP at the villi border, and high Peyer's patch uptake of RIF-LIPO-120. Furthermore, lower accumulation of RIF-LIPO-120 in the liver, compared to RIF-GzNP, suggested bypass of the portal circulation and lymphatic uptake through Peyer's patches. Significantly higher lung: plasma concentration ratio exhibited by RIF-LIPO-120 compared to RIF-GzNP confirmed the same (p<0.05). Our study demonstrated that optimization of hydrophobicity and mucoadhesion of nanoparticles could favor Peyer's patch uptake, which in turn could enable enhanced drug accumulation in the lungs with advantage in the therapy of pulmonary afflictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A Caveolin Dominant Negative Mutant Associates with Lipid Bodies and Induces Intracellular Cholesterol Imbalance

    PubMed Central

    Pol, Albert; Luetterforst, Robert; Lindsay, Margaret; Heino, Sanna; Ikonen, Elina; Parton, Robert G.

    2001-01-01

    Recent studies have indicated a role for caveolin in regulating cholesterol-dependent signaling events. In the present study we have analyzed the role of caveolins in intracellular cholesterol cycling using a dominant negative caveolin mutant. The mutant caveolin protein, cav-3DGV, specifically associates with the membrane surrounding large lipid droplets. These structures contain neutral lipids, and are accessed by caveolin 1–3 upon overexpression. Fluorescence, electron, and video microscopy observations are consistent with formation of the membrane-enclosed lipid rich structures by maturation of subdomains of the ER. The caveolin mutant causes the intracellular accumulation of free cholesterol (FC) in late endosomes, a decrease in surface cholesterol and a decrease in cholesterol efflux and synthesis. The amphiphile U18666A acts synergistically with cavDGV to increase intracellular accumulation of FC. Incubation of cells with oleic acid induces a significant accumulation of full-length caveolins in the enlarged lipid droplets. We conclude that caveolin can associate with the membrane surrounding lipid droplets and is a key component involved in intracellular cholesterol balance and lipid transport in fibroblasts. PMID:11238460

  18. Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries.

    PubMed

    Liu, Qingsheng; Pan, Ran; Ding, Lei; Zhang, Fuli; Hu, Linfeng; Ding, Bin; Zhu, Linwensi; Xia, Yongliang; Dou, Xiaobing

    2017-08-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of hepatic lipids and oxidative injury of hepatocytes. Rutin is a natural flavonoid with significant roles in combating cellular oxidative stress and regulating lipid metabolism. The current study aims to investigate the molecular mechanisms underlying rutin's hypolipidemic and hepatoprotective effects in nonalcoholic fatty liver disease. Rutin treatment was applied to male C57BL/6 mice maintained on a high-fat diet and HepG2 cells challenged with oleic acid. Hepatic lipid accumulation was evaluated by triglyceride assay and Oil Red O staining. Oxidative hepatic injury was assessed by malondialdehyde assay, superoxide dismutase assay and reactive oxygen species assay. The expression levels of various lipogenic and lipolytic genes were determined by quantitative real-time polymerase chain reactions. In addition, liver autophagy was investigated by enzyme-linked immunosorbent assay. In both fat-challenged murine liver tissues and HepG2 cells, rutin treatment was shown to significantly lower triglyceride content and the abundance of lipid droplets. Rutin was also found to reduce cellular malondialdehyde level and restore superoxide dismutase activity in hepatocytes. Among the various lipid-related genes, rutin treatment was able to restore the expression of peroxisome proliferator-activated receptor alpha (PPAR-α) and its downstream targets, carnitine palmitoyltransferase 1 and 2 (CPT-1 and CPT-2), while suppressing those of sterol regulatory element-binding protein 1c (SREBP-1c), diglyceride acyltransfase 1 and 2 (DGAT-1 and 2), as well as acyl-CoA carboxylase (ACC). In addition, rutin was shown to repress the autophagic function of liver tissues by down-regulating key autophagy biomarkers, including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β). The experimental data demonstrated that rutin could reduce triglyceride content and mitigate oxidative injuries in fat

  19. Docosahexaenoic acid alters Gsα localization in lipid raft and potentiates adenylate cyclase.

    PubMed

    Zhu, Zhuoran; Tan, Zhoubin; Li, Yan; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jürgen; Mu, Yangling; Zhang, Lanqiu

    2015-01-01

    Supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA), recently has become popular for the amelioration of depression; however the molecular mechanism of DHA action remains unclear. The aim of this study was to investigate the mechanism underlying the antidepressant effect of DHA by evaluating Gsα localization in lipid raft and the activity of adenylate cyclase in an in vitro glioma cell model. Lipid raft fractions from C6 glioma cells treated chronically with DHA were isolated by sucrose gradient ultracentrifugation. The content of Gsα in lipid raft was analyzed by immunoblotting and colocalization of Gsα with lipid raft was subjected to confocal microscopic analysis. The intracellular cyclic adenosine monophosphate (cAMP) level was determined by cAMP immunoassay kit. DHA decreased the amount of Gsα in lipid raft, whereas whole cell lysate Gsα was not changed. Confocal microscopic analysis demonstrated that colocalization of Gsα with lipid raft was decreased, whereas DHA increased intracellular cAMP accumulation in a dose-dependent manner. Interestingly, we found that DHA increased the lipid raft level, instead of disrupting it. The results of this study suggest that DHA may exert its antidepressant effect by translocating Gsα from lipid raft and potentiating the activity of adenylate cyclase. Importantly, the reduced Gsα in lipid raft by DHA is independent of disruption of lipid raft. Overall, the study provides partial preclinical evidence supporting a safe and effective therapy using DHA for depression. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Genome sequence of a microbial lipid producing fungus Cryptococcus albidus NT2002.

    PubMed

    Yong, Xiaoyu; Yan, Zhiying; Xu, Lin; Zhou, Jun; Wu, Xiayuan; Wu, Yuandong; Li, Yang; Chen, Zugeng; Zhou, Hua; Wei, Ping; Jia, Honghua

    2016-04-10

    Cryptococcus albidus NT2002, isolated from the soil in Xinjiang, China, appeared to have the ability to accumulate microbial lipid by utilizing various carbon sources. The predominant properties make it as a potential bio-platform for biodiesel production. Here, we report the complete genome sequence of C. albidus NT2002, which might provide a basis for further elucidation of the genetic background of this promising strain for developing metabolic engineering strategies to produce biodiesel in a green and sustainable manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change.

    PubMed

    Rinnankoski-Tuikka, Rita; Hulmi, Juha J; Torvinen, Sira; Silvennoinen, Mika; Lehti, Maarit; Kivelä, Riikka; Reunanen, Hilkka; Kujala, Urho M; Kainulainen, Heikki

    2014-08-01

    The relation between lipid accumulation and influence of exercise on insulin sensitivity is not straightforward. A proper balance between lipid droplet synthesis, lipolysis, and oxidative metabolism would ensure low local intramyocellular fatty acid levels, thereby possibly protecting against lipotoxicity-associated insulin resistance. This study investigated whether the accumulation of triglycerides and lipid droplets in response to high availability of fatty acids after high-fat feeding would parallel the abundance of intramyocellular perilipin proteins, especially PLIN5. The effects on these variables after diet change or voluntary running exercise intervention in skeletal muscle were also investigated. During a 19-week experiment, C57BL/6J mice were studied in six different groups: low-fat diet sedentary, low-fat diet active, high-fat diet sedentary, high-fat diet active and two groups which were high-fat sedentary for nine weeks, after which divided into low-fat sedentary or low-fat active groups. Myocellular triglyceride concentration and perilipin protein expression levels were assessed. We show that, concurrently with impaired insulin sensitivity, the expression level of PLIN5 and muscular triglyceride concentration increased dramatically after high-fat diet. These adaptations were reversible after the diet change intervention with no additional effect of exercise. After high-fat diet, lipid droplets become larger providing more surface area for PLIN5. We suggest that PLIN5 is an important regulator of lipid droplet turnover in altered conditions of fatty acid supply and consumption. Imbalances in lipid droplet metabolism and turnover might lead to lipotoxicity-related insulin resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol.

    PubMed

    Feng, Xiaoyu; Walker, Terry H; Bridges, William C; Thornton, Charles; Gopalakrishnan, Karthik

    2014-08-01

    Biomass and lipid accumulation of heterotrophic microalgae Chlorella protothecoides by supplying mixed waste substrate of brewer fermentation and crude glycerol were investigated. The biomass concentrations of the old and the new C. protothecoides strains on day 6 reached 14.07 and 12.73 g/L, respectively, which were comparable to those in basal medium with supplement of glucose and yeast extract (BM-GY) (14.47 g/L for old strains and 11.43 g/L for new strains) (P>0.05). Approximately 81.5% of total organic carbon and 65.1% of total nitrogen in the mixed waste were effectively removed. The accumulated lipid productivities of the old and the new C. protothecoides strains in BM-GY were 2.07 and 1.61 g/L/day, respectively, whereas in the mixed waste, lipid productivities could reach 2.12 and 1.81 g/L/day, respectively. Our result highlights a new approach of mixing carbon-rich and nitrogen-rich wastes as economical and practical alternative substrates for biofuel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease.

    PubMed

    Cho, Kyu-hyang; Kim, Hyun-ju; Kamanna, Vaijinath S; Vaziri, Nosratola D

    2010-01-01

    Mounting evidence points to lipid accumulation in the diseased kidney and its contribution to progression of nephropathy. We recently found heavy lipid accumulation and marked dysregulation of lipid metabolism in the remnant kidneys of rats with chronic renal failure (CRF). Present study sought to determine efficacy of niacin supplementation on renal tissue lipid metabolism in CRF. Kidney function, lipid content, and expression of molecules involved in cholesterol and fatty acid metabolism were determined in untreated CRF (5/6 nephrectomized), niacin-treated CRF (50 mg/kg/day in drinking water for 12 weeks) and control rats. CRF resulted in hypertension, proteinuria, renal tissue lipid accumulation, up-regulation of scavenger receptor A1 (SR-A1), acyl-CoA cholesterol acyltransferase-1 (ACAT1), carbohydrate-responsive element binding protein (ChREBP), fatty acid synthase (FAS), acyl-CoA carboxylase (ACC), liver X receptor (LXR), ATP binding cassette (ABC) A-1, ABCG-1, and SR-B1 and down-regulation of sterol responsive element binding protein-1 (SREBP-1), SREBP-2, HMG-CoA reductase, PPAR-alpha, fatty acid binding protein (L-FABP), and CPT1A. Niacin therapy attenuated hypertension, proteinuria, and tubulo-interstitial injury, reduced renal tissue lipids, CD36, ChREBP, LXR, ABCA-1, ABCG-1, and SR-B1 abundance and raised PPAR-alpha and L-FABP. Niacin administration improves renal tissue lipid metabolism and renal function and structure in experimental CRF.

  4. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    PubMed

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Novel insight of carotenoid and lipid biosynthesis and their roles in storage carbon metabolism in Chlamydomonas reinhardtii.

    PubMed

    Sun, Han; Mao, Xuemei; Wu, Tao; Ren, Yuanyuan; Chen, Feng; Liu, Bin

    2018-05-10

    Revenues of carotenoid and lipid biosynthesis under excess light and nitrogen starvation were firstly analyzed for the increased biomass value through carbon metabolism analysis. The results suggested excess light and nitrogen starvation resulted in carbon partitioning among protein, starch, lipid and carotenoid. Nitrogen starvation promoted more cellular lipid content than excess light, while excess light promoted carotenoid and polyunsaturated fatty acid accumulation. In the molecular level, the stresses redirected carbon skeletons into the central metabolite of pyruvate and oriented into starch and lipid as the primary and secondary carbon storage, respectively. Economic estimation revealed nitrogen starvation potentially increased 14.76 × 10 -6 and 72.11 × 10 -6  $/g revenues of biofuel production at per batch and cell weight scales, respectively. Excess light could increase 63.90 × 10 -6 and 19.21 × 10 -6  $/g at per cell weight scale of lipid and carotenoid, respectively. In combination with metabolism analysis, conversion procedure of process-compatible products was divided into four phases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity.

    PubMed

    Voigt, Eduardo Luiz; Almeida, Tânia Dias; Chagas, Roberta Magalhães; Ponte, Luiz Ferreira Aguiar; Viégas, Ricardo Almeida; Silveira, Joaquim Albenísio Gomes

    2009-01-01

    Seedling establishment is a critical process to crop productivity, especially under saline conditions. This work was carried out to investigate the hypothesis that reserve mobilization is coordinated with salt-induced inhibition of seedling growth due to changes in source-sink relations. To test this hypothesis, cashew nuts (Anacardium occidentale) were sown in vermiculite irrigated daily with distilled water (control) or 50mM NaCl and they were evaluated at discrete developmental stages from the seed germination until the whole seedling establishment. The salt treatment coordinately delayed the seedling growth and the cotyledonary reserve mobilization. However, these effects were more pronounced at late seedling establishment than in earlier stages. The storage protein mobilization was affected by salt stress before the lipid and starch breakdown. The globulin fraction represented the most important storage proteins of cashew cotyledons, and its mobilization was markedly delayed by NaCl along the seedling establishment. Free amino acids were mostly retained in the cotyledons of salt-treated seedlings when the mobilization of storage proteins, lipids and starch was strongly delayed. Proline was not considerably accumulated in the cotyledons of cashew seedlings as a response to NaCl salinity. According to these results it is noteworthy that the salt-induced inhibition of seedling growth is narrowly coordinated with the delay of reserve mobilization and the accumulation of hydrolysis products in cotyledons. Also, it was evidenced that free amino acids, especially those related to nitrogen transport, are potential signals involved in the regulation of storage protein hydrolysis during cashew seedling establishment under NaCl salinity.

  7. Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater.

    PubMed

    Luo, Le; He, Huijun; Yang, Chunping; Wen, Shan; Zeng, Guangming; Wu, Mengjie; Zhou, Zili; Lou, Wei

    2016-09-01

    Coelastrella sp. QY01, a microalgae species isolated from a local pond, was identified and used for the treatment of anaerobically and aerobically treated swine wastewater (AnATSW). Microalgal growth characteristics, nutrient removal and lipid accumulation of QY01 cultivated in the initial concentration of AnATSW ranged from 63 to 319mg NH3-N/L were examined. The specific growth rate of QY01 cultivated in cultures ranged from 0.269 to 0.325day(-1) with a biomass productivity from 42.77 to 57.46mgL(-1)day(-1). Removal rates for NH3-N, TP and inorganic carbon in AnATSW at the various nutrient concentrations ranged from 90% to 100%, from 90% to 100% and from 74% to 78%, respectively. The lipid content of QY01 ranged from 22.4% to 24.8%. The lipid productivity was positive correlation with the biomass productivity. 40% AnATSW was optimal for QY01 cultivation, in which nutrient removal and productivity of biomass and lipid were maximized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. How do eggs get fat? Insights into ovarian fatty acid accumulation in the shortfinned eel, Anguilla australis.

    PubMed

    Damsteegt, Erin L; Mizuta, Hiroko; Hiramatsu, Naoshi; Lokman, P Mark

    2015-09-15

    Previous research using eels has shown that 11-ketotestosterone can induce ovarian triacylglyceride accumulation both in vivo and in vitro. Further, accumulation is dramatically enhanced in the presence of very-low density lipoprotein. This study examined the involvement of the low density lipoprotein receptor and vitellogenin receptor in oocyte lipid accumulation. Specific antisera were used in an attempt to block the vitellogenin receptor and/or the low density lipoprotein receptor. Accordingly, incubation with the low density lipoprotein receptor antiserum clearly reduced the oocyte diameter and the amount of oil present within the oocyte. In contrast, blocking the vitellogenin receptor had little effect on either oocyte surface area or the abundance of oil droplets in the cytosol. In keeping with birds, we conclude that the low density lipoprotein receptor is a major player involved in mediating ovarian fatty acid accumulation in the eel. However, lipoprotein lipase-mediated fatty acid accumulation also remains conceivable, for example through interactions between this enzyme and the low density lipoprotein receptor. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cultivation of a native alga for biomass and biofuel accumulation in coal bed methane production water

    USGS Publications Warehouse

    Hodgskiss, Logan H.; Nagy, Justin; Barnhart, Elliott P.; Cunningham, Alfred B.; Fields, Matthew W.

    2016-01-01

    Coal bed methane (CBM) production has resulted in thousands of ponds in the Powder River Basin of low-quality water in a water-challenged region. A green alga isolate, PW95, was isolated from a CBM production pond, and analysis of a partial ribosomal gene sequence indicated the isolate belongs to the Chlorococcaceae family. Different combinations of macro- and micronutrients were evaluated for PW95 growth in CBM water compared to a defined medium. A small level of growth was observed in unamended CBM water (0.15 g/l), and biomass increased (2-fold) in amended CBM water or defined growth medium. The highest growth rate was observed in CBM water amended with both N and P, and the unamended CBM water displayed the lowest growth rate. The highest lipid content (27%) was observed in CBM water with nitrate, and a significant level of lipid accumulation was not observed in the defined growth medium. Growth analysis indicated that nitrate deprivation coincided with lipid accumulation in CBM production water, and lipid accumulation did not increase with additional phosphorus limitation. The presented results show that CBM production wastewater can be minimally amended and used for the cultivation of a native, lipid-accumulating alga.

  10. Transcriptomic Analysis of the Regulation of Lipid Fraction Migration and Fatty Acid Biosynthesis in Schizochytrium sp.

    PubMed

    Ren, Lujing; Hu, Xuechao; Zhao, Xiaoyan; Chen, Shenglan; Wu, Yi; Li, Dan; Yu, Yadong; Geng, Lingjun; Ji, Xiaojun; Huang, He

    2017-06-15

    Schizochytrium sp. is the main source of docosahexaenoic acid-rich oil, which is widely used in food additive and pharmaceutical industry. In this study, using RNA-seq, comparative transcriptomic analyses were performed at four stages of DHA fermentation by Schizochytrium sp to get potential genes related to cell transition from cell growth to lipid accumulation and then to lipid turnover. 1406, 385, 1384 differently expressed genes were identified by comparisons in pairs of S2 vs S1, S3 vs S2 and S4 vs S3. Functional analysis revealed that binding and single-organism process might be involve in the cell transition from cell growth to lipid accumulation while oxidation-reduction process played an important role in the transition from lipid accumulation to lipid turnover. pfaC in the PKS pathway showed higher sensitivity to the environmental change, which might be the key regulator for enhancing PUFA biosynthesis in the future. Some other genes in signal transduction and cell transport were revealed to be related to lipid turnover, which would enrich the current knowledge regarding lipid metabolism and help to enhance the DHA production and enrich different lipid fractions by Schizochytrium in the future.

