Osmolytes are naturally occurring small molecules accumulated intracellularly to protect organisms from various denaturing stresses. Similar to the two faces of a coin, several of these osmolytes are stabilizing and destabilizing proteins depending on the concentrations and/or solvent conditions. For example, the well known stabilizing ...
PubMed
Osmolytes are naturally occurring organic compounds, which represent different chemical classes including amino acids, methylamines, and polyols. By accumulating high concentrations of osmolytes, organisms adapt to perturbations that can cause structural changes in their cellular proteins. Osmolytes shift ...
... H. and L. P. Walsh. 1994. Hyperthermic and hypertonic shock induce HSP70 accumulation and thermotolerance but not ... ...
NBII National Biological Information Infrastructure
Biomedical applications of osmolytes, including stabilization of protein-based pharmaceutics, preservation of living biological material and potential therapeutic prescription in vivo, are intimately related to the fact that osmolytes favour the native structure of proteins. The shift towards the native structure is associated to the compaction of the ...
Compatible organic osmolytes, such as betaine, myo-inositol and taurine, are involved in cell protection. Human dermal fibroblasts accumulate these osmolytes and express mRNA specific for their transporting systems betaine-/gamma-amino-n-butyric acid (GABA) transporter (BGT-1), sodium-dependent myo-inositol transporter (SMIT) and ...
Protein stability and solubility depend strongly on the presence of osmolytes, because of the protein preference to be solvated by either water or osmolyte. It has traditionally been assumed that only this relative preference can be measured, and that the individual solvation contributions of water and osmolyte are inaccessible. ...
Early preimplantation embryos are sensitive to external osmolarity and use novel mechanisms to accumulate organic osmolytes and thus control their cell volumes and maintain viability. However, these mechanisms are restricted to the cleavage stages of development, and it was unknown whether postcompaction embryos use organic osmolytes. ...
Inositol, sorbitol, glycerophosphocholine (GPC), and betaine are organic osmolytes that are accumulated by renal medullary cells in response to hyperosmotic stress. Previous screening studies, using nuclear magnetic resonance spectroscopy, have shown some of these same compounds to be present in extracts of whole urinary bladder from rabbits and rats. In ...
The k(cat) and K(m) kinetic parameters of the labile enzyme rabbit muscle lactic dehydrogenase were determined as a function of the concentration of proline, a solute (osmolyte) accumulated in the cells of many organisms to protect them against environmental stresses. Proline is believed to protect against the stress(es) without altering the functional ...
PubMed Central
The key cytopathologies in the brains of Alzheimer's disease (AD) patients include mitochondrial dysfunction and energy hypometabolism, which are likely caused by the accumulation of small aggregates of amyloid-? (A?) peptides. Thus, targeting these two abnormalities of the AD brain may hold promising therapeutic value for delaying the onset of AD. In his paper, we discuss two ...
In response to stress small organic compounds termed osmolytes are ubiquitously accumulated in all cell types to regulate the intracellular solvent quality and to counteract the deleterious effect on the stability and function of cellular proteins. Given the evidence that destabilization of the native state of a protein either by mutation or by ...
Osmolytes are small organic solutes accumulated at high concentrations by cells/tissues in response to osmotic stress. Osmolytes increase thermodynamic stability of folded proteins and provide protection against denaturing stresses. The mechanism of osmolyte compatibility and osmolyte-induced ...
Protection of cells from osmotic stress is crucial for their survival. Exposure to high osmolarity promotes rapid diffusion of water across cell membranes, dramatically increasing cellular ionic strength, leading to disruption of key proteins/DNA resulting in cell-cycle arrest and apoptosis. The luminal microenvironment of the epididymis is hypertonic; therefore, epididymal cells adapt to the ...
Cells of the hypertonic renal medulla accumulate high concentrations of the non-perturbing osmolytes myo-inositol, betaine, and taurine, and are thereby protected from the perturbing effects of hypertonicity. Kidney-derived MDCK cells accumulate high levels of these three non-perturbing osmolytes when cultured in ...
A "compatible osmolyte hypothesis" proposes that intracellular nonionic organic osmolytes such as sorbitol, myo-inositol, taurine, betaine, and glycerophosphorylcholine respond coordinately to changes in external osmolality, thereby maintaining the intracellular ionic milieu. Osmoregulation may be the primary physiological function of aldose reductase, ...