  11. Altered lipid metabolism in brain injury and disorders.

    PubMed

    Adibhatla, Rao Muralikrishna; Hatcher, J F

    2008-01-01

    Deregulated lipid metabolism may be of particular importance for CNS injuries and disorders, as this organ has the highest lipid concentration next to adipose tissue. Atherosclerosis (a risk factor for ischemic stroke) results from accumulation of LDL-derived lipids in the arterial wall. Pro-inflammatory cytokines (TNF-alpha and IL-1), secretory phospholipase A2 IIA and lipoprotein-PLA2 are implicated in vascular inflammation. These inflammatory responses promote atherosclerotic plaques, formation and release of the blood clot that can induce ischemic stroke. TNF-alpha and IL-1 alter lipid metabolism and stimulate production of eicosanoids, ceramide, and reactive oxygen species that potentiate CNS injuries and certain neurological disorders. Cholesterol is an important regulator of lipid organization and the precursor for neurosteroid biosynthesis. Low levels of neurosteroids were related to poor outcome in many brain pathologies. Apolipoprotein E is the principal cholesterol carrier protein in the brain, and the gene encoding the variant Apolipoprotein E4 is a significant risk factor for Alzheimer's disease. Parkinson's disease is to some degree caused by lipid peroxidation due to phospholipases activation. Niemann-Pick diseases A and B are due to acidic sphingomyelinase deficiency, resulting in sphingomyelin accumulation, while Niemann-Pick disease C is due to mutations in either the NPC1 or NPC2 genes, resulting in defective cholesterol transport and cholesterol accumulation. Multiple sclerosis is an autoimmune inflammatory demyelinating condition of the CNS. Inhibiting phospholipase A2 attenuated the onset and progression of experimental autoimmune encephalomyelitis. The endocannabinoid system is hypoactive in Huntington's disease. Ethyl-eicosapetaenoate showed promise in clinical trials. Amyotrophic lateral sclerosis causes loss of motorneurons. Cyclooxygenase-2 inhibition reduced spinal neurodegeneration in amyotrophic lateral sclerosis transgenic mice

  12. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.

    PubMed

    Zhang, Zhiping; Ji, Hairui; Gong, Guiping; Zhang, Xu; Tan, Tianwei

    2014-07-01

    The optimal mixed culture model of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was confirmed to enhance lipid production. A double system bubble column photo-bioreactor was designed and used for demonstrating the relationship of yeast and alga in mixed culture. The results showed that using the log-phase cultures of yeast and alga as seeds for mixed culture, the improvements of biomass and lipid yields reached 17.3% and 70.9%, respectively, compared with those of monocultures. Growth curves of two species were confirmed in the double system bubble column photo-bioreactor, and the second growth of yeast was observed during 36-48 h of mixed culture. Synergistic effects of two species for cell growth and lipid accumulation were demonstrated on O2/CO2 balance, substance exchange, dissolved oxygen and pH adjustment in mixed culture. This study provided a theoretical basis and culture model for producing lipids by mixed culture in place of monoculture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. [Biochemical protective mechanisms in the accumulation of heavy metals in organisms].

    PubMed

    Petukhov, A S; Petukhova, G A

    At present due to the environmental contamination by heavy metals there is a great interest to investigate the processes of their both accumulation in plants and toxic effect on biochemical indices. Therefore the objective of this research was the analysis of the alteration of the system of antioxidant protection ofplants in conditions of soil contamination by copper and zinc. Research object were germinants of oat in amount of300 plants in each variant of the experiment. For the performance of the experiment, the sand was equally contaminated by sulfates of Cu and Zn in concentration of 2 MPC on its gross content in soil. The experiment lastedfor 2 weeks. For the implementation of the objective of research there was analyzed the contentof both Cu and Zn in plants exposed to soil contamination. Additionally there was performed an analysis of as the content of lipids peroxidation products, phenols and flavonoids; as well the activity ofperoxidase, catalase and photosynthetic system. Under the soil contamination by copper and zinc corresponding to 2 MPC the accumulation of heavy metals was established to be happening in plants. If compared copper accumulation was higher than zinc accumulation that can be explained by the high migration capability of zinc. Under combined impact of two metals there was revealed their antagonistic interaction. There was established an elevated content of lipids peroxidation products in cells as a sequence of the accumulation of heavy metals in plants. As a result of the elevation of the content of lipids peroxidation products there was revealed a raised activity ofphotosynthetic apparatus and antioxidant system (carotenoids, catalase and peroxidase) in the cell. The decrease of the content ofphenols and flavonoids is related with the usage of this system of antioxidant protection for the neutralization of lipids peroxidation processes.

  14. Changes of biomass, lipid content and fatty acids composition under a light-dark cyclic culture of Chlorella pyrenoidosa in response to different temperature.

    PubMed

    Han, Feifei; Wang, Weiliang; Li, Yuanguang; Shen, Guomin; Wan, Minxi; Wang, Jun

    2013-03-01

    For outdoor culture with light-dark cycle, the biomass and lipid losing at night resulted in lowering the biomass and lipid productivity. Previous studies focused on the contents of carbohydrate and protein in response to temperature for production of animal feed and nutritional supplements. In this study, the effects of temperature on the variations of biomass concentration, lipid content and fatty acids composition for production of biofuels were investigated under a light-dark cyclic culture. The results showed that 30 °C was the optimal daytime temperature for achieving high biomass and lipid; raising daytime temperature can lessen night biomass loss and stimulate lipid accumulation. Subsequently, outdoor culture strategy has been improved: keeping culture broth no less than 30 °C during the daytime. Consequently, the net biomass and lipid productivity were increased by 37.8% and 44.9% when compared to the former culture process in the same outdoor climatic conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation.

    PubMed

    BasuRay, Soumik; Smagris, Eriks; Cohen, Jonathan C; Hobbs, Helen H

    2017-10-01

    A sequence variation (I148M) in patatin-like phospholipase domain-containing protein 3 (PNPLA3) is strongly associated with fatty liver disease, but the underlying mechanism remains obscure. In this study, we used knock-in (KI) mice (Pnpla3 148M/M ) to examine the mechanism responsible for accumulation of triglyceride (TG) and PNPLA3 in hepatic lipid droplets (LDs). No differences were found between Pnpla3 148M/M and Pnpla3 +/+ mice in hepatic TG synthesis, utilization, or secretion. These results are consistent with TG accumulation in the Pnpla3 148M/M mice being caused by impaired TG mobilization from LDs. Sucrose feeding, which is required to elicit fatty liver in KI mice, led to a much larger and more persistent increase in PNPLA3 protein in the KI mice than in wild-type (WT) mice. Inhibition of the proteasome (bortezomib), but not macroautophagy (3-methyladenine), markedly increased PNPLA3 levels in WT mice, coincident with the appearance of ubiquitylated forms of the protein. Bortezomib did not increase PNPLA3 levels in Pnpla3 148M/M mice, and only trace amounts of ubiquitylated PNPLA3 were seen in these animals. These results are consistent with the notion that the 148M variant disrupts ubiquitylation and proteasomal degradation of PNPLA3, resulting in accumulation of PNPLA3-148M and impaired mobilization of TG from LDs. (Hepatology 2017;66:1111-1124). © 2017 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  16. Melatonin-induced increase of lipid droplets accumulation and in vitro maturation in porcine oocytes is mediated by mitochondrial quiescence.

    PubMed

    He, Bin; Yin, Chao; Gong, Yabin; Liu, Jie; Guo, Huiduo; Zhao, Ruqian

    2018-01-01

    Melatonin, the major pineal secretory product, has a significant impact on the female reproductive system. Recently, the beneficial effects of melatonin on mammalian oocyte maturation and embryonic development have drawn increased attention. However, the exact underlying mechanisms remain to be fully elucidated. This study demonstrates that supplementing melatonin to in vitro maturation (IVM) medium enhances IVM rate, lipid droplets (LDs) accumulation as well as triglyceride content in porcine oocytes. Decrease of mitochondrial membrane potential, mitochondrial respiratory chain complex IV activity as well as mitochondrial reactive oxygen species (mROS) content indicated that melatonin induced a decrease of mitochondrial activity. The copy number of mitochondrial DNA (mtDNA) which encodes essential subunits of oxidative phosphorylation (OXPHOS), was not affected by melatonin. However, the expression of mtDNA-encoded genes was significantly down-regulated after melatonin treatment. The DNA methyltransferase DNMT1, which regulates methylation and expression of mtDNA, was increased and translocated into the mitochondria in melatonin-treated oocytes. The inhibitory effect of melatonin on the expression of mtDNA was significantly prevented by simultaneous addition of DNMT1 inhibitor, which suggests that melatonin regulates the transcription of mtDNA through up-regulation of DNMT1 and mtDNA methylation. Increase of triglyceride contents after inhibition of OXPHOS indicated that mitochondrial quiescence is crucial for LDs accumulation in oocytes. Taken together, our results suggest that melatonin-induced reduction in mROS production and increase in IVM, and LDs accumulation in porcine oocytes is mediated by mitochondrial quiescence. © 2017 Wiley Periodicals, Inc.

  17. Improvement and modeling of culture parameters to enhance biomass and lipid production by the oleaginous yeast Cryptococcus curvatus grown on acetate.

    PubMed

    Béligon, Vanessa; Poughon, Laurent; Christophe, Gwendoline; Lebert, André; Larroche, Christian; Fontanille, Pierre

    2015-09-01

    The improvement of culture parameters for lipid production from acetate as carbon source was investigated using the oleaginous yeast Cryptococcus curvatus. A new pH regulation system dispensing acetate was developed for fed-batch culture and allowed obtaining nearly 80 g/L biomass within 60 h with a maximal growth rate of 0.28 h(-1). A biological model was developed from experimental data. The influence of three C/N ratios of 300, 500 and 900 were tested during a multi-phases process on lipid accumulation. The C/N ratio of 300 was reported to be the most suitable for lipid storage. No significant increase of lipids content was obtained with higher value. A maximal content of 60% DCW of lipid was obtained. The determination of fatty acids profiles of the microbial oils has confirmed that the valorization of acetate by microbial oils production was a promising perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Lipid accumulation product and insulin resistance in Iranian PCOS prevalence study.

    PubMed

    Hosseinpanah, Farhad; Barzin, Maryam; Erfani, Hadi; Serahati, Sara; Ramezani Tehrani, Fahimeh; Azizi, Fereidoun

    2014-07-01

    To evaluate diagnostic accuracy of lipid accumulation product (LAP) index as a marker of insulin resistance in a community-based population with polycystic ovary syndrome (PCOS), compared with healthy women. Anthropometric measurements, biochemical parameters, LAP index and insulin resistance (IR) were compared in 134 PCOS subjects and 414 healthy women recruited from 1126 reproductive aged women (18-45 years), participants of the Iranian PCOS Prevalence Study. LAP was defined as [WC (cm)-58] ×TG (mmol/l)]. PCOS was diagnosed using the Rotterdam criteria, and IR was defined using the homeostatic model assessment IR. LAP, body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) were compared using the two-tailed Spearman rank correlation test and analysing the receiver operating characteristic (ROC) curves for IR. Among the PCOS subjects, the mean ± SD age, BMI, WC and WHR were 32·2 ± 7·7 years, 26·8 ± 5·8 kg/m(2) , 85·2 ± 13·2 cm and 0·80 ± 0·06, respectively, and the median (IQ25-75) of LAP index was 34·03 (17·8-66·3). There was significant correlation between HOMA-IR index and LAP in patients with PCOS (r = 0·41; P < 0·001). Also, ROC curves analysis revealed that the optimal cut-off value for LAP to define the presence of IR was 34·1 (sensitivity: 75%; specificity: 58%). LAP showed the highest area under curve (AUC) (P < 0·001). Among PCOS subjects, LAP index has the strongest diagnostic accuracy for detection of IR in comparison with BMI, WC and WHR. © 2013 John Wiley & Sons Ltd.

  19. Imaging of Lipids in Microalgae with Coherent Anti-Stokes Raman Scattering Microscopy1[OPEN

    PubMed Central

    Cavonius, Lillie; Fink, Helen; Kiskis, Juris; Albers, Eva; Undeland, Ingrid; Enejder, Annika

    2015-01-01

    Microalgae have great prospects as a sustainable resource of lipids for refinement into nutraceuticals and biodiesel, which increases the need for detailed insights into their intracellular lipid synthesis/storage mechanisms. As an alternative strategy to solvent- and label-based lipid quantification techniques, we introduce time-gated coherent anti-Stokes Raman scattering (CARS) microscopy for monitoring lipid contents in living algae, despite strong autofluorescence from the chloroplasts, at approximately picogram and subcellular levels by probing inherent molecular vibrations. Intracellular lipid droplet synthesis was followed in Phaeodactylum tricornutum algae grown under (1) light/nutrient-replete (control [Ctrl]), (2) light-limited (LL), and (3) nitrogen-starved (NS) conditions. Good correlation (r2 = 0.924) was found between lipid volume data yielded by CARS microscopy and total fatty acid content obtained from gas chromatography-mass spectrometry analysis. In Ctrl and LL cells, micron-sized lipid droplets were found to increase in number throughout the growth phases, particularly in the stationary phase. During more excessive lipid accumulation, as observed in NS cells, promising commercial harvest as biofuels and nutritional lipids, several micron-sized droplets were present already initially during cultivation, which then fused into a single giant droplet toward stationary phase alongside with new droplets emerging. CARS microspectroscopy further indicated lower lipid fluidity in NS cells than in Ctrl and LL cells, potentially due to higher fatty acid saturation. This agreed with the fatty acid profiles gathered by gas chromatography-mass spectrometry. CARS microscopy could thus provide quantitative and semiqualitative data at the single-cell level along with important insights into lipid-accumulating mechanisms, here revealing two different modes for normal and excessive lipid accumulation. PMID:25583924

  20. Hyperspectral Stimulated Raman Scattering Microscopy Unravels Aberrant Accumulation of Saturated Fat in Human Liver Cancer.

    PubMed

    Yan, Shuai; Cui, Sishan; Ke, Kun; Zhao, Bixing; Liu, Xiaolong; Yue, Shuhua; Wang, Ping

    2018-06-05

    Lipid metabolism is dysregulated in human cancers. The analytical tools that could identify and quantitatively map metabolites in unprocessed human tissues with submicrometer resolution are highly desired. Here, we implemented analytical hyperspectral stimulated Raman scattering microscopy to map the lipid metabolites in situ in normal and cancerous liver tissues from 24 patients. In contrast to the conventional wisdom that unsaturated lipid accumulation enhances tumor cell survival and proliferation, we unexpectedly visualized substantial amount of saturated fat accumulated in cancerous liver tissues, which was not seen in majority of their adjacent normal tissues. Further analysis by mass spectrometry confirmed significant high levels of glyceryl tripalmitate specifically in cancerous liver. These findings suggest that the aberrantly accumulated saturated fat may have great potential to be a metabolic biomarker for liver cancer.

  1. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock

    PubMed Central

    Li, Z. H.; Hiltunen, E.

    2016-01-01

    In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur) starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production. PMID:27725942

  2. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock.

    PubMed

    Zhu, L D; Li, Z H; Hiltunen, E

    2016-01-01

    In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur) starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production.

  3. Evidence of Cholesterol Accumulated in High Curvature Regions: Implication ot the Curvature Elastic Energy for Lipid Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang,W.; Yang, L.; Huang, H.

    2007-01-01

    Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy formore » lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature.« less

  4. Regulation of TG accumulation and lipid droplet morphology by the novel TLDP1 in Aurantiochytrium limacinum F26-b.

    PubMed

    Watanabe, Takashi; Sakiyama, Ryo; Iimi, Yuya; Sekine, Satomi; Abe, Eriko; Nomura, Kazuko H; Nomura, Kazuya; Ishibashi, Yohei; Okino, Nozomu; Hayashi, Masahiro; Ito, Makoto

    2017-12-01

    Thraustochytrids are marine single-cell protists that produce large amounts of PUFAs, such as DHA. They accumulate PUFAs in lipid droplets (LDs), mainly as constituent(s) of triacylglycerol (TG). We identified a novel protein in the LD fraction of Aurantiochytrium limacinum F26-b using 2D-difference gel electrophoresis. The protein clustered with orthologs of thraustochytrids; however, the cluster was evolutionally different from known PAT family proteins or plant LD protein; thus, we named it thraustochytrid-specific LD protein 1 (TLDP1). TLDP1 surrounded LDs when expressed as a GFP-tagged form. Disruption of the tldp1 gene decreased the content of TG and number of LDs per cell; however, irregular and unusually large LDs were generated in tldp1 -deficient mutants. Although the level of TG synthesis was unchanged by the disruption of tldp1 , the level of TG degradation was higher in tldp1 -deficient mutants than in the WT. These phenotypic abnormalities in tldp1 -deficient mutants were restored by the expression of tldp1 These results indicate that TLDP1 is a thraustochytrid-specific LD protein and regulates the TG accumulation and LD morphology in A. limacinum F26-b. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis.

    PubMed

    Van Rooyen, Derrick M; Larter, Claire Z; Haigh, W Geoffrey; Yeh, Matthew M; Ioannou, George; Kuver, Rahul; Lee, Sum P; Teoh, Narci C; Farrell, Geoffrey C

    2011-10-01

    Type 2 diabetes and nonalcoholic steatohepatitis (NASH) are associated with insulin resistance and disordered cholesterol homeostasis. We investigated the basis for hepatic cholesterol accumulation with insulin resistance and its relevance to the pathogenesis of NASH. Alms1 mutant (foz/foz) and wild-type NOD.B10 mice were fed high-fat diets that contained varying percentages of cholesterol; hepatic lipid pools and pathways of cholesterol turnover were determined. Hepatocytes were exposed to insulin concentrations that circulate in diabetic foz/foz mice. Hepatic cholesterol accumulation was attributed to up-regulation of low-density lipoprotein receptor via activation of sterol regulatory element binding protein 2 (SREBP-2), reduced biotransformation to bile acids, and suppression of canalicular pathways for cholesterol and bile acid excretion in bile. Exposing primary hepatocytes to concentrations of insulin that circulate in diabetic Alms1 mice replicated the increases in SREBP-2 and low-density lipoprotein receptor and suppression of bile salt export pump. Removing cholesterol from diet prevented hepatic accumulation of free cholesterol and NASH; increasing dietary cholesterol levels exacerbated hepatic accumulation of free cholesterol, hepatocyte injury or apoptosis, macrophage recruitment, and liver fibrosis. In obese, diabetic mice, hyperinsulinemia alters nuclear transcriptional regulators of cholesterol homeostasis, leading to hepatic accumulation of free cholesterol; the resulting cytotoxicity mediates transition of steatosis to NASH. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Clomipramine counteracts lipid raft disturbance due to short-term muscle disuse.

    PubMed

    Bryndina, Irina G; Shalagina, Maria N; Sekunov, Alexey V; Zefirov, Andrei L; Petrov, Alexey M

    2018-01-18

    Disuse-induced skeletal muscle dysfunction is a serious consequence of long-term spaceflight, numerous diseases and conditions for which treatment possibilities are still strictly limited. We have previously shown that acute hindlimb suspension (HS)-mediated disuse disrupts membrane lipid rafts in the unloaded muscle. Here, we investigated whether pretreatment of rats with the inhibitor of acid sphingomyelinase, clomipramine (1.25mg/g/day, intramuscularly, for 5days before HS), is able to hinder the loss in lipid raft integrity in response to 12h of HS. Clomipramine pretreatment significantly counteracted the decrease in labeling of the plasma membranes with lipid raft markers (fluorescent cholera toxin B subunit and bodipy-GM1-ganglioside) specifically in the junctional regions of the suspended soleus muscle. This was associated with: a) enhancing raft disrupting potential of exogenous sphingomyelinase in the junctional membranes; b) prevention of both ceramide accumulation and cholesterol loss; c) prevention of decline in nicotinic acetylcholine receptor labeling in the unloaded muscle. Our data suggest that sphingomyelinase-mediated raft disturbance serves as one of the earlier events in HS effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Lysosomal exocytosis and lipid storage disorders

    PubMed Central

    Samie, Mohammad Ali; Xu, Haoxing

    2014-01-01

    Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs. PMID:24668941

  8. Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival.

    PubMed

    Grosbois, Guillaume; Mariash, Heather; Schneider, Tobias; Rautio, Milla

    2017-09-14

    Shortening winter ice-cover duration in lakes highlights an urgent need for research focused on under-ice ecosystem dynamics and their contributions to whole-ecosystem processes. Low temperature, reduced light and consequent changes in autotrophic and heterotrophic resources alter the diet for long-lived consumers, with consequences on their metabolism in winter. We show in a survival experiment that the copepod Leptodiaptomus minutus in a boreal lake does not survive five months under the ice without food. We then report seasonal changes in phytoplankton, terrestrial and bacterial fatty acid (FA) biomarkers in seston and in four zooplankton species for an entire year. Phytoplankton FA were highly available in seston (2.6 µg L -1 ) throughout the first month under the ice. Copepods accumulated them in high quantities (44.8 µg mg dry weight -1 ), building lipid reserves that comprised up to 76% of body mass. Terrestrial and bacterial FA were accumulated only in low quantities (<2.5 µg mg dry weight -1 ). The results highlight the importance of algal FA reserve accumulation for winter survival as a key ecological process in the annual life cycle of the freshwater plankton community with likely consequences to the overall annual production of aquatic FA for higher trophic levels and ultimately for human consumption.

  9. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    PubMed

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  10. Repressive effects of oat extracts on intracellular lipid-droplet formation in adipocytes and a three-dimensional subcutaneous adipose tissue model.

    PubMed

    Kato, Shinya; Kato, Yuko; Shibata, Hiroki; Saitoh, Yasukazu; Miwa, Nobuhiko

    2015-04-01

    We assessed the repression of lipid-droplet formation in mouse mesenchymal stromal preadipocytes OP9 by specified oat extracts (Hatomugi, Coix lacryma-jobi var. ma-yuen) named "SPH" which were proteolytically and glucosyl-transferredly prepared from finely-milled oat whole-grain. Stimulation of OP9 preadipocytes with insulin-containing serum-replacement promoted differentiation to adipocytes, concurrently with an increase in the intracellular lipid droplets by 51.5%, which were repressed by SPH-bulk or SPH-water-extract at 840ppm, to 33.5% or 46.9%, respectively, but not by SPH-ethanol-extract at the same dose, showing the hydrophilic property of the anti-adipogenetic ingredients. The intracellular lipid droplets were scanty for intact preadipocytes, small-sized but abundant for the SPH-unadministered adipocytes, and large-sized but few for SPH-bulk-administered adipocytes being coexistent with many lipid-droplet-lacking viable cells, suggesting "the all-or-none rule" for lipid-droplet generation in cell-to-cell. Hydrogen-peroxide-induced cell death in human epidermal keratinocytes HaCaT was prevented by SPH-bulk at 100 or 150ppm by 5.6-8.1%, being consistent with higher viabilities of SPH-bulk-administered OP9 cells, together with repressions of both cell shrinkage and cell detachment from the culture substratum. In three-dimensional subcutaneous adipose tissue models reconstructed with HaCaT-keratinocytes and OP9-preadipocytes, lipid droplets were accumulated in dermal OP9-cell-parts, and repressed to 43.5% by SPH-bulk at 840ppm concurrently with marked diminishment of huge aggregates of lipid droplets. Thus SPH-bulk suppresses adipogenesis-associated lipid-droplet accumulation during differentiation of OP9 preadipocytes together with lowered cytotoxicity to either HaCaT keratinocytes or the preadipocytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Expression of lipoprotein receptor and apolipoprotein E genes by perinatal rat lipid-laden pulmonary fibroblasts.

    PubMed

    McGowan, S E; Doro, M M; Jackson, S

    Lipid-laden interstitial fibroblasts (LIFs) are abundant during alveolar septal formation in rats and accumulate droplets of neutral lipids. The mechanisms controlling lipid acquisition by LIFs are incompletely understood and accumulation varies during postnatal development, because lipid droplets are usually a transient phenotype. We hypothesized that plasma lipoproteins may be an important source of lipids and that the cells may alter their acquisition of lipoproteins by changing the expression of lipoprotein receptors and apolipoprotein E. We quantified the accumulation low-density lipoproteins (LDLs) and very-low-density lipoproteins (VLDLs) by LIFs and the expression of LDL and VLDL receptors mRNA and protein at various perinatal ages and found no significant age-related differences. Apolipoprotein E mRNA was maximal at postnatal day 15, whereas immunoreactive apolipoprotein E protein was maximal at gestational day 21, suggesting complex regulation. Our findings indicate that the age-related difference in the lipid droplet contents of LIFs is not primarily related to differences in LDL or VLDL receptor expression. They suggest that changes in the quantities of plasma lipoproteins, which are presented to LIFs in the lung at various perinatal ages, are more likely to be responsible for age-related alterations in lipid droplet size and abundance.

  12. Aronia melanocarpa Extract Ameliorates Hepatic Lipid Metabolism through PPARγ2 Downregulation

    PubMed Central

    Kim, Jung-Hee; Lee, Eun Byul; Hur, Wonhee; Kwon, Oh-Joo; Park, Hyoung-Jin; Yoon, Seung Kew

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Studies have demonstrated that anthocyanin-rich foods may improve hyperlipidemia and ameliorate hepatic steatosis. Here, effects of Aronia melanocarpa (AM), known to be rich of anthocyanins, on hepatic lipid metabolism and adipogenic genes were determined. AM was treated to C57BL/6N mice fed with high fat diet (HFD) or to FL83B cells treated with free fatty acid (FFA). Changes in levels of lipids, enzymes and hormones were observed, and expressions of adipogenic genes involved in hepatic lipid metabolism were detected by PCR, Western blotting and luciferase assay. In mice, AM significantly reduced the body and liver weight, lipid accumulation in the liver, and levels of biochemical markers such as fatty acid synthase, hepatic triglyceride and leptin. Serum transaminases, indicators for hepatocyte injury, were also suppressed, while superoxide dismutase activity and liver antioxidant capacity were significantly increased. In FL83B cells, AM significantly reduced FFA-induced lipid droplet accumulation. Protein synthesis of an adipogenic transcription factor, peroxisome proliferator-activated receptor γ2 (PPARγ2) was inhibited in vivo. Furthermore, transcriptional activity of PPARγ2 was down-regulated in vitro, and mRNA expression of PPARγ2 and its downstream target genes, adipocyte protein 2 and lipoprotein lipase were down-regulated by AM both in vitro and in vivo. These results show beneficial effects of AM against hepatic lipid accumulation through the inhibition of PPARγ2 expression along with improvements in body weight, liver functions, lipid profiles and antioxidant capacity suggesting the potential therapeutic efficacy of AM on NAFLD. PMID:28081181

  13. Aronia melanocarpa Extract Ameliorates Hepatic Lipid Metabolism through PPARγ2 Downregulation.

    PubMed

    Park, Chung-Hwa; Kim, Jung-Hee; Lee, Eun Byul; Hur, Wonhee; Kwon, Oh-Joo; Park, Hyoung-Jin; Yoon, Seung Kew

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. Studies have demonstrated that anthocyanin-rich foods may improve hyperlipidemia and ameliorate hepatic steatosis. Here, effects of Aronia melanocarpa (AM), known to be rich of anthocyanins, on hepatic lipid metabolism and adipogenic genes were determined. AM was treated to C57BL/6N mice fed with high fat diet (HFD) or to FL83B cells treated with free fatty acid (FFA). Changes in levels of lipids, enzymes and hormones were observed, and expressions of adipogenic genes involved in hepatic lipid metabolism were detected by PCR, Western blotting and luciferase assay. In mice, AM significantly reduced the body and liver weight, lipid accumulation in the liver, and levels of biochemical markers such as fatty acid synthase, hepatic triglyceride and leptin. Serum transaminases, indicators for hepatocyte injury, were also suppressed, while superoxide dismutase activity and liver antioxidant capacity were significantly increased. In FL83B cells, AM significantly reduced FFA-induced lipid droplet accumulation. Protein synthesis of an adipogenic transcription factor, peroxisome proliferator-activated receptor γ2 (PPARγ2) was inhibited in vivo. Furthermore, transcriptional activity of PPARγ2 was down-regulated in vitro, and mRNA expression of PPARγ2 and its downstream target genes, adipocyte protein 2 and lipoprotein lipase were down-regulated by AM both in vitro and in vivo. These results show beneficial effects of AM against hepatic lipid accumulation through the inhibition of PPARγ2 expression along with improvements in body weight, liver functions, lipid profiles and antioxidant capacity suggesting the potential therapeutic efficacy of AM on NAFLD.

  14. Intraspecific variation in nutrient reserve use during clutch formation by Lesser Scaup

    USGS Publications Warehouse

    Esler, Daniel N.; Grand, James B.; Afton, Alan D.

    2001-01-01

    We studied nutrient reserve dynamics of female Lesser Scaup (Aythya affinis) to identify sources of intraspecific variation in strategies of nutrient acquisition for meeting the high nutritional and energetic costs of egg formation. We collected data from interior Alaska and combined these with data for Lesser Scaup from midcontinent breeding areas (Afton and Ankney 1991), allowing a rangewide analysis for the species. We found little evidence that nutrient reserve use differed between Alaskan and midcontinent Lesser Scaup, except that subarctic birds used a small amount of protein reserves when forming eggs, whereas midcontinent birds did not. Mineral reserves contributed relatively little to the clutch, but endogenous lipid accounted for approximately two-thirds of the lipid in the clutch. Levels of endogenous lipid and protein at initiation of clutch formation declined with date of initiation. Also, absolute amounts of lipid and protein reserves used declined through the season, corresponding to smaller clutch sizes. Our data are consistent with a seasonally variable threshold of lipid reserves for initiation of clutch formation and considerable reliance on lipid reserves, suggestive of lipid control of productivity via effects on clutch size and initiation dates. However, our data cannot refute the hypothesis that clutch size or initiation dates are set by other factors that in turn dictate the amount of lipid reserves that are stored and used. Despite uncertainty regarding the role of nutrient limitations on productivity, maintenance of adequate food resources on winter, migration, and breeding areas should be a management concern, given the high costs of clutch formation by Lesser Scaup, evidence of recent population declines, and potential links between nutrition and productivity.

  15. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation

    PubMed Central

    Jang, Byung-Hyun; Chang, Seo-Hyuk; Yun, Ui Jeong; Park, Ki-Moon; Waki, Hironori; Li, Dean Y.; Tontonoz, Peter; Park, Kye Won

    2016-01-01

    Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes. PMID:27611793

  16. Treatment of rats with a self-selected hyperlipidic diet, increases the lipid content of the main adipose tissue sites in a proportion similar to that of the lipids in the rest of organs and tissues.

    PubMed

    Romero, María Del Mar; Roy, Stéphanie; Pouillot, Karl; Feito, Marisol; Esteve, Montserrat; Grasa, María Del Mar; Fernández-López, José-Antonio; Alemany, Marià; Remesar, Xavier

    2014-01-01

    Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1-1.4%, four white AT sites lipid 28-63% of body lipid, and the rest of the body (including muscle) 38-44%. There was a good correlation between AT lipid and body lipid, but lipid in "other organs" was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the "rest" of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed.

  17. Oxidized LDL lipids increase β-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation

    PubMed Central

    Dias, Irundika H.K.; Mistry, Jayna; Fell, Shaun; Reis, Ana; Spickett, Corinne M.; Polidori, Maria C.; Lip, Gregory Y.H.; Griffiths, Helen R.

    2014-01-01

    Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4 μg oxLDL and 25 µM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells. PMID:25048970

  18. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum.

    PubMed

    Barkla, Bronwyn J; Garibay-Hernández, Adriana; Melzer, Michael; Rupasinghe, Thusitha W T; Roessner, Ute

    2018-05-29

    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine (PC) and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and PLDδ, suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion. This article is protected by copyright. All rights reserved.

  19. Subchronic cadmium exposure upregulates the mRNA level of genes associated to hepatic lipid metabolism in adult female CD1 mice.

    PubMed

    Zhang, Jun; Wang, Yan; Fu, Lin; Feng, Yu-Jie; Ji, Yan-Li; Wang, Hua; Xu, De-Xiang

    2018-07-01

    Cadmium (Cd) is a persistent environmental and occupational contaminant that accumulates in humans and shows adverse effects on health. Accumulating evidence reveals that environmental Cd exposure is associated with hepatic lipid accumulation and metabolic alterations in adult male mice. However, whether Cd exposure induces hepatic lipid accumulation and metabolic alterations in female mice remains poorly understood. In the present study, we aimed to investigate the effects of Cd exposure on insulin resistance, hepatic lipid accumulation and associated metabolic pathways. Female CD1 mice were administrated with CdCl 2 (10 and 100 mg l -1 ) by drinking water. We found that Cd exposure did not induce obesity, insulin resistance and hepatic lipid accumulation. By contrary, mice in the Cd-100 mg l -1 group presented a significant reduction of the glucose area under the curve during the glucose tolerance test. However, there was a significant elevation in the mRNA level of Fasn and Scd-1, which were critical genes during hepatic fatty acid synthesis. Moreover, hepatic Fabp1 and Fabp4, two genes for hepatic fatty acid uptake were upregulated in Cd-treated mice. Of interest, Lpl, a key gene for hepatic lipoprotein lysis, was also upregulated in Cd-treated mice. Collectively, our results suggest that Cd exposure upregulated mRNA level of genes related to hepatic lipid metabolism although there was no insulin resistance and hepatic lipid accumulation shown in the present study. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Polymer lipids stabilize the ripple phase in lipid bilayers

    NASA Astrophysics Data System (ADS)

    Cunningham, Beth; Likar, Justin; Wolfe, David; Williams, W. Patrick

    2001-03-01

    We have recently discovered using X-ray diffraction that incorporating membrane lipids with covalently attached polymer headgroups leads to a marked stabilization of the ripple phase of dipalmitoyl phosphatidylcholine (DPPC). The ripple phase of DPPC is an undulated gel phase normally restricted to a temperature range 36 to 41^oC. In the presence of small amounts of dipalmitoyl phosphatidylethanolamine (DPPE) derivatives with polyethylene glycol (PEG) headgroups, the ripple phase is stable over a temperature range of a least 20 to 65^oC. We attribute this ability of the polymer lipid to stabilize the ripple phase to its tendency to accumulate in, and then stabilize, regions of high membrane curvature^1. 1. H.E. Warriner, P. Davidson, N.L. Slack, M. Schellhorn, P. Eiselt, S. H. J. Idziak, H.-W. Schmidt, and C.R. Safinya, J. Chem. Phys. (1997) 107, 3707-3722.

  1. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients

    PubMed Central

    Chiappini, Franck; Coilly, Audrey; Kadar, Hanane; Gual, Philippe; Tran, Albert; Desterke, Christophe; Samuel, Didier; Duclos-Vallée, Jean-Charles; Touboul, David; Bertrand-Michel, Justine; Brunelle, Alain; Guettier, Catherine; Le Naour, François

    2017-01-01

    Nonalcoholic steatohepatitis (NASH) is a condition which can progress to cirrhosis and hepatocellular carcinoma. Markers for NASH diagnosis are still lacking. We performed a comprehensive lipidomic analysis on human liver biopsies including normal liver, nonalcoholic fatty liver and NASH. Random forests-based machine learning approach allowed characterizing a signature of 32 lipids discriminating NASH with 100% sensitivity and specificity. Furthermore, we validated this signature in an independent group of NASH patients. Then, metabolism dysregulations were investigated in both patients and murine models. Alterations of elongase and desaturase activities were observed along the fatty acid synthesis pathway. The decreased activity of the desaturase FADS1 appeared as a bottleneck, leading upstream to an accumulation of fatty acids and downstream to a deficiency of long-chain fatty acids resulting to impaired phospholipid synthesis. In NASH, mass spectrometry imaging on tissue section revealed the spreading into the hepatic parenchyma of selectively accumulated fatty acids. Such lipids constituted a highly toxic mixture to human hepatocytes. In conclusion, this study characterized a specific and sensitive lipid signature of NASH and positioned FADS1 as a significant player in accumulating toxic lipids during NASH progression. PMID:28436449

  2. Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis.