Upon hypertonic stress most often resulting from high salinity, cells need to balance their osmotic pressure by accumulating neutral osmolytes called compatible osmolytes like betaine, myo-inositol and taurine. However the massive uptake of compatible osmolytes is a slow process, compared to other defense ...
Osmotic injury induced by rapid correction of severe chronic hyponatremia has been implicated in the development of central pontine myelinolysis. Organic osmolytes known previously as "idiogenic osmoles" accumulate intracellularly to protect cells from osmotic injury. We investigated the changes of these organic osmolytes as well as ...
Most marine invertebrates and algae are osmoconformers whose cells accumulate organic osmolytes that provide half or more of cellular osmotic pressure. These solutes are primarily free amino acids and glycine betaine in most invertebrates and small carbohydrates and dimethylsulfoniopropionate (DMSP) in many algae. Corals with endosymbiotic dinoflagellates ...
The moderate halophile Halobacillus halophilus is the paradigm for chloride dependent growth in prokaryotes. Recent experiments shed light on the molecular basis of the chloride dependence that is reviewed here. In the presence of moderate salinities Halobacillus halophilus mainly accumulates glutamine and glutamate to adjust turgor. The transcription of glnA2 (encoding a ...
An interesting observation, reported for transgenic plants that have been engineered to overproduce osmolytes, is that they often exhibit impaired growth in the absence of stress. As growth reduction and accumulation of osmolytes both typically result from adaptation, we hypothesized that growth reduction may actually result from ...
Water reabsorption by organs such as the mammalian kidney and insect Malpighian tubule/hindgut requires a region of hypertonicity within the organ. To balance the high extracellular osmolarity, cells within these regions accumulate small organic molecules called osmolytes. These osmolytes can accumulate to a high ...
Renal medullary cells contain large quantities of organic osmolytes when the levels of salt and urea in renal medullary interstitial fluid are high. Two of these osmolytes, betaine and glycerophosphocholine (GPC), are methylamines. Methylamines generally counteract the perturbing effects of urea on enzymes and other macromolecules. Betaine was previously ...
When the renal medulla becomes hypertonic in association with the formation of concentrated urine, the cells of the medulla avoid the stress of high intracellular salts by accumulating small non-perturbing organic osmolytes. The response has been studied in most detail in cultured kidney-derived cells, and confirmed in studies of the intact kidney. The ...
Elevated temperature rapidly increases expression of genes for heat shock proteins (HSP), including HSP-70. The response is presumably triggered by denaturation of cell proteins and helps in their renaturation. Hypertonicity may also denature proteins, but the protective response, which is accumulation of compatible organic osmolytes [including betaine and ...
Porcine pulmonary arterial endothelial cells accumulated myo-inositol and taurine, as well as betaine, during adaptation to hypertonic stress. The cells grew and maintained their normal morphology during culture in hypertonic (0.5 osmol (kg H(2)O)(-1)) medium that contained osmolytes such as betaine, myo-inositol or taurine at concentrations close to ...
The ability to adapt to fluctuations in external osmotic pressure (osmoadaptation) and the development of specific mechanisms to achieve this (osmoregulation) are fundamental to the survival of cells. Most cells maintain an osmotic pressure in the cytoplasm that is higher than that of the surrounding environment, resulting in an outward-directed pressure, turgor, whose maintenance is essential for ...
Energy Citations Database
Adaptation of cells to prolonged hypertonicity generally involves accumulation of compatible organic osmolytes. Renal medullary cells in vivo and in tissue culture accumulate several different organic osmolytes, including sorbitol, inositol, betaine, and glycerophosphocholine (GPC) in response to hypertonicity. For ...
Betaine and myoinositol are compatible organic osmolytes which are specifically accumulated by cells exposed to hyperosmotic medium. A role for compatible organic osmolytes in the regulation of immune function for rat liver macrophages has been described recently. This report describes an osmolyte strategy in human ...
Renal medullary cells are normally exposed to a variably high extracellular NaCl concentration. They compensate by accumulating large amounts of organic osmolytes, including sorbitol and betaine. The sorbitol is synthesized from glucose, catalyzed by aldose reductase. Previously, inhibition of aldose reductase activity was noted to greatly reduce renal ...