    PubMed

    Forrellad, Marina Andrea; McNeil, Michael; Santangelo, María de la Paz; Blanco, Federico Carlos; García, Elizabeth; Klepp, Laura Inés; Huff, Jason; Niederweis, Michael; Jackson, Mary; Bigi, Fabiana

    2014-03-01

    Tuberculosis is one of the leading causes of mortality throughout the world. Mycobacterium tuberculosis, the causative agent of human tuberculosis, has developed several strategies involving proteins and other compounds known collectively as virulence factors to subvert human host defences and invade the human host. The Mce proteins are among these virulence-related proteins and are encoded by the mce1, mce2, mce3 and mce4 operons in the genome of M. tuberculosis. It has been proposed that these operons encode ABC-like lipid transporters; however, the nature of their substrates has only been revealed in the case of the Mce4 proteins. Here we found that the knockout of the mce1 operon alters the lipid profile of M. tuberculosis H37Rv and the uptake of palmitic acid. Thin layer chromatography and liquid chromatography-mass spectrometry analysis showed that the mce1 mutant accumulates more mycolic acids than the wild type and complemented strains. Interestingly, this accumulation of mycolic acid is exacerbated when bacteria are cultured in the presence of palmitic acid or arachidonic acid. These results suggest that the mce1 operon may serve as a mycolic acid re-importer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. DNA concentration modulation on supported lipid bilayers switched by surface acoustic waves.

    PubMed

    Hennig, Martin; Wolff, Manuel; Neumann, Jürgen; Wixforth, Achim; Schneider, Matthias F; Rädler, Joachim O

    2011-12-20

    Spatially addressable arrays of molecules embedded in or anchored to supported lipid bilayers are important for on-chip screening and binding assays; however, methods to sort or accumulate components in a fluid membrane on demand are still limited. Here we apply in-plane surface acoustic shear waves (SAWs) to laterally accumulate double-stranded DNA segments electrostatically bound to a cationic supported lipid bilayer. The fluorescently labeled DNA segments are found to segregate into stripe patterns with a spatial frequency corresponding to the periodicity of the standing SAW wave (~10 μm). The DNA molecules are accumulated 10-fold in the regions of SAW antinodes. The superposition of two orthogonal sets of SAW sources creates checkerboard like arrays of DNA demonstrating the potential to generate arrayed fields dynamically. The pattern relaxation time of 0.58 s, which is independent of the segment length, indicates a sorting and relaxation mechanism dominated by lipid diffusion rather than DNA self-diffusion. © 2011 American Chemical Society

  4. Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles.

    PubMed

    Zhao, Pengfei; Zheng, Mingbin; Yue, Caixia; Luo, Zhenyu; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Cai, Lintao

    2014-07-01

    A key challenge to strengthen anti-tumor efficacy is to improve drug accumulation in tumors through size control. To explore the biodistribution and tumor accumulation of nanoparticles, we developed indocyanine green (ICG) loaded poly (lactic-co-glycolic acid) (PLGA) -lecithin-polyethylene glycol (PEG) core-shell nanoparticles (INPs) with 39 nm, 68 nm and 116 nm via single-step nanoprecipitation. These INPs exhibited good monodispersity, excellent fluorescence and size stability, and enhanced temperature response after laser irradiation. Through cell uptake and photothermal efficiency in vitro, we demonstrated that 39 nm INPs were more easily be absorbed by pancreatic carcinoma tumor cells (BxPC-3) and showed better photothermal damage than that of 68 nm and 116 nm size of INPs. Simultaneously, the fluorescence of INPs offered a real-time imaging monitor for subcellular locating and in vivo metabolic distribution. Near-infrared imaging in vivo and photothermal therapy illustrated that 68 nm INPs showed the strongest efficiency to suppress tumor growth due to abundant accumulation in BxPC-3 xenograft tumor model. The findings revealed that a nontoxic, size-dependent, theranostic INPs model was built for in vivo cancer imaging and photothermal therapy without adverse effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A pneumocyte-macrophage paracrine lipid axis drives the lung toward fibrosis.

    PubMed

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Penn, Raymond B; Fessler, Michael B; Madenspacher, Jennifer; Stafstrom, William; Kavuru, Mani; Lu, Bo; Kallen, Caleb B; Walsh, Kenneth; Summer, Ross

    2015-07-01

    Lipid-laden macrophages, or "foam cells," are observed in the lungs of patients with fibrotic lung disease, but their contribution to disease pathogenesis remains unexplored. Here, we demonstrate that fibrosis induced by bleomycin, silica dust, or thoracic radiation promotes early and sustained accumulation of foam cells in the lung. In the bleomycin model, we show that foam cells arise from neighboring alveolar epithelial type II cells, which respond to injury by dumping lipids into the distal airspaces of the lungs. We demonstrate that oxidized phospholipids accumulate within alveolar macrophages (AMs) after bleomycin injury and that murine and human AMs treated with oxidized phosphatidylcholine (oxPc) become polarized along an M2 phenotype and display enhanced production of transforming growth factor-β1. The direct instillation of oxPc into the mouse lung induces foam cell formation and triggers a severe fibrotic reaction. Further, we show that reducing pulmonary lipid clearance by targeted deletion of the lipid efflux transporter ATP-binding cassette subfamily G member 1 increases foam cell formation and worsens lung fibrosis after bleomycin. Conversely, we found that treatment with granulocyte-macrophage colony-stimulating factor attenuates fibrotic responses, at least in part through its ability to decrease AM lipid accumulation. In summary, this work describes a novel mechanism leading to foam cell formation in the mouse lung and suggests that strategies aimed at blocking foam cell formation might be effective for treating fibrotic lung disorders.

  6. A Pneumocyte–Macrophage Paracrine Lipid Axis Drives the Lung toward Fibrosis

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Penn, Raymond B.; Fessler, Michael B.; Madenspacher, Jennifer; Stafstrom, William; Kavuru, Mani; Lu, Bo; Kallen, Caleb B.; Walsh, Kenneth

    2015-01-01

    Lipid-laden macrophages, or “foam cells,” are observed in the lungs of patients with fibrotic lung disease, but their contribution to disease pathogenesis remains unexplored. Here, we demonstrate that fibrosis induced by bleomycin, silica dust, or thoracic radiation promotes early and sustained accumulation of foam cells in the lung. In the bleomycin model, we show that foam cells arise from neighboring alveolar epithelial type II cells, which respond to injury by dumping lipids into the distal airspaces of the lungs. We demonstrate that oxidized phospholipids accumulate within alveolar macrophages (AMs) after bleomycin injury and that murine and human AMs treated with oxidized phosphatidylcholine (oxPc) become polarized along an M2 phenotype and display enhanced production of transforming growth factor-β1. The direct instillation of oxPc into the mouse lung induces foam cell formation and triggers a severe fibrotic reaction. Further, we show that reducing pulmonary lipid clearance by targeted deletion of the lipid efflux transporter ATP-binding cassette subfamily G member 1 increases foam cell formation and worsens lung fibrosis after bleomycin. Conversely, we found that treatment with granulocyte-macrophage colony-stimulating factor attenuates fibrotic responses, at least in part through its ability to decrease AM lipid accumulation. In summary, this work describes a novel mechanism leading to foam cell formation in the mouse lung and suggests that strategies aimed at blocking foam cell formation might be effective for treating fibrotic lung disorders. PMID:25409201

  7. Adipose triglyceride lipase acts on neutrophil lipid droplets to regulate substrate availability for lipid mediator synthesis.

    PubMed

    Schlager, Stefanie; Goeritzer, Madeleine; Jandl, Katharina; Frei, Robert; Vujic, Nemanja; Kolb, Dagmar; Strohmaier, Heimo; Dorow, Juliane; Eichmann, Thomas O; Rosenberger, Angelika; Wölfler, Albert; Lass, Achim; Kershaw, Erin E; Ceglarek, Uta; Dichlberger, Andrea; Heinemann, Akos; Kratky, Dagmar

    2015-11-01

    In humans, mutations in ATGL lead to TG accumulation in LDs of most tissues and cells, including peripheral blood leukocytes. This pathologic condition is called Jordans' anomaly, in which functional consequences have not been investigated. In the present study, we tested the hypothesis that ATGL plays a role in leukocyte LD metabolism and immune cell function. Similar to humans with loss-of-function mutations in ATGL, we found that global and myeloid-specific Atgl(-/-) mice exhibit Jordans' anomaly with increased abundance of intracellular TG-rich LDs in neutrophil granulocytes. In a model of inflammatory peritonitis, lipid accumulation was also observed in monocytes and macrophages but not in eosinophils or lymphocytes. Neutrophils from Atgl(-/-) mice showed enhanced immune responses in vitro, which were more prominent in cells from global compared with myeloid-specific Atgl(-/-) mice. Mechanistically, ATGL(-/-) as well as pharmacological inhibition of ATGL led to an impaired release of lipid mediators from neutrophils. These findings demonstrate that the release of lipid mediators is dependent on the liberation of precursor molecules from the TG-rich pool of LDs by ATGL. Our data provide mechanistic insights into Jordans' anomaly in neutrophils and suggest that ATGL is a potent regulator of immune cell function and inflammatory diseases. © The Author(s).

  8. Lipid reserve dynamics and magnification of persistent organic pollutants in spawning sockeye salmon (Oncorhynchus nerka) from the Fraser River, British Columbia.

    PubMed

    Kelly, Barry C; Gray, Samantha L; Ikonomou, Michael G; Macdonald, J Steve; Bandiera, Stelvio M; Hrycay, Eugene G

    2007-05-01

    Pacific sockeye salmon (Oncorhynchus nerka) can travel several hundred kilometers to reach native spawning grounds and fulfill semelparous reproduction. The dramatic changes in lipid reserves during upstream migration can greatly affect internal toxicokinetics of persistent organic pollutants (POPs) such as PCBs, PCDDs, and PCDFs. We measured lipid content changes and contaminant concentrations in tissues (liver, muscle, roe/gonads) and biomarker responses (ethoxyresorufin O-deethylase or EROD activity and CYP1A levels) in two Pacific sockeye salmon stocks sampled at several locations along their spawning migration in the Fraser River, British Columbia. Muscle lipid contents declined significantly with increasing upstream migration distance and corresponded to elevated lipid normalized concentrations of PCBs and PCDD/Fs in spawning sockeye. Post-migration magnification factors (MFs) in spawning sockeye ranged between 3 and 12 and were comparable to model-predicted MFs. sigmaPCBs(150-500 ng x g(-1) lipid), sigmaPCDD/Fs (1-1000 pg x g(-1) lipid) and 2,3,7,8-TCDD toxic equivalent or TEQ levels (0.1-15 pg x g(-1) lipid) in spawning sockeye were relatively low and did not affect hepatic EROD activity/CYP1A induction. Despite a 3-fold magnification, TEQ levels in eggs of spawning Fraser River sockeye did not exceed 0.3 pg x g(-1) wet wt, a threshold level associated with 30% egg mortality in salmonids. PCBs in Fraser River sockeye are comparable to previous levels in Pacific sockeye. In contrast to Pacific sockeye from more remote coastal locations, PCDDs and PCDFs in Fraser River sockeye were generally minor components (<25%) of TEQ levels, compared to dioxin like PCB contributions (>75%). The data suggest that (i) the Fraser River is not a major contamination source of PCBs or PCDD/Fs and (ii) marine contaminant distribution, food-chain dynamics, and ocean-migration pathway are likely important factors controlling levels and patterns of POPs in returning Pacific

  9. RKIP phosphorylation–dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahm, Jong Ryeal; Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27; Ahmed, Mahmoud

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 wasmore » highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases

  10. Inflammation-related alterations of lipids after spinal cord injury revealed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tamosaityte, Sandra; Galli, Roberta; Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Koch, Maria; Later, Robert; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald; Kirsch, Matthias

    2016-06-01

    Spinal cord injury (SCI) triggers several lipid alterations in nervous tissue. It is characterized by extensive demyelination and the inflammatory response leads to accumulation of activated microglia/macrophages, which often transform into foam cells by accumulation of lipid droplets after engulfment of the damaged myelin sheaths. Using an experimental rat model, Raman microspectroscopy was applied to retrieve the modifications of the lipid distribution following SCI. Coherent anti-Stokes Raman scattering (CARS) and endogenous two-photon fluorescence (TPEF) microscopies were used for the detection of lipid-laden inflammatory cells. The Raman mapping of CH2 deformation mode intensity at 1440 cm-1 retrieved the lipid-depleted injury core. Preserved white matter and inflammatory regions with myelin fragmentation and foam cells were localized by specifically addressing the distribution of esterified lipids, i.e., by mapping the intensity of the carbonyl Raman band at 1743 cm-1, and were in agreement with CARS/TPEF microscopy. Principal component analysis revealed that the inflammatory regions are notably rich in saturated fatty acids. Therefore, Raman spectroscopy enabled to specifically detect inflammation after SCI and myelin degradation products.

  11. Fungal fermentation on anaerobic digestate for lipid-based biofuel production.

    PubMed

    Zhong, Yuan; Liu, Zhiguo; Isaguirre, Christine; Liu, Yan; Liao, Wei

    2016-01-01

    Anaerobic digestate is the effluent from anaerobic digestion of organic wastes. It contains a significant amount of nutrients and lignocellulosic materials, even though anaerobic digestion consumed a large portion of organic matters in the wastes. Utilizing the nutrients and lignocellulosic materials in the digestate is critical to significantly improve efficiency of anaerobic digestion technology and generate value-added chemical and fuel products from the organic wastes. Therefore, this study focused on developing an integrated process that uses biogas energy to power fungal fermentation and converts remaining carbon sources, nutrients, and water in the digestate into biofuel precursor-lipid. The process contains two unit operations of anaerobic digestion and digestate utilization. The digestate utilization includes alkali treatment of the mixture feed of solid and liquid digestates, enzymatic hydrolysis for mono-sugar release, overliming detoxification, and fungal fermentation for lipid accumulation. The experimental results conclude that 5 h and 30 °C were the preferred conditions for the overliming detoxification regarding lipid accumulation of the following fungal cultivation. The repeated-batch fungal fermentation enhanced lipid accumulation, which led to a final lipid concentration of 3.16 g/L on the digestate with 10% dry matter. The mass and energy balance analysis further indicates that the digestate had enough water for the process uses and the biogas energy was able to balance the needs of individual unit operations. A fresh-water-free and energy-positive process of lipid production from anaerobic digestate was achieved by integrating anaerobic digestion and fungal fermentation. The integration addresses the issues that both biofuel industry and waste management encounter-high water and energy demand of biofuel precursor production and few digestate utilization approaches of organic waste treatment.

  12. Lipids of mitochondria.

    PubMed

    Horvath, Susanne E; Daum, Günther

    2013-10-01

    A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass

    DOE PAGES

    Zale, Janice; Jung, Je Hyeong; Kim, Jae Yoon; ...

    2015-06-08

    Elevating the lipid content in vegetative tissues has emerged as a new strategy for increasing energy density and biofuel yield of crops. Storage lipids in contrast to structural and signaling lipids are mainly composed of glycerol esters of fatty acids, also known as triacylglycerol (TAG). TAGs are one of the most energy-rich and abundant forms of reduced carbon available in nature. Therefore, altering the carbon-partitioning balance in favour of TAG in vegetative tissues of sugarcane, one of the highest yielding biomass crops, is expected to drastically increase energy yields. We report metabolic engineering to elevate TAG accumulation in vegetative tissuesmore » of sugarcane. Constitutive co-expression of WRINKLED1 (WRI1), diacylglycerol acyltransferase1-2 (DGAT1-2) and oleosin1 (OLE1) and simultaneous cosuppression of ADP-glucose pyrophosphorylase (AGPase) and a subunit of the peroxisomal ABC transporter1 (PXA1) in transgenic sugarcane elevated TAG accumulation in leaves or stems by 95- or 43-fold to 1.9% or 0.9% of dry weight (DW), respectively, while expression or suppression of one to three of the target genes increased TAG levels by 1.5- to 9.5-fold. Accumulation of TAG in vegetative progeny plants was consistent with the results from primary transgenics and contributed to a total fatty acid content of up to 4.7% or 1.7% of DW in mature leaves or stems, respectively. We saw lipid droplets in mesophyll cells of transgenic leaves by confocal fluorescence microscopy. These results provide the basis for optimizations of TAG accumulation in sugarcane and other high yielding biomass grasses and will open new prospects for biofuel applications.« less

  14. Lipid-induced metabolic dysfunction in skeletal muscle.

    PubMed

    Muoio, Deborah M; Koves, Timothy R

    2007-01-01

    Insulin resistance is a hallmark of type 2 diabetes and commonly observed in other energy-stressed settings such as obesity, starvation, inactivity and ageing. Dyslipidaemia and 'lipotoxicity'--tissue accumulation of lipid metabolites-are increasingly recognized as important drivers of insulin resistant states. Mounting evidence suggests that lipid-induced metabolic dysfunction in skeletal muscle is mediated in large part by stress-activated serine kinases that interfere with insulin signal transduction. However, the metabolic and molecular events that connect lipid oversupply to stress kinase activation and glucose intolerance are as yet unclear. Application of transcriptomics and targeted mass spectrometry-based metabolomics tools has led to our finding that insulin resistance is a condition in which muscle mitochondria are persistently burdened with a heavy lipid load. As a result, high rates of beta-oxidation outpace metabolic flux through the TCA cycle, leading to accumulation of incompletely oxidized acyl-carnitine intermediates. In contrast, exercise training enhances mitochondrial performance, favouring tighter coupling between beta-oxidation and the TCA cycle, and concomitantly restores insulin sensitivity in animals fed a chronic high fat diet. The exercise-activated transcriptional co-activator, PGC1alpha, plays a key role in co-ordinating metabolic flux through these two intersecting metabolic pathways, and its suppression by overfeeding may contribute to obesity-associated mitochondrial dysfunction. Our emerging model predicts that muscle insulin resistance arises from mitochondrial lipid stress and a resultant disconnect between beta-oxidation and TCA cycle activity. Understanding this 'disconnect' and its molecular basis may lead to new therapeutic targets for combating metabolic disease.

  15. Comparative Proteome Analysis between High Lipid-Producing Strain Mucor circinelloides WJ11 and Low Lipid-Producing Strain CBS 277.49.

    PubMed

    Tang, Xin; Chen, Haiqin; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Song, Yuanda; Chen, Wei

    2017-06-21

    Mucor circinelloides is one of few oleaginous fungi that produces a useful oil rich in γ-linolenic acid, but it usually only produces <25% total lipid. Nevertheless, we isolated a new strain WJ11 that can produce up to 36% lipid of cell dry weight. In this study, we have systematically analyzed the global changes in protein levels between the high lipid-producing strain WJ11 and the low lipid-producing strain CBS 277.49 (15%, lipid/cell dry weight) at lipid accumulation phase through comparative proteome analysis. Proteome analysis demonstrated that the branched-chain amino acid and lysine metabolism, glycolytic pathway, and pentose phosphate pathway in WJ11 were up-regulated, while the activities of tricarboxylic acid cycle and branch point enzyme for synthesis of isoprenoids were retarded compared with CBS 277.49. The coordinated regulation at proteome level indicate that more acetyl-CoA and NADPH are provided for fatty acid biosynthesis in WJ11 compared with CBS 277.49.

  16. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research

    PubMed Central

    2014-01-01

    Microalgae cells have the potential to rapidly accumulate lipids, such as triacylglycerides that contain fatty acids important for high value fatty acids (e.g., EPA and DHA) and/or biodiesel production. However, lipid extraction methods for microalgae cells are not well established, and there is currently no standard extraction method for the determination of the fatty acid content of microalgae. This has caused a few problems in microlagal biofuel research due to the bias derived from different extraction methods. Therefore, this study used several extraction methods for fatty acid analysis on marine microalga Tetraselmis sp. M8, aiming to assess the potential impact of different extractions on current microalgal lipid research. These methods included classical Bligh & Dyer lipid extraction, two other chemical extractions using different solvents and sonication, direct saponification and supercritical CO2 extraction. Soxhlet-based extraction was used to weigh out the importance of solvent polarity in the algal oil extraction. Coupled with GC/MS, a Thermogravimetric Analyser was used to improve the quantification of microalgal lipid extractions. Among these extractions, significant differences were observed in both, extract yield and fatty acid composition. The supercritical extraction technique stood out most for effective extraction of microalgal lipids, especially for long chain unsaturated fatty acids. The results highlight the necessity for comparative analyses of microalgae fatty acids and careful choice and validation of analytical methodology in microalgal lipid research. PMID:24456581

  17. PCB and OCP accumulation and evidence of hepatic alteration in the Atlantic bluefin tuna, T. thynnus, from the Mediterranean Sea.

    PubMed

    Maisano, Maria; Cappello, Tiziana; Oliva, Sabrina; Natalotto, Antonino; Giannetto, Alessia; Parrino, Vincenzo; Battaglia, Pietro; Romeo, Teresa; Salvo, Andrea; Spanò, Nunziacarla; Mauceri, Angela

    2016-10-01

    Persistent organic pollutants (POPs) are known to act as "obesogens", being fat-soluble and affecting lipid metabolism. The Atlantic bluefin tuna, Thunnus thynnus, are top pelagic predators prone to bioaccumulate and biomagnify environmental contaminants. This study aimed at evaluating POPs-induced ectopic lipid accumulation in liver of adult tuna from the Mediterranean Sea. PCBs and organochlorine pesticides were measured in tuna liver, and marked morphological changes observed, namely poorly compacted tissues, intense vacuolization, erythrocyte infiltration and presence of melanomacrophages. The expression of perilipin, a lipid-droplet marker, positively correlated with the gene expression of PPARγ, a master regulator of adipogenesis, and its heterodimeric partner, RXRα. Changes in metabolites involved in fatty acid biosynthesis and ketogenesis were also observed. Although male bluefin tuna appeared to be more sensitive than females to the adverse effects of environmental obesogens, the alterations observed in tuna liver of both sexes suggest a potential onset of hepatic steatosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Describing the Diapause-Preparatory Proteome of the Beetle Colaphellus bowringi and Identifying Candidates Affecting Lipid Accumulation Using Isobaric Tags for Mass Spectrometry-Based Proteome Quantification (iTRAQ)

    PubMed Central

    Tan, Qian-Qian; Liu, Wen; Zhu, Fen; Lei, Chao-Liang; Hahn, Daniel A.; Wang, Xiao-Ping

    2017-01-01

    Prior to entering diapause, insects must prepare themselves physiologically to withstand the stresses of arresting their development for a lengthy period. While studies describing the biochemical and cellular milieu of the maintenance phase of diapause are accumulating, few studies have taken an “omics” approach to describing molecular events during the diapause preparatory phase. We used isobaric tags and mass spectrometry (iTRAQ) to quantitatively compare the expression profiles of proteins identified during the onset of diapause preparation phase in the heads of adult female cabbage beetles, Colaphellus bowringi. A total of 3,175 proteins were identified, 297 of which were differentially expressed between diapause-destined and non-diapause-destined female adults and could therefore be involved in diapause preparation in this species. Comparison of identified proteins with protein function databases shows that many of these differentially expressed proteins enhanced in diapause destined beetles are involved in energy production and conversion, carbohydrate metabolism and transport, and lipid metabolism. Further hand annotation of differentially abundant peptides nominates several associated with stress hardiness, including HSPs and antioxidants, as well as neural development. In contrast, non-diapause destined beetles show substantial increases in cuticle proteins, suggesting additional post-emergence growth. Using RNA interference to silence a fatty acid-binding protein (FABP) that was highly abundant in the head of diapause-destined females prevented the accumulation of lipids in the fat body, a common product of diapause preparation in this species and others. Surprisingly, RNAi against the FABP also affected the transcript abundance of several heat shock proteins. These results suggest that the identified differentially expressed proteins that play vital roles in lipid metabolism may also contribute somehow to enhanced hardiness to environmental stress

  19. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    PubMed

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  20. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  1. Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp. MM3.

    PubMed

    Ganeshkumar, Vimalkumar; Subashchandrabose, Suresh R; Dharmarajan, Rajarathnam; Venkateswarlu, Kadiyala; Naidu, Ravi; Megharaj, Mallavarapu

    2018-05-01

    The larger-scale generation of piggery and winery wastewaters and consequent eutrophication are quite alarming, necessitating the use of a cost-effective treatment. This study attempted to remediate wastewaters from piggery and winery mixed in the ratios of 20:80, 50:50, 80:20, 100:0 and 0:100, in terms of nutrient removal and subsequent lipid accumulation by soil microalga, Chlorella sp. MM3. The per cent removal of total nitrogen and phosphates by the alga from mixed wastewaters within 10-days ranged between 51 and 89 and 26-49, respectively. As determined by FTIR spectroscopy, the lipid accumulation in the microalgal cells grown in wastewater mixtures ranged between 29 and 51%. Our results suggest that Chlorella sp. MM3 could be a potential candidate for bioremediation of wastewaters derived from piggery farm and winery industry, and that mixing of these wastewaters in 20:80 ratio would be an efficient approach for phycoremediation of mineral-rich effluents and subsequent yield of fairly good amounts of biofuel. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Senp2 regulates adipose lipid storage by de-SUMOylation of Setdb1.

    PubMed

    Zheng, Quan; Cao, Ying; Chen, Yalan; Wang, Jiqiu; Fan, Qiuju; Huang, Xian; Wang, Yiping; Wang, Tianshi; Wang, Xiuzhi; Ma, Jiao; Cheng, Jinke

    2018-06-01

    One major function of adipocytes is to store excess energy in the form of triglycerides. Insufficient adipose lipid storage is associated with many pathological conditions including hyperlipidemia, insulin resistance, and type 2 diabetes. In this study, we observed the overexpression of SUMO-specific protease 2 (Senp2) in adipose tissues during obesity. Adipocyte Senp2 deficiency resulted in less adipose lipid storage accompanied by an ectopic fat accumulation and insulin resistance under high-fat diet feeding. We further found that SET domain bifurcated 1 (Setdb1) was a SUMOylated protein and that SUMOylation promoted Setdb1 occupancy on the promoter locus of Pparg and Cebpa genes to suppress their expressions by H3K9me3. Senp2 could suppress Setdb1 function by de-SUMOylation. In adipocyte Senp2-deficiency mice, accumulation of the SUMOylated Setdb1 suppressed the expression of Pparg and Cebpa genes as well as lipid metabolism-related target genes, which would decrease the ability of lipid storage in adipocytes. These results revealed the crucial role of Senp2-Setdb1 axis in controlling adipose lipid storage.

  3. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.

    PubMed

    Kis, Viktor; Barti, Benjámin; Lippai, Mónika; Sass, Miklós

    2015-01-01

    Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain's LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain.

  4. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy.

    PubMed

    Jaffrès, Paul-Alain; Gajate, Consuelo; Bouchet, Ana Maria; Couthon-Gourvès, Hélène; Chantôme, Aurélie; Potier-Cartereau, Marie; Besson, Pierre; Bougnoux, Philippe; Mollinedo, Faustino; Vandier, Christophe

    2016-09-01

    Synthetic alkyl lipids, such as the ether lipids edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) and ohmline (1-O-hexadecyl-2-O-methyl-rac-glycero-3-β-lactose), are forming a class of antitumor agents that target cell membranes to induce apoptosis and to decrease cell migration/invasion, leading to the inhibition of tumor and metastasis development. In this review, we present the structure-activity relationship of edelfosine and ohmline, and we point out differences and similarities between these two amphiphilic compounds. We also discuss the mechanisms of action of these synthetic alkyl ether lipids (involving, among other structures and molecules, membrane domains, Fas/CD95 death receptor signaling, and ion channels), and highlight a key role for lipid rafts in the underlying process. The reorganization of lipid raft membrane domains induced by these alkyl lipids affects the function of death receptors and ion channels, thus leading to apoptosis and/or inhibition of cancer cell migration. The possible therapeutic use of these alkyl lipids and the clinical perspectives for these lipids in prevention or/and treatment of tumor development and metastasis are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Vinpocetine Attenuates Lipid Accumulation and Atherosclerosis Formation

    PubMed Central

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-01-01

    Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis PMID:23583194

  6. Elastin aging and lipid oxidation products in human aorta.

    PubMed

    Zarkovic, Kamelija; Larroque-Cardoso, Pauline; Pucelle, Mélanie; Salvayre, Robert; Waeg, Georg; Nègre-Salvayre, Anne; Zarkovic, Neven

    2015-01-01

    Vascular aging is associated with structural and functional modifications of the arteries, and by an increase in arterial wall thickening in the intima and the media, mainly resulting from structural modifications of the extracellular matrix (ECM) components. Among the factors known to accumulate with aging, advanced lipid peroxidation end products (ALEs) are a hallmark of oxidative stress-associated diseases such as atherosclerosis. Aldehydes generated from the peroxidation of polyunsaturated fatty acids (PUFA), (4-hydroxynonenal, malondialdehyde, acrolein), form adducts on cellular proteins, leading to a progressive protein dysfunction with consequences in the pathophysiology of vascular aging. The contribution of these aldehydes to ECM modification is not known. This study was carried out to investigate whether aldehyde-adducts are detected in the intima and media in human aorta, whether their level is increased in vascular aging, and whether elastin fibers are a target of aldehyde-adduct formation. Immunohistological and confocal immunofluorescence studies indicate that 4-HNE-histidine-adducts accumulate in an age-related manner in the intima, media and adventitia layers of human aortas, and are mainly expressed in smooth muscle cells. In contrast, even if the structure of elastin fiber is strongly altered in the aged vessels, our results show that elastin is not or very poorly modified by 4-HNE. These data indicate a complex role for lipid peroxidation and in particular for 4-HNE in elastin homeostasis, in the vascular wall remodeling during aging and atherosclerosis development. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Arabidopsis SEIPIN proteins modulate triacylglycerol accumulation and influence lipid droplet proliferation

    USDA-ARS?s Scientific Manuscript database

    The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. By contrast to the single SEIPIN genes in humans and yeast, there are three SEIPIN homologues in Arabidopsis thaliana, designated At-SEIPIN1, At-SEIPIN2 and At-SEIPIN3. Here, a yeast (Saccharomy...

  8. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.

    PubMed

    James, Antoni W; Nachiappan, Vasanthi

    2014-01-01

    In the current study, when phosphate transporters pho88 and pho86 were knocked out they resulted in significant accumulation (84% and 43%) of triacylglycerol (TAG) during phosphate starvation. However in the presence of phosphate, TAG accumulation was only around 45% in both pho88 and pho86 mutant cells. These observations were confirmed by radio-labeling, fluorescent microscope and RT-PCR studies. The TAG synthesizing genes encoding for acyltransferases namely LRO1 and DGA1 were up regulated. This is the first report for accumulation of TAG in pho88Δ and pho86Δ cells under phosphate starvation conditions. Copyright © 2013. Published by Elsevier Ltd.

  9. Lyso-DGTS lipid isolated from microalgae enhances PON1 activities in vitro and in vivo, increases PON1 penetration into macrophages and decreases cellular lipid accumulation.

    PubMed

    Dahli, Loureen; Atrahimovich, Dana; Vaya, Jacob; Khatib, Soliman

    2018-04-16

    High-density lipoprotein (HDL) plays an important role in preventing atherosclerosis. The antioxidant effect of HDL is mostly associated with paraoxonase 1 (PON1) activity. Increasing PON1 activity using nutrients might improve HDL function and quality and thus, decrease atherosclerotic risk. We previously isolated and identified a novel active compound, lyso-DGTS (C20:5,0) from Nannochloropsis sp. ethanol extract. In the present study, its effect on PON1 activities was examined and the mechanism by which the compound affects PON1 activity was explored. Lyso-DGTS elevated recombinant PON1 (rePON1) lactonase and esterase activities in a dose- and time-responsive manner, and further stabilized and preserved rePON1 lactonase activity. Incubation of lyso-DGTS with human serum for 4 h at 37°C also increased PON1 lactonase activity in a dose-responsive manner. Using tryptophan-fluorescence-quenching assay, lyso-DGTS was found to interact with rePON1 spontaneously with negative free energy (ΔG = -22.87 kJ mol -1 at 25°C). Thermodynamic parameters and molecular modeling calculations showed that the main interaction of lyso-DGTS with the enzyme is through a hydrogen bond with supporting van der Waals interactions. Furthermore, lyso-DGTS significantly increased rePON1 influx into macrophages and prevented lipid accumulation in macrophages stimulated with oxidized low-density lipid dose-dependently. In vivo supplementation of lyso-DGTS to the circulation of mice fed a high-fat diet via osmotic mini-pumps implanted subcutaneously significantly increased serum PON1 lactonase activity and decreased serum glucose concentrations to the level of mice fed a normal diet. Our findings suggest a beneficial effect of lyso-DGTS on increasing PON1 activity and thus, improving HDL quality and atherosclerotic risk factors. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  10. Associação entre lipid accumulation product (LAP) e hirsutismo na síndrome do ovário policístico.

    PubMed

    de Oliveira, Flávia Ribeiro; Rezende, Mariana Bicalho; Faria, Nícolas Figueiredo; Dias, Tomás Ribeiro Gonçalves; de Oliveira, Walter Carlos Santos; Rocha, Ana Luiza Lunardi; Cândido, Ana Lúcia

    2016-02-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine metabolic disorder in women between menarche and menopause. Clinical hyperandrogenism is the most important diagnostic criterion of the syndrome, which manifests as hirsutism in 70% of cases. Hirsute carriers of PCOS have high cardiovascular risk. Lipid accumulation product (LAP) is an index for the evaluation of lipid accumulation in adults and the prediction of cardiovascular risk. The aim of this study was to evaluate the association between LAP and hirsutism in women with PCOS. This was a cross-sectional observational study of a secondary database, which included 263 patients who had visited the Hyperandrogenism Outpatient Clinic from November 2009 to July 2014. The exclusion criteria were patients without Ferriman-Gallwey index (FGI) and/or LAP data. We used the Rotterdam criteria for the diagnosis of PCOS. All patients underwent medical assessment followed by measurement and recording of anthropometric data and the laboratory tests for measurement of the following: thyroid-stimulating hormone, follicle-stimulating hormone, prolactin, total testosterone, sex hormone binding globulin, 17-α-hydroxyprogesterone (follicular phase), glycohemoglobin A1c, and basal insulin. In addition, the subjects underwent lipid profiling and oral glucose tolerance tests. Other laboratory measurements were determined according to clinical criteria. LAP and the homeostatic model assessment index (HOMA-IR) were calculated using the data obtained. We divided patients into two groups: the PCOS group with normal LAP (< 34.5) and the PCOS group with altered LAP (> 34.5) to compare the occurrence of hirsutism. For statistical analysis, we used SPSS Statistics for Windows® and Microsoft Excel programs, with descriptive (frequencies, percentages, means, and standard deviations) and comparative analyses (Student's t-test and Chi-square test). We considered relations significant when the p-value was ≤ 0.05. LAP was high in

  11. Collagen incorporation within electrospun conduits reduces lipid oxidation and impacts conduit mechanics.

    PubMed

    Birthare, Karamveer; Shojaee, Mozhgan; Jones, Carlos Gross; Brenner, James R; Bashur, Chris A

    2016-04-21

    Modulating the host response, including the accumulation of oxidized lipid species, is important for improving tissue engineered vascular graft (TEVG) viability. Accumulation of oxidized lipids promotes smooth muscle cell (SMC) hyper-proliferation and inhibits endothelial cell migration, which can lead to several of the current challenges for small-diameter TEVGs. Generating biomaterials that reduce lipid oxidation is important for graft survival and this assessment can provide a reliable correlation to clinical situations. In this study, we determined the collagen to poly(ε-caprolactone) (PCL) ratio required to limit the production of pro-inflammatory species, while maintaining the required mechanical strength for the graft. Electrospun conduits were prepared from 0%, 10%, and 25% blends of collagen/PCL (w/w) and implanted in the rat peritoneal cavity for four weeks. The results showed that adding collagen to the PCL conduits reduced the accumulation of oxidized lipid species within the implanted conduits. In addition, the ratio of collagen had a significant impact on the recruited cell phenotype and construct mechanics. All conduits exhibited greater than 44% yield strain and sufficient tensile strength post-implantation. In conclusion, these results demonstrate that incorporating collagen into synthetic electrospun scaffolds, both 10% and 25% blend conditions, appears to limit the pro-inflammatory characteristics after in vivo implantation.

  12. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis.