The osmolality of the mammalian kidney medulla is very high. The high osmolality provides the driving force for water reabsorption and urinary concentration, key functions of the kidney for maintaining proper body fluid volume and blood pressure. Salt and urea are the major solutes in the renal medullary interstitium. Unfortunately, high salt (hypertonicity) causes DNA damage and cell death. In ...
Des Marais. We can at least be pretty sure that, once O2 accumulated in the atmosphere, methane concentrations dropped to very low levels, perhaps 10 ppm or ...
NASA Website
It has been shown previously that externally added glycine betaine is accumulated in Escherichia coli in response to the external osmotic strength. Here we have shown, by using nuclear magnetic resonance spectroscopy and radiochemical methods, that E. coli growing in a glucose-mineral medium of elevated osmotic strength generated with NaCl, had the same capacity to ...
Plants regulate water loss and CO(sub 2) gain by modulating the aperture sizes of stomata that penetrate the epidermis. Aperture size itself is increased by osmolyte accumulation and consequent turgor increase in the pair of guard cells that flank each st...
National Technical Information Service (NTIS)
of proline and trehalose. It is thought that accumulation of these organic osmolytes, as opposed to inorganic, trehalose, and glucose analyses were performed on larvae following exposure to seawater (~1000mOsmkg�1 et al., 1999). Trehalose content was determined following digestion with trehalase as described
E-print Network
Co-solvents such as glycerol and sorbitol are small organic molecules solvated in the cellular solutions that can have profound effects on the protein structures. Here, the molecular dynamics simulations and comparative structural analysis of magainin, as a peptide model, in pure water, 2,2,2-trifluoroethanol/water, glycerol/water, and sorbitol/water are reported. Our results show that the peptide ...
NASA Astrophysics Data System (ADS)
The conversion of ?-glutamate to ?-glutamine by archaeal and bacterial glutamine synthetase (GS) enzymes has been examined. The GS from Methanohalophilus portucalensis (which was partially purified) is capable of catalyzing the amidation of this substrate with a rate sevenfold less than the rate obtained with ?-glutamate. Recombinant GS from the archaea Methanococcus jannaschii and Archaeoglobus ...
Studies of the responses of porcine pulmonary endothelial cells to acute hypertonic stress have been extended by examining the induction and underlying mechanisms of cell tolerance to both osmotic and heat stresses. Preliminary adaptation of these cells to 0.4osmol (kg H(2)O)(-1) rendered them tolerant either to subsequent severe osmotic stress (0.7osmol (kg H(2)O)(-1)) or to subsequent severe ...
Adaptation to high salinity and low or high temperature is essential for bacteria to survive. Accumulation of exogenous osmolytes is one of the ways that helps bacteria to survive under such extracellular stress. We have analysed the capability of various L-amino acids and their D-isomers to act as osmolytes and thus enable Escherichia ...
TonEBP (tonicity-responsive enhancer binding protein) is a transcription factor that promotes cellular accumulation of organic osmolytes in the hypertonic renal medulla by stimulating expression of its target genes. Genetically modified animals with deficient TonEBP activity in the kidney suffer from severe medullary atrophy in association with cell death, ...
The accumulation of sugar alcohols and other low molecular weight metabolites such as proline and glycine-betaine is a widespread response that may protect against environmental stress that occurs in a diverse range of organisms. Transgenic tobacco plants that synthesize and accumulate the sugar alcohol mannitol were engineered by introduction of a ...
Using a clonal growth assay, we demonstrated that taurine, a nonperturbing osmolyte accumulated in kidney medulla, brain, and some other tissues of hypertonic experimental animals can function as a nonperturbing osmolyte in Madin-Darby canine kidney (MDCK) cells. The taurine content of hypertonic MDCK cells is twice that of isotonic ...
Concentrations of total arsenic and individual arsenic compounds were determined in liver samples of pinnipeds (northern fur seal Callorhinus ursinus and ringed seal Pusa hispida), seabirds (black-footed albatross Diomedea nigripes and black-tailed gull Larus crassirostris) and sea turtles (hawksbill turtle Eretmochelys imbricata and green turtle Chelonia mydas). Among these species, the ...
Betaine and proline protect preimplantation mouse embryos against increased osmolarity and decreased cell volume, implying that they may function as organic osmolytes. However, the transport system(s) that mediates their accumulation in fertilized eggs and early embryos was unknown, and previously identified mammalian organic osmolyte ...