    PubMed

    Sarma, Siddhartha Mahadeva; Singh, Dhirendra Pratap; Singh, Paramdeep; Khare, Pragyanshu; Mangal, Priyanka; Singh, Shashank; Bijalwan, Vandana; Kaur, Jaspreet; Mantri, Shrikant; Boparai, Ravneet Kaur; Mazumder, Koushik; Bishnoi, Mahendra; Bhutani, Kamlesh Kumar; Kondepudi, Kanthi Kiran

    2018-01-01

    Arabinoxylan (AX), a non-starch polysaccharide extracted from cereals such as wheat, rice and millets, is known to impart various health promoting effects. Our earlier study suggested that finger millet (FM) could ameliorate high fat diet (HFD)-induced metabolic derangements. The present study is aimed to evaluate the effect of FM-AX supplementation, a key bioactive from finger millet, on HFD-induced metabolic and gut bacterial derangements. Male Swiss albino mice were fed with normal chow diet (NPD) or HFD (60%kcal from fat) for 10 weeks. FM-AX was orally supplemented at doses of 0.5 and 1.0g/kg bodyweight on every alternate day for 10 weeks. Glucose tolerance, serum hormones, hepatic lipid accumulation and inflammation, white adipose tissue marker gene expression, adipocyte size and inflammation; metagenomic alterations in cecal bacteria; cecal short chain fatty acids and colonic tight junction gene expressions were studied. FM-AX supplementation prevented HFD-induced weight gain, alerted glucose tolerance and serum lipid profile, hepatic lipid accumulation and inflammation. Hepatic and white adipose tissue gene expressions were beneficially modulated. Further, AX supplementation prevented metagenomic alterations in cecum; improved ileal and colonic health and overall prevented metabolic endotoxemia. Present work suggests that AX from finger millet can be developed as a nutraceutical for the management of HFD- induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Clofazimine Modulates the Expression of Lipid Metabolism Proteins in Mycobacterium leprae-Infected Macrophages

    PubMed Central

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine. PMID:23236531

  14. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages.

    PubMed

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine.

  15. Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids.

    PubMed

    Zhang, Chaolei; Shen, Hongwei; Zhang, Xibin; Yu, Xue; Wang, Han; Xiao, Shan; Wang, Jihui; Zhao, Zongbao K

    2016-10-01

    To improve production of lipids and carotenoids by the oleaginous yeast Rhodosporidium toruloides by screening mutant strains. Upon physical mutagenesis of the haploid strain R. toruloides np11 with an atmospheric and room temperature plasma method followed by chemical mutagenesis with nitrosoguanidine, a mutant strain, R. toruloides XR-2, formed dark-red colonies on a screening plate. When cultivated in nitrogen-limited media, XR-2 cells grew slower but accumulated 0.23 g lipids/g cell dry wt and 0.75 mg carotenoids/g CDW. To improve its production capacity, different amino acids and vitamins were supplemented. p-Aminobenzoic acid and tryptophan had beneficial effects on cell growth. When cultivated in nitrogen-limited media in the presence of selected vitamins, XR-2 accumulated 0.41 g lipids/g CDW and 0.69 mg carotenoids/g CDW. A mutant R. toruloides strain with improved production profiles for lipids and carotenoids was obtained, indicating its potential to use combined mutagenesis for a more productive phenotype.

  16. Bioactive lipids in osteoarthritis: risk or benefit?

    PubMed

    Ioan-Facsinay, Andreea; Kloppenburg, Margreet

    2018-01-01

    Lipids are bioactive molecules that can affect several biological functions. Technological developments allowing identification of novel lipid species and the study of their function have led to a significant advance in our understanding of lipid biology and their involvement in various diseases. This is particularly relevant for diseases associated with obesity in which lipid accumulation could be involved in pathogenesis. Here, we focus on osteoarthritis, a chronic joint disease aggravated by obesity, and will present the latest findings regarding the involvement of lipids in disease development and progression. Recent studies indicate a possible involvement of n-3 poly-unsaturated fatty acid and their anti-inflammatory and proresolving derivatives in osteoarthritis. These lipids were identified in the osteoarthritis joint, were found to have beneficial effects on cartilage in vitro and reduced pain in humans and animal models. Moreover, increased levels of cholesterol transport molecules, such as LDL particles, were recently associated with a higher risk of developing hand osteoarthritis in women and with more severe inflammation and osteophyte formation in osteoarthritis animal models. Together, these findings indicate that lipids are a promising target for future therapeutic intervention in osteoarthritis and open exciting possibilities for future research.

  17. Using fluorescent lipids in live zebrafish larvae: From imaging whole animal physiology to subcellular lipid trafficking.

    PubMed

    Anderson, J L; Carten, J D; Farber, S A

    2016-01-01

    Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review commercially available fluorescent lipids that can be deployed in live zebrafish to better understand lipid signaling and metabolism. In this chapter, we present criteria one should consider when selecting specific fluorescent lipids for the study of digestive physiology or lipid metabolism in larval zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration.

    PubMed

    Branchu, Julien; Boutry, Maxime; Sourd, Laura; Depp, Marine; Leone, Céline; Corriger, Alexandrine; Vallucci, Maeva; Esteves, Typhaine; Matusiak, Raphaël; Dumont, Magali; Muriel, Marie-Paule; Santorelli, Filippo M; Brice, Alexis; El Hachimi, Khalid Hamid; Stevanin, Giovanni; Darios, Frédéric

    2017-06-01

    Mutations in SPG11 account for the most common form of autosomal recessive hereditary spastic paraplegia (HSP), characterized by a gait disorder associated with various brain alterations. Mutations in the same gene are also responsible for rare forms of Charcot-Marie-Tooth (CMT) disease and progressive juvenile-onset amyotrophic lateral sclerosis (ALS). To elucidate the physiopathological mechanisms underlying these human pathologies, we disrupted the Spg11 gene in mice by inserting stop codons in exon 32, mimicking the most frequent mutations found in patients. The Spg11 knockout mouse developed early-onset motor impairment and cognitive deficits. These behavioral deficits were associated with progressive brain atrophy with the loss of neurons in the primary motor cortex, cerebellum and hippocampus, as well as with accumulation of dystrophic axons in the corticospinal tract. Spinal motor neurons also degenerated and this was accompanied by fragmentation of neuromuscular junctions and muscle atrophy. This new Spg11 knockout mouse therefore recapitulates the full range of symptoms associated with SPG11 mutations observed in HSP, ALS and CMT patients. Examination of the cellular alterations observed in this model suggests that the loss of spatacsin leads to the accumulation of lipids in lysosomes by perturbing their clearance from these organelles. Altogether, our results link lysosomal dysfunction and lipid metabolism to neurodegeneration and pinpoint a critical role of spatacsin in lipid turnover. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Light Remodels Lipid Biosynthesis in Nannochloropsis gaditana by Modulating Carbon Partitioning between Organelles1[OPEN

    PubMed Central

    Vitulo, Nicola; Diretto, Gianfranco; Block, Maryse; Jouhet, Juliette; Meneghesso, Andrea; Valle, Giorgio; Giuliano, Giovanni; Maréchal, Eric

    2016-01-01

    The seawater microalga Nannochloropsis gaditana is capable of accumulating a large fraction of reduced carbon as lipids. To clarify the molecular bases of this metabolic feature, we investigated light-driven lipid biosynthesis in Nannochloropsis gaditana cultures combining the analysis of photosynthetic functionality with transcriptomic, lipidomic and metabolomic approaches. Light-dependent alterations are observed in amino acid, isoprenoid, nucleic acid, and vitamin biosynthesis, suggesting a deep remodeling in the microalgal metabolism triggered by photoadaptation. In particular, high light intensity is shown to affect lipid biosynthesis, inducing the accumulation of diacylglyceryl-N,N,N-trimethylhomo-Ser and triacylglycerols, together with the up-regulation of genes involved in their biosynthesis. Chloroplast polar lipids are instead decreased. This situation correlates with the induction of genes coding for a putative cytosolic fatty acid synthase of type 1 (FAS1) and polyketide synthase (PKS) and the down-regulation of the chloroplast fatty acid synthase of type 2 (FAS2). Lipid accumulation is accompanied by the regulation of triose phosphate/inorganic phosphate transport across the chloroplast membranes, tuning the carbon metabolic allocation between cell compartments, favoring the cytoplasm, mitochondrion, and endoplasmic reticulum at the expense of the chloroplast. These results highlight the high flexibility of lipid biosynthesis in N. gaditana and lay the foundations for a hypothetical mechanism of regulation of primary carbon partitioning by controlling metabolite allocation at the subcellular level. PMID:27325666

  20. Accumulation, elimination and neuro-oxidative damage under lanthanum exposure in glass eels (Anguilla anguilla).

    PubMed

    Figueiredo, Cátia; Grilo, Tiago F; Lopes, Clara; Brito, Pedro; Diniz, Mário; Caetano, Miguel; Rosa, Rui; Raimundo, Joana

    2018-05-07

    Rare earth elements (REEs) comprise elements from lanthanum to lutetium that together with yttrium and scandium are emergent contaminants of critical importance for numerous groundbreaking environmental technologies. Transfer to aquatic ecosystems is expected to increase, however, little information is known about their potential impacts in marine biota. Considering the endangered conservation status of the European eel (Anguilla anguilla) and the vulnerability of early fish life stages to contaminants, we exposed glass eels, through water, to an environmentally relevant concentration (120 ng.L - 1 ) of lanthanum (La) for 7 days (plus 7 days of depuration). The aim was to study the accumulation and elimination of La in eel's body and subsequent quantification of acetylcholinesterase (AchE), lipid peroxidation and antioxidant enzymatic machinery. Accumulation peaked after 72 h-exposure to La, decreasing afterwards, even in continuous exposure. Accumulation was higher in the viscera, followed by the skinless body and ultimately in the head, possibly as a protective mechanism to cope with La neurotoxicity. A significant increase in AChE activity was observed in La-exposed glass eels, suggesting that La 3+ may inhibit the binding of acetylcholine. A depression in lipid peroxidation was registered under La exposure, possibly indicating that La 3+ may play physiological activities and functions as a free radical scavenger. Catalase activity was significantly inhibited in La-exposed glass eels after 72 h, indicating that the availability of La may induce physiological impairment. The quantification of Glutathione S-Transferase activity revealed no differences between control and La-exposed organisms. Further investigation is needed towards understanding the biological effects of REEs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Intramyocellular Lipid Droplet Size Rather Than Total Lipid Content is Related to Insulin Sensitivity After 8 Weeks of Overfeeding.

    PubMed

    Covington, Jeffrey D; Johannsen, Darcy L; Coen, Paul M; Burk, David H; Obanda, Diana N; Ebenezer, Philip J; Tam, Charmaine S; Goodpaster, Bret H; Ravussin, Eric; Bajpeyi, Sudip

    2017-12-01

    Intramyocellular lipid (IMCL) is inversely related to insulin sensitivity in sedentary populations, yet no prospective studies in humans have examined IMCL accumulation with overfeeding. Twenty-nine males were overfed a high-fat diet (140% caloric intake, 44% from fat) for 8 weeks. Measures of IMCL, whole-body fat oxidation from a 24-hour metabolic chamber, muscle protein extracts, and muscle ceramide measures were obtained before and after the intervention. Eight weeks of overfeeding did not increase overall IMCL. The content of smaller lipid droplets peripherally located in the myofiber decreased, while increases in larger droplets correlated inversely with glucose disposal rate. Overfeeding resulted in inhibition of Akt activity, which correlated with the reductions in smaller, peripherally located lipid droplets and drastic increases in ceramide content. Additionally, peripherally located lipid droplets were associated with more efficient lipid oxidation. Finally, participants who maintained a greater number of smaller, peripherally located lipid droplets displayed a better resistance to weight gain with overfeeding. These results show that lipid droplet size and location rather than mere IMCL content are important to understanding insulin sensitivity. © 2017 The Obesity Society.

  2. The effect of myostatin on proliferation and lipid accumulation in 3T3-L1 preadipocytes.

    PubMed

    Zhu, Hui Juan; Pan, Hui; Zhang, Xu Zhe; Li, Nai Shi; Wang, Lin Jie; Yang, Hong Bo; Gong, Feng Ying

    2015-06-01

    Myostatin is a critical negative regulator of skeletal muscle development, and has been reported to be involved in the progression of obesity and diabetes. In the present study, we explored the effects of myostatin on the proliferation and differentiation of 3T3-L1 preadipocytes by using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide spectrophotometry, intracellular triglyceride (TG) assays, and real-time quantitative RT-PCR methods. The results indicated that recombinant myostatin significantly promoted the proliferation of 3T3-L1 preadipocytes and the expression of proliferation-related genes, including Cyclin B2, Cyclin D1, Cyclin E1, Pcna, and c-Myc, and IGF1 levels in the medium of 3T3-L1 were notably upregulated by 35.2, 30.5, 20.5, 33.4, 51.2, and 179% respectively (all P<0.01) in myostatin-treated 3T3-L1 cells. Meanwhile, the intracellular lipid content of myostatin-treated cells was notably reduced as compared with the non-treated cells. Additionally, the mRNA levels of Pparγ, Cebpα, Gpdh, Dgat, Acs1, Atgl, and Hsl were significantly downregulated by 22-76% in fully differentiated myostatin-treated adipocytes. Finally, myostatin regulated the mRNA levels and secretion of adipokines, including Adiponectin, Resistin, Visfatin, and plasminogen activator inhibitor-1 (PAI-1) in 3T3-L1 adipocytes (all P<0.001). Above all, myostatin promoted 3T3-L1 proliferation by increasing the expression of cell-proliferation-related genes and by stimulating IGF1 secretion. Myostatin inhibited 3T3-L1 adipocyte differentiation by suppressing Pparγ and Cebpα expression, which consequently deceased lipid accumulation in 3T3-L1 cells by inhibiting the expression of critical lipogenic enzymes and by promoting the expression of lipolytic enzymes. Finally, myostatin modulated the expression and secretion of adipokines in fully differentiated 3T3-L1 adipocytes. © 2015 Society for Endocrinology.

  3. Maternal sodium butyrate supplement elevates the lipolysis in adipose tissue and leads to lipid accumulation in offspring liver of weaning-age rats.

    PubMed

    Zhou, Jiabin; Gao, Shixing; Chen, Jinglong; Zhao, Ruqian; Yang, Xiaojing

    2016-07-22

    fat mobilization, which may result in fatty acid uptake and lipid accumulation in the liver of the offspring.

  4. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    PubMed

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2018-03-01

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  5. The Role of Storage Lipids in the Relation between Fecundity, Locomotor Activity, and Lifespan of Drosophila melanogaster Longevity-Selected and Control Lines

    PubMed Central

    Nasiri Moghadam, Neda; Holmstrup, Martin; Manenti, Tommaso; Brandt Mouridsen, Marie; Pertoldi, Cino; Loeschcke, Volker

    2015-01-01

    The contribution of insect fat body to multiple processes, such as development, metamorphosis, activity, and reproduction results in trade-offs between life history traits. In the present study, age-induced modulation of storage lipid composition in Drosophila melanogaster longevity-selected (L) and non-selected control (C) lines was studied and the correlation between total body fat mass and lifespan assessed. The trade-offs between fecundity, locomotor activity, and lifespan were re-evaluated from a lipid-related metabolic perspective. Fewer storage lipids in the L lines compared to the C lines supports the impact of body fat mass on extended lifespan. The higher rate of fecundity and locomotor activity in the L lines may increase the lipid metabolism and enhance the lipolysis of storage lipids, reducing fat reserves. The correlation between neutral lipid fatty acids and fecundity, as well as locomotor activity, varied across age groups and between the L and C lines. The fatty acids that correlated with egg production were different from the fatty acids that correlated with locomotor activity. The present study suggests that fecundity and locomotor activity may positively affect the lifespan of D. melanogaster through the inhibition of fat accumulation. PMID:26115349

  6. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Neha; Pienkos, Philip T.; Pruthi, Vikas

    Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. Here, this review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and informmore » future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.« less

  7. Leveraging Algal Omics to Reveal Potential Targets for Augmenting TAG Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarnieri, Michael T; Pienkos, Philip T; Arora, Neha

    2018-04-18

    Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform futuremore » metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.« less

  8. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation

    DOE PAGES

    Arora, Neha; Pienkos, Philip T.; Pruthi, Vikas; ...

    2018-04-18

    Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. Here, this review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and informmore » future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.« less

  9. The critical role played by endotoxin-induced liver autophagy in the maintenance of lipid metabolism during sepsis.

    PubMed

    Chung, Ki Wung; Kim, Kyung Mok; Choi, Yeon Ja; An, Hye Jin; Lee, Bonggi; Kim, Dae Hyun; Lee, Eun Kyeong; Im, Eunok; Lee, Jaewon; Im, Dong Soon; Yu, Byung Pal; Chung, Hae Young

    2017-07-03

    Macroautophagy/autophagy is a central mechanism by which cells maintain integrity and homeostasis, and endotoxin-induced autophagy plays important roles in innate immunity. Although TLR4 stimulation mediated by lipopolysaccharide (LPS) also upregulates autophagy in hepatocytes and liver, its physiological role remains elusive. The objective of this study was to determine the role of LPS-induced autophagy in the regulation of liver lipid metabolism. LPS treatment (5 mg/kg) increased autophagy, as detected by LC3 conversion and transmission electron microscopy (TEM) analysis in C57BL6 mouse livers. AC2F hepatocytes also showed increased autophagic flux after LPS treatment (1 μg/ml). To investigate the role of LPS-induced autophagy further, liver lipid metabolism changes in LPS-treated mice and fasted controls were compared. Interestingly, LPS-treated mice showed less lipid accumulation in liver than fasted mice despite increased fatty acid uptake and lipid synthesis-associated genes. In vitro analysis using AC2F hepatocytes demonstrated LPS-induced autophagy influenced the degradation of lipid droplets. Inhibition of LPS-induced autophagy using bafilomycin A 1 or Atg7 knockdown significantly increased lipid accumulation in AC2F hepatocytes. In addition, pretreatment with chloroquine aggravated LPS-induced lipid accumulation and inflammation in C57BL6 mouse livers. The physiological importance of autophagy was verified in LPS-treated young and aged rats. Autophagic response was diminished in LPS-treated aged rats and lipid metabolism was impaired during sepsis, indicating autophagy response is important for regulating lipid metabolism after endotoxin challenge. Our findings demonstrate endotoxin-induced autophagy is important for the regulation of lipid metabolism, and suggest that autophagy helps maintain lipid metabolism homeostasis during sepsis.

  10. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells

    PubMed Central

    Gidda, Satinder K; Watt, Samantha C; Collins-Silva, Jillian; Kilaru, Aruna; Arondel, Vincent; Yurchenko, Olga; Horn, Patrick J; James, Christopher N; Shintani, David; Ohlrogge, John B; Chapman, Kent D; Mullen, Robert T; Dyer, John M

    2013-01-01

    While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed. PMID:24305619

  11. Heterologous expression of a thermophilic diacylglycerol acyltransferase triggers triglyceride accumulation in Escherichia coli.

    PubMed

    Lázaro, Beatriz; Villa, Juan A; Santín, Omar; Cabezas, Matilde; Milagre, Cintia D F; de la Cruz, Fernando; Moncalián, Gabriel

    2017-01-01

    Triglycerides (TAGs), the major storage molecules of metabolic energy and source of fatty acids, are produced as single cell oil by some oleogenic microorganisms. However, these microorganisms require strict culture conditions, show low carbon source flexibilities, lack efficient genetic modification tools and in some cases pose safety concerns. TAGs have essential applications such as behaving as a source for added-value fatty acids or giving rise to the production of biodiesel. Hence, new alternative methods are urgently required for obtaining these oils. In this work we describe TAG accumulation in the industrially appropriate microorganism Escherichia coli expressing the heterologous enzyme tDGAT, a wax ester synthase/triacylglycerol:acylCoA acyltranferase (WS/DGAT). With this purpose, we introduce a codon-optimized gene from the thermophilic actinomycete Thermomonospora curvata coding for a WS/DGAT into different E. coli strains, describe the metabolic effects associated to the expression of this protein and evaluate neutral lipid accumulation. We observe a direct relation between the expression of this WS/DGAT and TAG production within a wide range of culture conditions. More than 30% TAGs were detected within the bacterial neutral lipids in 90 minutes after induction. TAGs were observed to be associated with the hydrophobic enzyme while forming round intracytoplasmic bodies, which could represent a bottleneck for lipid accumulation in E. coli. We detected an increase of almost 3-fold in the monounsaturated fatty acids (MUFA) occurring in the recombinant strains. These MUFA were predominant in the accumulated TAGs achieving 46% of the TAG fatty acids. These results set the basis for further research on the achievement of a suitable method towards the sustainable production of these neutral lipids.

  12. Effects of a Squalene Epoxidase Inhibitor, Terbinafine, on Ether Lipid Biosyntheses in a Thermoacidophilic Archaeon, Thermoplasma acidophilum

    PubMed Central

    Kon, Takahide; Nemoto, Naoki; Oshima, Tairo; Yamagishi, Akihiko

    2002-01-01

    The archaeal plasma membrane consists mainly of diether lipids and tetraether lipids instead of the usual ester lipids found in other organisms. Although a molecule of tetraether lipid is thought to be synthesized from two molecules of diether lipids, there is no direct information about the biosynthetic pathway(s) or intermediates of tetraether lipid biosynthesis. In this study, we examined the effects of the fungal squalene epoxidase inhibitor terbinafine on the growth and ether lipid biosyntheses in the thermoacidophilic archaeon Thermoplasma acidophilum. Terbinafine was found to inhibit the growth of T. acidophilum in a concentration-dependent manner. When growing T. acidophilum cells were pulse-labeled with [2-14C]mevalonic acid in the presence of terbinafine, incorporation of radioactivity into the tetraether lipid fraction was strongly suppressed, while accumulation of radioactivity was noted at the position corresponding to diether lipids, depending on the concentration of terbinafine. After the cells were washed with fresh medium and incubated further without the radiolabeled substrate and the inhibitor, the accumulated radioactivity in the diether lipid fraction decreased quickly while that in the tetraether lipids increased simultaneously, without significant changes in the total radioactivity of ether lipids. These results strongly suggest that terbinafine inhibits the biosynthesis of tetraether lipids from a diether-type precursor lipid(s). The terbinafine treatment will be a tool for dissecting tetraether lipid biosynthesis in T. acidophilum. PMID:11844769

  13. Honokiol activates the LKB1–AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Min Suk; Kim, Jung Hwan; Kim, Hye Jung

    Honokiol is a bioactive neolignan compound isolated from the species of Magnolia. This study was designed to elucidate the cellular mechanism by which honokiol alleviates the development of non-alcoholic steatosis. HepG2 cells were treated with honokiol for 1 h, and then exposed to 1 mM free fatty acid (FFA) for 24 h to simulate non-alcoholic steatosis in vitro. C57BL/6 mice were fed with a high-fat diet for 28 days, and honokiol (10 mg/kg/day) was daily treated. Honokiol concentration-dependently attenuated intracellular fat overloading and triglyceride (TG) accumulation in FFA-exposed HepG2 cells. These effects were blocked by pretreatment with an AMP-activated proteinmore » kinase (AMPK) inhibitor. Honokiol significantly inhibited sterol regulatory element-binding protein-1c (SREBP-1c) maturation and the induction of lipogenic proteins, stearoyl-CoA desaturase-1 (SCD-1) and fatty acid synthase (FAS) in FFA-exposed HepG2 cells, but these effects were blocked by pretreatment of an AMPK inhibitor. Honokiol induced AMPK phosphorylation and subsequent acetyl-CoA carboxylase (ACC) phosphorylation, which were inhibited by genetic deletion of liver kinase B1 (LKB1). Honokiol stimulated LKB1 phosphorylation, and genetic deletion of LKB1 blocked the effect of honokiol on SREBP-1c maturation and the induction of SCD-1 and FAS proteins in FFA-exposed HepG2 cells. Honokiol attenuated the increases in hepatic TG and lipogenic protein levels and fat accumulation in the mice fed with high-fat diet, while significantly induced LKB1 and AMPK phosphorylation. Taken together, our findings suggest that honokiol has an anti-lipogenic effect in hepatocytes, and this effect may be mediated by the LKB1–AMPK signaling pathway, which induces ACC phosphorylation and inhibits SREBP-1c maturation in hepatocytes. - Highlights: • Honokiol attenuates lipid accumulation induced by free fatty acid in hepatocyte. • Honokiol inhibits the increase in lipogenic enzyme levels induced by free

  14. Adipose differentiation-related protein regulates lipids and insulin in pancreatic islets

    PubMed Central

    Faleck, D. M.; Ali, K.; Roat, R.; Graham, M. J.; Crooke, R. M.; Battisti, R.; Garcia, E.; Ahima, R. S.

    2010-01-01

    The excess accumulation of lipids in islets is thought to contribute to the development of diabetes in obesity by impairing β-cell function. However, lipids also serve a nutrient function in islets, and fatty acids acutely increase insulin secretion. A better understanding of lipid metabolism in islets will shed light on complex effects of lipids on β-cells. Adipose differentiation-related protein (ADFP) is localized on the surface of lipid droplets in a wide range of cells and plays an important role in intracellular lipid metabolism. We found that ADFP was highly expressed in murine β-cells. Moreover, islet ADFP was increased in mice on a high-fat diet (3.5-fold of control) and after fasting (2.5-fold of control), revealing dynamic changes in ADFP in response to metabolic cues. ADFP expression was also increased by addition of fatty acids in human islets. The downregulation of ADFP in MIN6 cells by antisense oligonucleotide (ASO) suppressed the accumulation of triglycerides upon fatty acid loading (56% of control) along with a reduction in the mRNA levels of lipogenic genes such as diacylglycerol O-acyltransferase-2 and fatty acid synthase. Fatty acid uptake, oxidation, and lipolysis were also reduced by downregulation of ADFP. Moreover, the reduction of ADFP impaired the ability of palmitate to increase insulin secretion. These findings demonstrate that ADFP is important in regulation of lipid metabolism and insulin secretion in β-cells. PMID:20484013

  15. Immunopharmacology of lipid A mimetics.

    PubMed

    Bowen, William S; Gandhapudi, Siva K; Kolb, Joseph P; Mitchell, Thomas C

    2013-01-01

    The structural core of bacterial lipopolysaccharide, lipid A, has played a role in medicine since the 1890s when William Coley sought to harness its immunostimulatory properties in the form of a crude bacterial extract. Recent decades have brought remarkable clarity to the structure of lipid A and the multicomponent endotoxin receptor system that evolved to detect it. A range of therapeutically useful versions of lipid A now exists, including preparations of detoxified lipid A, synthetic copies of naturally occurring biological intermediates such as lipid IVa, and synthetic mimetics. These agents are finding use as vaccine adjuvants, antagonists and immunostimulants whose structural features have been refined to potentiate efficacy while decreasing the risk of inflammatory side effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Lysosomal degradation of membrane lipids.

    PubMed

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Long term betaine supplementation regulates genes involved in lipid and cholesterol metabolism of two muscles from an obese pig breed.

    PubMed

    Albuquerque, A; Neves, José A; Redondeiro, M; Laranjo, M; Félix, M R; Freitas, Amadeu; Tirapicos, José L; Martins, José M

    2017-02-01

    This study evaluates the effects of betaine supplementation (1gkg -1 for 20weeks) on the regulation of genes involved in lipid and cholesterol metabolism of Longissimus lumborum and Biceps femoris from obese Alentejano pigs. Betaine supplementation led to an increase in total cholesterol in both muscles, complementing results previously published indicating a significant increase on the intramuscular lipid content. The expression of twelve genes involved in lipogenesis, lipolysis/FA oxidation, FA transport, and cholesterol metabolism, as well as two transcription factors were also evaluated. Genes related to lipid and cholesterol synthesis plus FA transport were consistently up-regulated in both muscles of betaine fed pigs. On the other hand, genes related to lipolysis/FA oxidation were not affected or down-regulated by betaine supplementation. Our data suggest that the underlying mechanism regulating IMF and cholesterol accumulation in Alentejano pigs supplemented with betaine is associated with the up-regulation of genes involved in lipid synthesis, FA transport, and cholesterol synthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Lipid oxidation by hypochlorous acid: chlorinated lipids in atherosclerosis and myocardial ischemia

    PubMed Central

    Ford, David A

    2011-01-01

    Leukocytes, containing myeloperoxidase (MPO), produce the reactive chlorinating species, HOCl, and they have important roles in the pathophysiology of cardiovascular disease. Leukocyte-derived HOCl can target primary amines, alkenes and vinyl ethers of lipids, resulting in chlorinated products. Plasmalogens are vinyl ether-containing phospholipids that are abundant in tissues of the cardiovascular system. The HOCl oxidation products derived from plasmalogens are α-chlorofatty aldehyde and unsaturated molecular species of lysophosphatidylcholine. α-chlorofatty aldehyde is the precursor of both α-chlorofatty alcohol and α-chlorofatty acid. Both α-chlorofatty aldehyde and α-chlorofatty acid accumulate in activated neutrophils and have disparate chemotactic properties. In addition, α-chlorofatty aldehyde increases in activated monocytes, human atherosclerotic lesions and rat infarcted myocardium. This article addresses the pathways for the synthesis of these lipids and their biological targets. PMID:21339854

  19. Three-compartment model for contaminant accumulation by semipermeable membrane devices

    USGS Publications Warehouse

    Gale, Robert W.

    1998-01-01

    Passive sampling of dissolved hydrophobic contaminants with lipid (triolein)-containing semipermeable membrane devices (SPMDs) has been gaining acceptance for environmental monitoring. Understanding of the accumulation process has employed a simple polymer film-control model of uptake by the polymer-enclosed lipid, while aqueous film control has been only briefly discussed. A more complete three-compartment model incorporating both aqueous film (turbulent-diffusive) and polymer film (diffusive) mass transfer is developed here and is fit to data from accumulation studies conducted in constant-concentration, flow-through dilutors. This model predicts aqueous film control of the whole device for moderate to high Kow compounds, rather than polymer film control. Uptake rates for phenanthrene and 2,2‘,5,5‘-tetrachlorobiphenyl were about 4.8 and 4.2 L/day/standard SPMD, respectively. Maximum 28 day SPMD concentration factors of 30 000 are predicted for solutes with log Kow values of >5.5. Effects of varying aqueous and polymer film thicknesses and solute diffusivities in the polymer film are modeled, and overall accumulation by the whole device is predicted to remain under aqueous film control, although accumulation in the triolein may be subject to polymer film control. The predicted half-life and integrative response of SPMDs to pulsed concentration events is proportional to log KSPMD.

  20. Content of lipids in blood and tissues of animals during hypodynamia

    NASA Technical Reports Server (NTRS)

    Federov, I. V.; Rylnikov, Y. P.; Lobova, T. M.

    1980-01-01

    Experiments on 97 rats and 50 rabbits were undertaken to study the influence of hypodynamia on the lipid content in the blood, liver, heart, and in the aorta. Reduction of muscular activity contributed to the increase of cholesterol and beta lipoprotein levels in the blood and to accumulation of cholesterol in the liver and the heart. The total lipid content in these tissues decreased. In the aorta the total lipid content increased, while lecithin and cephalin figures went down. The character of biochemical changes in hypodynamia resembles in many ways the lipid metabolism changes in atherosclerosis.

  1. Arabidopsis plastidial folylpolyglutamate synthetase is required for seed reserve accumulation and seedling establishment in darkness.

    PubMed

    Meng, Hongyan; Jiang, Ling; Xu, Bosi; Guo, Wenzhu; Li, Jinglai; Zhu, Xiuqing; Qi, Xiaoquan; Duan, Lixin; Meng, Xianbin; Fan, Yunliu; Zhang, Chunyi

    2014-01-01

    Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3-. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3- conditions, and further enhanced under NO3- limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3- during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3- as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis.

  2. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    PubMed

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  3. Dietary Betaine Supplementation Increases Fgf21 Levels to Improve Glucose Homeostasis and Reduce Hepatic Lipid Accumulation in Mice

    PubMed Central

    Ejaz, Asma; Martinez-Guino, Laura; Goldfine, Allison B.; Ribas-Aulinas, Francesc; De Nigris, Valeria; Ribó, Sílvia; Gonzalez-Franquesa, Alba; Garcia-Roves, Pablo M.; Li, Elizabeth; Dreyfuss, Jonathan M.; Gall, Walt; Kim, Jason K.; Bottiglieri, Teodoro; Villarroya, Francesc; Gerszten, Robert E.

    2016-01-01

    Identifying markers of human insulin resistance may permit development of new approaches for treatment and prevention of type 2 diabetes. To this end, we analyzed the fasting plasma metabolome in metabolically characterized human volunteers across a spectrum of insulin resistance. We demonstrate that plasma betaine levels are reduced in insulin-resistant humans and correlate closely with insulin sensitivity. Moreover, betaine administration to mice with diet-induced obesity prevents the development of impaired glucose homeostasis, reduces hepatic lipid accumulation, increases white adipose oxidative capacity, and enhances whole-body energy expenditure. In parallel with these beneficial metabolic effects, betaine supplementation robustly increased hepatic and circulating fibroblast growth factor (Fgf)21 levels. Betaine administration failed to improve glucose homeostasis and liver fat content in Fgf21−/− mice, demonstrating that Fgf21 is necessary for betaine’s beneficial effects. Together, these data indicate that dietary betaine increases Fgf21 levels to improve metabolic health in mice and suggest that betaine supplementation merits further investigation as a supplement for treatment or prevention of type 2 diabetes in humans. PMID:26858359

  4. Molecular dynamics simulation of the partitioning of benzocaine and phenytoin into a lipid bilayer.

    PubMed

    Martin, Lewis J; Chao, Rebecca; Corry, Ben

    2014-01-01

    Molecular dynamics simulations were used to examine the partitioning behaviour of the local anaesthetic benzocaine and the anti-epileptic phenytoin into lipid bilayers, a factor that is critical to their mode of action. Free energy methods are used to quantify the thermodynamics of drug movement between water and octanol as well as for permeation across a POPC membrane. Both drugs are shown to favourably partition into the lipid bilayer from water and are likely to accumulate just inside the lipid headgroups where they may alter bilayer properties or interact with target proteins. Phenytoin experiences a large barrier to cross the centre of the bilayer due to less favourable energetic interactions in this less dense region of the bilayer. Remarkably, in our simulations both drugs are able to pull water into the bilayer, creating water chains that extend back to bulk, and which may modify the local bilayer properties. We find that the choice of atomic partial charges can have a significant impact on the quantitative results, meaning that careful validation of parameters for new drugs, such as performed here, should be performed prior to their use in biomolecular simulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A high-fat meal promotes lipid-load and apolipoprotein B-48 receptor transcriptional activity in circulating monocytes.

    PubMed

    Varela, Lourdes M; Ortega, Almudena; Bermudez, Beatriz; Lopez, Sergio; Pacheco, Yolanda M; Villar, Jose; Abia, Rocio; Muriana, Francisco J G

    2011-05-01

    The postprandial metabolism of dietary fats results in the production of apolipoprotein B-48 (apoB48)-containing triglyceride-rich lipoproteins (TRLs), which cause rapid receptor-mediated macrophage lipid engorgement via the apoB48 cell surface receptor (apoB48R). Monocytes circulate together with apoB48-containing TRLs in the postprandial bloodstream and may start accumulating lipids even before their migration to tissues and differentiation to macrophages. We sought to determine whether circulating monocytes are equipped with apoB48R and whether, in the postprandial state, circulating monocytes accumulate lipids and modulate apoB48R transcriptional activity after intake of a high-fat meal. In a crossover design, we studied the effect of a high-fat meal on fasting and postprandial concentrations of triglycerides, free fatty acids, cholesterol, and insulin in 12 healthy men. TRLs and monocytes were freshly isolated at fasting, hourly until the postprandial peak, and at the late postprandial phase. TRLs were subjected to triglycerides, apoB48, and apolipoprotein B-100 analyses; and lipid accumulation and apoB48R mRNA expression levels were measured in monocytes. Monocytes showed a time-dependent lipid accumulation in response to the high-fat meal, which was paralleled by an increase in apoB48R mRNA expression levels. These effects were coincident only with an increase in apoB48-containing TRLs in the postprandial phase and were also observed ex vivo in freshly isolated monocytes incubated with apoB48-containing TRLs. In a setting of abundant plasma apoB48-containing TRLs, these findings highlight the role of dietary fat in inducing lipid accumulation and apoB48R gene transcription in circulating monocytes.

  6. Preferred carbon precursors for lipid labelling in the heterotrophic endosperm of developing oat (Avena sativa L.) grains.