With drought frequency and severity likely increasing in the future, understanding its effect on terrestrial carbon (C) and nitrogen (N) cycling has become essential for accurately modeling ecosystem responses to climate change. Microbes respond to drought stress by accumulating internal solutes, or osmolytes, such as amino acids, betaines and polyols, to ...
Intracellular accumulation of sucrose in response to lowered water activity seems to occur only in photosynthetic organisms. Here we demonstrate, for the first time, the potent ability of this common sugar, supplied exogenously, to reduce growth inhibition of Sinorhizobium meliloti cells in media of inhibitory osmolarity. Independently of the nature of the growth substrates ...
Cells in the kidney inner medulla are routinely exposed to high extracellular osmolarity during normal operation of the urinary concentrating mechanism. One adaptation critical for survival in this environment is the intracellular accumulation of organic osmolytes to balance the osmotic stress. Betaine is an important osmolyte that is ...
In order to survive hyperosmotic stress bacteria should adjust their cell turgor to altered conditions by increasing the intracellular osmolality. The classical view is that bacterial osmotic adjustment is achieved via accumulation of so-called "compatible solutes"-some organic osmolytes that can be accumulated in the cytosol at high ...
Ste20 serine/threonine kinases regulate fundamental cellular processes including the cell cycle, apoptosis, and stress responses. Recent studies in Caenorhabditis elegans and mammals demonstrate that Ste20 kinases also function in cell volume sensing and Cl�� transport regulation. Yeast Ste20 initiates a shrinkage activated MAPK cascade that regulates organic osmolyte ...
NSDL National Science Digital Library
dl-Pipecolic acid (dl-PIP) promotes growth restoration of Sinorhizobium meliloti cells facing inhibitory hyperosmolarity. Surprisingly, d and l isomers of this imino acid supplied separately were not effective. The uptake of l-PIP was significantly favored in the presence of the d isomer and by a hyperosmotic stress. Chromatographic analysis of the intracellular solutes showed that stressed cells ...
Protein solvation is the key determinant for isothermal, concentration-dependent effects on protein equilibria, such as folding. The required solvation information can be extracted from experimental thermodynamic data using Kirkwood-Buff theory. Here we derive and discuss general properties of proteins and osmolytes that are pertinent to their biochemical behavior. We find ...
Figure 1: Physiology of TonEBP in the renal medulla. Legend: NKCC2, ROMK, and Na, K-ATPase in the thick ascending limb (TAL) drives the sodium accumulation in the medullary interstitium. The resulting hypertonicity stimulates TonEBP. Enhanced expression of SMIT, BGT1, TauT, AR, and NTE promotes cellular accumulation of organic ...
While hyperosmolality of the kidney medulla is essential for urinary concentration, it imposes a great deal of stress. Cells in the renal medulla adapt to the stress of hypertonicity (hyperosmotic salt) by accumulating organic osmolytes. Tonicity-responsive enhancer (TonE) binding protein (TonEBP) (or NFAT5) stimulates transcription of transporters and a ...
In desert rodents, the production of concentrated urine is essential for survival in xeric environments in order to conserve water. Reabsorption of water in the kidney is dependent on large osmotic gradients in the renal medulla. This causes the renal cells to be bathed in a hypertonic extracellular fluid that can compromise cellular function. In response to hypertonicity, kidney cells ...
Compatible osmolytes are potent osmoprotectants that play a role in counteracting the effects of osmotic stress. Proline (Pro) is one of the most common compatible osmolytes in water-stressed plants. The accumulation of Pro in dehydrated plants is caused both by activation of the biosynthesis of Pro and by inactivation of the ...
Sucrose and ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) are very unusual osmoprotectants for Sinorhizobium meliloti because these compounds, unlike other bacterial osmoprotectants, do not accumulate as cytosolic osmolytes in salt-stressed S. meliloti cells. Here, we show that, in fact, sucrose and ectoine belong to a new family of ...
In diverse organisms, cells adapt to hyperosmotic stress by accumulating organic osmolytes. Mammalian renal medullary cells are routinely under osmotic stress. Two renal cell lines, Madin-Darby canine kidney (MDCK) and PAP-HT25, have been widely used to study mammalian osmotic regulation. In these epithelial cells, extracellular hypertonicity induces gene ...
Systems analysis of two alfalfa varieties, Wisfal (M. sativa ssp. falcata var. Wisfal) and Chilean (M. sativa ssp. sativa var. Chilean), with contrasting tolerance/sensitivity to drought revealed common and divergent responses to drought stress. At a qualitative level, molecular, biochemical and physiological responses to drought stress were similar in the two varieties, indicating that they ...
Enchytraeids are small soil living oligochaete worms with high sensitivity to low soil moisture. The effects of acute and chronic desiccation on survival and reproduction were determined in Enchytraeus albidus and Enchytraeus crypticus. Further, effects of acute drought stress on the water balance physiology and accumulation of osmolytes were investigated ...
The hypertonic inner medulla poses challenges to the cells that inhabit this area of the nephron. We employed discovery tools including proteomics and genomics to identify proteins that subserve the adaptive response. The gamma subunit of the Na/K-ATPase is critical to the survival of cells in hypertonic conditions, as silencing it increases osmosensitvity, and overexpression increases ...
Betaine is distributed widely in animals, plants, and microorganisms, and rich dietary sources include seafood, especially marine invertebrates ( approximately 1%); wheat germ or bran ( approximately 1%); and spinach ( approximately 0.7%). The principal physiologic role of betaine is as an osmolyte and methyl donor (transmethylation). As an osmolyte, ...
The success of Listeria monocytogenes as a food-borne pathogen owes much to its ability to survive a variety of stresses, both in the external environment prior to ingestion and subsequently within the animal host. Growth at high salt concentrations and low temperatures is attributed mainly to the accumulation of organic solutes such as glycine betaine and carnitine. We ...
Proline (Pro) is one of the most accumulated osmolytes in salinity and water deficit conditions in plants. In the present study, we measured the Pro content, the activity and the expression level of delta 1-pyrroline-5-carboxylate synthetase (P5CS: gamma-glutamyl kinase, EC 2.7.2.11 and glutamate-5-semialdehyde dehydrogenase, EC 1.2.1.41), a key regulatory ...
Aldose reductase (AR) is an enzyme responsible for converting glucose into sorbitol and galactose into galactitol. In the renal inner medulla, where sorbitol production plays a role in cellular osmoregulation, AR gene expression has been shown to be osmotically regulated. The present study examined the effects of the accumulation of the AR end product, galactitol, induced by ...
The localization of diethylstilbestrol (DES) in skeletal muscle was studied in CF1 mice and perfused rat hindlimbs. There was a slow accumulation of 3H-DES in mouse muscle from 4 to 24 hours following i.p. injection even though plasma DES was decreasing. Twenty-four hours after injection of 50 microCi ...
Debaryomyces nepalensis NCYC 3413, a food spoiling yeast isolated from rotten apple, has been previously demonstrated as halotolerant yeast. In the present study, we assessed its growth, change in cell size, and measured the intracellular polyol and cations (Na(+) or K(+)) accumulated during growth in the absence and presence of different concentrations of salts (NaCl and ...
The moderately halophilic bacterium Halobacillus halophilus copes with the salinity in its environment by the production of compatible solutes. At intermediate salinities of around 1 M NaCl, cells produce glutamate and glutamine in a chloride-dependent manner (S. H. Saum, J. F. Sydow, P. Palm, F. Pfeiffer, D. Oesterhelt, and V. M�ller, J. Bacteriol. 188:6808-6815, 2006). Here, we report that H. ...
Preimplantation mouse embryos of many strains become arrested at the 2-cell stage in culture medium that normally supports development to blastocysts, if osmolarity is raised to approximately that of their normal physiological environment in the oviduct. Arrest can be prevented if molecules that serve as "organic osmolytes" are present in the medium, since organic ...
In mammalian cells, the organic osmolyte taurine is accumulated by the Na-dependent taurine transporter TauT and released though the volume- and DIDS-sensitive organic anion channel. Incubating Ehrlich Lettr� tumor cells with methyl-?-cyclodextrin (5 mM, 1 h) reduces the total cholesterol pool to 60�5% of the control value. Electron spin resonance data ...
The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize the osmolyte betaine de novo in response to extracellular salt stress. Betaine is generated by the stepwise methylation of glycine to form sarcosine, N, N-dimethylglycine and betaine by using S-adenosyl-L-methionine (AdoMet) as the methyl donor. The complete gene cluster of Mpgsmt-sdmt was cloned ...