    PubMed

    Grimberg, Åsa

    2014-10-01

    Oat (Avena sativa L.) is unusual among the cereal grains in storing high amounts of oil in the endosperm; up to 90% of total grain oil. By using oat as a model species for oil metabolism in the cereal endosperm, we can learn how to develop strategies to redirect carbon from starch to achieve high-oil yielding cereal crops. Carbon precursors for lipid synthesis were compared in two genetically close oat cultivars with different endosperm oil content (about 6% and 10% of grain dw, medium-oil; MO, and high-oil; HO cultivar, respectively) by supplying a variety of (14)C-labelled substrates to the grain from both up- and downstream parts of glycolysis, either through detached oat panicles in vitro or by direct injection in planta. When supplied by direct injection, (14)C from acetate was identified to label the lipid fraction of the grain to the highest extent among substrates tested; 46% of net accumulated (14)C, demonstrating its applicability as a marker for lipids in the endosperm. Time course analyses of injected (14)C acetate during grain development suggested a more efficient transfer of fatty acids from polar lipids to triacylglycerol in the HO as compared to the MO cultivar, and turnover of triacylglycerol was suggested to not play a major role for the final oil content of oat grain endosperm despite the low amount of protective oleosins in this tissue. Moreover, availability of light was shown to drastically affect grain net carbon accumulation from (14)C-sucrose when supplied through detached panicles for the HO cultivar. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N.

    PubMed

    Ho, Shih-Hsin; Chen, Chun-Yen; Chang, Jo-Shu

    2012-06-01

    Engineering strategies were applied to improve the CO(2) fixation rate and carbohydrate/lipid production of a Scenedesmus obliquus CNW-N isolate. The light intensity that promotes cell growth, carbohydrate/lipid productivity, and CO(2) fixation efficiency was identified. Nitrogen starvation was also employed to trigger the accumulation of lipid and carbohydrate. The highest productivity of biomass, lipid, and carbohydrate was 840.57 mg L(-1)d(-1), 140.35 mg L(-1)d(-1). The highest lipid and carbohydrate content was 22.4% (5-day N-starvation) and 46.65% (1-day N-starvation), respectively. The optimal CO(2) consumption rate was 1420.6 mg L(-1)d(-1). This performance is better than that reported in most other studies. Under nitrogen starvation, the microalgal lipid was mainly composed of C16/C18 fatty acid (around 90%), which is suitable for biodiesel synthesis. The carbohydrate present in the biomass was mainly glucose, accounting for 77-80% of total carbohydrates. This carbohydrate composition is also suitable for fermentative biofuels production (e.g., bioethanol and biobutanol). Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Pharmacokinetics and tissue distribution study in mice of triptolide-loaded lipid emulsion and accumulation effect on pancreas.

    PubMed

    Li, Xue; Mao, Yuling; Li, Kai; Shi, Tianyu; Yao, Huimin; Yao, Jianhua; Wang, Shujun

    2016-05-01

    Triptolide (TP) shows strong anti-tumor activities on various cancer cells, especially on pancreatic cancer. TP inhibits HSP70 expression leading to cell death in pancreatic cancer cells and induces cell death by apoptotic and autophagic pathways. In order to increase the therapeutic index of TP, a novel intravenous TP-loaded delivery system, TP-loaded lipid emulsion (TP-LE), has been developed to treat solid tumor. In the present study, the preparation and characterization of TP-LE were described. The pharmacokinetics and tissue distribution study of TP-LE in mice were also evaluated. Results demonstrated that TP-LE had an average particle size of 154.6 nm, entrapment efficiency (EE%) of 87%, zeta potential of -0.903 mV and autoclaved stability. The pharmacokinetic study showed that blood concentrations of both TP-LE and TP reached a maximum at the end of intravenous administration (1.25 mg/kg) and declined rapidly within the first 10 min with a mean residence time (MRT) of about 10 min. In the tissue distribution study, a preferential accumulation and longer residence time of drug in pancreas were found in TP-LE. The AUC0-60min of TP-LE in pancreas was 2.19 times in comparison to free TP, suggesting that the use of TP-LE conferred improvements in biodistribution, accumulation and therapeutic efficacy in pancreas. Moreover, the concentrations of TP-LE in heart, lung and kidney were lower than that of the TP group, indicating the potential for reduced toxicity of TP-LE. Together, all the results show that TP-LE appears to be a promising formulation for using TP in treating cancer, and more specifically pancreatic cancer.

  9. Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates

    DOE PAGES

    Wei, Zhen; Zeng, Guangming; Huang, Fang; ...

    2015-07-04

    Metabolic synthesis of single cell oils (SCOs) for biodiesel application by heterotrophic oleaginous microorganisms is being hampered by the high cost of culture media. This study investigated the possibility of using loblolly pine and sweetgum autohydrolysates as economic feedstocks for microbial lipid production by oleaginous Rhodococcus opacus ( R. opacus) PD630 and DSM 1069. Results revealed that when the substrates were detoxified by the removal of inhibitors (such as HMF—hydroxymethyl-furfural), the two strains exhibited viable growth patterns after a short adaptation/lag phase. R. opacus PD630 accumulated as much as 28.6 % of its cell dry weight (CDW) in lipids whilemore » growing on detoxified sweetgum autohydrolysate (DSAH) that translates to 0.25 g/l lipid yield. The accumulation of SCOs reached the level of oleagenicity in DSM 1069 cells (28.3 % of CDW) as well, while being cultured on detoxified pine autohydrolysate (DPAH), with the maximum lipid yield of 0.31 g/l. The composition of the obtained microbial oils varied depending on the substrates provided. These results indicate that lignocellulosic autohydrolysates can be used as low-cost fermentation substrates for microbial lipid production by wild-type R. opacus species. Furthermore, the variety of applications for aqueous liquors from lignocellulosic pretreatment has been expanded, allowing for the further optimization of the integrated biorefinery.« less

  10. Accumulation of hydroxyl lipids and 4-hydroxy-2-hexenal in live fish infected with fish diseases.

    PubMed

    Tanaka, Ryusuke; Shigeta, Kazuhiro; Sugiura, Yoshimasa; Hatate, Hideo; Matsushita, Teruo

    2014-04-01

    Hydroxy lipids (L-OH) and 4-hydroxy-2-hexenal (HHE) levels as well as other parameters such as lipid level, lipid class, fatty acid composition, and other aldehydes levels in the liver of diseased fish were investigated. Although significant differences in lipid level, lipid class, fatty acid composition, and other aldehyde levels were not always observed between normal and diseased fish, L-OH and HHE levels were significantly higher in the liver of the diseased fish than in that of the normal fish cultured with the same feeds under the same conditions. In the liver of puffer fish (Fugu rubripes) infected with Trichodina, L-OH and HHE levels significantly increased from 25.29±5.04 to 47.70 ± 5.27 nmol/mg lipid and from 299.79±25.25 to 1,184.40±60.27 nmol/g tissue, respectively. When the levels of HHE and other aldehydes in the liver of the normal and diseased puffer fish were plotted, a linear relationship with a high correlation coefficient was observed between HHE and propanal (r2=0.9447). Increased L-OH and HHE levels in the liver of the diseased fish and a high correlation between HHE and propanal in the liver of the normal and diseased fish were also observed in flat fish (Paralichthys olivaceus) infected with streptococcus, yellowtail (Seriola quinqueradiata) infected with jaundice, and amberjack (S. purpurascens) infected with Photobacterium damselae subsp. piscicida.

  11. Brain mitochondrial iron accumulates in Huntington's disease, mediates mitochondrial dysfunction, and can be removed pharmacologically.

    PubMed

    Agrawal, Sonal; Fox, Julia; Thyagarajan, Baskaran; Fox, Jonathan H

    2018-05-20

    Mitochondrial bioenergetic dysfunction is involved in neurodegeneration in Huntington's disease (HD). Iron is critical for normal mitochondrial bioenergetics but can also contribute to pathogenic oxidation. The accumulation of iron in the brain occurs in mouse models and in human HD. Yet the role of mitochondria-related iron dysregulation as a contributor to bioenergetic pathophysiology in HD is unclear. We demonstrate here that human HD and mouse model HD (12-week R6/2 and 12-month YAC128) brains accumulated mitochondrial iron and showed increased expression of iron uptake protein mitoferrin 2 and decreased iron-sulfur cluster synthesis protein frataxin. Mitochondria-enriched fractions from mouse HD brains had deficits in membrane potential and oxygen uptake and increased lipid peroxidation. In addition, the membrane-permeable iron-selective chelator deferiprone (1 μM) rescued these effects ex-vivo, whereas hydrophilic iron and copper chelators did not. A 10-day oral deferiprone treatment in 9-week R6/2 HD mice indicated that deferiprone removed mitochondrial iron, restored mitochondrial potentials, decreased lipid peroxidation, and improved motor endurance. Neonatal iron supplementation potentiates neurodegeneration in mouse models of HD by unknown mechanisms. We found that neonatal iron supplementation increased brain mitochondrial iron accumulation and potentiated markers of mitochondrial dysfunction in HD mice. Therefore, bi-directional manipulation of mitochondrial iron can potentiate and protect against markers of mouse HD. Our findings thus demonstrate the significance of iron as a mediator of mitochondrial dysfunction and injury in mouse models of human HD and suggest that targeting the iron-mitochondrial pathway may be protective. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Molina Grima, Emilio

    2016-09-01

    In order to obtain microalgal saponifiable lipids (SLs) fractions containing different polar lipid (glycolipids and phospholipids) contents, SLs were extracted from wet Nannochloropsis gaditana microalgal biomass using seven extraction systems, and the polar lipid contents of some fractions were reduced by low temperature acetone crystallization. We observed that the polar lipid content in the extracted lipids depended on the polarity of the first solvent used in the extraction system. Lipid fractions with polar lipid contents between 75.1% and 15.3% were obtained. Some of these fractions were transformed into fatty acid methyl esters (FAMEs, biodiesel) by methanolysis, catalyzed by the lipases Novozym 435 and Rhizopus oryzae in tert-butanol medium. We observed that the reaction velocity was higher the lower the polar lipid content, and that the final FAME conversions achieved after using the same lipase batch to catalyze consecutive reactions decreased in relation to an increase in the polar lipid content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Interdigitation between Triglycerides and Lipids Modulates Surface Properties of Lipid Droplets.

    PubMed

    Bacle, Amélie; Gautier, Romain; Jackson, Catherine L; Fuchs, Patrick F J; Vanni, Stefano

    2017-04-11

    Intracellular lipid droplets (LDs) are the main cellular site of metabolic energy storage. Their structure is unique inside the cell, with a core of esterified fatty acids and sterols, mainly triglycerides and sterol esters, surrounded by a single monolayer of phospholipids. Numerous peripheral proteins, including several that were previously associated with intracellular compartments surrounded by a lipid bilayer, have been recently shown to target the surface of LDs, but how they are able to selectively target this organelle remains largely unknown. Here, we use atomistic and coarse-grained molecular dynamics simulations to investigate the molecular properties of the LD surface and to characterize how it differs from that of a lipid bilayer. Our data suggest that although several surface properties are remarkably similar between the two structures, key differences originate from the interdigitation between surface phospholipids and core neutral lipids that occurs in LDs. This property is extremely sensitive to membrane undulations, unlike in lipid bilayers, and it strongly affects both lipid-packing defects and the lateral pressure profile. We observed a marked change in overall surface properties for surface tensions >10 mN/m, indicative of a bimodal behavior. Our simulations provide a comprehensive molecular characterization of the unique surface properties of LDs and suggest how the molecular properties of the surface lipid monolayer can be modulated by the underlying neutral lipids. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2

    PubMed Central

    Ahmad, Irshad; Sharma, Anil K.; Daniell, Henry; Kumar, Shashi

    2015-01-01

    Summary Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin-supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 106 cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro-fluorometric analysis of Nile red-stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α-linolenic acid, an essential omega-3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long-term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae. PMID:25403771

  15. Leveraging algal omics to reveal potential targets for augmenting TAG accumulation.

    PubMed

    Arora, Neha; Pienkos, Philip T; Pruthi, Vikas; Poluri, Krishna Mohan; Guarnieri, Michael T

    2018-04-18

    Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy. Copyright © 2018. Published by Elsevier Inc.

  16. A pivotal role of vacuolar H(+)-ATPase in regulation of lipid production in Phaeodactylum tricornutum.

    PubMed

    Zhang, Huiying; Zeng, Rensen; Chen, Daoyi; Liu, Jian

    2016-08-08

    Microalgal lipids have been considered as a promising source for biodiesel production. Alkaline pH can induce neutral lipid accumulation in microalgae cells. However, whether and how proton pumps, especially vacuolar H(+)-ATPase (V-ATPase), function in these processes is not well known. In this study, we treated Phaeodactylum tricornutum with V-ATPase specific inhibitor bafilomycin A1 (BFA1) to determine its role in lipid production. Firstly, V-ATPase activity was increased in the latter phase of microalgae growth. BFA1 treatment decreased the cell density and lipid contents. Further analysis showed that BFA1 treatment reduced the number and size of oil bodies. GC-MS analysis showed that lipid components were not affected by BFA1 treatment. Intracellular pH was decreased and nitrogen depletion was delayed after BFA1 treatment. RNA-Seq analysis showed that expression of genes involved in calcium signaling, sulfur metabolism, cell cycle, glycolysis, pentose phosphate pathway, porphyrin, chlorophyll metabolism and lipid catabolic metabolism were upregulated, while expression of genes involved in ion transmembrane transport, ubiquitin mediated proteolysis, SNARE interactions in vesicular transport, fatty acid biosynthesis were downregulated under BFA1 treatment. Our findings provided insights into the molecular mechanisms underlying lipid accumulation and the key genes involved in lipid metabolism in Phaeodactylum tricornutum in response to BFA1.

  17. Altered Dynamics of a Lipid Raft Associated Protein in a Kidney Model of Fabry Disease

    PubMed Central

    Labilloy, Anatália; Youker, Robert T.; Bruns, Jennifer R.; Kukic, Ira; Kiselyov, Kirill; Halfter, Willi; Finegold, David; do Monte, Semiramis Jamil Hadad; Weisz, Ora A.

    2013-01-01

    Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease. Using siRNA technology, we have generated a polarized renal epithelial cell model of Fabry disease in Madin-Darby canine kidney cells. These cells present increased levels of Gb3 and enlarged lysosomes, and progressively accumulate zebra bodies. The polarized delivery of both raft-associated and raft-independent proteins was unaffected by α-gal A knockdown, suggesting that accumulation of Gb3 does not disrupt biosynthetic trafficking pathways. To assess the effect of α-gal A silencing on lipid raft dynamics, we employed number and brightness (N&B) analysis to measure the oligomeric status and mobility of the model glycosylphosphatidylinositol (GPI)-anchored protein GFP-GPI. We observed a significant increase in the oligomeric size of antibody-induced clusters of GFP-GPI at the plasma membrane of α-gal A silenced cells compared with control cells. Our results suggest that the interaction of GFP-GPI with lipid rafts may be altered in the presence of accumulated Gb3. The implications of our results with respect to the pathogenesis of Fabry disease are discussed. PMID:24215843

  18. Lipid droplet analysis using in vitro bovine oocytes and embryos.

    PubMed

    Ordoñez-Leon, E A; Merchant, H; Medrano, A; Kjelland, M; Romo, S

    2014-04-01

    The aim of this study was to quantify the content of lipid droplets in bovine oocytes and embryos from Bos indicus (Bi), Bos taurus (Bt) and Bos indicus × Bos taurus (Bi × Bt). Oocytes were aspirated post-mortem and subjected to in vitro maturation, in vitro fertilization and in vitro development; the medium employed at each stage (TCM-199, TALP, SOF) was supplemented with (i) serum replacement (SR), (ii) foetal calf serum (FCS) or (iii) oestrous cow serum (ECS). The structure and distribution of the lipid droplets were established using electron microscopy, but were quantified using an optical microscope on semi-fine toluidine blue-stained sections. The highest percentage of embryos corresponded to those produced with FCS and ECS, which differed from embryos generated with SR (p < 0.05). The highest percentage of morulae and the lowest percentage of blastocysts were obtained with the SR supplement (p < 0.05). The oocytes cultured in FCS demonstrated a higher number of lipid droplets compared to those cultured in SR and ECS (p < 0.05). Less accumulation of lipids was observed in embryos supplemented with SR. The lowest and highest numbers of lipid droplets in oocytes corresponded to the Bi and Bt strain, respectively. The lowest amount of lipid droplets in embryos was observed in Bi (p < 0.05). In conclusion, supplementation of the in vitro development culture medium (synthetic oviduct fluid) with a synthetic substitute serum produced similar results in terms of embryo development compared to those obtained with FCS, but a decreased degree of lipid droplet accumulation was observed in the in vitro-cultured embryos. © 2014 Blackwell Verlag GmbH.

  19. The pathological prion protein forms ionic conductance in lipid bilayer.

    PubMed

    Paulis, Daniele; Maras, Bruno; Schininà, M Eugenia; di Francesco, Laura; Principe, Serena; Galeno, Roberta; Abdel-Haq, Hanin; Cardone, Franco; Florio, Tullio; Pocchiari, Maurizio; Mazzanti, Michele

    2011-08-01

    Transmissible spongiform encephalopathies (TSEs) are neurodegenerative pathologies characterized by the accumulation of amyloid fibrils mainly composed of the pathological isoform of the prion protein (PrP(TSE)). PrP(TSE) pre-amyloid fibrils are supposed to induce neurodegenerative lesions possibly through the alteration of membrane permeability. The effect of PrP(TSE) on cellular membranes has been modeled in vitro by synthetic peptides that are, however, only partially representative of PrP(TSE) isoforms found in vivo. In the present work we show that a synthetic membrane exposed to PrP27-30 extracted from TSE-infected hamster brains changes its permeability because of the formation of molecular pores that alter the conductance of the synthetic lipid bilayer. Synthetic membrane challenged with the recombinant prion peptide PrP90-231 shows a much lower conductance. Elevation of calcium ion concentration not only increases the current amplitude due to the action of both PrP27-30 and PrP90-231 on the membrane, but also amplifies the interaction of PrP90-231 with the lipid bilayer. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection.

    PubMed

    Lovewell, Rustin R; Sassetti, Christopher M; VanderVen, Brian C

    2016-02-01

    The interplay between Mycobacterium tuberculosis lipid metabolism, the immune response and lipid homeostasis in the host creates a complex and dynamic pathogen-host interaction. Advances in imaging and metabolic analysis techniques indicate that M. tuberculosis preferentially associates with foamy cells and employs multiple physiological systems to utilize exogenously derived fatty-acids and cholesterol. Moreover, novel insights into specific host pathways that control lipid accumulation during infection, such as the PPARγ and LXR transcriptional regulators, have begun to reveal mechanisms by which host immunity alters the bacterial micro-environment. As bacterial lipid metabolism and host lipid regulatory pathways are both important, yet inherently complex, components of active tuberculosis, delineating the heterogeneity in lipid trafficking within disease states remains a major challenge for therapeutic design. Copyright © 2015. Published by Elsevier Ltd.